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Abstract. This paper presents the first publicly available cryptanalytic
attacks on the GEA-1 and GEA-2 algorithms. Instead of providing full 64-
bit security, we show that the initial state of GEA-1 can be recovered from
as little as 65 bits of known keystream (with at least 24 bits coming from
one frame) in time 240 GEA-1 evaluations and using 44.5 GiB of memory.
The attack on GEA-1 is based on an exceptional interaction of the de-
ployed LFSRs and the key initialization, which is highly unlikely to occur
by chance. This unusual pattern indicates that the weakness is intention-
ally hidden to limit the security level to 40 bit by design.
In contrast, for GEA-2 we did not discover the same intentional weakness.
However, using a combination of algebraic techniques and list merging
algorithms we are still able to break GEA-2 in time 245.1 GEA-2 evalua-
tions. The main practical hurdle is the required knowledge of 1600 bytes
of keystream.

Keywords: GPRS Encryption · Stream Cipher · Algebraic attacks ·
GEA.

1 Introduction

General Packet Radio Service (GPRS) is a mobile data standard based on the
GSM (2G) technology. With its large deployments during the early 2000s world-
wide, GPRS (including EDGE) was the technology for many of us, which pro-
vided us the first mobile Internet connection. While some countries are about to
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sunset 2G technology (or have already done so), other countries rely on GPRS as
a fallback data connection. Consequently, the security of those connections was
and still is relevant for a large user base. In the wireless medium, an attacker
conducts an eavesdropping attack by merely sniffing the traffic in the victim’s
vicinity. To protect against eavesdropping GPRS between the phone and the
base station, a stream cipher is used and initially two proprietary encryption
algorithms GEA-1 and GEA-2 were specified.

Design Process of the GPRS Encryption Algorithm. A dedicated encryption
algorithm for GPRS, now known as GEA-1, was designed by ETSI Security Al-
gorithms Group of Experts (SAGE) in 1998. A technical report on the design
process is available at [15]. The total budget spent was 429 man days and six
organizations have been involved in the process. As seen in [15, Section 8], the
following requirements were set for the design:

The algorithm should be a stream cipher which gets a 64-bit key (Kc),
a 32-bit IV, and a 1 bit flag to indicate the transfer direction as inputs
and outputs a stream of 1,600 bytes.

It was explicitly mentioned as a design requirement that “the algorithm
should be generally exportable taking into account current export restrictions”
and that “the strength should be optimized taking into account the above require-
ment” [15, p. 10]. The report further contains a section on the evaluation of
the design. In particular, it is mentioned that the evaluation team came to the
conclusion that, “in general the algorithm will be exportable under the current
national export restrictions on cryptography applied in European countries” and
that “within this operational context, the algorithm provides an adequate level of
security against eavesdropping of GSM GPRS services” [15, p. 13].

A successor algorithm, called GEA-2, was designed later. An official require-
ment specification by ETSI as for GEA-1 is not publicly available. According to
Charles Brookson in 2001, “GEA2 was defined about a year later than GEA1
and was an improvement, which was allowed by the easing of export control leg-
islation” [8, p. 4].

The particular restrictions that GEA-1 should fulfill in order to be exportable
are not specified in the requirements.

Export Regulations. For a detailed survey on national and international regula-
tions concerning the use, supply, import and export of cryptographic algorithms
in the ’90s, we refer to the Crypto Law Survey of Bert-Jaap Koops [23]. In France,
rather strict regulations have been in place. In particular, until the late ’90s, the
use, supply, import and export of cryptography for providing confidentiality was
subject to authorization by the prime minister. The requirements for obtaining
such an authorization were not publicly available. To quote from [23], “It was
unclear to what extent the restrictive regulation was enforced in practice; it was
rumoured to be widely ignored. It seemed impossible for individuals or enterprises
to obtain authorisation for ‘strong’ cryptography. Even for state-owned industry,
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cryptography that does not serve military or high-grade security purposes had
to be breakable. SCSSI, the office dealing with authorisation, rendered decisions
without motivation.”

In 1998, the French Decrees1 98-206 and 98-207 were announced, in which
exceptions from such authorization or declaration have been defined. The three
most interesting exceptions defined in Decree 98-206 with regard to our work
can be translated as follows:

– Means and services of Cryptology for “mobile phones for civil use that do not
implement end-to-end encryption” are exempt from authorization or decla-
ration for supply, use, import and export.

– Means and services of Cryptology for “Commercial civil base towers with
the following characteristics: a) Limited to connection with cell phones that
cannot apply cryptographic techniques to traffic between terminals, excepted
on the direct link between cell phones and base stations b) And not allowing
the use of cryptographic techniques to traffic excepted on the radio interface”
are exempt from authorization or declaration for supply, use and import (but
not export).

– Means and services of Cryptology in which “exhaustive search of all possible
keys does not require more than 240 trials with a simple test” are exempt
from authorization or declaration for use and import (but not for supply
and export).

Interestingly enough, we will show later in Section 3 that GEA-1 offers only
40-bit security.

1.1 Related Work and Reverse Engineering

In 2011, Nohl and Melette analyzed the security of GPRS traffic and showed
that GPRS signals could easily be eavesdropped [29]. This was reported as a
serious weakness, especially since some providers did not activate encryption at
all. However, according to the authors, most operators at that time employed
the proprietary encryption algorithms GEA-1 or GEA-2 for encrypting the GPRS
traffic.

In the same talk, Nohl and Melette also reported the reverse-engineering of
those encryption algorithms. Without presenting all of the specification details,
the following properties of the design of GEA-1 have been shown:

– It is a stream cipher which works on an internal state of 96 bits and uses a
64-bit key.

– A non-linear function is employed for initialization.2

1 Available via https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000000753702
and https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000000753703, accessed
Oct-06, 2020.

2 See minute 32:15 of the recorded talk.
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– The state is kept in three registers of sizes 31, 32, and 33 bits.3
– The state update function is linear, i.e., the registers are LFSRs.
– The function that generates the output stream has algebraic degree 4.

The structure of the GEA-1 stream cipher as known from [29] is depicted in
Figure 1. For GEA-2, it was reported that it employs a similar algebraic structure
to its predecessor GEA-1. While the key size for GEA-2 is 64 bits as well, the
internal state was reported to be of size 125 bits.

f out

(≤ 1600 bytes)

A

B

C

12....31

12....32

12....33

LFSR update A

LFSR update B

LFSR update C

Fig. 1: The structure of the GEA-1 stream cipher with its 96 bit state known
from [29]. The algebraic degree of the output function is 4.

In their talk, the authors claimed that GEA-1 has severe weaknesses against
algebraic attacks, mainly due to the nonlinearity of the state update function
and the availability of a long keystream to the adversary. Live on stage, a state-
recovery attack was performed that took less than 15 minutes using ”a Gaussian
equation solver based on some SAT solver ideas” (minute 48:40 of the recorded
talk).4 However, details of this attack are not available.

Interestingly, the ETSI prohibited the implementation of GEA-1 in mobile
phones in 2013, while GEA-2 and the non-encrypted mode are still mandatory to
be implemented today [16].

Despite the hints of deliberately weakening GEA-1 for export and a demon-
strated attack, a public cryptanalysis of GEA-1 and GEA-2 is still missing to date.
This puts us in a position where we are uncertain about the algorithm’s secu-
rity guarantees. In this paper, we fill this gap with the first public cryptanalysis
of GEA-1 and GEA-2. As part of this we also describe the design of those two
proprietary algorithms, which we obtained from a source that prefers to stay
anonymous.
3 The size of the registers are visible in the live state-recovery attack, see minute 48:25

of the recorded talk.
4 The authors acknowledged Mate Soos for ideas and also admitted that the live attack

did not apply the SAT solver yet.
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1.2 Our Contribution

After describing the stream ciphers GEA-1 and GEA-2 and their internal building
blocks, we start by analyzing the security of GEA-1.

The main observation is that after the linear initialization process the joint
initial state of 64 bits of two of the three LFSRs is guaranteed to be in one of
only 240 states (rather than close to 264 as should be expected).

This property immediately allows to conduct a Divide-and-Conquer state-
recovery attack in time 240 GEA-1 evaluations by using only 65 bits of known
keystream (with at least 24 bits in the same frame). The attack needs the pre-
computation of a (sorted) table of size 44.5 GiB, which can be done in time of
roughly 237 GEA-1 evaluations. Once this table has been computed, the attack
can be performed in time of roughly 240 GEA-1 evaluations for each new 64-bit
session key.

Further, we experimentally show that for randomly chosen LFSRs, it is very
unlikely that the above weakness occurs. Concretely, in a million tries we never
even got close to such a weak instance. Figure 2 shows the distribution of the
entropy loss when changing the feedback polynomials of registers A and C to
random primitive polynomials. This implies that the weakness in GEA-1 is un-
likely to occur by chance, indicating that the security level of 40 bits is due to
export regulations.
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Fig. 2: The distribution of the entropy loss within the joint initial 64-bit state of
registers A and C after the linear initialization in GEA-1 for a random sample of
106 combinations of primitive LFSRs. The occurences of entropy losses up to 4
bits are omitted.

As a last part of this work, we look into the security of the successor algorithm
GEA-2. We conduct a state-recovery attack that does not target the initialization
process, but rather the keystream generation itself. The idea is to mix a list
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merging algorithm, combined with algebraic techniques. The attacks works in
time equivalent to 245.1 GEA-2 evaluations. The required memory is roughly 32
GiB. Rather than only 65 bit of known keystream as for GEA-1, this attacks
needs all of the keystream available per frame, i.e., 1,600 bytes, and it cannot
exploit information coming from multiple frames.

We demonstrate the practical feasibility of the attack against GEA-1 on stan-
dard hardware. Further, we discuss the real-world requirements and attack im-
plications for today’s mobile phone network. Eventually, we are dedicated to
eliminating weak ciphers in current and future mobile phones — improving mo-
bile network security.

2 Description of GEA-1 and GEA-2

In this section, we give a detailed description of the two algorithms GEA-1 and
GEA-2, which we obtained from a source. Therefore we verify the correctness of
the algorithms by a) using test vectors that are available on github [28] and b)
verify the algorithm by checking the interoperability with commercial phones
using the osmocom project [31]. Both experiments confirm the correct function-
ality; thus, we can assume that the provided algorithms are accurate with a high
degree of certainty.

For the encryption, the GEA algorithms take the following input parameters:
the plaintext, which is the GPRS LLC (Logical Link Control) frame, the key
(K), the direction bit (uplink/downlink), and the IV (Input) that consists of an
increasing counter for each frame.

As we will see, GEA-2 is an extension of GEA-1– with slight but crucial excep-
tions. For this reason, we first describe GEA-1 first and explain the differences and
extensions for GEA-2 in a second step. An overview of the keystream generation
of GEA-1 and GEA-2 is shown in Figure 3.

2.1 GEA-1

GEA-1 is built from three linear feedback shift registers over F2, called A,B
and C, together with a non-linear filter function, called f . The registers A,B,C
have lengths 31, 32 and 33, respectively, and f is a Boolean function on seven
variables of degree 4. The registers work in Galois mode. This means that if the
bit that is shifted out of a register is 1, the bits in a specified set of positions
in the register are flipped. The specification of f = f(x0, x1, . . . , x6) is given in
algebraic normal form as follows:

x0x2x5x6 + x0x3x5x6 + x0x1x5x6 + x1x2x5x6 + x0x2x3x6 + x1x3x4x6

+ x1x3x5x6 + x0x2x4 + x0x2x3 + x0x1x3 + x0x2x6 + x0x1x4 + x0x1x6

+ x1x2x6 + x2x5x6 + x0x3x5 + x1x4x6 + x1x2x5 + x0x3 + x0x5 + x1x3

+ x1x5 + x1x6 + x0x2 + x1 + x2x3 + x2x5 + x2x6 + x4x5 + x5x6 + x2 + x3 + x5
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Fig. 3: Overview of the keystream generation of GEA-1 and GEA-2. The D register
is only present in GEA-2.

Initialization. The cipher is initialized via a non-linear feedback shift register
of length 64, denoted as S. This register is filled with 0-bits at the start of the
initialization process. The input for initializing GEA-1 consists of a public 32-bit
initialization vector IV , one public bit dir (indicating direction of communica-
tion), and a 64-bit secret key K. The initialization starts by clocking S 97 times,
feeding in one input bit with every clock. The input bits are introduced in the
sequence IV0, IV1, . . . , IV31, dir,K0,K1, . . . ,K63. When all input bits have been
loaded, the register is clocked another 128 times with 0-bits as input. The feed-
back function consists of f , xored with the bit that is shifted out and the next
bit from the input sequence. See Figure 4 for particular tap positions.

. . . . . . . . . . . . . . . . . .

0, . . . , 0, 0,K63, . . . , ,K0, dir, IV31, . . . , IV0

f

3 12 22 38 42 55 63

Fig. 4: Initialization of register S

After S has been clocked 225 times, the content of the register is taken as
a 64-bit string s = s0, . . . , s63. This string is taken as a seed for initializing
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A,B and C as follows. First, all three registers are initialized to the all-zero
state. Then each register is clocked 64 times, with an si-bit xored onto the
bit that is shifted out before feedback. Register A inserts the bits from s in
the natural order s0, s1, . . . , s63. The sequence s is cyclically shifted by 16 po-
sitions before being inserted to register B, so the bits are entered in the order
s16, s17, . . . , s63, s0, . . . , s15. For register C the sequence s is cyclically shifted by
32 positions before insertion starts. Figure 5 depicts the process for register B.
If any of the registers A,B or C end up in the all-zero state, the bit in position
0 of the register is forcibly set to 1 before keystream generation starts.

s16, s17, . . . , s63, s0, s1, . . . , s15

Fig. 5: Initialization of register B

Keystream Generation. When all registers have been initialized, the actual
keystream generation starts. This is done by taking the bits in seven specified
positions in each register to be the input to f . The three outputs from the
f -functions are xored together to produce one bit of the keystream. Figure 3
shows the particular feedback positions of each register, as well as showing which
positions form which input to f . In Figure 3, the topmost arrow in the input to f
represents x0, and the input at the bottom is x6. After calculating the keystream
bit, all registers are clocked once each before the process repeats.

2.2 GEA-2

The cipher GEA-2 is a simple extension of GEA-1. A fourth register of length 29,
calledD, is added to the system together with an instance of f . During keystream
generation, the output of f from the D register is added to the keystream to-
gether with the three others at each clock, as shown in Figure 3. The initialization
process of GEA-2 follows the same mode as for GEA-1, but it is done in a longer
register that is clocked more times.

Initializing GEA-2. As for GEA-1, the initialization of GEA-2 is done via a non-
linear feedback shift register, called W . The length of W is 97, and uses f as its
feedback function. The input to GEA-2 are the same as for GEA-1; a 32-bit IV
and a direction bit dir that are public, and a secret 64-bit key K.

Initialization starts with W being set to the all-zero state. Next, it is clocked
97 times, inserting one bit from the input sequence for each clock. The order
for inserting IV, dir and K is the same as for GEA-1. After K63 is inserted, W
is clocked another 194 times, with 0 as input. This process, together with the
particular tap positions for f , is shown in Figure 6.

8



. . . . . . . . . . . . . . . . . .

0, . . . , 0, 0,K63, . . . , ,K0, dir, IV31, . . . , IV0

f

4 18 33 57 63 83 96

Fig. 6: Initialization of register W

The content of W is now taken as a 97-bit string w = w0, . . . , w96, and
inserted in A,B,C andD in much the same way as with GEA-1. The four registers
starts from the all-zero state, and are filled with the bits of w in the same way
as shown in Figure 5. The offsets of where in the sequence w each register starts
is different than for GEA-1. Register D inserts the bits of w in the natural order
w0, . . . , w96, whereas the registers A,B and C start with bits w16, w33 and w51,
respectively. Again, if any of the registers happens to end up in the all-zero state
after initialization, the bit in position 0 is hard-coded to 1 before key generation
start.

2.3 Deconstructing the Filter Function

The filter function f : F7
2 → F2 has a very particular Walsh (or Fourier) spec-

trum. Namely
f̂(α) =

∑
x∈F7

2

(−1)f(x)+〈α,x〉 ∈ {0,±2
7+1

2 } ,

for all α ∈ F7
2. Several ways to construct such a Boolean function are known (we

refer to Claude Carlet’s treatment [9] for a detailed presentation of the required
theory of Boolean functions). They appear as component functions of almost
bent functions or can be constructed using bent functions in one dimension
smaller. While we do not know how f was actually designed, it can certainly be
decomposed into two bent functions

fi : F6
2 → F2

as
f(x) = (1 + x6)f0(x0, . . . , x5) + x6f1(x0, . . . , x5) .

Furthermore, the functions fi are linearly equivalent to Maiorana-McFarland
bent functions [27] (as actually all bent functions in 6 bits are classified in [32]).
Indeed, we can decompose f0 further into

f0(x0, . . . , x5) = g0(x0, x1 + x2, x2, x3, x4, x5)

where g0 is a Maiorana-McFarland bent function given as

g0(x0, . . . , x5) =
〈x2

x3
x4

 ,

 x0 + x1x5 + x5
x0x1 + x0x5 + x0 + x1 + 1

x0x1 + x5

〉+ h0(x0, x1, x5) ,
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where
h0(x0, x1, x5) = x0x5 + x1x5 + x1 + x5 .

In a similar fashion, f1 can be written as

f1(x0, . . . , x5) = g1(x0 + x2 + x5, x1, x2, x3, x4 + x5, x5) .

That is, f1 is linearly equivalent to g1 where g1 is again a Maiorana-McFarland
bent function. The function g1 can be written as

g1(x0, . . . , x5) =
〈x0

x3
x4

 ,

 x1x5 + x2x5 + x2
x1x5 + x1 + x2 + 1

x5 + 1

〉+ h1(x0, x1, x5) ,

where
h1(x0, x1, x5) = x1x2 + x1x5 .

We like to note that those insights in the filter function do not play any role in
our attacks and, for all we know, do not point at any weakness of the cipher.
Rather, they indicate that the filter was generated following known and valid
principles.

3 An Attack on GEA-1

First we recall some basic facts about LFSRs in Galois mode, as depicted in
Figure 7. For further reading we refer to ([34, p. 378 ff.],[20, p. 227]).

. . .

∧ ∧ ∧ ∧ ∧

. . .

l0 l1 ln−2 ln−1

a0 a1 an−3 an−2 an−1

Fig. 7: An LFSR in Galois mode.

Given an LFSR L in Galois mode of degree n with entries in F2, clocking the
inner state l = l0, . . . , ln−1 is equivalent to the matrix-vector multiplication

GL · l :=


a0 1 0 . . . 0
a1 0 1 . . . 0
...

...
...

. . .
...

an−2 0 0 . . . 1
an−1 0 0 . . . 0

 ·

l0
l1
...
ln−2
ln−1

 =


a0l0 + l1
a1l0 + l2
...
an−2l0 + ln−1
an−1l0


and the characteristic polynomial of GL is

g(X) := Xn + a0X
n−1 + · · ·+ an−2X + an−1 .
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Throughout this work, we consider the case in which g is primitive. The charac-
teristic polynomial g(X) is equal to the minimal polynomial of GL if and only
if an−1 = 1. Vice versa, given a primitive polynomial g(X) := Xn + a0X

n−1 +
· · ·+ an−2X + an−1, then

GL :=


a0 1 0 . . . 0
a1 0 1 . . . 0
...

...
...

. . .
...

an−2 0 0 . . . 1
an−1 0 0 . . . 0


is the companion matrix of an LFSR in Galois mode with minimal polynomial
g. We call such a matrix the Galois matrix and the corresponding minimal
polynomial the Galois polynomial in the sequel. Moreover, given an LFSR L
in Galois mode with minimal (primitive) polynomial g, we denote the Galois
matrix with Gg. In the case of GEA-1 the Galois polynomials are

gA(X) =X31 +X30 +X28 +X27 +X23 +X22 +X21 +X19 +X18 +X15

+X11 +X10 +X8 +X7 +X6 +X4 +X3 +X2 + 1 ,
gB(X) =X32 +X31 +X29 +X25 +X19 +X18 +X17 +X16 +X9 +X8

+X7 +X3 +X2 +X + 1 ,
gC(X) =X33 +X30 +X27 +X23 +X21 +X20 +X19 +X18 +X17 +X15

+X14 +X11 +X10 +X9 +X4 +X2 + 1 .

The initialization process of the registers A, B and C with the string s is obvi-
ously linear. Hence there exist three matrices MA ∈ F31×64

2 , MB ∈ F32×64
2 and

MC ∈ F33×64
2 such that

α = MAs ,

β = MBs ,

γ = MCs ,

where α, β and γ denote the states of the three LFSRs after the initialization
phase. We exclude here the unlikely case that α, β or γ is still in the all-zero
state after the shifted insertion of s.

We are now interested in the number of possible starting states of the registers
after this initialization. For those considerations, we used the computer algebra
system sagemath [37]. The corresponding code is attached in Appendix A. The
first observation is that all the three matrices have full rank. This implies that
the number of possible starting states after initialization is maximal when each
LFSR is considered independently, i.e. there are 231 possible states for register A,
232 possible states for register B, and 233 possible states for register C, as should
be expected. However, when considering pairs of registers, the picture changes
drastically. In particular, the number of possible joint states after initialization
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of the registers A and C is much smaller than expected. For this it is convenient
to consider the kernels of the linear mappings. Clearly, the corresponding linear
mappings represented by MA, MB and MC have kernels of dimension of at
least 33, 32 and 31, respectively. If we denote TAC := ker(MA) ∩ ker(MC) and
UB := ker(MB) then, curiously enough, we have

1. dim(TAC) = 24 and dim(UB) = 32 ,
2. UB ∩ TAC = {0} .

From this it directly follows that F64
2 can be decomposed into the direct sum

UB ⊕ TAC ⊕ V , where V is of dimension 8. Thus, for the key-dependent and
secret string s, there exists a unique representation s = u+ t+ v with u ∈ UB ,
t ∈ TAC , v ∈ V and

β = MB(u+ t+ v) = MB(t+ v)
α = MA(u+ t+ v) = MA(u+ v)
γ = MC(u+ t+ v) = MC(u+ v) .

From this decomposition, s can be computed with a Divide-and-Conquer
attack with a complexity5 of 237 GEA-1 evaluations to build (and sort) 28 tables
with 224 entries of size 89 bits and a brute-force step of complexity 240 GEA-1
evaluations for each new session key K0, . . . ,K63. The details will be given in
Section 3.1.

In other words, the joint state of A and C can be described with only 40 bits
and thus can take only 240 possible values. This is the key observation of the
attack and the weakness that is highly unlikely to occur unintentionally.

Once s is determined, K0, . . . ,K63 can be recovered as follows. Let Si denote
the state of register S after i clocks of initialization. So S0 = (0, 0, . . . , 0) and
S225 = (s0, s1, . . . , s63) where all the sj are known (see also Figure 4). The last
128 clocks of S all insert 0-bits from the string containing K, dir and IV , so it is
straightforward to clock S225 backwards 128 times and find the content of S97.
Let S97 = (a0, a1, . . . , a63), where all the ai are known.

Starting from the other side, the first 33 clocks of S0 only insert the known
bits IV0, IV1, . . . , IV31, dir, so the content of S33 is fully known. The next clock
inserts K0 +b0 at position 63 of S34, where b0 is a known bit. Further clocking do
not change the content of this cell, but only shifts it further positions to the left,
so after 63 clockings starting from S34 we have S97 = (K0 + b0, . . .). Equating
S97 from the forward direction with S97 from the backward direction gives us
K0 = a0 + b0.

With K0 known, position 63 of S35 can now be given as K1 + b1, where b1
is known. Clocking S35 forward 62 times gives S97 = (K0 + b0,K1 + b1, . . .) and
again equating with S97 from the backwards side gives K1 = a1 +b1. Continuing
this way recovers the whole session key K. Hence, the attack has to be conducted
only once per GPRS session and is done in 240 operations once the table has
been established.
5 The complexity will be measured by the amount of operations that are roughly as

complex as GEA-1 evaluations (for generating a keystream of size ≤ 128 bit).
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3.1 A Simple Divide-and-Conquer Attack on GEA-1

A table Tab is built by exhaustive search over the 232 values

βt,v = MB(t+ v), t ∈ TAC , v ∈ V ,

plugging βt,v into register B and clocking it ` times. The parameter ` will be
determined later. The table is divided into 28 sub-tables Tab[v] indexed by v; the
output bits b(0)

t,v , . . . , b
(`−1)
t,v (after applying the filter f), together with t, are stored

in Tab[v]. We then sort each Tab[v] according to b(0)
t,v , . . . , b

(`−1)
t,v interpreted as an

`-bit integer. The table has 232 entries of size `+ 24 bits, so it can be generated
and sorted with a complexity of 32 · 232 = 237 operations if the size of ` is
negligible (which it is, as we will see below).

Given ` bits of keystream zi, the sequence s is recovered as follows. First, an
exhaustive search is conducted over the 240 values

αu,v = MA(u+ v), γu,v = MC(u+ v), u ∈ UB , v ∈ V ,

plugging αu,v into A, γu,v into C and clocking both registers ` times. We denote
by a(0)

u,v, . . . , a
(`−1)
u,v , resp., c(0)

u,v, . . . , c
(`−1)
u,v , the output stream of register A, resp.,

C after applying the filter f . For each (u, v), the output stream

a(0)
u,v ⊕ c(0)

u,v ⊕ z0, . . . , a
(`−1)
u,v ⊕ c(`−1)

u,v ⊕ z`−1

is generated and it is checked whether there is a match in Tab[v]. In the positive
case, this gives candidates for u, t and v and finally for s = u⊕t⊕v if and only if
the entry is found in Tab[v]. The overall complexity of this step is 240, assuming
that generating ` bits of keystream, together with a search in the sorted table
is below the complexity of one GEA-1 evaluation (for generating a keystream of
size 128 bit).

The correct key will always be identified, but this procedure can also suggest
some wrong keys, depending on the value of `. There is a trade-off between
the amount of known plaintext available, the size of table, and the number of
remaining keys. A wrong partial key u⊕v yields a bitstream stored in Tab[v] with
probability 1

2` for each entry, if we assume the widely accepted hypothesis that
an ` bit output of a filtered LFSR behaves like uniformly distributed random
bits as long as ` is below its period (which will be the case here). We have 224

entries in Tab[v], thus there are at most 224 possible correct entries per partial
key. In other words, the probability that a wrong partial key does not cause a
hit in Tab[v] is

(
1− 1

2`

)224

and therefore the probability that none of the wrong
partial keys cause a hit is((

1− 1
2`

)224)(240−1)

≈
(

1− 1
2`

)264

.

If we want the probability for no false hit to be larger than or equal to 1
2 , we can

choose ` = 65, for which we get
(
1− 1

2`

)264

≈ 0.607. The corresponding size of
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the table Tab with this choice for ` is only 44.5 GiB and it can be built in time
237.

If we only have n < 65 known plaintext bits, we obtain a set of roughly 264−n

remaining keys; if n ≥ 24 we expect less than 240 candidate keys, and can try
each of them without increasing significantly the complexity of the attack. The
key candidates can be verified using redundancy in the frame (e.g. checksums),
or known bits in a different frame (e.g. headers). We need 65 known bits of
information in total, but they can be spread over several frames as long as one
frame has 24 bit of known plaintext. In practice, there are many GPRS frames
with predictable content, so that intercepting a ciphertext with some known
plaintext bits is not an issue (see Section 5.1 for details). Thus the attack is fully
practical.

Note that the attack presented is rather straightforward and can probably
be optimized. Moreover, several trade-offs are possible. For instance, one can
alternatively apply the attack by building a table corresponding to the 240 choices
of αu,v, γu,v and then performing an exhaustive search over 232 values for βt,v.
This way, one would need 232 GEA-1 evaluations as the online time complexity,
but much more memory for storing the table. For example, the memory needed
to store 240 values of 65-bit length is 8.125 TiB.

On the Likelihood that dim(TAC) = 24. We did an extensive computer
search to answer the question if the situation in GEA-1 is unlikely to occur. To do
so, over 106 samples, we randomly generated two primitive polynomials g1, g2 of
degrees d1, d2, built the corresponding Galois matrices Gg1 , Gg2 , computed the
representation matrices MGg1

,MGg2 ,cs
for the initialization and computed the

dimension of the intersection TGg1 ,Gg2 ,cs
. Here, the parameter cs denotes the

cyclic shift applied in the initialization process of the register. In Tables 1, 2,
and 3, the results for the parameters as in GEA-1 are given, i.e., for the parameters
d1 = 31 and d2 = 32, d1 = 31 and d2 = 33, d1 = 32 and d2 = 33 with the
corresponding shifts. A Sage program that allows the reader to repeat those
experiments is provided in Appendix B.

Table 1: Behavior of intersections for randomly generated LFSRs of lengths
d1 = 31, d2 = 32 and cs = 16 (106 tries)

Dimension of intersection < 5 5 6 7 8 9 10 11
# of spaces 996,027 3,002 742 171 49 6 1 2

Recall that in GEA-1, the intersection is of dimension 24. Thus, in general, our
attack is avoided almost automatically when choosing random primitive feedback
polynomials and further research needs to be conducted to better understand
the design of GEA-1.
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Table 2: Behavior of intersections for randomly generated LFSRs of lengths
d1 = 31, d2 = 33 and cs = 32 (106 tries)

Dimension of intersection < 5 5 6 7 8 9 10 11
# of spaces 998,027 1,490 366 86 26 5 0 0

Table 3: Behavior of intersections for randomly generated LFSRs of lengths
d1 = 32, d2 = 33 and cs1 = 16, cs2 = 32 (106 tries)

Dimension of intersection < 5 5 6 7 8 9 10 11
# of spaces 999,065 701 181 39 10 3 1 0

Experimental Verification. In this section we address our C++ implemen-
tation of the simple Divide-and-Conquer attack on GEA-1.

We first utilized sage to generate V and bases for TAC and UB . We then
built a table Tab of 232 entries, similarly as described above. Notice that each
sub-table Tab[v] is implemented as an array of 219 sorted vectors containing
entries consisting of 64 bits for bt,v and 24 bits representing t. The remaining bit
of bt,v is implicitly stored as an index in Tab[v]. Tab is stored on disk such that
it can be loaded when the attack gets executed again.

Given 65 bits of keystream zi, the recovery of the initial state s is implemented
as follows. For each combination of u ∈ UB and v ∈ V the output stream
is generated using a bitsliced implementation of A and C. To check whether
there is a match in Tab we search through the vector at Tab[v][idx] where idx
represents the 19 most significant bits of the output stream. If there is a match
we restore t from Tab and return s = u⊕t⊕v. To speed things up we parallelized
both the generation of Tab and the recovery of s using OpenMP [10].

To test our implementation we first picked random values for t, u, v. After
this we determined suitable values for K, IV and dir by clocking the register
S backwards. Then we used the GEA-1 implementation that we were provided
with to generate 65 keystream bits. Finally we checked if our attack restores the
correct initial state s = u⊕ t⊕ v.

We executed the attack on a cluster made up of four AMD EPYC 7742 64-
Core Processors. Generating and storing Tab takes 30 minutes whereas loading
it from disk only takes five minutes. Tab is 46 GiB in size and the recovery of s
has a running time of 25 minutes averaged over six runs.

4 An Attack on GEA-2

GEA-2 does not suffer from the same problems as GEA-1 for initialization. How-
ever, it is still possible to mount an attack on GEA-2 that does not target ini-
tialization, but keystream generation. The idea is to combine a list merging
algorithm and algebraic techniques.
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4.1 Algebraic Cryptanalysis

The algebraic degree of the filtering function f is 4. The filtering function also
has an algebraic immunity of 4. But, as the 4 registers are never mixed, the
number of monomials present in the system of equations formed by the relations
between the keystream and the initial state is very limited. More precisely, this
number is upper bounded by

1 +
4∑
i=1

(
29
i

)
+
(

31
i

)
+
(

32
i

)
+
(

33
i

)
= 152682 .

This relatively small number would directly imply a powerful attack, just
by using a linearisation technique, or, even more powerful, by applying the
Berlekamp-Massey algorithm [2,26], as this value is naturally an upper bound to
the linear complexity of the output sequence (a direct consequence of Blahut’s
Theorem [5]).

However, each session in GEA-2 (or GEA-1) is limited to 1600 bytes, that is
12800 bits. This data limitation frustrates direct algebraic cryptanalysis, as the
linearization technique is impossible when we have less equations than monomi-
als.

4.2 Guess-and-Determine

The Guess-and-Determine technique seems to have its origin already in the
cryptanalysis of A5/1 cipher [18,1]. It can be a powerful technique, specially
for analyzing stream ciphers. In the context of algebraic cryptanalysis, it has
been shown in [13] that Guess-and-Determine can really help to provide much
simpler systems of equations. In a context of general multivariate system solving
algorithms, this technique is known as the hybrid approach [3].

For GEA-2, we mainly want to reduce the number of monomials present in
our system below 12800. By guessing nd, na, nb and nc bits in the registers D,
A, B and C respectively, we find that the number of non-constant monomials in
the equations is upper bounded by

4∑
i=1

(
29− nd

i

)
+
(

31− na
i

)
+
(

32− nb
i

)
+
(

33− nc
i

)
.

To get a system of equations of size below 12800 one needs to guess at least
59 bits of the initial state. One choice is nd = 29 − 16 = 13 bits in the first
register, na = 31− 16 = 15 bits in the second register, nb = 32− 17 = 15 bits in
the third register and nc = 33− 17 = 16 bits in the fourth register.

This leads to an attack complexity of 259 times the cost of solving a linear
system of size 12800, which is much more than the cost of the exhaustive search.
We therefore need to combine guessing with other techniques.
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4.3 Divide-and-Conquer Technique

The sum of the output of the four filtered registers frustrates the specific Divide-
and-Conquer cryptanalysis described by T. Siegenthaler in 1985: correlation at-
tacks [36].

However, Divide-and-Conquer techniques can also be applied when we adapt
it for the following problem. We are given two sets S1 and S2, as well as two
functions f1 : S1 → Fc2 and f2 : S2 → Fc2. For a given t ∈ Fc2 the problem is
to find all s1 ∈ S1 and s2 ∈ S2 such that f1(s1) + f2(s2) = t. This problem
arises quite often in cryptography and started in [35] with the cryptanalysis of
the knapsack-based cryptosystem. Since then, advanced solving techniques have
shown they can be a powerful tool for the cryptanalyst [6,12,33,24,22].

One way to solve this problem is to use a hash table H. Typically, for all
s1 ∈ S1 we compute f1(s1) and add s1 to H [f1(s1)]. Then for each s2 ∈ S2
we compute f2(s2) and check the corresponding values for s1 in H [t+ f2(s2)].
Using the right structure for H the complexity of exhausting all the solutions is
O(|S1|+ |S2|) in time and O(|S1|) in memory.

Remark. This algorithm performs |S2| random accesses to H. If the table is
too large to fit in RAM it may be faster to build the two lists, then to sort them
and finally to sequentially go through them to find matches.

4.4 Description of the Attack

The techniques involved in our attack do not work in practice when used alone.
However, they can be combined in an elegant way to recover the initial state
with complexity significantly lower than 264. Our attack works as follows.

1. Guess na +nd bits in both registers A and D (note that the choice of values
for na and nd is not the same as in Section 4.2). The choice of registers A
and D has been done with respect to their length, so as the choice of na and
nd that lead to the smallest number of guesses.

2. Using linearization technique, derive linear combinations of the keystream
bits that are independent of the remaining variables in registers A and D.
This corresponds to a set a linear masks mi, for 1 ≤ i ≤ c, such that for all
i, mi · sA+D is constant, where sA+D denotes the xor-sum of the sequences
generated by the registers A and D, and · is the scalar product.

3. Apply the Divide-and-Conquer technique described previously, with S1 cov-
ering all initial states β in register B and S2 covering all initial states γ in
register C, with f1 and f2 being defined by the linear masks, and ti defined
as mi · z ⊕ mi · sA+D, where z is the known keystream, and mi · sA+D is
known:

f1 : β 7→ (m1 · sB , . . . ,mc · sB)
f2 : γ 7→ (m1 · sC , . . . ,mc · sC)
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First, we build polynomials corresponding to the output of each filtered reg-
ister, with the initial value of the register bits as variables. We use register C as
an example since it is the largest one. Since the LFSR is linear, we can write the
state as a matrix representing the linear expression of each bit in terms of the
33 variables; clocking the LFSR is just a matrix product with a total cost of at
most 12800× 333 = 228.8. This could probably be improved further, but will be
a negligible cost in the attack anyway.

Next, we notice that guessing nd = 9 bits from register D and na = 11 bits
from register A decreases the number of possible non-constant monomials in the
20+20 remaining variables from A and D to

4∑
i=1

(
20
i

)
+
(

20
i

)
= 12390

which is smaller than the amount of data available per session. Thus we can
perform a Gaussian elimination on the system of equations to derive at least
12800−12390 = 410 linear masks mi on the output of A and D, such that every
non-constant monomial vanishes. On a 64-bit computer the cost of this step is
around 12800× 12390× 12390/64 = 234.8 simple operations on 64-bit words.

In order to evaluate f1 and f2 efficiently, we write them as polynomials in
the B and C variables, respectively. To do so we first choose c = 64 masks and
we compute the corresponding polynomial expressions of outputs from B and C.
This corresponds to multiplying a binary matrix of size 12800×(

∑4
i=1
(32
i

)
+
(33
i

)
)

by a binary matrix of size 64×12800. This requires 64×12800×88385/64 = 230.1

simple operations on 64-bit words. We also apply the masks to the keystream
sequence with a negligible cost.

At the end of the previous step we have 64 equations of the form P iB = P iC
where P iB and P iC are polynomials in variables from registers B and C respec-
tively and we can apply the Meet-in-the-Middle technique to retrieve the possible
values for B and C. First we evaluate (P 0

B , P
1
B , . . . , P

63
B ) for all the 232 possi-

ble initial states of register B and store the result in a hash table H. Then we
evaluate (P 0

C , P
1
C , . . . , P

63
C ) for all the 233 possible starting states of C and get

the corresponding values for B by looking into the hash table. Using the enu-
meration technique of [7], we can evaluate the 64 degree-4 polynomials on all 2n
states for a cost of only 2n × 64 × 4 bit operation. Therefore, the cost of this
step is roughly (232 + 233) × 4 × 64/64 = 235.6 operations on 64-bit words plus
232 + 233 = 233.6 random accesses to the hash table.

Finally, for all the remaining values for registers B and C we solve the system
of equations in variables from A and D. As it was already echelonized in the first
step of the attack we only have to check whether it is consistent or not, requiring
approximately 12390 bit-operations. Since there are only a few remaining key
candidates, this step is negligible.

Overall the attack requires:

– 220 × (234.8 + 230.1 + 235.6) = 256.3 operations on 64-bit words
– 220 × (233.6) = 253.6 memory accesses
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In terms of GEA-2 operations, we assume that one encryption requires at least 64
word operations6, and that one memory access is comparable to an encryption
call. Therefore the complexity is equivalent to 253.7 GEA-2 encryptions. The
memory complexity corresponds to 232 × 64 = 238 bits.

4.5 Improved Attack

We have developed two tricks to decrease the complexity of our attack against
GEA-2. The first one is based on the observation that we perform the same
computations several times and that this can be avoided by reorganizing them.
The second improvement is highly inspired from classical time/data trade-offs
where a sequence of n keystream bits can be seen as k (shifted) sequences of
n− k keystream bits.

Gaussian Elimination Only Once. The first Gaussian elimination is per-
formed 220 times, once for each guessed value of the 20 chosen bits of registers A
and D. But since the polynomials are of degree 4, guessing a variable cannot cre-
ate a monomial of degree 4. Thus, before starting to guess variables, it is possible
to partially echelonize the system by removing all degree 4 monomials which do
not contain a variable that will be guessed. This removes

(20
4
)

+
(20

4
)

= 9690
equations and requires 12800× (

∑4
i=1
(29
i

)
+
(31
i

)
)× 9690/64 = 236.9 operations

on 64-bit words. Then for each guess the first Gaussian elimination is performed
on a matrix with 12800−9690 = 3110 rows and

∑3
i=1
(20
i

)
+
(20
i

)
= 2700 columns.

As a consequence, the time complexity of the attack becomes:

– 236.9 + 220 × (228.4 + 230.1 + 235.6) = 255.6 operations on 64-bit words
– 220 × (233.6) = 253.6 memory accesses

Reducing Number of Guesses. We can improve the attack using the classical
trick of targeting the internal state at several different clocks, instead of focusing
only on the initial state. The novelty here is that we can find masks which
simultaneously work for several shifted keystream sequences.

First, we use nd = 10 and na = 11, so that the number of non-constant
monomial from A and D is only

∑4
i=1
(19
i

)
+
(20
i

)
= 11230. We target one of

the 753 first internal states, therefore we extract shifted keystream sequences
of length 12047 produced by each of those states. The initial state produces
keystream z0 · · · z12046, the state after one clock produces keystream z1 · · · z12047,
and so on. We define V as the vector space of masksm (of length 12047) such that
m · z is independent of z for all the 753 sequences considered; V has dimension
12047− 753 + 1 = 11295.

Using the strategy of the previous attack, for each guess of the 21 bits in
registers A and D, we can deduce a vector space of dimension 12047− 11230 =
817 of masks such that mi · sA+D is constant. We intersect this vector space
6 In a brute-force search, the initialization requires at least 195 clocking of the W

register per key.
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with V to obtain a space of dimension 65 of masks such that both mi ·sA+D and
mi · z are constant, and we run the previous attack with 64 independent masks
from this space.

The probability that the guess of the 21 bits is correct for at least one of the
753 first internal states is 1 − (1 − 2−21)753 ≈ 2−11.4. Thus we have to repeat
this step with 211.4 different guesses on the average, and the time complexity
becomes:

– 236.9 + 211.4 × (227.9 + 230.1 + 235.6) = 247 operations on 64-bit words
– 211.4 × (233.6) = 245 memory accesses

This is equivalent to roughly 245.1 GEA-2 encryptions.

4.6 Recovering the Master Key

This attack recovers the internal states of the registers A,B,C and D, either at
the beginning or after a few clocks. From this we can easily recover the sequence
w, because the initialization and the update of the LFSRs are linear functions.
As in the case of GEA-1, we can also recover the master key by clocking the W
register forwards from the zero state, and backwards from the recovered state w.
Therefore, we only have to perform the attack once per GPRS session; we can
decrypt all the messages in a session if we have one known message of length
1600 byte.

4.7 Using Less Data

Our attack can be applied with less data than 12800 bits of keystream. In that
case the time complexity is increased as shown in Figure 8. To reach a complexity
below 264 (the complexity of an exhaustive search on the key), we need around
1468 consecutive keystream bits.

4.8 Experimental Verification

We now briefly describe our proof of concept implementation of the attack on
GEA-2. The implementation consists of a sage and C++ part which is made
accessible to sage using Cython.

In an initial step we built matrices that represent polynomials corresponding
to the filtered output of B and C by evaluating B and C symbolically in sage.
Here we enumerated the 12 most significant bits and therefore we do not have one
but 4096 matrices for each register. This allows straightforward parallelization
of the Divide-and-Conquer step when using the enumeration technique of [7].
The matrices are stored on disks such that they can be loaded when the attack
gets executed again.

Given the keystream we first compute V as described above. Then we start
guessing 21 bits in A and D. For each guess we compute 64 corresponding masks.
These are then handed over to the C++ part which builds upon the M4RI [25]
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Fig. 8: Time complexity of our attack against GEA-2 as a function of the number
of consecutive keystream bits available.

library to apply the Divide-and-Conquer technique. Candidates for β and γ are
returned to sage to check if they lead to consistent solutions for the remaining
bits in registers A and D.

To test our implementation we picked random values for K, IV and dir and
computed the keystream with the GEA-2 implementation we were provided with.
We also determined the first 753 internal states such that we can directly check
whether a guess of the 21 bits in A and D was correct or not.

We executed the attack on the same hardware as for the GEA-1 attack. It
takes about one hour to perform the calculations on one guess and therefore we
get roughly four months as the runtime of a full attack.

5 Discussion

In the following, we discuss the real-world attack feasibility, the attack severity
and the attack implications.

5.1 Attack Requirements

To recover the full session key of a GEA-1 encrypted connection, the attacker must
meet the following conditions: The attacker must i) sniff the encrypted radio
traffic of the victim’s phone and ii) know 65 bits of the keystream, preferably
at the beginning of the keystream. As shown by Nohl and Melette [29], sniffing
the encrypted traffic can be conducted with the osmocom-bb project [31] using
ordinary hardware.
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Meeting the requirement of knowing 65 bits of the keystream can be achieved
by exploiting predictable SNDCP (Subnetwork Dependent Convergence Proto-
col) and IP header patterns. A GPRS data connection encapsulates each IP
packet with the SNDCP, which is then encrypted by the LLC (Logical Link
Control) protocol. In a small experiment, we study patterns that remain stable
and predictable over multiple GPRS connections in the SNDCP and IP header.
Header fields like the SNDCP NSAPI, the IP Version, TTL, ToS, and desti-
nation IP address fields remain stable over multiple connections. Consequently,
guessing 65 plaintext bits and obtaining 65 keystream bits is plausible by an
entirely passive attacker.

In contrast, the attack on GEA-2 requires the attacker to know the whole 1600
bytes of keystream to recover the session key with complexity 245.1 GEA-2 evalu-
ations. Accordingly, the attacker must correctly predict 1600 bytes of plaintext.
Depending on the attacker’s capabilities, this can be within the area of possi-
bility. If the attacker controls a server that the victim visits, he can access the
bytes sent or receives, and consequently, the attack can predict 1600 bytes. The
recovered key is then valid for the whole GRPS session, including other traffic
of interest. Such an attack may require some social engineering, e. g., a phishing
attack, to convince the victim to visit the website.

5.2 Attack Severity

In GPRS the operator chooses the encryption algorithm, i. e., GEA-1, GEA-2,
GEA-3 (based on KASUMI with a 64-bit key), or GEA-4 (based on KASUMI
with a 128-bit key). According to a study by Tomcsányi et al. [11], that analyzes
the use of the ciphering algorithm in GRPS of 100 operators worldwide, most
operators prioritize the use of GEA-3 (58) followed by the non-encrypted mode
GEA-0 (38). Only a few operators rely on GEA-2 (4), while no operator uses GEA-1
(0). Consequently, the likelihood for an attack based on the GEA-1 and GEA-2
vulnerabilities is nowadays comparably small.

To draw a complete picture, we additionally analyze the support of both
algorithms in mobile phones. Since 2013, ETSI prohibits implementing GEA-1
in mobile stations, while GEA-2 and the non-encrypted mode (GEA-0) are still
mandatory to be implemented [16]. We tested a range of current phones if they
follow the specification regarding disabling the GEA-1 cipher. We use an osmo-
com GPRS setup which we extended with the support of GEA-1 and GEA-2 [31].
Table 4 shows a selection of phones in which we cover a wide range of baseband
manufacturers. Those manufacturers are responsible for implementing the stan-
dard accordingly. Surprisingly, all tested phones support the vulnerable ciphers
GEA-1, thereby clearly disrespecting the specification.

Once the key is recovered, the attacker can decrypt all traffic for the complete
GPRS session until the key gets invalid, which happens in the GPRS authen-
tication and ciphering procedure triggered by the network. The start of this
procedure depends on the operator’s policy. Usually, the procedure starts on an
expired timer, e. g., 1-24h, or the change of a location area, which is a regional
group of base stations.
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Table 4: Overview of the phones and basebands supporting ( ) GEA-X
Phone Year Baseband GEA-1 GEA-2

Apple iPhone XR 2018 Intel XMM 7560   
Apple iPhone 8 2017 Intel XMM 7480   
Samsung Galaxy S9 2018 Samsung Exynos 9810   
HMD Global Nokia 3.1 2018 Mediatek MT6750   
Huawei P9 lite 2016 HiSilicon Kirin 650   
OnePlus 6T 2018 Qualcomm Snapdragon 845   

5.3 Attack Implications

GEA-1 provides 40-bit security and is breakable by today’s standard hardware.
This fact causes severe implications for our mobile Internet connection during
the early 2000s and now.

During the early 2000s, Internet connections were barely secured by any
transport layer security, such as TLS. Under the assumption that an operator
used GEA-1 for the network, the entire traffic was accessible to a passive attacker.
In contrast, nowadays connections are mostly secured by TLS. However, if the
network encryption can be bypassed (as with GEA-1), metadata is still accessible,
such as DNS requests, IP addresses, and hostnames when using the TLS SNI
extension. Consequently, the use of GEA-1 has still far-reaching consequences on
the user’s privacy and should be avoided at all costs.

Even if the operator uses a stronger cipher like GEA-3, the support of GEA-1
by the phone allows an attacker to recover a previous session key. A requirement
for this attack is that the operator also relies on GSM authentication. GSM
authentication is not replay protected, and thus the attacker can replay the
previous authentication request with a fake base station and instruct the phone
to use the vulnerable cipher (Authentication and Ciphering Request). After a
complete attack procedure, sending the ciphering request forces the phone to use
a weak cipher (i.e. GEA-1) for the next data uplink packet. At that point, the
attacker can guess the plaintext to recover parts of the keystream and thus also
the previous session key. Consequently, the attacker can decrypt the previous
session, which was encrypted with a stronger cipher, e. g., GEA-3. This shows
that even when operators do not actively use GEA-1, the weak GEA-1 design
affects the security of today’s communication.

Time/Memory Trade-Off Attack against GEA-2. While the present attack
against GEA-2 has a complexity of 245 GEA-2 evaluations and requires a large
amount of known keystream, we could also think of a time/memory trade-off
attack against GEA-2. However, in contrast to A5/1 where this could be applied
[21], the initial state of 125 bits prohibits any such attack aiming for the initial
state. Building a time/memory trade-off, using e.g. rainbow-tables, (see [30])
targeting directly the 64 bits secret key would only work for a fixed IV. While it
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would indeed reduce the amount of known keystream needed, it turns the attack
into a chosen IV attack, which limits its practical interest.

5.4 Responsible Disclosure and Industry Implications

Following the guidelines of responsible disclosure, we have disclosed the vul-
nerability to the GSMA and ETSI Coordinated Vulnerability Disclosure pro-
gramme [19] [14]. We, thereby, followed two aims: In short term, we want to
disable the support of GEA-1 from all mobile phones and thereby restore the
specifications conformity. For mitigating the mid-risk of exploiting the GEA-2
vulnerabilities, we advocate for removing the support of GEA-2 from the speci-
fication.

The main objective of the GSMA CVD program was to disable the support
of GEA-1. The GSMA informed the affected baseband vendors, phone manu-
facturers, including Google and Apple, through the CVD program. Further, the
GSMA liaised with GCF (Global Certification Forum) [17], the mobile industry’s
globally recognized certification scheme for mobile phones and wireless devices
based on 3GPP standards. The GCF included two test cases as part of ver-
sion 3.81.0 of the certification criteria, which became available for certification
in January 2021. These are: Conformance test case 44.2.5.2.5 Ciphering mode
/ Non-support of GEA-1 from 3GPP TS 51.010-1 and field trial test case 5.6.5
GPRS functionality – Non-support of GEA-1 from GSMA TS.11. Those test
cases now allow to verify that the support of GEA-1 is disabled by devices before
entering the market.

In contrast, the submission to the ETSI CVD program followed the mid-term
goal to remove the support of GEA-2 from the specification and consequently also
from mobile devices. At the time of paper finalization, the ETSI has accepted
our CVD submission and considers whether any standards related measures need
to be taken. Specification changes usually require the consent of several parties
and take accordingly longer. We will continue to fight for removing the support
of GEA-2 from the specification.

6 Conclusion

We have shown that the first version of the GPRS Encryption Algorithm, GEA-1,
only offers 40-bit (out of 64) security. We have further shown that it is very un-
likely for a random instance to suffer from such weaknesses. Since GEA-1 was
designed to be exportable within the export restrictions in European countries
in the late 1990s, this might be an indication that a security level of 40 bits
was a barrier for cryptographic algorithms to obtain the necessary authoriza-
tions. Ultimately, the weak design of GEA-1 brings security problems for today’s
communication, even if it is not being actively used by the operators.

The successor algorithm GEA-2 seems to be a stronger design, in which the
weaknesses of GEA-1 are not present anymore. Still, the cipher does not offer
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full 64-bit security and we have shown an attack of complexity 245.1 GEA-2 eval-
uations. Although such an attack is more difficult to be applied in practice,
we think that GEA-2 does not offer a high enough security level for todays stan-
dards. Therefore, we strongly recommend that only the much more secure GPRS
Encryption Algorithms, starting from GEA-3, should be implemented.
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Appendix A Source Code to Compute the Kernels

Listing 1.1: gea1 kernels.sage
def ge t In i tMat r i x (p , keyLength , s h i f t ) :

P.<x> = PolynomialRing (GF( 2 ) )
l = p . degree ( )

#c o n s t r u c t t rans format ion matrix A f o r LFSR in Galo i s mode
A = companion matrix (p , ” l e f t ” )
M = zero matr ix (GF( 2 ) , keyLength , l )
for c in range ( keyLength ) :

x = z e r o v e c t o r (GF( 2 ) , l )
k = z e r o v e c t o r (GF( 2 ) , keyLength )
k [ c ] = 1
for j in range ( keyLength ) :

x [ 0 ] = x [ 0 ] + k [ ( j+s h i f t ) % keyLength ]
x = A∗x

M[ c ] = x
return M

#f o r GEA−1
P.<x> = PolynomialRing (GF( 2 ) )
keyLength = 64
pA = xˆ31+xˆ30+xˆ28+xˆ27+xˆ23+xˆ22+xˆ21+xˆ19+xˆ18+xˆ15
+xˆ11+xˆ10+xˆ8+xˆ7+xˆ6+xˆ4+xˆ3+xˆ2+1
sh i f tA = 0
pB = xˆ32+xˆ31+xˆ29+xˆ25+xˆ19+xˆ18+xˆ17+xˆ16+xˆ9+xˆ8+xˆ7+xˆ3
+xˆ2+x+1
sh i f t B = 16
pC = xˆ33+xˆ30+xˆ27+xˆ23+xˆ21+xˆ20+xˆ19+xˆ18+xˆ17+xˆ15+xˆ14
+xˆ11+xˆ10+xˆ9+xˆ4+xˆ2+1
sh i f tC = 32

MA = get In i tMat r i x (pA, keyLength , sh i f tA )
MB = get In i tMat r i x (pB, keyLength , sh i f tB )
MC = get In i tMat r i x (pC, keyLength , sh i f tC )

U B = MB. ke rne l ( )
T AC= MA. ke rne l ( ) . i n t e r s e c t i o n (MC. ke rne l ( ) )
print (U B . dimension ( ) ) #has dimension 32
print (T AC. dimension ( ) ) #has dimension 24
print (T AC. i n t e r s e c t i o n (U B ) . dimension ( ) ) #has dimension 0
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Appendix B Source Code to Compute the Dimensions

Listing 1.2: random kernels.sage
set random seed ( )
P.<x> = PolynomialRing (GF( 2 ) )

def get random pr imi t ive ( l ) :
V = VectorSpace (GF( 2 ) , l )
v = l i s t (V. random element ( ) )
p = P( v +[1 ] )
while ( not p . i s p r i m i t i v e ( ) ) :

v = l i s t (V. random element ( ) )
p = P( v +[1 ] )

return p

#parameters to s e t
keyLength = 64
l 1 = 31
l 2 = 33
s h i f t 1 = 0
s h i f t 2 = 32
samples = 1000000

dim = [ 0 ] ∗ 4 0
for i in range ( samples ) :

#g e t random p r i m i t i v e po lynomia l s p1 and p2
p1 = get random pr imi t ive ( l 1 )
p2 = get random pr imi t ive ( l 2 )
M1 = get In i tMat r i x ( p1 , keyLength , s h i f t 1 )
M2 = get In i tMat r i x ( p2 , keyLength , s h i f t 2 )
T = M1. ke rne l ( ) . i n t e r s e c t i o n (M2. ke rne l ( ) )
dim [T. dimension ( ) ] = dim [T. dimension () ]+1
i f ( ( ( i +1)%1000)==0):

print ( ’ runs =’ , i +1)
print ( dim )
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