
Full key recovery side-channel attack against
ephemeral SIKE on the Cortex-M4

Aymeric Genêt12, Natacha Linard de Guertechin3, and Novak Kaluđerović1

1 École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
aymeric.genet@epfl.ch,novak.kaluderovic@epfl.ch
2 Kudelski Group, Cheseaux-sur-Lausanne, Switzerland

3 CYSEC SA, Lausanne, Switzerland
natacha.linard@cysec.com

Abstract. This paper describes the first practical single-trace side-channel
power analysis of SIKE. While SIKE is a post-quantum key exchange, the
scheme still relies on a secret elliptic curve scalar multiplication which
involves a loop of a double-and-add procedure, of which each iteration de-
pends on a single bit of the private key. The attack therefore exploits the
nature of elliptic curve point addition formulas which require the same
function to be executed multiple times. We show how a single trace of
a loop iteration can be segmented into several power traces on which
32-bit words can be hypothesised based on the value of a single private
key bit. This segmentation enables a classical correlation power analy-
sis in an extend-and-prune approach. Further error-correction techniques
based on depth-search are suggested. The attack is explicitly geared to-
wards and experimentally verified on an STM32F3 featuring a Cortex-
M4 microcontroller which runs the SIKEp434 implementation adapted
to 32-bit ARM that is part of the official implementations of SIKE. We
obtained a resounding 100% success rate recovering the full private key
in each experiment. We argue that our attack defeats many countermea-
sures which were suggested in a previous power analysis of SIKE, and
finally show that the well-known countermeasure of projective coordinate
randomisation stops the attack with a negligible overhead.

Keywords: sike · side-channel analysis · correlation power analysis · single-trace
attack · post-quantum key exchange · isogeny-based cryptography

1 Introduction

The advancement of theoretical quantum computing in the last three decades
has brought algorithms which pose a threat to modern day cryptography. In par-
ticular, almost all public-key protocols that are currently used can be completely
broken with Shor’s algorithm [45]. Practical quantum computers seem to be lag-
ging behind their theoretical counterparts and there are still doubts about their
feasibility [29]. In order to prepare for the potential threat of quantum comput-
ers, the National Institute of Standards and Technology (NIST) published a call

2 Aymeric Genêt, Natacha Linard de Guertechin, and Novak Kaluđerović

for proposals for setting new standards in quantum-resistant cryptography. The
proposed protocols are classical algorithms for classical computers and, as such,
are prone to standard side-channel attacks, such as timing attacks, power analy-
ses, or electromagnetic attacks. At the time of writing, the NIST standardisation
process has reached the third round in which one of the alternative candidates
is SIKE – “Supersingular Isogeny Key Encapsulation”; the main topic of this
paper.

The development of isogeny-based cryptography protocols started in 1997
by Couveignes [16], only to be independently rediscovered in 2006 by Rostovsev
and Stolbunov [43]. Their algorithm was resistant to known classical attacks, but
a subexponential quantum attack was found by Childs et al. [11]. This attack
was mitigated by Jao and De Feo [18] (and Plût [17]) where they proposed to
use supersingular instead of ordinary elliptic curves in an algorithm called SIDH
which later became SIKE. Due to the nature of supersingular elliptic curves, i.e.,
non-commutativity of the endomorphism ring, the previously mentioned attack
is prevented. In addition to the lack of subexponential attacks in both classical
and quantum settings, the new SIKE algorithm stood out in its simple structure
reminiscent of the classical Diffie–Hellman protocol, but also, and more impor-
tantly, SIKE was more efficient and had lower key sizes. Over the years, SIKE
was improved [3,15,49,6,7] and the current implementation stands competitive
with respect to other NIST candidates in the third round. One of the main down-
sides of SIKE is its high run-time which currently qualifies the scheme as the
slowest surviving candidate. However, this downside is compensated with the
lowest key sizes among all quantum-resistant candidates. The trade-off between
the cost-effectiveness of the key-size and the computational cost was studied in
[34,33,40,47].

Our work follows the NIST recommendation to study side-channel attacks
on post-quantum cryptographic schemes [38,1] and consists of the side-channel
power analysis of the SIKE implementation adapted to the 32-bit ARM Cortex-
M4 chip architecture. The Cortex-M4 implementation by Azarderakhsh et al. [44]
is included in the official third round NIST submission of SIKE [27]. Both imple-
mentations are constant-time. The main differences lie in the low-level functions,
such as multi-precision additions, multiplications, and modular reductions that
have been rewritten in assembly in order to take full advantage of the Cortex-M4
capabilities. This allowed the authors to obtain a performance improvement of
about 20× when compared to the official implementation in C. Furthermore,
this improvement comes at no security cost, at least from the point of view of
our attack, as the power analysis can be easily adapted to the C implementation
(when run on the same microcontroller).

The Cortex-M4 [23] is a low-power and low-cost embedded microcontroller
from the ARM Cortex-M family, which is recommended by NIST for post-
quantum cryptography evaluation [39,31]. As such, the Cortex-M4 should be
used with care in cryptographic settings. In particular, Le Corre et al. [14] have
assessed the leakage on a chip from the Cortex family and have shown how the

Title Suppressed Due to Excessive Length 3

power consumption is correlated with the operands and results from the pipeline
registers. These properties will show to be useful in our own analysis.

1.1 Contributions

The main contribution of our paper is a full private key extraction using a side-
channel power analysis of the Cortex-M4 implementation of SIKE with only
a single trace, which therefore breaks confidentiality in a passive setting. In
particular, we target the three point ladder with a straightforward vertical attack
(i.e., with multiple traces and a fixed secret) and show how to extend it to
the case of a horizontal attack (i.e., with a single trace and a secret which
can therefore be ephemeral). Because the three point ladder is similar to an
elliptic point scalar multiplication, our attack is completely analogous to a power
analysis of the pre-quantum elliptic curve cryptography. This attack can be
applied at any stage of the protocol: key generation, key encapsulation, and key
decapsulation. Finally, we argue how our horizontal power analysis defeats many
countermeasures that were mentioned in the power analysis of SIKE as presented
in [50]; namely, starting with a random isomorphic curve, masking the scalar,
splitting the key randomly, and using a window-based scalar multiplication. We
recommend the well-known projective point coordinate randomisation, which
stops our attack with a negligible performance overhead.

1.2 Related work

Side-channel analysis of supersingular isogeny protocols was initially conducted
in [32] in which the authors address concerns about power analysis without
carrying out a practical experiment. The first paper to practically evaluate the
side-channel vulnerabilities of SIKE is due to Zhang et al. [50]. In their study,
the authors fully describe a practical vertical differential power analysis on the
three point ladder of the key decapsulation procedure, and discuss potential
countermeasures. However, since the authors rely on the fact that the private
key is fixed across the measurements, the attack is applicable only to the semi-
static settings of the SIKE protocol. We extend these results and target SIKE
in ephemeral settings.

In the past, many papers have already mounted horizontal attacks against
the classical Montgomery ladder in the case of elliptic curve cryptography, such
as [12], [41], and [4]. We apply similar techniques, but on the variant of the
ladder with three points used in SIKE.

For the sake of completeness, let us also mention template attacks; a differ-
ent kind of single-trace attacks in which an adversary profiles the power con-
sumption. Such attacks have also been explored against the elliptic curve scalar
multiplication, for instance in [36], [51], and [19]. As opposed to horizontal cor-
relation power analyses, template attacks require control over the input of the
targeted procedure and sometimes even further interactions with the targeted
device. Online template attacks [5] against classical elliptic curve cryptography

4 Aymeric Genêt, Natacha Linard de Guertechin, and Novak Kaluđerović

require only one power trace of the target device, but additional power mea-
surements on the same or a similar template device are needed. Our horizontal
correlation power analysis does not rely on such a hypothesis and is executed
purely offline. In comparison, our attack is based on an entirely different setup
where, instead of correlating power traces with each others, we correlate Ham-
ming weights of processed values. Our results show much stronger correlations
due to the reliance on a specific leakage model, unlike the online template attack
which is leakage-agnostic.

Other post-quantum algorithms have been targeted by power analyses. In
a similar fashion, Aysu et al. [2] have attacked the lattice-based key exchanges
of Frodo and NewHope with a horizontal correlation power analysis. Bos et
al. have addressed this attack in [8] and proposed a profiled extend-and-prune
approach. Recently, Sim et al. [46] have shown a single-trace ephemeral-key
recovery against various lattice-based key exchanges. Finally, let us mention
the work of Primas et al. [42] in which the first single-trace attack on lattice-
based encryption was described using belief propagation. This work was recently
extended by Kannwischer et al. [30] to a single-trace power analysis of the Keccak
hash function, used in various applications, including the hash-based signature
scheme SPHINCS+.

2 Background

We recall some of the definitions which will be used in this paper. For a more
formal discussion the reader is advised to see [17] and [27].

2.1 SIDH – Supersingular isogeny Diffie-Hellman

Let p be a prime of form p = leAA leBB f ± 1, with lA, lB different primes, eA, eB
non-zero integers, and f a small cofactor. For ease of exposition we assume that
f = 1. We define the starting curve E0 to be a curve over Fp2 of cardinality
(p∓ 1)2 = (leAA leBB)2 and isomorphic to

E(Fp2) ∼= E[leAA]⊕ E[leBB] ∼= 〈PA, QA〉 ⊕ 〈PB , QB〉,

where (PA, QA) and (PB , QB) are bases of E[leAA] and E[leBB] respectively. The
public parameters of the protocol are

(p,E0, PA, QA, PB , QB).

The protocol itself, as the name suggests, is similar to the classical Diffie–Hellman
protocol. Each of the two parties (Alice and Bob) go through two phases: the
public key generation, and the shared secret key computation.

Public key generation Alice choses her private key skA ∈ [0, leAA), and com-
putes the point RA = PA + [skA]QA. She then computes the isogeny φA : E0 →

Title Suppressed Due to Excessive Length 5

EA of kernel 〈RA〉. Finally she computes the images of points PB , QB through
φA, and sets her public key to be the triple

pkA = (EA,φA(PB),φA(QB)).

Analogously, Bob sets skB ∈ [0, leBB) and computes RB = PB + [skB]QB , the
isogeny φB : E0 → EB of kernel 〈RB〉, and φB(PA) and φB(QA). His public key
is

pkB = (EB ,φB(PA),φB(QA)).

Shared secret key computation In order to compute the shared secret, Alice
computes R′

A = φB(PA) + [skA]φB(QA) and the isogeny φ′
A : EB → EBA of

kernel 〈R′
A〉. Bob computes R′

B = φA(PB) + [skB]φA(QB), and the isogeny
φ′
B : EA → EAB of kernel 〈R′

B〉. The final curves EBA and EAB are equal [35],
and the j-invariant j(EAB) = j(EBA) constitutes the shared secret of Alice and
Bob.

2.2 SIKE – Supersingular isogeny key encapsulation

The textbook SIDH protocol, as explained above, is insecure [22] in the static
(i.e., the key pair of both parties is fixed) or semi-static settings (i.e., the key
pair of one of the two parties is fixed). In order to overcome this weakness,
the Fujisaki–Okamoto transform [21] is introduced which allows defence against
known attacks at the cost of a performance overhead and losing the possibility
of having fully static public keys.

The public parameters, as in SIDH, are

pp = (p,E0, PA, QA, PB , QB).

For efficiency reasons, we set lA = 2, lB = 3, and the starting supersingular
curve is selected to be

E0 : y2 = x3 + 6x2 + x.

The protocol is asymmetrical, so we will assume that Bob is the server and
Alice is the client. There are three phases: the public key generation, the key
encapsulation, and the key decapsulation.

Public key generation Bob starts by choosing a random string s ∈ {0, 1}t
(t > 0 public parameter) which will be used to create a random key K if he
detects a cheating attempt from Alice. Then, as before, Bob chooses a random
private key skB ∈ [0, leBB) and computes RB = PB + [skB]QB . After computing
φB : E0 → EB of kernel 〈RB〉, and the images under φB of PA and QA, Bob
sets his public key to be

pkB = (EB ,φB(PA),φB(QA)).

6 Aymeric Genêt, Natacha Linard de Guertechin, and Novak Kaluđerović

Algorithm 1: Public key generation

Procedure Public key generation(pp)
1 skB ← [0, leBB)
2 s ← {0, 1}t
3 RB = PB + [skB]QB

4 Let φB : E0 → EB be such that Ker(φB) = 〈RB〉
Output: pkB = (EB ,φB(PA),φB(QA))

Key encapsulation Alice generates a random message m ∈ {0, 1}t (t > 0
public parameter) which plays the role of the secret in the following. Then, Alice
computes her private key by setting

skA = G(m || pkB) mod leAA ,

where G is a public cryptographic hash function (in practice, SHAKE256 is
used). She proceeds by computing RA = PA + [skA]QA, the corresponding
isogeny φA : E0 → EA, and the images under φA of PB , QB . She sets

c0 = pkA = (EA,φA(PB),φA(QB)),

and proceeds by computing the common secret j(EBA) and c1 = F (j(EBA))⊕m,
where F is also a cryptographic hash function that may or may not be different
from G. Finally, Alice sends the concatenation of c0 and c1 as ciphertext (i.e.,
ct = c0 || c1) to Bob and computes the key K to be used as K = H(m || ct)
(where H is yet another cryptographic hash function which can be the same as
G or F).

Algorithm 2: Key encapsulation

Procedure Key encapsulation(pp, pkb)
1 m ← {0, 1}t
2 skA = G(m || pkB) mod leAA
3 RA = PA + [skA]QA

4 Let φA : E0 → EA be such that Ker(φA) = 〈RA〉
5 pkA = (EA,φA(PB),φA(QB))
6 R′

A = φB(PA) + [skA]φB(QA)
7 Let φ′

A : EB → EBA be such that Ker(φ′
A) = 〈R′

A〉
8 c0 = pkA
9 c1 = F (j(EBA))⊕m

10 K = H(m || ct)
Output: ct = (c0 || c1)

Key decapsulation After receiving ct = (c′0 ||c′1), Bob sets pk′A ..= c′0, computes
j(E′

AB), and extracts m′ = F (j(E′
AB))⊕ c′1 as shown in Algorithm 3. Bob then

computes
sk′A = G(m′|| pkB) mod leAA ,

Title Suppressed Due to Excessive Length 7

and proceeds by computing the corresponding public key pk′′A. Bob then checks
that pk′′A = pk′A, to confirm the truthfulness of Alice. In case the check passes,
he sets K = H(m′ || ct), and K = H(s || ct) otherwise.

Algorithm 3: Key decapsulation

Procedure Key decapsulation(ct)
1 (E′

A, P
′
B , Q

′
B) = c′0

2 R′
B = P ′

B + [skB]Q
′
B

3 Let φ′
B : E′

A → E′
AB be such that Ker(φ′

B) = 〈R′
B〉

4 m′ = F (j(E′
AB))⊕ c′1

5 sk′
A = G(m′ || pkB) mod leAA

6 R′ = PA + [sk′
A]QA

7 Let φ′ : E0 → E′′
A be such that Ker(φ′) = 〈R′〉

8 pk′′
A = (E′′

A,φ
′(PB),φ

′(QB))
9 if pk′′

A = c0 then
K ← H(m′ || ct)

else
K ← H(s || ct)

Output: K

2.3 Point of attack

The attack takes place at step 2 of key decapsulation which is coloured in red.
This operation is computed using the “three point ladder”. The input of the
three point ladder is the public key of Alice and the execution depends on the
private key of Bob. In the semi-static settings of the protocol, Bob executes the
three point ladder with different inputs from different public keys of Alice (or
other client parties) and with his own static private key. Our initial goal was
to correlate the power traces from different executions of the three point ladder
with the hamming weights of the corresponding public keys. This approach was
successful, and we were actually able to obtain the full private key of Bob with
only one power trace, i.e., from a measurement of only one communication with
Alice. This allowed us to extend the attack to step 3 of Algorithm 1 and step 3
of Algorithm 2 coloured in blue, since these steps consist of the same three point
ladder executed with, except for the secret keys, known inputs.

2.4 Correlation power analysis

A Correlation Power Analysis (CPA) [9] is a statistical known-text side-channel
power analysis that aims to deduce a portion of a secret value across multiple
power measurements. A CPA aims to use a correlation coefficient to quantify
the link between power consumption and the values processed by a processing
unit. In the scope of this paper, we consider two types of CPA:

8 Aymeric Genêt, Natacha Linard de Guertechin, and Novak Kaluđerović

– Vertical CPA, which targets a fixed secret value across different executions of
the attacked algorithm by collecting multiple power traces that correspond
to multiple executions of the same operation.

– Horizontal CPA, which targets an ephemeral secret value using a single power
trace that correspond to multiple operations. These operations must be simi-
lar to allow the segmentation of the power trace into multiple ones to simulate
a vertical CPA.

In a typical threat model for CPA, the adversary has the capability of measuring
the power consumption of a target device which acts as a black-box key decap-
sulating device. The algorithm inputs are not required to be manipulated but
are supposed to be accessible by the target device. As a result, a CPA attack
is completely passive (i.e., non-intrusive) and can be mounted even during a
trusted communication between two honest parties.

To assess correlation between the processed values and the power samples,
the Pearson’s Correlation Coefficient (PCC) is computed. Let n > 0 be the
number of measurements, each of which consists of S > 0 power samples. Then,
let T (s) ∈ Rn be a vector of power samples synchronised at a same instant
0 ≤ s < S, and M ∈ Nn a vector of the Hamming weight of the processed
values.

PCC(M,T (s)) =
Cov(M,T (s))!

Var(M)Var(T (s))
.

The overall attack consists of the following steps:

1. Find an operation in the attacked procedure which involves:
(a) A (small) portion of a secret value which is the same across all measure-

ments.
(b) A known input (resp. output).
In the following, we refer to the result of this operation as the intermediate
value.

2. Collect n > 0 power traces consisting of S > 0 power samples each, i.e., T (s)
for 0 ≤ s < S, that correspond to the computation of the intermediate value
with different inputs (resp. outputs).

3. Take a guess for the portion of the secret value involved in the intermediate
value computation.

4. Compute the vector of intermediate values from the known inputs (resp.
outputs) and the secret value guess, and derive its corresponding vector of
Hamming weight M .

5. For each vector of power samples at a same time, i.e., T (s) for each 0 ≤ s < S,
compute PCC(M,T (s)).
This results in a vector of PCC at each moment in time.

Using a large enough n > 0 given the signal-to-noise ratio of the power
consumption, a strong PCC at any point in time indicates a valid guess, while
a weak PCC at every point in time can rule out said guess.

Title Suppressed Due to Excessive Length 9

Figure 1 gives a visual example of a CPA. In this example, the portion of the
secret value is only one bit, resulting thus in two possible intermediate values.
The PCC computation takes one of the two Hamming weight vectors M sketched
on the left of the figure, and each vector of power samples at a same timing
instant shown on the right, to produce each point in the corresponding PCC
plot below. Since the PCC plot for the bit guess of one shows a spike, the
corresponding bit for the secret value is successfully recovered.

Correlations column-wiseHamming
weights

T
ra

ce
s

B
it

gu
es

s
1

B
it

gu
es

s
0

P
C

C
P

C
C

Fig. 1: Visual example of a CPA. Correlations between two arrays of Hamming
weights and the power traces are plotted in the bottom. A strong correlation
indicates that the bit value associated to these power traces is 1.

3 Side-channel analysis

In this chapter, we explain how to exploit the link between power consumption
and processed data in order to recover private key bits.

10 Aymeric Genêt, Natacha Linard de Guertechin, and Novak Kaluđerović

3.1 The three point ladder

The main point of attack is the three point ladder. This is a function which takes
as input an elliptic curve E and two points P and Q on that curve. These may
be thought of as pkA = (EA,φA(PB),φA(QB)) or (E0, PA, QA) etc. The three
point ladder computes the point R = P + [sk]Q where sk is the private key of
the computing party.

Montgomery representation The curve E over the field Fp2 is represented
in Montgomery representation [37] as

E : βY 2Z = X3 + αX2Z +XZ2, for some α,β ∈ Fp2 .

In SIKE, we are only interested in curves where β = 1 so the curves which we
work with depend on a single parameter α.

Montgomery curves allow for compact representation of points, up to sign,
by using only the X and the Z coordinates. In particular, a point S = [XS : YS :
ZS] ∕= [0 : 1 : 0] can be represented by a single field element xs = XS/ZS ∈ Fp2 .
The value [XS : ZS] = [xs : 1] uniquely defines {±S}, and we write S = [xs : 1].

The triple (E,P,Q) containing a curve and two points is represented as three
field elements (xQ, xP , xQ−P), where Q = [xQ : 1], P = [xP : 1], Q−P = [xQ−P :
1]; the coefficient α defining the curve E can be obtained from these values with
a couple of modular multiplications, squarings and a single inversion.

The main ingredient of the three point ladder is a double-and-add function
xDBLADD. It takes as input a triple of points S, T, U ∈ E in Montgomery rep-
resentation such that U = S − T , the curve defining coefficient α, and outputs
(2S, T + S,U). The ladder takes as input Q,Q− P, P and computes P + [sk]Q
by going through the bits of sk starting from the least significant, as shown in
Algorithm 4.

Algorithm 4: Three point ladder

Procedure Three point ladder(xQ, xP , xQ−P)
1 prev_bit = 0
2 S = [xQ : 1], T = [xQ−P : 1], U = [xP : 1]
3 α = curve_coefficient(S, T, U)
4 for i ← 0 to bitlength(sk)− 1 do
5 current_bit = sk[i]
6 if (current_bit ∕= prev_bit) then
7 swap(T, U)

8 (S, T, U) = xDBLADD(S, T, U,α)
9 prev_bit = current_bit

10 if (prev_bit) then
11 swap(T, U)

Output: U

Title Suppressed Due to Excessive Length 11

The goal of the attack is to measure the power consumption of the xDBLADD
operation and to deduce if the function was executed with or without the swap
at step 7. We may assume that we know the private key up to bit i − 1, by
induction. We also know the starting points Q,P,Q − P since they are public.
Therefore, we may obtain the two possible inputs for xDBLADD, and we know
how they relate to the value of the ith bit of the private key. The two inputs and
their Hamming weights are computed and the power trace of certain instructions
within xDBLADD is correlated with the Hamming weights. Thanks to CPA, this
allows us to distinguish when the ith bit is zero or one.

Double-and-add Despite the involvement of a (random) bit of the private key,
xDBLADD is a deterministic function. The inputs and outputs of each subproce-
dure in xDBLADD depend only on the original inputs of the function. As a result,
an educated guess on the original inputs allow us to infer the results of all the
operations involved in xDBLADD.

The function consists of 7 multiplications and 4 squarings of Fp2 elements,
and multiple field additions, subtractions, and modular reductions. Each Fp2

multiplication and each squaring contain two multi-precision additions of Fp

elements, referred to as “mp_addfast”. This multi-precision addition is the oper-
ation on which our attack is focused. In total, there are 11× 2 = 22 mp_addfast
functions, out of which only 10 have inputs which differ in case of a swap at
step 6 of the three point ladder. The code of xDBLADD and the squaring and
multiplication functions can be found in Figure 5.

Multi-precision addition In the Cortex-M4 implementation of SIKE, the
mp_addfast is written in assembly. The function computes the addition of two
Fp elements. Depending on the size of p, each field element is saved in an array of
n ∈ {14, 16, 20, 24} 32-bit words. Each mp_addfast executes 2n load instructions
(LDMIA), n store instructions (STMIA), and n additions (ADDS, ADCS). These are
executed in batches of four consecutive additions, due to the limited number of
available registers on the Cortex-M4. The code of the mp_addfast function can
be found in Figure 6.

3.2 Vertical attack

In a vertical attack against SIKE, we measure multiple executions of the three
point ladder in which Bob’s private key is fixed, but the client public key inputs
are different. From these traces, we concentrate only on a single mp_addfast
instruction per xDBLADD, i.e., per bit of the private key. Within the mp_addfast,
we can decide to focus even further on the first addition instruction. We can thus
compute the two possible outputs of the first ADDS depending on the (timing-
constant) swap, for each public key, and then correlate the two vectors of Ham-
ming weights of these outputs with the power traces using the CPA procedure
from Section 2.4. This process can be repeated for each bit of Bob’s private key,
as the correctness of each guess depends on the correctness of previous ones,
resulting thus in an extend-and-prune attack.

12 Aymeric Genêt, Natacha Linard de Guertechin, and Novak Kaluđerović

3.3 Horizontal attack

In the horizontal attack scenario, we can measure only one power trace for a
single execution of the three point ladder. The same approach as in the vertical
attack cannot be used because there would not be enough data to obtain strong
correlations. We can work out this issue and re-obtain “verticality” by combining
the power traces of all 10 mp_addfast functions within each xDBLADD. This way,
we obtain 10 power traces with which we can correlate pairs of inputs – similarly
as in a vertical attack with 10 power traces.

We can further improve this attack. A multi-precision addition takes two Fp

elements as input and gives one as output. Each one of the 2n 32-bit input words
is loaded once and then used in the addition instruction, and the n 32-bit output
words are stored. In total, there are 3n words which pass through the pipeline
registers and whose Hamming distance from the previous word in the pipeline
are related to the power consumption.

For each of the 3n words, we compute the PCC between the 10 power traces
and the 10 pairs of hamming weights of 32-bit words accounting for the two
guesses of the current bit of the private key. For each word, a spike in the
correlation is expected at a different position depending on the instruction which
uses this particular word. The locations of spikes can be deduced from the shape
of the power traces. Once the 3n pairs of correlations are computed, we can add
them up such that the locations of the expected spikes are aligned. We expect to
end up with two correlations for each guess of the private-key bit, with a clear
spike in the correlation plot of the correctly guessed value.

In presence of noise in power measurement, the private key guesses may be
erroneous. A single wrong guess of a bit of the private key leads to completely
inconclusive results, because the following guesses depend on the correctness of
the previous bits. Therefore, it is of particular importance that no erroneous
guesses are made in the process of key extraction. We propose two measures to
approach this problem.

Depth search When the guess of a single bit gives inconclusive results, we
can proceed by making four guesses for the next two bits in hope of finding a
correlation coefficient with a notable spike. In particular we can make a guess
for k consecutive bits, obtaining in total 2k different combinations. For each
combination we compute a PCC for each of the k bits. In total there are 2(2k−1)
correlation coefficients, not counting repetitions. We then add up all the PCCs
for each k-bit combination and we guess the current sk bit to be the trailing bit
of the combination with the strongest correlation.

Increasing verticality We can increase verticality (i.e., the amount of power
traces in the horizontal settings) by computing correlations for bits in windows
of k. If, for one bit, 10 mp_addfast functions can be measured from a single
xDBLADD, then, for k bits, there will be k × 10 traces of mp_addfast functions
from the k consecutive xDBLADD functions. In total, 2k hypotheses need to be

Title Suppressed Due to Excessive Length 13

Fig. 2: Depth search.
made (one per bit), and 2k correlation coefficients are computed for 10k power
traces.

Finally, rather than performing the attack on contiguous windows of k bits,
we select only one bit of Bob’s private key to be the trailing bit of the k-bit
combination with the strongest correlation. This way, we can re-run the process
starting from the bit right afterwards as a way to correct errors due to the poten-
tial proximity of strong correlations. This process resembles the error-correction
procedure introduced in [19].

Also, we mention that other operations, such as fpmul_mont and fpsub, can
be measured and combined to increase verticality. While these are dissimilar
operations and may leak information differently than mp_addfast, they may
still add information to the overall selection of Bob’s private bits.

4 Experimental results

In order to validate the horizontal attack described in Section 3, we reproduced
the key recovery on a programmable board which runs an adapted version of
reference implementation of SIKE [44].

4.1 Hardware setup

The experiment comprises the following equipment:

– The ChipWhisperer toolkit [25], that includes:
• A (NAE-CW308T-)STM32F3 board which includes an ARM Cortex-M4

microcontroller (the victim).
• A ChipWhisperer-Lite board which is solely used to communicate with

the STM32F3 in serial through USB.

14 Aymeric Genêt, Natacha Linard de Guertechin, and Novak Kaluđerović

• A ChipWhisperer (NAE-)CW308 UFO board which interfaces the signals
between the ChipWhisperer-Lite and the STM32F3.

– A high-definition oscilloscope with the following specifications:
• An analog bandwidth of at least 500 MHz.
• A sampling rate of 250 samples per microsecond (i.e., 250 MS/s).
• A resolution of 16 bits per sample.
• A memory of 50,000 samples per acquisition.

– A general-purpose computer which runs an operating system compatible
with the ChipWhisperer framework [26].

The STM32F3 is plugged into the CW308 UFO, which is itself connected to
the ChipWhisperer-Lite with a 20-pin cable. The oscilloscope measures the power
consumption in AC through a passive probe connected to the SHUNTL4 pin on
the CW308 UFO, and whose measurement is triggered by reacting to the active-
high GPIO04/TRIG4 pin also with a passive probe (both probes are grounded to
the GND pins on the CW308 UFO). The computer is simply connected to the
ChipWhisperer-Lite with a USB to micro-USB cable.

The reasoning behind such a setup was to overcome the limitations of memory
of the ChipWhisperer-Lite by means of an oscilloscope with better specifications.

4.2 Target implementation

The attacked implementation is the official SIKE implementation adapted for
(32-bit) ARM Cortex-M4 microcontrollers [44], which is part of the official sub-
mission package and is constant in timing.We attacked SIKE instantiated with
a prime of 434 bits (i.e., SIKEp434); a choice that we elaborate in this section.

In our experiment, we wrote a small piece of software that interfaces the
serial communication from the ChipWhisperer framework to the SIKE library.
The code allows the computer to program the STM32F3 remotely through USB
and simulate the key exchange while power consumption is measured.

Concretely, the software uses ChipWhisperer’s SimpleSerial protocol [24] to
program different commands to which the STM32F3 reacts. The computer uses
these commands to communicate data to the STM32F3 by serially transmitting,
first, the byte of the command in ASCII, then, the data of length specified
for the command. When the procedure corresponding to the command ends,
the STM32F3 responds with the letter z followed by a code returned by the
procedure, which concludes the protocol exchange. Two custom commands of
were introduced in the scope of this experiment – command k which sets Bob’s
private key used in the three point ladder, and the command p which sends
Alice’s public key and executes the three point ladder procedure of SIKE.

We made additional modifications in the SIKE implementation to ease the
collection and the pre-processing of the traces. Note that these adjustments were
made for efficiency purpose and are by no means necessary for our attack to work.

4 We refer to the official NAE-CW308 UFO datasheet to find the mentioned pins:
http://media.newae.com/datasheets/NAE-CW308-datasheet.pdf

http://media.newae.com/datasheets/NAE-CW308-datasheet.pdf

Title Suppressed Due to Excessive Length 15

In other words, we emphasise that the attack can be mounted on the original
implementation of SIKE presented in [44] without any difficulty.

The list of adjustments are the following:

– A GPIO pin (PA125, a.k.a., the trigger) is toggled when the double-and-add
operation of the three point ladder enters into an mp_addfast procedure
that depends on the swap.

– An idle delay of about 1 millisecond was introduced in between each mp_addfast
call, and of about 1 second after each loop iteration of the three point ladder.

Limitations of the software While the introduction of a trigger GPIO and multi-
ple delays results in an unrealistic attack scenario, we emphasise on the fact that
the attack is still possible on an unmodified SIKE implementation. The process
of segmenting the power traces, as well as the correlation and Hamming weights
computations can be done offline, after the power traces have been sampled.
In a plain attack, as opposed to our experiment, the traces acquisition will be
synchronised on serial communication. Then, the targeted operations need to
be identified within the full resulting power trace (e.g., using cross-correlation
techniques, as in [19]), so the sub-power traces corresponding to the attacked in-
structions can be manually segmented and carefully aligned to perform the CPA.
This cumbersome process is not the main focus of our study and was therefore
duly skipped.

Other SIKE instances To achieve various levels of security, the original SIKE
submission [27] presents four different parameters sets; each of which with a
prime of different size (i.e., a p with a bit-length of 434, 503, 610, and 751).
While instantiating SIKE with a larger prime offers stronger security guarantees
against theoretical cryptanalysis, larger instances present a wider attack surface
in a single-trace power analysis. This property was also observed by Bos et al. [8],
and is due to the increased number of instructions executed which, therefore,
yield more power measurements. As a result, our attacked instance (SIKEp434)
is expected to be the hardest to attack with a single trace.

Also, the compressed instances of SIKE are prone to the same horizontal
attack, because the starting points of the three point ladder are deterministically
obtained from the compressed public key.

4.3 Collection of traces

Our experiment simulated a portion of the SIKE key exchange between Alice (the
computer) and Bob (the STM32F3); namely, the key decapsulation procedure.
Our attack scenario can be summarised with the following steps:

1. On the computer, generate Bob’s key pair at random, and send Bob’s private
key to the STM32F3 (with the command k).

5 We refer to the official CW308T-STM32F3 datasheet to find the mentioned pins:
https://media.newae.com/datasheets/NAE-CW308T-STM32F_datasheet.pdf

https://media.newae.com/datasheets/NAE-CW308T-STM32F_datasheet.pdf

16 Aymeric Genêt, Natacha Linard de Guertechin, and Novak Kaluđerović

2. Given Bob’s public key, generate Alice’s key pair at random.
3. Send a public key to the STM32F3 (with the command p) during which the

oscilloscope measures the power consumption of:
– only the second mp_addfast call involved in steps 6 and 8,
– and both mp_addfast call involved in steps 16, 17, 18, and 19,

of the xDBLADD procedure (see Figure 5) as used in the three point ladder.

Once triggered, the oscilloscope was configured to sample the power con-
sumption at a rate of 250 MS/s during a period of 20 µs. As a result, a power
trace for a single execution of mp_addfast includes 5,000 power samples.

This attack scenario was repeated a total of 460 times to obtain at most 1
million traces. Each of these experiments includes the power traces of the 10
mp_addfast calls from the loop iterations for all the 217 bits of Bob’s private
key. Hence, 460×10×217 = 998,200 different power traces were acquired during
that experiment.

For reference, Figure 3 (top) shows the average power consumption of an
mp_addfast execution captured by our oscilloscope.

4.4 Traces polishing

Because our initial results turned out to be inconclusive due to a serious level of
noise in the acquisition (see top of Figure 3), we processed the collected power
traces with a denoising technique, in the hope that such a processing would
increase the success rate of our CPA.

In our case, we applied a wavelet denoising compression, as initially explored
in [48], to down-sample the power traces. This compression actually aims to
decompose the signal into two sub-signals; approximation and details. Applied to
a signal in one dimension, the approximation corresponds to the low frequencies
of the signal, while the details contain the high frequencies. By keeping the
approximation only, each application halves the number of samples (minus a
few points due to a windowed convolution). Best results were experimentally
obtained when Daubechies 3 wavelets (‘db3’) were used recursively three times
to reduce the number of samples from 5,000 to 623. The average of the resulting
traces is shown in Figure 3.

The denoised traces and public data are made accessible at https://github.
com/COSADE-anonymous-submission/SIKE-HPA-2021.

4.5 Horizontal CPA procedure

Using the denoised power traces, we performed a horizontal CPA on each itera-
tion of the loop in the three point ladder. Each time, a single bit of Bob’s private
key is attacked. This process can then be repeated across all the bits of the key.

Since a single bit is hypothesised at each step of the horizontal attack, there
are only two hypotheses to consider:

– The points P and Q−P were swapped (the bit is different from the previous
bit).

https://github.com/COSADE-anonymous-submission/SIKE-HPA-2021

Title Suppressed Due to Excessive Length 17

Fig. 3: Result of the discrete wavelet transform with Daubechies 3 wavelets
(‘db3’).

– The points P and Q − P were left un-swapped (the bit is the same as the
previous bit).

A strong correlation between the power traces for one loop iteration and the
values corresponding to one of the two hypotheses indicates the correctness of
the hypothesised bit. As the attack moves forward, a successful recovery of the
first bits allows the recovery of the next ones. Therefore, a full-key recovery can
be incrementally mounted in an extend-and-prune manner.

Power traces segmentation Due to the ephemeral settings of the protocol,
we have access to only a single trace per loop iteration involving a single bit
of Bob’s private key. Therefore, in order to apply a classical CPA, we need to
obtain verticality, i.e., find a way to obtain a certain amount of multiple different
power samples which are linked to a same portion of the private key. In our case
study, we segmented the power trace that corresponds to an iteration of the
three point ladder into 10 different power traces, each of which corresponding
to an mp_addfast execution, for which, given either hypothesis, the full input
and output (and thus, relevant Hamming distances information) are known. As
a result, our horizontal CPA will amount to a vertical CPA with 10 power traces
and 2 hypotheses.

CPA enhancements To further improve the success of our attack, we have
inspected the targeted function for which the power traces were collected. Partic-
ularly, the power traces correspond to the mp_addfast function which adds two
input Fp elements and returns a single Fp element (see Figure 6). Because, in our
experiment, p is 434-bit long, each element is saved as an array of ⌈434/32⌉ = 14
words of 32 bits. This results in exactly 14 addition instructions, hence 14 leakage
points, in a single mp_addfast power trace.

18 Aymeric Genêt, Natacha Linard de Guertechin, and Novak Kaluđerović

Moreover, we considered the leakage model from a Cortex-M4 microcontroller
as explained in [14]. Because the power consumption leaks in the Hamming
distance between the pipeline registers, we actually obtain three leakage points
on a power trace per instruction:
(1) the Hamming distance between the first inputs of the current and the pre-

vious instruction,
(2) the Hamming distance between the second inputs of the current and the

previous instruction, and
(3) the Hamming distance between the output of the current and the previous

instruction.

This results in an additional segmentation of 3× 14 = 42 points of leakage. For
each point of leakage, a PCC is computed with the 10 mp_addfast power traces
and the 10 Hamming distances.

We expect each of these PCCs to produce a spike at a different point in
time in the correlation plot which we try to recover. The location of the spike
corresponds to the position at which the associated 32-bit word is processed
by a pipeline register. Each of these leakage points is constant throughout the
mp_addfast executions and the three point ladder loop (assuming the power
traces are properly aligned, which can be automated using basic peak alignment
methods). These positions can even be identified by analysing the spike structure
of the power trace (using, e.g., cross-correlation techniques).

Finally, the 42 PCCs at each point of leakage are added together to produce
a larger spike. This consists of aligning all correlation plots on their leakage
points and adding them together. We expect the difference of added correlation
coefficients to be large enough to correctly validate the private bit.

4.6 Results

Among the 460 trials, our experimental results returned a resounding success
rate of 100% in recovering the full key. None of the improvements described in
Section 3.3 were even required. An example of the corresponding CPA is shown
in Figure 4 where six bits are shown to be successfully recovered. This proof of
concept shows that, even in ephemeral settings, the official ARM implementation
of SIKE is vulnerable to classical power analysis techniques.

All the code used to derive our results is shared on https://github.com/
nKolja/SIKE-HPA-2021.

5 Countermeasures

The attack arises as a consequence of the three point ladder being a deterministic
function with predictable inputs. Each value going through the pipeline registers
can be reduced to only two cases. These inputs depend on the public triple
xQ, xP , xQ−P (which define Q = [xQ : 1], P = [xP : 1], Q−P = [xQ−P : 1]), the
bits of Bob’s private key up to the step at which the instruction in question is
being executed (which we may assume to be known by induction), and the two
possibilities for the current bit of the private key.

https://github.com/nKolja/SIKE-HPA-2021

Title Suppressed Due to Excessive Length 19

Fig. 4: Addition of shifted PCC results with 10 segments of a single power trace.
Each step corresponds to a different bit. The blue curve corresponds to a bit
hypothesis of zero, while the red curve corresponds to bit hypothesis of one.

5.1 Recommended countermeasure

A simple and low-cost countermeasure, which was also mentioned in [20,13,50]
consists of randomising the coordinates that define the starting points, i.e., gen-
erate three random non-zero field elements rQ, rP , rQ−P and set

Q = [xQrQ : rQ], P = [xP rP : rP], Q− P = [xQ−P rQ−P : rQ−P].

The increase in complexity comes from generating three random F∗
p2 elements

and three field multiplications. This is negligible with respect to the overall cost
of the three point ladder. The execution of the protocol is still correct because
the points Q,P,Q−P are not changed, but the input of xDBLADD, seen as three
pairs of Fp2 elements is now randomised. Since the values rQ, rP , rQ−P are secret,
we cannot predict the loaded and stored values in the pipeline registers, and thus
cannot apply the same attack anymore.

Point randomisation is in general still vulnerable to refined power analysis,
as shown in [20,32]. Such power analysis constitutes in finding a point P such
that one of its coordinates is 0, so that randomisation would not change this co-
ordinate. Feeding P to the attacked device would lead to some of the coordinates
being known in the computation of the ladder. However, the only points that
have a zero in the X or Z coordinates are [0 : 1 : 0] (i.e, the point at infinity)
and [0 : 0 : 1], a point of order 2. Neither of these points can be a part of a public
key or an input of the three point ladder, so they can be avoided by a simple
sanity check.

5.2 Other countermeasures

In addition to the randomised projective coordinates described above, the au-
thors of [50] proposed a series of countermeasures (based on [20,28]) against CPA
on SIKE that we aim to evaluate in the case of a horizontal attack. However these
countermeasures are either too expensive, or do not offer additional protection
against horizontal attacks. We also comment atomic elliptic curve algorithms.

20 Aymeric Genêt, Natacha Linard de Guertechin, and Novak Kaluđerović

1. Masking the base point Q
The starting point Q is masked with a random point R in order to obtain
Q ← Q + R. The final point P + [sk](Q + R) of the three point ladder is
then adjusted by subtracting [sk]R.
Masking the base point prevents both a vertical and a horizontal attacks but
cannot be done without leaving Montgomery representation. As a result, such
a countermeasure requires at least a square root computation over the field
Fp2 , which is very expensive.

2. Random isomorphic elliptic curve
The point Q is mapped to a random elliptic curve E′ where the scalar multi-
plication is computed. The result is then mapped back to the original curve
E in order to obtain [sk]Q which is then added to P .
Such a countermeasure is unfortunately limiting, since the number of curves
of isomorphic to E is low, and finding a non-trivial isomorphism is not trivial.
In particular, mapping Q to an isomorphic elliptic curve does not provide
enough security against a horizontal attack due to the possibility of testing
all isomorphic curves.

3. Masking the scalar sk
The secret key sk is masked with a random value r by setting sk ← sk+ r ·
ord(Q).
If the masking is different at each execution and big enough, the vertical
attack can be conceivably prevented with this countermeasure. However,
the horizontal attack is simply extended by r · ord(Q) bits and recover a
value congruent to the actual sk (mod ord(Q)). Besides, the execution of
the three point ladder would be a factor of log(r) slower.

4. Random key splitting
The private key sk is divided randomly as sk = sk1 + sk2. Then two three
point ladders are computed in order to obtain (P + [sk1]Q) + [sk2]Q.
While splitting sk differently across executions produces measurements of
dissimilar operations in a vertical attack, this countermeasure is not effective
against a horizontal attack, as both shares can be independently recovered.

5. Window-based countermeasure
Instead of making a binary choice for swapping at each step of the three
point ladder, a 3-bit window is used, and two additions and three doublings
are computed per window.
While a window-based method increases the complexity of a vertical attack,
such a countermeasure is ineffective in the settings of a horizontal attack,
as the number of guesses per CPA iteration simply increases from 21 to 23.
Besides, similarly as with the base point masking, this countermeasure is
not cost-efficient, as the new ladder will require to leave the Montgomery
representation, requiring at least one computation of a square root over Fp2 .

6. Atomic three point ladder
The authors of [10] propose atomic algorithms for preventing simple side-
channel analysis. An atomic algorithm is made out of a sequence of instruc-
tions which are indistinguishable from a side-channel point of view.

Title Suppressed Due to Excessive Length 21

At the first look, the three point ladder might seem to be atomic, however
the assumption in [10] that modular operations are side-channel equivalent
fails in the Cortex-M4 environment. While we are not able to distinguish a
single pair of modular additions with two different inputs, we are able to
distinguish 10 tuples of modular additions with two different 10-tuples of
inputs, which breaks indistinguishability.

6 Conclusion

The report describes a CPA on SIKE in ephemeral settings that recovers Bob’s
entire private key using a single power trace of the three point ladder in the key
decapsulation procedure. The attack was experimentally verified on an STM32F3
which features a Cortex-M4 microcontroller in the context of the ChipWhisperer
framework. A countermeasure based on point randomisation is finally suggested.

The impact of this attack on the security of SIKE is critical when the ref-
erence implementation is adapted in an unprotected manner to a Cortex-M4
microcontroller. This is especially important, because of the exceptionally leaky
nature of such microcontrollers, thanks to the findings of [14]. Due to the simplic-
ity of the CPA, countermeasures are required to be deployed when the reference
implementation of SIKE is used in an embedded environment.

We emphasise on the fact that the three point ladder attacked in the key
decapsulation is not the only point of attack of the SIKE protocol and that each
use of the three point ladder (even in the key generation, and key encapsulation)
requires to be protected when exposed to power analyses. Also, for future study,
we propose to investigate the secret isogeny computation which is independent
from the scalar multiplication.

References

1. Apon, D.: Passing the final checkpoint! NIST PQC 3rd round begins (2020), https:
//meetings.ams.org/math/fall2020se/meetingapp.cgi/Paper/1656, https://
www.scribd.com/document/474476570/PQC-Overview-Aug-2020-NIST

2. Aysu, A., Tobah, Y., Tiwari, M., Gerstlauer, A., Orshansky, M.: Horizontal side-
channel vulnerabilities of post-quantum key exchange protocols. In: 2018 IEEE
International Symposium on Hardware Oriented Security and Trust (HOST). pp.
81–88 (2018). https://doi.org/10.1109/HST.2018.8383894

3. Azarderakhsh, R., Jao, D., Kalach, K., Koziel, B., Leonardi, C.: Key compres-
sion for isogeny-based cryptosystems. Cryptology ePrint Archive, Report 2016/229
(2016), https://eprint.iacr.org/2016/229

4. Azouaoui, M., Poussier, R., Standaert, F.: Fast side-channel security evalua-
tion of ECC implementations - shortcut formulas for horizontal side-channel
attacks against ECSM with the Montgomery ladder. In: Polian, I., Stöt-
tinger, M. (eds.) Constructive Side-Channel Analysis and Secure Design -
10th International Workshop, COSADE 2019, Darmstadt, Germany, April 3-

5, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11421, pp. 25–
42. Springer (2019). https://doi.org/10.1007/978-3-030-16350-1_3, https://doi.
org/10.1007/978-3-030-16350-1_3

https://meetings.ams.org/math/fall2020se/meetingapp.cgi/Paper/1656
https://www.scribd.com/document/474476570/PQC-Overview-Aug-2020-NIST
https://doi.org/10.1109/HST.2018.8383894
https://eprint.iacr.org/2016/229
https://doi.org/10.1007/978-3-030-16350-1_3
https://doi.org/10.1007/978-3-030-16350-1_3

22 Aymeric Genêt, Natacha Linard de Guertechin, and Novak Kaluđerović

5. Batina, L., Chmielewski, L., Papachristodoulou, L., Schwabe, P., Tun-
stall, M.: Online template attacks. J. Cryptogr. Eng. 9(1), 21–36 (2019).
https://doi.org/10.1007/s13389-017-0171-8, https://doi.org/10.1007/s13389-
017-0171-8

6. Bos, J.W., Friedberger, S.J.: Arithmetic considerations for isogeny based cryp-
tography. Cryptology ePrint Archive, Report 2018/376 (2018), https://eprint.
iacr.org/2018/376

7. Bos, J.W., Friedberger, S.J.: Faster modular arithmetic for isogeny based crypto
on embedded devices. Cryptology ePrint Archive, Report 2018/792 (2018), https:
//eprint.iacr.org/2018/792

8. Bos, J.W., Friedberger, S.J., Martinoli, M., Oswald, E., Stam, M.: Assessing
the feasibility of single trace power analysis of Frodo. In: Cid, C., Jr., M.J.J.
(eds.) Selected Areas in Cryptography - SAC 2018 - 25th International Con-
ference, Calgary, AB, Canada, August 15-17, 2018, Revised Selected Papers.
Lecture Notes in Computer Science, vol. 11349, pp. 216–234. Springer (2018).
https://doi.org/10.1007/978-3-030-10970-7_10, https://doi.org/10.1007/978-
3-030-10970-7_10

9. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage
model. In: Joye, M., Quisquater, J. (eds.) Cryptographic Hardware and Embed-
ded Systems - CHES 2004: 6th International Workshop Cambridge, MA, USA,
August 11-13, 2004. Proceedings. Lecture Notes in Computer Science, vol. 3156,
pp. 16–29. Springer (2004). https://doi.org/10.1007/978-3-540-28632-5_2, https:
//doi.org/10.1007/978-3-540-28632-5_2

10. Chevallier-Mames, B., Ciet, M., Joye, M.: Low-cost solutions for preventing simple
side-channel analysis: side-channel atomicity. IEEE Transactions on Computers
53(6), 760–768 (2004). https://doi.org/10.1109/TC.2004.13

11. Childs, A., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies
in quantum subexponential time. Journal of Mathematical Cryptology 8(1),
1âĂŞ29 (Jan 2014). https://doi.org/10.1515/jmc-2012-0016, http://dx.doi.org/
10.1515/jmc-2012-0016

12. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Horizontal correla-
tion analysis on exponentiation. In: Soriano, M., Qing, S., López, J. (eds.) Informa-
tion and Communications Security - 12th International Conference, ICICS 2010,
Barcelona, Spain, December 15-17, 2010. Proceedings. Lecture Notes in Computer
Science, vol. 6476, pp. 46–61. Springer (2010). https://doi.org/10.1007/978-3-642-
17650-0_5, https://doi.org/10.1007/978-3-642-17650-0_5

13. Coron, J.S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In: Koç, Ç.K., Paar, C. (eds.) Cryptographic Hardware and Embedded
Systems. pp. 292–302. Springer Berlin Heidelberg, Berlin, Heidelberg (1999)

14. Corre, Y.L., Großschädl, J., Dinu, D.: Micro-architectural power simulator for leak-
age assessment of cryptographic software on ARM Cortex-M3 processors. Cryptol-
ogy ePrint Archive, Report 2017/1253 (2017), https://eprint.iacr.org/2017/
1253

15. Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular isogeny
Diffie-Hellman. Cryptology ePrint Archive, Report 2016/413 (2016), https://
eprint.iacr.org/2016/413

16. Couveignes, J.M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006/291 (2006), https://eprint.iacr.org/2006/291

17. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies. Journal of Mathematical Cryptology 8(3),

https://doi.org/10.1007/s13389-017-0171-8
https://doi.org/10.1007/s13389-017-0171-8
https://eprint.iacr.org/2018/376
https://eprint.iacr.org/2018/792
https://doi.org/10.1007/978-3-030-10970-7_10
https://doi.org/10.1007/978-3-030-10970-7_10
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1109/TC.2004.13
https://doi.org/10.1515/jmc-2012-0016
http://dx.doi.org/10.1515/jmc-2012-0016
https://doi.org/10.1007/978-3-642-17650-0_5
https://doi.org/10.1007/978-3-642-17650-0_5
https://eprint.iacr.org/2017/1253
https://eprint.iacr.org/2016/413
https://eprint.iacr.org/2006/291

Title Suppressed Due to Excessive Length 23

209 – 247 (01 Sep 2014). https://doi.org/https://doi.org/10.1515/jmc-2012-0015,
https://www.degruyter.com/view/journals/jmc/8/3/article-p209.xml

18. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from su-
persingular elliptic curve isogenies. Cryptology ePrint Archive, Report 2011/506
(2011), https://eprint.iacr.org/2011/506

19. Dugardin, M., Papachristodoulou, L., Najm, Z., Batina, L., Danger, J., Guilley,
S.: Dismantling real-world ECC with horizontal and vertical template attacks. In:
Standaert, F., Oswald, E. (eds.) Constructive Side-Channel Analysis and Secure
Design - 7th International Workshop, COSADE 2016, Graz, Austria, April 14-15,
2016, Revised Selected Papers. Lecture Notes in Computer Science, vol. 9689, pp.
88–108. Springer (2016). https://doi.org/10.1007/978-3-319-43283-0_6, https://
doi.org/10.1007/978-3-319-43283-0_6

20. Fan, J., Guo, X., De Mulder, E., Schaumont, P., Preneel, B., Verbauwhede,
I.: State-of-the-art of secure ECC implementations: a survey on known side-
channel attacks and countermeasures. In: 2010 IEEE International Sympo-
sium on Hardware-Oriented Security and Trust (HOST). pp. 76–87 (2010).
https://doi.org/10.1109/HST.2010.5513110

21. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric en-
cryption schemes. In: Proceedings of the 19th Annual International Cryptology
Conference on Advances in Cryptology. p. 537âĂŞ554. CRYPTO ’99, Springer-
Verlag, Berlin, Heidelberg (1999)

22. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingular
isogeny cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) Advances in Cryptology
– ASIACRYPT 2016. pp. 63–91. Springer Berlin Heidelberg, Berlin, Heidelberg
(2016)

23. Holdings, A.: Cortex-M4 specifications, https://developer.arm.com/ip-
products/processors/cortex-m/cortex-m4

24. Inc., N.T.: SimpleSerial - ChipWhisperer Wiki (2017), https://wiki.newae.com/
SimpleSerial

25. Inc., N.T.: CHIPWHISPERER | NewAE Technology (2021), https://www.newae.
com/chipwhisperer

26. Inc., N.T.: GitHub - newaetech/chipwhisperer: ChipWhisperer - the complete
open-source toolchain for side-channel power analysis and glitching attacks (2021),
https://github.com/newaetech/chipwhisperer

27. Jao, D., Azarderakhsh, R., Campagna, M., Costello, C., De Feo, L., Hess, B.,
Hutchinson, A., Jalali, A., Karabina, K., Koziel, B., LaMacchia, B., Longa, P.,
Naehrig, M., Pereira, G., Renes, J., Soukharev, V., Urbanik, D.: Supersingular
isogeny key encapsulation (2017), https://sike.org/

28. Joye, M., Tymen, C.: Protections against differential analysis for elliptic curve
cryptography — an algebraic approach —. In: Koç, Ç.K., Naccache, D., Paar, C.
(eds.) Cryptographic Hardware and Embedded Systems — CHES 2001. pp. 377–
390. Springer Berlin Heidelberg, Berlin, Heidelberg (2001)

29. Kalai, G.: The argument against quantum computers (2019), https://arxiv.org/
abs/1908.02499

30. Kannwischer, M.J., Pessl, P., Primas, R.: Single-trace attacks on Keccak. IACR
Cryptol. ePrint Arch. 2020, 371 (2020), https://eprint.iacr.org/2020/371

31. Kannwischer, M.J., Rijneveld, J., Schwabe, P., Stoffelen, K.: pqm4: Testing and
benchmarking NIST PQC on ARM Cortex-M4. Workshop Record of the Sec-
ond PQC Standardization Conference (2019), https://cryptojedi.org/papers/
#pqm4

https://doi.org/https://doi.org/10.1515/jmc-2012-0015
https://www.degruyter.com/view/journals/jmc/8/3/article-p209.xml
https://eprint.iacr.org/2011/506
https://doi.org/10.1007/978-3-319-43283-0_6
https://doi.org/10.1007/978-3-319-43283-0_6
https://doi.org/10.1109/HST.2010.5513110
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m4
https://wiki.newae.com/SimpleSerial
https://www.newae.com/chipwhisperer
https://github.com/newaetech/chipwhisperer
https://sike.org/
https://arxiv.org/abs/1908.02499
https://eprint.iacr.org/2020/371
https://cryptojedi.org/papers/#pqm4

24 Aymeric Genêt, Natacha Linard de Guertechin, and Novak Kaluđerović

32. Koziel, B., Azarderakhsh, R., Jao, D.: Side-channel attacks on quantum-resistant
supersingular isogeny diffie-hellman. In: SAC (2017)

33. Kwiatkowski, K.: Towards post-quantum cryptography in TLS (2019), https://
blog.cloudflare.com/towards-post-quantum-cryptography-in-tls/

34. Langley, A.: Post-quantum confidentiality for TLS (2018), https://www.
imperialviolet.org/2018/04/11/pqconftls.html

35. Leonardi, C.: A note on the ending elliptic curve in SIDH. Cryptology ePrint
Archive, Report 2020/262 (2020), https://eprint.iacr.org/2020/262

36. Medwed, M., Oswald, E.: Template attacks on ECDSA. In: Chung, K.,
Sohn, K., Yung, M. (eds.) Information Security Applications, 9th Interna-
tional Workshop, WISA 2008, Jeju Island, Korea, September 23-25, 2008, Re-
vised Selected Papers. Lecture Notes in Computer Science, vol. 5379, pp. 14–
27. Springer (2008). https://doi.org/10.1007/978-3-642-00306-6_2, https://doi.
org/10.1007/978-3-642-00306-6_2

37. Montgomery, P.: Speeding the Pollard and elliptic curve methods of factorization.
Mathematics of Computation 48, 243–264 (1987)

38. Moody, D.: Let’s get ready to rumble - The NIST PQC "competi-
tion" (2018), https://csrc.nist.gov/presentations/2018/let-s-get-ready-
to-rumble-the-nist-pqc-competiti

39. Moody, D.: Round 2 of the NIST PQC "competition" - What was NIST
thinking? (2019), https://csrc.nist.gov/presentations/2019/round-2-of-
the-nist-pqc-competition-what-was-nist

40. Paquin, C., Stebila, D., Tamvada, G.: Benchmarking post-quantum cryptography
in TLS. Cryptology ePrint Archive, Report 2019/1447 (2019), https://eprint.
iacr.org/2019/1447

41. Poussier, R., Zhou, Y., Standaert, F.: A systematic approach to the side-channel
analysis of ECC implementations with worst-case horizontal attacks. In: Fis-
cher, W., Homma, N. (eds.) Cryptographic Hardware and Embedded Systems
- CHES 2017 - 19th International Conference, Taipei, Taiwan, September 25-
28, 2017, Proceedings. Lecture Notes in Computer Science, vol. 10529, pp. 534–
554. Springer (2017). https://doi.org/10.1007/978-3-319-66787-4_26, https://
doi.org/10.1007/978-3-319-66787-4_26

42. Primas, R., Pessl, P., Mangard, S.: Single-trace side-channel attacks on masked
lattice-based encryption. In: Fischer, W., Homma, N. (eds.) Cryptographic Hard-
ware and Embedded Systems - CHES 2017 - 19th International Conference, Taipei,
Taiwan, September 25-28, 2017, Proceedings. Lecture Notes in Computer Science,
vol. 10529, pp. 513–533. Springer (2017). https://doi.org/10.1007/978-3-319-66787-
4_25, https://doi.org/10.1007/978-3-319-66787-4_25

43. Rostovtsev, A., Stolbunov, A.: A public-key cryptosystem based on isogenies. Cryp-
tology ePrint Archive, Report 2006/145 (2006), https://eprint.iacr.org/2006/
145

44. Seo, H., Anastasova, M., Jalali, A., Azarderakhsh, R.: Supersingular isogeny key
encapsulation (SIKE) round 2 on ARM Cortex-M4. Cryptology ePrint Archive,
Report 2020/410 (2020), https://eprint.iacr.org/2020/410

45. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Journal on Computing 26(5), 1484âĂŞ1509
(Oct 1997). https://doi.org/10.1137/s0097539795293172, http://dx.doi.org/10.
1137/S0097539795293172

46. Sim, B., Kwon, J., Lee, J., Kim, I., Lee, T., Han, J., Yoon, H.J., Cho, J., Han,
D.: Single-trace attacks on message encoding in lattice-based KEMs. IEEE Access

https://blog.cloudflare.com/towards-post-quantum-cryptography-in-tls/
https://www.imperialviolet.org/2018/04/11/pqconftls.html
https://eprint.iacr.org/2020/262
https://doi.org/10.1007/978-3-642-00306-6_2
https://doi.org/10.1007/978-3-642-00306-6_2
https://csrc.nist.gov/presentations/2018/let-s-get-ready-to-rumble-the-nist-pqc-competiti
https://csrc.nist.gov/presentations/2019/round-2-of-the-nist-pqc-competition-what-was-nist
https://eprint.iacr.org/2019/1447
https://doi.org/10.1007/978-3-319-66787-4_26
https://doi.org/10.1007/978-3-319-66787-4_26
https://doi.org/10.1007/978-3-319-66787-4_25
https://doi.org/10.1007/978-3-319-66787-4_25
https://eprint.iacr.org/2006/145
https://eprint.iacr.org/2020/410
https://doi.org/10.1137/s0097539795293172
http://dx.doi.org/10.1137/S0097539795293172

Title Suppressed Due to Excessive Length 25

8, 183175–183191 (2020). https://doi.org/10.1109/ACCESS.2020.3029521, https:
//doi.org/10.1109/ACCESS.2020.3029521

47. Weibel, A.: Round 2 hybrid post-quantum TLS benchmarks (2020), https://aws.
amazon.com/blogs/security/round-2-hybrid-post-quantum-tls-benchmarks/

48. Xavier, C., Hervé, P.: Improving the DPA attack using wavelet transform (2005),
https://www.researchgate.net/publication/228717434_Improving_the_DPA_
attack_using_Wavelet_transform

49. Zanon, G.H.M., Simplicio, M.A., Pereira, G.C.C.F., Doliskani, J., Barreto,
P.S.L.M.: Faster isogeny-based compressed key agreement. In: Lange, T., Stein-
wandt, R. (eds.) Post-Quantum Cryptography. pp. 248–268. Springer International
Publishing, Cham (2018)

50. Zhang, F., Yang, B., Dong, X., Guilley, S., Liu, Z., He, W., Zhang, F., Ren,
K.: Side-channel analysis and countermeasure design on ARM-based quantum-
resistant SIKE. IEEE Transactions on Computers 69(11), 1681–1693 (2020).
https://doi.org/10.1109/TC.2020.3020407

51. Zhang, Z., Wu, L., Mu, Z., Zhang, X.: A novel template attack on wnaf algorithm
of ECC. In: Tenth International Conference on Computational Intelligence and
Security, CIS 2014, Kunming, Yunnan, China, November 15-16, 2014. pp. 671–
675. IEEE Computer Society (2014). https://doi.org/10.1109/CIS.2014.66, https:
//doi.org/10.1109/CIS.2014.66

A Appendix

We include the code of the xDBLADD, fp2mul_mont, fp2sqr_mont and mp_addfast
functions from [44]. Minor changes, such as variable naming, have been made
to the code in order to adapt it to the names used in this paper. The lines of
code 3,6,7,8,9,10,11,15,16,17,18,19 and the mp_addfast (highlighted in
red) correspond to the targeted instructions.

https://doi.org/10.1109/ACCESS.2020.3029521
https://doi.org/10.1109/ACCESS.2020.3029521
https://aws.amazon.com/blogs/security/round-2-hybrid-post-quantum-tls-benchmarks/
https://www.researchgate.net/publication/228717434_Improving_the_DPA_attack_using_Wavelet_transform
https://doi.org/10.1109/TC.2020.3020407
https://doi.org/10.1109/CIS.2014.66
https://doi.org/10.1109/CIS.2014.66

26 Aymeric Genêt, Natacha Linard de Guertechin, and Novak Kaluđerović

void xDBLADD(point_proj_t Q, point_proj_t P, point_proj_t QP, const
f2elm_t A24)

{ // Simultaneous doubling and differential addition.
// Input: projective Montgomery points Q=(Q->X:Q->Z), P=(P->X:P->Z),

Q-P=(QP->X:QP->Z), and Montgomery curve constant A24=(A+2)/4.
// Output: projective Montgomery points Q <- 2*Q, and P <- Q+P.

f2elm_t t0, t1, t2;

1 fp2add(Q->X, Q->Z, t0);
2 fp2sub(Q->X, Q->Z, t1);
3 fp2sqr_mont(t0, Q->X);
4 fp2sub(P->X, P->Z, t2);

4.5 fp2correction(t2);
5 fp2add(P->X, P->Z, P->X);
6 fp2mul_mont(t0, t2, t0);
7 fp2sqr_mont(t1, Q->Z);
8 fp2mul_mont(t1, P->X, t1);
9 fp2sub(Q->X, Q->Z, t2);

10 fp2mul_mont(Q->X, Q->Z, Q->X);
11 fp2mul_mont(t2, A24, P->X);
12 fp2sub(t0, t1, P->Z);
13 fp2add(P->X, Q->Z, Q->Z);
14 fp2add(t0, t1, P->X);
15 fp2mul_mont(Q->Z, t2, Q->Z);
16 fp2sqr_mont(P->Z, P->Z);
17 fp2sqr_mont(P->X, P->X);
18 fp2mul_mont(P->Z, QP->X, P->Z);
19 fp2mul_mont(P->X, QP->Z, P->X); //In practice 19 is outside of xDBLADD

}

void fp2mul_mont(const f2elm_t a,
const f2elm_t b, f2elm_t c)

{ // GF(p^2) multiplication.
// Inputs: a = a0+a1*i and b =
b0+b1*i.
// Output: c = c0+c1*i.
felm_t t1, t2;
dfelm_t tt1, tt2, tt3;
digit_t mask;
unsigned int i;

mp_addfast(a[0], a[1], t1);
mp_addfast(b[0], b[1], t2);

fpmul_mont(a[0], b[0], c[0]);
fpmul_mont(a[1], b[1], tt2);
fpmul_mont(t1, t2, c[1]);

fpsub(c[1],c[0],c[1]);
fpsub(c[1],tt2,c[1]);

fpsub(c[0],tt2,c[0]);
}

void fp2sqr_mont(const f2elm_t a,
f2elm_t c)

{ // GF(p^2) squaring.
// Inputs: a = a0+a1*i.
// Output: c = c0+c1*i.

felm_t t1, t2, t3;

mp_addfast(a[0], a[1], t1);
fpsub(a[0], a[1], t2);
mp_addfast(a[0], a[0], t3);
fpmul_mont(t1, t2, c[0]);
fpmul_mont(t3, a[1], c[1]);

}

Fig. 5: xDBLADD, fp2mul_mont and fp2sqr_mont from [44].

Title Suppressed Due to Excessive Length 27

void __attribute__ ((noinline, naked))
mp_addfast(const digit_t* a, const digit_t* b
, digit_t* c)

{ // Multiprecision addition, c = a+b.
asm(

"push {r4-r9,lr} \n\t"
"mov r14, r2 \n\t"

"ldmia r0!, {r2-r5} \n\t"
"ldmia r1!, {r6-r9} \n\t"

"adds r2, r2, r6 \n\t"
"adcs r3, r3, r7 \n\t"
"adcs r4, r4, r8 \n\t"
"adcs r5, r5, r9 \n\t"

"stmia r14!, {r2-r5} \n\t"

"ldmia r0!, {r2-r5} \n\t"
"ldmia r1!, {r6-r9} \n\t"

"adcs r2, r2, r6 \n\t"
"adcs r3, r3, r7 \n\t"
"adcs r4, r4, r8 \n\t"
"adcs r5, r5, r9 \n\t"

"stmia r14!, {r2-r5} \n\t"

"ldmia r0!, {r2-r5} \n\t"
"ldmia r1!, {r6-r9} \n\t"

"adcs r2, r2, r6 \n\t"
"adcs r3, r3, r7 \n\t"
"adcs r4, r4, r8 \n\t"
"adcs r5, r5, r9 \n\t"

"stmia r14!, {r2-r5} \n\t"

"ldmia r0!, {r2-r3} \n\t"
"ldmia r1!, {r6-r7} \n\t"

"adcs r2, r2, r6 \n\t"
"adcs r3, r3, r7 \n\t"

"stmia r14!, {r2-r3} \n\t"

"pop {r4-r9,pc} \n\t"
:
:
:
);

}

Fig. 6: mp_addfast from [44].

