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Abstract. This paper revisits Key-Policy Attribute-Based Encryption (KP-ABE), allowing dele-
gation of keys, traceability of compromised keys, and key anonymity, as additional properties.
Whereas delegation of rights has been addressed in the seminal paper by Goyal et al. in 2006,
introducing KP-ABE, this feature has almost been neglected in all subsequent works in favor of
better security levels. However, in multi-device scenarios, this is quite important to allow users to
independently authorize their own devices, and thus to delegate their initial rights with possibly
more restrictions to their everyday-use devices. But then, one may also require tracing capabilities
in case of corrupted devices and anonymity for the users and their devices.
To this aim, we define a new variant of KP-ABE including delegation, with switchable attributes,
in both the ciphertexts and the keys, and new indistinguishability properties. We then provide a
concrete and efficient instantiation with adaptive security under the sole SXDH assumption in the
standard model. We eventually explain how this new primitive can address all our initial goals.

1 Introduction

Multi-device scenarios have become prevalent in recent years, as it is now quite usual for people
to own multiple phones and computers for personal and professional purposes. Users manage
multiple applications across different devices, which brings forth new kinds of requirements. One
must be able to granularly control what each of his devices can do for numerous applications,
with a cost that is minimal for the user and the overall system. In particular, it is expected
that one can control what each of its devices can access, for example restricting the rights to
read sensitive documents from a professional laptop or phone during travel. Furthermore, if one
suspects a key to be compromised, it should be possible to trace and change it without impacting
the service. At the same time, these operations must happen transparently between different
devices from the perspective of the user. This means each device should be autonomously
configurable with regards to interactions with a central authority or to other devices. Eventually,
one may also expect the delegated keys to be unlinkable, for some kind of anonymity for the
users, even when devices are explored or corrupted by an adversary.

Usual current authentication means defining a unique account for the user, providing the
same access-rights to all the devices, is equivalent to a key-cloning approach, where the user
clones his key in every device. In this case, all the devices of the same user are easily linked
together, from their keys. This also prevents countermeasures against specific devices.

Key-Policy Attribute-Based Encryption (KP-ABE), in the seminal paper of Goyal et al.
[GPSW06], offers interesting solutions to these issues. Indeed, a policy is embedded inside each
user’s private key, any user can finely-tune the policy for each of his devices when delegating
his keys, for any more restrictive policy. Besides, since keys become different in each device,
one could expect to trace and revoke keys independently. However, delegation and tracing
capabilities might look contradictory with current approaches, as explained below. But we bridge
this gap and we also suggest complementing these features with a certain level of unlinkability
between the different keys of a single user in order to better protect the privacy of users.

1.1 Related Work

Attribute-Based Encryption (ABE) has first been proposed in the paper by Goyal et
al. [GPSW06]. In an ABE system, on the one hand, there is a policy P and, on the other
hand, there are some attributes (Ai)i, and one can decrypt a ciphertext with a key if the
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policy P is satisfied on the attributes (Ai)i. They formally defined two approaches: Key-Policy
Attribute-Based Encryption (KP-ABE), where the policy is specified in the decryption key and
the attributes are associated to the ciphertext; Ciphertext-Policy Attribute-Based Encryption
(CP-ABE), where the policy is specified in the ciphertext and the attributes are associated to
the decryption key.

In their paper, they proposed a concrete construction of KP-ABE, for any monotonous
access structure defined by a policy expressed as an access-tree with threshold internal gates
and leaves associated to attributes. Attributes in the ciphertext are among a large universe
U (not polynomially bounded). Given an access-tree T embedded in a private key, and a set
of attributes Γ ⊂ U associated to a ciphertext, one can decrypt if and only if Γ satisfies T .
Furthermore, they laid down the bases for delegation of users’ private keys: one can delegate a
new key, associated with a more restrictive access-tree.

This first paper on KP-ABE allows fine-grained access-control for multiple devices, dealing
with delegation of keys for more restrictive policies. However, their approach for delegation of
keys is conflictual with traceability. Indeed, on the one hand, for delegation to work properly,
users must be given enough information in the public key to be able to produce valid delegated
keys. On the other hand, for the tracing process to be effective in a black-box way, attackers
must not be able to detect it. From our knowledge, this natural tension between the two features
is in all the existing literature.

Predicate Encryption/Inner-Product Encryption (IPE) were used by Okamoto and
Takashima [OT10,OT12a,OT12b], together with LSSS: the receiver can read the message if a
predicate is satisfied on some information in the decryption key and in the ciphertext. Inner-
product encryption (where the predicate checks whether the vectors embedded in the key and in
the ciphertext are orthogonal) is the major tool. Their technique of Dual Pairing Vector Space
(DPVS) provided two major advantages in KP-ABE applications: whereas previous constructions
were only secure against selective attacks (the attributes in the challenge ciphertext were known
before the publication of the keys), this technique allowed full security (a.k.a. adaptive security,
where the attributes in the challenge ciphertext are chosen at the challenge-query time). In
addition, it allows the notion of attribute-hiding (from [KSW08]) where no information leaks
about the attributes associated to the ciphertext, except for the fact that they are accepted or
not by the policies in the keys. It gets closer to our goals, as tracing might become undetectable.
However, it does not seem any longer compatible with delegation, as the security proofs require
all the key generation material to remain a secret information for the key issuer only.

As follow-up works, Chen et al. [CGW15,CGW18] designed multiple systems for IPE, with
adaptive security, and explored full attribute-hiding with weaker assumptions and shorter ci-
phertexts and secret keys than in the previous work of Okamoto-Takashima. However, it does
not fit our expectations on delegation, for the same reasons. On the other hand, Attrapadung
also proposed new ABE schemes based on Pair Encoding Systems, which allow for all possible
predicates and large universes [AT20], but this deals neither with delegation nor with any kind
of attribute-hiding, as we would need.

1.2 Contributions

Since the approach of [OT12a] is close to our goal, with attribute-hiding that seems promising
for traceability, we extend the original construction to make it compatible with delegation. We
propose and prove, in the appendix D, a simple variant that handles delegation with adaptive
security under the SXDH assumption. Then, we target delegatable KP-ABE with some additional
attribute-hiding property in the ciphertext to allow undetectable tracing.

To this aim, we first detail one of the main limitation we have to overcome in order to get
delegation and traceability: with the original approach of [GPSW06], attributes associated to
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Feature [OT12a] [LW15] [CGW18] Ours

Security Adaptive Adaptive Adaptive Adaptive
Assumptions DLIN q-type XDLIN SXDH

Construction type CP/KP ABE CP/KP ABE IPE KP ABE
Delegation X × × X
Traceability × X × X

Fig. 1: Comparison with Related Work

the ciphertext are explicitly stated as elements in the ciphertext. Removing some attributes can
thus allow to single out specific private keys, but this is a public process, and thus incompatible
with any tracing procedure, that would then be detectable by the adversary. To prevent that,
our first contribution is the new primitive: Switchable-Attribute Key-Policy Attribute-Based
Encryption (SA-KP-ABE), where one can invalidate some attributes in the ciphertext, without
removing them. More precisely, we will bring new properties to the attributes in ciphertexts
(for undetectable tracing) but also symmetrically to the leaves in keys (for anonymity).

In a SA-KP-ABE scheme, attributes in a ciphertext and leaves in an access-tree T defining
the policy in a key can be switched in two different states: Attributes can be set to valid
or invalid in a ciphertext at encryption time, using a secret encryption key. We then denote
Γ = Γv ·∪ Γi, the set of attributes for a ciphertext, as the disjoint union of valid and invalid
attributes; Leaves can be set to passive or active in the access-tree in a key at key generation
time, using the master secret key. We also denote L = Lp ·∪ La, the set of leaves, as the disjoint
union of passive and active leaves. A set of valid/invalid attributes Γ = Γv ·∪ Γi is accepted
by an access-tree T with passive/active leaves L = Lp ·∪ La, if the tree T is accepting when
all the leaves in L associated to an attribute in Γ are set to True, except if the leaf is active
(in La) and the associated attribute invalid (in Γi). As already presented above, passive/active
leaves in L are decided during the Key Generation procedure by the authority, using the master
secret key. Then the keys are given to the users. During the Encryption procedure, a ciphertext
is generated for attributes in Γ , but one might specify some attributes to be invalid by using
a secret tracing key, which virtually and secretly switches some active leaves to False. Passive
leaves are not impacted by invalid attributes.

A second contribution is a concrete and efficient instantiation of SA-KP-ABE, with se-
curity proofs under the SXDH assumption. We eventually explain how one can deal with dele-
gatable and traceable KP-ABE from such a primitive. As shown on Figure 1, our scheme is the
first one that can combine both delegation and traceability of keys for KP-ABE. Computational
assumptions are recalled in the next section and in the appendix A.1.

Our first simple construction (in the appendix D) following the initial proof from [OT12a],
only allows a polynomial-size universe for the attributes involved in the policy, encoded as a
Boolean access-tree. This is due to a limited theorem with static attributes in the change of basis
in the DPVS framework (see the next section). The latter construction will allow an unbounded
universe for the attributes, with an adaptive variant in the change of basis (see Theorem 3).
This result is of independent interest.

Discussions. Our setting bears common characteristics with recent KP-ABE approaches, but
with major differences. First, Waters [Wat09] introduced the Dual System Encryption (DSE)
technique, to improve the security level of KP-ABE, from selective security in [GPSW06] to
adaptive security. In DSE, keys and ciphertexts can be set semi-functional, which is in the same
vein as our active leaves in keys and invalid attributes in ciphertexts. However, DSE solely
uses semi-functional keys and ciphertexts during the simulation, in the security proof, while our
construction exploits them in the real-life construction. The security proof thus needs another
layer of tricks.
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Second, the attribute-hiding notions are strong properties that have been well studied in
different IPE works. However, one does not need to achieve such a strong result for tracing: Our
(Distinct) Attribute-Indistinguishability is properly tailored for KP-ABE and tracing.

Finally, we detail the advantage of our solution over a generic KEM approach that would
combine a Delegatable KP-ABE and a black-box traitor-tracing scheme. This generic solution
works if one is not looking for optimal bounds on collusion-resistance during tracing: The main
issue with such a use of two independent schemes is that for each user, the KP-ABE key and
the traitor-tracing key are not linked. As a consequence, the encryptions of the ABE part and
the tracing part are done independently. The colluding users can all try to defeat the traitor
tracing without restriction: the collusion-resistance for tracing in the global scheme will exactly
be the collusion-resistance of the traitor tracing scheme. On the other hand, our construction
will leverage the collusion-resistance of KP-ABE to improve the collusion-resistance of tracing:
only players non-revoked by the KP-ABE part can try to defeat the traitor tracing part. Hence,
during tracing, one can revoke arbitrary users thanks to the policy/attributes part. This allows
to lower the number of active traitors, possibly keeping them below the collusion-resistance of
the traitor tracing scheme, so that tracing remains effective.

2 Preliminaries

We will make use of a pairing-friendly setting G = (G1,G2,Gt, e,G1, G2, q), with a bilinear map
e from G1 × G2 into Gt, and G1 (respectively G2) is a generator of G1 (respectively G2). We
will use additive notation for G1 and G2, and multiplicative notation in Gt.

Definition 1 (Decisional Diffie-Hellman Assumption). The DDH assumption in G, of
prime order q with generator G, states that no algorithm can efficiently distinguish the two
distributions

D0 = {(a ·G, b ·G, ab ·G), a, b
$← Zq} D1 = {(a ·G, b ·G, c ·G), a, b, c

$← Zq}

And we will denote by AdvddhG (T ) the best advantage an algorithm can get in distinguishing the
two distributions within time bounded by T . Eventually, we will make the following more general
Symmetric eXternal Diffie-Hellman (SXDH) Assumption which makes the DDH assumptions in
both G1 and G2. Then, we define AdvsxdhG (T ) = max{AdvddhG1

(T ),AdvddhG2
(T )}.

2.1 Dual Pairing Vector Spaces

We review the main points on Dual Pairing Vector Spaces (DPVS) to help following the intu-
ition provided in this paper. Though not necessary for the comprehension of the paper, the full
details are provided in the appendix C. DPVS have been used for schemes with adaptive secu-
rity [OT08,LOS+10,OT10,OT12b] in the same vein as Dual System Encryption (DSE) [Wat09],
in prime-order groups under the DLIN assumption. In [LW10], and some subsequence works,
DSE was defined using pairings on composite-order elliptic curves. Then, prime-order groups
have been used, for efficiency reasons, first with the DLIN assumption and then with the SXDH
assumption [CLL+13]. In all theses situations, one exploited indistinguishability of sub-groups
or sub-spaces. While we could have used any of them, the latter prime-order groups with the
SXDH assumption lead to much more compact and efficient constructions.

In this paper, we thus use the SXDH assumption in a pairing-friendly setting G, with the
additional law between elements X ∈ Gn

1 and Y ∈ Gn
2 : X×Y

def
=
∏
i e(Xi,Yi). If X = (Xi)i =

~x ·G1 ∈ Gn
1 and Y = (Yi)i = ~y ·G2 ∈ Gn

2 : (~x ·G1) × (~y ·G2) = X ×Y =
∏
ie(Xi, Yi) = g

〈~x,~y〉
t ,

where gt = e(G1, G2) and 〈~x, ~y〉 is the inner product between vectors ~x and ~y.
From any basis B = (~bi)i of Znq , we can define the basis B = (bi)i of Gn

1 , where bi = ~bi ·G1.

Such a basis B is equivalent to a random invertible matrix B
$← GLn(Zq), the matrix with
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~bi as its i-th row. If we additionally use B∗ = (b∗i )i, the basis of Gn
2 associated to the matrix

B′ = (B−1)>, as B ·B′> = In, bi × b∗j = (~bi ·G1)× (~b′j ·G2) = g
〈~bi,~b′j〉
t = g

δi,j
t , where δi,j = 1 if

i = j and δi,j = 0 otherwise, for i, j ∈ {1, . . . , n}: B and B∗ are called Dual Orthogonal Bases.
A pairing-friendly setting G with such dual orthogonal bases B and B∗ of size n is called a Dual
Pairing Vector Space.

2.2 Change of Basis

Let us consider the basis U = (ui)i of Gn associated to a random matrix U ∈ GLn(Zq), and
the basis B = (bi)i of Gn associated to the product matrix BU , for any B ∈ GLn(Zq). For
a vector ~x ∈ Znq , we denote (~x)B =

∑
ixi · bi. Then, (~x)B = (~y)U where ~y = ~x · B. Hence,

(~x)B = (~x ·B)U and (~x ·B−1)B = (~x)U where we denote B def
= B ·U. For any invertible matrix B,

if U is a random basis, then B = B · U is also a random basis. Furthermore, if we consider the
random dual orthogonal bases U = (ui)i and U∗ = (u∗i )i of Gn

1 and Gn
2 respectively associated

to a matrix U (which means that U is associated to the matrix U and U∗ is associated to the
matrix U ′ = (U−1)>): the bases B = B · U and B∗ = B′ · U∗, where B′ = (B−1)>, are also
random dual orthogonal bases:

bi × b∗j = g
~bi·~b′

>
j

t = g
~ui·B·(B−1)>·~u′>j
t = g

~ui·~u′
>
j

t = g
δi,j
t .

All the security proofs will exploit changes of bases, from one game to another game, with two
kinds of changes: formal or computational.

Formal Change of Basis, where we start from two dual orthogonal bases U and U∗ of dimension
2, and set

B =

(
1 1
0 1

)
B′ =

(
1 0
−1 1

)
B = B · U B∗ = B′ · U∗

then, (x1, x2)U = (x1, x2 − x1)B (y1, y2)U∗ = (y1 + y2, y2)B∗ (1)

(0, x2)U = (0, x2)B (0, y2)U∗ = (y2, y2)B∗ (2)

In practice, this change of basis makes b1 = u1 + u2, b2 = u2, b∗1 = u∗1, b∗2 = −u∗1 + u∗2. If
u1/b1 and u∗2/b

∗
2 are kept private, the adversary cannot know whether we are using (U,U∗)

or (B,B∗). This will be used to duplicate some component, from a game to another game, as
shown in the above example (2).

Computational Change of Basis, where we define vectors in a dual orthogonal basis (U,U∗) of
dimension 2. From a Diffie-Hellman challenge (a ·G1, b ·G1, c ·G1), where c = ab+ τ mod q with

either τ = 0 or τ
$← Z∗q , one can set

B =

(
1 a
0 1

)
B′ =

(
1 0
−a 1

)
B = B · U B∗ = B′ · U∗ (3)

then, in basis (B,B∗), we implicitly define

(b, c)U + (x1, x2)B = (b, c− ab)B + (x1, x2)B = (x1 + b, x2 + τ)B

(y1, y2)U∗ = (y1 + ay2, y2)B∗

where τ can be either 0 or random, according to the Diffie-Hellman challenge. And the two
situations are indistinguishable. We should however note that in this case, b∗2 cannot be com-
puted, as a ·G2 is not known. This will not be a problem if this element is not provided to the
adversary.
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Partial Change of Basis: in the constructions, bases will be of higher dimension, but we will
often only change a few basis vectors. We will then specify the vectors as indices to the change
of basis matrix: in a space of dimension n,

B =

(
1 a
0 1

)
1,2

B′ =

(
1 0
−a 1

)
1,2

B = B · U B∗ = B′ · U∗ (4)

means that only the two first coordinates are impacted, and thus b1,b2 and b∗1,b
∗
2. We complete

the matrices B and B′ with the identity matrix: bi = ui and b∗i = u∗i , for i ≥ 3.

2.3 Particular Changes

The security proofs will rely on specific indistinguishable modifications that we detail here. We
will demonstrate the first of them to give the intuition of the methodology to the reader. A
full demonstration for the other modifications can be found in the appendix C.5. These results
hold under the DDH assumption in G1, (but it can also be applied in G2), on random dual
orthogonal bases B and B∗.

With the above change of basis provided in equation (4), we can compute B = (bi)i, as we
know a ·G1 and all the scalars in U :

bi =
∑
k

Bi,k · uk bi,j =
∑
k

Bi,k · uk,j =
∑
k

Bi,kUk,j ·G1 =
∑
k

Uk,j · (Bi,j ·G1).

Hence, to compute bi, one needs all the scalars in U , but only the group elements Bi,j ·G1, and
so G1 and a ·G1. This is the same for B∗, except for the vector b∗2 as a ·G2 is missing. One can
thus publish B and B∗\{b∗2}.

Indistinguishability of Sub-Spaces (3). As already remarked, for such a fixed matrix B, if
U is random, so is B too, and (~x)B = (~x ·B)U, so (~x)U = (~x ·B−1)B. Note that B−1 = B′>. So,
(b, c, 0, . . . , 0)U = (b, c− ab, 0, . . . , 0)B, then

(b, c, 0, . . . , 0)U + (x1, x2, x3, . . . , xn)B = (x1 + b, x2 + τ, x3, . . . , xn)B

where τ can be either 0 or random. Note that whereas we cannot compute b∗2, this does not
exclude this second component in the computed vectors, as we can use (y1, . . . , yn)U∗ = (y1 +
ay2, y2, . . . , yn)B∗ .

Theorem 2. Under the DDH Assumption in G1, for random dual orthogonal bases B and B∗,
once having seen B and B∗\{b∗2}, and any vector (y1, y2, . . . , yn)B∗, for any y2, . . . , yn ∈ Zq, but

unknown random y1
$← Zq, one cannot distinguish (x1, x

′
2, x3, . . . , xn)B and (x1, x2, x3, . . . , xn)B,

for any x2, . . . , xn ∈ Zq, but unknown random x1, x
′
2

$← Zq.

Some scalar coordinates can be chosen (and thus definitely known) by the adversary, whereas
some other must be random. Eventually the adversary only sees the vectors in Gn

1 and Gn
2 . We

now directly state two other properties for which the demonstration (which works similarly as
the SubSpace-Ind one) can be found in the appendix C.5.

Swap-Ind Property, on (B,B∗)1,2,3: from the view of B and B∗\{b∗1,b∗2}, and the vector (y1,
y1, y3, . . . , yn)B∗ , for any y1, y3, . . . , yn ∈ Zq, one cannot distinguish the vectors (x1, 0,
x3, x4, . . . , xn)B and (0, x1, x3, x4, . . . , xn)B, for any x1, x4, . . . , xn ∈ Zq, but unknown ran-

dom x3
$← Zq.

(Static) Index-Ind Property, on (B,B∗)1,2,3: from the view of B and B∗\{b∗3}, for fixed t 6=
p ∈ Zq, and the (π · (t,−1), y3, . . . , yn)B∗ , for any y3, . . . , yn ∈ Zq, but unknown random

π
$← Zq, one cannot distinguish (σ · (1, p), x3, x4, . . . , xn)B and (σ · (1, p), x′3, x4, . . . , xn)B,

for any x′3, x3, x4, . . . , xn ∈ Zq, but unknown random σ
$← Zq.
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We stress that, in this static version, t and p must be fixed, and known before the simulation
starts in the security analysis, as they will appear in the matrix B. In the Okamoto-Takashima’s
constructions [OT10,OT12b], such values t and p were for bounded names of attributes. In the
following, we want to consider unbounded attributes, we thus conclude this section with an
adaptive version, where t and p do not need to be known in advance, from a large universe:

Theorem 3 (Adaptive Index-Ind Property). Under the DDH Assumption in G1, for random
dual orthogonal bases B and B∗, once having seen B and B∗\{b∗3}, and (π ·(t,−1), y3, 0, 0, y6, . . . ,

yn)B∗, for any t, y3, y6, . . . , yn ∈ Zq, but unknown random π
$← Zq, one cannot distinguish

(σ ·(1, p), x3, 0, 0, x6, . . . , xn)B and (σ ·(1, p), x′3, 0, 0, x6, . . . , xn)B, for any x3, x
′
3, x6, . . . , xn ∈ Zq,

and p 6= t, but unknown random σ
$← Zq, with an advantage better than 8 × AdvddhG1

(T ) + 4 ×
AdvddhG2

(T ), where T is the running time of the adversary.

Proof. For the sake of simplicity, we will prove indistinguishability between (σ · (1, p), 0, 0, 0)B
and (σ · (1, p), x3, 0, 0)B, in dimension 5 only, instead of n. Additional components could be
chosen by the adversary. Applied twice, we obtain the above theorem. The proof follows a
sequence of games.

Game G0: The adversary can choose p 6= t and x3, y3 in Zq, but π, σ
$← Zq are unknown to

it:

k∗ = (π(t,−1), y3, 0, 0)B∗ c0 = (σ(1, p), 0, 0, 0)B

c1 = (σ(1, p), x3, 0, 0)B

Vectors (b1,b2,b3,b
∗
1,b
∗
2) and (cb,k

∗) are provided to the adversary that must decide on b:
Adv0 is its advantage in correctly guessing b. Only k∗ and c0 will be modified in the following
games, so that eventually c0 = c1 in the last game, which leads to perfect indistinguishability.

Game G1: We replicate the first sub-vector (t,−1), with ρ
$← Zq, in the hidden components:

k∗ = (π(t,−1), y3, ρ(t,−1))B∗ . To show the indistinguishability, one applies the SubSpace-
Ind property on (B∗,B)1,2,4,5. Indeed, we can consider a triple (a · G2, b · G2, c · G2), where
c = ab + τ mod q with either τ = 0 or random, which are indistinguishable under the DDH
assumption in G2. Let us assume we start from random dual orthogonal bases (V,V∗). We
define

B′ =


1 0 a 0
0 1 0 a
0 0 1 0
0 0 0 1


1,2,4,5

B =


1 0 0 0
0 1 0 0
−a 0 1 0
0 −a 0 1


1,2,4,5

B∗ = B′ · V∗ B = B · V

The vectors b4,b5 can not be computed, but they are hidden from the adversary’s view, and
are not used in any vector. We compute the new vectors:

k∗ = (b(t,−1), y3, c(t,−1))V∗ c0 = (σ(1, p), 0, 0, 0)B

= (b(t,−1), y3, (c− ab)(t,−1)B∗

= (b(t,−1), y3, τ(t,−1)B∗

One can note that when τ = 0, this is the previous game, and when τ random, we are in the
new game, with π = b and ρ = τ : Adv0 − Adv1 ≤ AdvddhG2

(T ).

Game G2: We replicate the non-orthogonal sub-vector (1, p), with θ
$← Zq:

k∗ = (π(t,−1), y3, ρ(t,−1))B∗ c0 = (σ(1, p), 0, θ(1, p))B

To show the indistinguishability, one applies the SubSpace-Ind property on (B,B∗)1,2,4,5. In-
deed, we can consider a triple (a ·G1, b ·G1, c ·G1), where c = ab+ τ mod q with either τ = 0
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or random, which are indistinguishable under the DDH assumption in G1. Let us assume we
start from random dual orthogonal bases (V,V∗). Then we define the matrices

B =


1 0 a 0
0 1 0 a
0 0 1 0
0 0 0 1


1,2,4,5

B′ =


1 0 0 0
0 1 0 0
−a 0 1 0
0 −a 0 1


1,2,4,5

B = B · V B∗ = B′ · V∗

The vectors b∗4,b
∗
5 can not be computed, but they are hidden from the adversary’s view. We

compute the new vectors in V and V∗:

c0 = (b(1, p), 0, c(1, p))V k∗ = (π′(t,−1), y3, ρ(t,−1))V∗

= (b(1, p), 0, (c− ab)(1, p))B = ((π′ + aρ)(t,−1), y3, ρ(t,−1))B∗

= (b(1, p), 0, τ(1, p))B

One can note that when τ = 0, this is the previous game, and when τ random, we are in the
new game, with π = π′ + aρ, σ = b, and θ = τ : Adv1 − Adv2 ≤ AdvddhG1

(T ).

Game G3: We randomize the two non-orthogonal sub-vectors, with random scalars u1, u2, v1, v2
$← Zp:

k∗ = (π(t,−1), y3, u1, u2)B∗ c0 = (σ(1, p), 0, v1, v2)B

To show the indistinguishability, one makes a formal change of basis on (B∗,B)4,5, with a
random unitary matrix Z, with z1z4 − z2z3 = 1:

B′ = Z =

(
z1 z2
z3 z4

)
4,5

B =

(
z4 −z3
−z2 z1

)
4,5

B∗ = B′ · V∗ B = B · V

This only impacts the hidden vectors (b4,b5), (b∗4,b
∗
5). If one defines k∗ and c0 in (V∗,V),

this translates in (B∗,B):

k∗ = (π(t,−1), y3, ρ(t,−1))V∗ = (π(t,−1), y3, ρ(tz1 − z3, tz2 − z4))B∗
c0 = (σ(1, p), 0, θ(1, p))V = (σ(1, p), 0, θ(z4 − pz2,−z3 + pz1))B

Let us consider random u1, u2, v1, v2
$← Zp, and solve the system in z1, z2, z3, z4. This system

admits a unique solution, if and only if t 6= p. And with random ρ, θ, and random unitary
matrix Z,

k∗ = (π(t,−1), y3, u1, u2)B∗ c0 = (σ(1, p), 0, v1, v2)B

with random scalars u1, u2, v1, v2
$← Zp. In bases (V,V∗), we are in the previous game, and

in bases (B,B∗), we are in the new game, if p 6= t: Adv2 = Adv3.

Game G4: We now randomize the third component in c0:

k∗ = (π(t,−1), y3, u1, u2)B∗ c0 = (σ(1, p), x3, v1, v2)B

To show the indistinguishability, one applies the SubSpace-Ind property on (B,B∗)4,3. Indeed,
we can consider a triple (a · G1, b · G1, c · G1), where c = ab + τ mod q with either τ = 0 or
τ = x3, which are indistinguishable under the DDH assumption in G1. Let us assume we start
from random dual orthogonal bases (V,V∗). Then we define the matrices

B =

(
1 0
a 1

)
3,4

B′ =

(
1 −a
0 1

)
3,4

B = B · V B∗ = B′ · V∗
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The vectors b∗3 can not be computed, but it is not into the adversary’s view. We compute the
new vectors:

k∗ = (π(t,−1), y3, u
′
1, u2)V∗ c0 = (σ(1, p), c, b, v2)V

= (π(t,−1), y3, u
′
1 + ay3, u2)B∗ = (σ(1, p), c− ab, b, v2)B

= (σ(1, p), τ, b, v2)B

One can note that when τ = 0, this is the previous game, and when τ = x3, we are in the
new game, with v1 = b and u1 = u′1 + ay3: Adv3 − Adv4 ≤ 2× AdvddhG1

(T ), by applying twice
the Diffie-Hellman indistinguishability game.

We can undo successively games G3, G2, and G1 to get, after a gap bounded by AdvddhG1
(t) +

AdvddhG2
(t): k∗ = (π(t,−1), y3, 0, 0)B∗ and c0 = (σ(1, p), x3, 0, 0)B. In this game, the advantage of

any adversary is 0. The global difference of advantages is bounded by 4·AdvddhG1
(T )+2·AdvddhG2

(T ),
which concludes the proof.

3 Key-Policy ABE with Switchable Attributes

Classical definitions and properties for KP-ABE, and more details about policies, are reviewed in
the appendix A.2, following [GPSW06]. We recall here the main notions on labeled access-trees
as a secret sharing to embed a policy in keys.

3.1 Policy Definition

Access Trees. As in the seminal paper [GPSW06], we will consider an access-tree T to model
the policy on attributes in an unbounded universe U , but with only AND and OR gates instead
of more general threshold gates: an AND-gate being an n-out-of-n gate, whereas an OR-gate is a
1-out-of-n gate. This is also a particular case of the more general LSSS technique. Nevertheless,
such an access-tree with only AND and OR gates is as expressive as with any threshold gates or
LSSS. For any monotonic policy, we define our access-tree in the following way: T is a rooted
labeled tree from the root ρ, with internal nodes associated to AND and OR gates and leaves
associated to attributes. More precisely, for each leaf λ ∈ L, A(λ) ∈ U is an attribute, and any
internal node ν ∈ N is labeled with a gate G(ν) ∈ {AND,OR} as an AND or an OR gate to be
satisfied among the children in children(ν). We will implicitly consider that any access-tree T
is associated to the attribute-labeling A of the leaves and the gate-labeling G of the nodes. For
any leaf λ ∈ L of T or internal node ν ∈ N\{ρ}, the function parent links to the parent node:
ν ∈ children(parent(ν)) and λ ∈ children(parent(λ)).

On a given list Γ ⊆ U of attributes, each leaf λ ∈ L is either satisfied (considered or set to
True), if A(λ) ∈ Γ , or not (ignored or set to False) otherwise: we will denote LΓ the restriction
of L to the satisfied leaves in the tree T (corresponding to an attribute in Γ ). Then, for each
internal node ν, one checks whether all children (AND-gate) or at least one of the children (OR-
gate) are satisfied, from the attributes associated to the leaves, and then ν is itself satisfied or
not. By induction, if for each node ν we denote Tν the subtree rooted at the node ν, T = Tρ. A
leaf λ ∈ L is satisfied if λ ∈ LΓ then, recursively, Tν is satisfied if the AND/OR-gate associated to
ν via G(ν) is satisfied with respect to status of the children in children(ν): we denote Tν(Γ ) = 1
when the subtree is satisfied, and 0 otherwise:

Tλ(Γ ) = 1 iff λ ∈ LΓ for any leaf λ ∈ L
Tν(Γ ) = 1 iff ∀κ ∈ children(ν), Tκ(Γ ) = 1 when G(ν) = AND

Tν(Γ ) = 1 iff ∃κ ∈ children(ν), Tκ(Γ ) = 1 when G(ν) = OR
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Fig. 2: Example of an access-tree with two different evaluation pruned trees for the leaves colored
in green: {λ1, λ3, λ5, λ8} or {λ1, λ3, λ5, λ9, λ10}
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Fig. 3: Example of a 6-labeling in Z/7Z, with a non-satisfying set of (colored) attributes: leaves
λ8, λ9 and λ10 are not independent

Evaluation Pruned Trees. In the above definition, we considered an access-tree T on leaves
L and a set Γ of attributes, with the satisfiability T (Γ ) = 1 where the predicate defined by T is
true when all the leaves λ ∈ LΓ are set to True. A Γ -evaluation tree T ′ ⊂ T is a pruned version
of T , where one children only is kept to OR-gate nodes, down to the leaves, so that T ′(Γ ) = 1.
Basically, we keep a skeleton with only necessary True leaves to evaluate the internal nodes
up to the root. We will denote EPT(T , Γ ) the set of all the evaluation pruned trees of T with
respect to Γ . EPT(T , Γ ) is non-empty if and only if T (Γ ) = 1.

Figure 2 gives an illustration of such an access-tree for a policy: when the colored leaves
{λ1, λ3, λ5, λ8, λ9, λ10} are True, the tree is satisfied, and there are two possible evaluation
pruned trees: down to the leaves {λ1, λ3, λ5, λ8} or {λ1, λ3, λ5, λ9, λ10}.

Partial Order on Policies. Delegation will only be possible for a more restrictive access-tree,
or a less accessible tree T ′, than T with the following partial order: T ′ ≤ T , if and only if
for any subset Γ of attributes, T ′(Γ ) = 1 =⇒ T (Γ ) = 1. In our case of access-trees, a more
restrictive access-tree is, for each node ν: if G(ν) = AND, one or more children are added (i.e.,
more constraints); if G(ν) = OR, one or more children are removed (i.e., less flexibility); the
node ν is moved one level below as a child of an AND-gate at node ν ′, with additional sub-trees
as children to this AND-gate (i.e., more constraints).

3.2 Labeling of Access-Trees

Labeled Access-Trees. We will label such trees with integers so that some labels on the
leaves will be enough/necessary (according to the policy) to recover the labels above, up to the
root, as illustrated on Figure 3.

Definition 4 (Random y-Labeling). For an access-tree T and any y ∈ Zp, the probabilistic
algorithm Λy(T ) sets aρ ← y for the root, and then in a top-down manner, for each internal
node ν, starting from the root: if G(ν) = AND, with n children, a random n-out-of-n sharing
of aν is associated to each children; if G(ν) = OR, with n children, each children is associated
to the value aν .

Algorithm Λy(T ) outputs Λy = (aλ)λ∈L, for all the leaves λ ∈ L of the tree T . Because of the
linearity, from any y-labeling (aλ)λ of the tree T , and a random z-labeling (bλ)λ of T , the sum
(aλ + bλ)λ is a random (y+ z)-labeling of T . In particular, from any y-labeling (aλ)λ of T , and
a random zero-labeling (bλ)λ of T , the values cλ ← aλ + bλ provide a random y-labeling of T .
Labels on leaves are a secret sharing of the root that allows reconstruction of the secret if and
only if the policy is satisfied, as explained below:
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Properties of Labelings. For an acceptable set Γ for T and a labeling Λy of T for a random
y, given only (aλ)λ∈LΓ , one can reconstruct y = aρ. Indeed, as T (Γ ) = 1, we use an evaluation
pruned tree T ′ ∈ EPT(T , Γ ). Then, in a bottom-up way, starting from the leaves, one can
compute the labels of all the internal nodes, up to the root.

On the other hand, when T (Γ ) = 0, with a random labeling Λy of T for a random y, given
only (aλ)λ∈LΓ , y is unpredictable: for any y, y′ ∈ Zp, Dy and Dy′ are perfectly indistinguishable,

where Dy = {(aλ)λ∈LΓ , (aλ)λ
$← Λy(T )}. Intuitively, given (aλ)λ∈LΓ , as T (Γ ) = 0, one can

complete the labeling so that the label of the root is any y.
For our notion of Attribute-Indistinguishability, we need to identify a specific property called

independent leaves, which describes leaves for which the secret share leaks no information in
any of the other leaves in the access-tree.

Definition 5 (Independent Leaves). Given an access-tree T and a set Γ so that T (Γ ) =
0, we call independent leaves, in LΓ with respect to T , the leaves µ such that, given only
(aλ)λ∈LΓ \{µ}, aµ is unpredictable: for any y, the two distributions D$

y(Γ ) = {(aλ)λ∈LΓ } and

Dy(Γ, µ) = {(bµ) ∪ (aλ)λ∈LΓ \{µ}} are perfectly indistinguishable, where (aλ)λ
$← Λy(T ) and

bµ
$← Zp.

With the illustration on Figure 3, with non-satisfied tree, when only colored leaves are set to
True, leaves λ3 and λ5 are independent among the True leaves {λ3, λ5, λ8, λ9, λ10}. But leaves λ8,
λ9 and λ10 are not independent as aλ8 = aλ9 + aλ10 mod 7 for any random labeling. Intuitively,
given (aλ)λ∈LΓ \{µ} and any aµ, one can complete it into a valid labeling (with any random root
label y as T (Γ ) = 0), for µ ∈ {3, 5}, but not for µ ∈ {8, 9, 10}.

3.3 Switchable Leaves and Attributes

For a Key-Policy ABE with Switchable Attributes (SA-KP-ABE), leaves in the access-tree can
be made active or passive, and attributes in the ciphertext can be made valid or invalid. We
thus enhance the access-tree T into T̃ = (T ,La,Lp), where the implicit set of leaves L = La ·∪Lp
is now the explicit disjoint union of the active-leaf and passive-leaf sets. Similarly, a ciphertext
will be associated to the pair (Γv, Γi), also referred as a disjoint union Γ = Γv ·∪ Γi, of the
valid-attribute and invalid-attribute sets.

We note T̃ (Γv, Γi) = 1 if there is an evaluation pruned tree T ′ of T that is satisfied by
Γ = Γv ·∪Γi (i.e., T ′ ∈ EPT(T , Γ )), with the additional condition that all the active leaves in T ′
correspond only to valid attributes in Γv: ∃T ′ ∈ EPT(T , Γ ), ∀λ ∈ T ′ ∩ La, A(λ) ∈ Γv. In other
words, this means that an invalid attribute in the ciphertext should be considered as inexistent
for active leaves, but only for those leaves.

We also have to enhance the partial order on T to T̃ , so that we can deal with delegation:
T̃ ′ = (T ′,L′a,L′p) ≤ T̃ = (T ,La,Lp) if and only if T ′ ≤ T , L′a ∩Lp = L′p ∩La = ∅ and L′a ⊆ La.
More concretely, T ′ must be more restrictive, existing leaves cannot change their passive or
active status, and new leaves can only be passive.

3.4 Key-Policy Attribute-Based Encapsulation with Switchable Attributes

We can now define the algorithms of an SA-KP-ABE, with the usual description of Key Encap-
sulation Mechanism, that consists in generating an ephemeral key K and its encapsulation C.
The encryption of the actual message under the key K, using a symmetric encryption scheme is
then appended to C. We will however call C the ciphertext, and K the encapsulated key in C. In
our definitions, there are two secret keys: the master secret key MK for the generation of users’
keys, and the secret key SK for running the advanced encapsulation with invalid attributes:

Setup(1κ). From the security parameter κ, the algorithm defines all the global parameters PK,
the secret key SK and the master secret key MK;
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KeyGen(MK, T̃ ). The algorithm outputs a key dkT̃ which enables the user to decapsulate keys

generated under a set of attributes Γ = Γv ·∪ Γi if and only if T̃ (Γv, Γi) = 1;
Delegate(dkT̃ , T̃

′). Given a key dkT̃ , generated from either the KeyGen or the Delegate algo-

rithms, for a policy T̃ and a more restrictive policy T̃ ′ ≤ T̃ , the algorithm outputs a
decryption key dkT ′ ;

Encaps(PK, Γ ). For a set Γ of (valid only) attributes, the algorithm generates the ciphertext C
and an encapsulated key K;

Encaps∗(SK, Γv, Γi). For a pair (Γv, Γi) of disjoint sets of valid/invalid attributes, the algorithm
generates the ciphertext C and an encapsulated key K;

Decaps(dkT̃ , C). Given the key dkT̃ from either KeyGen or Delegate, and the ciphertext C, the
algorithm outputs the encapsulated key K.

We stress that fresh keys (from the KeyGen algorithm) and delegated keys (from the Delegate
algorithm) are of the same form, and can both be used for decryption and can both be delegated.
This allows multi-hop delegation.

On the other hand, one can note the difference between Encaps with PK and Encaps∗ with
SK, where the former runs the latter on the pair (Γ, ∅). And as Γi = ∅, the public key is enough.
This is thus still a public-key encryption scheme when only valid attributes are in the ciphertext,
but the invalidation of some attributes require the secret key SK. For the advanced reader, this
will lead to secret-key traceability, as only the owner of SK will be able to invalidate attributes
for the tracing procedure (as explained in Section 5). For correctness, the Decaps algorithm
should output the encapsulated key K if and only if C has been generated for a pair (Γv, Γi)
that satisfies the policy T̃ of the decryption key dkT̃ : T̃ (Γv, Γi) = 1. The following security
notion enforces this property. But some other indistinguishability notions need to be defined in
order to be able to exploit these switchable attributes in more complex protocols.

3.5 Security Notions

For the sake of simplicity, we focus on one-challenge definitions (one encapsulation with Real-or-
Random encapsulated key, one user key with Real-or-All-Passive leaves, and one encapsulation
with Real-or-All-Valid attributes), in the same vein as the Find-then-Guess security game. But
the adversary could generate additional values, as they can either be publicly generated or an
oracle is available. Then, the definitions can be turned into multi-challenge security games, with
an hybrid proof, as explained in [BDJR97].

Definition 6 (Delegation-Indistinguishability for SA-KP-ABE). Del-IND security for SA-
KP-ABE is defined by the following game:

Initialize: The challenger runs the Setup algorithm of SA-KP-ABE and gives the public pa-
rameters PK to the adversary;

Oracles: The following oracles can be called in any order and any number of times, except for
RoREncaps which can be called only once.
OKeyGen(T̃ ): this models a KeyGen-query for any access-tree T̃ = (T ,La,Lp). It generates

the decryption key but only outputs the index k of the key;
ODelegate(k, T̃ ′): this models a Delegate-query for any more restrictive access-tree T̃ ′ ≤ T̃ ,

for the k-indexed generated decryption key for T̃ . It generates the decryption key but
only outputs the index k′ of the new key;

OGetKey(k): the adversary gets back the k-indexed decryption key generated by OKeyGen
or ODelegate oracles;

OEncaps(Γv, Γi): The adversary may be allowed to issue Encaps∗-queries, with (K,C) ←
Encaps∗(SK, Γv, Γi), and C is returned;
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RoREncaps(Γv, Γi): The adversary submits a unique real-or-random encapsulation query
on a set of attributes Γ = Γv ·∪ Γi. The challenger asks for an encapsulation query on
(Γv, Γi) and receives (K0, C). It also generates a random key K1. It eventually flips a
random coin b, and outputs (Kb, C) to the adversary;

Finalize(b′): The adversary outputs a guess b′ for b. If for some access-tree T̃ ′ corresponding to

a key asked to the OGetKey-oracle, T̃ ′(Γv, Γi) = 1, on the challenge set (Γv, Γi), β
$← {0, 1},

otherwise one sets β = b′. One outputs β.

Advdel-ind(A) denotes the advantage of an adversary A in this game.

In the basic form of Del-IND-security, where Encaps∗ encapsulations are not available, the
RoREncaps-oracle only allows Γi = ∅, and no OEncaps-oracle is available. But as Encaps (with
Γi = ∅) is a public-key algorithm, the adversary can generate valid ciphertexts by himself. We
will call it “Del-IND-security for Encaps”. For the more advanced security level, RoREncaps-
query will be allowed on any pair (Γv, Γi), with the additional OEncaps-oracle. We will call it
“Del-IND-security for Encaps∗”.

With these disjoint unions of L = La ·∪ Lp and Γ = Γv ·∪ Γi, we will also consider some
indistinguishability notions on (La,Lp) and (Γv, Γi), about which leaves are active or passive in
L = La ·∪Lp for a given key, and which attributes are valid or invalid in Γ = Γv ·∪Γi for a given
ciphertext. The former will be the key-indistinguishability, whereas the latter will be attribute-
indistinguishability. Again, as Encaps is public-key, the adversary can generate valid encapsula-
tions by himself. However, we may provide access to an OEncaps-oracle to allow Encaps∗ queries,
but with constraints in the final step, to exclude trivial attacks against key-indistinguishability.
Similarly there will be constraints in the final step on the OKeyGen/ODelegate-queries for the
attribute-indistinguishability.

Definition 7 (Key-Indistinguishability). Key-IND security for SA-KP-ABE is defined by the
following game:

Initialize: The challenger runs the Setup algorithm of SA-KP-ABE and gives the public pa-
rameters PK to the adversary;

Oracles: OKeyGen(T̃ ), ODelegate(k, T̃ ′), OGetKey(k), OEncaps(Γv, Γi), and
RoAPKeyGen(T̃ ): The adversary submits one Real or All-Passive KeyGen-query for any

access structure T̃ of its choice, with a list L = La ·∪ Lp of active and passive leaves,
and gets dk0 = KeyGen(MK, (T ,La,Lp)) or dk1 = KeyGen(MK, (T , ∅,L)). It eventually
flips a random coin b, and outputs dkb to the adversary;

Finalize(b′): The adversary outputs a guess b′ for b. If for some (Γv, Γi) asked to the OEncaps-

oracle, T (Γv ·∪ Γi) = 1, for the challenge access-tree T where L = La ·∪ Lp, β $← {0, 1},
otherwise one sets β = b′. One outputs β.

Advkey-ind(A) denotes the advantage of an adversary A in this game.

In this first definition, the constraints in the finalize step require the adversary not to ask for
an encapsulation on attributes that would be accepted by the policy with all-passive attributes
in the leaves.

A second version deals with accepting policies: it allows encapsulations on attributes that
would be accepted by the policy with all-passive leaves in the challenge key, until attributes
associated to the active leaves in the challenge key and invalid attributes in the ciphertexts
are distinct. Hence, the Distinct Key-Indistinguishability (dKey-IND) where Finalize(b′)
reads: The adversary outputs a guess b′ for b. If some active leaf λ ∈ La from the challenge
key corresponds to some invalid attribute t ∈ Γi in an OEncaps-query, then set β

$← {0, 1},
otherwise set β = b′. One outputs β.

Definition 8 (Attribute-Indistinguishability). Att-IND security for SA-KP-ABE is defined
by the following game:
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Initialize: The challenger runs the Setup algorithm of SA-KP-ABE and gives the public pa-
rameters PK to the adversary;

Oracles: OKeyGen(T̃ ), ODelegate(k, T̃ ′), OGetKey(k), OEncaps(Γv, Γi), and
RoAVEncaps(Γv, Γi): The adversary submits one Real-or-All-Valid encapsulation query on

distinct sets of attributes (Γv, Γi). The challenger generates (K,C)← Encaps∗(SK, Γv, Γi)
as the real case, if b = 0, or (K,C)← Encaps(PK, Γv ·∪Γi) as the all-valid case, if b = 1,
and outputs C to the adversary;

Finalize(b′): The adversary outputs a guess b′ for b. If for some access-tree T̃ ′ corresponding
to a key asked to the OGetKey-oracle, T̃ ′(Γv ·∪ Γi, ∅) = 1, on the challenge set (Γv, Γi),

β
$← {0, 1}, else one sets β = b′. One outputs β.

Advatt-ind(A) denotes the advantage of an adversary A in this game.

This definition is a kind of attribute-hiding, where a user with keys for access-trees that are not
satisfied by Γ = Γv ·∪ Γi cannot distinguish valid from invalid attributes in the ciphertext.

As above on key-indistinguishability, this first definition excludes accepting policies on the
challenge ciphertext. However, for tracing, one also needs to deal with ciphertexts on accepting
policies. More precisely, we must allow keys and a challenge ciphertext that would be accepted
in the all-valid case, and still have indistinguishability, until attributes associated to the active
leaves in the keys and invalid attributes in the challenge ciphertext are distinct. Hence, the
Distinct Attribute-Indistinguishability (dAtt-IND) where Finalize(b′) reads: The adver-
sary outputs a guess b′ for b. If some attribute t ∈ Γi from the challenge query corresponds to
some active leaf λ ∈ L′a in a OGetKey-query, then set β

$← {0, 1}, otherwise set β = b′. One
outputs β.

4 Our SA-KP-ABE Scheme

4.1 Description of our KP-ABE with Switchable Attributes

We extend the basic KP-ABE scheme proven in the appendix D, with leaves that can be made
active or passive in a decryption key, and some attributes can be made valid or invalid in a cipher-
text, and prove that it still achieves the Del-IND-security. For our construction, we will use two
DPVS, of dimensions 3 and 9 respectively, in a pairing-friendly setting (G1,G2,Gt, e,G1, G2, q),
using the notations introduced in Section 2.1. Essentially, we introduce a 7-th component to
deal with switchable attributes. The two new basis-vectors d7 and d∗7 are in the secret key SK
and the master secret key MK respectively. The two additional 8-th and 9-th components are
to deal with the unbounded universe of attributes, to be able to use the adaptive Index-Ind
property (see Theorem 3), instead of the static one. These additional components are hidden,
and for the proof only:

Setup(1κ). The algorithm chooses two random dual orthogonal bases

B = (b1,b2,b3) B∗ = (b∗1,b
∗
2,b
∗
3) D = (d1, . . . ,d9) D∗ = (d∗1, . . . ,d

∗
9).

It sets the public parameters PK = {(b1,b3,b
∗
1), (d1,d2,d3,d

∗
1,d
∗
2,d
∗
3)}, whereas the mas-

ter secret key is MK = {b∗3,d∗7} and the secret key is SK = {d7}. Other basis vectors are
kept hidden.

KeyGen(MK, T̃ ). For an extended access-tree T̃ = (T ,La,Lp), the algorithm first chooses a

random a0
$← Zq, and a random a0-labeling (aλ)λ of the access-tree T , and builds the key:

k∗0 = (a0, 0, 1)B∗ k∗λ = (πλ(1, tλ), aλ, 0, 0, 0, rλ, 0, 0)D∗

for all the leaves λ, where tλ = A(λ), πλ
$← Zq, and rλ

$← Z∗q if λ is an active leaf in the
key (λ ∈ La) or else rλ = 0 for a passive leaf (λ ∈ Lp). The decryption key dkT̃ is then
(k∗0, (k

∗
λ)λ).
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Delegate(dkT̃ , T̃
′). Given a private key for a tree T̃ and a more restrictive subtree T̃ ′ ≤ T̃ ,

the algorithm creates a delegated key dkT̃ ′ . It chooses a random a′0
$← Zq and a ran-

dom a′0-labeling (a′λ)λ of T ′; Then, it updates k∗0 ← k∗0 + (a′0, 0, 0)B∗ ; It sets k∗λ ← (π′λ ·
(1, tλ), a′λ, 0, 0, 0, 0, 0, 0)B∗ for a new leaf, or updates k∗λ ← k∗λ+(π′λ·(1, tλ), a′λ, 0, 0, 0, 0, 0, 0)B∗

for an old leaf, with π′λ
$← Zq.

Encaps(PK, Γ ). For a set Γ of attributes, the algorithm first chooses random scalars ω, ξ
$← Zq.

It then sets K = gξt and generates the ciphertext C = (c0, (ct)t∈Γ ) where

c0 = (ω, 0, ξ)B ct = (σt(t,−1), ω, 0, 0, 0, 0, 0, 0)D

for all the attributes t ∈ Γ , with σt
$← Zq.

Encaps∗(SK, (Γv, Γi)). For a disjoint union Γ = Γv ·∪ Γi of sets of attributes (Γv is the set of
valid attributes and Γi is the set of invalid attributes), the algorithm first chooses random

scalars ω, ξ
$← Zq. It then sets K = gξt and generates the ciphertext C = (c0, (ct)t∈(Γv ·∪Γi))

where

c0 = (ω, 0, ξ)B ct = (σt(t,−1), ω, 0, 0, 0, ut, 0, 0)D

for all the attributes t ∈ Γv ·∪ Γi, σt $← Zq and ut
$← Z∗q if t ∈ Γi or ut = 0 if t ∈ Γv.

Decaps(dkT̃ , C). The algorithm first selects an evaluation pruned tree T ′ of T that is satisfied
by Γ = Γv ∪Γi, such that any leaf λ in T ′ is either passive in the key (λ ∈ Lp) or associated
to a valid attribute in the ciphertext (tλ ∈ Γv). This means that the labels aλ for all the
leaves λ in T ′ allow to reconstruct a0 by simple additions, where t = tλ:

ct × k∗λ = g
σt·πλ·〈(t,−1),(1,tλ)〉+ω·aλ+ut·rλ
t = gω·aλt ,

as ut = 0 or rλ = 0. Hence, the algorithm can derive gω·a0
t . From c0 and k∗0, it can also

compute c0 × k∗0 = gω·a0+ξ
t , which then easily leads to K = gξt .

First, note that the delegation works as b∗1, d∗1,d
∗
2,d
∗
3 are public. This allows to create a new

key for T̃ ′ ≤ T̃ . But as d∗7 is not known, any new leaf is necessarily passive, and an active
existing leaf in the original key cannot be converted to passive, and vice-versa. Indeed, all
the randomnesses are fresh, except for the last components rλ that remain unchanged: this is
perfectly consistent with the definition of T̃ ′ ≤ T̃ .

Second, in encapsulation, for invalidating a contribution ct in the ciphertext with a non-zero
ut, for t ∈ Γi, one needs to know d7, hence the Encaps∗ that requires SK, whereas Encaps with
Γi = ∅ just needs PK.

Eventually, we stress that in the above decryption, one can recover gω·a0
t if and only if

there is an evaluation pruned tree T ′ of T that is satisfied by Γ and the active leaves in T̃ ′
correspond to valid attributes in Γv (used during the encapsulation). And this holds if and only
if T̃ (Γv, Γi) = 1.

4.2 Del-IND-Security of our SA-KP-ABE for Encaps

For this security notion, we first consider only valid contributions in the challenge ciphertext,
with indistinguishability of the Encaps algorithm. Which means that Γi = ∅ in the challenge
pair. And the security result holds even if the vector d7 is made public:

Theorem 9. Our SA-KP-ABE scheme is Del-IND for Encaps (with only valid attributes in the
challenge ciphertext), even if d7 is public.

The proof essentially reduces to the IND-security result of the KP-ABE scheme, and is available
in the appendix E.1. We present an overview of the proof, as the structure of the first games
is common among most of our proofs. The global sequence of games is described on Figure 4,
where (c0, (ct)) is the challenge ciphertext for all the attributes t ∈ Γ , and (k∗`,0, (k

∗
`,λ)) are

the keys, for 1 ≤ ` ≤ K, and λ ∈ L` for each `-query, with active and passive leaves. In the
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G0 Real Del-IND-Security game
c0 = ( ω 0 ξ ) ct = ( σt(1, t) ω | 0 0 0 ut 0 0 )

k∗`,0 = ( a`,0 0 1 ) k∗`,λ = ( π`,λ(t`,λ,−1) a`,λ | 0 0 0 r`,λ 0 0 )

G1 SubSpace-Ind Property, on (B,B∗)1,2 and (D,D∗)3,4, between 0 and τ
$← Zq

c0 = ( ω τ ξ ) ct = ( σt(1, t) ω | τ 0 0 ut 0 0 )

k∗`,0 = ( a`,0 0 1 ) k∗`,λ = ( π`,λ(t`,λ,−1) a`,λ | 0 0 0 r`,λ 0 0 )

G2 SubSpace-Ind Property, on (D,D∗)1,2,6, between 0 and τzt

c0 = ( ω τ ξ ) ct = ( σt(1, t) ω | τ 0 τzt ut 0 0 )

k∗`,0 = ( a`,0 0 1 ) k∗`,λ = ( π`,λ(t`,λ,−1) a`,λ | 0 0 0 r`,λ 0 0 )

G3 Introduction of an additional random-labeling.
c0 = ( ω τ ξ ) ct = ( σt(1, t) ω | τ 0 τzt ut 0 0 )

k∗`,0 = ( a`,0 r`,0 1 ) k∗`,λ = ( π`,λ(t`,λ,−1) a`,λ | 0 0
s`,λ
zt`,λ

r`,λ 0 0 )

G4 Formal basis change, on (B,B∗)2,3, to randomize ξ

c0 = ( ω τ ξ′′ ) ct = ( σt(1, t) ω | τ 0 τzt ut 0 0 )

k∗`,0 = ( a`,0 r`,0 1 ) k∗`,λ = ( π`,λ(t`,λ,−1) a`,λ | 0 0
s`,λ
zt`,λ

r`,λ 0 0 )

Gray cells x mean they have been changed in this game.

Fig. 4: Global sequence for the Del-IND-security proof of our SA-KP-ABE

two first games G1 and G2, one is preparing the floor with a random τ and random masks zt
in the ciphertexts ct (actually, the challenge ciphertext corresponding to the attribute t). Note
that until the actual challenge query is asked, one does not exactly know the attributes in Γ
(as we are in the adaptive-set setting), thus we will decide on the random mask zt, where t is
virtually associated to the number of the attribute in their order of apparition in the security
game. The main step is to get to Game G3, starting with an additional labeling (s`,0, (s`,λ)λ),
using hybrid games that begins from Game G2. To do this, the new labelling is added in each
`-th key, then each label is masked by the random zt for each attribute t. One then exploits the
limitations expected from the adversary in the security game: the adversary cannot ask keys on
access-trees T such that T (Γ ) = 1, for the challenge set Γ . This limitation translates into the
value s`,0 being unpredictable for the adversary with regards to (s`,λ)λ, as for each key requested
by the adversary, there is at least one s`,λ by lack of a corresponding ciphertext. Thus, we can
replace s`,0 by a random independent r`,0 without giving any advantage to the adversary. To
formally mask the shares s`,λ, we need another level of hybrid games: we will change all the
keys associated with a specific attribute λ at the same time, by using the Adaptive Index-Ind
technique. This allows us to mask the s`,λ share in each key with zt, one λ at a time inside the
`-th key.

Simulation of delegation can just be done by using the key generation algorithm, making
sure we use the same randomness for all the keys delegated from the same one. As the vector
d∗7 is known to the simulator, this is easy. As d7 is public, the adversary can run by himself
both Encaps and Encaps∗.

We stress that our construction makes more basis vectors public, than in the schemes
from [OT12b], as only b∗3 is for the key issuer. This makes the proof more tricky, but this
is the reason why we can deal with delegation for any user.

4.3 Del-IND-Security of our SA-KP-ABE for Encaps∗

We now study the full indistinguishability of the ciphertext generated by an Encaps∗ challenge,
with delegated keys. The intuition is that when ut · r`,λ 6= 0, the share a`,λ in g

ω·a`,λ+ut·r`,λ
t is

hidden, but we have to formally prove it.
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The main issue in this proof is the need to anticipate whether ut · r`,λ = 0 or not when
simulating the keys, and the challenge ciphertext as well (even before knowing the exact query
(Γv, Γi)). Without being in the selective-set setting where both Γv and Γi would have to be spec-
ified before generating the public parameters PK, we ask to know disjoint super-sets Av, Ai ⊆ U
of attributes. Then, in the challenge ciphertext query, we will ask that Γv ⊆ Av and Γi ⊆ Ai. We
will call this setting the semi-adaptive super-set setting, where the super-sets have to be speci-
fied before the first decryption keys are issued. Furthermore, the set of attributes Γ = Γv ·∪ Γi
used in the real challenge query is only specified at the moment of the challenge, as in the
adaptive setting.

For this proof, d7 must be kept secret (cannot be provided to the adversary). We will thus
give access to an Encaps∗ oracle. We then need to simulate it.

Theorem 10. Our SA-KP-ABE scheme is Del-IND for Encaps∗, in the semi-adaptive super-set
setting (where Av, Ai ⊆ U so that Γv ⊆ Av and Γi ⊆ Ai are specified before asking for keys).

We stress that the semi-adaptive super-set setting is much stronger than the selective-set setting
where the adversary would have to specify both Γv and Γi before the setup. Here, only super-
sets have to be specified, and just before the first key-query. The adversary is thus given much
more power.

The full proof can be found in the appendix E.2, we provide some hints, that extend the
above sketch: we only consider keys that are really provided to the adversary, and thus delegated
keys. They can be generated as fresh keys except for the rλ’s that have to be the same for leaves
in keys delegated from the same initial key. However, in order to randomize s`,0 once all of the
shares have been masked, one cannot directly conclude that s`,0 is independent from the view
of the adversary: we only know T̃`(Γv, Γi) = 0, but not necessarily T`(Γv ·∪ Γi) = 0, as in the
previous proof.

To this aim, we revisit this gap with an additional sequence where we focus on the k-th key
and the challenge ciphertext. In that sequence, we first prepare with additional random values
y`,λ in all the keys, with the same repetition properties as the r`,λ. Thereafter, in another sub-
sequence of games on the attributes, we can use the Swap-Ind property to completely randomize
sk,λ when utk,λ · rk,λ 6= 0. Hence, the sk,λ are unknown either when ztk,λ is not known (the
corresponding element is not provided in the challenge ciphertext) or this is a random s′k,λ
when utk,λ · rk,λ 6= 0. The property of the access-tree then makes sk,0 perfectly unpredictable,
which can be replaced by a random independent rk,0.

4.4 Distinct Indistinguishability Properties

We first claim easy results, for which the proofs are symmetrical:

Theorem 11. Our SA-KP-ABE scheme is dKey-IND, even if d∗7 is public.

Theorem 12. Our SA-KP-ABE scheme is dAtt-IND, even if d7 is public.

Both proofs can be found in the appendix E.3. In these alternative variants, all the invalid
attributes in all the queried ciphertexts do not correspond to any active leaf in the challenge
keys (for dKey-IND) or all active leaves in all the queried keys do not correspond to any invalid
attribute in the challenge ciphertext (for dAtt-IND). Then, we can gradually replace all the real
keys by all-passive in the former proof or all the real ciphertexts by all-valid in the latter proof.

4.5 Attribute-Indistinguishability

Theorem 13. Our SA-KP-ABE scheme is Att-IND, even if d7 is public, if all the active keys
correspond to independent leaves with respect to the set of attributes Γ = Γv ·∪Γi in the challenge
ciphertext.
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AND

AND

A1,1 A2,0 A3,1

T
Leaf Gate

Fig. 5: Tracing sub-tree for the codeword w = (1, 0, 1)

The proof can be found in the appendix E.5. This is an important result with respect to our
target application of tracing, combined with possible revocation. Indeed, with such a result, if
a user is excluded independently of the tracing procedure (the policy would reject him even
if all his passive leaves match valid attributes in the ciphertext), he will not be able to detect
whether there are invalid attributes in the ciphertext and thus that the ciphertext is from a
tracing procedure. This gives us a strong resistance to collusion.

5 Application to Tracing

In our Traitor-Tracing approach, any user would be given a key associated to a word in a
traceable code at key generation time. To embed a word inside a key, the key generation au-
thority only needs to create a new policy for a user with policy T : the new policy will be a root
AND gate, that connects the original access-tree T as one child, and a word-based access-tree
composed of active leaves as another child, as illustrated on Figure 5.

From there, the tracing authority, using the secret key SK, could trace any Pirate Decoder
by invalidating attributes associated to the positions in words, one position at a time. Since an
adversary cannot know whether attributes are valid or invalid, until it is not impacted by the
invalid attributes (thanks to the Distinct Attribute-Indistinguishability), he will answer each
queries of the tracer, when it is able to do it, effectively revealing the bits of his word on each
position, until the tracer finds his complete word, to eventually trace back the traitors, from
the traceable-code properties. Furthermore, thanks to the Attribute-Indistinguishability (not
Distinct), a traitor that has been identified by the tracing authority can be removed from the
target set at tracing time, and can thus no longer participate in the coalition, as it will be
excluded from the policy, whatever the valid/invalid attributes. We stress that the secret key
SK is required for invalidating some attributes, and so for the tracing. We thus have secret-key
black-box traceability. More details are given in the appendix B.

6 Conclusion

We have designed a KP-ABE scheme that allows an authority to generate keys with spe-
cific policies for each user, so that these users can thereafter delegate their keys for any
more restrictive rights. Thanks to the (Distinct) Attribute-Indistinguishability and Attribute-
Indistinguishability, it can also include key material for tracing a compromised key involved in
a pirate device while limiting the size of collusions. In addition, with Key-Indistinguishability
on active leaves and perfect randomization on passive leaves, one achieves a strong level of
anonymity: one cannot detect whether two keys have been delegated by the same original key.
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A More Definitions

A.1 Computational Assumptions

First, we recall the assumptions used in some related work:

Definition 14 (Decisional Linear Assumption (DLIN)). The DLIN assumption in G, of
prime order q with generator G, states that no algorithm can efficiently distinguish the two
distributions, where a, b, c, x, y, z

$← Zq,

D0 = {(a ·G, b ·G, c ·G, ax ·G, by ·G, c(x+ y) ·G)}
D1 = {(a ·G, b ·G, c ·G, ax ·G, by ·G, z ·G)}

Definition 15 (External Decisional Linear Assumption (XDLIN)). The XDLIN assump-
tion in G1,G2, of prime order q with generators G1, G2 respectively, states that no algorithm
can efficiently distinguish the two distributions, where a, b, c, x, y, z

$← Zq,

D0 = {(a ·G1, b ·G1, c ·G1, ax ·G1, by ·G1, a ·G2, b ·G2, c ·G2, ax ·G2, by ·G2,

c(x+ y) ·G2)}
D1 = {(a ·G1, b ·G1, c ·G1, ax ·G1, by ·G1, a ·G2, b ·G2, c ·G2, ax ·G2, by ·G2,

z ·G2)}

However, for our proofs, in the sequence of games, we will sometimes use the following DSDH
assumption, that is equivalent to the DDH assumption:

Definition 16 (Decisional Separation Diffie-Hellman Assumption). The DSDH assump-
tion in G, of prime order q with generator G, between two constant values x, y, states that no
algorithm can efficiently distinguish the two distributions, where a, b

$← Zq,

Dx = {(a ·G, b ·G, (ab+ x) ·G)} Dy = {(a ·G, b ·G, (ab+ y) ·G)}

As c + x and c + y are perfectly indistinguishable for a random c, then the best advantage an
algorithm can get in distinguishing the two distributions within time T is upper-bounded by
2 · AdvddhG (T ).

A.2 Definitions for KP-ABE

We now recall the definition of KP-ABE from [GPSW06], with access-trees to define policies in
the keys:

Setup(1κ). From the security parameter κ, the algorithm defines all the global parameters PK
and the master secret key MK;

KeyGen(MK, T ). For a master secret key MK and an access-tree T , the algorithm outputs a
private key dkT ;

Encaps(PK, Γ ). For a list Γ of attributes and global parameters PK, the algorithm generates
the ciphertext C and an encapsulated key K;

Decaps(dkT , C). Given the private key dkT and the ciphertext C, the algorithm outputs the
encapsulated key K.

For correctness, the Decaps algorithm should output the encapsulated key K if and only if C
has been generated for a set Γ that satisfies the policy T of the decryption key dkT : T (Γ ) = 1.
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Delegation. A major feature in [GPSW06] is delegation of decryption keys: a user with a
decryption key dk corresponding to an access-tree T can compute a new decryption key corre-
sponding to any more restrictive access-tree, or a less accessible tree T ′, than T with the follow-
ing partial order: T ′ ≤ T , if and only if for any subset Γ of attributes, T ′(Γ ) = 1 =⇒ T (Γ ) = 1.
More concretely, in our case of access-trees, a more restrictive access-tree is, for each node ν,

1. if G(ν) = AND, one or more children are added (i.e., more constraints);
2. if G(ν) = OR, one or more children are removed (i.e., less flexibility);
3. the node ν is moved one level below as a child of an AND-gate at node ν ′, with additional

sub-trees as children to this AND-gate (i.e., more constraints).

We illustrate the last rule, with a simple example in Figure 6. There is thus the additional
algorithm:

Delegate(dkT , T ′). Given a key dkT , generated from either the KeyGen or the Delegate algo-
rithms, for a policy T and a more restrictive policy T ′ ≤ T , the algorithm outputs a
decryption key dkT ′ .

Security Notions. Whereas we could recall the classical indistinguishability, with only KeyGen-
queries, we extend it to handle delegation queries: if one can ask several more restrictive dele-
gations from an access-tree T , one should not be able to distinguish an encapsulated key in a
ciphertext under a non-trivial list of attributes, according to the obtained delegated keys only.
Note that this definition allows for an adversary to make delegation requests on keys that are
delegated keys themselves, without limit.

Definition 17 (Delegation-Indistinguishability). Del-IND security for KP-ABE is defined
by the following game between the adversary and a challenger:

Initialize: The challenger runs the Setup algorithm of KP-ABE and gives the public parameters
PK to the adversary;

Oracles: The following oracles can be called in any order and any number of times, except for
RoREncaps which can be called only once.
OKeyGen(T ): to model KeyGen-queries for any access-tree T . It generates the decryption

key but only outputs the index k of the key;
ODelegate(k, T ′): to model Delegate-queries for any more restrictive access-tree T ′ ≤ T ,

for the k-th generated decryption key for T . It generates the decryption key but only
outputs the index k′ of the new key;

OGetKey(k): the adversary gets back the k-th decryption key generated by OKeyGen or
ODelegate oracles;

RoREncaps(Γ ): the challenge real-or-random encapsulation query on a set of attributes Γ
is asked once only. The challenger asks for an encapsulation query on Γ and receives
(K0, C). It also generates a random key K1. It eventually flips a random coin b, and
outputs (Kb, C) to the adversary;

Finalize(b′): The adversary outputs a guess b′ for b. If for some access-tree T corresponding to

a key asked to the OGetKey-oracle, T (Γ ) = 1, on the challenge set Γ , β
$← {0, 1}, otherwise

one sets β = b′. One outputs β.

OR

A B C

Leaf Gate Added AND-leaf

OR

AND

A′ A

B C

Fig. 6: Access-tree (left-side) and delegated-tree (right-side) where the leaf associated with at-
tribute A is changed into an AND-gate with a new child leaf associated with attribute A′
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The advantage of an adversary A in this game is defined as

Advdel-ind(A) = Pr[β = 1|b = 1]− Pr[β = 1|b = 0].

One could of course consider Chosen-Ciphertext security, where the adversary could have
access to some decryption oracles, without the decryption key itself. On the more limited side,
one can consider Selective-Set security, where the adversary declares Γ at the initialization
step, as in [GPSW06]. This Delegation-Indistinguishability is definitely stronger than basic In-
distinguishability as the adversary can ask for an OGetKey(k)-query right after the OKeyGen(T )-
query that provides index k to get the decryption key for T .

B Application to Traitor-Tracing

Black-Box Traitor-Tracing. In a black-box traitor-tracing system, a tracing authority can
interact with a Pirate Decoder (PD) that non-legitimately decrypts ciphertexts, using one or
more decryption keys of legitimate users (the traitors). The keys used by the PD, or the aggre-
gated key, are unknown to the tracing authority when we are dealing with black-box tracing,
the most reasonable scenario. The goal of traitor-tracing is to determine which user’s private
keys are used by the PD, only interacting with the PD in a black-box way, in turn allowing
to identify the traitors or the compromised devices. An approach is to embed codewords (also
called ”fingerprints”) with specific properties in the decryption keys. These codewords can then
be recovered, under some marking assumptions that address collusion of traitors, after only a
few interactions with the PD. Boneh and Shaw [BS95] proposed a tracing technique by em-
bedding codewords in each ciphertext. With this approach, the ciphertext size has to be linear
in the length of the codeword, and this length quickly increases with the size of the possible
collusion. Boneh and Naor [BN08] improved this approach with a shorter ciphertext: only some
bits of the codeword are involved in each ciphertext, but in this case tracing requires additional
assumptions on the decryption capabilities of the PD.

Boneh et al. [BSW06], followed by [BW06], proposed traceability (and revocation) whatever
the size of the collusion, but with ciphertexts of size

√
N , where N is the maximal number of

users. Wong et al. [LW15,LLLW17] combined this technique into a CP-ABE, with policy encoded
in a Linear Secret Sharing Scheme (LSSS). Those techniques nevertheless seem incompatible
with delegation properties. Intuitively, their approach assigns each single user to a different cell
in a table, and then methodically tests each cell of the table for a traitor, with linear tracing.
This is quite exclusive with delegation for the users, as one cannot add more cells in the table.

Lai and Tang [LT18] proposed a framework for traitor-tracing in ABE. Their technique
is a generic transformation to make any ABE into a traceable ABE, following above Boneh
and Shaw [BS95] methodology. By representing bits in fingerprinting codewords as attributes,
they successfully embed the words into any ABE key. However, their construction is a generic
one, and the additional layer excludes delegation for the usual ABE scheme. Nevertheless, our
approach will be in this vein, but for a very specific construction.

B.1 Delegatable and Traceable KP-ABE

Our initial motivation was to adapt KP-ABE with delegation to support tracing, which should
not be detectable by the pirate decoder. We now explain how our SA-KP-ABE primitive allows
that. We recall the definitions of tracing, and then we illustrate with a possible family of policies
with switchable leaves and attributes. We first add a Tracing algorithm to initial definition of
delegatable KP-ABE from the appendix A.2:

Setup(1κ, n, t). From the security parameter κ, the total number n of users in the system, and
the maximal size t on the collusion, the algorithm defines all the global parameters PK, the
master secret key MK, and the tracing key TK;
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KeyGen(MK, T , id). From a master key MK and an access tree T , the algorithm outputs a key
dkid,T , specific to the user id;

Delegate(dkid,T , T ′, id′). Given a key dkid,T and a more restrictive access-tree T ′ ≤ T , the algo-
rithm outputs a decryption key dkid′,T ′ ;

Encaps(PK, Γ ). For a set Γ of attributes, the algorithm generates the ciphertext C and an
encapsulated key K;

Decaps(dkid,T , C). Given the key dkid,T and the ciphertext C, the algorithm outputs the encap-
sulated key K;

TraceD(SK, Γ ). Given the secret key SK, and a black-box access to a Pirate Decoder D, the
tracing algorithm outputs an index set I which identifies a set of malicious users, among
the users id and id′ compatible with Γ .

In the above definition, id′ might be for a specific device of user id. Then the authority generates
keys for users, and users delegate for devices, with any more restrictive policy T ′ ≤ T : one can
consider that id′ = id‖d, for device d. One can then trace users and devices.

We expect two properties from the Trace algorithm on a perfect Pirate Decoder for a set
Γ (that always decrypts the encapsulated key), when the number of traitors compatible with
Γ is at most t: it always outputs a non-empty set of traitors, but does never wrongly accuse
anybody.

Definition 18 (Traceability).

Initialize: The challenger runs the Setup algorithm and gives the public parameters PK to the
adversary;
OKeyGen(id, T ): The adversary is allowed to issue KeyGen-queries for any access-tree T of

its choice, the corresponding secret key dkid,T is generated;
ODelegate(id, T , id′, T ′): The adversary is allowed to issue several Delegate-queries for any

more restrictive access-tree T ′ ≤ T of its choice, for an already generated decryption
key for T , and the corresponding secret key dkid′,T ′ is generated;

OGetKey(id, T ): The adversary can then ask and see the secret key dkid,T , if it has been
generated, else it gets ⊥;

Finalize: The adversary generates a set of attributes Γ and a perfect Decoder D on Γ , the
challenger runs TraceD(SK, Γ ) to get back I. Let us denote Uc (corrupted users) the set of
id′ for which T ′ has been asked such that T ′(Γ ) = 1. If the size of Uc is at most t, but
I 6⊂ Uc or I is empty, one outputs 1, otherwise one outputs 0.

The success Advtrace(A) of an adversary A in this game is the probability to have 1 as output.

We stress that the above definition requires a perfect Pirate Decoder. This could be relaxed,
but this is enough for our illustration.

B.2 Fingerprinting Code

Our technique will exploit traceable codes as in [CFN94] that allow to trace back codewords
from words that have been derived from legitimate codewords. It uses the definition of feasible
set, the list the words that can be derived from a set of words:

Definition 19 (Feasible Set). Let W = {w(1), . . . , w(t)} be a set of t words in {0, 1}`. We say
a word w ∈ {0, 1}` is feasible for W if for all i = 1, . . . , `, there is a j ∈ {1, . . . , t} such that

wi = w
(j)
i . The set of words feasible for W is the feasible set of W , denoted F (W ) = {w ∈

{0, 1}`,∀i,∃w′ ∈W,wi = w′i}.

A fingerprinting code is a particular traceable code. It defines a set of codewords that allows
correct and efficient tracing to recover the traitor codewords from a word derived from them
(in the feasible set). For the sake of clarity, we focus on binary codes:
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Definition 20 (Fingerprinting Code). A fingerprinting code is a pair of algorithms
(G,T ) defined as follows:

Code generator G is a probabilistic algorithm that takes a tuple (n, t) as input, where n is
the number of codewords to output, and t is the maximal collusion size. The algorithm
outputs a code Π of n codewords of bit-length `.

Tracing algorithm T is a deterministic algorithm that takes as input a word w∗ ∈ {0, 1}` to
trace. The algorithm T outputs a subset S ⊆ Π of possible traitors.

Such a fingerprinting code is said t-secure if for all n > t and all subsets C ⊆ {1, . . . , n} of
size at most t, when we set Π = {w(1), . . . , w(n)} ← G(n, t) and WC = {w(i)}i∈C , for any word
w∗ ∈ F (WC), then ∅ 6= T (w∗) ⊆ C.

Again, we could relax the definition with error probabilities in identifying a traitor and in
framing an honest user. Tardos codes [Tar03] are examples of short codes with probabilistic
tracing capabilities and low error rates.

B.3 Traceable and Delegatable KP-ABE from SA-KP-ABE

We now explain how our SA-KP-ABE primitive is enough for tracing. For the sake of simplicity,
in the following, we will keep id′ = id, without specifying the device, still with any T ′ ≤ T , but
then devices of the same user cannot be traced. Only users can be traced, but various devices
might have different policies:

SetupTr(1κ, n, t). The algorithm calls Setup(1κ) and gets back PK,MK, SK. It also calls code
generator algorithm G(n, t) to get the code Π. It sets the parameters as PKTr = PK,
MKTr = (MK, Π) and TKTr = (SK, T ).

KeyGenTr(MKTr, id, T ). For an access-tree T , the algorithm defines T Tr, where T Tr = T ∧ TTr
are linked by an AND-gate at their root. The access-tree TTr is constructed as follows (see
Figure 5) :

– Choose a word wid = wid,1 . . . wid,` from Π, for any new id;
– Set TTr as the AND of active leaves λi associated to the attributes Ai,wid,i

, for i = 1, . . . , `.

The algorithm then calls KeyGen(MK, T̃ Tr), where all leaves are passive in T and all leaves
are active in TTr, and gets back dkT̃ Tr , and finally sets dkTrid,T ← dkT̃ Tr .

DelegateTr(dkTrid,T , T ′). Given a private key for an access-tree T and a more restrictive sub-
tree T ′ ≤ T , but for the same identity (as we focus on id′ = id), the algorithm calls
Delegate(dkT̃ , T̃

′), where T̃ and T̃ ′ are T and T ′ combined with TTr as above, to get a new

delegated key dkT̃ ′ , and sets dkTrid,T ′ = dkT̃ ′ .

EncapsTr(PKTr, Γ ). For a set Γ of attributes, the algorithm defines ΓTr = {A1,0, A1,1, . . . , A`,0, A`,1}.
It then calls Encaps(PK, Γ ∪ ΓTr) and gets the output K and C. It then sets KTr = K and
CTr = C.

DecapsTr(dkTrid,T , C). The algorithm calls DecapsTr(dkT̃ , C), for dkT̃ = dkTrid,T , to get K, and

outputs KTr = K.
TraceTr(TKTr, Γ ). On input the tracing key TKTr = (SK, T ), and access to a perfect Pirate

Decoder D, the algorithm repeats the following experiment, for j = 1, . . . , `, to build the
word w∗:
1. Set Γ

(0)
v = Γ ∪ {Ak,`, k 6= j, ` ∈ {0, 1}} ∪ {Aj,0} and Γ

(0)
i = {Aj,1};

2. Set Γ
(1)
v = Γ ∪ {Ak,`, k 6= j, ` ∈ {0, 1}} ∪ {Aj,1} and Γ

(1)
i = {Aj,0};

3. Compute the two challenges (K0, C0) ← Encaps∗(SK, (Γ
(0)
v , Γ

(0)
i )) and (K1, C1) ←

Encaps∗(SK, (Γ
(1)
v , Γ

(1)
i ));

4. Flip a random coin b
$← {0, 1}, and ask for the decryption K ′ of Cb to D;

5. If K ′ = Kb then set w∗j ← b, else set w∗j ← 1− b.
Eventually, the algorithm runs the tracing algorithm T (w∗) to get S, the set of traitors,
that it outputs.
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Fig. 7: Tracing sub-tree for the codeword w = (1, 0, 1)

Security Analysis. Again, we stress that we assume perfect Pirate Decoder D, but relaxed
version would be possible. Hence, here, we know that D will successfully decrypt any normal
ciphertext when Γ is acceptable for all the traitors. Then, during the tracing procedure, for any
index j, there are three possibilities:

– If wj = b for all keys in Uc, then the ciphertext Cb is indistinguishable from the one where
Aj,1−b is in Γv because of the Distinct Attribute-Indistinguishability (Att-IND) property of
the scheme, hence D will always output Kb. We correctly set w∗j = b.

– If wj = 1 − b for all keys in Uc, Kb will be unpredictable because of the Delegation-
Indistinguishability for Encaps∗, we correctly set w∗j = 1− b.

– If wj has mixed values in 0 and 1 among users in Uc, D can detect that Cb involves active
keys. But we could anyway set w∗j ← 0 or w∗j ← 1.

This way, the built word w∗ satisfies that, for each position j, w∗j = wj , for some w in Uc:
w∗ ∈ F (Uc). If the fingerprinting code is t-secure, since the size of Uc is at most t, ∅ 6= T (w∗) ⊆
Uc. As a consequence, under the Distinct Attribute-Indistinguishability and the Delegation-
Indistinguishability for Encaps∗, the delegatable KP-ABE is traceable.

Discussions. Our tracing system is presented with basic fingerprinting notions, for the sake
of clarity, but more advanced features are possible. In particular, our tracing algorithm works
as well with non-perfect Pirate Decoder, at the cost of more calls to D to increase the quality
of the estimation. It is also compatible with [BN08], to drastically reduce the ciphertext size.
Eventually, one could also let the user to delegate traceable keys to each devices. However, as
we do not allow public traceability, only the tracing authority can run the tracing procedure,
to trace users or devices.

C Dual Pairing Vector Spaces

In this section, we provide a brief review of the Dual Pairing Vector Spaces (DPVS), that have
been proposed for efficient constructions with adaptive security [OT08,LOS+10,OT10,OT12b],
as Dual Systems [Wat09], in prime-order groups under the DLIN assumption. In [LW10], Dual
Systems were using pairing on composite order elliptic curves. Then, prime-order groups have
been used with the SXDH assumption, in a pairing-friendly setting of primer order, which
means that the DDH assumptions hold in both G1 and G2 [CLL+13]. In all theses situations,
one exploited indistinguishability of sub-groups or sub-spaces. In this section, for the sake of
efficiency, we use the SXDH assumption in a pairing-friendly setting (G1,G2,Gt, e,G1, G2, q) of
primer order q.

C.1 Pairing Vector Spaces

Let us be given any cyclic group (G = 〈G〉,+) of prime order q, denoted additively. We can
define the Zq vector space of dimension n,

Gn = {X = ~x ·G def
= (X1 = x1 ·G, . . . ,Xn = xn ·G) | ~x ∈ Znq },
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with the following laws:

(X1, . . . , Xn) + (Y1, . . . , Yn)
def
= (X1 + Y1, . . . , Xn + Yn)

a · (X1, . . . , Xn)
def
= (a ·X1, . . . , a ·Xn)

Essentially, all the operations between the vectors in Gn are applied on the vectors in Znq :

~x ·G+ ~y ·G def
= (~x+ ~y) ·G a · (~x ·G)

def
= (a · ~x) ·G

where ~x + ~y and a · ~x are the usual internal and external laws of the vector space Znq . For the
sake of clarity, vectors will be row-vectors.

If we are using a pairing-friendly setting (G1,G2,Gt, e,G1, G2, q), with a bilinear map e
from G1×G2 into Gt, we can have an additional law between an element X ∈ Gn

1 and Y ∈ Gn
2 :

X × Y def
=
∏
i e(Xi, Yi), where Gt is usually denoted multiplicatively.

Note that if X = (X1, . . . , Xn) = ~x ·G1 ∈ Gn
1 and Y = (Y1, . . . , Yn) = ~y ·G2 ∈ Gn

2 :

(~x ·G1)× (~y ·G2) = X×Y =
∏
i

e(Xi, Yi) =
∏
i

e(xi ·G1, yi ·G2)

=
∏
i

gxi·yit = g~x·~y
>

t = g
〈~x,~y〉
t

where gt = e(G1, G2) and 〈~x, ~y〉 is the inner product between vectors ~x and ~y.

C.2 Dual Pairing Vector Spaces

We define E = (~ei)i the canonical basis of Znq , where ~ei = (δi,1, . . . , δi,n), with the classical
δi,j = 1 if i = j and δi,j = 0 otherwise, for i, j ∈ {1, . . . , n}. We can also define E = (ei)i the

canonical basis of Gn, where ei = ~ei ·G = (δi,j ·G)j . More generally, given any basis B = (~bi)i
of Znq , we can define the basis B = (bi)i of Gn, where bi = ~bi ·G.

Choosing a random basis B of Gn is equivalent to a random choice of an invertible matrix
B

$← GLn(Zq), the definition B ← B × E , where B = (~bi)i is a basis of Znq (B is essentially the

matrix with ~bi as its i-th row, as ~bi =
∑

j Bi,j · ~ej), and then B← (bi)i where bi = ~bi ·G: B is
the basis of Gn associated to the matrix B as

bi = ~bi ·G =
∑
j

Bi,j · ~ej ·G =
∑
j

Bi,j · ej : B = B · E.

In case of pairing-friendly setting, for a dimension n, we will denote E = (ei)i and E∗ = (e∗i )i
the canonical bases of Gn

1 and Gn
2 , respectively:

ei × e∗j = (~ei ·G1)× (~ej ·G2) = g
〈~ei,~ej〉
T = g

δi,j
T .

The same way, if we denote B = (bi)i = B · E the basis of Gn
1 associated to a matrix B, and

B∗ = (b∗i )i = B′ · E∗ the basis of Gn
2 associated to the matrix B′ = (B−1)>, as B ·B′> = In,

bi × b∗j = (~bi ·G1)× (~b′j ·G2) = g
〈~bi,~b′j〉
t = g

δi,j
t .

B and B∗ are called Dual Orthogonal Bases.
We have seen above the canonical bases E and E∗ are dual orthogonal bases, but for any

random invertible matrix U
$← GLn(Zq), the bases U of Gn

1 associated to the matrix U and U∗
of Gn

2 associated to the matrix (U−1)> are Random Dual Orthogonal Bases.
A pairing-friendly setting (G1,G2,Gt, e,G1, G2, q), with such dual orthogonal bases U and

U∗ of size n, is called a Dual Pairing Vector Space (DPVS).
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C.3 Change of Basis

Let us consider the basis U = (ui)i of Gn associated to a matrix U ∈ GLn(Zq), and the basis
B = (bi)i of Gn associated to the product matrix BU , for any B ∈ GLn(Zq). For a vector
~x ∈ Zq, we can define

(~x)B =
∑
i

xi · bi =
∑
i

xi ·~bi ·G = ~x ·BU ·G = (~x ·B) · U ·G = ~y · U ·G

=
∑
i

yi · ~ui ·G =
∑
i

yi · ui = (~y)U where ~y = ~x ·B.

Hence, (~x)B = (~x·B)U and (~x·B−1)B = (~x)U where we denote B def
= B·U. For any invertible matrix

B, if U is a random basis, then B = B ·U is also a random basis. Then, with B−1 = (~b′
>
1 , . . . ,

~b′
>
n ),

~x = ~y · (~b′
>
1 , . . . ,

~b′
>
n ):

B = B · U, B′ =

 ~b′1
...
~b′n

 , and (~x)B = (~y)U =⇒ ~x = (〈~y, ~b′1〉, . . . , 〈~y, ~b′n〉).

Let us consider the random dual orthogonal bases U = (ui)i and U∗ = (u∗i )i of Gn
1 and Gn

2

respectively associated to a matrix U (which means that U is associated to the matrix U and
U∗ is associated to the matrix (U−1)>): the bases B = B ·U and B′ = (B−1)> ·U∗ are also dual
orthogonal bases:

bi × b∗j = g
~bi·~b′

>
j

t = g
~ui·B·(B−1)>·~u∗>j
t = g

~ui·~u∗>j
t = g

δi,j
t .

C.4 Partial Change of Basis

We will often just have to partially change a basis, on a few vectors only: the transition matrix

B = (t)i1,...,im =

 t1,1 . . . t1,m
...

...
tm,1 . . . tm,m


i1,...,im

means the n× n matrix B where

Bi,j = δi,j , if any i, j 6∈ {i1, . . . , im} Bik,i` = tk,`, for all k, ` ∈ {1, . . . ,m}

As a consequence, from a basis U, B = B · U corresponds to the basis

bi = ui, if i 6∈ {i1, . . . , im} bik =
∑
`

tk,` · ui` , if k 6∈ {i1, . . . , im}

As we need to have B∗ = (B−1)> ·U∗, we need the dual transition matrix B′ to be B′ = (t′)i1,...,im
where t′ = (t−1)>. Indeed, in such a case, we have

b∗i = u∗i , if i 6∈ {i1, . . . , im} b∗ik =
∑
`

t′k,` · u∗i` , if k 6∈ {i1, . . . , im}

so,

– if both i, j 6∈ {i1, . . . , im}, bi × b∗j = ui × u∗j = g
δi,j
t ;
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– if i = ik ∈ {i1, . . . , im}, but j 6∈ {i1, . . . , im},

bi × b∗j = bik × u∗j =

(∑
`

tk,` · ui`

)
× u∗j =

∏
`

(ui` × u∗j )
tk,` = 1

– if i 6∈ {i1, . . . , im}, but j = ik ∈ {i1, . . . , im},

bi × b∗j = ui × b∗ik = ui ×

(∑
`

t′k,` · u∗i`

)
=
∏
`

(ui × u∗i`)
t′k,` = 1

– if i = ik and j = i`,

bi × b∗j =

(∑
p

tk,p · uip

)
×

(∑
p

t′`,p · u∗ip

)

=
∏
p

(uip × u∗ip)
tk,p·t′`,p = g

∑
p tk,p·t′`,p

t = g
∑
p tk,p·t′

>
p,`

t = g
δk,`
t = g

δi,j
t

C.5 Particular Changes

Let us consider a triple (a · G1, b · G1, c · G1), that is either a Diffie-Hellman tuple (i.e., c =

ab mod q) or a random tuple (i.e., c = ab + τ mod q, for τ
$← Z∗q). For any random dual

orthogonal bases U and U∗ associated to the matrices U and U ′ = (U−1)>, respectively, we can
set

B =

(
1 a
0 1

)
1,2

B′ =

(
1 0
−a 1

)
1,2

B = B · U B∗ = B′ · U∗

Note that we can compute B = (bi)i, as we know a ·G1 and all the scalars in U :

bi =
∑
k

Bi,k · uk bi,j =
∑
k

Bi,k · uk,j =
∑
k

Bi,kUk,j ·G1 =
∑
k

Uk,j · (Bi,j ·G1).

Hence, to compute bi, one needs all the scalars in U , but only the group elements Bi,j ·G1, and
so G1 and a ·G1. This is the same for B∗, excepted for the vector b∗2 as a ·G2 is missing. One
can thus publish B and B∗\{b∗2}.

Indistinguishability of Sub-Spaces. As already remarked, for such a fixed matrix B, if U
is random, so is B too, and (~x)B = (~x ·B)U, so (~x)U = (~x ·B−1)B. Note that B−1 = B′>. So, in
particular

(b, c, 0, . . . , 0)U + (x1, x2, x3, . . . , xn)B

= (b, c− ab, 0, . . . , 0)B + (x1, x2, x3, . . . , xn)B

= (x1 + b, x2 + τ, x3, . . . , xn)B

where τ can be either 0 or random.
Note that whereas we cannot compute b∗2, this does not exclude this second component in

the computed vectors: (~y)U∗ = (~y ·B′−1)B∗ = (~y ·B>)B∗ . So, in particular

(y1, . . . , yn)U∗ = (y1 + ay2, y2, . . . , yn)B∗ .

Theorem 21. Under the DDH Assumption in G1, for random dual orthogonal bases B and B∗,
once having seen B and B∗\{b∗2}, and any vector (y1, y2, . . . , yn)B∗, for chosen y2, . . . , yn ∈ Zq,
but unknown random y1

$← Zq, one cannot distinguish the vectors (x1, x
′
2, x3, . . . , xn)B and

(x1, x2, x3, . . . , xn)B, for chosen x2, . . . , xn ∈ Zq, but unknown random x1, x
′
2

$← Zq.
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Using the DSDH assumption instead of the DDH assumption, on two chosen values x2 and x′2, one
can show that no algorithm can efficiently distinguish (x1, x2, x3, . . . , xn)B from (x1, x

′
2, x3, . . . , xn)B,

for chosen x′2, x2, . . . , xn ∈ Zq, but unknown random x1
$← Zq:

Theorem 22 (SubSpace-Ind Property). Under the DSDH Assumption in G1, for random
dual orthogonal bases B and B∗, once having seen B and B∗\{b∗2}, and any vector (y1, y2, . . . , yn)B∗,

for chosen y2, . . . , yn ∈ Zq, but unknown random y1
$← Zq, one cannot distinguish the vectors

(x1, x
′
2, x3, . . . , xn)B and (x1, x2, x3, . . . , xn)B, for chosen x′2, x2, . . . , xn ∈ Zq, but unknown ran-

dom x1
$← Zq.

We stress that for this property, we only work with (b1,b2) and (b∗1,b
∗
2), but without publishing

b∗2.

Indistinguishability of Position. Let us consider another change of basis:

B =

1 0 0
0 1 0
a −a 1


1,2,3

B′ =

1 0 −a
0 1 a
0 0 1


1,2,3

B = B · U B∗ = B′ · U∗

In this case, we can compute B = (bi)i, but not the vectors b∗1 and b∗2 as a ·G2 is missing.

(c,−c, b, x4, . . . , xn)U = (c− ab,−c+ ab, b, x4, . . . , xn)B = (τ,−τ, b, x4, . . . , xn)B

(θ, θ, y3, y4, . . . , yn)U∗ = (θ, θ, aθ − aθ + y3, y4, . . . , yn)B∗ = (θ, θ, y3, . . . , yn)B∗

There is the limitation for the first two components in B∗ to be the same:

Theorem 23 (Pos-Ind Property). Under the DDH Assumption in G1, for random dual or-
thogonal bases B and B∗, once having seen B and B∗\{b∗1,b∗2} and (y1, y1, y3, . . . , yn)B∗, for
chosen y1, y3, . . . , yn ∈ Zq, one cannot distinguish the vectors (x1,−x1, x3, x4, . . . , xn)B and

(0, 0, x3, x4, . . . , xn)B, for chosen x4, . . . , xn ∈ Zq, but unknown random x1, x3
$← Zq.

We stress again that for this property, we only work with (b1,b2,b3) and (b∗1,b
∗
2,b
∗
3), but

without publishing (b∗1,b
∗
2).

But more useful, using the DSDH assumption on 0 and x1, which claims indistinguishability
between (a · G, b · G, (ab + 0) · G) and (a · G, b · G, (ab + x1) · G), we have indistinguishability
between

(0, x1, x3, . . . , xn)B + (ab,−ab, b, 0, . . . , 0)U

= (0, x1, x3, . . . , xn)B + (ab− ab,−ab+ ab, b, 0, . . . , 0)B

= (0, x1, x3, . . . , xn)B

(0, x1, x3, . . . , xn)B + (ab+ x1,−ab− x1, b, 0, . . . , 0)U

= (0, x1, x3, . . . , xn)B + (ab+ x1 − ab,−ab− x1 + ab, b, 0, . . . , 0)B

= (x1, 0, x3, . . . , xn)B

(y1, y1, y3, y4, . . . , yn)U∗ = (y1, y1, ay1 − ay1 + y3, y4, . . . , yn)B∗

= (y1, y1, y3, . . . , yn)B∗

Hence,

Theorem 24 (Swap-Ind Property). Under the DSDH Assumption in G1, for random dual
orthogonal bases B and B∗, once having seen B and B∗\{b∗1,b∗2} and (y1, y1, y3, . . . , yn)B∗,
for chosen y1, y3, . . . , yn ∈ Zq, one cannot distinguish the vectors (x1, 0, x3, x4, . . . , xn)B and

(0, x1, x3, x4, . . . , xn)B, for chosen x1, x4, . . . , xn ∈ Zq, but unknown random x3
$← Zq.

Again, for this property, we only work with (b1,b2,b3) and (b∗1,b
∗
2,b
∗
3), but without publishing

(b∗1,b
∗
2).
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SubSpace-Ind: with b∗2 hidden

c = ( x1 x2 x3 )B ≈ ( x1 x′2 x3 )B

k∗ = ( y1 y2 y3 )B∗ = ( y1 y2 y3 )B∗

Swap-Ind: with b∗1,b
∗
2 hidden

c = ( x1 0 x3 )B ≈ ( 0 x1 x3 )B

k∗ = ( y1 y1 y3 )B∗ = ( y1 y1 y3 )B∗

Index-Ind: with b∗3 hidden, if p 6= t

c = ( σ · (1, p) x3 )B ≈ ( σ · (1, p) x′3 )B

k∗ = ( π · (t,−1) y3 )B∗ = ( π · (t,−1) y3 )B∗

Colored cells x are random values, while gray cells x are any value (possibly chosen).

Fig. 8: Computationally indistinguishable Changes of Basis

Indexing and Randomness Amplification. The crucial tool introduced in [OT12b] is the
following change of basis, for chosen scalars t 6= p ∈ Zq:

B =
1

t− p
×

 t −p at
−1 1 −a
0 0 t− p


1,2,3

B′ =

 1 1 0
p t 0
−a 0 1


1,2,3

In this case, we can compute B = (bi)i, but not the vectors b∗3 as a ·G2 is missing.

(b, 0, c, x4, . . . , xn)U = (b, bp, c− ab, x4, . . . , xn)B

= (b · (1, p), τ, x4, . . . , xn)B

((t− p) · (π, 0), δ, y4, . . . , yn)U∗ = (πt+ atδ/(t− p),−π − aδ/(t− p), δ, y4, . . . , yn)B∗

= ((π + aδ/(t− p)) · (t,−1), δ, y4, . . . , yn)B∗

There is the limitation for the first two components in B and B∗ not to be orthogonal: 〈(1, p), (t,−1)〉 =
(t− p) 6= 0:

Theorem 25. Under the DDH Assumption in G1, for random dual orthogonal bases B and B∗,
once having seen B and B∗\{b∗3}, and (π · (t,−1), y3, . . . , yn)B∗, for chosen y3, . . . , yn ∈ Zq, but

unknown random π
$← Zq, and for any chosen t 6= p ∈ Zq, one cannot distinguish the vectors

(b · (1, p), τ, x4, . . . , xn)B and (b · (1, p), 0, x4, . . . , xn)B, for chosen x4, . . . , xn ∈ Zq, but unknown

random b, τ
$← Zq.

As above, we can have a more convenient theorem under the DSDH assumption:

Theorem 26 ((Static) Index-Ind Property). Under the DSDH Assumption in G1, for ran-
dom dual orthogonal bases B and B∗, once having seen B and B∗\{b∗3}, and (π·(t,−1), y3, . . . , yn)B∗,

for chosen y3, . . . , yn ∈ Zq, but unknown random π
$← Zq, and for any chosen t 6= p ∈ Zq, one

cannot distinguish the vectors (σ·(1, p), x3, x4, . . . , xn)B and (σ·(1, p), x′3, x4, . . . , xn)B, for chosen

x′3, x3, x4, . . . , xn ∈ Zq, but unknown random σ
$← Zq.

For this property, we only work with (b1,b2,b3) and (b∗1,b
∗
2,b
∗
3), but without publishing b∗3.

For a fixed t, we can iteratively update all the other other indices p 6= t.
A recap of all the modifications can be found in Figure 8.

D KP-ABE Scheme

Our ultimate goal is the design of a new KP-ABE scheme with Switchable Attributes. We start
from a variation of the fully-secure attribute-based encryption from [OT12b], that provides
some kind of attribute-hiding property. It is in the same vein as [GPSW06]. But for the sake
of clarity, just using the static Index-Ind theorem, it can only handle a polynomially-bounded
universe of attributes and delegation, but with adaptive-set security (see Definition 17).
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D.1 Description of the KP-ABE Scheme

For the construction, we will use two DPVS, of dimensions 3 and 6 respectively, in a pairing-
friendly setting (G1,G2,Gt, e,G1, G2, q), using the notations introduced in Section 2.1:

Setup(1κ). The algorithm chooses two random dual orthogonal bases

B = (b1,b2,b3) B∗ = (b∗1,b
∗
2,b
∗
3)

D = (d1,d2,d3,d4,d5,d6) D∗ = (d∗1,d
∗
2,d
∗
3,d
∗
4,d
∗
5,d
∗
6).

It sets the public parameters PK = {(b1,b3,b
∗
1), (d1,d2,d3,d

∗
1,d
∗
2,d
∗
3)}, whereas the mas-

ter secret key MK = {b∗3}. Other basis vectors are kept hidden.

KeyGen(MK, T ). For an access-tree T , the algorithm first chooses a random a0
$← Zq, and a

random a0-labeling (aλ)λ of the access-tree T , and builds the key:k∗0 = (a0, 0, 1)B∗ k∗λ = (πλ(1, tλ), aλ, 0, 0, 0)D∗

for all the leaves λ, where tλ = A(λ) and πλ
$← Zq. The decryption key dkT is then

(k∗0, (k
∗
λ)λ).

Delegate(dkT , T ′). The algorithm first generates zero-label credentials for the new attributes,

with k∗λ ← (πλ·(1, tλ), 0, 0, 0, 0)D∗ , with πλ
$← Zq, for a new leaf. Keeping only the credentials

useful in T ′, it gets a valid key from dkT . It can thereafter be randomized with a random
a′0

$← Zq and a random a′0-labeling (a′λ) of T ′, with k∗0 ← k∗0 + (a′0, 0, 0)B∗ , and k∗λ ←
k∗λ + (π′λ · (1, tλ), a′λ, 0, 0, 0)D∗ , for π′λ

$← Zq.
Encaps(PK, Γ ). For the set Γ of attributes, the algorithm first chooses random scalars ω, ξ

$← Zq.
It then sets K = gξt and generates the ciphertext C = (c0, (ct)t∈Γ ) where c0 = (ω, 0, ξ)B
and ct = (σt(t,−1), ω, 0, 0, 0)D, for all the attributes t ∈ Γ and σt

$← Zq.
Decaps(dkT , C). The algorithm first selects an evaluation pruned tree T ′ of T that is satisfied

by Γ . This means that the labels aλ for all the leaves λ in T ′ allow to reconstruct a0 by
simple additions.
Note that from every leaf λ in T ′ and t = tλ = A(λ) ∈ Γ , it can compute

ct × k∗t = g
σt·πλ·〈(t,−1),(1,t)〉+ω·aλ
t = gω·aλt .

Hence, it can derive gω·a0
t . From c0 and k∗0, it gets c0×k∗0 = gω·a0+ξ

t which then easily leads

to K = gξt .

We stress that in the above decryption, one can recover gω·a0
t if and only if there is an evaluation

pruned tree T ′ of T that is satisfied by Γ . And this holds if and only if T (Γ ) = 1. Additionally,
since b∗3 is not public but in MK only, for the key issuer, only the latter can issue keys, but
anybody can delegate a key for a tree T into a key for a more restrictive tree T ′. As everything
can be randomized (the random coins πλ and the labeling), the delegated keys are perfectly
indistinguishable from fresh keys. Hence, given two keys possibly delegated from a common key,
one cannot decide whether they have been independently generated or delegated.

D.2 Security Analysis of the KP-ABE

We first consider the security analysis, without delegation, as it is quite similar to [OT12b], but
under the SXDH assumption instead of the DLIN assumption:

Theorem 27. Under the SXDH assumption, no adversary can win the IND security game (with-
out delegation) against our KP-ABE scheme, in the Adaptive-Set setting, with non-negligible
advantage.

This theorem is proven in details in the appendix D.3, with exact bound for an adversary with
running time bounded by t, where P is the size of the universe of the attributes and K is the
number of queries to the OKeyGen-oracle:

Advind(A) ≤ 2(KP 2 + 1)× AdvddhG1
(t) + (3P + 1)K × AdvddhG2

(t)

≤ (2KP 2 + 3KP +K + 2)× Advsxdh(t)
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The global sequence of games is described on Figure 9, with another sequence of sub-games
on Figure 10. In the two first games G1 and G2, one is preparing the floor with a random τ

G0 Real IND-Security game (without delegation)
c0 = ( ω 0 ξ ) ct = ( σt(1, t) ω | 0 0 0 )

k∗`,0 = ( a`,0 0 1 ) k∗`,λ = ( π`,λ(t`,λ,−1) a`,λ | 0 0 0 )

G1 SubSpace-Ind Property, on (B,B∗)1,2 and (D,D∗)3,4, between 0 and τ
$← Zq

c0 = ( ω τ ξ ) ct = ( σt(1, t) ω | τ 0 0 )

k∗`,0 = ( a`,0 0 1 ) k∗`,λ = ( π`,λ(t`,λ,−1) a`,λ | 0 0 0 )

G2 SubSpace-Ind Property, on (D,D∗)1,2,6, between 0 and τzt

c0 = ( ω τ ξ ) ct = ( σt(1, t) ω | τ 0 τzt )

k∗`,0 = ( a`,0 0 1 ) k∗`,λ = ( π`,λ(t`,λ,−1) a`,λ | 0 0 0 )

G3 Introduction of an additional random-labeling. See Figure 10
c0 = ( ω τ ξ ) ct = ( σt(1, t) ω | τ 0 τzt )

k∗`,0 = ( a`,0 r`,0 1 ) k∗`,λ = ( π`,λ(t`,λ,−1) a`,λ | 0 0 s`,λ/zt`,λ )

G4 Formal basis change, on (B,B∗)2,3, to randomize ξ

c0 = ( ω τ ξ′′ ) ct = ( σt(1, t) ω | τ 0 τzt )

k∗`,0 = ( a`,0 r`,0 1 ) k∗`,λ = ( π`,λ(t`,λ,−1) a`,λ | 0 0 s`,λ/zt`,λ )
Gray cells x mean they have been changed in this game.

Fig. 9: Global sequence of games for the IND-security proof of the KP-ABE

G2.k.0 Hybrid game for G2, with 1 ≤ k ≤ K + 1 (from Figure 9)
c0 = ( ω τ ξ ) ct = ( σt(1, t) ω | τ 0 τzt )

` < k k∗`,0 = ( a`,0 r`,0 1 ) k∗`,λ = ( π`,λ(t`,λ,−1) a`,λ | 0 0 s`,λ/zt`,λ )

` ≥ k k∗`,0 = ( a`,0 0 1 ) k∗`,λ = ( π`,λ(t`,λ,−1) a`,λ | 0 0 0 )

G2.k.1 SubSpace-Ind Property, on (B∗,B)1,2 and (D∗,D)3,4, between 0 and sk,∗

k∗k,0 = ( ak,0 sk,0 1 ) k∗k,λ = ( πk,λ(tk,λ,−1) ak,λ | sk,λ 0 0 )

G2.k.2 Masking of the labeling. See Figure 11

k∗k,0 = ( ak,0 sk,0 1 ) k∗k,λ = ( πk,λ(tk,λ,−1) ak,λ | 0 0 sk,λ/ztk,λ )

G2.k.3 Limitations on KeyGen-queries: sk,0 unpredictable, replaced by a random rk,0

k∗k,0 = ( ak,0 rk,0 1 ) k∗k,λ = ( πk,λ(tk,λ,−1) ak,λ | 0 0 sk,λ/ztk,λ )

Fig. 10: Sequence of games on the K keys for the IND-security proof of the KP-ABE

and random masks zt in the ciphertexts ct (actually, the challenge ciphertext corresponding to
the attribute t). Note that until the challenge query is asked, one does not exactly know the
attributes in Γ (as we are in the adaptive-set setting), but we prepare all the material for all
possible ct, and only the ones corresponding to attributes in Γ will be provided to the adversary.
The main step is to get to Game G3, with an additional labeling (s`,0, (s`,λ)λ), using hybrid
games starting from Game G2. The sequence on Figure 10 gives more details: the new labelling
is added in each `-th key (in G2.k.1), then each label is masked by the random zt for each
attribute t (in G2.k.2). In order to go to game G2.k.3 one exploits the limitations one expects
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from the adversary in the security game: the adversary cannot ask keys on access-trees T such
that T (Γ ) = 1, for the challenge set Γ .

We stress that this construction makes more basis vectors public, than in the original proof
from [OT12b], and only b∗3 is for the key issuer. This is the reason why we can deal with dele-
gation for any user. In addition, as delegation provides keys that are perfectly indistinguishable
from fresh keys, one can easily get the full result:

Corollary 28. Under the SXDH assumption, no adversary can win the Del-IND security game
against the KP-ABE scheme, in the Adaptive-Set setting, with non-negligible advantage.

The bound is the same, except K is the global number of OKeyGen and ODelegate queries.

D.3 IND-Security Proof of the KP-ABE Scheme

In this section, we will focus on the IND-security proof of the KP-ABE scheme, where the
definition is quite similar to Definition 17, but without the Delegation-Oracle.

Definition 29 (Indistinguishability). IND-security for KP-ABE is defined by the following
game:

Initialize: The challenger runs the Setup algorithm of KP-ABE and gives the public parameters
PK to the adversary;

OKeyGen(T : The adversary is allowed to issue KeyGen-queries for any access-tree T of its choice,
and gets back the decryption key dkT ;

RoREncaps(Γ ): The adversary submits one real-or-random encapsulation query on a set of
attributes Γ . The challenger asks for an encapsulation query on Γ and receives (K0, C). It
also generates a random key K1. It eventually flips a random coin b, and outputs (Kb, C)
to the adversary;

Finalize(b′): The adversary outputs a guess b′ for b. If for some access-tree T asked to the

OKeyGen-oracle, T (Γ ) = 1, on the challenge set Γ , β
$← {0, 1}, otherwise one sets β = b′.

One outputs β.

The advantage of an adversary A in this game is defined as

Advind(A) = Pr[β = 1|b = 1]− Pr[β = 1|b = 0].

The global sequence of games will follow the steps shown on Figure 9. But while the first steps
(from G0 to G2) will be simple, the big step from G2 to G3 will need multiple hybrid games, pre-
sented on Figure 10. All theses games work in a pairing-friendly setting (G1,G2,Gt, e,G1, G2, q),
with two random dual orthogonal bases (B,B∗) and (D,D∗) of size 3 and 6, respectively.

In the following proof, we will use t to denote attributes, and thus the indices for the possible
ciphertexts ct associated to each attribute in the challenge ciphertext. We indeed anticipate all
the possible ct, before knowing the exact set Γ , as we are in the adaptive setting. The variable
p will be used in hybrid proofs to specify a particular attribute. We will denote P the size of
the universe of attributes. Then 1 ≤ t, p ≤ P . Similarly, we will use ` to denote key queries, and
thus the index of the global `-th key k∗` , whereas λ will we used for the leaf in the tree of the
key-query: k∗`,λ is thus the specific key for leaf λ in the global `-th key. The variable k will be
used in hybrid proofs to specify a particular key-query index. We will denote K the maximal
number of key-queries. Then 1 ≤ `, k ≤ K.

Game G0: This is the real game where the simulator generates all the private information
and sets PK = {(b1,b3,b

∗
1), (d1,d2,d3,d

∗
1,d
∗
2,d
∗
3)} and MK = {b∗3}. The public parameters

PK are provided to the adversary
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OKeyGen(T`): The adversary is allowed to issue KeyGen-queries on an access-tree T` (for the

`-th query), for which the challenger chooses a random scalar a`,0
$← Zq and a random

a`,0-labeling (a`,λ)λ of the access-tree T`, and builds the key:

k∗`,0 = (a`,0, 0, 1)B∗ k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, 0)D∗

for all the leaves λ, where t`,λ = A(λ) is the attribute associated to the leaf λ in T` and

π`,λ
$← Zq. The decryption key dk` is then (k∗`,0, (k

∗
`,λ)λ);

RoREncaps(Γ ): On the unique query on a set of attributes Γ , the challenger chooses random

scalars ω, ξ, ξ′
$← Zq. It then sets K0 = gξt and K1 = gξ

′

t . It generates the ciphertext
C = (c0, (ct)t∈Γ ) where

c0 = (ω, 0, ξ)B ct = (σt(1, t), ω, 0, 0, 0)D

for all the attributes t ∈ Γ and σt
$← Zq. According to the real or random game (bit

b
$← {0, 1}), one outputs (Kb, C).

Eventually, on adversary’s guess b′ for b, if for some T`, T`(Γ ) = 1, then β
$← {0, 1}, otherwise

β = b′. Then Adv0 = Pr[β = 1|b = 1]− Pr[β = 1|b = 0].
In the next games, we gradually modify the simulations of OKeyGen and RoREncaps oracles,
but always (at least) with random ω, ξ, ξ′, (σt)

$← Zq, (a`,0), (π`,λ)
$← Zq, and random a`,0-

labeling (a`,λ)λ of the access-tree T` for each OKeyGen-query.

Game G1: One chooses random τ
$← Zq, and sets (which differs for the ciphertext only)

c0 = (ω, τ, ξ)B ct = (σt(1, t), ω, τ, 0, 0)D

k∗`,0 = (a`,0, 0, 1)B∗ k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, 0)D∗

The previous game and this game are indistinguishable under the DDH assumption in G1:
one applies the SubSpace-Ind property from Theorem 22, on (B,B∗)1,2 and (D,D∗)3,4. Indeed,
we can consider a triple (a · G1, b · G1, c · G1), where c = ab + τ mod q with either τ = 0 or

τ
$← Z∗q , which are indistinguishable situations under the DDH assumption.

Let us assume we start from random dual orthogonal bases (U,U∗) and (V,V∗) of size 3 and
6 respectively. Then we define the matrices

B =

(
1 a
0 1

)
1,2

B′ =

(
1 0
−a 1

)
1,2

D =

(
1 a
0 1

)
3,4

D′ =

(
1 0
−a 1

)
3,4

B = B · U B∗ = B′ · U∗ D = D · V D∗ = D′ · V∗

Note that we can compute all the basis vectors excepted b∗2 and d∗4, that nobody needs: the
vectors below have these coordinates at zero. So one can set

c0 = (b, c, ξ)U = (b, τ, ξ)B ct = (σt(1, t), b, c, 0, 0)V = (σt(1, t), b, τ, 0, 0)D

k∗`,0 = (a`,0, 0, 1)B∗ k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, 0)D∗

When τ = 0, this is exactly the previous game, with ω = b, for a random τ , this is the current
game: Adv0 − Adv1 ≤ AdvddhG1

(t).

Game G2: One continues to modify the ciphertext, with random τ, (zt)
$← Zq:

c0 = (ω, τ, ξ)B ct = (σt(1, t), ω, τ, 0, τzt)D

k∗`,0 = (a`,0, 0, 1)B∗ k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, 0)D∗

The previous game and this game are indistinguishable under the DDH assumption in G1:
one applies again the SubSpace-Ind property from Theorem 22, on (D,D∗)(1,2),6. Indeed, we
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can consider a triple (a · G1, b · G1, c · G1), where c = ab + ζ mod q, with either ζ = 0 or

ζ
$← Z∗q , which are indistinguishable situations under the DDH assumption.

Let us assume we start from random dual orthogonal bases (B,B∗) and (V,V∗) of size 3 and
6 respectively. Then we define the matrices

D =

1 0 a
0 1 a
0 0 1


1,2,6

D′ =

 1 0 0
0 1 0
−a −a 1


1,2,6

D = D · V D∗ = D′ · V∗

Note that we can compute all the basis vectors excepted d∗6, that nobody needs: the vectors

below have these coordinates at zero. One chooses additional random scalars αt, βt
$← Zq to

virtually set bt = αt · b+ βt and ct = αt · c+ βt · a, which makes ct − abt = αt · ζ. One can set

c0 = (ω, τ, ξ)B ct = (bt(1, t), ω, τ, 0, ct(t+ 1))V

= (bt(1, t), ω, τ, 0, ct(t+ 1)− abt − abtt)D
= (bt(1, t), ω, τ, 0, ct(t+ 1)− abt(1 + t))D

= (bt(1, t), ω, τ, 0, αt · ζ · (t+ 1))D

= (bt(1, t), ω, τ, 0, τzt)D

k∗`,0 = (a`,0, 0, 1)B∗ k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, 0)D∗

where zt = αt · ζ · (t + 1)/τ . When ζ = 0, this is exactly the previous game, as zt = 0, with
πt = bt = αt ·b+βt, whereas for a random ζ, this is the current game: Adv1−Adv2 ≤ AdvddhG1

(t).

Game G3: We introduce a second independent s`,0-labeling s`,λ for each access-tree T` and a
random r`,0 to define

k∗`,0 = (a`,0, r`,0, 1)B∗ k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, s`,λ/ztk,λ)D∗

But to this, we move to a sub-sequence of hybrid games, with distinct ways for answering
the k − 1 first key queries and the last ones, as explained on Figure 10: for the `-th key
generation query on T`, the challenger chooses three random scalars a`,0, r`,0, s`,0

$← Zq, and
two random a`,0-labeling (a`,λ)λ and s`,0-labeling (s`,λ)λ of the access-tree T`, and builds the

key (k∗`,0, (k
∗
`,λ)λ), with π`,λ

$← Zq:

` < k k∗`,0 = (a`,0, r`,0, 1)B∗ k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, s`,λ/zt`,λ)D∗

` ≥ k k∗`,0 = (a`,0, 0, 1)B∗ k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, 0)D∗

For this game, we have to anticipate the values zt, for each attribute t, before knowing Γ , for
the challenge ciphertext, as we have to introduce zt`,λ during the creation of the leaves. These
zt are thus random values chosen as soon as an attribute t is involved in the security game.
When k = 1, this is exactly the game G2: G2 = G2.1.0, whereas for k = K + 1 this is
exactly the expected game G3: G3 = G2.K+1.0. We now consider any k ∈ {1, . . . ,K}, to show
that G2.k.3 = G2.k+1.0, where all the keys for ` 6= k will be defined using the basis vectors
of (B∗,D∗) and known scalars. We only focus on the k-th key and the ciphertext, but still

with random ω, τ, ξ, ξ′, (σt), (zt)
$← Zq, random ak,0, (πk,λ)

$← Zq, as well as a random ak,0-

labeling (ak,λ)λ of the access-tree Tk, but also sk,0
$← Zq and a second independent random

sk,0-labeling (sk,λ)λ of the access-tree Tk:
Game G2.k.0: This is exactly as described above, for ` = k:

c0 = (ω, τ, ξ)B ct = (σt(1, t), ω, τ, 0, τzt)D

k∗k,0 = (ak,0, 0, 1)B∗ k∗k,λ = (πk,λ(tk,λ,−1), ak,λ, 0, 0, 0)D∗



36

Game G2.k.1: One now introduces the second labeling:

c0 = (ω, τ, ξ)B ct = (σt(1, t), ω, τ, 0, τzt)D

k∗0 = (ak,0, sk,0, 1)B∗ k∗k,λ = (πk,λ(tk,λ,−1), ak,λ, sk,λ, 0, 0)D∗

This game is indistinguishable from the previous one under the DDH assumption in G2: one
applies the SubSpace-Ind property from Theorem 22 on (B∗,B)1,2 and (D∗,D)3,4. Indeed,
we can consider a triple (a ·G2, b ·G2, c ·G2), where c = ab+ ρ mod q, with either ρ = 0 or

ρ
$← Z∗q , which are indistinguishable situations under the DDH assumption.

Let us assume we start from random dual orthogonal bases (U,U∗) and (V,V∗) of size 3
and 6 respectively. Then we define the matrices

B′ =

(
1 a
0 1

)
1,2

B =

(
1 0
−a 1

)
1,2

D′ =

(
1 a
0 1

)
3,4

D =

(
1 0
−a 1

)
3,4

B∗ = B′ · U∗ B = B · U D∗ = D′ · V∗ D = D · V

Note that we can compute all the basis vectors excepted b2 and d4. But we can define the
ciphertext vectors in the original bases (U,V), and all the keys in bases (B∗,D∗), excepted
the k-th one:

c0 = (ω, τ, ξ)U = (ω + aτ, τ, ξ)B

ct = (σt(1, t), ω, τ, 0, τzt)V = (σt(1, t), ω + aτ, τ, 0, τzt)D

k∗k,0 = (b0, 0, 1)B∗ + (b, c, 0)U∗ = (b0, 0, 1)B∗ + (b, ρ, 0)B∗ = (b0 + b, ρ, 1)B∗

k∗k,λ = (πk,λ(tk,λ,−1), bλ, 0, 0, 0)D∗ + (0, 0, b · b′λ, c · b′λ, 0, 0)V∗

= (πk,λ(tk,λ,−1), bλ, 0, 0, 0)D∗ + (0, 0, b · b′λ, ρ · b′λ, 0, 0)D∗

= (πk,λ(tk,λ,−1), bλ + b · b′λ, ρ · b′λ, 0, 0)D∗

with b0
$← Zq, a random b0-labeling (bλ)λ, and a random 1-labeling (b′λ)λ of Tk. When ρ = 0,

this is exactly the previous game, with ω = ω + aτ , and ak,0 = b0 + b, ak,λ = bλ + b · b′λ,
whereas for a random ρ, this is the current game, with additional sk,0 = ρ, sk,λ = ρ · b′λ:
Adv2.k.0 − Adv2.k.1 ≤ AdvddhG2

(t).

Game G2.k.2: With the same inputs, one just changes as follows

c0 = (ω, τ, ξ)B ct = (σt(1, t), ω, τ, 0, τzk)D

k∗k,0 = (ak,0, sk,0, 1)B∗ k∗k,λ = (πk,λ(tk,λ,−1), ak,λ, 0, 0, sk,λ/zk)D∗

Unfortunately, for the latter gap, which intuitively exploits the Swap-Ind property from
Theorem 24, we cannot do all the changes at once. Then, the Index-Ind property will be
applied first, with Theorem 26.
We will thus describe another sequence of games, as shown on Figure 11, where G2.k.1.p.0

with p = 1 is the previous game: G2.k.1 = G2.k.1.1.0; for any p, G2.k.1.p.5 is G2.k.1.p+1.0; and
G2.k.1.p.0 with p = P + 1 is the current game: G2.k.2 = G2.k.1.P+1.0. For each p, we prove
that

Adv2.k.1.p.0 − Adv2.k.1.p.5 ≤ 2P × AdvddhG1
(t) + 3× AdvddhG2

(t).

Hence, globally, we have

Adv2.k.1 − Adv2.k.2 ≤ 2P 2 × AdvddhG1
(t) + 3P × AdvddhG2

(t).

But before proving this huge gap, let us conclude the analysis.
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Game G2.k.3: In the above game, to be a legitimate attack (that does not output a random
bit β in the Finalize procedure, but the actual output b′ of the adversary), for all the
key queries T`, one must have T`(Γ ) = 0. In particular, Tk(Γ ) = 0: this means that there
are missing attributes in the ciphertext, and thus false leaves to make the access-tree no
acceptable. More concretely, a missing attribute t means ct is not provided to the adversary,
and so no information about zt is leaked. As the key only contains sk,λ/ztk,λ , the missing
ztk,λ guarantees that no information leaks about sk,λ: all the false leaves λ correspond to
these sk,λ that are unknown: only (sk,λ)λ∈LΓ is known, and so the root sk,0 is unpredictable.

Remark 30. One may wonder whether previous keys that involve those ztk,λ could leak
some information and contradict the above argument. Let us focus on the leaf λ associated
to the attribute p, and so the information one could get about zp when cp is not part of
the challenge ciphertext. At least, this argument holds for the first key generation, when
we are in the first sequence of games, in G2.k.2 with k = 1: zp is only used in cp, that is not
revealed to the adversary, and so s1,λ/zp does not leak any information about s1,λ. And
this is the same for all the leaves associated to missing attributes. Then s1,0 can definitely
be replaced by a random and independent r1,0: which is the current game G2.k.3 for k = 1.
When we are in G2.k.2 for k = 2, the adversary may now have some information about
s1,λ/zp and s2,λ/zp, but no information about s1,0 that has already been replaced by a
random r1,0, which makes s1,λ unpredictable, and so no additional information leaks about
zp: s2,λ is unpredictable. Again, the same argument holds for all the leaves associated to
missing attributes: s2,0 can also be replaced by a random and independent r2,0.
This is the reason of this hybrid sequence of game: if we would have first introduced the
zp in all the keys, it would not have been possible to replace all the s`,0 by r`,0 in the end.
This is only true when all the previous keys have already been modified.
One can thus modify the key generation algorithm for the k-th key, with an independent
rk,0

$← Zq:

c0 = (ω, τ, ξ)B ct = (σt(1, t), ω, τ, 0, τzt)D

k∗k,0 = (ak,0, rk,0, 1)B∗ k∗k,λ = (πk,λ(tk,λ,−1), ak,λ, 0, 0, sk,λ/ztk,λ)D∗

This concludes this sequence of sub-games with, for each k,

Adv2.k.0 − Adv2.k.3 ≤ 2P 2 × AdvddhG1
(t) + (3P + 1)× AdvddhG2

(t).

Hence, globally, we have

Adv2 − Adv3 ≤ 2KP 2 × AdvddhG1
(t) + (3P + 1)K × AdvddhG2

(t).

Game G4: In this game, one chooses a random θ to define the matrices

B =

(
1 −θ
0 1

)
2,3

B′ =

(
1 0
θ 1

)
2,3

B = B · U B∗ = B′ · U∗

which only modifies b2, which is hidden, and b∗3, which is kept secret:

c0 = (ω, τ, ξ)U = (ω, τ, τθ + ξ)B = (ω, τ, ξ′′)B

k∗`,0 = (a`,0, r`,0, 1)U∗ = (a`,0, r
′
`,0, 1)D∗

As a consequence, any value for θ can be used, without impacting the view of the adversary,
as r′`,0 is indeed independent of the other variables. In this last game, a random value ξ′′ is

used in the ciphertext, whereas K0 = gξt and K1 = gξ
′

t : the advantage of any adversary is 0
in this last game.
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If we combine all the steps:

Adv0 = Adv0 − Adv4

≤ AdvddhG1
(t) + AdvddhG1

(t) + 2KP 2 × AdvddhG1
(t) + (3P + 1)K × AdvddhG2

(t)

≤ 2(KP 2 + 1)× AdvddhG1
(t) + (3P + 1)K × AdvddhG2

(t)

We now present the sub-sequence of games for proving the gap from the above G2.k.1 to G2.k.2.

c0 = (ω τ ξ) h∗0 = (δ ρ 0)

G2.k.1.p.0 Hybrid game for G2.k.1, with 1 ≤ p ≤ P + 1 (from Figure 10)
ct = ( σt(1, t) ω | τ 0 τzt )

t < p h∗t = ( πt(t,−1) δ | 0 0 ρ/zt )
t ≥ p h∗t = ( πt(t,−1) δ | ρ 0 0 )

G2.k.1.p.1 Formal basis change, on (D,D∗)4,5, to duplicate τ

ct = ( σt(1, t) ω | τ τ τzt )

G2.k.1.p.2 Swap-Ind Property, on (D∗,D)2,4,5, for 0 and ρ in h∗p only

ct = ( σt(1, t) ω | τ τ τzt )

h∗p = ( πp(p,−1) δ | 0 ρ 0 )

G2.k.1.p.3 Index-Ind Property, on (D,D∗)1,2,5, between τ and τzt/zp
cp = ( σp(1, p) ω | τ τ τzp )

t 6= p ct = ( σt(1, t) ω | τ τzt/zp τzt )

G2.k.1.p.4 Formal basis change, on (D,D∗)5,6, to cancel τ

ct = ( σt(1, t) ω | τ 0 τzt )

h∗p = ( πp(p,−1) δ | 0 α ρ/zp )

G2.k.1.p.5 SubSpace-Ind Property, on (D∗,D)2,5, between α and 0
ct = ( σt(1, t) ω | τ 0 τzt )

t < p h∗t = ( πt(t,−1) δ | 0 0 ρ/zt )

h∗p = ( πp(p,−1) δ | 0 0 ρ/zp )

t > p h∗t = ( πt(t,−1) δ | ρ 0 0 )

Fig. 11: Sequence of sub-games on the P attributes for the IND-security proof of our KP-ABE,
where k∗`,0 = (a`,0, 0, 1)B∗ + s`,0 · h∗0 and k∗`,λ = (Π`,λ(t`,λ,−1), a`,λ, 0, 0, 0)D∗ + s`,λ · h∗tk,λ , for all
the leaves λ of all the keys `, with h∗0 = (δ, ρ, 0)B∗ and h∗0 = (πt(t,−1), δ, ρ, 0, 0)D∗ for all the
possible attributes t. We only make the latter (h∗0, (h

∗
t )t) to evolve along this sequence.

We still focus on the challenge ciphertext (c0, (ct)) and the k-th key we will denote, for the sake
of clarity, as

k∗k,0 = (a0, 0, 1)B∗ + s0 · h∗0
k∗k,λ = (Πk,λ(tk,λ,−1), aλ, 0, 0, 0)D∗ + sλ · h∗tk,λ

where h∗0 = (δ, ρ, 0)B∗ and h∗t = (πt(t,−1), δ, ρ, 0, 0)D∗ for all the possible attributes. This
corresponds to

ak,0 = a0 + δ · s0 ak,λ = aλ + δ · sλ
sk,0 = ρ · s0 sk,λ = ρ · sλ

πk,λ = Πk,λ + sλ · πtk,λ
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All the other keys will be generated using the basis vectors: we stress that they all have a
zero 5-th component, then d∗5 will not be needed. In the new hybrid game, the critical point
will be the p-th attribute, where, when p = 1, G2.k.1.p.0 is exactly the above Game G2.k.1,
and when p = P + 1 this is the above Game G2.k.2. And it will be clear, for any p, that
G2.k.1.p.5 = G2.k.1.p+1.0: with random ω, τ, ξ, ξ′, δ, ρ, (zt), (σt), (πt)

$← Zq,

Game G2.k.1.p.0: One defines the hybrid game for p:

c0 = (ω, τ, ξ)B ct = (σt(1, t), ω, τ, 0, τzt)D

h∗0 = (δ, ρ, 0)B∗ h∗t = (πt(t,−1), δ, 0, 0, ρ/zt)D∗ t < p

h∗t = (πt(t,−1), δ, ρ, 0, 0)D∗ t ≥ p

Game G2.k.1.p.1: One defines the matrices

D =

(
1 −1
0 1

)
4,5

D′ =

(
1 0
1 1

)
4,5

D = D · V D∗ = D′ · V∗

which modifies the hidden vectors d4 and d∗5, and so are not in the view of the adversary:

ct = (σt(1, t), ω, τ, 0, τzt)V = (σt(1, t), ω, τ, τ, τzt)D

h∗t = (πt(t,−1), δ, 0, 0, ρ/zt)V∗ = (πt(t,−1), δ, 0, 0, ρ/zt)D∗ t < p

h∗t = (πt(t,−1), δ, ρ, 0, 0)V∗ = (πt(t,−1), δ, ρ, 0, 0)D∗ t ≥ p

For all the other keys, as the 5-th component is 0, the writing in basis V∗ is the same in basis
D∗. Hence, the perfect indistinguishability between the two games: Adv2.k.1.p.1 = Adv2.k.1.p.0.

Game G2.k.1.p.2: We apply the Swap-Ind property from Theorem 24, on (D∗,D)2,4,5: Indeed,
we can consider a triple (a · G2, b · G2, c · G2), where c = ab + θ mod q with either θ = 0 or
θ = ρ, which are indistinguishable situations under the DSDH assumption. Let us assume
we start from random dual orthogonal bases (B,B∗) and (V,V∗) of size 3 and 6 respectively.
Then we define the matrices

D′ =

1 a −a
0 1 0
0 0 1


2,4,5

D =

 1 0 0
−a 1 0
a 0 1


2,4,5

D∗ = D′ · V∗ D = D · V

Note that we can compute all the basis vectors excepted d4,d5, but we define the ciphertext
on the original basis V:

ct = (σt(1, t), ω, τ, τ, τzt)V = (σt, σtt+ aτ − aτ, ω, τ, τ, τzt)D
= (σt(1, t), ω, τ, τ, τzt)D

h∗t = (πt(t,−1), δ, 0, 0, ρ/zt)D∗ t < p

h∗p = (πp(p,−1), δ, ρ, 0, 0)D∗ + (b(p,−1), 0,−c, c, 0)V∗

= (πp(p,−1), δ, ρ, 0, 0)D∗ + (b(p,−1), 0, ab− c,−ab+ c, 0)D∗

= (πp(p,−1), δ, ρ− θ, θ, 0)D∗

h∗t = (πt(t,−1), δ, ρ, 0, 0)D∗ t > p

With θ = 0, this is as in the previous game, with θ = ρ, this is the current game: Adv2.k.1.p.1−
Adv2.k.1.p.2 ≤ 2 · AdvddhG2

(t).
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Game G2.k.1.p.3: We keep the τ value (at the 5-th hidden position) in the ciphertext for the
p-th attribute only, and replace all the other values by τzt/zp:

cp = (σt(1, t), ω, τ, τ, τzt)D

ct = (σt(1, t), ω, τ, τzt/zp, τzt)D t 6= p

To show this is possible without impacting the other vectors, we use the Index-Ind property
from Theorem 26, but in another level of sequence of hybrid games, for γ ∈ {1, . . . , P}\{p}:
Game G2.k.1.p.2.γ: We consider

cp = (σp(1, p), ω, τ, τ, τzp)D

ct = (σt(1, t), ω, τ, τzt/zp, τzt)D p 6= t < γ

ct = (σt(1, t), ω, τ, τ, τzt)D t ≥ γ
h∗t = (πt(t,−1), δ, 0, 0, ρ/zt)D∗ t < p

h∗p = (πp(p,−1), δ, 0, ρ, 0)D∗

h∗t = (πt(t,−1), δ, ρ, 0, 0)D∗ t > p

When γ = 1, this is the previous game: G2.k.1.p.2.1 = G2.k.1.p.2, whereas with γ = P + 1,
this is the current game: G2.k.1.p.2.P+1 = G2.k.1.p.3.
For any γ ∈ {1, . . . , P}, we consider a triple (a ·G1, b ·G1, c ·G1), where c = ab+ ζ mod q,
with either ζ = 0 or ζ = τ(zγ/zp − 1), which are indistinguishable situations under the
DSDH assumption. We define the matrices

D =
1

p− γ
×

 p −γ ap
−1 1 −a
0 0 p− γ


1,2,5

D′ =

 1 1 0
γ p 0
−a 0 1


1,2,5

and then D = D · V, D∗ = D′ · V∗: we cannot compute d∗5, but the components on this
vector are all 0 excepted for h∗p we will define in V∗:

cp = (σp(1, p), ω, τ, τ, τzp)D

cγ = (b, 0, ω, τ, τ + c, τzγ)V = (b, bγ, ω, τ, τ + c− ab, τzγ)D

= (b(1, γ), ω, τ, τ + ζ, τzγ)D

ct = (σt(1, t), ω, τ, τzt/zp, τzt)D p 6= t < γ

ct = (σt(1, t), ω, τ, τ, τzt)D t > γ

h∗t = (πt(t,−1), δ, 0, 0, ρ/zt)D∗ t < p

h∗p = ((p− γ) · (π, 0), δ, 0, ρ, 0)V∗

= (p · π + apρ,−π − aρ, δ, 0, ρ, 0)D∗

= ((π + aρ) · (p,−1), δ, 0, ρ, 0)D∗

h∗t = (πt(t,−1), δ, ρ, 0, 0)D∗ t > p

which is the hybrid game with πp = π+ aρ and the 5-th component of cγ is τ + ζ, which is
either τ when ζ = 0, and thus the game G2.k.1.p.2.γ or τzγ/zp when ζ = τzγ/zp−τ , which is
G2.k.1.p.2.γ+1: hence, the distance between two consecutive games is bounded by AdvdsdhG1

(t).

Hence, we have Adv2.k.1.p.2 − Adv2.k.1.p.3 ≤ 2P × AdvddhG1
(t).

Game G2.k.1.p.4: We can now insert 1/zp in the p-th last component, and then make some

cleaning with the matrices, for α
$← Z∗q

D =

(
α/ρ 0
1/zp 1

)
5,6

D′ =

(
ρ/α −ρ/αzp

0 1

)
5,6
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and then D = D · V, D∗ = D′ · V∗. As the four vectors d5,d6 and d∗5,d
∗
6 are hidden, the

modifications will not impact the view of the adversary. This consists in applying successively
the matrices :

D =

(
1/zp 0

0 1

)
5,6

D =

(
1 0
1 1

)
5,6

D =

(
αzp/ρ 0

0 1

)
5,6

Then, working in (V,V∗) gives, in (D,D∗):

cp = (σp(1, p), ω, τ, τ, τzp)V = (σp(1, p), ω, τ, 0, τzp)D

ct = (σt(1, t), ω, τ, τzt/zp, τzt)V

= (σt(1, t), ω, τ, (τzt/zp − τzt/zp) · ρ/α, τzt)D t 6= p

= (σt(1, t), ω, τ, 0, τzt)D

h∗t = (πt(t,−1), δ, 0, 0, ρ/zt)V∗ = (πt(t,−1), δ, 0, 0, ρ/zt)D∗ t < p

h∗p = (πp(p,−1), δ, 0, ρ, 0)V∗ = (πp(p,−1), δ, 0, α, ρ/zp)D∗

h∗t = (πt(t,−1), δ, ρ, 0, 0)V∗ = (πt(t,−1), δ, ρ, 0, 0)V∗ t > p

We stress again that for all the other keys, as the 5-th component is 0, the writing in basis
V∗ is the same in basis D∗. Hence, the perfect indistinguishability between the two games:
Adv2.k.1.p.4 = Adv2.k.1.p.3.

Game G2.k.1.p.5: We can now remove the α value in the p-th element of the key: We can

consider a triple (a ·G2, b ·G2, c ·G2), where c = ab+ α mod q, with either α = 0 or α
$← Z∗q ,

which are indistinguishable situations under the DDH assumption. We define the matrices

D′ =

(
1 a
0 1

)
2,5

D =

(
1 0
−a 1

)
2,5

and then D = D ·V, D∗ = D′ ·V∗: we cannot compute d5, but the components on this vector
are all 0:

cp = (σt(1, t), ω, τ, 0, τzt)D

ct = (σt(1, t), ω, τ, 0, τzt)D t 6= p

h∗t = (πt(t,−1), δ, 0, 0, ρ/zt)D∗ t < p

h∗p = (−b(p,−1), δ, 0, c, ρ/zp)V∗ = (−b(p,−1), δ, 0, c− ab, ρ/zp)D∗
= (−b(p,−1), δ, 0, α, ρ/zp)D∗

h∗t = (πt(t,−1), δ, ρ, 0, 0)D∗ t > p

which is the either the previous game when α 6= 0 or the current game with α = 0, where
πp = −b: Adv2.k.1.p.4 − Adv2.k.1.p.5 ≤ AdvddhG2

(t).

E Security Proofs of our SA-KP-ABE Scheme

E.1 Proof of Theorem 9 – Del-IND-Security for Encaps

Proof. We will proceed to prove this by a succession of games. At some point, our game will be
in the same state as Game G0 in the proof of IND for the KP-ABE scheme, in the appendix D.3,
which allows us to conclude. We stress that we use the Adaptive Index-Ind instead of the static
version, but this just impacts the way we enumerate the attributes: instead of enumerating
all the universe that was polynomial-size, we enumerate them in the order the appear in the
security game (either in a policy or in a ciphertext). This will be important for hybrid sequences
of games on attributes: t or p will actually be the attributes but also associated to their order
number when they appear for the first time in the security game.
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Game G0: The first game is the real game, where the simulator honestly runs the setup, with
PK = {(b1,b3,b

∗
1), (d1,d2,d3,d

∗
1,d
∗
2,d
∗
3)}, SK = {d7}, and MK = {b∗3,d∗7}, from random

dual orthogonal bases.
OKeyGen(T̃`): The adversary is allowed to issue KeyGen-queries on an access-tree T̃` (for the

`-th query), for which the simulator chooses a random scalar a`,0
$← Zq and a random

a`,0-labeling (a`,λ)λ of the access-tree T̃`, and builds the key:

k∗`,0 = (a`,0, 0, 1)B∗ k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, 0, r`,λ, 0, 0)D∗

for all the leaves λ, where t`,λ = A(λ) in T`, π`,λ $← Zq and r`,λ
$← Z∗q if λ is an active

leave or r`,λ = 0 if it is passive. The decryption key dk` = (k∗`,0, (k
∗
`,λ)λ) is kept private,

and will be used for delegation queries;

ODelegate(T̃ , T̃ ′): The adversary is allowed to issue Delegate-queries for an access-tree T̃ ′, of
an already queried decryption key with access-tree T̃ = T̃`, with the only condition that
T̃ ′ ≤ T̃ . From dk` = (k∗0, (k

∗
λ)λ), for λ ∈ L, then the simulator computes the delegated

key as, ∀λ ∈ L′:

k′∗0 = k∗0 + (a′0, 0, 0)B∗ k′∗λ = k∗λ + (π′λ(tλ,−1), a′λ, 0, 0, 0, 0, 0, 0)D∗ ,

where k∗λ = (0, 0, 0, 0, 0, 0, 0)D∗ if λ was not in L, and a′0
$← Zq and (a′λ)λ is an a′0-labeling

of T ′.

RoREncaps(Γv, Γi = ∅): On the unique query on a set of attributes Γ = Γv, the simulator

chooses random scalars ω, ξ, ξ′
$← Zq. It then sets K0 = gξt and K1 = gξ

′

t . It generates the
ciphertext C = (c0, (ct)t∈Γ ) where

c0 = (ω, 0, ξ)B ct = (σt(1, t), ω, 0, 0, 0, 0, 0, 0)D

for all the attributes t ∈ Γ and σt
$← Zq. According to the real or random game (bit

b
$← {0, 1}), one outputs (Kb, C).

From the adversary’s guess b′ for b, if for some T̃ ′ asked as a delegation-query, T̃ ′(Γv, Γi) = 1,

then β
$← {0, 1}, otherwise β = b′. We denote Adv0 = Pr[β = 1|b = 1]− Pr[β = 1|b = 0].

We stress that in this game, we deal with delegation queries, but only want to show they
do not help to break indistinguishability of the encapsulated keys with the official Encaps
algorithm, and not the private Encaps∗ one. Hence, Γi = ∅ in the challenge ciphertext.

Game G1: We now show it can be reduced to Game G0 from the IND security game on
the KP-ABE, in the proof provided in the appendix D.3. The challenge ciphertext is already
exactly the same, as we only consider Encaps. But we have to emulate the key-generation
and key-delegation oracles OKeyGen and ODelegate using only the key-generation oracle from
Game G0 in the proof provided in the appendix D.3, we denote OKeyGen′, as it only partially
generates our new keys, with a 7-th coordinate r`,λ. First, we instantiate a list Λ.

OKeyGen(T̃`). The simulator calls the oracle OKeyGen′(T`), and chooses r`,λ
$← Z∗q or sets

r`,λ ← 0 according to whether λ ∈ La or λ ∈ Lp. It then adds the last component r`,λ
on every k∗`,λ using d∗7 which is known to the simulator. Finally, it updates Λ with a new
entry Λ` = (r`,λ)λ;

ODelegate(T̃`, T̃ ′). The simulator calls the oracle OKeyGen′(T ′) to get the decryption key dk.
As already noted, in the KP-ABE, a delegated key is indistinguishable from a fresh key.
Then, we pick the entry r`,λ from Λ`, to the last component r`,λ on every k∗λ using d∗7
which is known to the simulator. We stress that for any new leaf, not present in T̃` is
necessarily passive in the delegated tree T̃ ′. So, if a leaf is not in Λ`, r`,λ = 0.
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G0 Real Del-IND-Security game
c0 = ( ω 0 ξ ) ct = ( σt(1, t) ω | 0 0 0 ut 0 0 )

k∗`,0 = ( a`,0 0 1 ) k∗`,λ = ( π`,λ(t`,λ,−1) a`,λ | 0 0 0 r`,λ 0 0 )

G1 SubSpace-Ind Property, on (B,B∗)1,2 and (D,D∗)3,4, between 0 and τ
$← Zq

c0 = ( ω τ ξ ) ct = ( σt(1, t) ω | τ 0 0 ut 0 0 )

k∗`,0 = ( a`,0 0 1 ) k∗`,λ = ( π`,λ(t`,λ,−1) a`,λ | 0 0 0 r`,λ 0 0 )

G2 SubSpace-Ind Property, on (D,D∗)1,2,6, between 0 and τzt

c0 = ( ω τ ξ ) ct = ( σt(1, t) ω | τ 0 τzt ut 0 0 )

k∗`,0 = ( a`,0 0 1 ) k∗`,λ = ( π`,λ(t`,λ,−1) a`,λ | 0 0 0 r`,λ 0 0 )

G3 Introduction of an additional random-labeling. See Figure 13
c0 = ( ω τ ξ ) ct = ( σt(1, t) ω | τ 0 τzt ut 0 0 )

k∗`,0 = ( a`,0 r`,0 1 ) k∗`,λ = ( π`,λ(t`,λ,−1) a`,λ | 0 0
s`,λ
zt`,λ

r`,λ 0 0 )

G4 Formal basis change, on (B,B∗)2,3, to randomize ξ

c0 = ( ω τ ξ′′ ) ct = ( σt(1, t) ω | τ 0 τzt ut 0 0 )

k∗`,0 = ( a`,0 r`,0 1 ) k∗`,λ = ( π`,λ(t`,λ,−1) a`,λ | 0 0
s`,λ
zt`,λ

r`,λ 0 0 )

Fig. 12: Sequence of games on the keys for the Del-IND-security proof of our SA-KP-ABE

G2.k.0 Hybrid game for G2, with 1 ≤ k ≤ K + 1 (from Figure 4)
c0 = ( ω τ ξ ) ct = ( σt(1, t) ω | τ 0 τzt ut 0 0 )

` < k k∗`,0 = ( a`,0 r`,0 1 ) k∗`,λ = ( π`,λ(t`,λ,−1) a`,λ | 0 0
s`,λ
zt`,λ

r`,λ 0 0 )

` ≥ k k∗`,0 = ( a`,0 0 1 ) k∗`,λ = ( π`,λ(t`,λ,−1) a`,λ | 0 0 0 r`,λ 0 0 )

G2.k.1 SubSpace-Ind Property, on (B∗,B)1,2 and (D∗,D)3,4, between 0 and sk,∗

k∗k,0 = ( ak,0 sk,0 1 ) k∗k,λ = ( πk,λ(tk,λ,−1) ak,λ | sk,λ 0 0 rk,λ 0 0 )

G2.k.2 Masking of the labeling. See Figure 11 for Encaps, or Figure 14 for Encaps∗

k∗k,0 = ( ak,0 sk,0 1 ) k∗k,λ = ( πk,λ(tk,λ,−1) ak,λ | 0 0
sk,λ
ztk,λ

rk,λ 0 0 )

G2.k.3 Limitations on KeyGen-queries: sk,0 unpredictable, replaced by a random rk,0

k∗k,0 = ( ak,0 rk,0 1 ) k∗k,λ = ( πk,λ(tk,λ,−1) ak,λ | 0 0
sk,λ
ztk,λ

rk,λ 0 0 )

Fig. 13: Sequence of games on the keys for the Del-IND-security proof of our SA-KP-ABE
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In this new game, we are exactly using the security game from the IND security on the KP-
ABE, and simulating the 7-th component using d∗7. As this component does not change nor
intervene at all in any of the games from the proof in the appendix D.3, and this is exactly the
same situation as in Game G0 in that proof, we conclude by following those security games,
which leads to the adversary having zero advantage in the last game.

We stress that this simulation of ODelegate will be used in all the following proofs: a delegated
key is identical to a fresh key, excepted the common r`,λ for keys delegated from the same
original key.

E.2 Proof of Theorem 10 – Del-IND-Security for Encaps∗

Proof. The proof will proceed by games, with exactly the same sequence as in the previous proof
following the IND-security proof of the KP-ABE in the appendix D.3, except the RoREncaps-
challenge that allows non-empty Γi. For the same reason, the OEncaps-queries on pairs (Γv, Γi),
with Γi 6= ∅ can be simulated. Indeed, as above, everything on the 7-th component can be
done independently, knowing both d7 and d∗7, as these vectors will be known to the simulator,
almost all the time, except in some specific gaps. In theses cases, we will have to make sure how
to simulate the OEncaps ciphertexts. As explained in the proof, Section E.1, we can simulate
ODelegate-queries as OKeyGen-queries, since a delegated key is identical to a fresh key, except
the common r`,λ for keys delegated from the same original key. We thus just have to take care
about the way we choose r`,λ. This will be critical in G2.k.2.3.p.6, and it will be correct as the
same constraint will be applied to y`,λ introduced in G2.k.2.2

As in the IND-security proof of the KP-ABE, the idea of the sequence is to introduce an
additional labeling (s`,0, (s`,λ)λ) in each `-th key (in G2.k.1, from Figure 10), where each label
is masked by a random zt for each attribute t (in G2.k.2).

However, in order to go to game G2.k.3, one cannot directly conclude that sk,0 is independent
from the view of the adversary: we only know T̃k(Γv, Γi) = 0, but not necessarily Tk(Γv ·∪Γi) = 0,
as in the previous proof. Hence, we revisit this gap with an additional sequence presented in the
Figure 14 where we focus on the k-th key and the ciphertext, with random ω, τ, ξ, ξ′, (σt), (zt)

$←
Zq, but for all the OKeyGen-query, random a`,0, (π`,λ)

$← Zq, as well as a random a`,0-labeling

(a`,λ)λ of the access-tree Tk, but also s`,0
$← Zq and a second independent random s`,0-labeling

(s`,λ)λ of the access-tree Tk, and an independent random r`,0
$← Zq. The goal is to replace each

label sk,λ by a random independent value s′k,λ when utk,λ · rk,λ 6= 0. As a consequence, we will
consider below that s′k,λ denotes either the label sk,λ when utk,λ · rk,λ = 0 or a random scalar:

Game G2.k.2.0: The first game is exactly G2.k.2, where the simulator honestly runs the setup,
with PK = {(b1,b3,b

∗
1), (d1,d2,d3,d

∗
1,d
∗
2,d
∗
3)}, SK = {d7}, and MK = {b∗3,d∗7}, from ran-

dom dual orthogonal bases.
OKeyGen(T`) (or ODelegate-queries): The simulator builds the `-th key:

` < k k∗`,0 = (a`,0, r`,0, 1)B∗

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, s
′
`,λ/zt`,λ , r`,λ, 0, 0)D∗

` = k k∗k,0 = (ak,0, sk,0, 1)B∗

k∗k,λ = (πk,λ(tk,λ,−1), ak,λ, 0, 0, sk,λ/ztk,λ , rk,λ, 0, 0)D∗

` > k k∗`,0 = (a`,0, 0, 1)B∗

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, 0, r`,λ, 0, 0)D∗

with r`,λ
$← Zq if λ ∈ La or r`,λ = 0 if λ ∈ Lp. The decryption key dk` is then (k∗`,0, (k

∗
`,λ)λ).
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G2.k.2.0 Intermediate sequence from G2.k.2 (from Figure 13)
ct = ( σt(1, t) ω | τ 0 τzt ut 0 0 )

` < k k∗`,0 = ( a`,0 r`,0 1 )

k∗`,λ = ( π`,λ(t`,λ,−1) a`,λ | 0 0 s′`,λ/zt`,λ r`,λ 0 0 )

` = k k∗k,0 = ( ak,0 sk,0 1 )

k∗k,λ = ( πk,λ(tk,λ,−1) ak,λ | 0 0 sk,λ/ztk,λ rk,λ 0 0 )

` > k k∗`,0 = ( a`,0 0 1 )

k∗`,λ = ( π`,λ(t`,λ,−1) a`,λ | 0 0 0 r`,λ 0 0 )

s′`,λ is either the label s`,λ when r`,λ · ut`,λ = 0, or a random scalar in Zq otherwise

G2.k.2.1 SubSpace-Ind Property, on (D,D∗)4,5, between τ and 0

ct = ( σt(1, t) ω | 0 0 τzt ut 0 0 )

G2.k.2.2 SubSpace-Ind Property, on (D∗,D)2,4, between 0 and y`,λ
k∗k,0 = ( ak,0 sk,0 1 )

k∗k,λ = ( πk,λ(tk,λ,−1) ak,λ | yk,λ 0 sk,λ/ztk,λ rk,λ 0 0 )

G2.k.2.3 Formal basis change, on (D,D∗)5,7, to duplicate r`,λ

` < k k∗`,0 = ( a`,0 r`,0 1 ) k∗`,λ = (. . . | y`,λ r`,λ s′`,λ/zt`,λ r`,λ 0 0 )

` = k k∗k,0 = ( ak,0 sk,0 1 ) k∗k,λ = (. . . | yk,λ rk,λ sk,λ/ztk,λ rk,λ 0 0 )

` > k k∗`,0 = ( a`,0 0 1 ) k∗`,λ = (. . . | y`,λ r`,λ 0 r`,λ 0 0 )

G2.k.2.4 Alteration of the labeling. See Figure 15

` < k k∗`,0 = ( a`,0 r`,0 1 ) k∗`,λ = (. . . | y`,λ 0 s′`,λ/zt`,λ rl,λ 0 0 )

` = k k∗k,0 = ( ak,0 sk,0 1 ) k∗k,λ = (. . . | yk,λ 0 s′k,λ/ztk,λ rk,λ 0 0 )

` > k k∗`,0 = ( a`,0 0 1 ) k∗`,λ = (. . . | y`,λ 0 0 r`,λ 0 0 )

G2.k.2.5 Limitations on KeyGen-queries: sk,0 unpredictable, replaced by a random rk,0

` = k k∗k,0 = ( ak,0 rk,0 1 ) k∗k,λ = (. . . | yk,λ 0 s′k,λ/ztk,λ rk,λ 0 0 )

G2.k.2.6 SubSpace-Ind Property, on (D∗,D)2,4, between y`,λ and 0
k∗k,0 = ( ak,0 rk,0 1 )

k∗k,λ = ( πk,λ(tk,λ,−1) ak,λ | 0 0 s′k,λ/ztk,λ rk,λ 0 0 )

G2.k.2.7 SubSpace-Ind Property, on (D,D∗)4,5, between 0 and τ

ct = ( σt(1, t) ω | τ 0 τzt ut 0 0 )

Fig. 14: Sequence of games on the keys for the Del-IND-security proof of our SA-KP-ABE
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G2.k.2.3.p.0 Hybrid game for G2.k.2.3, with 1 ≤ p ≤ P + 1 (from Figure 14)
c0 = ( ω τ ξ )
ct = ( σt(1, t) ω | 0 0 τzt ut |0 0)

` < k k∗`,0 = ( a`,0 r`,0 1 )

k∗`,λ = ( π`,λ(t`,λ,−1) a`,λ | y`,λ r`,λ s′`,λ/zt`,λ r`,λ |0 0)

` = k k∗k,0 = ( ak,0 sk,0 1 )

tk,λ < p k∗k,λ = ( πk,λ(tk,λ,−1) ak,λ | yk,λ rk,λ s′k,λ/ztk,λ rk,λ |0 0)

tk,λ ≥ p k∗k,λ = ( πk,λ(tk,λ,−1) ak,λ | yk,λ rk,λ sk,λ/ztk,λ rk,λ |0 0)

` > k k∗`,0 = ( a`,0 0 1 )

k∗`,λ = ( π`,λ(t`,λ,−1) a`,λ | y`,λ r`,λ 0 r`,λ |0 0)

s′`,λ is either the label s`,λ when r`,λ · ut`,λ = 0, or a random scalar in Zq otherwise

G2.k.2.3.p.1 Swap-Ind Property, on (D,D∗)5,7, for 0 and up in cp only

cp = (. . . | 0 up τzp 0 |0 0) ct = (. . . | 0 0 τzt ut |0 0)

G2.k.2.3.p.2 Index-Ind Property, on (D∗,D)1,2,5, between r`,λ and 0, for all t`,λ 6= p
cp = (. . . | 0 up τzp 0 |0 0) ct = (. . . | 0 0 τzt ut |0 0)

t`,λ 6= p, ` < k k∗`,λ = (. . . | y`,λ 0 s′`,λ/zt`,λ r`,λ |0 0)

k∗`,λ = (. . . | y`,λ r`,λ s′`,λ/zp r`,λ |0 0) t`,λ = p, ` < k

tk,λ < p, ` = k k∗k,λ = (. . . | yk,λ 0 s′k,λ/ztk,λ rk,λ |0 0)

k∗k,λ = (. . . | yk,λ rk,λ sk,λ/zp rk,λ |0 0) tk,λ = p, ` = k

tk,λ > p, ` = k k∗k,λ = (. . . | yk,λ 0 sk,λ/ztk,λ rk,λ |0 0)

t`,λ 6= p, ` > k k∗`,λ = (. . . | y`,λ 0 0 r`,λ |0 0)

k∗`,λ = (. . . | y`,λ r`,λ 0 r`,λ |0 0) t`,λ = p, ` > k

G2.k.2.3.p.3 Formal change of basis on column 5, multiplying ciphertext by τzp/up

cp = (. . . | 0 τzp τzp 0 |0 0) ct = (. . . | 0 0 τzt ut |0 0)

k∗`,λ = (. . . | y`,λ r`,λup/τzp s′`,λ/zp r`,λ |0 0) t`,λ = p, ` < k

k∗k,λ = (. . . | yk,λ rk,λup/τzp sk,λ/zp rk,λ |0 0) tk,λ = p, ` = k

k∗`,λ = (. . . | y`,λ r`,λup/τzp 0 r`,λ |0 0) t`,λ = p, ` > k

G2.k.2.3.p.4 Index-Ind Property, on (D,D∗)1,2,5, between 0 and τzt, for t 6= p

cp = (. . . | 0 τzp τzp 0 |0 0) ct = (. . . | 0 τzt τzt ut |0 0)

G2.k.2.3.p.5 Swap-Ind Property, on (D∗,D)4,5,6, between rk,λup/τzp and 0, for tk,λ = p only
cp = (. . . | 0 τzp τzp 0 |0 0) ct = (. . . | 0 τzt τzt ut |0 0)

k∗`,λ = (. . . | y`,λ r`,λup/τzp s′`,λ/zp r`,λ |0 0) t`,λ = p, ` < k

k∗k,λ = (. . . | yk,λ 0
sk,λ+rk,λup/τ

zp
rk,λ |0 0) tk,λ = p, ` = k

k∗`,λ = (. . . | y`,λ r`,λup/τzp 0 r`,λ |0 0) t`,λ = p, ` > k

Fig. 15: Sequence of sub-games on the attributes for the Del-IND-security proof of our SA-KP-
ABE (Cont’ed on Figure 15)
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G2.k.2.3.p.6 SubSpace-Ind Property, on (D∗,D)4,7, to randomize rk,λ for tk,λ = p
cp = (. . . | 0 τzp τzp 0 |0 0) ct = (. . . | 0 τzt τzt ut |0 0)

t`,λ 6= p, ` < k k∗`,λ = (. . . | y`,λ 0 s′`,λ/zt`,λ r`,λ |0 0)

tk,λ < p, ` = k k∗k,λ = (. . . | yk,λ 0 s′k,λ/ztk,λ rk,λ |0 0)

k∗`,λ = (. . . | y`,λ r`,λup/τzp s′`,λ/zp r`,λ |0 0) t`,λ = p, ` < k

k∗k,λ = (. . . | yk,λ 0 s′k,λ/zp r′k,λ |0 0) tk,λ = p, ` = k

k∗`,λ = (. . . | y`,λ r`,λup/τzp 0 r`,λ |0 0) t`,λ = p, ` > k

tk,λ > p, ` = k k∗k,λ = (. . . | yk,λ 0 sk,λ/ztk,λ rk,λ |0 0)

t`,λ 6= p, ` > k k∗`,λ = (. . . | y`,λ 0 0 r`,λ |0 0)

G2.k.2.3.p.7 Swap-Ind Property, on (D∗,D)4,5,6, between 0 and r′k,λup/τzp, for tk,λ = p only

cp = (. . . | 0 τzp τzp 0 |0 0) ct = (. . . | 0 τzt τzt ut |0 0)
k∗`,λ = (. . . | y`,λ r`,λup/τzp s′`,λ/zp r`,λ |0 0) t`,λ = p, ` < k

k∗k,λ = (. . . | yk,λ r′k,λup/τzp
s′k,λ−r

′
k,λup/τ

zp
r′k,λ |0 0) tk,λ = p, ` = k

k∗`,λ = (. . . | y`,λ r`,λup/τzp 0 r`,λ |0 0) t`,λ = p, ` > k

G2.k.2.3.p.8 Index-Ind Property, on (D,D∗)1,2,5, between τzt and 0

cp = (. . . | 0 τzp τzp 0 |0 0) ct = (. . . | 0 0 τzt ut |0 0)

t`,λ 6= p, ` < k k∗`,λ = (. . . | y`,λ 0 s′`,λ/zt`,λ r`,λ |0 0)

tk,λ < p, ` = k k∗k,λ = (. . . | yk,λ 0 s′k,λ/ztk,λ rk,λ |0 0)

k∗`,λ = (. . . | y`,λ r`,λup/τzp s′`,λ/zp r`,λ |0 0) t`,λ = p, ` ≤ k
k∗`,λ = (. . . | y`,λ r`,λup/τzp 0 r`,λ |0 0) t`,λ = p, ` > k

tk,λ > p, ` = k k∗k,λ = (. . . | yk,λ 0 sk,λ/ztk,λ rk,λ |0 0)

t`,λ 6= p, ` > k k∗`,λ = (. . . | y`,λ 0 0 r`,λ |0 0)

G2.k.2.3.p.9 Formal change of basis

cp = (. . . | 0 up τzp 0 |0 0) ct = (. . . | 0 0 τzt ut |0 0)

k∗`,λ = (. . . | y`,λ r`,λ s′`,λ/zp r`,λ |0 0) t`,λ = p, ` ≤ k

k∗`,λ = (. . . | y`,λ r`,λ 0 r`,λ |0 0) t`,λ = p, ` > k

G2.k.2.3.p.10 Index-Ind Property, on (D∗,D)1,2,5, between 0 and r`,λ, for all t`,λ 6= p
cp = (. . . | 0 up τzp 0 |0 0) ct = (. . . | 0 0 τzt ut |0 0)

t`,λ 6= p, ` < k k∗`,λ = (. . . | y`,λ r`,λ s′`,λ/zt`,λ r`,λ |0 0)

tk,λ < p, ` = k k∗k,λ = (. . . | yk,λ rk,λ s′k,λ/ztk,λ rk,λ |0 0)

k∗`,λ = (. . . | y`,λ r`,λ s′`,λ/zp r`,λ |0 0) t`,λ = p, ` ≤ k
k∗`,λ = (. . . | 0 r`,λ 0 r`,λ |0 0) t`,λ = p, ` > k

tk,λ > p, ` = k k∗k,λ = (. . . | yk,λ rk,λ sk,λ/ztk,λ rk,λ |0 0)

t`,λ 6= p, ` > k k∗`,λ = (. . . | y`,λ r`,λ 0 r`,λ |0 0)

G2.k.2.3.p.11 Swap-Ind Property, on (D,D∗)5,7, for 0 and up

cp = (. . . | 0 0 τzp up |0 0) ct = (. . . | 0 0 τzt ut |0 0)

Fig. 15: Sequence of sub-games on the attributes for the Del-IND-security proof of our SA-KP-
ABE (Cont’ed)
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OEncaps(Γm,v, Γm,i): The simulator builds the m-th ciphertext using all the known vectors
of the basis:

cm,0 = (ωm, 0, ξm)B cm,t = (σm,t(t,−1), ωm, 0, 0, 0, um,t, 0, 0)D

with ωm, ξm
$← Zq, σm,t $← Zq and um,t

$← Z∗q if t ∈ Γm,i or um,t ← 0 if t ∈ Γm,v. The
ciphertext Cm is then (cm,0, (cm,t)t);

RoREncaps(Γv, Γi): On the unique query on a set of attributes (Γv ·∪ Γi), the simulator gen-
erates the ciphertext C = (c0, (ct)t∈(Γv ·∪Γi)) where

c0 = (ω, τ, ξ)B ct = (σt(1, t), ω, τ, 0, τzt, ut, 0, 0)D

for all the attributes t ∈ (Γv ·∪ Γi), with ut
$← Zq if t ∈ Γi or ut = 0 if t ∈ Γv. According

to the real or random game (bit b
$← {0, 1}), one outputs (Kb, C).

From the adversary’s guess b′ for b, if for some T̃ , T̃ (Γv, Γi) = 1, then β
$← {0, 1}, otherwise

β = b′. We denote Adv2.k.2.0 = Pr[β = 1|b = 1] − Pr[β = 1|b = 0]. The goal of this sequence
of games is to replace sk,0, that can be derived by an acceptable set of sk,λ, by a random and
independent value rk,0, in the key generated during the k-th OKeyGen-query.
Indeed, to be a legitimate attack (that does not randomize the adversary’s guess b′), for all
the key queries T̃`, one must have T̃`(Γv, Γi) = 0. In particular, T̃k(Γv, Γi) = 0: this means
that

– either the regular access-tree policy is not met, i.e., Tk(Γv ·∪ Γi) = 0.

– or the regular access-tree policy is met, but one active key leaf matches one invalid
ciphertext attribute: ∀T ′ ∈ EPT(Tk, Γv ·∪ Γi),∃λ ∈ T ′ ∩ La, A(λ) ∈ Γi, and from the
assumptions, for any such tree T ′, the active leave is an independent leave.

In both cases, we will use the same technique to show sk,0 is independent from any other
value. But first, we will replace all the active leaves associated to invalid ciphertexts in the
challenge ciphertext by inactive leaves.
Of course, in the following sequence, we will have to take care of the simulation of the challenge
ciphertext, but also of the OEncaps-oracle. For the latter, we will have to clarify how we do
the simulation when public vectors (d1,d2,d3) or the private vector d7 are impacted.

Game G2.k.2.1: In this game, we first clean the 4-th column of the ciphertext from the τ . To
this aim, we are given a tuple (a ·G1, b ·G1, c ·G1) in G1, where c = ab+µ mod q with either
µ = 0 or µ = τ (fixed from c0). When we start from random dual orthogonal bases (U,U∗)
and (V,V∗) of size 3 and 7 respectively, one considers the matrices:

D =

(
1 a
0 1

)
3,4

D′ =

(
1 0
−a 1

)
3,4

D∗ = D′ · V∗ D = D · V

We can calculate all vectors but d∗3. Hence, there is no problem for simulating the OEncaps-
queries. For the challenge ciphertext, we exploit the DSDH assumption:

ct = (σt(1, t), b, c, 0, τzt, ut, 0, 0)V = (σt(1, t), b, c− ab, 0, τzt, ut, 0, 0)D

= (σt(1, t), b, µ, 0, τzt, ut, 0, 0)D

which is correct, with ω = b and according to µ, this is either τ , as in the previous game or
0 as in this game. For the keys, one notes that the 4-th component is 0, and so the change of
basis has no impact on the 3-rd component, when using basis V∗:

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, . . .)V∗ = (π`,λ(t`,λ,−1), a`,λ, 0, . . .)D∗

Then, we have Adv2.k.2.0 − Adv2.k.2.1 ≤ 2 · AdvddhG1
(t).
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Game G2.k.2.2: In this game, we can now introduce noise in the 4-th column the keys. In
order to properly deal with delegated keys, as for r`,λ that have to be the same values for all
the leaves delegated from the same initial key, we will also set the same random y`,λ. To this
aim, we are given a tuple (a · G2, b · G2, c · G2) in G2, where c = ab + ζ mod q with either

ζ = 0 or ζ
$← Z∗q . We choose additional random scalars α`,λ, β`,λ

$← Zq (but the same α`,λ for
all the leaves delegated from the same initial key), to virtually set b`,λ = α`,λ · b + β`,λ and
c`,λ = α`,λ · c+ β`,λ · a, then c`,λ − ab`,λ = ζ · α`,λ, which are either 0 or independent random
values. When we start from random dual orthogonal bases (U,U∗) and (V,V∗) of size 3 and
7 respectively, one considers the matrices:

D =

(
1 0
a 1

)
2,4

D′ =

(
1 −a
0 1

)
2,4

D∗ = D′ · V∗ D = D · V

We can calculate all vectors but d4, which is not used anywhere. Then, for the keys, we
exploit the DDH assumption:

k∗`,λ = (b`,λ(t`,λ,−1), a`,λ, c`,λ, . . .)V∗ = (b`,λ(t`,λ,−1), a`,λ, c`,λ − ab`,λ, . . .)D∗
= (b`,λ(t`,λ,−1), a`,λ, ζ · α`,λ, . . .)D∗

Which is either the previous game, with π`,λ = b`,λ, when ζ = 0, or the current game with
y`,λ = ζ · α`,λ (the same random y`,λ for all the leaves delegated from the same initial key):
Adv2.k.2.1 − Adv2.k.2.2 ≤ AdvddhG2

(t).

Game G2.k.2.3: In this game, we duplicate every r`,λ into the 5-th column of the key. To this
aim, one defines the matrices

D =

(
1 1
0 1

)
5,7

D′ =

(
1 0
−1 1

)
5,7

D∗ = D′ · V∗ D = D · V

which only modifies d5, which is hidden, and d∗7, which is secret, so the change is indistin-
guishable for the adversary. One can compute the keys and ciphertexts as follows, for all
leaves λ of each query ` of the adversary:

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, y`,λ, 0, s`,λ/zt`,λ , r`,λ, 0, 0)V∗

= (π`,λ(t`,λ,−1), a`,λ, y`,λ, r`,λ, s`,λ/zt`,λ , r`,λ, 0, 0)D∗

ct = (σt(1, t), ω, 0, 0, τzt, ut, 0, 0)V = (σt(1, t), ω, 0, 0, τzt, ut, 0, 0)D

As the 5-th component in the ciphertext is 0, the change of basis makes no change. And
this is the same for the ciphertexts generated by the OEncaps-simulation. Hence, the perfect
indistinguishability between the two games: Adv2.k.2.3 = Adv2.k.2.2.

Game G2.k.2.4: In this game, we target the k-th OKeyGen-query, and replace sk,λ by an inde-
pendent s′k,λ for all the active leaves that correspond to an invalid attribute in the challenge
ciphertext. For the sake of simplicity, s′`,λ is either the label s`,λ when r`,λ · ut`,λ = 0, or a
random independent scalar in Zq:

k∗k,0 = (ak,0, sk,0, 1)B∗

k∗k,λ = (πk,λ(tk,λ,−1), ak,λ, yk,λ, 0, s
′
k,λ/ztk,λ , rk,λ, 0, 0)D∗

But to this aim, we will need an additional sequence of sub-games G2.k.2.3.p.∗, that will operate
iteratively on each attribute p, to convert G2.k.2.3 into G2.k.2.4, as presented in the Figure 15.
But we first complete the first sequence, and details the sub-sequence afterwards.
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Game G2.k.2.5: For the k-th key query, one can now replace sk,0 by rk,0. Indeed, as explained in
the Remark 30, for missing ciphertexts in the challenge ciphertext, the associated leaves in the
key have unpredictable sk,λ. In addition, for active leaves that correspond to invalid attributes
in the challenge ciphertext, sk,λ have been transformed into s′k,λ, random independent values.
Then, we can consider that all the leaves associated to attributes not in Γ are false, but
also active leaves associated to attributes in Γi are false. As T̃k(Γv, Γi) = 0, the root label is
unpredictable. One thus generates the k-th key query as:

k∗k,0 = (ak,0, rk,0, 1)B∗

k∗k,λ = (πk,λ(tk,λ,−1), ak,λ, yk,λ, 0, s
′
k,λ/ztk,λ , rk,λ, 0, 0)D∗

Game G2.k.2.6: We can now invert the above step, when we added y`,λ: Adv2.k.2.5−Adv2.k.2.6 ≤
AdvddhG2

(t).

Game G2.k.2.7: We can now invert the above step, when we removed τ from the ciphertext:
Adv2.k.2.6 − Adv2.k.2.7 ≤ 2 · AdvddhG1

(t).

We now detail the sub-sequence starting from G2.k.2.3.p.0 to prove the indistinguishability be-
tween G2.k.2.3 and G2.k.2.4. In the new hybrid game G2.k.2.3.p.0, the critical point will be the p-th
ciphertext, where, when p = 1, this is exactly the above Game G2.k.2.3, and when p = P + 1,
this is the above Game G2.k.2.4. And it will be clear, for any p, that G2.k.2.3.p.11 = G2.k.2.3.p+1.0.

With random ω, τ, ξ, ξ′, (σt), (zt)
$← Zq, but for all the OKeyGen-query, random a`,0, (yλ),

(π`,λ)
$← Zq, as well as a random a`,0-labeling (a`,λ)λ of the access-tree Tk, but also s`,0

$← Zq
and a second independent random s`,0-labeling (s`,λ)λ of the access-tree Tk, and an independent

random r`,0
$← Zq:

Game G2.k.2.3.p.0: One defines the hybrid game for p:

k∗k,0 = (ak,0, sk,0, 1)B∗

tk,λ < p k∗k,λ = (πk,λ(tk,λ,−1), ak,λ, yk,λ, rk,λ, s
′
k,λ/ztk,λ , rk,λ, 0, 0)D∗

tk,λ ≥ p k∗k,λ = (πk,λ(tk,λ,−1), ak,λ, yk,λ, rk,λ, sk,λ/ztk,λ , rk,λ, 0, 0)D∗

where s′`,λ is either the label s`,λ when r`,λ · ut`,λ = 0, or a random independent scalar in Zq
(when this is an active leaf that corresponds to an invalid ciphertext).
So one can note that if at the challenge query p ∈ Γv, then up = 0, and so we can jump to
G2.k.2.3.p.11, but we do not know it before the challenge-query is asked, whereas we have to
simulate the keys. This is the reason why we need to know the super sets Av and Ai: the
challenge ciphertext is anticipated with up = 0 if p ∈ Av or with up

$← Z∗q if p ∈ Ai.
Game G2.k.2.3.p.1: The previous game and this game are indistinguishable under the DDH

assumption in G1: one essentially uses theorem 24. Given a tuple (a · G1, b · G1, c · G1) in
G1, where c = ab + µ mod q with either µ = 0 or µ = up, the 7-th component of the p-th
ciphertext. When we start from random dual orthogonal bases (U,U∗) and (V,V∗) of size 3
and 7 respectively, one considers the matrices:

D =

1 a −a
0 1 0
0 0 1


1,5,7

D′ =

 1 0 0
−a 1 0
a 0 1


1,5,7

D = D · V D∗ = D′ · V∗

We can calculate all vectors but d∗5 and d∗7, which are not in the public key. Through V, we
calculate the challenge ciphertext for the attribute of the p-th ciphertext

cp = (0, 0, ω, 0, 0, τzp, up, 0, 0)D + (b(1, p), 0, 0, c, 0,−c, 0, 0)V

= (0, 0, ω, 0, 0, τzp, up, 0, 0)D + (b(1, p), 0, 0, c− ab, 0, ab− c, 0, 0)D

= (b(1, p), ω, 0, µ, τzp, up − µ, 0, 0)D
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If µ = 0, we are in the previous game. If µ = up, then we are in the current game. Then,
every other ciphertext is computed directly in D:

∀t 6= p, ct = (σt(1, t), ω, 0, 0, τzt, ut, 0, 0)D

as well as the answers to OEncaps-queries. The keys are calculated through V∗ but are
unchanged by the change of basis because the 5-th and 7-th components are exactly the
same for every key query `, and thus cancel themselves in the 1st component. We thus have
Adv2.k.2.3.p.0 − Adv2.k.2.3.p.1 ≤ 2 · AdvddhG1

(t).

Game G2.k.2.3.p.2: We keep the r`,λ value (at the 5-th hidden position) in the keys such that
t`,λ = p, and replace it in all other keys by 0, in order to prepare the possibility to later
modify the ciphertexts on this component. To show this is possible without impacting the
other vectors, we use the Index-Ind property from Theorem 3, but in another level of sequence
of hybrid games, for γ ∈ {1, . . . , P}\{p}. We will enumerate γ in their order of appearance in
the security game (wether in key queries, or ciphertexts), therefore we can treat an unbounded
number of γ.
Game G2.k.2.3.p.1.γ: We consider the following hybrid game, where the first satisfied condition

on the indices is applied:

cp = (σp(1, p), ω, 0, up, τzp, 0, 0, 0)D

ct = (σt(1, t), ω, 0, 0, τzt, ut, 0, 0)D t 6= p

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, y`,λ, r`,λ, s
∗
`,λ/zt`,λ , r`,λ, 0, 0)D∗ t`,λ = p

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, y`,λ, 0, s
∗
`,λ/zt`,λ , r`,λ, 0, 0)D∗ p 6= t`,λ < γ

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, y`,λ, r`,λ, s
∗
`,λ/zt`,λ , r`,λ, 0, 0)D∗ p 6= t`,λ ≥ γ

where s∗`,λ is either s′`,λ, s`,λ, or 0:

s∗`,λ = s′`,λ if ` < k, or ` = k, tk,λ < p

s∗`,λ = s`,λ if ` = k, tk,λ ≥ p
s∗`,λ = 0 if ` > k

When γ = 1, this is the previous game: G2.k.2.3.p.1.1 = G2.k.2.3.p.1, whereas with γ = P + 1,
this is the current game: G2.k.2.3.p.1.P+1 = G2.k.2.3.p.2.
We will gradually replace the r`,λ values, at the 5-th hidden position, by 0 (when t`,λ 6= p):
in this game, we deal with the case t`,λ = γ, for all the `-th keys.
For this, we use the Adaptive Index-Ind property on (D,D∗)1,2,5,8,9, with:

cp = (σp(1, p), ω, 0, up, τzp, 0, 0, 0)D

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, y`,λ, r`,λ, s
∗
`,λ/zt`,λ , r`,λ, 0, 0)D∗ t`,λ = γ

With all this sequence, we have Adv2.k.2.3.p.1−Adv2.k.2.3.p.2 ≤ 2P ·(8×AdvddhG1
(t)+4×AdvddhG2

(t)).

Game G2.k.2.3.p.3: The previous game (in bases (U,U∗,V,V∗)) and this game (in bases (B,B∗,D,D∗))
are perfectly indistinguishable by using a formal change of basis, on hidden vectors, with

D =
(
τzp
up

)
5

D′ =
(
up
τzp

)
5

D = D · V D∗ = D′ · V∗

The challenge ciphertext and keys that are impacted become:

cp = (σp(1, p), ω, 0, up, τzp, 0, 0, 0)V

= (σp(1, p), ω, 0, τzp, τzp, 0, 0, 0)D

∀`, t`,λ = p, k∗`,λ = (π`,λ(p,−1), a`,λ, y`,λ, r`,λ, s
∗
`,λ/zp, r`,λ, 0, 0)V∗

= (π`,λ(p,−1), a`,λ, y`,λ, r`,λup/τzp, s
∗
`,λ/zp, r`,λ, 0, 0)D∗
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All the other vectors have a zero in these components (included the OEncaps-ciphertexts).
Hence, Adv2.k.2.3.p.3 = Adv2.k.2.3.p.2. Note however this is because of this game the security
result requires the semi-adaptive super-set setting: the change of basis needs to know that
up 6= 0.

Game G2.k.2.3.p.4: We keep the τzp value (at the 5-th hidden position) in the ciphertext for
the p-th attribute only, and replace all the other values from 0 to τzt, which is the same value
as in the 6-th component of each ciphertext, to allow a later swap of the key elements from
the 6-th component to the 5-th:

cp = (σt(1, t), ω, 0, τzp, τzp, 0, 0, 0)D

ct = (σt(1, t), ω, 0, τzt, τzt, ut, 0, 0)D t 6= p

To show this is possible without impacting the other vectors, we use the Index-Ind property
from Theorem 3, but in another level of sequence of hybrid games, for γ ∈ {1, . . . , P}\{p}.
We will enumerate γ in their order of appearance in the security game (wether in key queries,
or in ciphertexts), therefore we can treat an unbounded number of γ.
Game G2.k.2.3.p.4.γ: We consider

cp = (σp(1, p), ω, 0, τzp, τzp, 0, 0, 0)D

ct = (σt(1, t), ω, 0, τzt, τzt, ut, 0, 0)D p 6= t < γ

ct = (σt(1, t), ω, 0, 0, τzt, ut, 0, 0)D p 6= t ≥ γ
k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, y`,λ, r`,λ, s

∗
`,λ/zt`,λ , r`,λ, 0, 0)D∗ t`,λ = p

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, y`,λ, 0, s
∗
`,λ/zt`,λ , r`,λ, 0, 0)D∗ t`,λ 6= p

When γ = 1, this is the previous game: G2.k.2.3.p.4.1 = G2.k.2.3.p.3, whereas with γ = P + 1,
this is the current game: G2.k.2.3.p.4.P+1 = G2.k.2.3.p.4.
For this, we use the Adaptive Index-Ind property on (D∗,D)1,2,5,8,9, with:

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, y`,λ, r`,λ, s
∗
`,λ/zt`,λ , r`,λ, 0, 0)D∗ t`,λ = p

ct = (σt(1, t), ω, 0, 0, τzt, ut, 0, 0)D t = γ

With all this sequence, we have Adv2.k.2.3.p.3−Adv2.k.2.3.p.4 ≤ 2P ·(8×AdvddhG2
(t)+4×AdvddhG1

(t)).

Game G2.k.2.3.p.5: All ciphertexts now have exactly the same value in 5-th and 6-th positions.
We will thus use r`,λ in the 5-th position, for keys with t`,λ = p, to modify the 6-th position of
said keys with a swap. The previous game and this game are indistinguishable under the DDH
assumption in G2: one essentially uses theorem 24. We consider a triple (a ·G2, b ·G2, c ·G2),
where c = ab+ζ mod q with either ζ = 0 or ζ = up/τzp, which are indistinguishable under the
DSDH assumption. When we start from random dual orthogonal bases (U,U∗) and (V,V∗)
of size 3 and 7 respectively, one considers the matrices:

D =

 1 0 0
−a 1 0
a 0 1


1,5,6

D′ =

1 a −a
0 1 0
0 0 1


1,5,6

D = D · V D∗ = D′ · V∗

We can calculate all vectors but d5 and d6, which are not in the public key: However the
challenge ciphertext computation through V is trivial since the 5-th and 6-th components
cancel each other out. We can thus simulate them in D.
For challenge ciphertexts, we set

cp = (σt(1, t), ω, 0, τzp, τzp, 0, 0, 0)V = (σt(1, t), ω, 0, τzp, τzp, 0, 0, 0)D

ct = (σt(1, t), ω, 0, τzt, τzt, ut, 0, 0)V = (σt(1, t), ω, 0, τzt, τzt, ut, 0, 0)D t 6= p
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The only keys that are calculated through V∗ are the ones from the k-th query so that tk,λ = p.

We choose additional random scalars βk,λ
$← Zq, to virtually set bk,λ = rk,λ · b + βk,λ and

ck,λ = rk,λ · c+ βk,λ · a, then ck,λ − abk,λ = ζ · rk,λ, which is either 0 or rk,λ · up/τzp.

k∗k,λ = (0, 0, ak,λ, yk,λ, 0, 0, rk,λ, 0, 0)D∗

+ (b(p,−1), 0, 0, 0, rk,λ · up/τzp − ck,λ, ck,λ + sk,λ/zp, 0, 0, 0)V∗

k∗k,λ = (0, 0, ak,λ, yk,λ, 0, 0, rk,λ, 0, 0)D∗

+ (b(p,−1), 0, 0, bk,λ, rk,λ · up/τzp − (ck,λ − abk,λ),

(ck,λ − abk,λ) + sk,λ/zp, 0, 0, 0)D∗

k∗k,λ = (b(p,−1), ak,λ, yk,λ, rk,λ · up/τzp − ζ · rk,λ, ζ · rk,λ +
sk,λ
zp

, rk,λ, 0, 0)D∗

If ζ = 0, we are in the previous game. If ζ = up/τzp, then ζ · rk,λ = rk,λ ·up/τzp and we are in
the current game. All other keys are unchanged and calculated through D∗ directly, without
any change. And, Adv2.k.2.3.p.4 − Adv2.k.2.3.p.5 ≤ 2 · AdvddhG2

(t).

Game G2.k.2.3.p.6: In this game, we want to replace rk,λ when tk,λ = p by a random value
in the 7-th column, independently of the value in the 6-th column, so that this 6-th column
value can be really random and independent from other values. We will exploit the random
yk,λ in the 4-th column: We consider a triple (a ·G2, b ·G2, c ·G2), where c = ab+ζ mod q with

either ζ = 0 or ζ
$← Z∗q , which are indistinguishable under the DDH assumption. We choose

additional random scalars αλ, βλ
$← Zq, to virtually set bλ = αλ ·b+βλ and cλ = αλ ·c+βλ ·a,

then cλ−abλ = ζ ·αλ, which are either 0 or independent random values. When we start from
random dual orthogonal bases (U,U∗) and (V,V∗) of size 3 and 7 respectively, one considers
the matrices:

D =

(
1 0
−a 1

)
4,7

D′ =

(
1 a
0 1

)
4,7

D = D · V D∗ = D′ · V∗

We can calculate all vectors but d7, which is not in the public key. Through V, we calculate
the challenge ciphertext, and the OEncaps-answers, when the 7-th component is non-zero, as
the 0 value of the 4-th component does not impact the 7-th during the change of basis.
On the other hand, all the keys can be directly generated in D∗, except kk,λ when tk,λ = p,
for which we use the DDH assumption:

k∗k,λ = (πk,λ(p,−1), ak,λ, 0, 0,
sk,λ + rk,λ · up/τ

zp
, rk,λ, 0, 0)D∗

+ (0, 0, 0, bλ, 0, 0, cλ, 0, 0)V∗

= (πk,λ(p,−1), ak,λ, 0, 0,
sk,λ + rk,λ · up/τ

zp
, rk,λ, 0, 0)D∗

+ (0, 0, 0, bλ, 0, 0, cλ − abλ, 0, 0)D∗

= (πk,λ(p,−1), ak,λ, bλ, 0,
sk,λ + rk,λ · up/τ

zp
, rk,λ + ζ · αλ, 0, 0)V∗

When ζ = 0, this is the previous game, with yk,λ = bλ, when tk,λ = p. Whereas when ζ
$← Z∗q ,

r′k,λ = rk,λ+ζ ·αλ is independent of rk,λ, which makes s′k,λ = (sk,λ+rk,λ ·up/τ)/zp independent

of sk,λ when rk,λ · up 6= 0. Then, Adv2.k.2.3.p.5 − Adv2.k.2.3.p.6 ≤ AdvddhG2
(t).

In order to keep the same r`,λ for all the leaves delegated from the same initial key, we also
apply this additional vector (0, 0, 0, bλ, 0, 0, cλ)V∗ . This will also keep the same y`,λ for all
these leaves.
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Game G2.k.2.3.p.7: All ciphertexts have exactly the same value in 5-th and 6-th positions. We
will thus use the Swap-Ind property to revert the change made in game G2.k.2.3.p.5, with the
notable difference we are now working with r′k,λ (which has just been randomized) instead
of rk,λ, for keys with tk,λ = p. We are thus not restoring the initial sk,λ but we get a truly
random value s′k,λ. The previous game and this game are indistinguishable under the DDH
assumption in G2: one essentially uses theorem 24. We consider a triple (a ·G2, b ·G2, c ·G2),
where c = ab+ζ mod q with either ζ = 0 or ζ = up/τzp, which are indistinguishable under the
DSDH assumption. When we start from random dual orthogonal bases (U,U∗) and (V,V∗)
of size 3 and 7 respectively, one considers the matrices:

D =

 1 0 0
−a 1 0
a 0 1


4,5,6

D′ =

1 a −a
0 1 0
0 0 1


4,5,6

D = D · V D∗ = D′ · V∗

We can calculate all vectors but d5 and d6, which are not in the public key: However, the
challenge ciphertext computation through V is trivial since the 5-th and 6-th component
cancel each other out. We can thus simulate them through V. We can revert as above by
setting in V∗ the keys from the k-th query so that tk,λ = p. And, Adv2.k.2.3.p.6−Adv2.k.2.3.p.7 ≤
2 · AdvddhG2

(t). We stress that after the swap, we get, for tk,λ = p

k∗k,λ = (πk,λ(p,−1), ak,λ, yk,λ, r
′
k,λup/τzp, (s

′
k,λ − r′k,λup/τ)/zp, r

′
k,λ, 0, 0)D∗

where s′k,λ is a truly random value independent of r′k,λ. So we are not back to game G2.k.2.3.p.4,
but still with a random value in the 6-th component of the key.

Game G2.k.2.3.p.8: We keep the τzp value (at the 5-th hidden position) in the ciphertext for
the p-th attribute only, and replace all the other values from τzt to 0

cp = (σt(1, t), ω, 0, τzp, τzp, 0, 0, 0)D

ct = (σt(1, t), ω, 0, 0, τzt, ut, 0, 0)D t 6= p

To show this is possible without impacting the other vectors, we use the Index-Ind property
from Theorem 3, but in another level of sequence of hybrid games, for γ ∈ {1, . . . , P}\{p}.
We will enumerate γ in their order of appearance in the security game (wether in key queries,
or in ciphertexts), therefore we can treat an unbounded number of γ.
Game G2.k.2.3.p.8.γ: We consider

cp = (σp(1, p), ω, 0, τzp, τzp, 0, 0, 0)D

ct = (σt(1, t), ω, 0, 0, τzt, ut, 0, 0)D p 6= t < γ

ct = (σt(1, t), ω, 0, τzt, τzt, ut, 0, 0)D p 6= t ≥ γ
k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, y`,λ, r

′
`,λ, s

∗
`,λ/zt`,λ , r

′
`,λ, 0, 0)D∗ t`,λ = p

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, y`,λ, 0, s
∗
`,λ/zt`,λ , r`,λ, 0, 0)D∗ t`,λ 6= p

When γ = 1, this is the previous game: G2.k.2.3.p.8.1 = G2.k.2.3.p.7, whereas with γ = P + 1,
this is the current game: G2.k.2.3.p.8.P+1 = G2.k.2.3.p.8.
For this, we use the Adaptive Index-Ind property on (D∗,D)1,2,5,8,9, with:

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, y`,λ, r
′
`,λ, s

∗
`,λ/zt`,λ , r

′
`,λ, 0, 0)D∗ t`,λ = p

ct = (σt(1, t), ω, 0, τzt, τzt, ut, 0, 0)D t = γ

With all this sequence, we have Adv2.k.2.3.p.7−Adv2.k.2.3.p.8 ≤ 2P (8×AdvddhG2
(t)+4×AdvddhG1

(t)).
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Game G2.k.2.3.p.9: The previous game (in bases (U,U∗,V,V∗)) and this game (in bases (B,B∗,D,D∗))
are perfectly indistinguishable by using a formal change of basis, on hidden vectors, with

D =
(
up
τzp

)
5

D′ =
(
τzp
up

)
5

D = D · V D∗ = D′ · V∗

The challenge ciphertext and keys that are impacted become:

cp = (σp(1, p), ω, 0, τzp, τzp, 0, 0, 0)V

= (σp(1, p), ω, 0, up, τzp, 0, 0, 0)D

∀`, t`,λ = p, k∗`,λ = (π`,λ(p,−1), a`,λ, y`,λ, r`,λ · up/τzp, s∗`,λ/zp, r`,λ, 0, 0)D∗

= (π`,λ(p,−1), a`,λ, y`,λ, r`,λ, s
∗
`,λ/zp, r`,λ, 0, 0)V∗

All the other vectors have a zero in these components (included the OEncaps-ciphertexts).
Hence, Adv2.k.2.3.p.9 = Adv2.k.2.3.p.8.

Game G2.k.2.3.p.10: We keep the r′`,λ value (at the 5-th hidden position) in the keys such that
t`,λ = p, and replace back the 0 in all other keys by r`,λ, in order to prepare the possibility to
later modify the ciphertexts on this component. To show this is possible without impacting
the other vectors, we use the Index-Ind property from Theorem 3, but in another level of
sequence of hybrid games, for γ ∈ {1, . . . , P}\{p}. We will enumerate γ in their order of
appearance in the security game (wether in key queries, or in ciphertexts), therefore we can
treat an unbounded number of γ.
Game G2.k.2.3.p.9.γ: We consider the following hybrid game, where the first satisfied condition

on the indices is applied:

cp = (σp(1, p), ω, 0, up, τzp, 0, 0, 0)D ct = (σt(1, t), ω, 0, 0, τzt, ut, 0, 0)D t 6= p

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, y`,λ, r`,λ, s
∗
`,λ/zt`,λ , r`,λ, 0, 0)D∗ t`,λ = p

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, y`,λ, r`,λ, s
∗
`,λ/zt`,λ , r`,λ, 0, 0)D∗ p 6= t`,λ < γ

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, y`,λ, 0, s
∗
`,λ/zt`,λ , r`,λ, 0, 0)D∗ p 6= t`,λ ≥ γ

where s∗`,λ is either s′`,λ, s`,λ, or 0
When γ = 1, this is the previous game: G2.k.2.3.p.9.1 = G2.k.2.3.p.9, whereas with γ = P + 1,
this is the current game: G2.k.2.3.p.9.P+1 = G2.k.2.3.p.10.
We will gradually replace the 0 values, at the 5-th hidden position, by r`,λ (when t`,λ 6= p):
in this game, we deal with the case t`,λ = γ, for all the `-th keys.
For this, we use the Adaptive Index-Ind property on (D,D∗)1,2,5,8,9, with:

cp = (σp(1, p), ω, 0, up, τzp, 0, 0, 0)D

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, y`,λ, 0, s
∗
`,λ/zt`,λ , r`,λ, 0, 0)D∗ t`,λ = γ

With all this sequence, we have Adv2.k.2.3.p.9−Adv2.k.2.3.p.10 ≤ 2P ·(8×AdvddhG1
(t)+4×AdvddhG2

(t)).

Game G2.k.2.3.p.11: The previous game and this game are indistinguishable under the DDH
assumption in G1: one essentially uses theorem 24. Given a tuple (a · G1, b · G1, c · G1) in
G1, where c = ab + µ mod q with either µ = 0 or µ = up, the 5-th component of the p-th
ciphertext. When we start from random dual orthogonal bases (U,U∗) and (V,V∗) of size 3
and 7 respectively, one considers the matrices:

D =

1 a −a
0 1 0
0 0 1


1,5,7

D′ =

 1 0 0
−a 1 0
a 0 1


1,5,7

D = D · V D∗ = D′ · V∗
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We can calculate all vectors but d∗5 and d∗7, which are not in the public key. Through V, we
calculate the challenge ciphertext for the attribute of the p-th ciphertext

cp = (0, 0, ω, 0, 0, τzp, up)D + (b(1, p), 0, 0, c, 0,−c, 0, 0)V

= (0, 0, ω, 0, 0, τzp, up)D + (b(1, p), 0, 0, c− ab, 0, ab− c, 0, 0)D

= (b(1, p), ω, 0, µ, τzp, up − µ, 0, 0)D

If µ = up, we are in the previous game. If µ = 0, then we are in the current game. Then,
every other ciphertext is computed directly in D:

∀t 6= p, ct = (σt(1, t), ω, 0, 0, τzt, ut, 0, 0)D

as well as the answers to OEncaps-queries. The keys are calculated through V∗ but are
unchanged by the change of basis because the 5-th and 7-th components are exactly the
same for every key query `, and thus cancel themselves in the 1st component. We thus have
Adv2.k.2.3.p.10 − Adv2.k.2.3.p.11 ≤ 2 · AdvddhG1

(t).

E.3 Proof of Theorem 11 – dKey-IND-Security

Proof. In this security game, the adversary has access to the OEncaps-oracle, but only for distinct
key-indistinguishability: all the invalid attributes t ∈ Γm,i in a OEncaps-query correspond to
passive leaves λ ∈ Lp from the challenge key. We will prove it as usual with a sequence of
games:

Game G0: The first game is the real game where the simulator plays the role of the chal-
lenger, with PK = {(b1,b3,b

∗
1), (d1,d2,d3,d

∗
1,d
∗
2,d
∗
3,d
∗
7)}, SK = {d7}, and MK = {b∗3},

from random dual orthogonal bases. We note that d∗7 can be public.
OKeyGen(T̃`) (or ODelegate-queries): The adversary is allowed to issue KeyGen-queries on an

access-tree T̃` = (T`,L`,a,L`,p) (for the `-th query), for which the simulator chooses a

random scalar a`,0
$← Zq and a random a`,0-labeling (a`,λ)λ of the access-tree T`, and

builds the key:

k∗`,0 = (a`,0, 0, 1)B∗ k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, 0, r`,λ, 0, 0)D∗

for all the leaves λ, where t`,λ = A(λ), π`,λ
$← Zq and r`,λ

$← Z∗q if λ ∈ L`,a, or else
r`,λ ← 0 if λ ∈ L`,p. The decryption key dk` is then (k∗`,0, (k

∗
`,λ)λ);

OEncaps(Γm,v, Γm,i): The adversary is allowed to issue Encaps∗-queries on disjoint unions
Γm = Γm,v ·∪ Γm,i of sets of attributes, for which the simulator chooses random scalars

ωm, ξm
$← Zq. It then setsKm = gξmt and generates the ciphertext Cm = (cm,0, (cm,t)t∈(Γm,v ·∪Γm,i))

where

cm,0 = (ωm, 0, ξm)B cm,t = (σm,t(t,−1), ωm, 0, 0, 0, um,t, 0, 0)D

for all the attributes t ∈ Γm,v ·∪ Γm,i, σm,t $← Zq and um,t
$← Z∗q if t ∈ Γm,i or um,t ← 0 if

t ∈ Γm,v.
RoAPKeyGen(T̃ ,La,Lp): On the unique query on an access-tree T̃ of its choice, with a list

L = (La ·∪Lp) of active and passive leaves, the simulator chooses a random scalar a0
$← Zq,

and a random a0-labeling (aλ)λ of the access-tree. It then sets the real key dk0 as follows,

with rλ
$← Z∗q if λ ∈ La, or rλ ← 0 if λ ∈ Lp:

k∗0 = (a0, 0, 1)B∗ k∗λ = (πλ(tλ,−1), aλ, 0, 0, 0, rλ, 0, 0)D∗

On the other hand, it sets the all-passive key dk1 as:

k∗0 = (a0, 0, 1)B∗ k∗λ = (πλ(tλ,−1), aλ, 0, 0, 0, 0, 0, 0)D∗

for all λ. According to the real or all-passive (b
$← {0, 1}), one outputs dkb.
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From the adversary’s guess b′ for b, one forwards it as the output β, unless for some (Γm,v, Γm,i)
asked to the OEncaps-oracle, some active leaf λ ∈ La from the challenge key corresponds to
some invalid attribute t ∈ Γm,i, in which case one outputs a random β

$← {0, 1}. We denote
Adv0 = Pr[β = 1|b = 1]− Pr[β = 1|b = 0].
We stress that in this distinct key-indistinguishability security game, the active keys in the
challenge key (λ ∈ La with possibly rλ 6= 0) correspond to valid ciphertexts only (t ∈ Γm,i
with um,t = 0, for all queries). But we do not exclude accepting access-trees.

c0 = (ω 0 ξ) k∗`,0 = (a`,0 0 1)

G0.p.0 Hybrid game for G0, with 1 ≤ p ≤ P + 1, such that um,p = 0 for all m
cm,t = ( σm,t(1, t) ωm | 0 0 0 um,t |0 0)

tλ < p k∗λ = ( πλ(tλ,−1) aλ | 0 0 0 0 |0 0)
tλ ≥ p k∗λ = ( πλ(tλ,−1) aλ | 0 0 0 rλ |0 0)

G0.p.1 Formal basis change, on (D,D∗)6,7, to duplicate um,t in the 6-th column

cm,t = ( σm,t(1, t) ωm | 0 0 um,t um,t |0 0)

tλ < p k∗λ = ( πλ(tλ,−1) aλ | 0 0 0 0 |0 0)
tλ ≥ p k∗λ = ( πλ(tλ,−1) aλ | 0 0 0 rλ |0 0)

G0.p.2 Swap-Ind Property, on (D,D∗)1,6,7, to swap rλ, for tλ = p, in the 6-th column
cm,t = ( σm,t(1, t) ωm | 0 0 um,t um,t |0 0)

tλ < p k∗λ = ( πλ(tλ,−1) aλ | 0 0 0 0 |0 0)

tλ = p k∗λ = ( πλ(p,−1) aλ | 0 0 rλ 0 |0 0)

tλ > p k∗λ = ( πλ(tλ,−1) aλ | 0 0 0 rλ |0 0)

G0.p.3 Index-Ind Property, on (D,D∗)1,2,6, between um,t and 0, for t 6= p
cm,p = ( σm,t(1, t) ωm | 0 0 0 0 |0 0)

t 6= p cm,t = ( σm,t(1, t) ωm | 0 0 0 um,t |0 0)

tλ < p k∗λ = ( πλ(tλ,−1) aλ | 0 0 0 0 |0 0)
tλ = p k∗λ = ( πλ(p,−1) aλ | 0 0 rλ 0 |0 0)
tλ > p k∗λ = ( πλ(tλ,−1) aλ | 0 0 0 rλ |0 0)

G0.p.4 SubSpace-Ind Property, on (D∗,D)1,6, between up and 0
cm,t = ( σm,t(1, t) ωm | 0 0 0 um,t |0 0)

tλ < p k∗λ = ( πλ(tλ,−1) aλ | 0 0 0 0 |0 0)

tλ = p k∗λ = ( πλ(p,−1) aλ | 0 0 0 0 |0 0)

tλ > p k∗λ = ( πλ(tλ,−1) aλ | 0 0 0 rλ |0 0)

Fig. 16: Sub-sequence of games for Distinct Key-Indistinguishability

Game G1: In the second and final game, we set rλ ← 0 for all the leaves in the real key dk0:

k∗0 = (a0, 0, 0)B∗ k∗λ = (πλ(tλ,−1), aλ, 0, 0, 0, 0, 0, 0)D∗

It is then clear than Adv1 = 0, as all challenge keys are independent from b.
We detail the sub-sequence starting from G0.p.0 to prove the indistinguishability between
G0 and G1. In the new hybrid sequence G0.p.∗, we will modify all the keys associated to
the p-th attribute, in an indistinguishable way, using the Index-Ind property. It is clear that
G0.1.0 = G0, whereas G0.P+1.0 = G1, and G0.p.4 = G0.p+1.0.
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Game G0.p.0: One defines the hybrid game for p :

cm,t = (σm,t(1, t), ωm, 0, 0, 0, um,t, 0, 0)D

tλ < p k∗λ = (πλ(tλ,−1), aλ, 0, 0, 0, 0, 0, 0)D∗

tλ ≥ p k∗λ = (πλ(tλ,−1), aλ, 0, 0, 0, rλ, 0, 0)D∗

Game G0.p.1: In this game, we duplicate every um,t into the 5-th column of the ciphertext.
To this aim, one defines the matrices

D =

(
1 0
1 1

)
6,7

D′ =

(
1 −1
0 1

)
6,7

D∗ = D′ · V∗ D = D · V

which only modifies d7, which is secret, and d∗6, which is hidden, so the change is indistin-
guishable for the adversary. One can compute the keys and ciphertexts as follows, for all
leaves λ, and for each of each query m of the adversary:

cm,t = (σm,t(1, t), ωm, 0, 0, 0, um,t, 0, 0)V

= (σm,t(1, t), ωm, 0, 0, um,t, um,t, 0, 0)D

tλ < p k∗λ = (πλ(tλ,−1), aλ, 0, 0, 0, 0, 0, 0)V∗

= (πλ(tλ,−1), aλ, 0, 0, 0, 0, 0, 0)D∗

tλ ≥ p k∗λ = (πλ(tλ,−1), aλ, 0, 0, 0, rλ, 0, 0)V∗

= (πλ(tλ,−1), aλ, 0, 0, 0, rλ, 0, 0)D∗

Hence, the perfect indistinguishability between the two games: Adv0.p.1 = Adv0.p.0.

Game G0.p.2: The previous game and this game are indistinguishable under the DSDH
assumption in G2: one essentially uses theorem 24. Given a tuple (a · G2, b · G2, c · G2) in
G2, where c = ab+µ mod q with either µ = 0 or µ = 1, the 7-th component of the leaf λ of
the challenge key, with tλ = p. When we start from random dual orthogonal bases (U,U∗)
and (V,V∗) of size 3 and 7 respectively, one considers the matrices:

D =

 1 0 0
a 1 0
−a 0 1


2,6,7

D′ =

1 −a a
0 1 0
0 0 1


2,6,7

D = D · V D∗ = D′ · V∗

We can calculate all vectors but d6 and d7, which are not in the public key. Through V,
we calculate the challenge key for the attribute of the p-th ciphertext
We choose additional random scalars βλ

$← Zq, to virtually set bλ = rλ · b + βλ and
cλ = rλ · c+ βλ · a, then cλ − abλ = µ · rλ, which is either 0 or rλ.

tλ = p k∗λ = (0, 0, aλ, 0, 0, 0, rλ)D∗ + (bλ(tλ,−1), 0, 0, 0, cλ,−cλ, 0, 0)V∗

= (0, 0, aλ, 0, 0, 0, rλ, 0, 0)D∗ + (bλ(tλ,−1), 0, 0, 0, cλ − abλ,−cλ + abλ, 0, 0)D∗

= (bλ(tλ,−1), aλ, 0, 0, µ · rλ, rλ − µ · rλ, 0, 0)D∗

If µ = 0, we are in the previous game. If µ = 1, then we are in the current game. Then,
every other key is computed directly in D∗:

tλ < p k∗λ = (πλ(tλ,−1), aλ, 0, 0, 0, 0, 0, 0)D∗

tλ > p k∗λ = (πλ(tλ,−1), aλ, 0, 0, 0, rλ, 0, 0)D∗

as well as the answers to OKeyGen-queries.
The ciphertexts are calculated through V but are unchanged by the change of basis because
the 6-th and 7-th components are exactly the same for every ciphertext query m, and thus
cancel themselves in the 2nd component. We thus have Adv0.p.1 − Adv0.p.2 ≤ 2 · AdvddhG2

(t).
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Game G0.p.3: We keep the um,p value (at the 6-th hidden position) in the ciphertexts, and
replace it in all other ciphertexts by 0. To show this is possible without impacting the other
vectors, we use the Index-Ind property from Theorem 3, but in another level of sequence of
hybrid games, for γ ∈ {1, . . . , P}\{p}. We will enumerate γ in their order of appearance
in the security game (wether in key queries, or in ciphertexts), therefore we can treat an
unbounded number of γ.
Game G0.p.2.γ: We consider the following hybrid game, where the first satisfied condition

on the indices is applied:

cm,p = (σm,p(1, p), ωm, 0, 0, um,p, um,p, 0, 0)D

cm,t = (σm,t(1, t), ωm, 0, 0, 0, um,t, 0, 0)D p 6= t < γ

cm,t = (σm,t(1, t), ωm, 0, 0, um,t, um,t, 0, 0)D p 6= t ≥ γ

Keys are unchanged throughout the hybrid game

k∗λ = (πλ(tλ,−1), aλ, 0, 0, 0, 0, 0, 0)D∗ tλ < p

k∗λ = (πλ(tλ,−1), aλ, 0, 0, rλ, 0, 0, 0)D∗ tλ = p

k∗λ = (πλ(tλ,−1), aλ, 0, 0, 0, rλ, 0, 0)D∗ tλ > p

When γ = 1, this is the previous game: G0.p.2.1 = G0.p.2, whereas with γ = P + 1, this
is the current game: G0.p.2.P+1 = G0.p.3.
We will gradually replace the um,t values, at the 6-th hidden position, by 0 (when t 6= p):
in this game, we deal with the case t = γ, for the m-th ciphertext query.
For this, we use the Adaptive Index-Ind property on (D∗,D)1,2,6,8,9, with:

k∗λ = (πλ(tλ,−1), aλ, 0, 0, rλ, 0, 0, 0)D∗ tλ = p

cm,t = (σm,t(1, t), ωm, 0, 0, um,t, um,t, 0, 0)D t = γ

We remind that um,p = 0 because rλ 6= 0. If rλ = 0, then we would have skipped directly
to the hybrid p+ 1 game.

With all this sequence, we have Adv0.p.2 − Adv0.p.3 ≤ 2P · (8× AdvddhG2
(t) + 4× AdvddhG1

(t)).

Game G0.p.4: In this final game for p, we can finally cancel out rλ in each key with tλ = p
because it corresponds to a coordinate where all other values (in keys and ciphertexts) are
0. We consider a triple (a · G2, b · G2, c · G2), where c = ab + α mod q, with either α = 0
or α = rλ. One defines the matrices

D =

(
1 0
a 1

)
1,6

D′ =

(
1 −a
0 1

)
1,6

D = D · V D∗ = D′ · V∗

Note that we can compute all the basis vectors excepted d6, but all the ciphertexts have a
0 components in 6-th position. So one can set all the values honestly in D and D∗, except
for

kλ = (0, 0, aλ, 0, 0, 0, 0, 0, 0)D + (b(p,−1), 0, 0, 0, c, 0, 0, 0)V

= (0, 0, aλ, 0, 0, 0, 0, 0, 0)D + (b(p,−1), 0, 0, 0, c− ab, 0, 0, 0)D

= (b(1, p), aλ, 0, 0, α, 0, 0, 0)D

When α = 0, this is exactly the current game, with πλ = b, whereas α = rλ, this is the
previous game. Then, Adv0.p.3 − Adv0.p.4 ≤ 2 · AdvddhG2

(t).

In total, this sequence of games, for a given p, satisfies Then,

AdvG0.p.4 − AdvG0.p.0 ≤ 4 · AdvddhG2
(t) + 2P · (8× AdvddhG2

(t) + 4× AdvddhG1
(t))

≤ (24P + 4) · Advsxdh(t)

In the last game, the adversary has zero advantage. Indeed, whether b = 0 or b = 1, the
distributions of dk0 and dk1 are perfectly identical, with all-passive leaves.
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E.4 Proof of Theorem 12 – dAtt-IND-Security

Proof. We start with the distinct variant, where all the invalid attributes in the challenge
ciphertext do not correspond to any active leaf in the obtained keys. Our proof will proceed by
games.

Game G0: This is the real security game, where the simulator honestly emulates the chal-
lenger, with PK = {(b1,b3,b

∗
1), (d1,d2,d3,d7,d

∗
1,d
∗
2,d
∗
3)} and MK = {b∗3,d∗7}, from random

dual orthogonal bases. The public parameters PK are provided to the adversary. Since d7 is
public (empty SK), there is no need to provide access to an encryption oracle.
OKeyGen(T̃`) (or ODelegate-queries): The adversary is allowed to issue KeyGen-queries on an

access-tree T̃` = (T`,L`,a,L`,p) (for the `-th query), for which the simulator chooses a

random scalar a`,0
$← Zq and a random a`,0-labeling (a`,λ)λ of the access-tree T`, and

builds the key:

k∗`,0 = (a`,0, 0, 1)B∗ k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, 0, r`,λ, 0, 0)D∗

for all the leaves λ, where t`,λ = A(λ), π`,λ
$← Zq and r`,λ

$← Z∗q if λ is an active leaf, or
r`,λ ← 0 otherwise. The decryption key is dk` = (k∗`,0, (k

∗
`,λ)λ);

RoAVEncaps(Γv, Γi): The challenge ciphertext is built on a set of attributes Γv ·∪ Γi, with

random scalars ω, ξ
$← Zq to set K = gξt . Then, the simulator generates the ciphertext

C0 = (c0, (ct)t), for all the attributes t ∈ Γv ·∪ Γi, with σt
$← Zq, and where ut

$← Z∗q if
t ∈ Γi, or ut = 0 if t ∈ Γv:

c0 = (ω, 0, ξ)B ct = (σt(1, t), ω, 0, 0, 0, ut, 0, 0)D

On the other hand, it computes C1 = (c0, (ct)t) for all t ∈ Γv ·∪ Γi as:

c0 = (ω, 0, ξ)B ct = (σt(1, t), ω, 0, 0, 0, 0, 0, 0)D

According to the real or all-valid game (bit b
$← {0, 1}), one outputs (K,Cb).

From the adversary’s guess b′ for b, if for some T̃` = (T`,L`,a,L`,p), there is some active

leaf λ ∈ L`,a such that tλ = A(λ) ∈ Γi, then β
$← {0, 1}, otherwise β = b′. We denote

Adv0 = Pr[β = 1|b = 1]− Pr[β = 1|b = 0].
We stress that in this distinct attribute-indistinguishability security game, the invalid at-
tributes in the challenge ciphertext (t ∈ Γi with possibly ut 6= 0) correspond to passive leaves
only (λ ∈ L`,p with r`,λ = 0, for all queries). But we do not exclude accepting access-trees.

Game G1: The second and final game simply corresponds to the situation where ut = 0 in
C0, clearly leading to Adv1 = 0.
Using the indexing technique, we can show this game is indistinguishable the previous game.
But we need to describe a sub-sequence of games (see Figure 17) for proving the gap from
the above G0 to G1, with the sequence G0.p.∗, that will modify the p-th ciphertext in the
challenge ciphertext, for p ∈ {1, . . . , P + 1}, where G0 = G0.1.0, and G1 = G0.P+1.0. In these
games, we describe how we generate the keys and the real encapsulation C0. C1 will be easily
simulated in an honest way.

Game G0.p.0: One thus chooses random scalars and defines the hybrid game for some p,
where the first components of the ciphertext are all-valid, and the last ones are real:

k∗`,0 = (a`,0, 0, 1)B∗ k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, 0, r`,λ, 0, 0)D∗

c0 = (ω, 0, ξ)B ct = (σt(1, t), ω, 0, 0, 0, 0, 0, 0)D t < p

c0 = (ω, 0, ξ)B ct = (σt(1, t), ω, 0, 0, 0, ut, 0, 0)D t ≥ p
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c0 = (ω 0 ξ) k∗`,0 = (a`,0 0 1)

G0.p.0 Hybrid game for G0 and G1, with 1 ≤ p ≤ P + 1
k∗`,λ = ( π`,λ(t`,λ,−1) a`,λ | 0 0 0 r`,λ |0 0)

t < p ct = ( σt(1, t) ω | 0 0 0 0 |0 0)
t ≥ p ct = ( σt(1, t) ω | 0 0 0 ut |0 0)

G0.p.1 Formal basis change, on (D,D∗)6,7, to duplicate r`,λ in the 6-th column

k∗`,λ = ( π`,λ(t`,λ,−1) a`,λ | 0 0 r`,λ r`,λ |0 0)

t < p ct = ( σt(1, t) ω | 0 0 0 0 |0 0)
t ≥ p ct = ( σt(1, t) ω | 0 0 0 ut |0 0)

G0.p.2 Swap-Ind Property, on (D,D∗)1,6,7, to swap up alone in the 6-th column
k∗`,λ = ( π`,λ(t`,λ,−1) a`,λ | 0 0 r`,λ r`,λ |0 0)

t < p ct = ( σt(1, t) ω | 0 0 0 0 |0 0)

cp = ( σp(1, p) ω | 0 0 up 0 |0 0)

t > p ct = ( σt(1, t) ω | 0 0 0 ut |0 0)

G0.p.3 Index-Ind Property, on (D,D∗)1,2,6, between r`,λ and 0, for t`,λ 6= p
t`,λ = p k∗`,λ = ( π`,λ(p,−1) a`,λ | 0 0 0 0 |0 0)

t`,λ 6= p k∗`,λ = ( π`,λ(p,−1) a`,λ | 0 0 0 r`,λ |0 0)

t < p ct = ( σt(1, t) ω | 0 0 0 0 |0 0)
cp = ( σp(1, p) ω | 0 0 up 0 |0 0)

t > p ct = ( σt(1, t) ω | 0 0 0 ut |0 0)

G0.p.4 SubSpace-Ind Property, on (D,D∗)1,6, between up and 0
k∗`,λ = ( π`,λ(p,−1) a`,λ | 0 0 0 r`,λ |0 0)

t < p ct = ( σt(1, t) ω | 0 0 0 0 |0 0)

cp = ( σp(1, p) ω | 0 0 0 0 |0 0)

t > p ct = ( σt(1, t) ω | 0 0 0 ut |0 0)

Fig. 17: Sub-sequence of games for Distinct Attribute-Indistinguishability
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Of course, the values r`,λ and ut are random in Z∗q or 0 according to L`,a/L`,p and Γi/Γv.
In particular, if up = 0, we can directly go to G0.p.4, as there is no change from this game.
The following sequence only makes sense when up 6= 0, but then necessarily r`,λ = 0 for all
the pairs (`, λ) such that t`,λ = p. We thus assume this restriction in this sequence: up 6= 0
and r`,λ = 0 for all (`, λ) such that t`,λ = p.

Game G0.p.1: One defines the matrices

D =

(
1 1
0 1

)
6,7

D′ =

(
1 0
−1 1

)
6,7

D = D · V D∗ = D′ · V∗

which modifies the hidden and secret vectors d6 and d∗7, and so are not in the view of the
adversary:

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, 0, r`,λ, 0, 0)V∗

= (π`,λ(t`,λ,−1), a`,λ, 0, 0, r`,λ, r`,λ, 0, 0)D∗

ct = (σt(1, t), ω, 0, 0, 0, 0)V = (σt(1, t), ω, 0, 0, 0, 0, 0, 0)D if t < p

ct = (σt(1, t), ω, 0, 0, 0, ut)V = (σt(1, t), ω, 0, 0, 0, ut, 0, 0)D if t ≥ p

We thus have Adv0.p.1 = Adv0.p.0.

Game G0.p.2: We use the Swap-Ind-property on (D,D∗)1,6,7: Indeed, we can consider a triple
(a · G1, b · G1, c · G1), where c = ab + θ mod q with either θ = 0 or θ = up. We define the
matrices

D =

1 a −a
0 1 0
0 0 1


1,6,7

D′ =

 1 0 0
−a 1 0
a 0 1


1,6,7

D = D · V D∗ = D′ · V∗

Note that we can compute all the basis vectors excepted d∗6,d
∗
7, but we define the keys on

the original basis V∗:

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, r`,λ, r`,λ, 0, 0)V∗

= (π`,λ · t`,λ + ar`,λ − ar`,λ,−π`,λ, a`,λ, 0, 0, r`,λ, r`,λ, 0, 0)D∗

= (π`,λ(t`,λ,−1), a`,λ, 0, 0, r`,λ, r`,λ, 0, 0)D∗

ct = (σt(1, t), ω, 0, 0, 0, 0, 0, 0)D if t < p

cp = (σ(1, p), ω, 0, 0, 0, up, 0, 0)D + (b(1, p), 0, 0, 0, c,−c, 0, 0)V

= (σ(1, p), ω, 0, 0, 0, up, 0, 0)D + (b(1, p), 0, 0, 0, c− ab,−c+ ab, 0, 0)D

= ((σ + b)(1, p), ω, 0, 0, θ, up − θ, 0, 0)D

ct = (σt(1, t), ω, 0, 0, 0, ut, 0, 0)D if t > p

With θ = 0, this is as in the previous game, where σp = σ + b. When θ = up, this is the
current game: Adv0.p.1 − Adv0.p.2 ≤ 2 · AdvddhG1

(t).

Game G0.p.3: We make all the r`,λ values (at the 6-th hidden position) in the keys to be
0, excepted for t`,λ = p. The case t`,λ = p is already r`,λ = 0, by assumption in this
sequence, as up 6= 0. For that, we iteratively replace all the values by zero, using the
Adaptive Index-Ind-property from theorem 3, in another level of sequence of hybrid games,
for γ ∈ {1, . . . , P}\{p}. We will enumerate γ in their order of appearance in the security
game (wether in key queries, or in ciphertexts), therefore we can treat an unbounded
number of γ.
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Game G0.p.2.γ: We consider

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, 0, 0, 0, 0)D∗ if t`,λ = p

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, 0, r`,λ, 0, 0)D∗ if p 6= t`,λ < γ

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, r`,λ, r`,λ, 0, 0)D∗ if p 6= t`,λ ≥ γ
ct = (σt(1, t), ω, 0, 0, 0, 0, 0, 0)D if t < p

cp = (σp(1, p), ω, 0, 0, up, 0, 0, 0)D

ct = (σt(1, t), ω, 0, 0, 0, ut, 0, 0)D if t > p

When γ = 1, this is the previous game: G0.p.2.1 = G0.p.2, whereas with γ = P + 1, this
is the current game: G0.p.2.P+1 = G0.p.3.
For this, we use the Adaptive Index-Ind property on (D∗,D)1,2,6,8,9, with:

cp = (σp(1, p), ω, 0, 0, up, 0, 0, 0)D

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, r`,λ, r`,λ, 0, 0)D∗ t`,λ = γ

As a consequence, Adv0.p.2 − Adv0.p.3 ≤ 2P · (8× AdvddhG1
(t) + 4× AdvddhG2

(t)).

Game G0.p.4: One can easily conclude by removing up in the ciphertext cp, as it corresponds
to a coordinate where all the other values (in the keys and the ciphertext) are 0. To this
aim, we can consider a triple (a · G1, b · G1, c · G1), where c = ab + α mod q with either
α = 0 or α = up. One defines the matrices

D =

(
1 a
0 1

)
1,6

D′ =

(
1 0
−a 1

)
1,6

D = D · V D∗ = D′ · V∗

Note that we can compute all the basis vectors excepted d∗6, which has only 0 components
in the keys. So one can set all the values honestly in D and D∗, excepted

cp = (b(1, p), ω, 0, 0, c, 0, 0, 0)V = (b(1, p), ω, 0, 0, c− ab, 0, 0, 0)D

= (b(1, p), ω, 0, 0, α, 0, 0, 0)D

When α = 0, this is exactly the current game, with σp = b, whereas for α = up, this is the
previous game. Then, Adv0.p.3 − Adv0.p.4 ≤ 2 · AdvddhG1

(t).

In total, this sequence of games, for a given p, satisfies Then,

AdvG0.p.4 − AdvG0.p.0 ≤ 4 · AdvddhG1
(t) + 2P · (8× AdvddhG1

(t) + 4× AdvddhG2
(t))

≤ (4 + 24P ) · Advsxdh(t)

E.5 Proof of Theorem 13 – Att-IND-Security

Proof. We now prove the attribute-indistinguishability, where there are no restrictions between
active leaves in the keys and invalid attributes in the challenge ciphertext, but just that the
access-trees of the obtained keys reject the attribute-set of the challenge ciphertext, even in the
all-valid case. Our proof will proceed by games. Not that we also assume active keys correspond
to independent leaves with respect to the set of attributes Γ = Γv ·∪Γi in the challenge ciphertext.

Game G0: This is the real security game, where the simulator honestly emulates the chal-
lenger, with PK = {(b1,b3,b

∗
1), (d1,d2,d3,d7,d

∗
1,d
∗
2,d
∗
3)} and MK = {b∗3,d∗7}, from random

dual orthogonal bases. The public parameters PK are provided to the adversary. Since d7 is
public (empty SK), there is no need to provide access to an encryption oracle.
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OKeyGen(T̃`) (or ODelegate-queries): The adversary is allowed to issue KeyGen-queries on an
access-tree T̃` = (T`,L`,a,L`,p) (for the `-th query), for which the simulator chooses a

random scalar a`,0
$← Zq and a random a`,0-labeling (a`,λ)λ of the access-tree T`, and

builds the key:

k∗`,0 = (a`,0, 0, 1)B∗ k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, 0, r`,λ, 0, 0)D∗

for all the leaves λ, where t`,λ = A(λ), π`,λ
$← Zq and r`,λ

$← Z∗q if λ is an active leaf, or
r`,λ ← 0 otherwise. The decryption key is dk` = (k∗`,0, (k

∗
`,λ)λ);

RoAVEncaps(Γv, Γi): The challenge ciphertext is built on a set of attributes Γv ·∪ Γi, with

random scalars ω, ξ
$← Zq to set K = gξt . Then, the simulator generates the ciphertext

C1 = (c0, (ct)t), for all the attributes t ∈ Γv ·∪ Γi, with σt
$← Zq:

c0 = (ω, 0, ξ)B ct = (σt(1, t), ω, 0, 0, 0, 0, 0, 0)D

On the other hand, it computes C0 = (c0, (ct + (0, 0, 0, 0, 0, 0, ut, 0, 0)D)t), where ut
$← Z∗q

if t ∈ Γi, or ut = 0 if t ∈ Γv. According to the real or all-valid game (bit b
$← {0, 1}), one

outputs (K,Cb).
From the adversary’s guess b′ for b, if for some T̃` = (T`,L`,a,L`,p), for which tree a key has

been obtained, T̃`(Γv ·∪Γi, ∅) = 1 then β
$← {0, 1}, otherwise β = b′. We denote Adv0 = Pr[β =

1|b = 1]− Pr[β = 1|b = 0].
We now proceed with exactly the same sequence as in the IND-security proof of the KP-ABE
in the appendix D.3, except the RoREncaps-challenge is instead a RoAVEncaps-challenge,
where we require T̃`(Γv ·∪ Γi, 0) = 0 for all the obtained keys. For the same reason, the
OEncaps-queries on pairs (Γm,v, Γm,i), with Γm,i 6= ∅ can be simulated. Indeed, as above,
everything on the 7-th component can be done independently, knowing both d7 and d∗7, as
these vectors will be known to the simulator, almost all the time, excepted in some specific
gaps. In theses cases, we will have to make sure how to simulate the OEncaps ciphertexts.
As in that proof, the idea of the sequence is to introduce an additional labeling (s`,0, (s`,λ)λ)
in the hidden components of each key, with a random s`,0, as the trees are rejecting. We are
thus able to go as in G3, from Figure 9, where each label is masked by a random zt for each
attribute t. The following sequence is described on Figure 18.

Game G1: This is as G1, with a random τ in the challenge ciphertext.

Game G2: This is as G2, with random zt in the challenge ciphertext.

Game G3: This is as G3, with an additional independent s`,0-labeling (s`,λ) for each access-
tree T` and a random r`,0 to define

k∗`,0 = (a`,0, r`,0, 1)B∗ k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, s`,λ/ztk,λ , r`,λ, 0, 0)D∗

We stress that all these steps are not impacted by the values ut in the 7-th component of the
challenge ciphertext:

c0 = (ω, 0, ξ)B ct = (σt(1, t), ω, τ, 0, τzt, (1− b) · ut, 0, 0)D

where b is the random bit of the challenger: when b = 0, the ciphertext is in the real case,
whereas for b = 1, one gets an all-valid ciphertext.

Game G4: We remove all ut from the RoAVEncaps challenge query, in the case b = 1:

c0 = (ω, 0, ξ)B ct = (σt(1, t), ω, τ, 0, τzt, 0, 0, 0)D

k∗`,0 = (a`,0, r`,0, 1)B∗ k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, s
′
`,λ/ztk,λ , r`,λ, 0, 0)D∗
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G0 Real Att-IND-Security game
c0 = ( ω 0 ξ ) ct = (. . . | 0 0 0 (1− b) · ut |0 0)

k∗`,0 = ( a`,0 0 1 ) k∗`,λ = (. . . | 0 0 0 r`,λ |0 0)

G1 SubSpace-Ind Property, on (B,B∗)1,2 and (D,D∗)3,4, between 0 and τ
$← Zq

c0 = ( ω τ ξ ) ct = (. . . | τ 0 0 (1− b) · ut |0 0)

k∗`,0 = ( a`,0 0 1 ) k∗`,λ = (. . . | 0 0 0 r`,λ |0 0)

G2 SubSpace-Ind Property, on (D,D∗)(1,2),6, between 0 and τzt

c0 = ( ω τ ξ ) ct = (. . . | τ 0 τzt (1− b) · ut |0 0)

k∗`,0 = ( a`,0 0 1 ) k∗`,λ = (. . . | 0 0 0 r`,λ |0 0)

G3 Additional random-labeling as in the IND-security proof. See Figure 10
c0 = ( ω τ ξ ) ct = (. . . | τ 0 τzt (1− b) · ut |0 0)

k∗`,0 = ( a`,0 r`,0 1 ) k∗`,λ = (. . . | 0 0 s`,λ/zt`,λ r`,λ |0 0)

G4 Index-Ind property to suppress ut, when b = 0. See Figure 19

c0 = ( ω τ ξ ) ct = (. . . | τ 0 τzt 0 |0 0)

k∗`,0 = ( a`,0 r`,0 1 ) k∗`,λ = (. . . | 0 0 s′`,λ/zt`,λ r`,λ |0 0)

G5 Limitation of independent active leaves
c0 = ( ω τ ξ ) ct = (. . . | τ 0 τzt 0 |0 0)

k∗`,0 = ( a`,0 r`,0 1 ) k∗`,λ = (. . . | 0 0 s`,λ/zt`,λ r`,λ |0 0)

Fig. 18: Global sequence of games for the Att-IND-security proof of our SA-KP-ABE

where s′`,λ is either the label s`,λ or an independent random value when utk,λ · rk,λ 6= 0, in
the case b = 0. And nothing is changed when b = 1. To this aim, we use a different sequence
G3.p.∗ presented in the Figure 19, when b = 1 only, for p ∈ {1, . . . , P}, that will modify the
p-th ciphertext in the challenge ciphertext, where G3 = G3.1.0, and G4 = G3.P+1.0.

Game G3.p.0: One thus chooses random scalars and defines the hybrid game for some p,
where the first components of the ciphertext are all-valid, and the last ones are real:

k∗`,0 = (a`,0, r`,0, 1)B∗ k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, s`,λ/zt`,λ , r`,λ, 0, 0)D∗

c0 = (ω, 0, ξ)B ct = (σt(1, t), ω, τ, 0, τzt, 0, 0, 0)D if t < p

c0 = (ω, 0, ξ)B ct = (σt(1, t), ω, τ, 0, τzt, ut, 0, 0)D if t ≥ p

Of course, the values r`,λ and ut are random in Z∗q or 0 according to L`,a/L`,p and Γi/Γv.
In particular, if up = 0, we can directly go to G3.p.5, as there is no change from this game.
But there is no need to know it in advance, and so we can follow this sequence in any case
and set up in the ciphertext at the challenge-time.

Game G3.p.1: One defines the matrices

D =

(
1 1
0 1

)
5,7

D′ =

(
1 0
−1 1

)
5,7

D = D · V D∗ = D′ · V∗

which modifies the hidden and secret vectors d6 and d∗7, and so are not in the view of the
adversary:

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, s`,λ/zt`,λ , r`,λ, 0, 0)V∗

= (π`,λ(t`,λ,−1), a`,λ, 0, r`,λ, s`,λ/zt`,λ , r`,λ, 0, 0)D∗

ct = (σt(1, t), ω, τ, 0, τzt, 0, 0, 0)V = (σt(1, t), ω, τ, 0, τzt, 0, 0, 0)D if t < p

ct = (σt(1, t), ω, τ, 0, τzt, ut, 0, 0)V = (σt(1, t), ω, τ, 0, τzt, ut, 0, 0)D if t ≥ p
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G3.p.0 Hybrid game for G3 and G4, with 1 ≤ p ≤ P + 1
t < p ct = ( σt(1, t) ω | τ 0 τzt 0 |0 0)
t ≥ p ct = ( σt(1, t) ω | τ 0 τzt ut |0 0)

k∗`,0 = ( a`,0 r`,0 1 )

k∗`,λ = ( π`,λ(t`,λ,−1) a`,λ | 0 0 s`,λ/zt`,λ r`,λ |0 0)

G3.p.1 Formal basis change, on (D,D∗)5,7, to duplicate r`,λ in the 5-th column
cp = ( σp(1, p) ω | τ 0 τzp up |0 0)

k∗`,λ = ( π`,λ(t`,λ,−1) a`,λ | 0 r`,λ s`,λ/zt`,λ r`,λ |0 0)

G3.p.2 Swap-Ind Property, on (D,D∗)1,5,7, to swap up alone in the 5-th column

cp = ( σp(1, p) ω | τ up τzp 0 |0 0)

t 6= p ct = ( σt(1, t) ω | τ 0 τzt ut |0 0)

G3.p.3 Index-Ind Property, on (D∗,D)1,2,5, between r`,λ and 0, for t`,λ 6= p
cp = ( σp(1, p) ω | τ up τzp 0 |0 0)

t`,λ 6= p k∗`,λ = ( π`,λ(t`,λ,−1) a`,λ | 0 0 s`,λ/zt`,λ r`,λ |0 0)

t`,λ = p k∗`,λ = ( π`,λ(t`,λ,−1) a`,λ | 0 r`,λ s`,λ/zt`,λ r`,λ |0 0)

G3.p.4 SubSpace-Ind Property, on (D,D∗)6,5, between up and 0

cp = ( σp(1, p) ω | τ 0 τzp 0 |0 0)

t`,λ 6= p k∗`,λ = ( π`,λ(t`,λ,−1) a`,λ | 0 0 s`,λ/zt`,λ r`,λ |0 0)

t`,λ = p k∗`,λ = ( π`,λ(t`,λ,−1) a`,λ | 0 r`,λ s′`,λ/zt`,λ r`,λ |0 0)

G3.p.5 SubSpace-Ind Property, on (D∗,D)6,5, between r`,λ and 0, for t`,λ = p
t ≤ p ct = ( σt(1, t) ω | τ 0 τzt 0 |0 0)
t > p ct = ( σt(1, t) ω | τ 0 τzt ut |0 0)
t`,λ 6= p k∗`,λ = ( π`,λ(t`,λ,−1) a`,λ | 0 0 s`,λ/zt`,λ r`,λ |0 0)

t`,λ = p k∗`,λ = ( π`,λ(t`,λ,−1) a`,λ | 0 0 s′`,λ/zt`,λ r`,λ |0 0)

Fig. 19: Hybrid game on p for the Att-IND-security proof of our SA-KP-ABE, when b = 0
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We thus have Adv3.p.1 = Adv3.p.0.

Game G3.p.2: We use the Swap-Ind-property on (D,D∗)1,5,7: Indeed, we can consider a triple
(a · G1, b · G1, c · G1), where c = ab + θ mod q with either θ = 0 or θ = up. We define the
matrices

D =

1 a −a
0 1 0
0 0 1


1,5,7

D′ =

 1 0 0
−a 1 0
a 0 1


1,5,7

D = D · V D∗ = D′ · V∗

Note that we can compute all the basis vectors excepted d∗5,d
∗
7, but we define the keys on

the original basis V∗:

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, r`,λ, s`,λ/zt`,λ , r`,λ, 0, 0)V∗

= (π`,λ · t`,λ + ar`,λ − ar`,λ,−π`,λ, a`,λ, 0, r`,λ, s`,λ/zt`,λ , r`,λ, 0, 0)D∗

= (π`,λ(t`,λ,−1), a`,λ, 0, r`,λ, s`,λ/zt`,λ , r`,λ, 0, 0)D∗

ct = (σt(1, t), ω, τ, 0, τzt, 0, 0, 0)D if t < p

cp = (σ(1, p), ω, τ, 0, τzp, up)D + (b(1, p), 0, 0, c, 0,−c, 0, 0)V

= (σ(1, p), ω, τ, 0, τzp, up)D + (b(1, p), 0, 0, c− ab, 0,−c+ ab, 0, 0)D

= ((σ + b)(1, p), ω, τ, θ, τzp, up − θ, 0, 0)D

ct = (σt(1, t), ω, τ, 0, τzt, ut, 0, 0)D if t > p

With θ = 0, this is as in the previous game, where σp = σ + b. When θ = up, this is the
current game: Adv3.p.1 − Adv3.p.2 ≤ 2 · AdvddhG1

(t).

Game G3.p.3: We make all the r`,λ values (at the 5-th hidden position) in the keys to be
0, excepted when t`,λ = p. For that, we iteratively replace all the values by zero, using
Adaptive Index-Ind-property from theorem 3, in another level of sequence of hybrid games,
for γ ∈ {1, . . . , P}\{p}. We will enumerate γ in their order of appearance in the security
game (wether in key queries, or in ciphertexts), therefore we can treat an unbounded
number of γ.
Game G3.p.2.γ: We consider

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, r`,λ, s`,λ/zt`,λ , r`,λ, 0, 0)D∗ if t`,λ = p

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, 0, s`,λ/zt`,λ , r`,λ, 0, 0)D∗ if p 6= t`,λ < γ

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, r`,λ, s`,λ/zt`,λ , r`,λ, 0, 0)D∗ if p 6= t`,λ ≥ γ
ct = (σt(1, t), ω, τ, 0, τzt, 0, 0, 0)D if t < p

cp = (σp(1, p), ω, τ, up, τzp, 0, 0, 0)D

ct = (σt(1, t), ω, τ, 0, τzt, ut, 0, 0)D if t > p

When γ = 1, this is the previous game: G3.p.2.1 = G3.p.2, whereas with γ = P + 1, this
is the current game: G3.p.2.P+1 = G3.p.3.
For this, we use the Adaptive Index-Ind property on (D∗,D)1,2,5,8,9, with:

cp = (σp(1, p), ω, τ, up, τzp, 0, 0, 0)D

k∗`,λ = (π`,λ(t`,λ,−1), a`,λ, 0, r`,λ, s`,λ/zt`,λ , r`,λ, 0, 0)D∗ t`,λ = γ

Game G3.p.4: We use the SubSpace-Ind-property on (D,D∗)6,5: Indeed, we can consider a
triple (a ·G1, b ·G1, c ·G1), where c = ab+ θ mod q with either θ = 0 or θ = up. We define
the matrices

D =

(
1 0
a 1

)
5,6

D′ =

(
1 −a
0 1

)
5,6

D = D · V D∗ = D′ · V∗
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Note that we can compute all the basis vectors excepted d∗5 that is not public, and not
used excepted for the keys with t`,λ = p, which will be defined in the original basis V∗:

k∗`,λ = (π`,λ(p,−1), a`,λ, 0, r`,λ, s`,λ/zp, r`,λ, 0, 0)V∗

= (π`,λ(p,−1), a`,λ, 0, r`,λ, s`,λ/zp + ar`,λ, r`,λ, 0, 0)D∗

= (π`,λ(p,−1), a`,λ, 0, r`,λ, s
′
`,λ/zp, r`,λ, 0, 0)D∗

ct = (σt(1, t), ω, b, 0, bzt, 0, 0, 0)D if t < p

cp = (σp(1, p), ω, b, c, bzp, 0, 0, 0)V = (σp(1, p), ω, b, c− ab, bzp, 0, 0, 0)D

= (σp(1, p), ω, b, θ, bzp, 0, 0, 0)D

ct = (σt(1, t), ω, b, 0, bzt, ut, 0, 0)D if t > p

When θ = 0, this is this game, whereas when θ = up, this is the previous game, with τ = b
and s′`,λ = s`,λ+azpr`,λ a new random and independent value for each active leaf associated
to the attribute p.

Game G3.p.5: We use the SubSpace-Ind-property on (D∗,D)6,5: Indeed, we can consider a
triple (a ·G2, b ·G2, c ·G2), where c = ab+ ζ mod q with either ζ = 0 or ζ = 1. We define
the matrices

D′ =

(
1 0
a 1

)
5,6

D =

(
1 −a
0 1

)
5,6

D = D · V D∗ = D′ · V∗

Note that we can compute all the basis vectors excepted d5 that is not public, and not
used in the ciphertext. All the vectors can be computed in the new bases, excepted the
keys for t`,λ = p, for which one chooses additional random scalars β`,λ

$← Zq, to virtually
set b`,λ = r`,λ · b+ β`,λ and c`,λ = r`,λ · c+ β`,λ · a, c`,λ − ab`,λ = r`,λ · ζ.

k∗`,λ = (π`,λ(p,−1), a`,λ, 0, c`,λ, b`,λ, r`,λ, 0, 0)V∗

= (π`,λ(p,−1), a`,λ, 0, c`,λ − ab`,λ, b`,λ, r`,λ, 0, 0)D∗

= (π`,λ(p,−1), a`,λ, 0, ζ · r`,λ, b`,λ, r`,λ, 0, 0)D∗

When ζ = 0, this is this game, whereas when ζ = 1, this is the previous game, with
s′`,λ = zp · b`,λ, a truly random and independent value for each active leaf associated to the
attribute p.

Game G5: Under the assumption of independent active leaves with respect to the set of
attributes Γ = Γv ·∪Γi in the challenge ciphertext, the random values s′`,λ are indistinguishable
from real labels s′`,λ. Indeed, labels that correspond to leaves that are associated to attributes
not in Γ are unknown, as the masks zt are not revealed. This shows that the advantage of
the adversary in this last game is 0.


