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Abstract

We present a cryptographic Java library called Cryptimeleon designed for prototyping and
benchmarking privacy-preserving cryptographic schemes. The library is geared towards re-
searchers wanting to implement their schemes (1) as a sanity check for their constructions, and
(2) for benchmark numbers in their papers. To ease the implementation process, Cryptimeleon
“speaks the language” of paper writers. It offers a similar degree of abstraction as is commonly
used in research papers. For example, bilinear groups can be used as the familiar black-box and
Schnorr-style proofs can be described on the level of Camenisch-Stadler notation. It employs
several optimizations (such as multi-exponentation) transparently, allowing the developer to
phrase computations as written in the paper instead of having to conform to an artificial API
for better performance.

Cryptimeleon implements (among others) finite fields, elliptic curve groups and pairings,
hashing, Schnorr-style zero-knowledge proofs, accumulators, digital signatures, secret sharing,
group signatures, attribute-based encryption, and other modern cryptographic constructions.

In this paper, we present the library, its capabilities, and explain important design deci-
sions.

1 Introduction

Researchers in the field of privacy-preserving schemes should implement their schemes much more
often: (1) Implementations make researchers’ ideas more accessible to practical communities,
through benchmark numbers — answering questions like: “is this scheme potentially fast enough
for productive use?”. Benchmarking becomes especially important in case of a privacy-preserving
construction combining many building blocks, where judging performance at a glance is not viable.
Additionally, if prototypes are available it gives practitioners the ability to quickly prototype their
own product for evaluation in a real environment. If the prototype proves viable it can be used by
a programming expert as a basis for a production-ready implementation, additionally considering
secure key-storage and standardized formats. (2) Implementations improve the scheme’s research
paper’s editorial quality in the sense that the compiler, test cases, or programmer will bring any
typo or implementation-specific problem to light. Thus, prototyping also improves the quality of
papers. The implementation process also forces researchers to think about aspects that are often
glossed over in papers, but sometimes turn out to be troublesome in practice.

We believe researchers are generally interested in implementing their privacy-preserving schemes
that were recently or are yet to be presented in a paper. However, such schemes are often very
complex, involving and combining many buildings blocks such as signatures and zero-knowledge
protocols. Coming with this is a special set of requirements on a supporting prototyping library.
(1) Researchers’ time is valuable and limited. Hence such a library has to be easy to use and
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provide a high-level API supporting a direct paper to code translation. (2) The resulting code
should be readable and as close as possible to how schemes are defined in research papers. (3) The
library should “speak the language” of paper writers. Meaning that it provides a similar degree of
abstraction as is commonly used in research papers. (4) An important requirement is also that the
library is feature complete such that researchers can start prototyping their scheme while relying on
existing implementations. (5) At the same time such a library must have competitive performance
such that benchmarks are meaningful.

We present Cryptimeleon1 (pronounced cryp-tee-meleon, similar to chameleon) a library writ-
ten in Java that is designed for prototyping and benchmarking privacy-preserving cryptographic
schemes. The library is geared towards researchers wanting to implement their schemes. To ease
the implementation process, Cryptimeleon meets the special set of requirements that comes with
research-level prototyping.
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Figure 1: Overview of Cryptimeleon’s parts

Cryptimeleon is not one monolithic library, rather it is split into several parts. An overview of
Cryptimeleon’s parts and implemented schemes is presented in Figure 1. The mathematical under-
pinning is covered by the Math library. The implemented schemes are collected in a part called
Craco and on top of that we provide implementations of predicate encryption, group signatures,
and an incentive system based on updatable anonymous credentials. A detailed list of the concrete
schemes is given in Appendix A.

Cryptimeleon “speaks the language” of paper writers. It offers a similar degree of abstraction
as is commonly used in research papers. For example, pairing groups can be used as the familiar
bilinear group black box, and computations like gx

−1

can be implemented as g.pow(x.inv()),
where inversion of x is automatically understood to be modulo the group order. As another exam-
ple, privacy-preserving cryptography often employs Schnorr-style zero-knowledge proofs of knowl-
edge, which are almost universally written down in Camenisch-Stadler notation. Cryptimeleon
regards specification of zero-knowledge proofs similarly: it allows researchers to simply feed their
Camenisch-Stadler notation into our zero-knowledge compiler Subzero. The compiler then gen-
erates Cryptimeleon code implementing the protocol (cf. Section 5). The Java framework for

1https://cryptimeleon.org
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Schnorr-style protocols is also structured similarly to how researchers think about them — for
example, protocols can be dynamically instantiated with prior exchange of (blinded) values and
Schnorr statements are easily composable (cf. Section 4).

Cryptimeleon also implements many of the expected features of Camenisch-Stadler notation
protocols: set membership and range proofs, pairing support, nested AND/OR proofs, the Fiat-
Shamir heuristic, and others. Other examples of features expected by researchers and implemented
by Cryptimeleon are easy hashing into (bilinear) groups or Zp, and pseudorandom and hash func-
tions with arbitrary input and output lengths. This allows researchers to focus on implementing
their specific scheme without having to manually implement some of the building blocks they may
take for granted in research papers.

The design of Cryptimeleon is motivated by the following thought process. To benchmark
schemes from a paper, you basically have two options. The first option is to implement your scheme
from scratch (or based maybe on some existing elliptic curve library), ideally in a low-abstraction
language like C. In this scenario, you can manually optimize every single detail specific to your
scheme’s use case, but this comes with its own challenges. You have to be knowledgeable about
possible optimizations and then manually rewrite your scheme into a highly optimized version.
While this potentially results in great performance, we believe that this approach, which is also
time-consuming, is viable for only a limited number of schemes (e.g. standardized schemes and
production-ready schemes) and developers.

For all other developers, researchers, and schemes, there is the second option to rely on a
library like Cryptimeleon that alleviates the implementation challenges. In contrast to the first
option, with Cryptimeleon (and Java) it is not possible to manually optimize the implementation to
get every last drop of performance. This does not mean that implementations with Cryptimeleon
are inherently inefficient. We do implement a lot of automatic optimizations behind the scenes
and our performance numbers are competitive with the simultaneous benefit of fast, convenient,
and easy development. Our design decision is to prefer simple, close-to-paper APIs over extremely
optimizable APIs. We have put work into optimizations where it benefits the users of Cryptimeleon
the most and it can be done without making the code less readable.

For example, to compute two Pedersen commitments C1 = gx1 · hr1 , C2 = gx2 · hr2 , the code in
Cryptimeleon is quite natural and highlights the direct paper to code translation.

GroupElement C1 = g.pow(x1).op(h.pow(r1)). compute ();

GroupElement C2 = g.pow(x2).op(h.pow(r2)). compute ();

// use C1 and C2 ...

Behind the scenes, several optimizations are transparently employed: C1 and C2 are computed in
parallel (signified by the call to compute()) and they are each computed as a multi-exponentiation
(instead of naively by computing gxi , then hri , and then multiplying the results).

To get a similar level of optimization, other frameworks require developers to jump through
many more hoops, making the code less readable. To illustrate, the following code is semantically
equivalent in a hypothetical framework without our automatic optimizations.

GroupElement [] bases = new GroupElement [] {g,h};

ZnElement [] exp1 = new ZnElement [] {x1, r1};

ZnElement [] exp2 = new ZnElement [] {x2, r2};

Future <GroupElement > C1future =

executor.submit (() -> group.multiexp(bases , exp1 ));

Future <GroupElement > C2future =

executor.submit (() -> group.multiexp(bases , exp2 ));

try {

GroupElement C1 = C1future.get ();

GroupElement C2 = C2future.get ();

// use C1 and C2 ...
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} catch (ExecutionException ex) { return; }

Another small illustration of the “readability first” design paradigm can be seen with our zero-
knowledge framework. Assume a paper requires you to prove knowledge of a secret value r such that
e(g2 ·hr, y) = C in zero-knowledge. This equation can directly be translated to Cryptimeleon code as
new LinearStatement(e.apply(g.pow(2).op(h.pow(r)),y).isEqualTo(C)). The expression is
then automatically rewritten as e(hr, y) = C · e(g2, y)−1 internally (because the Schnorr-like proof
system requires the format “linear expression = constant”). In a hypothetical maximally optimized
implementation (or even a less readability-centric library), the programmer would manually (and
statically) rewrite the equation to conform to the required format. The downside, however, is that
this makes the code less readable (much harder to map the paper’s equations onto the optimized
implementation). Hence, we opted not to go in this direction — we offer well established and gen-
erally applicable optimizations and performance gains though parallelism, multi-exponentiation,
and lazy evaluation of group operations, cf. Section 2. These optimizations are transparent to the
developer and code reader.

Another benefit of Cryptimeleon’s design is that benchmarking schemes is easy and outputs
metrics that can be used in papers. It offers a simple approach for hardware-independent perfor-
mance evaluations via automatic counting of group operations, cf. Section 3. One can also switch
to very efficient pairing libraries for hardware-dependent evaluations. To support this Cryptimeleon
provides wrappers for mcl [Shi] (C++ and Assembly, bilinear group BN254) and ECCelerate [Sec]
(Java, BN256 and BN464)2. Regardless of the pairing library, the optimizations in the rest of our
Math library and benefits of Cryptimeleon’s API are still in place.

1.1 Related Work

For the work on Cryptimeleon we classify papers or rather their results in a three layer hierarchy.
This hierarchy is used in this work to classify related libraries and the parts of Cryptimeleon. In
short, layer 1 encompasses foundational research, e.g. choice of security parameter, groups, elliptic
curves, pairings, and lattices. To layer 2 we ascribe building blocks such as secret sharing, message-
authentication codes, signature schemes, encryption schemes, and (non-)interactive proof systems.
Therefore, higher level protocols that rely on layer 2 are assigned to layer 3, e.g. anonymous
credentials, predicate encryption, and group signatures.

For on overview of the layers in Cryptimeleon see Figure 1, where layer 1 is the Math library.
Additionally, we show mclwrap to highlight the flexibility of Math to rely on other pairing libraries.
With Math our layer 1 provides the mathematical foundation through groups, rings, fields, and
bilinear groups equipped with pairings, where the transparent optimization of the layer is the most
important API feature for the layers above.

Layer 2 is covered by Craco since it provides everything concerned with cryptographic schemes
including interfaces and classes for public parameters, keys, ciphertexts, signatures, and message
blocks. Researchers can directly implement their scheme with the support of the provided interfaces
and class structure of Craco. For layer 3, Craco includes implementations of important building
blocks for higher level cryptographic constructions, e.g. accumulators, commitments, signatures,
encryption schemes, key encapsulation mechanisms, secret sharing schemes, and zero-knowledge
proof of knowledge protocols. A detailed list of the concrete schemes is given in Appendix A.

Cryptimeleon’s layer 3 provides three examples, namely predicate encryption (predenc), group
signatures (groupsig), and an incentive system based on updatable anonymous credentials (uacs-
incentive-system) that rely on the lower levels, see Figure 1. We use uacs-incentive-system in Sec-
tion 3 to show that Cryptimeleon is ready for prototyping and benchmarking of privacy-preserving
schemes. The predenc part features implementations of identity-based and attribute-based encryp-
tion that build upon the secret sharing schemes, e.g. monotone-span programs, of Craco. The last
layer 3 part is groupsig which is derived from the interfaces of libgroupsig [DAR15]. The goal of

2Cryptimeleon also provides Java-implemented elliptic curve groups out of the box.
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libgroupsig is to provide group signature interfaces that can be used as a standard API. This is,
based on our knowledge, the first adaptation of libgrougsig besides the original C implementation.

In the following we give an overview of related libraries, classify them according to the intro-
duced three layers, and comparing the libraries with Cryptimeleon.

We start with a look at traditional cryptography libraries that do not focus on research-level
prototyping. There are many libraries [AGM+,BLS12,Leg,ZBPB17] that provide implementations
of standardized cryptographic schemes such that you never have to implement one of them yourself
or even have to think about secure parameters such as correct padding in RSA. You can just build
on top of vetted implementations with secure parameters, side-channel security, and standardized
key formats. For very efficient implementations of select cryptographic schemes, one can rely on
one of the NaCl [BLS12] variants like libsodium [libb] and HACL* [PBP+20, ZBPB17]. Because
they focus on standardized established schemes instead of more modern research-level schemes,
they offer no direct support for prototyping of modern privacy-preserving schemes.

1.1.1 mcl

The library mcl [Shi] focuses on a highly performant implementation of the Ate pairing over com-
mon BN and BLS12-381 curves written in Assembly and C++. Through its architectural versatility
it supports all major systems including M1 macOS, Android, and WebAssembly. Because of these
features it is the primary external pairing library used in Cryptimeleon via a wrapper. This wrap-
per also is an example of how to implement one for a layer 1 library of your choice. Note that
many of the libraries listed here provide bindings for Java which simplifies the implementation of
a wrapper.

Layer 1: Type 3 bilinear pairings using Barreto-Naehrig (BN254, BN381, BN462) and Barreto-
Lynn-Scott curves (BLS12-381)

1.1.2 ECCelerate

Developed at TU Graz, specifically the Institute for Applied Information Processing and Com-
munication (IAIK), ECCelerate [Sec] is a commercial product with the exception that is free for
education and research. It mostly implements standardized schemes from ANSI X9.62-2005, ANSI
X9.63, IEEE P1363a, FIPS 186-4, SEC1 v2.0, SEC2 v2.0, RFC 5639 and ANSSI. What makes
it usable for Java developers that rely on the official Java Cryptography Extension (JCE) is that
ECCelerate is JCE compatible by using the IAIK JCE provider3. Since ECCelerate covers stan-
dardized cryptography, it is mostly situated at Layer 1 and 2 with schemes that Cryptimeleon
does not deal with. For our goals, only the provided asymmetric bilinear pairings are of interest.
Therefore, we provide in Cryptimeleon a wrapper for the ECCelerate pairing.

Layer 1: Type 3 bilinear pairings using Barreto-Naehrig curves; Curve25519 and Curve448 for
EdDSA

Layer 2: EdDSA, ECDSA, ECDH, ECMQV (key agreement), ECIES

1.1.3 Bouncy Castle

The Bouncy Castle library [Leg] is written in Java and mainly provides implementations of stan-
dardized schemes for the official Java Cryptography Architecture (JCA). In detail it provides
implementations, among others, for S/MIME, TLS, X.509 certificates, and PKCS#12. From the
privacy-preserving cryptography view, the focus of Bouncy Castle is therefore on layer 1 and 2
with the goal to provide Java developers easy access to common and standardized cryptographic
operations.

3https://jce.iaik.tugraz.at/products/core-crypto-toolkits/jca-jce/
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1.1.4 RELIC

The library RELIC [AGM+] is mainly written in C and aims at a performant implementation of
common cryptography schemes. Therefore, it includes very efficient architecture-dependent code
in the form of multiple implementations for each scheme to tailor for specific CPU and memory
features. Given the implementation of many standardized schemes, researchers tend to use RELIC
to extend existing systems. Thereby enabling benchmarks in real world execution environments,
e.g. testing forward-secure 0-RTT key exchange in the QUIC protocol [DDG+20]. RELIC is
available under the Apache-2.0 License or LGPL-2.1 and provides the following implementations:

Layer 1 : Elliptic curves (NIST curves and pairing-friendly curves), integer arithmetic, prime and
binary field arithmetic

Layer 2 : RSA, ECDSA, ECMQV, ECSS (Schnorr), ECIES, BLS [BLS04], BBS [BBS04], PS sig-
natures [PS16], Paillier [Pai99] and Benaloh [Ben94] homomorphic encryption schemes

1.1.5 NaCl

Introduced in [BLS12] NaCl (pronounced salt), with its simple and high-level API, performant
and secure implementations in C, is the basis of many other libraries like libsodium [libb]. NaCl
defines a core API consisting of six functions concentrating on public-key authenticated encryption
and signatures. The library follows the mantra that programmers should never be asked to define
the correct key size and padding for RSA signatures, rather they should just call a function that
signs a given message and the rest is done internally. Underneath this, NaCl features very effi-
cient (memory and computation) constant-time implementations of well established cryptographic
schemes ranging from AES to state-of-the-art schemes. The efficiency also comes from an auto-
matic selection of an implementation specific for your CPU. Besides being very rigorous with its
mostly verified implementations, NaCl also defines the aforementioned core of the API and there-
fore a naming convention adapted by other libraries such as HACL* [ZBPB17], libsodium [libb],
libhydrogen [liba], and TweetNaCl [BvJ+15]. It follows an excerpt of the provided primitives in
NaCl.

Layer 1: Curve25519, Poly1305 MAC, AES-GCM

Layer 2: Authenticated encryption: Curve25519 elliptic-curve-Diffie–Hellman function, Salsa20
stream cipher, and Poly1305 MAC 4, Ed25519 signature scheme

Other NaCl API compatible libraries improve it in performance, compatibility and implemen-
tation of more schemes. For example libsodium [libb] deals with downsides of NaCl. Unlike NaCl
the build process and resulting library can be installed system-wide and is portable in the sense
that it also runs on machines different from the compiling machine. In addition there are bindings
for all major programming languages5 making it even more useable, e.g. one can sign a message
with libsodium in Python and verifying it in Rust.

1.1.6 HACL*: A Verified Modern Cryptographic Library

As a member of Project Everest [Mic], the library HACL* [ZBPB17] focuses on providing a com-
pact and verified library written in the F* programming language that supports the full NaCl
API. Further development presented in [PBP+20] concentrates heavily on optimizing the imple-
mentation for multiple architectures using single-instruction multiple data parallelism. The use
case of HACL* is Signal and especially TLS together with other Everest projects, e.g. ValeCrypt
(primitives in assembly) and EverCrypt (automatically selects from HACL* and ValeCrypt the
best implementation depending on the execution environment). Since HACL*, available under

4For details on authenticated encryption see https://cr.yp.to/highspeed/naclcrypto-20090310.pdf
5https://doc.libsodium.org/bindings_for_other_languages
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Apache-2.0 license, covers layer 1 with standardized implementations, it is a candidate for future
support in Cryptimeleon such that you can build layer 3 systems while relying on the performant
and verified code base of HACL*. Note, that the extensive performance evaluation of NaCl com-
patible libraries in [ZBPB17] shows that the verification guarantees of HACL* are no detriment to
the performance.

Layer 1: Among others6; ChaCha20 and Salsa20 stream ciphers, AES-GCM, SHA-3

Layer 2: Same as NaCl: Salsa20 based authenticated encryption, Ed25519 signature scheme

There are also libraries that pursue the goal of research-level prototyping. Two notable libraries
are Kyber [Decb] and Charm [AGM+13].

1.1.7 Kyber

The library Kyber [Decb], written in Go, is developed in the Cothority project [Deca, STV+16]
that provides tools for decentralized cryptographic schemes. Kyber’s goal is to provide a high-level
API for developers that want to use modern cryptography (ZKPoK, secret sharing, pairing-based
signature schemes) in real-world applications. Therefore their goal is similar to ours. Their ZKPoK
framework supports proving knowledge of discrete logarithms with AND and OR statements, where
Cryptimeleon additionally provides range and set membership proofs.

Layer 1: Finite field arithmetic, Edwards curve 25519, NIST P-256 elliptic curve, Barreto-Naehrig
(BN256)

Layer 2: Among others; EdDSA, Schnorr signatures, Polynomial commitment, Shamir secret shar-
ing, ZKPoK, elliptic curve integrated encryption scheme (ECIES), Boneh-Lynn-Shacham
(BLS) [BLS04]

1.1.8 Charm

The library Charm [AGM+13] is a framework for prototyping of academic cryptographic schemes
and provides a starting point for benchmarks against other implemented schemes. Charm is written
in Python and tackles challenges that just occur during implementation of a scheme. Hence, it
provides solutions for serialization of cryptographic objects, error handling and basic checks that
are not present in research papers, but are necessary for any application.

The focus of Charm is on API usability, scheme variety and composition. Schemes in Charm
can be combined in predefined ways via so called adapters, e.g. an adapter for hybrid encryp-
tion. In Cryptimeleon this is directly achieved by appropriate types and class hierarchies due to
Java. Therefore, Java type safety helps in limiting developers choices where security demands it.
Comparing the attribute-based encryption capabilities, in Cryptimeleon the creation and handling
of predicates in the form of threshold and boolean polices is more sophisticated. In Charm the
process of defining policies as a text string that is then interpreted is error-prone. In Cryptimeleon,
polices and attributes are typed and have a fixed set of operators. In both libraries policies get
internally transformed to monotone span programs to be used by the schemes.

Available under the LGPL-3.0 license Charm features the following primitives:

Layer 1: Relies on Python bindings for OpenSSL, PBC library, RELIC, and MIRACL.

Layer 2: encryption schemes (including identity-based and attribute-based schemes), e.g. Wa-
ters11 [Wat11,Wat08], digital signatures, e.g. BLS [BLS04] and PS signatures [PS16], com-
mitment schemes, and zero-knowledge proofs7

6For full list of supported algorithms refer to https://hacl-star.github.io/Supported
7For a listing of schemes see https://github.com/JHUISI/charm/wiki/Cryptographic-schemes-and-protocols
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1.2 Related Work on ZKPoK (compilers)

Besides Cryptimeleon, there are a number of libraries that help implementing Schnorr-style proto-
cols.

1.2.1 zksk

Most recently, Lueks et al. presented the Zero-Knowledge Swiss Knife Python library [LKF+19].
Similar to our library, it is design for fast prototyping of Schnorr-style protocols. Like Cryptimeleon,
they offer extendable “primitives” (similar in functionality to our “fragments”, see Section 4),
Camenisch-Stadler notation, linear equations, range proofs, OR-composition, interactive and non-
interactive execution, etc. over bilinear groups. Overall, zksk can be seen as a Python alternative
to our protocol implementation offering, with (as of 2021) minor differences in capabilities.

1.2.2 dalek zkp and Merlin

Written in rust, dalek zkp8 implements Schnorr-style proofs (only) for basic (homomorphism preim-
age) statements. While it is less expressive than Cryptimeleon, it is intended to be eventually used in
production code (whereas Cryptimeleon is purely meant for academic prototyping). It is compatible
with Merlin9, which enables secure protocol compilation (and composition) to a non-interactive
proof.

1.2.3 CACE ZK Toolbox / YAZKC / ZKCrypt

Within the CACE project a zero-knowledge compiler [ABB+10] was implemented. It allows users
to specify a statement in a Camenisch-Stadler-like domain-specific language and supports many of
the standard extensions that Cryptimeleon also supports. In contrast to Cryptimeleon, its generated
protocols can be verified [ABB+12]. Unfortunately, the compiler does not seem to be publicly
available (anymore).

1.2.4 ZKPDL / Cashlib

Similar to CACE, ZKPDL [MEK+10] compiles protocols specified in a tailor-made domain-specific
language to a working protocol. While expressive, they do not support OR composition of protocols
or reusable subprotocols.

1.2.5 ZQL

Focusing less on protocol prototyping, ZQL [FKDL13] compiles a (general-purpose) computation
specified in their domain-specific language into a Sigma protocol.

1.2.6 Additional pointers

Further libraries with some support to implement Schnorr-style protocols include emmy [SBM+19],
Charm [AGM+13], SCAPI [EFLL12], and DEDIS Kyber10.

2 The Math Library’s Computational Model

When it comes to computation of expressions of group elements, there are several optimizations
that are often employed: Multi-exponentiation, parallelism, and precomputation. We will detail

8https://github.com/dalek-cryptography/zkp
9https://merlin.cool

10https://github.com/dedis/kyber
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these and how they are realized in the Cryptimeleon Math library in the following. We note that
Cryptimeleon does not support constant-time group operations.

2.1 Structure of Group Implementations

On the implementation level, a group is split into a “frontend” and a “backend”. The backend only
defines how to compute a group’s operations (e.g., using our custom Java implementation or by
delegating to an efficient C++ implementation [Shi]). The frontend is what a user of our library
usually interacts with. It handles generic optimizations, delegating the actual group operations
to the backend. This split into frontend and backend means that when implementing new groups
for our library, there is no need to reimplement generic optimization. In the remainder of this
section, we generally describe the LazyGroup frontend for groups, in which group operations are
done lazily, which enables many optimizations to be done automatically behind the scenes.

2.2 Multi-exponentiation

The idea behind multi-exponentiation is that an expression such as ga · hb can be computed more
efficiently than naively computing ga and hb and then multiplying them.

For illustration, take a = 6 = (110)2 and b = 3 = (011)2 and let gi = gi and hi = hi for
i ∈ {0, 1}. We can interleave the usual Square and Multiply computation of ga = (g21 ·g1)2 ·g0 (note
the (110)2 pattern in this expression) and hb = (h20 ·h1)2 ·h1 to compute ga ·hb. In the interleaved
version, the two bases essentially share the squaring step: ga · hb = ((g1h0)2 · (g1h1))2 · g0h1.
This approach results in fewer group operations than the naive computation. While this example
illustrates the idea, the library uses slightly more advanced multi-exponentiation methods (see
[Möl01] for a good overview).

Because the LazyGroup is lazy, the expression g.pow(a) does not compute ga immediately, but
instead returns a placeholder object. This placeholer object behaves semantically equivalent to ga,
but internally the computation of its concrete value is deferred until needed (which is mostly upon
serialization or comparison with another group element, which may, as in the following example,
never actually happen). The advantage is that, in the expression C = g.pow(a).op(h.pow(b)),
the g.pow(a) subexpression does not force the computation of ga (same for hb), so these intermedi-
ate values are never actually computed. Instead, C is again a placeholder object. The concrete value
ga · hb of C is computed using an efficient multi-exponentiation method when C’s value is accessed.
As a result, programmers benefit from the performance improvements of multi-exponentiation
without any additional effort.

2.3 Precomputation

Precomputation can be used to speed up (multi-)exponentiation for a specific group element. For
illustration, take a = 14 = (1110)2 and gi = gi for i ∈ {0, 1}. The Square and Multiply algorithm
would compute ga as (((g21) · g1)2 · g1)2 · g0 (note the 1110 pattern in the expression). With
precomputation of (g00, g01, g10, g11) := (g0, g1, g2, g3) in use, we can more efficiently compute ga

as ((g11)2)2 · g10 (i.e. handle two bits per multiply step instead of only one).
To run precomputation for a group element g, one calls g.precomputePow(). This triggers a

similar precomputation of small powers of the group element as explained above to speed up future
exponentiations or multi-exponentiations involving g.11 During the setup phase of a scheme, this
should be used on group elements involved in (several) future exponentiations, like the bases of a
Pedersen commitment scheme.

11The library actually implements the more efficient wNAF (multi-)exponentiation technique instead of of simple
Square and Multiply (cf. [Möl01])
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2.4 Parallelism

As is commonly known, modern processors can process multiple threads at the same time. The
LazyGroup enables a very easy model to exploit parallelism.

Suppose we have code to compute two Pedersen commitments C1, C2 and send them to another
party.

1 GroupElement C1 = g.pow(x1).op(h.pow(r1));

2 GroupElement C2 = g.pow(x2).op(h.pow(r2));

3 //...

4 send(C1.getRepresentation ());

5 send(C2.getRepresentation ());

Here, because group elements are lazy, the actual value of C1 is (internally) computed in line 4
and afterwards the value of C2 is computed in line 5.

To enable parallelism in this scenario, one can use the compute() method on group elements.
This method is non-blocking and returns immediately, but starts computation of the result of a
group element on a background thread. So we change lines 1 and 2, adding a compute() call as
follows.

1 GroupElement C1 = g.pow(x1).op(h.pow(r1)). compute ();

2 GroupElement C2 = g.pow(x2).op(h.pow(r2)). compute ();

3 //...

4 send(C1.getRepresentation ());

5 send(C2.getRepresentation ());

Here, computation of C1 begins on a background thread in line 1 and computation of C2 begins
on a background thread in line 2. So in this code snippet, computation of C1 and C2 happens
concurrently. Line 4 then blocks until the value of C1 has finished computing and then line 5
blocks until the value of C2 has finished computing.

Calls to compute() are never necessary (i.e. the code produces the same result with or without
them) but they enable concurrent computation of results. The need to manually call compute()
(instead of, say, having the library automatically call compute() implicitly after every opera-
tion) arises from the need to mark some results as relevant to distinguish them from interme-
diate results. For example, C1 = g.pow(x1).compute().op(h.pow(r1).compute()).compute()

is semantically valid, but triggers more computation than necessary. This is because this forces
computation of unwanted intermediate results (g.pow(x1) and h.pow(r1)) even when C1 can be
more efficiently computed using multi-exponentation.

3 Benchmarking

An important purpose of implementing a prototype is gathering performance information. This
information then allows for comparisons with other schemes and to evaluate practicality. Achieving
acceptable runtime and/or memory usage is essential for demonstrating the potential for practical
usage.

There are many different kinds of performance metrics. These include runtime in the form
of CPU cycles or CPU time, memory usage, and network usage. Furthermore, one may want
to collect hardware-independent information such as the number of group operations or pairings.
Both of these types of metrics have their use cases. Counting group operations and pairings has the
advantage of being hardware-independent. To the layperson and potential user, applied metrics
such as CPU time or memory usage can be more meaningful as they demonstrate practicality
better than the more abstract group operations metrics. Cryptimeleon supports collecting all of
these metrics in a coherent way. This way the user can choose the metrics that are most suitable
to their use case.
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3.1 Collecting hardware-independent metrics

The collection of hardware-independent metrics such as group operations is implemented by the
Cryptimeleon Math library. The main points of interest here are the DebugBilinearGroup and
DebugGroup classes. The former allows for counting pairings, and the latter allows for counting
group operations, group squarings (relevant for elliptic curves), group inversions, exponentiations,
and multi-exponentiations. It is also able to track the number of times group elements have been
serialized.

The counting is done in two modes: The “NoExp” mode and the “Total” mode. Group oper-
ations metrics from the “NoExp” mode disregard operations done inside (multi-)exponentiations
while the “Total” mode does account for operations inside (multi-)exponentiations. “NoExp” mea-
surements are therefore independent of the actual (multi-)exponentiation algorithm while “Total”
measurements are more expressive in regards to the actual runtime (since estimating group oper-
ation runtime is easier than that of a (multi-)exponentiation).

As an example we consider the computation of ga ·hb over a group size of 128 bit. The “NoExp”
mode counts this as a single multi-exponentiation with two terms. No group operations are counted
since they are all part of the multi-exponentiation. The “Total” mode does not consider the multi-
exponentiation as its own unit. Instead, it counts the group operations, inversions, and squarings
that are part of evaluating the multi-exponentiation (using a wNAF-type algorithm). Combining
these metrics gives us therefore a more complete picture of the computational costs.

To collect operation metrics one just has to replace the BilinearGroup or Group used by
DebugBilinearGroup or DebugGroup, respectively. Then execute the code you want to collect
metrics for, and display the results. The measurements are stored within DebugBilinearGroup

and/or DebugGroup and can be retrieved via getter methods. These getter methods are split up
by metric and by mode.

We now take a look at how one can use the debug groups to obtain operation metrics for
the verification algorithm of the signature scheme from [PS18]. Given the public key pk =
(g̃, X̃, Ỹ1, . . . , Ỹr+1), the message vector m = (m1, . . . ,mr), and the signature σ = (m′, σ1, σ2),
the verification algorithm checks whether σ1 6= 1 and e(σ1, X̃ ·

∏r
j=1 Ỹ

mj
j · Ỹ m′r+1) = e(σ2, g̃). We

show the code to count the number of operations during verification in Listing 1, and show the
result in Table 1 (we omit the results for G1 and GT).

List. 1: Operation measurements for verification algorithm of [PS18]

// Want a type 3 bilinear group; debug group is flexible

var bilGroup = new DebugBilinearGroup(TYPE_3 );

// Enable counting by instantiating scheme using debug group

PSPublicParameters pp = new PSPublicParameters(bilGroup );

// [Set up plainText , sig , and vk]

// Reset all counters before executing the verification

bilGroup.resetCounters ();

// Verification

scheme.verify(plainText , sig , vk);

// Print results

System.out.println(bilGroup.formatCounterData ());

3.2 Collecting applied metrics

Applied metrics, such as runtime or memory usage, can be collected using any existing Java
benchmark framework. An example of such a framework is the Java Microbenchmarking Harness
(JMH). It allows for very accurate measurements and integrates with many existing profilers. Due
to these existing options, we have decided against implementing any such capabilities ourselves.
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Table 1: Results of running the benchmark in Listing 1. The multi-exponentiation results mean
that a single multi-exponentiation with two terms has been done.

Metric Result
Number of total group operations in G2 62
Number of total group inversions in G2 27
Number of total group squarings in G2 128
Number of terms in each multi-exponentiation in G2 2

Table 2: Results of running the JMH benchmark in Listing 2. “numMessages” denotes the length
of the message vector.

Benchmark numMessages Mode Cnt Score Error Units
measureVerify 1 ss 50 5.845 ± 0.661 ms/op
measureVerify 10 ss 50 9.259 ± 1.097 ms/op

In Listing 2, we show JMH runtime measurement code for the verification algorithm of the
signature scheme from [PS18]. The results are depicted in Table 2.

List. 2: Runtime measurements for verification algorithm of [PS18]

@State(Scope.Thread)

public class PS18VerifyBenchmark {

// Test with one message and ten

@Param ({"1", "10"})

int numMessages;

// [Insert remaining fields here]

@Setup(Level.Iteration)

public void setup() {

// Use the efficient mcl BN254 wrapper

var pp = new PSPublicParameters(new MclBilinearGroup ());

// [Set up plainText , sig , and vk]

}

// The benchmark method. Includes settings for JMH

@Benchmark

@BenchmarkMode(Mode.SingleShotTime)

@Warmup(iterations = 3, batchSize = 1)

@Measurement(iterations = 10, batchSize = 1)

@OutputTimeUnit(TimeUnit.MILLISECONDS)

public Boolean measureVerify () {

return scheme.verify(plainText , sig , vk);

}

}

Using the right metric to illustrate the performance of a construction can be helpful for driving
further adoption. Cryptimeleon is flexible and allows for collecting a wide variety of important
metrics.

12



Table 3: Average performance of our implementation of [BBDE19a] over 100 runs in milliseconds
or number of operations. Emphasized: typical execution platform for each algorithm.

Measurement Issue Join Credit Earn Deduct Spend
Google Pixel (Phone, Snapdragon 821) 37 38 43 37 139 88
Macbook Pro (Laptop, i9-9980HK) 3 3 4 3 15 16
G1 operations (multiply or square) 6432 4419 1811 1570 8662 8276
G2 operations (multiply or square) 0 1587 855 804 7911 3159
GT operations (multiply or square) 0 0 599 1 9779 2211
Pairings 0 2 6 4 30 12

3.3 Example: Benchmarking a Privacy-Preserving Incentive System

As a test run for the library, we have reimplemented12 the privacy-preserving incentive system
based on updatable anonymous credentials [BBDE19a]. This construction uses Pointcheval Sanders
(blind) signatures and Schnorr-style zero-knowledge protocols. Such systems are exactly what
Cryptimeleon is geared towards, so implementation of the system was straightforward.

See the original paper’s full version [BBDE19b, Appendix E] for more information on the
construction. Because of various performance optimizations in Cryptimeleon, we were able to
improve upon the original paper’s numbers by a factor of about 2 to 4.

Table 3 shows the running times on a laptop and an Android phone, and (device-independent)
group operation counts. The device benchmarks were created using mcl’s BN254 as the bilinear
group and a maximum point count of 2568 (for the range proof). The operation counts may
fluctuate over multiple runs because, for example, random choices of exponents may lead to more
or fewer operations during exponentiation.

4 Sigma Protocol Framework

Zero-knowledge proofs of knowledge are a powerful tool for modern privacy-preserving protocols.
They allow a prover to prove knowledge of values without revealing these values to the verifier. For
this reason they are a natural fit for privacy-preserving protocols, where the hidden values may be
something like a user’s identity, attributes, messages, or keys.

There are many different zero-knowledge proof systems, but proof systems based on Schnorr’s
protocol are often the most convenient for modern privacy-preserving protocols. This is because
Schnorr protocols (and their generalizations) are very efficient for algebraic statements (for example
knowledge of discrete logarithms over (bilinear) groups). Furthermore, they are Sigma protocols,
which enables many generic extensions (e.g., they can be made non-interactive using the Fiat-
Shamir heuristic [FS87]).

Theoretically, we can characterize Schnorr protocols as being able to prove preimages of a group
homomorphism ψ [Mau09]. This means that given some y, the verifier can check that the prover
knows some x with ψ(x) = y. For example, for the original Schnorr proof of knowledge of a discrete
logarithm, the homomorphism is ψ(x) = gx.

However, much more complex protocols can be built. We call protocols that build upon
Schnorr’s protocol “Schnorr-style protocols”. Schnorr-style protocols have been used, for example,
for

• Proving knowledge of a signature (the main ingredient for anonymous credentials)

• Proving statements about the contents of an ElGamal ciphertext or a Pedersen commitment

• Proving well-formedness of values (e.g., that something has been raised to the right exponent)

12https://github.com/cryptimeleon/uacs-incentive-system
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• Range proofs

• . . . any combination of the above

Usually, these protocols are denoted in the style of the Camenisch-Stadler notation [CS97]. For
example, a typical research paper designing privacy-preserving protocols may contain an expression
such as the following.

ZK{(m1,m2, r) : C1 = hm1
1 · hm2

2 · gr ∧ 20 ≤ m1 +m2 ≤ 100} (1)

It denotes a zero-knowledge proof of knowledge protocol in which the prover proves knowledge
of an opening m1,m2, r ∈ Zp to the public Pedersen commitment C such that m1 + m2 mod p is
a number between 20 and 100.

The concrete protocol corresponding to Equation (1) is quite complicated to write down
manually. Cryptimeleon’s Craco library offers a protocol framework to conveniently implement
Schnorr-style protocols. In our framework, Equation (1) can be implemented by extending the
DelegateProtocol class and overriding the provideSubprotocolSpec method as in Listing 3.

List. 3: Implementation of Equation (1) using DelegateProtocol

@Override

protected SubprotocolSpec provideSubprotocolSpec(

CommonInput input , SubprotocolSpecBuilder builder) {

SchnorrZnVariable m1 = builder.addZnVariable("m1", zn);

SchnorrZnVariable m2 = builder.addZnVariable("m2", zn);

SchnorrZnVariable r = builder.addZnVariable("r", zn);

builder.addSubprotocol("commitmentOpen",

new LinearStatementFragment(

h1.pow(m1).op(h2.pow(m2)).op(g.pow(r))

.isEqualTo ((( MyCommonInput) input ). commitmentC)

)

);

builder.addSubprotocol("rangeProof", //m1+m2 \in [20 ,100]

new TwoSidedRangeProof(m1.add(m2), 20, 100, pp)

);

return builder.build ();

}

Composing the actual protocol is then done behind the scenes. In particular, the range proof is
(conceptually) split into two range proofs of the form x ∈ [0, b`), which in turn run set membership
subprotocols for the base b digits of x [CCs08].

This complexity is hidden from scheme implementors. Our goal is to enable developers to write
code that is not much more complex than the corresponding protocol specification in research
papers.

4.1 Schnorr Fragments

As in the example above, protocols usually contain more than a single statement. For simplicity,
consider the following proof for equality of discrete logarithms:

ZK{(x) : h1 = gx1 ∧ h2 = gx2} (2)

This proof is clearly composed of two parts: one for the statement h1 = gx1 and one for h2 = gx2 .
One could naively consider coming up with a protocol for the first and another protocol for the
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second statement, and then running them in parallel with the same challenge (which is the generic
way of AND-composing Sigma protocols). However, if we go with this generic composition, we end
up with a protocol implementing

ZK{(x1, x2) : h1 = gx1
1 ∧ h2 = gx2

2 }

i.e. for each of the protocols run in parallel, the prover may choose an independent witness. As
known in folklore, we can appropriately instantiate Equation (2) with the protocol in Figure 2.
In contrast to the generic composition of two Schnorr proofs, here the two parts share the same

Prover P(x) Verifier V()

sx ← Zp
a1 = gsx1 , a2 = gsx2

a1,a2−−−−−−−−−−→
c←−−−−−−−−−− c← Zp

rx = x · c+ sx
rx−−−−−−−−−−→

accept if

grx1 = hc1 · a1 and grx2 = hc2 · a2

Figure 2: A protocol for Equation (2). Contains Schnorr fragments for h1 = gx1 (in red, dashed)
and h2 = gx2 (in blue, dotted)

variable x, i.e. the same randomness sx in the announcement and the same response rx. This kind
of composition, which allows for sharing variables between the statements/subprotocols, is clearly
superior to its generic counterpart, which does not allow variable sharing.

This motivates our notion of a Schnorr fragment. Schnorr fragments are designed to be compos-
able in a way that enables shared variables. Furthermore, they are powerful enough to encapsulate
complex subprotocols such as range proofs on shared variables. Figure 2 shows how the protocol
for Equation (2) is divided into two fragments (framed red and blue, respectively) and how the
two fragments share the variable x (by sharing sx and rx).

The notion of Schnorr fragments actually closes a general gap in the formalization of Schnorr-
style protocols. For example, range proofs are always formalized as “the prover knows how to open
a commitment to a number in the interval [A,B]”. This is because the statement “the prover
knows a number in the interval [A,B]” is trivial on its own — obviously, the prover knows, for
example, the number A. However, range proofs based on Schnorr-style protocols almost always
work on arbitrary variables in a larger Schnorr proof (e.g., a signed number in the interval [A,B]).
With Schnorr fragments, there is now a convenient way to express this compatibility formally and
to enable implementations such as Listing 3.

4.2 A Formal View on Schnorr Fragments

In this section, we formally define Schnorr fragments. Intuitively, a Schnorr fragment is a partial
Schnorr-style protocol, where everything regarding external variables is contributed from outside of
the fragment. This allows sharing the same variable between multiple fragments. More specifically,
the parts that are contributed from outside are the witness value wext, the announcement random-
ness rndext, and the response rext. A Schnorr fragment may also internally generate additional
announcement randomness as and an additional response r.

Definition 1 Let p ∈ N be a prime. Let W be a finite (additive) group whose elements have either
order 1 or order p (e.g., (Znp ,+)). Let φ : W → {0, 1} be a predicate. A Schnorr fragment for
witness space W and predicate φ is an efficient three-message protocol

15



Prover P(wext, rndext) Verifier V()

as ← genAnncmntSecret(wext)
a ← genAnncmnt(wext, as, rndext)

a−−−−−−−−−−→
c←−−−−−−−−−− c← Zp

r ← genResponse(wext, as, c)
r−−−−−−−−−−→

accept if
chkTrnscrpt(a, c, r, rext) = 1

where rext = c · wext + rndext

together with an algorithm (a, c, r)← generateSimulatedTranscript(c, rext).

A Schnorr fragment is correct, meaning that for all wext, rndext ∈ W with φ(wext) = 1, all pos-
sible transcripts (a, c, r) generated by P(wext, rndext) ↔ V() are accepting, i.e. chkTrnscrpt(a, c, r,
rext) = 1 for rext = c · wext + rndext.

Note that in order for the verifier to check whether a transcript is accepting using chkTrnscrpt,
it needs to know rext = c ·wext + rndext. We imagine this value to be sent in the response of some
wrapping protocol around the fragment (cf. Section 4.3).

Furthermore, note that in a Schnorr fragment, there is no common input for the prover and
verifier. SchnorrFragment objects are meant to be essentially created with hardcoded common
input.

LinearStatementFragment is the easiest and perhaps most important example for a Schnorr
fragment, which encapsulates the homomorphism preimage capabilities of Schnorr protocols. As
such, its transcripts are essentially partial Schnorr transcripts (with the parts concerning (shared)
variables cut out).

Example 1 Let ψ : Znp → G be a homomorphism (e.g., ψ(x, a) = gx · ha) and let C ∈ G be a
constant. The LinearStatementFragment Πψ,C for ψ and C works as follows:

• genAnncmntSecretψ,C(wext) outputs an empty secret ∅.

• genAnncmntψ,C(wext, as, rndext) outputs the announcement a = ψ(rndext).

• genResponseψ,C(wext, as, c) outputs an empty response r = ∅.

• chkTrnscrptψ,C(a, c, r, rext) checks that ψ(rext) = Cc · a

• generateSimulatedTranscriptψ,C(c, rext) sets a = ψ(rext)·C−c, r = ∅ and outputs the transcript
(a, c, r).

Πψ,C is a Schnorr fragment for predicate φ(wext) = 1⇔ ψ(wext) = C.

One special case of this example shows how to implement the fragments for Figure 2. The
fragment for hi = gxi is an instantiation of Example 1 with ψ(x) = gxi . The external variable is
wext = x, its external randomness is rndext = sx ← Zp and its external response is rext = rx =
x · c+ sx.

The ability for a fragment to choose its own announcement secret and send something in the
response is used for more complex fragments. For example, it allows a fragment to prove knowledge
of its own (internal) Schnorr variables. This can be seen in Section 4.5.

We proceed with defining security properties. First, a Schnorr fragment shall be honest-verifier
zero-knowledge. This notion is analogous to its Sigma protocol counterpart, but taking external
variables into account for simulation.
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Definition 2 (Honest-verifier zero-knowledge) A Schnorr fragment for witness space W and
predicate φ is honest-verifier zero-knowledge if for all wext ∈ W with φ(wext) = 1 and all (a, c, r),
the following two probabilities are the same:

• Pr[(a, c, r)← P(wext, rndext)↔ V() | V chooses c] where rndext ←W

• Pr[(a, c, r)← generateSimulatedTranscript(c, rext)] where rext ←W

Furthermore, a Schnorr fragment shall ensure properties of proven values. Essentially, this
definition says that if the standard Schnorr extractor is applied to (efficiently created) transcripts
in order to compute a witness wext, then wext must conform to the proven predicate φ.

Definition 3 ((Computational) special soundness) A Schnorr fragment for witness spaceW
and predicate φ has (computational) special soundness if it is computationally infeasible13 to
find (a, c, r), (a, c′, r′) and rext, r

′
ext ∈ W such that c 6= c′, chkTrnscrpt(a, c, r, rext) = 1, and

chkTrnscrpt(a, c′, r′, r ′ext) = 1, but φ(wext) = 0 for wext = ((c− c′)−1 mod p) · (rext − r ′ext).

We say that a Schnorr fragment is secure if it is honest-verifier zero-knowledge and has com-
putational special soundness.

4.3 From Schnorr Fragment to Sigma Protocol

The idea is to first compose a Schnorr fragment for desired statements φx (Section 4.4) from several
fragments that share variables wext, then convert the resulting fragment to a Sigma protocol as
follows.

Observation 1 If for all x, Πx is a secure Schnorr fragment with predicate φx :W → {0, 1}, then
the following is a (computationally sound) Sigma protocol for relation {(x,w) | φx(w) = 1}.

Prover P(x,w) Verifier V(x)

wext := w
rndext ←W
as ← genAnncmntSecretx(wext)
a ← genAnncmntx(wext, as, rndext)

a−−−−−−−−−−→
c←−−−−−−−−−− c← Zp

r ← genResponsex(wext, as, c)
rext := c · wext + rndext

r,rext−−−−−−−−−−→
accept if

chkTrnscrptx(a, c, r, rext) = 1

Completeness follows immediately from the completeness of the fragment. The simulator for
honest-verifier zero-knowledgeness S(x, c) first chooses random rext ← W and outputs (a, c, r) ←
generateSimulatedTranscriptx(c, rext), which outputs the transcripts with the expected distribution
according to Definition 2. Computational soundness (“computational” in the sense that it is hard
to find transcripts for which a witness cannot be extracted) follows immediately from the fragment’s
corresponding property (Definition 3).

13For this definition to make sense asymptotically, we imagine that the prime number p is picked appropriately
to scale with a security parameter and that prover and verifier have access to honestly generated public parameters.
For the sake of simplicity, we leave out these details.
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4.4 Composing Schnorr Fragments

The following observation establishes the desired property that Schnorr fragments can be composed
over common witnesses.

Observation 2 Let Πi be a fragment for φi :W → {0, 1} for all i ∈ {1, . . . , n}. Then the following
is a fragment for φ(w) =

∧n
i=1 φi(w).

Prover P(wext, rndext) Verifier V()

asi ← genAnncmntSecreti(wext)
as = (as1, . . . , asn)
ai ← genAnncmnti(wext, asi, rndext)

a = (a1, . . . , an)
a−−−−−−−−−−→
c←−−−−−−−−−− c← Zp

ri ← genResponsei(wext, asi, c)

r = (r1, . . . , rn)
r−−−−−−−−−−→

accept if for all i
chkTrnscrpti(ai, c, ri, rext) = 1
where rext = c · wext + rndext

generateSimulatedTranscript(c, rext) = (generateSimulatedTranscripti(c, rext))
n
i=1

4.5 Implementing a Set Membership Schnorr Fragment

As a more advanced example for a Schnorr fragment, consider the famous set membership proof
[CCs08] for the statement “m ∈ S” (for hidden m and fixed public S). It works as follows:

• A trusted party computes (weakly secure) Boneh-Boyen [BB04] signatures σm = g
1/(sk+m)
1

on messages m ∈ S and publishes pk = gsk2 and all σm.

• The prover with witness m chooses α← Zp, randomizes σm as σ′ = σαm, and sends σ′ to the
verifier.

• Prover and verifier engage in the proof ZK{(m,α) : e(σ′, pk · gm2 ) = e(g1, g2)α} where the
prover essentially shows he knows how to derandomize σ′ to a valid signature on (hidden) m.

This set membership proof can be implemented as a Schnorr fragment. For this, we first
observe that the “inner” proof can be easily handled by the homomorphism-preimage fragment
from Example 1, which we will run as a subprotocol Πσ′ .

Example 2 Let S be a (small) set. Assume pp = (pk , (σm)m∈S) has been generated by a trusted
third party. For all σ′ ∈ G, let Πσ′ be a fragment for φσ′ : Z2

p → {0, 1} with φσ′(m,α) = 1 ⇔
e(σ′, pk · gm2 ) = e(g1, g2)α. Then the following is a Schnorr fragment for φ : Zp → {0, 1} with
φ(m) = 1⇔ m ∈ S.
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Prover P(wext, rndext) Verifier V()

m := wext

Set up internal α and randomness:
α← Zp
sα ← Zp
Set up randomized σ′:
σ′ = σrσm
Set up subprotocol external variables:
w ′ext = (m,α), rnd ′ext = (rndext, sα)
Send σ′ and subprotocol announcement:
asσ′ ← genAnncmntSecretσ′(w

′
ext)

as = (sα, asσ′)
aσ′ ← genAnncmntσ′(w

′
ext, asσ′ , rnd ′ext)

a = (σ′, aσ′)
a−−−−−−−−−−→
c←−−−−−−−−−− c← Zp

Make α extractable:
rα = c · α+ sα
Send subprotocol response (empty for Πσ′):
rσ′ ← genResponseσ′(w ′ext, asσ′ , c)

r = (rα, rσ′)
r−−−−−−−−−−→

accept if
chkTrnscrptσ′(aσ′ , c, rσ′ , r

′
ext = (rext, rα)) = 1

and σ′ 6= 1
where rext = c · wext + rndext

This example also shows how fragments can be arranged hierarchically, as in this example,
the set membership fragment delegates the φσ′ check to an inner fragment. α is considered an
internal variable for the set membership fragment, but external for the inner fragment. m = wext

is considered an external variable for both fragments.

4.6 Other Features and Implementation Considerations

Apart from the modeling of Schnorr-style proofs using fragments, the library supports several other
useful constructs regarding Sigma protocols.

Range proofs The library contains a range proof fragment for arbitrary ranges [CCs08].

Protocol optimization We implement several optimizations. For example, accepting Schnorr
protocol transcripts can be compressed (i.e. instead of storing (a, c, r), we store only (c, r) and
compute the unique a that makes the transcript accepting). This is useful for Fiat-Shamir sig-
natures of knowledge. Furthermore, computation of protocol messages and verification happens
concurrently.

Sigma protocol transformations A Schnorr protocol is a Sigma protocol. Our library enables
AND and OR composition of Sigma protocols [CDS94], Damg̊ard’s transformation to a proper
zero-knowledge protocol (in the common reference string model) [Dam00], and the Fiat-Shamir
heuristic [FS87] for a non-interactive proof.
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5 Zero-Knowledge Compiler

Cryptimeleon offers an even easier method to instantiate Schnorr-style protocols. Instead of coding
the protocols using the framework explained in Section 4, one can utilize our compiler Subzero
to generate the code automatically. For example, ZK{(m1,m2, r) : C1 = hm1

1 · hm2
2 · gr ∧ 20 ≤

m1 + m2 ≤ 100} from Section 4 can be implemented in Subzero with Listing 4, resulting in code
equivalent to Listing 3.

List. 4: Implementation of Equation (1) in Subzero

witness: m_1 , m_2 , r

C_1 = h_1^m_1 * h_2^m_2 * g^r & 20 <= m_1 + m_2 <= 100

Subzero is a declarative domain-specific language (DSL) for the specification of zero-knowledge
proof of knowledge protocols. It uses a concise grammar based on Camenisch-Stadler notation
[CS97] to describe a protocol. It compiles to Java code that uses the Cryptimeleon Math and Craco
libraries. The language allows for fast prototyping of protocols, provides a higher-level interface
for the Cryptimeleon API, and automates much of the boilerplate code that is common across
zero-knowledge protocol specifications. Each valid Subzero protocol compiles to a complete Java
project (buildable with Gradle) containing the classes necessary to specify the protocol with the
Cryptimeleon API, as well as to run the protocol.

The compiler is made publicly accessible through https://cryptimeleon.org/subzero, which
includes a code editor for the language. The editor supports many of the standard features expected
of a development environment, including syntax highlighting, automatic bracket matching and
indentation, and syntax error messages. Additionally, a semantic validator provides error messages
as a protocol is typed to ensure semantic correctness, providing quicker feedback than raising the
errors during compilation. Because the language grammar is similar to mathematical notation,
there is also a natural translation from Subzero code to LaTeX text. The website can generate a
formatted LaTeX preview in real-time as code is typed, and the LaTeX text used to create this
preview can also be downloaded.

A Subzero program specifies a single zero-knowledge protocol. A basic protocol begins with
an optional protocol name14, followed by a list declaring witness variables, and finally a proof
expression. User-defined functions15 are also supported for creating more complex protocols, as
well as public parameter variables. Every variable in a Subzero protocol has both an algebraic
type and a proof role. The type is either group element or exponent, and is inferred based on the
variable’s context within the protocol. The role determines the variable’s usage within the protocol:
it can be a witness, public parameter, or common input variable. Witness and public parameter
variables are declared explicitly, whereas any implicitly declared variable becomes common input.
This type/role system allows for more readable code and simplifies writing protocols.

The language supports linear exponent statements, linear group statements, range proofs (both
single and double inequalities), and pairings. A protocol can be composed of several subprotocols,
joined by the conjunction operator &. Proofs of partial knowledge are also supported, with sub-
protocols joined by the disjunctive operator |.

As an example, the following denotes a proof of knowledge of a randomized Pointcheval Sanders
signature [PS16] (σ′1, σ

′
2) = (σt1, (σ2 ·σr1)t) on attributes age and position such that either the person

is very young or has the position “student” (which we encode as position = 17).

ZK{(age, pos, r) : (3)

e(σ′1, X̃) · e(σ′1, Ỹ
age
1 · Ỹ pos

2 ) · e(σ′1, g̃)r = e(σ′2, g̃) // valid signature

∧ (age < 18 ∨ pos = 17)} // young or student

The proof’s translation into Subzero code is very straightforward and intuitive.

14The protocol name is used in naming sal generated Java classes
15Functions operate as pure functions, with no side effects
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List. 5: Implementation of Equation (3) in Subzero

[Pointcheval Sanders signature]

witness: age , pos , r

e(sigma_1 ’, X~) * e(sigma_1 ’, Y_1~ ^ age * Y_2~ ^ pos)

* e(sigma_1 ’, g~) ^ r = e(sigma_2 ’, g~) // valid signature

& (age < 18 | pos = 17) // young or student

The Java code generated for Listing 5 consists of three Sigma protocols arranged in a proof of
partial knowledge (to account for the “OR” statement). To ensure that the values of age and pos
are consistent between the OR subproofs (age < 18 and pos = 17) and the signature proof, the
generated code contains a Pedersen commitment proof of consistency.

Variable identifiers support special characters such as underscores, tildes, and quotes, which
allows for subscripts and common diacritical marks in the LaTeX preview. Identifiers with the
name of Greek letters will also be converted to the equivalent symbol. Thus, the LaTeX preview
created by the website for the Listing 5 code is nearly identical to Equation (3).

The Subzero compiler was developed using Xtext16, a framework for creating DSLs and pro-
gramming languages. It is written in Java and Xtend17, which is a programming language that
transpiles to Java. Both Xtext and Xtend are maintained by the Eclipse Foundation. The code
editor makes use of the Ace editor18.

6 Serialization of Cryptographic Objects

Serialization is the process of converting a Java object into a format that can be stored or sent over
the network. When serializing and deserializing cryptographic objects, there are several pitfalls
that developers usually need to be aware of. For example, for elliptic curve points, we have to
make sure that . . .

• . . . when serializing, the representation of the point does not leak unwanted information (e.g.,
the normalization factor in projective coordinates).

• . . . when deserializing, the resulting Java object references the correct curve parameters (in-
stead of a false curve with weak parameters).

• . . . when deserializing, the point is in the right subgroup.

In cryptographic papers, these concerns are almost never mentioned, so it is especially crucial
to abstract them away for the user of Cryptimeleon, too.

For this reason, most cryptographic objects are deserialized with the help of some parent object.
In the case of a ciphertext, the parent is an encryption scheme, for a group element, the parent is
a group. The idea is that these parent objects serve as trust anchors – their task is to instantiate
objects from an untrusted serialized format in a way that is secure. For example, a group would
check that a point belongs to the right subgroup while deserializing and make sure that the right
GroupElement object is instantiated.

To keep complexity of writing serialization and deserialization code down, we implemented
an intermediate serialization format Representation. Representations constitute a convenient
Java-object-based format for hierarchical structures. For example, an elliptic curve point’s rep-
resentation contains the representation of a finite field element. Additionally, typical cases of
serialization can be easily implemented by simply annotating object variables with an annotation
like @Represented(restorer="parentObjectName").

16Xtext: https://www.eclipse.org/Xtext/
17Xtend: https://www.eclipse.org/xtend/
18Ace: https://ace.c9.io/
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Thanks to Paul Kramer and Patrick Schürmann for their recent contributions and discussions.
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A Implemented Schemes

In the following we list the concrete schemes that are implemented in Cryptimeleon.

• Accumulators:

– Nguyen’s dynamic accumulator [Ngu05]

• Commitment schemes:

– Pedersen’s commitment scheme [Ped92]

• Digital signature schemes:

– Pointcheval’s & Sanders’ short randomizable signature scheme [PS16] and the variant
secure under SDH [PS18].

– The BBS+ signature [ASM06] (a multi-message variant of BBS signatures [BBS04]).

– Structure-preserving signatures on equivalence classes [FHS19].

• Encryption schemes:

– ElGamal

– Attribute-based:
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∗ Waters’ ciphertext-policy attribute-based encryption scheme [Wat11,Wat08].

∗ Goyal et al.’s key-policy attribute-based encryption scheme [GPSW06]

– Identity-based:

∗ Fuzzy identity-based encryption [SW05]

∗ Identity based encryption from the Weil pairing [BF01]

• Key encapsulation mechanisms (KEM): We implemented KEMs based on the encryp-
tion schemes of this library, e.g. KEMs for [Wat11,GPSW06,SW05] and ElGamal.

• Secret sharing schemes:

– Shamir’s secret sharing scheme [Sha79] and its tree extension

• Zero-knowledge proof of knowledge:

– Generalized Schnorr proofs (Section 4).

– Range proofs [CCs08].

– Proofs of partial knowledge [CDS94].

– Damg̊ard’s transformation [Dam00] and the Fiat-Shamir heuristic [FS87]

• Group signature scheme:

– Traceable group signature scheme [CPY06].

• Incentive system schemes:

– Incentive system based on updatable anonymous credentials [BBDE19a,BBDE19b].
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