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Abstract

Secure Multiparty Computation (MPC) is an invaluable tool for training machine
learning models when the training data cannot be directly accessed by the model
trainer. Unfortunately, complex algorithms, such as deep learning models, have
their computational complexities increased by orders of magnitude when performed
using MPC protocols. In this contribution, we study how to efficiently train an
important class of machine learning problems by using MPC where features are
known by one of the computing parties and only the labels are private. We propose
new protocols combining differential privacy (DP) and MPC in order to privately
and efficiently train a deep learning model in such scenario. More specifically, we
release differentially private information during the MPC computation to dramat-
ically reduce the training time. All released information idoes not compromise
the privacy of the labels at the individual level. Our protocols can have running
times that are orders of magnitude better than a straightforward use of MPC at a
moderate cost in model accuracy.

1 Introduction

Secure multiparty computation (MPC) [1, 2] is one of the basic building blocks of privacy preserving
machine learning (PPML). MPC is particularly useful in a scenario where several parties need to
compute a function of a dataset that cannot be directly accessed by the computing parties. This can
happen, for example, when the private input data does not come directly from data holders but is the
result of previous secure computations. In such scenarios, no party holds the private data in the clear:
it is secret shared among the computing parties. The cost of training the a machine learning model
using solely MPC can be several orders of magnitude more expensive than training in the clear.

In this contribution, we show that it is possible to dramatically speed-up applications of privacy
preserving machine learning on top of MPC by releasing differentially private information about the
players inputs throughout the computation. Because of the guarantees of differential privacy, the
information release does not affect the privacy of individual entries, while runtimes can be improved
by orders of magnitude. We apply our ideas to the problem of training machine learning models
when one of the parties is in possession of training features, and the corresponding labels for each
input are secret, potentially coming from previous computations, and are secret shared between the
computing parties. Note that since the labels are not directly accessible by any of the computing
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parties, a direct application of local differential privacy is not possible. This problem is relevant for a
wealth of applications. For example, this scenario is relevant for computing models for predicting
ads conversions where one party knows the training features, while the labels (conversion or no
conversion) are usually not held neither of them and need to be computed using MPC with the parties’
inputs (timestamps of clicks and/or impressions).

A direct application of MPC to solve this problem would secret share all the inputs to the computation
(features and labels) and use them as input to an MPC protocol. In the case of a deep learning model,
that would imply the computation of several activation functions, gradients of loss functions, inner
products - all expensive computations when carried over MPC. For a network with thousands of
neurons, that would imply millions of secure computations per dataset entry per epoch. We will
show that by releasing information during the MPC execution (in a differentially private way), we
can drastically reduce the computational complexity of such protocols. We present two different
protocols for solving this problem: one based on local differential privacy [3] and another one based
on a modification of the well-known differentially private stochastic gradient descent (DP-SGD). [4].

1.1 Motivations and Related Works

In this paper, we show that it is possible to dramatically increase the efficiency of deep learning
training on top of MPC for a practical case: label privacy in deep learning. These are computations
where the features are known by one of the computing parties and the labels are private – secret
shared among the computing parties.

Secure Multiparty Computations Secure multiparty computations have been hailed as a potential
solution for the problem of computing machine learning models when the computing parties are not
allowed to observe the dataset directly. We will concentrate our analysis on secret shared based secure
multiparty computation [5]. Threshold secret sharing among n parties and with a threshold t is a
cryptographic protocol that takes an input x and distribute shares {x1, . . . , xn} to parties {P1, .., Pn}
such that: (i) No subset of t− 1 or less parties can learn any information on the secret x; and (ii) any
subset of t or more parties can fully recover x. In a threshold secure multiparty computation protocol,
n parties {P1, .., Pn} want to compute a function f(x1, x2, ..., xn) depending on secret inputs so
that, at the end of the computation, no set of up to t− 1 parties knows more than the function output,
its own input and everything else that can be computed from these data. Secret sharing based MPC
is carried out by assuming that the computing parties P1, .., Pn have secret shared all the inputs
x1, . . . , xn at the beginning of the protocol. The secret sharing scheme in question is usually a linear
one - where linear operations on the players’ inputs can be computed locally on shares. These linear
operations do not require the parties to exchange messages and are computed locally and efficiently.
To compute a generic function f , the parties first agree on a description of f as a circuit consisting
of additions and multiplication gates. The addition gates can be computed using the linearity of the
underlying secret sharing scheme - these operations do not require any communication among the
computing parties. Multiplication gates are expensive and require communication among all the
computing parties. Because every function f has to be broken down as a sequence of secure additions
and multiplications, and the high cost of secure multiplications, functions that can be easily computed
in the clear become prohibitively expensive when computed using MPC. For example, computing
x−1 for a given input x can require between 50 and 100 secure multiplications (depending on the
required numerical accuracy) [6] - each secure multiplication requiring exchange of data among all
the computing parties. For neural networks, activation functions are the most expensive computation
when performed on top MPC. They are responsible for over 90% of the total computational costs.

When computing a complex deep learning model, we can have millions of secure multiplications
performed for each dataset entry forward pass in the network. Making such MPC deep learning
training practical for large datasets (potentially consisting of billions of entries) is still an open
problem. Despite these difficulties, MPC has been applied to an extensive range of machine learning
problems [7, 8, 9, 10, 11, 6, 12, 13]. In our problem, we leverage the fact that only labels are kept
private such that we can reduce the number of multiplications required for training a deep learning
models drastically.

Differential Privacy Differential privacy (DP) has initially been proposed as a way to ensure that
queries obtained from a dataset did not reveal information about single entries of such dataset [14]. It
has been generalized to more complex tasks such as making sure that a machine learning model does
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not reveal information about individual entries belonging to the training dataset [4]. There are two
scenarios in DP. Global differential privacy assumes a trusted curator that access the entire dataset
and prepares/releases the differentially private queries. In local differential privacy, such trusted
curator is not available/assumed and individual data holders randomize their data and release the
randomized results, which are, in turn, processed by a non-trusted party to produce the differentially
private desired computations. In the specific case of deep learning models, differentially private
stochastic gradient descent [4] is a very popular technique for training deep neural networks with
differential privacy. DP-SGD aims at protecting the entire dataset (features and labels). Note that in
local and global differential privacy, one needs to access the private data directly (a trusted curator in
the case of Global DP and the data holders in the case of Local DP). We work in a scenario where
that is not possible. The private data, labels in our case, is never directly accessible to anyone. It is
secret shared among the computing parties.

Label Privacy and Privacy Preserving Machine Learning Chase et. al. [15] proposed a protocol
for training a neural network with differential privacy in a scenario where a dataset is distributed
horizontally across several parties, so labels and features are known to these parties. MPC is used
to aggregate and add differential privacy to batches locally trained in the clear by each one of these
parties. This is clearly different from our scenario where labels are not known by any party. Thus,
training batches using local computations in the clear is not possible. Label privacy was initially
studied by [16] and was applied to linear regression in [17]. In a recent paper [18], Ghazi et. al.
attacked the problem of using deep learning when only labels need to be kept private, which is
similar to our problem. However, in their paper, they assume that the labels are accessible either by a
trusted curator responsible for implementing differential privacy mechanisms or by the data owners
themselves. It differs from our practical applications hence MPC computation is well suited to be
leveraged.

2 Technical Preliminaries

In this section we review some basic concepts and definitions that will be used in the remainder of
the paper.

Definition 1 Differential Privacy [14]- An algorithmA is said to be (ε, δ) differentially private if for
any neighboring datasets D and D′, any subset S of outputs of A, we have that Pr[A(D) ∈ S] ≤
eεPr[A(D′) ∈ S] + δ for non-negative constants ε and δ.

Definition 2 Label Differential Privacy [18] - Let ε and δ be non-negative constants. A randomized
training algorithm A taking as input a dataset is said to be (ε, δ) label differentially private (ε, δ)-
LabelDP) if for any two training datasets D and D′ that differ in the label of a single example, and
for any subset S of outputs of A, we have that Pr[A(D) ∈ S] ≤ eεPr[A(D′) ∈ S] + δ.

Definition 3 Gaussian Mechanism [14] - The Gaussian mechanism for a d-dimensional function f
adds noise N(0, σ2) to each one of the components of f . For c2 > 2ln(1.25/δ), ∆ = L2 sensitivity
of f and σ ≥ c∆/ε, the Gaussian mechanism is (ε, δ) DP.

Secure Multi Party Computation (MPC) Building Blocks Secure multiparty computation proto-
cols for, n players, are possible with information theoretical security if all the players are connected
by pairwise, private and authenticated channels and at least 2/3n+1 players are honest [1, 2]. In case
a broadcast channel is available, MPC is possible with an honest majority [19]. Protocols tolerating a
dishonest majority need further assumptions. These assumptions can be computational ones [20],
the existence and availability of other cryptographic protocols (such as oblivious transfer)[21] or
pre-distributed trusted correlated data [22]. Our proposed solutions work under any secure general
multiparty computational protocol. We provide implementations using Crypten1 [23]. We refer
to [23] for a detailed description of the implementation of our basic MPC building blocks. For
ease of comprehension, we will state our protocols for n=2 (two computing parties) and using
additive secret sharing. An additive secret sharing of a value x ∈ Zq = {0, 1, · · · , q − 1} is a pair
of random numbers xa, xb chosen uniformly from Zq subject to the restriction that x = xa + xb
mod q. We denote the secret sharing of x by [[x]]q = (xa, xb). Notice that two players can easily

1https://crypten.ai
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compute shares of the addition of two secrets by just locally adding their respective shares, i.e.
[[x]]q + [[y]]q = [[x + y]]q = (xa + ya mod q, xb + yb mod q). To compute the multiplication of
two secrets we use the protocol proposed by Beaver in [24], which is based on random pre-computed
triples and requires one round of communications between Alice and Bob and the exchange of
two ring elements from Zq. Let x1, x2, · · · , xl be the binary representation of x. It is convenient
to transform [[x]]q into [[x1]]2, [[x2]]2, · · · , [[xl]]2, that is to transform a secret x shared over Zq into
binary secret shares of the bit of the binary representation of x. Such a task is accomplished by bit
decomposition protocols [25]. There are also simple procedures for doing the reverse task, computing
[[x]]q from [[x1]]2, [[x2]]2, · · · , [[xl]]2 [11]. We also use secure comparison protocols [26, 27, 28]. In a
secure comparison protocol, two parties hold secret inputs x and y respectively, and would like to
check if x < y or not. The outcome of the protocol is a bit shared between the two players which
indicates if the input x is smaller than the input y or not but without revealing any other information
about the inputs. We slightly abuse our notation and also use [[x]]q when x is a vector with coordinates
belonging into Zq. We denote the secure component wise multiplication (Hadamard product) of
two vectors x and y by [[x]]q � [[y]]q . Finally, we note that since all of our computations happen over
Zq , we need to map finite precision real valued inputs into appropriate integers. Details on how this
mapping happens are presented in [23].

3 Problem Description and Protocols

Problem Description: We work in a two-party scenario. We are motivated by the use case when
the model label is created from two data holders combining their data together and it is considered
private such that we don’t want to reveal it to neither party. Thus, in our scenario, one of the parties
holds training features, while the label is secret shared between them. The parties have shared
identifiers for each row of data, or training example, that can be used to align the dataset during the
training process. We’ll refer to the party holding the training features as Alice and the other party as
Bob. We are interested in training a deep learning model in such a situation. The model will be made
available to Alice after training. Bob will not receive any output in our protocols. Informally, we
say a protocol is secure if, upon protocol completion, Bob learns nothing, and Alice learns solely
differentially private information about the labels.

We work in a scenario where there is no trusted curator to obtain global differential privacy. Moreover,
since the labels, cannot be directly accessed by any party and are secretly shared between Alice and
Bob, a direct use of local differential privacy is also out of question. The model will be trained using
pairs (xi, yi), 1 ≤ i ≤ n. Alice is in possession of xi, while yi is a label secret shared between Alice
and Bob and not known to any of them. The desired output is a vector of weights W = (w1, ..., wd)
that will be known only to Alice. Bob receives no output at the end of the protocol. Our results are
stated for this specific scenario of two-party computations, but they trivially generalize to a multiparty
case where one of the computing parties holds the features xi while the labels yi are shared among
three or more parties.

Protocol I - Randomized Response: Our first protocol is based on the randomized response
mechanism. For the sake of simplicity, we restrict our analysis to the case where the labels are
binary. An extension to multiple classes is presented in the appendix A.1. The main idea here is
for Alice and Bob randomize the label yi and reveal it in the clear. Since Alice and Bob cannot
directly access the labels in the clear, by randomizing we mean that Alice and Bob will compute
(using a secure two-party computation protocol) a bit ŷi so that ŷi = 1 with probability p, for an
appropriately chosen bias p. Alice and Bob then privately XOR yiand ŷi and release the result. A
direct approach to generate ŷi is for Alice and Bob to generate λ random bits each one of them and
interpret these random bits as the binary expansion of a uniform number r in [0, 1]. Alice and Bob
then use a private comparison protocol and check if r < p. Alice and Bob can privately evaluate the
XOR of bits a and b by computing the formula: a XOR b = a + b − 2ab over MPC. Once the ŷi
XOR yi are available, we can use the training strategy proposed in Ghazi et. al. [18] to train a deep
learning model with the randomized labels and the corresponding features xi. Before presenting our
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protocol, we briefly remark that Alice and Bob can non-interactively produce shares of a random bit
[[r]]2 by locally picking up random bits ra and rb and defining r = ra + rb mod 2.

Algorithm 1: Randomized Response based Solution
input :Alice inputs xi, Alice and Bob input shares [[y]]i, {1 ≤ i ≤ n}, p is a public parameter

in [0, 1]
output :Trained Model

1 Alice and Bob locally generate lambda shares of random bits [[rj ]]2, 1 ≤ j ≤ λ, and define
r1, ..., rλ as the binary extension of a real number r in [0, 1];

.2 Alice and Bob run a secure comparison protocol and obtain [[r < p]]q . The output of this
protocol is a bit that is equal to one if r < p or zero if r ≥ p. Denote the output by oi and note it
is secret shared between Alice and Bob. None of these parties know its value;

3 Alice and Bob compute [[ŷi]]q = [[yi]]q XOR [[oi]]q = [[yi]]q + [[oi]]q − 2[[yi]]q[[oi]]q . Bob announces
his shares of this computation in the clear to Alice. Alice recovers ŷi in the clear;

4 Alice and Bob repeat steps 1,2 and 3 n times for y1, ..., yn;
5 Alice uses (xi, ŷi) to compute the model in the clear using the training strategy proposed in [18];

Theorem 1 Protocol 1 correctly computes randomized labels and is label-differentially private for
Alice and Bob.

Proof Sketch: To prove correctness, we observe that the bit oi is one with probability p and thus yi
will be flipped with probability p. Privacy for Bob comes from the fact he never receives any output
and only deals with secret shares in the protocol. Because of the security of the privacy protocol, the
only information observed by Alice during the computation are the randomized labels. By making
p = 1/(eε + 1) we we end up with an ε-labelDP.

Second Protocol - Label DP-SGD: While our randomized response algorithm is efficient and
provides good accuracy performance, the utility of randomized response data decreases substantially
for the case when the label space cardinality is high. Additionally, it releases information about
individual, albeit randomized, entries in the dataset. That might not be compatible with privacy
requirements that demand that every information publicly released has to be aggregated. In order to
cope with these cases, we propose another protocol - an adaptation of DP-SGD to a label privacy
scenario. Interestingly, we show that when only label privacy is required, no gradient clippings is
necessary, contrary to what happens in the original DP-SGD [4].

Assume our dataset is of the form (xi, yi), where xi represents the features in possession of Alice
for the i-th data set entry, and yi represents the corresponding attributed labels that are secret shared
between Alice and Bob. The goal is to train a model that depends on d parameters here represented
by W .

Our start idea is to run DP-SGD [4] on top of MPC. Since Alice has all the features xi, forward passes
can be performed in the clear. MPC will be used for computing gradients, aggregating them and
adding noise. The result is then released in the clear and Alice can do a back propagation, updating
the weights in the clear. Note that label information is only revealed in an aggregated format and after
noise is added, so no violation of individual label privacy happens. Moreover, Alice’s information
is never sent to the Bob. However, we now show that since in our problem features are known by
Alice and only the labels are unknown, we can improve the utility of differentially private stochastic
gradient descent.

In the usual DP-SGD algorithm, gradients need to be kept differentially private. Thus, they need to
be clipped, aggregated and noise should be added to them. We now point out that when only labels
need to be kept private, clipping is not needed.

We work with cross-entropy loss function and with a binary classification problem (for the sake
of simplicity). However, our results naturally extend to other loss functions as well as to multi
class problems - these extensions are presented in the appendix A.2 . In the following, L denotes
the loss function, pi denotes the output probability of the output neuron for input xi, and W
represents the set of parameters. The design hinges on a key observation from the chain rule:
dL(yi,pi)
dW = dL(yi,pi)

dZi
· dZidW = (pi − yi) · dZidW , where Zi is the output layer neuron value before the

sigmoid transformation. Assume that the size of the mini batch is N .
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Thus, the gradient depends on a scalar component (pi − yi) times a vector dZi/dW (which depends
on the label yi). The scalar quantity is bounded [−1, 1] and since only the labels need to be kept
differentially private, we compute the sensitivity of dL(yi, pi)/dW based on variations on yi. The
overall sensitivity of dL(yi, pi)/dW is bounded by the maximum L2 norm among all the vector
dZi/dW within a mini batch. Denote such value by g and note it is known by Alice. We then
should compute the aggregated noisy gradients 1/N(

∑N
i=1 dL(yi, pi)/dW +N (0, (gσ)2Id)), where

N (0, (gσ)2Id) denotes a Gaussian vector of dimension d (the total number of parameters of the
model) and variance (gσ)2 for an appropriately chosen constant σ > 0. The aggregated noisy
gradient is then revealed and Alice can use it to update the d parameters of her model. Note that
when computing dL(yi, pi)/dW only the quantity (pi − yi) needs to be computed jointly by Alice
and Bob. dZi/dW can be computed in the clear by Alice.

We now show that we can reduce the amount of noise necessary to make our solution differen-
tially private. We do so by, again, exploiting the fact we are interested in label privacy and
by using the iterative nature of the back propagation algorithm. Let L denote the total num-
ber of layers in our network, the L-th layer being the output layer. Rather than adding noise
to the entire d-dimensional vector 1/N(

∑N
i=1 dL(yi, pi)/dW ) at once, we add noise to the ag-

gregated gradient corresponding to the L − 1 layer (representing the weights connected to the
output layer of the neural network). Denote such gradient by 1/N(

∑N
i=1 dL(yi, pi)/dW

L−1).
We compute 1/N(

∑N
i=1 dL(yi, pi)/dW

L−1 + N (0, (gtσ)2It)), where gt is the sensitivity of
1/N(

∑N
i=1 dL(yi, pi)/dW

L−1) wrt variations on yi. Alice uses the noisy aggregated t-dimensional
gradient 1/N(

∑N
i=1 dL(yi, pi)/dW

L−1 +N (0, (gtσ)2It)) to update the t parameters corresponding
to the weights connected to the output layer of the network. These t dimensional noisy gradients are
then back propagated to the parameters in remaining layers of the network. Differential privacy is
ensured by its post-processing property. We remark that the variance of the noise added is independent
of the total number of parameters of the model d, depending only on the number of weights connected
to the last layer t. Our solution is presented in Algorithm 2. We now prove its security.

Algorithm 2: Label DP-SGD
input :Alice inputs xi, Alice and Bob input shares [[yi]]q {1 ≤ i ≤ n}, mini-batch size N , the

number of weights connected to the output layer t, and σ > 0.
output :Trained model for Alice. No output for Bob
for each mini batch do

1 Alice forward prop and outputs pi (output probability of the output neuron) using input xi;
2 Alice and Bob Compute [[pi − yi]]q ;
3 Alice computes dZi/dWL−1 and secret shares it with Bob;
4 Alice and Bob compute per sample gradient

[[dL(yi, pi)/dW ]]q = [[(pi − yi)]]q[[dZi/dWL−1]]q;
5 Alice and Bob compute aggregated gradient [[

∑N
1 (pi − yi)dZi/dWL−1]]q;

6 Alice computes gt (maximum L2 norm of dZi/dWL−1 across all the mini batch);
7 Bob generates in the clear N (0, It), a t-dimensional Gaussian noise vector with mean zero

and variance one;
8 Bob computes the secret share of the Gaussian noise vector [[N (0, It)]]q with Alice;
9 Alice generates in the clear the square root of the variance needed for DP noise, (gtσ)2;

10 Alice computes the secret shares the square root of the variance [[(gtσ)2]]q with Bob;
11 Alice and Bob multiply [[N (0, It)]]q times [[

√
(gtσ)2]]q . This result is added to the

aggregated gradients for the mini batch and divided by N resulting in
[[1/N{

∑N
1 (pi − yi)dZi/dWL−1 +N (0, (gtσ)2It)}]];

12 Bob sends his shares to Alice. Alice opens the noisy average gradients and updates the
weights connected to the output layer of her model. Alice then back propagates these noisy
weights to the remaining layers/weights;

end

Theorem 2 Bob learns nothing in Protocol 2.
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Proof Skech: Bob only receives secret shared data during the protocol execution and Bob receives no
output once the protocol is finished.

Theorem 3 If σ =
√

2ln(1.25/δ)/ε, Protocol 2 is (ε, δ) label DP for Alice for a single mini batch.

Proof Sketch: First, we need to compute the sensitivity of a function f =
∑N
i=1(pi−yi)dZti/dWL−1,

where N is the size of the mini batch and dZti/dW
L−1 denotes the gradient corresponding to the t

weights connected to the output layer. The sensitivity of f is defined as the maximum across any pair
of datasets D and D′ that differ in a single label yi. Noting that (pi − yi) ≤ 1, the sensitivity of f is
upper bounded by gt = maxi||dZti/dWL−1||2, where || · ||2 denotes the L2 norm. It immediately
follows that by adding noise N(0, σ2g2t ) to each coordinate of 1

∑L
i=1(pi − yi)dZti/dWL−1, where

σ =
√

2ln(1.25/δ)/ε we end up with an (ε, δ) label private differentially private scheme. The
privacy of the labels when computing the remaining coordinates of the gradient is ensured by the
post-processing property of differential privacy.

By using parallel composition, the protocol will be maxj(εj , δj) for one pass across all the j mini-
batches (one epoch). For T epochs, we can obtain the resulting (ε∗, δ∗) by using the accountants
method [4].

Remark: Forward and backward passes happen in the clear. MPC is solely used for computing
2t private multiplications per data set entry. So, expensive activation function computations are all
performed in the clear. The total number of secure multiplications depends solely on the number of
neurons in the second last layer, so it is independent of the total number of layers of the network. Our
result makes it possible to train deep networks on MPC for label privacy case.

4 Implementation Results

Complexity Analysis We measure the complexity of our protocols by the number of secure
multiplications and the round complexity. Our protocol based on randomized response for the binary
classification case performs one secure comparison and one secure multiplication per data set entry.
The private comparison protocol needs 3λ multiplications. We use λ = 16 in our experiments. The
round complexity of the comparison protocol is equal to λ [23]. The randomized response for c
classes needs two secure comparison protocols plus four multiplications per data set entry. The
cost of each one of the comparison protocols is 3λ and log2 c multiplications, respectively. The
round complexity of the protocol is max{3λ, log2 c}. Our protocol based on Label Private DP-SGD
requires 2tc secure multiplications per data set entry, where t is the number of neurons of the second
last layer, and c is the number of classes. The round complexity of the protocol is 3 rounds per mini
batch.

Experimental Setup and Runtimes We now describe runtimes for our protocols. We present
runtime only for the operations that happen over MPC, computations that happen in the clear are not
included. We start by presenting our results for the randomized response inspired protocols. We have
chosen q = 64 bits, λ = 16 bits, and analyze binary and a ten classes classification problems. The
results presented are averaged over 10 runs. We performed our simulations on a virtual machine -
Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz with 251G of RAM.

Time for 50k
entries

Time for 100k
entries

RR 2 Classes 1.77s 2.2s
RR 10 Classes 2.48s 4.2s

Table 1: Runtime for Randomized Response based Protocols

We now present results for our label private DP-SGD protocols. We have chosen q = 64 bits and
batch size = 128. Results are averaged over 5 runs.

We can see that the runtime performance of the randomized response-based mechanisms is better
than that of Label DP-SGD. This result is expected since, for the parameters used in this experiments,
we have a much higher number of private multiplications in Label DP-SGD. For ten classes, Label
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Time for 50k
entries and
t = 128

Time for 100k
entries and
t = 128

Time for 50k
entries and
t = 512

Time for 100k
entries and
t = 512

Label DP-SGD 2
Classes

4.02s 7.72s 55.5s 1min 45s

Label DP-SGD 10
Classes

1min 32s 2min 40s 4min 8 s 8 min 25s

Table 2: Runtime for Label DP-SGD Protocols

DP-SGD computes about 1.3 ∗ 106 secure multiplications per mini batch (128 data set entries), while
the randomized response correspondent runs about 3k private multiplications per 128 data set entries.
Additionally, the randomized response protocols are run only once, independent of the number of
epochs used in the subsequent deep neural network training. For the sake of comparison, we trained a
neural network with one convolutional layer (kernel size =5), three fully connected layers (with 256,
256, and 128 neurons respectively) and one output layer (1 neuron) using the traditional approach
(secret share all the inputs and train the model using MPC - no release of DP information). The time
required for MPC operations in the traditional approach was 38.4s per 100 data set entries. Using
Label DP-SGD for (2 classes and t = 128) the runtime for the required MPC operations was 8ms per
100 data set entries.

Accuracy Estimation Experimental Setup The goal of accuracy analysis is to understand the
accuracy deterioration due to DP noise for Protocol 2 - the label DP-SGD. The corresponding analysis
for the randomized response-based protocol is exactly the same as presented in [18]. We use CIFAR-
102 image dataset for model training and accuracy analysis. We apply ResNet18 [29] to the model
training. The ResNet18 is known to be one of the state of the art models on the CIFAR-10 dataset.
The fully connected layer connecting to the output layer has 500 neurons. We train the model with
100 epochs, fixed learning rate 0.005, momentum 0.9 and batch size 128. The epsilon for Protocol 2
is calculated by the Moment Accountant [4], which is a function of noise multiplier, delta and number
of epochs. Particularly, the epsilon grows as we increase the number of epochs. We set delta as 1e-5.
Notice that the accuracy is also a function of the number of epochs. Instead of reporting the accuracy
result for epoch=100, we choose the optimal epoch number to balance the epsilon and accuracy.

Figure 1: Accuracy results for the Randomized Response (RR) Protocol, Label DP-SGD (Protocol
2) and DP-SGD for the CIFAR10 data set (10 Classes). Results for the RR protocol are from [18].
Results for DP-SGD are from [4]

Observations for Accuracy Estimation The blue curve in Figure 1 depicts how accuracy changes
as the epsilon decreases. The baseline accuracy (best accuracy for the model without any noise) is
99.2% under our experiment setup. The accuracy drop is less than 4.2% when epsilon is greater than or

2https://www.cs.toronto.edu/ kriz/cifar.html
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equal to 4. The accuracy falls relatively sharply when epsilon slides from 4 to 2. To better understand
how our label privacy mechanism performs relative to existing methods, we add randomized response
and DP-SGD lines in Figure 1. The numbers are from [18]. It is worth noting that the baselines
(when epsilon is infinity) are different due to model training differences and care should be taken
when comparing the mechanisms. However, the learnings are still insightful. Specifically, we observe
that our Protocol 2is much better suited for label privacy compared to DP-SGD. The DP-SGD shows
a sharper drop when epsilon goes from infinity to 8. Moreover, the accuracy degradation from
randomized response looks flatter than our Protocol 2 when epsilon is above 4. When epsilon is less
than 4, the decline slopes are similar.

5 Conclusions

We have presented protocols that substantially increase the efficiency of MPC based training of
machine learning models for the private label scenario. Our protocols exploit the idea of releasing
differentially private information during the model training phase. We have two solutions, one based
on randomized response (RR), and another one based on an adaptation of DP-SGD to a scenario
where only the privacy of the labels is considered. For our RR protocol, MPC is used solely for
flipping labels and the actual learning happens in the clear. For the Label DP-SGD protocol, heavy
computations (activation functions, inner products, etc.) all happen outside MPC. The resulting
complexity of Label DP-SGD is independent of the total size of the network, depending solely on the
number of neurons connected to the output layer. Our results show that label private deep learning
based on MPC is practical for very complex networks and large data sets. Also, to the best of our
knowledge, our adaptation of DP-SGD to the label private scenario is novel and might be useful
in other scenarios, such as federated learning. Limitations: Our solutions are dramatically more
efficient than traditional MPC ones because we release differentially private information during
training. From the privacy perspective, we do not see this release as negative, since it cannot be used
to break the individual privacy of single entries. Moreover, a model trained with MPC without the use
of any DP mechanism will leak information when used for inference after training, and this leak is
not differentially private. However, w do pay a small price in accuracy for obtaining these advantages.
Another limitation of our work is that we work with honest-but-curious adversaries. While there
are compilers that can transform our protocol into one secure against fully malicious adversaries
[30], there is a significant cost in performance. thus, we leave as an open problem to obtain efficient
protocols for label private deep learning training secure against malicious players. Societal Impacts:
By making practical the training of label private deep learning models over MPC, we bring the
benefits of machine learning solutions while ensuring that the privacy of data contributors is respected.
We believe that the solutions here presented can be applicable in social relevant applications. We do
not see any negative societal impacts of our work.
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A Extension to Multi Class Cases

A.1 Randomized Response based Protocol

We now extend our randomized response-based protocol to the multi class case. Wlog we assume
that yi ∈ Zc = {0, 1, · · · , c− 1}, for some integer c > 2. Denote by yi the label for the i−th input
and by ŷi its randomized version. The probability that yi is not flipped is Pr[yi = ŷi] = eε

eε+c−1 .

11



Otherwise, the label yi will be flipped (with probability 1
eε+c−1 ) into one of the c− 1 values Zc \ yi

according to a uniform probability distribution.

Algorithm 3: Randomized Response based Solution - Multi Class Extension
input :Alice inputs xi, Alice and Bob input the secret shares shares [[yi]], {1 ≤ i ≤ n}, p is a

public parameter in [0, 1]
output :Trained Model

12 Alice and Bob locally generate lambda shares of random bits [[rj ]]2, 1 ≤ j ≤ λ, and define
r1, ..., rλ as the binary extension of a real number r in [0, 1];

3 Alice and Bob privately compute [[r − p]]q and run a private comparison protocol to check if
r − p < 0. The output of this protocol is a bit oi secret shared between Alice and Bob and it is
equal to one if r − p < 0 or zero if r − p ≥ 0;

4 Alice and Bob secret share the publicly known value [[c− 1]]q;
5 Alice picks up a random integer ai ∈ Zc−1 according to a uniform distribution;
6 Alice picks up a random integer bi ∈ Zc−1 according to a uniform distribution;
7 Define fi = ai + bi mod c− 1;
8 Alice and Bob convert [[fi]]c−1 into [[fi]]q;
9 Alice and Bob run a private equality test protocol between [[yi]]q and [[fi]]q . Denote the outcome

of the comparison by [[hi]]q . So, hi = 1 iff yi = fi;
10 Alice and Bob compute [[ŷi]]q = [[oi]]q[[yi]]q + (1− [[oi]]q)([[hi]]q[[c− 1]] + (1− [[hi]]q)[[fi]]q);
11 Bob announces his shares of this computation in the clear to Alice. Alice recovers ŷi in the clear;
12 Alice and Bob repeat steps 1, 2, · · · , 12 n times for y1, ..., yn;
13 Alice uses (xi, ŷi) to compute the model in the clear using the training strategy proposed in [18];

the arguments for proving correctness and security are the same as in the binary case.

A.2 Local DP-SGD

In order to generalize protocol 2 to the multi class case, we need to basically change the sensitivity
analysis and the amount of noise that needs to be added to gradients to obtain an (ε, δ) label private
solution. Let’s start by the sensitivity analysis.

Assume the multi class label is one hot encoded and c is the position of the ground truth label. For
example, if the label is (0, 0, 1, 0), then c is 2 assuming our index starting from 0. Then the cross
entropy loss can be defined as

L(c, z) = − log
ezc∑
j e
zj

= − log pc (1)

where z = (z1, ..., zK) is output represented by logits and pj is the output probability for output
neuron j. Let Wj be the weight vector connecting to the jth logit in the output layer. And let
W = (W1, ...,WK)T be the vector representing all weights connecting to output layer. By chain
rule,

dL
dW

=

K∑
j=1

[pj − I(j = c)]
dzj
dW

(2)

As we change the ground truth label c to c′, the sensitivity is

|| dL
dW

(c)− dL
dW

(c′)|| = ||
K∑
j=1

[I(j = c)− I(j = c′)]
dzj
dW
|| ≤ 2 max

j
|| dzj
dW
|| (3)

If we consider sample index i, then equation (2) becomes

dL
dW

=
1

N

N∑
ij

[pji − I(j = ci)]
dzji
dW

(4)
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Then for any ci and c′i the sensitivity analysis becomes:

|| dL
dW

(ci)−
dL
dW

(c′i)|| = ||
1

N

∑
ij

[I(j = ci)− I(j = c′i)]
dzji
dW
|| ≤ 2

N
max
ij
||dzji
dW
|| (5)

The nominator is 2 is because there |I(j = ci)−I(j = c′i)| is 1 only if j is ci or c′i, otherwise 0. There-
fore, the noise added to gradient (average across samples) dL

dW should be N(0, 4σ
2

N2 maxij ||dzjidW ||
2).

The new protocol will be exactly like protocol 2, but with an updated noise variance. In the following
[[yi]]q denotes secret shares of an output vector yi (a one-hot encoding of the label for input i). [[pi]]q
represents secret shares of a vector where each component is the output of one neuron in the output
layer. Accordingly, dZi/dWL−1 is a tensor where each coordinate is the corresponding gradient for
one of the output neurons.

Algorithm 4: Label Private DP-SGD - Multi Class
input :Alice inputs xi, Alice and Bob input shares [[yi]]q {1 ≤ i ≤ n}, mini-batch size N , the

number of weights connected to the output layer t, and σ > 0.
output :Trained model for Alice. No output for Bob
for each mini batch do

1 Alice forward prop and outputs pi (vector with output probability of each output neuron)
using input xi;

2 Alice and Bob Compute [[pi − yi]]q ;
3 Alice computes dZi/dWL−1 and secret shares it with Bob;
4 Alice and Bob compute per sample gradient

[[dL(yi, pi)/dW ]]q = [[(pi − yi)]]q � [[dZi/dW
L−1]]q , where � represents the

coordinate-wise product;
5 Alice and Bob compute aggregated gradient [[

∑N
1 (pi − yi)dZi/dWL−1]]q;

6 Alice computes gt = 2 maxij ||dzjidW ||;
7 Bob generates in the clear N (0, It), a t-dimensional Gaussian noise vector with mean zero

and variance one;
8 Bob computes the secret share of the Gaussian noise vector [[N (0, It)]]q with Alice;
9 Alice generates in the clear the square root of the variance needed for DP noise, (gtσ)2;

10 Alice computes the secret shares the square root of the variance [[(gtσ)2]]q with Bob;
11 Alice and Bob multiply [[N (0, It)]]q times [[

√
(gtσ)2]]q . This result is added to the

aggregated gradients for the mini batch and divided by N resulting in
[[1/N{

∑N
1 (pi − yi)dZi/dWL−1 +N (0, (gtσ)2It)}]];

12 Bob sends his shares to Alice. Alice opens the noisy average gradients and updates the
weights connected to the output layer of her model. Alice then back propagates these noisy
weights to the remaining layers/weights;

end

Proofs os security and correctness are exactly the same as in Protocol 2.
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