A Tale of Two Boards: On the Influence of
Microarchitecture on Side-Channel Leakage

Vipul Aroral?, Ileana Buhan?, Guilherme Perin®, and Stjepan Picek®

! Riscure B.V, Delft University of Technology
2 Radboud University, The Netherlands

Abstract. Advances in cryptography have enabled the features of con-
fidentiality, security, and integrity on small embedded devices such as
IoT devices. While mathematically strong, the platform on which an
algorithm is implemented plays a significant role in the security of the
final product. Side-channel attacks exploit the variations in the system’s
physical characteristics to obtain information about the sensitive data.
In our scenario, a software implementation of a cryptographic algorithm
is flashed on devices from different manufactures with the same instruc-
tion set configured for identical execution. To analyze the influence of
the microarchitecture on side-channel leakage, we acquire thirty-two sets
of power traces from four physical devices. While we notice minor differ-
ences in the leakage behavior for different physical boards from the same
manufacturer, our results confirm that the difference in microarchitecture
implementations of the same core will leak different side-channel infor-
mation. We also show that TVLA leakage prediction should be treated
with caution as it is sensitive to both false positives and negatives.

Keywords: Microarchitecture - Side-channel leakage

1 Introduction

The question we ask in this work is both simple and practically relevant for an
embedded system developer assigned to implement an existing cryptographic al-
gorithm on a microcontroller. The developer is free to choose any microcontroller
meeting the project’s functional requirements, e.g., ARM Cortex MO0, a popular
choice in the IoT industry. Our developer has several options for a given core
from the diverse SoC range offered by different manufacturers.

Devices supporting a similar instruction set architecture (ISA) vary in design
depending on the implementation choices. The ISA represents an abstraction of
the underlying hardware implementation, known as the microarchitecture [9)].
Figure 1 shows the relation between the ISA and the microarchitecture. The
ability to separate the ISA design from the microarchitecture was a significant
step in the development of modern computing, granting functional compatibility
while allowing for flexibility in the implementation. As the choices made during
the ISA implementation significantly impact the final product’s performance,
the microarchitecture implementation is considered a trade secret, and details
are typically not available in the public domain.

2 Arora et al.

Instruction Set Architecture Instruction Set Architecture

Fig.1: We refer to the ISA implementation as the microarchitecture, which is
manufacturer-specific and considered a trade secret. The illustration is inspired by [13].

All other things being equal, our developer would like to choose the mi-
croarchitecture implementation, which minimizes the side-channel leakage. Con-
cretely, the question relevant to our embedded system developer is:

Given the choice between two implementations of the same core, how
significant is the difference in side-channel leakage?

Two devices designed with an ARM Cortex MO core from the same family,
the same ISA, and different vendors are selected for this study. To detect the
source of differences between different implementations, we took special care to
synchronize the traces between two devices for identical execution. We labeled
the time samples in the trace with the executed instruction to identify and
explain, where possible, the source of difference.

Contributions. We present a methodology for comparing software imple-
mentations across devices with the same instruction set and comment on the
influence of microarchitecture implementation on side-channel leaks. We com-
pare the manufacturing variability between different physical devices from the
same manufacturer. To reveal the effects of the microarchitecture implementa-
tion, we compare devices from different manufacturers. We contrast the accuracy
of leakage detection techniques with the "real” leaks obtained by profiling for
the evaluation. We show that leakage detection techniques are prone to false
positives and false negatives, and its results should be treated with caution.

2 Related Works

The results presented in this paper have a wider application than the practical
relevance for our embedded system engineer. First, to the area of side-channel
leakage simulators, which face the problem of portability across devices. For ex-
ample, both ELMO [10] and [11], were created specifically for an ARM Cortex

A Tale of Two Boards 3

MO0 STM32F0 (30R8T6) device. If the microarchitecture implementation signif-
icantly impacts the side-channel leakage, the simulator needs to be retrained
when the target is an ARM Cortex M0 NRF£51 board. The creation of sophisti-
cated gray-boxed leakage models, required for accurate side-channel simulators
requires the inclusion of microarchitecture information. While we know that re-
verse engineering the microarchitecture of commercial processors is possible [4,
10], the effort is intensive.

Second, our results have an application to the area of deep learning for SCA,
where training and attacking across different physical boards using the same
model is possible but requires a special training procedure [3]. Golder et al. ex-
tended the previous work and explored the cross-device perspective for a large
number of devices (3) [5]. Bhasin et al. showed that portability makes the deep
learning attacks more difficult as the deep learning algorithms will easily over-
fit [1]. To prevent this, the authors proposed the multiple device model setting.
Van der Valk et al. aimed to analyze the portability problem from the AI ex-
plainability perspective and discussed the overspecialization phenomenon. Over-
specialization denotes the situation when a machine learning attack does not
overfit when using the test set from the same device (as when not considering
portability), but it overfits when attacking a different device [14]. Wu et al. pro-
vide a workaround for the multiple device model where ablation can reduce the
overfitting effect [15]. Zhang et al. investigated the difficulty of profiling attacks
when considering homogeneous (same devices) and heterogeneous settings (dif-
ferent devices) [16].Another challenge for profiled attacks is that the collection of
side-channel traces becomes less reliable after a long period. Consequently, some
trend noise must be added to the side-channel traces due to temperature and
environmental conditions evolution over time. Heuser et al. characterized this
effect and proved that trend noise drastically impedes SCA [7]. Similar findings
are confirmed by Cao et al. [2].

3 Background

ARM Cortex MO. The Cortex MO is a 32-bit RISC processor developed by
ARM that implements version v6M of the ARM instruction set [8]. It is one
of the most widely used embedded devices due to an efficient instruction set
and affordable development costs with comprehensive development tools and
support. The Cortex MO has a Harvard architecture with both 16-bit (THUMB)
and 32-bit instructions and a 32-bit data path. It does not include a data cache
or memory management unit (MMU) but comes with a prefetch buffer. The
ARMBG has 37 registers, consisting of thirty-one 32-bit general-purpose registers
and six additional status registers. The instruction set determines the functional
capabilities of a processor by specifying the list of all supported instructions.
Test Vector Leakage Assessment (TVLA) [6] is one of the most popular
leakage detection methods due to its simplicity and relative effectiveness. It is
based on statistical hypothesis tests and comes in two flavours: specific and
non-specific. The ’fixed-vs-random’ is the most common nonspecific test and

4 Arora et al.

compares a set of traces acquired with a fixed plaintext with another set of
traces acquired with random plaintext. In the case of a specific test, the traces
are divided according to a known intermediate value tested for leakage. In both
cases, Welch’s two-sample t-test for equality of means is applied for all trace
samples. A difference between two sets larger than a given threshold is taken as
evidence for the presence of a leak.

Key rank estimate is a commonly used metric in SCA for assessing the
performance of an attack. It is performed in a known key scenario and returns the
rank of the correct key candidate in the sorted score vector of all key candidates.
The key ran estimate is related to the success rate curve [12], which shows the
evolution of the correct key candidate as more traces are added. There are two
differences compared to the success rate: first, key ranking is performed on a fixed
set of traces, whereas the success rate is performed on a variable set of traces to
capture the evolution of the correct key candidate; second, key ranking can be
performed for all samples in the trace, whereas the success rate is typically shown
for one sample. The result of the key rank estimate is affected by the number
of traces used for analysis. If leaks are present, key rank converges towards the
first position as more traces are added.

4 Experimental Setup

Target devices. We selected for this study two ARM Cortex-M0 cores as com-
prehensive literature is available, and the Cortex M0 has found wide application
in embedded and IoT devices:

1. 8TM32 Discovery is a development board from ST Microelectronics for the
STM320£051 device, which consists of an on-board MCU interface enabling
easy flashing and debugging using STLink over USB. The development board
also offers a PPI port that connects a current probe to measure the current
consumption. On inspection of the STM32 board’s schematic, we observe
that the MCU interface and the target device share the same power source.
The target MCU is powered by an external 3V3 supply from the current
measurement port using the USB port. The coupling capacitors attached to
the power pins of the target MCU are removed; they act as a low pass filter
on the input power supply to the target MCU. We used two STM32 boards
for our experiments, and we refer to them as STMjand STMg.

2. NRF£f51 is a SoC designed for Bluetooth Low Energy applications based on
Cortex MO running at 16MHz. The NRF£51 development kit also offers a cur-
rent measurement port, and we found no coupling capacitors to the power
line circuitry. The target MCU is already isolated from the interface MCU
when the board is powered externally using 3V3, so no hardware modifica-
tions are required. We used two NRFf51 boards for our experiments, and we
refer to them as NRF,and NRF;.

Measurement setup. Throughout this paper, we maintain the same exper-
imental setup, shown Figure 2. We use Riscure’s Inspector SCA toolchain 2 for

3 https://www.riscure.com/security-tools/inspector-sca

Workstation Oscilloscope

< Power traces @
! ! <€ —

Power Slgnal_{—}_
500hms

Current Probe
UART L

/

communication

R i . @ Trigger Pin A11
> Ly

=

STM32F051

\

)

(a)

Workstation

A Tale of Two Boards 5

Oscilloscope

<&

Power traces
<€

Power Signal —
| 500hms

/
/

/ N\

\
\
UART \[

Amplifier
communication ="

Current Probe

Pin9&11 |
- = Trigger Pin 14

~
NRF51 Dk1

(b)

Fig. 2: Acquisition setup for (a) STM32 and (b) NRFf51 boards. For both, pin A9 and
A10 are used for UART Rx and Tx, respectively. For connecting the trigger signal, we
use pin A11 for the STM32and pin A14 for the NRF£51 boards. For both, the signal from
the current probe is attached to the oscilloscope through a 50f2 impedance. For the
NRFf51 board, the signal from the current probe is passed through a signal amplifier.

acquisition and signal processing. Furthermore, we use a Picoscope 3000 and a
Risc-CP189 current probe. An important requirement for our setup is that both
boards execute the same instructions in sync. Since the two boards have a differ-
ent startup script for configuration and execution, we took special care to ensure
the code between the triggers is identical for both targets. The same compiler
was used to generate the binary files, and we compared the disassembled code on
both boards to verify that the execution is identical. For a consistent toolchain,
the software projects for both devices were created and compiled using Kiel Vi-
sion 5. An unmasked implementation of AES-128* was flashed on both target
boards. The execution sequence is:

1. On boot/reset, a startup code runs on both target devices, which sets the
system and peripheral clocks. While the NRFf51 device works at a fixed
clock speed of 16Mhz, the STM32 device supports operation over a wide clock
frequency. The startup code sets the clock frequency to 16MHz.

Core and UART drivers are initialized.

System tick interrupt is disabled.

Control enters the main function, AES object with a preset key is initialized.
Enter an infinite loop, repeat the steps below:

(a) Receive 16 bytes of data over UART.

(b) Set trigger pin low, which signals the oscilloscope to start recording.
(c) 16 bytes of data are encrypted.

(d) Encrypted ciphertext is returned over UART.
Synchronization of traces. To provide an accurate analysis of the observed
effects, we want to align the traces with clock cycle accuracy. We compared the
accuracy of the trigger signal from the oscilloscope to the recorded traces to find

G

* https://github.com/ARMmbed/mbedtls

6 Arora et al.

A
AL b | b "
" 1. |
28 AA A M A 1Y firA 'y VilTain " A
\ f / f
00 ta 1 VY I / LA AL AR | / PN A
4 ¥ Vi il v 1 | | L f "
s AVad i AR LAY
£ ¥ v ! v [
! ViN ¥
50 LIRY)
v
f"’tru: o 4 = e v o - o gD O = o —OTRTOYY
I AERE] B 9 T EE aRgR e g U At aUETETST 88
g8 cTlo & & oo 8 oo & ¥ i ':-ggs o 8 ¥ LT ':LQEE‘?\‘_;E =]
e o Eo = o g olg & ¢ g © B CCp 2 g Yig © B0 o8 2
€ ga T € oo PR - - B S - Nl
S o 8 o o o wxX & o o ux Snx & =
om 2 © om = o 2 @ Yom Yem £ @ Yom s
¢ ek S Fex ® ToL O P 5% 7ok ©% mor 8% 9% 2
o -3 =1 o -5 i e M S = = R <5t O 2
2) 2 g = g & 2 2
H]] & H]
& 8 # &
g r o o
Z & & &
T T T ¥

LDR
Ll

LDR
LDR

Fig. 3: An example of labeled traces.

the level of drift. Using the disassembly of C code, the assembly code line that
sets the trigger pin low is found to have exact timing. We use the number of
cycles it takes the program flow to enter the encrypt function, and we use it to
identify the start of the encrypt function in the recorded traces.

Adding instruction labels. We used the ARM process simulator in Keil
MDK version 5° to record the execution trace of instructions. The tool outputs a
CSV file with disassembly code and with the execution time for each instruction.
We use the execution trace information to link the instruction labels to their
power trace segments. An example of the results of combining power traces
with instruction labels obtained from the execution trace is shown in Figure 3.
The example presents the acquired power trace immediately after acquisition
and up until add_round_key operation on the first four bytes. Unless otherwise
mentioned, for the rest of the experiments we use the power trace corresponding
to the Listing 1.1. To confirm the correctness of the labeling, we also visually
verified that repeated instruction sequences show a similar power consumption.

Trace sets. We collected a total of 32 trace sets, 2500 traces each, from the
four physical boards (STM,, STMg, NRF,, NRFg) available. Half of the traces are
provided with a fixed 16-byte plaintext, and half have 16-byte random plaintext.
We used two different keys, key_1 and key_2, for the encryption and two different
values for the fixed input D7 and Ds. As the TVLA methodology [6] specifies
performing a repetition to verify the results, the trace sets are labeled by 1 or 2,
representing two repetitions. Figure 4 shows an overview of the collected traces.

5 A Closer Look at the Implementation

The raw traces from the STM32 and NRFf51 board are shown in Figure 5. A
quick visual comparison confirms that the power consumption for the two devices
differs significantly. The operations performed are based on repetitive patterns

5 https://www?2.keil.com/mdk5/docs

© ® N O w oA W N e

LT T T Sy SO T
B 2 O © ® N & o A W N = O

™)
w

A Tale of Two Boards 7

CMP r1, [#0x04
BLT 0x08000818
LSLS r3,r1,H#?2
ADDS r3,r3,r2
LDRB r3, [r3,r0]
LDR r4, [pc,#28] : [60x0800083C
LDRB r3, [r4,r3]
LSLS r4,r1,[#1
ADDS ré4,r4,r2
STRB r3, [r4,r0]
ADDS r3,r1,[#1
UXTB r1,r3

CMP r1,#0x04
BLT 0x08000818
LSLS r3, rl,#2
ADDS r3,r3,r2
LDRB r3, [r3,r0]
LDR r4, [pc,{#28]: [€0x0800083C
LDRB r3, [r4,r3]
LSLS r4,r1,[#1
ADDS ré4,r4,r2
STRB r3, [r4,r0]
ADDS r3,r1,[#1

Listing 1.1: Code sequence captured during the experiments.

that can be distinctly identified for both devices.

S-box leakage. To understand how the devices are leaking, we isolate the
samples corresponding to the S-box computation in round one, as shown in
Figure 5. Using the Hamming Weight (HW) leakage model, we profile the targets.
We select all 16 bytes of the S-box and correlate the intermediate values with
the selected samples. We rank the probability of leak for all the possible key-
byte combinations. With this approach, we relate observable leaks at each time
sample index with the probability of the correct key byte leaking to an attacker.
The results are shown in Figure 6.

For the STM32 device, Figure 6 (top), we observe that key data leaks strongly
while the subsequent byte is loaded, which seems evidence for data-overwrite
leaks from registers. A small section of leaks is observed again when a key element
from the same group is operated upon. This can relate to how key data is stored
in subsequent memory locations, and memory access loads more than 1-byte
data on the bus. This effect can be due to 4-byte memory access in Cortex MO;
the old key bytes are also sent on the bus due to a word size of 4 bytes. (i.e. we
observe leak of k[0][0] when operations are performed on k[0][1], leak of k[0][0],
k[0][1] when operation are performed on k[0][2]; similarly We observe leak of
k[0][0], k[0][1], k[0][2] when operation are performed on k[0][3]).

8 Arora et al.

STM Board NRF Board
Fixed set-1 Fixed set-2 Fixed set-1 Fixed set-2
STM A keyl DI 1 STM A keyl D2 1 NRF_A keyl DI 1 NRE_A keyl D2 1
STM A keyl D1 2 STM A keyl D2 2 Key 1 NRF A keyl D1 2 NRF A keyl D2 2
Board A T g1u_a_key2_p1_1 STM_A_key2_D2_1 NRF_A_key2_D1_1 NRE_A_key2_D2_1
STM_A_key2_D1_2 STM_A_key2_D2_2 2 NRF_A_key2 D1 2 NRE_A_key2_D2_2
STH B keyl DI 1 STM B eyl D2 1 NRF B keyl DI 1 NRF_A_keyl D2_1
STM_B_keyl D1_2 STM_B_keyl_D2_2 Key 1 NRF B keyl D1 2 NRE_A_keyl D2_2
Board B [T 51m B key2 D1_1 STM_B_key2_D2_1 NRE_B_key2 DI 1 NRF B key2 D2 1
STM B key2 D1 _2 STM_B_key2_D2_2 =ya NRE_B_key2 DI 2 NRF B key2 D2 2

Fig. 4: Overview trace sets. The nomenclature is class_board_key_data_repetition. For
example, a trace set with the name NRF_B_key2_D1_1 means it was collected from
NRFp board, key K> is used for encryption, D; is provided as fixed input, and 1 is the
repetition cycle.

30
20
10

Voltage (mV)
o

-0 PRIV ‘ m 1 A i1) AL il
-20 ‘
0 100000 200000 300000 400000 500000

Time samples

30
20
10

Voltage (mV)

-10 | ! ‘ 1
20
0 100000 200000 300000 400000 500000

Time samples

Fig. 5: The raw power trace for the STM, device (top) and NRF, device (bottom). The
highlighted section marks the 1st round of the S-box operation on the first byte of
data. The selection starts at index 14910 and has a length 1235 samples. This section
of trace has been used for the evaluation in Sections 6 and 7.

Similarly, the results for the NRFf51 device are presented in Figure 6 (bot-
tom). We observe that the correct key intermediate is leaking consistently after
the first time it is read from memory, and key data is leaking when operations are
performed on byte data stored in subsequent memory locations. Memory access
read 4 bytes of consecutive data from the provided memory address. Comparing
the leaks across the two devices, we note that data-overwrite leaks are observed
at similar trace sections. The key bytes start to leak subsequent to the STR in-
structions and leak while the next byte data is loaded by LDR instructions. We
surmise that the contrasting behavior is a result of the difference in microarchi-
tecture implementation. The NRF£51 device is a low power board; memory access
consumes significant power and impacts dynamic power consumption. The choice
of memory technology will impact the leaks observed from the board.

A Tale of Two Boards 9

I‘ﬂl H’I‘th\:lﬂ“\‘\ MH‘I‘I\‘H‘\ \‘ I‘Hl”\‘\“‘\ll‘ ‘H‘II:‘I‘\‘“‘WL\‘\H\A\‘H\h HI ‘ ‘ ‘\“” | \ \HI‘ ‘\\l\\I\I\HImH i ‘H ‘ “ ”H \H ’\H ‘IH \‘ w

L ! It HHH I\“ H \I‘\ I IJH I3 1AL
HH\H

i I M* e "uf; e

“ ‘ il il ikl ‘”‘H l it il \II \]‘M\ | \HHIH\H ‘\I I\‘HHHI ("|||||||‘1M||n l‘:‘“ \""\‘\'“\“"ﬂ“‘

ik \ H m“ﬂ“\”‘l‘ l]“\H ‘W “‘IHH I \IH‘ I \H I\f Il 14 ‘ HH\ Hﬂ ‘\‘ | \v‘ \‘\H\ I H’I ‘ |
Ji \‘ “\ \H \l H‘HH‘H T \’ ‘»\ ‘I‘[) I‘ \\ l“ll‘\i‘(’ml\l\h“‘ ’HWH“ h\ ‘\\l\uw“llll\\” \HI \I““IHV\ l\‘\ \h\\u\l‘i\‘ HM l’lllh Hllsl\‘llulwll‘\u‘\“ HII‘H“ ‘\ H‘HH\‘ I‘H"‘\HIHHI”I‘F“‘\‘ ‘\I\I\“IHI’[

\w\.\ IHH ‘\l‘l‘H‘\HI ‘I\l i ‘WIHH \‘HH M WU I"‘,I“‘w‘ 1l H\IH\|\ \[H‘\H‘ ’H | HIM’H\”H ‘Hm I ‘\H‘IHFHH‘I ‘\H”\

[
: o ‘ ‘\‘H‘\‘ I “\‘I‘I::‘NI“”\M"\” | I,H‘\ H‘I‘H\H‘I HHIMIl‘\H\l\‘\H’I‘\I HH\‘I H I| ‘ ,H \I . i \J‘HHI‘ i | !
socraf| IS LR STV AR At I H”\H ‘HI\‘ ”H\IHHH ‘I \I\‘ ‘ “H \HH\‘H‘I[|| HHHHI [T TR WA H” | ‘\HI —
. |H\ h’}lﬂlhni ‘“ WI‘I “‘M ‘\‘“‘H"H ‘ ‘H\‘\‘\‘\I\ll‘ H\W\ 1 “ \‘H\I‘ \‘\H‘\I \‘ l\HI H J" M H\ |1|| i ! L \ Ry N‘\I\ m fl
Il

i il M‘ AT 11 *w.v.wmw\‘”“.'J\“d”'n”'ﬁ L] el et

‘\ “ “J‘ HHH\\H\“H\ \‘ HH I I \WH M :"HH ‘H\ ‘ IHHI\“\‘I\‘\ (T I’ ‘ \H N iH HHH il \ 10 0 A A il — H“ ‘ \l\l
IHM I‘ ‘\\HH“HH‘I“H‘ |I|“I\I HH\‘H\‘I‘\‘HH ‘HMH . ‘I i H‘“‘HTM ||’“II| I H LTI ! " ”:H\ll‘H\‘HH n I

4000 .nm 800

i \ LA
11

& u.HH (A

wm i H\H ‘\‘
HHMH\ IHJ

L
rocoeil LIHLE N L |
’ h HI Il

Nmﬂxﬂ] \HIHI\ \H m”ﬁ ‘I‘f \H‘ \MH'

Fig. 6: (To be viewed in colors.) Key rank results for the STM32 (top) and NRF£51 (bot-
tom) devices. The selection captures the s-box operation. We perform key ranking on
all 16 bytes in round 1. The red color indicates strong leaks, where the correct key
candidate is ranked in the first position, whereas other colors represents weak leaks.

For the remainder of the report, we select the leaks from the S-box operation
on 1 byte of data (Byte 1). To maintain uniformity in the analysis, the same
trace section will be used for all comparisons.

6 The Influence of Manufacturing Variability

Manufactured silicon chips have variations due to the raw material used or due
to variations in the manufacturing process. Non-uniform etching can introduce
inconsistencies in transistors’ depletion layer, which will affect the leakage cur-
rent generated on switching. Inconsistencies are spread out across peripherals at
the microarchitecture level, which means that each physical device will have its
power fingerprint resulting from the accumulation of these effects.

This section explores the manufacturing differences between boards from the
same manufacturer, namely, the differences in side-channel leaks from STM, vs.
STMg, and NRF, vs. NRFp. These results are useful for putting in perspective the
results obtained in Section 7. The devices are prepared with similar hardware
modifications and flashed with the same binary, keeping the key and input data
parameters identical, as described in Section 5.

The result of the TVLA test for both STMy and STMg, Figure 7 (a), shows
a similar shape for the leakage. Additionally, the repetition of the test (with
different inputs and keys) shown with a dotted line confirms these results. Key
rank results in Figures 7 (b) and (c) show leaks over a wider section of power
traces for both devices compared to the results predicted by TVLA. Key rank

10 Arora et al.

w0 TVLA
peadicddaniacdinaeee
2 A 2
< YW \é»
220 o A |
‘ TR P p \
10 ;oo | ¢ Tl - s R
" { W AL T o 2 T A R Ay
0 St aicbesrittind VN v e “"': Nl J J e
g§%% 8 ¥ f%® wtd:2 iHYE g ® §%8% ®t32 L)
ctfg 8 T I tT*Tgsg itfe g = TIE tTTgsg -3
% s 8 © T s e s 8 e C s g s T ¥ s e - & 2% s
- 3 - - T8 H = & - - IR] -
@ g n @ @0 X = i @ - w @ 0 X 5 w @
« © =) @ - © : a © @ S "0 @ 2 S)
38 ©® & a38E 8°¢ iz8&% © & a8 8°% 38 &
“<3 L “<a < S5 =<8 = - <® < S5 “< 3
2 = = H @
B g
& : &
e (a) TVLA results for STM boards v

(b) The result of keyrank analysis on STM board A traceset with data 1 (STM_A_keyl D1_1

(c) The result of keyrank analysis on STM board B traceset with data 1 (STM_B_key1_D1_1)

Fig. 7: (To be viewed in color.) Results of data leakage comparison for STMy and STMg.
From the top: (a) TVLA traces, (b) key rank results for STMy, (c) key rank results
for STMz. The red rectangle indicates the area of the trace where TVLA shows false
negative (profiling indicates leakage).

results for the STM, device show leaks at the beginning of the trace, a behavior
not seen in the key ranking results for the STMz device. These leaks are probably
caused by manufacturing defects in STM,. Gaps in leakage are observed for both
boards during the execution of UXTB and BLT instructions, which can be sourced
from effects in the physical layer. We observe gaps in the results of key rank
analysis during the ADDS and the BLT instruction, which is consistent for both
boards. We could attribute this effect to operations being implemented at the
hardware level, which mask the leakage of key data at those locations.

The TVLA results shown in Figure 8 (a) indicate a very similar trend for
both NRFf51 boards. Key rank analysis results for the two boards are shown
in Figure 8 (¢) and (d). While we note a slight variation between the leakage
NRF, and NRFg, the overall trend is similar. However, we note a significant differ-
ence between the leakage predicted by TVLA, which indicates both false positive
and false negative leakage.

To summarize, we confirm that the manufacturing process may create slight
differences between the leaks in the different physical devices we examined, but
the overall trend seems consistent. Based on the experimental results, we con-
clude that there are significant differences between the leakage predicted by
TVLA and the ground truth as indicated by profiling the targets.

A Tale of Two Boards 11

TVLA H H
25 gesssrssssssssorssssssssnnns 9 : H
: : FIR : "“H
H H F " H Y
20 = N -“,V, H S
s : M :
L] : J w : :
q : : :
—'Ow}mﬂm: | ”% / g :
: i | 4 : :
5 ‘hmﬁ, “Wr' i :
¥ \] ; sﬁv ; G =
: : W Ml i
: : i # 4 H
0! : WLy :
tREY¥E g © fgY¥E zFege g8 g © §¥§%¥§ mege geE:
fc2g g = it Tt T8¢ 8§ = T TTg$g TZg:
iedy 8§ g iffgy ¢ _3f8 d¢g 8 g ¥fig ¥ _£§ cogi
S H = =1 -1 = =3 H
n @ 5 A 0 X 3 n @ 5 n @ X 3 w8 ot
“ 3o o S o :%go 835, “ oo S) “ oo 235 4 “oo:
z228 © & iZ9E 973 228 © & Z2E B3 228&:
= - 4 = 0 < o - - = | 7] =< 5} b=
) H © H H
o ~ H -
b = H H

& &

T €

............................. (a) TVLA resuilts for NRF boards

y-ranking results from NRF board A fixed set 1 (NRF_A_keyl D1_1).

(c) Key-ranking results from NRF board A fixed set 2 (NRF_A_keyl_D1_1).

Fig. 8: (To be viewed in color.) Results of data leakage comparison for NRF, and NRF.
From the top: (a) TVLA traces, (b) key rank for NRF,, (c) key rank for NRFg. The blue
rectangle indicates the area of the trace where TVLA shows false positive (leakage
while profiling indicates no leakage). The red rectangle indicates the area of the trace,
where TVLA shows false negative (no leakage while profiling clearly indicates leakage).

7 The Influence of Microarchitectural Implementation

The ARM Cortex-M0 microprocessor has a three-stage pipeline, which means
that there can be up to three instructions implemented in the fetch, decode,
and execute stages of the pipeline. Memory access greatly impacts the dynamic
power, so the effect of memory instructions is significant and can be diffused to
be visible while other instructions are executed. Furthermore, while we know the
instruction executed at every clock cycle, we note that the power trace consists
of a cumulative effect from all pipeline stages of the processor.

When porting code to a device with a similar hardware architecture, the
grouping of instructions in pipeline stages will probably be also similar. However,
the magnitude/contribution of leaks from different pipeline stages may vary for
different devices. Additionally, as microarchitectural implementation choices are
not public, the best we can do for describing the difference in side-channel leakage
between the STM32 and NRF£51 boards is a plausible explanation.

7.1 Power Profiles

Mean traces. Fixed vs. random mean plots comparing the two devices are pre-
sented in Figure 9. The power traces from STM32 devices have a higher power

12 Arora et al.

50 mean
25
0
25
-50
12 3 45 6 7 8 9 10 111213 14 15 16 17 18 19 20 21 22 23
" mean
0
NAF_A_keyt_D
p NRF_A_key!_[
5 NRF_A_key_
NRF_A_key!_D1_2_fiued
0 "
-5
10
12 3 45 8 7 8 9 10 111213 14 15 16 17 18 19 20 21 22 23

Fig.9: Fixed vs. random mean trace plot for STM32 (top) and NRFf51 (bottom). The
y-axis shows the power consumption, and the x-axis represents time. The numbers on
the x-axis are the instruction being executed, see Listing 1.1.

consumption compared to the traces obtained from the NRF£51 device, as evident
from the scale of the y-axis. STM32 is designed for general-purpose IoT applica-
tions, whereas the NRFf51 is a low energy device with a current consumption of
2mA. The low power of the NRFf51 device makes it more sensitive to noise.

Comparing the mean trace plots from both devices, we observe the fixed vs.
random lines deviating at the same power trace sections. In Figure 9, this is
visible in the difference between the red (random set) and blue (fixed set) lines
for both plots. The deviations reveal sections of code with a dynamic power com-
ponent. If the underlying data is changed in the code section, we will observe
fluctuations in the specific section of power traces. We repeated the experiments
with a different value for the input data to verify that the observations are not in-
cidental. We distinguish between the two repetitions by presenting results with a
solid and a dotted line in the power profile comparison plots. Repeating artifacts
are observed for LDR (labeled 6 and 18) and STRB (labeled 10 and 22) instruc-
tions in power trace, confirming the correct labeling of traces with instructions.
In the case of the NRF£51 devices, the effects of individual instructions are not
as prominent and are difficult to distinguish visually.

From the mean plots of fixed (blue) vs. random (red) execution for both the
device, we observe both the sets exhibit a similar trend though they differ along
certain sections of the traces. In Figure 9 (top), we notice that the deviation be-
tween the random and fixed sets is visible only following the STRB r3, [r4,r0]
(labeled 10) instruction until the BLT branch (labeled 14). In Figure 9 (bottom),
we can distinctly see the execution trace of fixed as well as random set. The in-
teresting observation is that the distance between the mean of two sets increases
substantially after the STRB r3, [r4,r0] (labeled 10) instruction and then slowly
decreases up until the BLT instruction (labeled 14). From the results in the pre-

A Tale of Two Boards 13

3 std
2 i 1
{
0
12 3 48 6 7 8 9 10 111213 14 1516 17 18 19 2021822 23
std
25
20
.,
5
. P ming, o
0
12 3 48 6 ? 8 9 10 11121314 16 16 17 18 19 202122 23

Fig.10: Fixed vs. random standard deviation trace plot for STM32 (top) and
NRF£51 (bottom). The y-axis shows the power consumption, and the x-axis represents
time. The numbers on the x-axis are the instruction being executed, see Listing 1.1.

vious section, we know that these are the locations where leaks are observed.
The software implementation seems to show evidence of data overwrite leaks at
similar sections across devices of both classes.

Standard deviation. The operands influence the power consumption due
to the toggling of bits when new data is loaded. An increase in the standard
deviation of the random set is observed where the power consumption depends
on the underlying data. The standard deviation of the fixed set provides us with
a base level for executing a set of operations with constant data.

Standard deviation plots in Figure 10 show that the standard deviation for
the fixed set consistently varies for every clock cycle. This behavior is consistent
for the fixed sets for all boards and repetitions. The increase in standard devia-
tion for the random sets provides evidence of leaks, and interestingly these are
observed at similar trace sections for both the STM32 and NRFf51 devices. For
the STM32 traces, the deviation in random vs. fixed plot occurs near the ADDS
r4, [r4,r2] (labeled 9), STRB r3, [r4,r0] (labeled 9) and BLT 0x08000818 (la-
beled 14) instructions where variance of random set is visibly higher in compar-
ison to the fixed set. In the case of NRFf51 boards, the variance of a random
set is higher compared to the fixed set for all sections of the trace. Following
the execution of the STRB r3, [r4,r0] instruction (labeled 10), the variance of
random set increases until the CMP r1,#0x04 instruction (labeled 13) where it
peaks and goes down until LSLS r3,r1,#2 instruction (labeled 15) where the
operation on next byte starts.

7.2 Data Leakage

TVLA results. Figure 11 shows the TVLA results for the STM, (red line) and
the NRF,(blue line) devices. A green line represents the threshold value of 4.5.
The plot shows that the side-channel leaks for the two devices differ significantly.

14 Arora et al.

40
Threshoid
STM_A_key1_D1_1.urs
30 STM_A_key1_D1_2s
g . NRF_A_key1_D1_1.urs
20 an ” o S . NRF_A_key1_D1_2 s
- v - v Vit - \
10 " i TN J A L . . “u
B - T iy J‘\-F;.J_ P T
0~ TP . - J e bt L
1 2 3 4 8 6 7 8 8 10 11 12 13 14 15 16 17 18 19 2021 22 23

Fig. 11: TVLA results for the STM, and NRF, devices. The numbers on the x-axis are
the instructions being executed, see Listing 1.1.

For the STM,, the TVLA value rises above the 4.5 threshold at STRB r3, [r4,r0]
instruction, goes down at UXTB rl, r3 instruction and rises again covering CMP
r1,#0x04(labeled 13) and BLT 0x08000818 (labeled 14) instructions. For the
NRF, device, the TVLA results show leakage for almost all instructions (labeled
1-21). However, as seen in the previous section, the TVLA results need to be
considered with caution.

Key rank analysis results have been added as a transparent layer over the
TVLA for both boards in Figure 12.

1
1 [1
“4u] 1 [] e
' i 1 —+ Threshold
30 LU 1 X A] —+ ‘STM_A key1_D1_1trs
’] 1 Fr] 1 B STM_A_key1_D1_2.trs
3 J h.A SR] 1 Tl
20 . Padni 1AL L ' P
¢ ' YA’ 4 ¥ 1 p A
10— e et Y L ' Wf”’:ﬂ; v
] i ! | SUNES S{EIE, ."\.,. [1 1 t P AU 11 R | et I\e
0 et MMMJMMAMNWJA'W%«M»J] "\/’; MLV L T . : :’h\ww/] \1/
: : 1 L Y — :
] " [] —# {Threshold .
' i s 1 # INRF_A_key1_D1_1.trs®
. 5 WW% I X 5 NRF_A_key1_D1_2rsp
' ' Pl i 1 e .
1])'”v 1 [} e
LTI M"’%“? L L
A \ h
x Ml i WW‘WB;M;W Ml |,
P m}ﬁnr ity LA T A T

8 9 10 111213 14 1516 17 18 19 20 2122 23

Fig.12: (To be viewed in colors.) Overlay of the key rank estimate on the TVLA
results for STM, device(top) and NRF, device (bottom). Red regions represent the index
locations where the correct key is ranked first. The rectangles highlight differences in
leakage between the two boards. The numbers on the x-axis are the instruction being
executed, see Listing 1.1.

For the STM, device, the correct key data starts leaking Figure 12 (top)
from the LDRB r3, [r4,r3] instruction (labeled 7) until the STRB r3, [r4,r0]
instruction (labeled 22). Our hypothesis for the leak observed during the LDRB
r3, [r4,r3] instructions (labeled 7) is that the key byte is being loaded on
the bus. The key byte also leaks while the arithmetic instructions are being

A Tale of Two Boards 15

performed, at ADDS r4,r4,r2 instruction (labeled 9). We believe this is an effect
of the three-stage pipeline: while the ADDS instruction is being executed the data
is being pre-fetched for the STRB instruction.

We see that the correct key byte continues to leak in the subsequent instruc-
tions even though no operations are being performed directly on the key data.
In the analyzed s-box implementation, the loop operates on 4 bytes, four times
to operate on a total 16 bytes of data; the check for the loop occurs at CMP
r1,#0x04 instruction(labeled 13). The check compares the relative value of R1
to #0x04 and branches to the next instruction if the R1 value is less than 4.

The subsequent instructions LSLS and ADDS compute the relative index from
which the next key data is to be loaded by the LDRB instruction, which is when
the leak of key data stops. We find this to be an interesting behavior since the
data stops leaking when the data in the memory bus-A is overwritten by new
data. We do not have an explanation for the gaps in the resulting leaks for the
STRB (labeled 10) and UXTB (labeled 12).

Figure 12 (bottom) shows the key rank analysis for the NRF, device. The
correct key byte starts leaking at STRB, r3, [r4,r0] instruction (labeled 10),
and leaks until LDR r4, [pc,#28] instruction (labeled 18). The leaks observed
in the NRF, device seem to have a strong effect on the dynamic power, and its
effects seem diffused, showing up while other instructions are being executed.
We can infer that the correct key byte is on the bus after the STRB instruction
(labeled 10), which leaks over the subsequent instructions as the data is being
overwritten. An interesting behavior observed in NRF,boards is the leak of the
first key byte when the operations are being performed on the next byte of data,
due to register overwrites from LDR instruction.

To summarize, we confirm that the influence of microarchitecture implemen-
tation has a significant effect on the leakage behavior of the two boards we
analyzed. The results for the NRF, device differ from the key rank results on
STM, device showing an additional leak of arithmetic (LSLS) instruction (la-
beled 15). The results for the STM, and the NRF, devices show a similar trend
subsequent to the STRB instruction.

8 Conclusions and Future Work

Our results show that while the power traces collected from the boards of the
two manufacturers have very different visual profiles, some instruction sequences
leak in the same way, which can be explained by the similar pipeline executions
of instructions for both cores. To answer whether the microarchitecture impacts
side-channel leakage, we first investigate the influence of manufacturing varia-
tion. While we observe differences between physical boards, the trend for side-
channel leakage for the two boards we investigated is similar. When comparing
the side-channel leak between different chips, we see clear evidence of leakage
behavior that we attribute to microarchitecture implementation differences.

In terms of the impact on the design of side channel simulators, our results
show that the existence of a generic simulator, e.g., for an ARM-Cortex MO, is

16 Arora et al.

improbable. Differences in microarchitecture, such as differences in memory im-
plementation or other functional optimisations, require that a simulator which
predicts side channel leakage needs to be trained for different silicon implemen-
tations. For the portability of templates between different core implementations,
we extrapolate that the differences in microarchitecture will be a deciding factor.
We compared TVLA, probably the first choice of leakage assessment tech-
nique, with the leakage obtained by profiling. Despite its simplicity and based on
the differences observed in our results, we would caution our embedded system
developer against using TVLA alone to determine leakage behavior and suggest
using key ranking as a more robust, albeit more effort-intensive technique.

References

1. Bhasin, S., Chattopadhyay, A., Heuser, A., Jap, D., Picek, S., Shrivastwa, R.R.:
Mind the portability: A warriors guide through realistic profiled side-channel analy-
sis. In: 27th Annual Network and Distributed System Security Symposium, NDSS
2020, San Diego, California, USA, February 23-26, 2020. The Internet Society
(2020), https://www.ndss-symposium. org/ndss2020/

2. Cao, Y., Zhou, Y., Yu, Z.: On the negative effects of trend noise and its applications
in side-channel cryptanalysis. IACR Cryptology ePrint Archive 2013, 102 (2013),
http://eprint.iacr.org/2013/102

3. Das, D., Golder, A., Danial, J., Ghosh, S., Raychowdhury, A., Sen, S.: X-deepsca:
Cross-device deep learning side channel attack. In: 2019 56th ACM/TEEE Design
Automation Conference (DAC). pp. 1-6 (2019)

4. Gao, S., Oswald, E., Page, D.: Reverse engineering the micro-architectural leakage
features of a commercial processor. Cryptology ePrint Archive, Report 2021/794
(2021), https://eprint.iacr.org/2021/794

5. Golder, A., Das, D., Danial, J., Ghosh, S., Sen, S., Raychowdhury, A.: Practical ap-
proaches toward deep-learning-based cross-device power side-channel attack. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 27(12), 2720-2733
(2019). https://doi.org/10.1109/TVLSI.2019.2926324

6. Goodwill, G., Jun, J., P.Rohatgi: A testing methodology for side channel resistance
validation. NIST non-invasive attack testing workshop (2018)

7. Heuser, A., Kasper, M., Schindler, W., Stottinger, M.: A New Difference Method
for Side-Channel Analysis with High-Dimensional Leakage Models. In: Dunkelman,
O. (ed.) CT-RSA. Lecture Notes in Computer Science, vol. 7178, pp. 365-382.
Springer (2012)

8. Limited, A.: Arm v6-m architecture reference manual. Tech. rep., ARM Limited
(ARM DDI 0419E (ID070218) 2018)

9. Marshall, B., Page, D., Webb, J.: Miracle: Micro-architectural leakage evaluation.
Cryptology ePrint Archive, Report 2021/261 (2021), https://eprint.iacr.org/
2021/261

10. McCann, D., Oswald, E., Whitnall, C.: Towards practical tools for side chan-
nel aware software engineering: ‘grey box’ modelling for instruction leakages. In:
USENIX Security Symposium. pp. 199-216 (2017)

11. Shelton, M.A., Samwel, N., Batina, L., Regazzoni, F., Wagner, M., Yarom, Y.:
Rosita: Towards automatic elimination of power-analysis leakage in ciphers. In:
NDSS (2021)

12.

13.

14.

15.

16.

A Tale of Two Boards 17

Standaert, F.X., Malkin, T.G., Yung, M.: A unified framework for the analysis
of side-channel key recovery attacks. In: Annual international conference on the
theory and applications of cryptographic techniques. pp. 443-461. Springer (2009)
Stokes, J.: Inside the Machine, An illustrated Introduction to Microprocessors and
Computer Architecture. No startch press/ars technica library (2007)

van der Valk, D.; Picek, S., Bhasin, S.: Kilroy was here: The first step towards ex-
plainability of neural networks in profiled side-channel analysis. In: Bertoni, G.M.,
Regazzoni, F. (eds.) Constructive Side-Channel Analysis and Secure Design. pp.
175-199. Springer International Publishing, Cham (2021)

Wu, L., Won, Y.S., Jap, D., Perin, G., Bhasin, S., Picek, S.: Explain some noise: Ab-
lation analysis for deep learning-based physical side-channel analysis. Cryptology
ePrint Archive, Report 2021/717 (2021), https://eprint.iacr.org/2021/717
Zhang, F., Shao, B., Xu, G., Yang, B., Yang, Z., Qin, Z., Ren, K.: From homo-
geneous to heterogeneous: Leveraging deep learning based power analysis across
devices. In: 2020 57th ACM/IEEE Design Automation Conference (DAC). pp. 1-6
(2020). https://doi.org/10.1109/DAC18072.2020.9218693

