
A New Way to Achieve Round-Efficient
Byzantine Agreement

Matthias Fitzi1, Chen-Da Liu-Zhang2, and Julian Loss3

1 IOHK. matthias.fitzi@iohk.io.
2 ETH Zürich. lichen@inf.ethz.ch.

3 University of Maryland. lossjulian@gmail.com.

Abstract. Minimizing the round complexity of Byzantine Agreement
(BA) protocols is a fundamental problem in distributed computing. The
typical approach to achieve round efficient (randomized) BA is to have a
weak form of BA, called graded consensus (GC), followed by a distributed
coin, and to repeat this process until some termination condition is met—
as introduced by Feldman and Micali (STOC ‘88).
In this work, we revisit the question of building BA from GC, or, more
precisely, from generalizations of GC. Concretely, for ‘Monte Carlo’ style
BA, where the protocol is run for a fixed number of rounds in function
of the security parameter (in contrast to protocols with probabilistic ter-
mination), we demonstrate that this generalization helps to considerably
reduce the round complexity of BA.
In particular, assuming a setup for threshold signatures among the par-
ties and corruption threshold t < n/3, we improve over the round com-
plexity of the best known protocol by a factor of 1/2, asymptotically; this
is achieved by applying one single Feldman-Micali iteration consisting of
one (generalized) GC instance and one round of coin tossing.
Our technique also applies to the dishonest-minority case (t < n/2),
yielding an improvement by a factor of 1/4 (asymptotically) over the
round complexity of the best known fixed-round protocol.

1 Introduction

In the problem of Byzantine Agreement (BA), a set of n parties want to agree
on a common output y as a function of their inputs xi by means of a distributed
protocol. The protocol must remain secure even when up to some t out of the n
parties are corrupted by arbitrarily deviating from the protocol. More concretely,
a BA protocol must satisfy consistency—all honest parties output the same value
y; and, validity—if all parties start with identical inputs xi then y = xi.

First formalized in the seminal work of Lamport et al. [15], BA is one of the
most fundamental problems in cryptography and distributed computing.

A key efficiency metric for BA protocols is their round efficiency: how many
synchronous rounds of communication are needed to reach agreement? As proven
by Dolev and Strong [9], no deterministic BA protocol can run in less than
t + 1 rounds. As first demonstrated by Ben-Or [2], and Rabin [20], the lower

bound of Dolev and Strong does not apply to randomized protocols. Feldman
and Micali [11] (FM) gave the first expected-constant-round protocol with the
optimal resilience t < n/3 [15] and unconditional security.

Termination flavors. Constant-round BA can be achieved in ‘Las Vegas’ style—
with probabilistic, constant-expected runtime and guaranteed correctness, or,
’Monte Carlo’ style—with fixed runtime in function of the security parameter
but allowing to fail with a probability negligible in the security parameter. In
the sequel, we will refer to the former as protocols with probabilistic termination
and the latter as fixed-round protocols.

BA protocols with probabilistic termination are more round efficient (in ex-
pectation) than their fixed-round counterparts, but they cannot achieve simul-
taneous termination, i.e., that all parties terminate the protocol during the same
communication round—as proven by Dwork and Moses [10], and Moses and Tut-
tle [19]. This can make such protocols unwieldy when used as building blocks
in larger protocol contexts—as was for instance exposed by Lindell et al. [17] or
Cohen et al [6]. Fixed-round protocols are thus often preferable—a prominent
example for this choice being the BA protocol of Algorand [5].

The FM paradigm. We give a short recapitulation of the FM protocol con-
struction to help the exposition of our generalization. As we focus on fixed-round
protocols in this paper, we directly describe their protocol as such, although their
initial protocol achieves probabilistic termination. Furthermore, for simplicity,
we restrict our view to a binary input domain.4

FM achieves BA from a weaker type of agreement called graded consensus
(GC).5 In GC, each party Pi holds an input xi, and an outputs yi together
with a grade gi ∈ {0, 1}, where gi = 1 indicates that the parties’ outputs yj are
(sufficiently) consistent.

The BA protocol consists of a fixed number of iterations (the number de-
pending on the security parameter), an iteration consisting of one execution of
GC followed by a distributed coin toss. After each iteration, if a party computes
gi = 1, it sticks to yi, whereas, otherwise, it replaces yi by the output of the coin
toss. A party’s output serves as its input for the next iteration.

The effect of one FM iteration is as follows. If the parties start an iteration
in agreement then their values remains unchanged, yi = xi, and they compute
grade gi = 1, thus ignore the coin, and thus remain in agreement on yi until
the end of the protocol. On the other hand, if the parties end an iteration in
disagreement then the coin reunites the parties’ outputs with some constant
probability—contributing to an exponential decrease in the protocol error in the
number of iterations.

4 Note that BA for binary inputs can be extended to any finite input domain at
the expense of at most three additional communication rounds as demonstrated by
Turpin and Coan [21].

5 More precisely, the weak form of BA required by the fixed-round construction is
Crusader Agreement [8], which is a special case of our GC generalization.

2

Generalizing the FM paradigm: Expand and extract. The expand-and-
extract pattern is already present in the original: at the beginning of the FM
iteration, the parties hold a binary value xi, which is expanded, by GC, to a
domain of cardinality s = 3, (yi, gi) ∈ {(0, 1), (·, 0), (1, 1)} from which, by help
of the coin, a binary value yi is extracted to serve as the input of the next
iteration, x′

i = yi.
We generalize this pattern by replacing the expansion step by applying a

generalization of GC that expands to an arbitrary finite domain size s ≥ 3 (by
means of a larger than binary grade range), which we call s-slot Proxcensus. The
extraction step is then implemented by a different randomization method (still
based on a distributed-coin protocol) that increases the per-iteration success
probability of putting the honest parties into a agreement.
Concrete results. Our generalization helps to obtain improvements for proba-
bilistic protocols in various models, but, to avoid too many case distinctions, we
focus on the most interesting cases in this paper. These cases assume a setup for
threshold signatures among the parties, and security is proven in the random-
oracle model.

– For t < n/3, we demonstrate a (perfectly secure) protocol for s-slot Prox-
census requiring O(log s) communication rounds (for the ‘expand’ step). We
then show how to achieve BA (with overwhelming probability) from a sin-
gle instance of Proxcensus (with a grade range exponential in the security
parameter) and a (single) multivalued coin toss (via the ‘extract’ step)—in
contrast to the traditional FM approach in which several instances of GC
(and coin tosses) are iterated. This yields a binary BA protocol involving
κ+ 1 rounds in order to achieve a target error probability of (at most) 2−κ.
The best known fixed-round binary BA protocol [11,18] for t < n/3 requires
2κ rounds to achieve the same target error probability. Both protocols can
be extended to any finite input domain at the expense of 2 additional com-
munication rounds.

– For t < n/2, we demonstrate two (computationally secure) protocols for
s-slot Proxcensus: a simple one requiring ⌈(s + 1)/2⌉ rounds, and a more
involved one requiring (roughly)

√
s rounds. We then show how to achieve

BA from 5-slot Proxcensus, applying the same ‘extract’ step as above. Note,
however, that for this case, we have to reiterate this process as in the original
FM protocol. This yields a fixed-round BA protocol requiring 3κ/2 rounds
to achieve a target error probability of 2−κ while the best known previous
protocol [18] for t < n/2 requires 2κ rounds. Both protocols can be extended
to any finite input domain at the expense of 3 additional communication
rounds.

For completeness, as this may be of independent interest, in the appendix,
we also give protocols for s-slot proxcast (the respective single-sender version)
computationally secure against t < n requiring s − 1 communication rounds—
improving over the M-gradecast protocol by Garay et al. [13]. Further, we demon-
strate how to adapt this protocol to t < n/2 in the player-replaceable setting

3

of [4], with the side effect of improving over the communication complexity of
the player-replaceable BA protocol in [18].
More on previous work. The original FM protocol [11] achieves unconditional
security against t < n/3. The complexity of their solution lies in the implemen-
tation of a distributed coin protocol with unconditional guarantees. Recently,
Chen and Micali [4] demonstrated a simple and elegant way of implementing
such a coin by means of verifiable random functions—at the price of downgrad-
ing to computational security against an adversary that is not strongly rushing
(i.e., cannot drop already sent round messages in the very round it corrupts a
given party). Interestingly, under idealized assumptions (in particular, assuming
an ideal coin), the fixed-round variant of the original FM construction is still the
most round-efficient solution, requiring 2κ rounds to achieve an error probability
of (at most) 2−κ.

The first constant-round protocols with computational security for t < n/2
were given in [12,14]. Micali and Vaikuntanathan [18] simplified over those con-
structions using the FM paradigm, by applying a 2-round GC protocol for
t < n/2, and running its second round in parallel to their coin. Assuming an
ideal coin, this protocol thus matches the round complexity of the FM protocol
for t < n/3, e.g., 2κ rounds for target error 2−κ.

In [1], Abraham et al. gave the first constant-round BA protocol with ex-
pected O(n2) communication complexity improving over the previous O(n3)
bound from [14]. Their gain in communication complexity implies the use of
threshold signatures (in contrast to the protocol in [14]) which requires special
setup assumptions. The construction of [1] is based on PBFT [3] which is a
deterministic iteration-based state-machine replication protocol where each iter-
ation consists of 5 non-uniform rounds of communication. The solution of [1] is
essentially achieved by randomizing PBFT by the random election of a leader
during each iteration, and by applying threshold signatures.

The concept of graded broadcast was generalized to larger grade ranges
in [22,7], called proxcast – achieving stronger security properties with growing
grade ranges. Our BA protocols make use of this generalization. In [13], a so-
lution for a subclass of proxcast (called gradecast with multiple grades therein)
was given that is secure against t < n.

2 Model and Preliminaries

Notation. We denote P = {P1, . . . , Pn} the set of parties participating in the
protocol. We denote the set of integers {1, ..., n} as [n]. We write x← S to denote
that x is sampled uniformly from set S. Throughout the paper, we denote the
security parameter by κ.

2.1 Communication and adversary model
We consider a synchronous communication network with authenticated point-to-
point channels. We describe the protocols as proceeding in a series of rounds. A

4

message sent by an honest party Pi at the beginning of a round is guaranteed to
be delivered by the end of that round. We consider an adversary who can corrupt
up to t parties in a malicious (a.k.a. Byzantine) way. That is, a corrupted party
may deviate from the protocol arbitrarily.

We consider a strongly rushing, adaptive adversary who can corrupt parties
at any given point of the protocol execution. In every round of the protocol,
it can observe the messages that the honest parties sent before choosing its
own messages for that round. It has the following additional capability: when it
observes that an honest party P sends a message m during some round i, it can
immediately corrupt that party and replace m with a message m′ of its choice
(in particular, it can decide to drop m).

2.2 Cryptographic primitives

Threshold signatures and coin-flip. We assume a t-out-of-n threshold sig-
nature scheme consisting of a tuple (SignShare,VerShare,Ver,Combine) of four
algorithms that behave as follows.

– In a setup phase, parties run a distributed protocol after which each party
Pi holds a secret key ski and all parties agree on a public key pk. We remark
that during the setup phase, all existing protocols assume the existence of
either a broadcast channel or a trusted dealer.

– Given a message m and a secret key ski, SignShareski(·) := SignShare(ski, ·) :
{0, 1}∗ → {0, 1}κ computes a signature share σi = SignShareski(m).

– Given the public key pk, VerSharepk(·, ·) := VerShare(pk, ·, ·) : {0, 1}∗ ×
{0, 1}κ → {0, 1} verifies the validity of a signature share σi; we say that a sig-
nature share σi for a message m is valid if and only if VerShare(pk, σi,m) = 1.

– Given t + 1 valid signature shares, it is possible to compute a signature
Σ = Combine({σi}1≤i≤t+1).

– Given the public key pk, Verpk(·, ·) := Ver(pk, ·, ·) : {0, 1}∗×{0, 1}κ → {0, 1}
verifies the validity of a signature Σ; we say that a signature Σ for a message
m is valid if and only if Ver(pk, Σ,m) = 1.

As is common in the literature, we treat (threshold) signatures as idealized ob-
jects: we require that for any given threshold t, signatures remain perfectly un-
forgeable for a message m, given t signature shares on m. In reality, one can
instantiate the scheme accordingly using any scheme which is unforgeable under
chosen-message attack and use a standard hybrid argument to achieve security
against a computationally-bounded adversary. Moreover, we assume that all par-
ties start the protocol after the setup phase has been completed, i.e., they agree
on a public key pk and all hold secret keys with the properties described above. In
our protocols, we assume the availability of an atomic primitive CoinFlip which,
on input k, returns a uniform value Coink (uniform in some range depending
on the protocol of choice). Moreover, the value of Coink remains uniform from
the view of the adversary until the first honest party has queried CoinFlip on
input k. Such a primitive can easily be constructed from a threshold signature

5

scheme with threshold t + 1 and unique signatures per message and public key
and assuming random oracle, such as the ones in [16]. To obtain a uniform value
on input k, parties simply sign the value k and send their so obtained signature
share to all parties. Parties can then hash the reconstructed signature on the
value k into a suitable domain to obtain a random value. Unforgeability of the
scheme ensures that until at least one honest party sends its share, the value of
Coink remains uniform from the adversary’s view. Uniqueness ensures that all
honest parties obtain the same coin.

For convenience, we measure the communication complexity in the number
of signatures exchanged between the parties. When each signature has λ bits,
multiplying the communication complexity by λ leads to the communication
complexity in bits.

2.3 Byzantine Agreement and Proxcensus

We first recall the definition of Byzantine agreement (BA).

Definition 1. A protocol among parties P where every party Pi inputs a value
xi ∈ D from some finite domain D, and, upon termination, every party Pi ∈ P
outputs a value yi ∈ D, achieves Byzantine agreement iff the following conditions
hold with overwhelming probability in κ:

Validity. If all honest parties Pi input the same value xi = x then they all
output yi = x.

Consistency. Any two honest parties Pi and Pj compute the same output,
yi = yj.

Termination. All honest parties eventually terminate the protocol.

Degraded versions of BA that require weaker conditions than Definition 1
were introduced in [8,11] as building-blocks for more powerful protocols. These
versions can both be seen as accompanying the output value with an additional
grade value from a small domain to express the degree of agreement achieved
after the protocol execution. In [7], this approach was generalized to arbitrary
finite domains along the following lines (yielding their definition of Proxcast, the
single-sender version of the following definition):

Definition 2. Let s ∈ N and G
△
= ⌊ s−1

2 ⌋. A protocol among parties P where
every party Pi ∈ P inputs a value xi ∈ D from some finite domain D, and, upon
termination, every party Pi ∈ P outputs a value yi ∈ D and a grade gi ∈ [0, G],
achieves s-slot Proxcensus, or Proxs iff the following conditions hold:

Validity. If all honest parties input the same value x ∈ D then every honest
party Pi outputs yi = x and gi = G.

Consistency. For any two honest parties Pi and Pj:
– |gi − gj | ≤ 1.
– min(gi, gj) ≥ 1 ⇒ yi = yj.
– if s = 2k (k ∈ N) and gi > 0 then yi = yj.

6

Termination. All honest parties eventually terminate the protocol.

Note that, for even (odd) s, a grade above 0 (1, respectively) implies agree-
ment detection with respect to the value y, i.e. all parties are guaranteed to
obtain the same value y.

Proxs (see Fig. 1) can be seen as a functionality wherein all parties output
on one of the s slots such that all honest parties end up in two adjacent slots,
and all honest parties decide on an extremal slot for their input value in case of
pre-agreement in case of pre-agreement on z′).

Fig. 1. Proxcensus for odd number of slots (left) and even (right). y indicates the
output value and g the output grade. Brace (a) depicts the consistency requirement,
which ensures that all honest parties end up in two adjacent slots. Brace (b) depicts
the validity condition in case honest parties have pre-agreement on a value z′.

In particular, the well-known special cases mentioned above are Prox3 known
as Crusader Agreement [8] and Prox5 known as graded consensus [11] (originally
defined in its single-sender broadcast version).

3 A Generalized Iteration Paradigm for Byzantine
Agreement

3.1 Revisiting the Feldman-Micali Construction

We give a high-level review of their fixed-round protocol variant with respect to
a binary input domain; assuming GC and the common coin as black boxes. Note
that, in contrast of GC (Prox5) for the expected-round case, Prox3 is sufficient
as a substitute for GC in the fixed-round case.

Each party Pi starts every iteration with their initial input value xi ∈ {0, 1},
and at the end of the iteration, overwrites xi for use during the next iteration.
Each protocol iteration consists of one execution of Prox3 on the inputs xi,
yielding outputs yi, gi ∈ {0, 1}; followed by a common coin c ∈ {0, 1}. At the
end of the iteration, a party Pi overwrites their input xi := yi if gi = 1 (keep
the output of Prox3), and x := c if gi = 0 (adopt the value of the coin). At the
end of the k protocol iterations, each party Pi outputs xi.

Validity: If all honest parties start an iteration (the protocol) with the same
bit xi ≡ b then, by the validity of Prox3, they all hold xi = yi ≡ b and gi ≡ 1 at
the end of the iteration (the protocol).

7

Consistency: An iteration where an honest party outputs gi = 1 and the coin
yields c = yi (or all honest parties output gi = 0) puts the honest parties
into agreement. This event happens with probability at least 1/2. Thus, by the
validity argument above, the protocol fails to achieve BA with a probability of
at most 2−k.

3.2 Generalization

We propose a generalization of the Feldman-Micali iteration paradigm and show
how it can be applied to achieve faster Byzantine agreement protocols. A gen-
eralized iteration with input x is composed of three components:

Expansion. An invocation to an s-slot Proxcensus: (z, g)← Proxs(x)
Coin-Flip. An invocation to a multivalued coin-flip: Coin← CoinFlip
Extraction. A function f that takes as input (z, g,Coin) and outputs a
value y, which is the output of the iteration.

Using this approach, we are able to substantially increase the probability of
agreement per iteration round. For simplicity, we focus on protocols using ideal
coins, meaning that the coin-flip component is an ideal 1-round multivalued
coin-toss, which returns a uniform value with probability 1. Such a coin can
be instantiated (tolerating a negligible failure probability) using unique thresh-
old signatures in the random-oracle model [16]. However, our techniques can
similarly be applied with other coins.

In the following, we show two binary fixed-round Byzantine agreement proto-
cols achieving a target error of 2−κ. The first tolerates t < n/3 corruptions, runs
in κ+1 rounds and uses a single coin-flip. The second protocol tolerates t < n/2
and runs in 3

2κ rounds. The protocols can be made multivalued with an addi-
tional cost of 2 (resp. 3) rounds for the case where t < n/3 (resp. t < n/2) [21].

3.3 Expansion

We show the two Proxcensus protocols used in the BA protocols. First, we show
a Proxcensus that tolerates up to t < n/3 corruptions and achieves 2r+1 slots in
r rounds. Second, we show a protocol for t < n/2 that achieves 2r− 1 slots in r
rounds. Further protocols for Proxcensus up to t < n/2 (with quadratic number
of slots w.r.t the number of rounds) and for proxcast up to t < n (with linear
number of slots) are shown in Section A and B for completeness. The Proxcensus
protocols for t < n/2 and proxcast for t < n are described using threshold
signatures. One can similarly describe the protocols using a PKI infrastructure
(by appending plain signatures instead of combining signature shares) at the
cost of a factor of n in the communication complexity.

Proxcensus for t < n/3 We show an expansion technique with unconditional
security, which allows to expand a Proxcensus with s slots to a Proxcensus with
2s−1 slots in one additional round. Applying the expansion technique iteratively,

8

we obtain a Proxcensus protocol with exponential slots in the number of rounds.
The general idea is to run the Proxcensus protocol with s slots, Proxs, and echo
the result. We know that all honest parties lie in two consecutive slots out of the
s slots after Proxs. This implies that, after the echo, there will be n − t values
within two consecutive slots s0 and s1. Then, two consecutive slots accumulating
n−t votes constitute two consecutive slots in the new range, where the particular
new slot is determined by which slot had n−2t values (in case of a tie, the upper
slot is chosen). The parties then output the highest possible slot. See Figure 2
for an illustrative example.

Fig. 2. Example of the Proxcensus expansion starting from Prox4 and Prox5, respec-
tively, for binary values. The expanded Proxcensus have 7 and 9 slots respectively.
Each row indicates the condition to achieve each output written on the side. The red
line indicates the region where it is required that n− t echoed pairs are received, and
the upper text “n− 2t” indicates that n− 2t are received on that specific slot.

Protocol Prox2s−1(Pi)

Let G := ⌊ s−1
2
⌋, and s := 2k+b for k > 0 and b ∈ {0, 1}. We describe the protocol

from the point of view of party Pi with input x.
1: Run Proxs(x). Let (z, h) denote the output value.
2: Send (z, h) to all parties. Denote as (zj , hj) the message received from party

Pj .
3: Output Determination:
4: yi := 0; gi := 0
5: S0 := {j : hj = 0}
6: Sz,g := {j : zj = z ∧ hj = g}

9

7: if b = 1 ∧ ∃z : |S0 ∪ Sz,1| ≥ n− t ∧ |Sz,1| ≥ n− 2t then
8: Set yi := z, gi := 1
9: end if

10: for g = b to G− 1 do
11: if ∃z : |Sz,g ∪ Sz,g+1| ≥ n− t ∧ |Sz,g+1| ≥ n− 2t then
12: Set yi := z, gi := 2g + 2− b
13: else if ∃z : |Sz,g ∪ Sz,g+1| ≥ n− t ∧ |Sz,g| ≥ n− 2t then
14: Set yi := z, gi := 2g + 1− b
15: end if
16: end for
17: if ∃z : |Sz,G| ≥ n− t then
18: Set yi := z, gi := 2G+ 1− b = ⌊ 2s−1

2
⌋

19: end if
20: Output (yi, gi)

Lemma 1. Let s ≥ 2. Protocol Prox2s−1 satisfies validity.

Proof. Suppose that all honest parties start with input v. Then, every honest
party obtains (v,G) as output of Proxs and send it to every party. As a result,
every honest party has |Sv,G| ≥ n − t and sets yi = v and the maximal grade
gi = 2G+ 1− b = ⌊ 2s−1

2 ⌋.

Lemma 2. Let s ≥ 2. Protocol Prox2s−1 satisfies consistency.

Proof. Let Pi be an honest party that outputs yi with the maximal grade gi
among all honest parties.

We prove that |gi − gj | ≤ 1. Consider the case where gi > 1, as otherwise it
is trivial. We divide three cases for Pi:

– ∃z : |Sz,g ∪ Sz,g+1| ≥ n− t ∧ |Sz,g| ≥ n− 2t, where gi = 2g + 1− b. If Sz,g+1

contains an honest party, since gi is maximal, all honest parties sent (z, g)
or (z, g+1) after Proxs. In this case, any honest Pj has gj = gi because gi is
maximal. If all parties in Sz,g+1 are corrupted, this implies that there are at
least n− 2t honest parties in Sz,g and all honest parties are in Sz,g−1 ∪Sz,g.
Hence, any honest Pj has |Sz,g−1 ∪ Sz,g| ≥ n − t ∧ |Sz,g| ≥ n − 2t, so
gj ≥ 2(g − 1) + 2− b = 2g − b ≥ gi − 1.

– ∃z : |Sz,g ∪ Sz,g+1| ≥ n− t ∧ |Sz,g+1| ≥ n− 2t, where gi = 2g + 2− b. Here,
any honest Pj also received |Sz,g ∪ Sz,g+1| ≥ n − t as gi is maximal, and
either |Sz,g| ≥ n− 2t or |Sz,g+1| ≥ n− 2t. Hence, gj ≥ 2g + 1− b = gi − 1.

– ∃z : |Sz,G| ≥ n − t. Here, any honest Pj received |Sz,G−1 ∪ Sz,G| ≥ n − t,
as honest parties obtain adjacent grades from Proxs, and moreover |Sz,G| ≥
n− 2t. Hence, gj ≥ 2(G− 1) + 2− b = 2G− b ≥ gi − 1.

We prove that min(gi, gj) ≥ 1 ⇒ yi = yj . Note that the above argument
also covers this statement if max(gi, gj) > 1. Hence, we consider the case where
gi = gj = 1. Towards a contradiction, assume that yi ̸= yj . We divide two cases,
depending on b:

10

b = 1: In this case, from Pi we have that : |S0 ∪ Syi,1| ≥ n− t∧ |Syi,1| ≥ n− 2t.
This means that there is an honest party P that had (yi, 1) as output of Proxs.
Symmetrically for Pj , there is also an honest party P ′ that had (yj , 1) as output
of Proxs. This immediately contradicts the consistency of Proxs.

b = 0: In this case, from Pi we have |Syi,0 ∪ Syi,1| ≥ n− t ∧ |Syi,0| ≥ n− 2t > t.
Symmetrically, from Pj we have |Syj ,0 ∪ Syj ,1| ≥ n − t ∧ |Syj ,0| ≥ n − 2t > t.
Since honest parties lie in adjacent slots, we know that all honest parties lie in
Syi,0 ∪ Syj ,0. Moreover, we know that there are n − 2t honest parties in Syi,0

and another n − 2t honest parties in Syj ,0. This leads to a contradiction, since
Syi,0∪Syi,1 contains n−t parties and in addition Syj ,0 contains n−2t additional
parties, which amount to a total of n− t+ n− 2t = 2n− 3t > n parties.

As a result, we obtain a Proxcensus protocol for the case of t < n/3 corrup-
tions that, given Proxs, in r additional rounds it achieves Prox2r(s−1)+1. Inter-
preting the parties’ input configuration as the base case Prox2 (setting gi ≡ 0),
we obtain the following corollary. The communication complexity follows from
inspection.

Corollary 1. Let t < n/3. For any r ≥ 0, Prox2r+1 achieves Proxcensus with
2r + 1 slots and perfect security. The protocol runs in r rounds and has O(rn2)
communication complexity.

Proxcensus for t < n/2 We introduce a Proxcensus protocol that runs in r
rounds and achieves 2r− 1 slots. The protocol is similar to the proxcast in Sec-
tion A (adapted to the agreement case): each party signs its input and sends it to
all parties. Then, each party tries to collect a threshold signature on a value, and
upon receiving such a threshold signature, it forwards it to all parties. However,
parties now send in addition an extra message ω at the beginning of round two
indicating whether a threshold signature Σ was reconstructed in round one. At
the end of round two, if n − t such ω are received, one computes a threshold
signature Ω that proves that there was an honest party which reconstructed Σ.
By propagating Ω, we are able to increase the number of slots to 2r − 1. The
way to determine the output and grade is different: a party Pi sets its output to
(y, g) if it has a threshold signature Σ on y at round r − g, does not have any
threshold signature on any y′ ̸= y by round g + 1, and obtained the proof Ω at
round r − g + 1. See Table 1 for an example.

1|0 ?|0 ?|? 0|? 0|1
Ω 1|0 1|0 ?|? 0|1 0|1 Ω

1|0 Ω 1|? ?|? ?|1 Ω 0|1
(v,g): (0,2) (0,1) (⊥,0) (1,1) (1,2)

Table 1. Conditions for each slot in Prox5 for binary values. Row i indicates the
condition to be satisfied at the end of round i. b0|b1, b0, b1 ∈ {0, 1}, indicates whether
a threshold signature Σ on 0 or 1 was received, and ? indicates that anything could
happen. Ω indicates that a proof Ω was received.

11

Protocol Prox2r−1(P)

Setup: Parties make use of a unique (n− t)-out-n threshold signature scheme.
Party P starts with input v. Let Ik ⊂ [n] denote the parties that send
correctly formed messages m in round k, i.e., where m is of the form
{(x,Σ)|Verify(pk, Σ, x) = 1}. Initialize Ω2 := ⊥.
1: Round 1:
2: σ ← SignShare(sk, v).
3: Send (v, σ) to all parties. Denote as (v1i , σ

1
i) the message received from party

Pi.
4: Set S1 := {(v,Σ)|∃k1, ..., kn−t : Σ1 ← Combine(σ1

k1
, . . . , σ1

kn−t
) ∧

Ver(pk,Σ1, v) = 1}.
5: if S1

i = {(v,Σ)} then
6: ω ← SignShare(sk, v)
7: end if
8: Round 2:
9: Send S1 and ω to all parties. Denote as S1

i , ωi the values received from party
Pi

10: Set S2 :=
∪

i∈I2
S1
i

11: if ∃k1, . . . , kn−t : ∀j : VerShare(pk, ωkj , v) = 1 then
12: Ω2 ← Combine(ωk1 , . . . , ωkn−t)
13: end if
14: Rounds j = 3 to s:
15: Send Sj−1, Ωj−1 to all parties. Denote as Sj−1

i , Ωj−1
i the values received from

party Pi

16: Set Sj :=
∪

i∈Ij
Sj−1
i ; Ωj :=

∪
i∈Ij

Ωj−1
i

17: Output Determination:
18: y := 0; g := 0
19: for j = 1 to s− 1 do
20: if ∃z, j : (z, ·) ∈ Ss−j ∧ ∃Ω ∈ Ωs−j+1 : Verify(pk,Ω, z) = 1 ∧ ∀z′ ̸=

z : (z′, ·) /∈ Sj+1 then
21: Set y := z, g := j
22: end if
23: end for
24: Output (y, g)

Lemma 3. Let t < n/2 and r ≥ 3. Assuming unique threshold signatures,
Prox2r−1 achieves a (2r− 1)-slot Proxcensus in r rounds and O(rn2) communi-
cation complexity.

We prove validity and consistency in the following lemmas.

Lemma 4. Let r ≥ 3. Protocol Prox2r−1 satisfies validity.

Proof. Suppose that all honest parties start with input v. Observe that, there
is no threshold signature computed on any value v′ ̸= v. In the first round, all
honest parties send (v, σ0) and so all honest parties hold S1 = {(v,Σ)} after
the first round. Now, all honest parties compute a signature share ω on v and

12

send it to all parties, together with S1 in the second round. Therefore, honest
parties will all hold S2 = {(v,Σ)} in round 2 and moreover are able to compute a
threshold signature Ω2 in that round. In each following round j = 3 to r, honest
parties all send Sj−1 and Ω, and so Sj = {(v,Σ)}. Therefore, all honest parties
hold a threshold signature Ω2 on v (that was computed in round two) and for all
honest parties, S1 = S2 = · · · = Sr = {(v, ·)}. Thus, all honest parties output v,
as required.

Lemma 5. Let r ≥ 3. Protocol Prox2r−1 satisfies consistency.

Proof. Let Pi be the honest party that outputs yi the maximal grade gi among
all honest parties.

We prove that |gi− gj | ≤ 1. Consider the case where gi > 1, as otherwise the
statement is trivial. From Pi, we know:

– (yi, ·) ∈ Sr−gi . This implies that any honest Pj has (yi, ·) ∈ Sr−gi+1.
– There is Ω ∈ Ωr−gi+1 such that Verify(pk,Ω, yi) = 1. This implies that

any honest Pj received Ω and hence has stored Ω ∈ Ωr−gi+2.
– ∀z′ ̸= yi : (z

′, ·) /∈ Sgi+1. This implies that any honest Pj has ∀z′ ̸= yi : (z
′, ·) /∈

Sgi .

With the above facts, we see that any Pj has grade gj ≥ gi − 1.
Now we prove that min(gi, gj) ≥ 1 ⇒ yi = yj . Toward contradiction, assume
that yi ̸= yj . Since gi ≥ 1 (resp. gj ≥ 1), Pi (resp. Pj) obtained a threshold
signature Ω on yi (resp. yj) at round r − gi + 1 (resp. r − gj + 1). This implies
that there must be an honest party P that has sent a signature share ω in round
2. This implies, that for P , yi ∈ S1, which implies that also yi in S2 for Pj ,
which contradicts the requirement that ∀z′ ̸= yj : (z

′, ·) /∈ S2.

3.4 Extraction

The extraction function can be interpreted pictorially as a cut that splits the
slots in Proxcensus at the position indicated by the coin into two sides. If a party
is placed at a position on the right (resp. left) side of the coin, it will decide on
the output value 1 (resp. 0) (see Figure 3).

More formally, let s be the number of slots in Proxcensus, G := ⌊ s−1
2 ⌋ be

the maximal grade, and r := (s mod 2) be the remainder modulo 2 of s. The
extraction function takes as input a binary value b ∈ {0, 1}, a grade g ∈ [0, G]
and a coin value c ∈ [1, s], and it outputs a binary value f(b, g, c) ∈ {0, 1},
defined as follows:

f(b, g, c) =

{
1, if (b = 1 ∧ c ≤ g +G+ 1− r) ∨ (b = 0 ∧ c ≤ G− g)

0, otherwise

13

Fig. 3. Extraction function applied to Prox10. The coin takes values from [1, 9]. If the
slot (value b ∈ {0, 1} and grade g ∈ {0, 4}) lies in the left (resp. right) side of the coin
value c, the function f(b, g, c) outputs the value y = 0 (resp. y = 1).

3.5 Efficient Fixed κ-Round Byzantine Agreement

We put the pieces together and show an efficient binary BA protocol. Using
standard techniques [21], one can achieve a multivalued Byzantine agreement
protocol with an additional cost of 2 (resp. 3) rounds when t < n/3 (resp.
t < n/2).

The idea is to run the expansion component with one of the Proxcensus
protocols Proxs from Section 3.3, followed by a (s− 1)-valued coin-flip, and the
extraction function described in Section 3.4.

It is not hard to see that our approach allows to have an error per-iteration
which is inversely proportional to the number of slots in Proxcensus. More pre-
cisely, since honest parties lie in two adjacent slots after the invocation of Proxs,
there is only one possible coin value (out of s − 1) that lead to parties having
different inputs.

The protocol is described from the point of view of party Pi and for a general
Proxcensus protocol with s slots.

Protocol Πs
iter(Pi)

Let G := ⌊ s−1
2
⌋, and s be a positive number. Let f be the extraction function

from Section 3.4. Let b denote the input bit.
1: (b′, g)← Proxs(b)
2: c← CoinFlip // CoinFlip returns a uniform value in [1, s− 1]
3: Output f(b′, g, c)

Theorem 1. Let t < n. Πs
iter achieves binary Byzantine Agreement against an

adaptive, strongly rushing adversary with probability 1− 1
s−1 . The protocol makes

a single invocation to Proxs and to a (s− 1)-valued ideal Coin-Flip protocol.

Proof. Validity. If all honest parties Pi input the same value b, then b′ = b and
g = G by validity of Proxs. Parties then output b because c ∈ [1, s − 1]. More
concretely, if b′ = 1, then c ≤ 2G+ 1− j = s− 1, so all parties output 1. And if
b′ = 0, then all parties output 0 because c > 0.

14

Consistency. Consistency of Proxs guarantees that any two honest parties Pi

and Pj lie on two consecutive slots. Parties only output different bits if the coin
fails or the coin splits the two slots into different sides. Conversely, if the coin
does not split the parties into different sides (which happens with probability
1

s−1), then parties reach agreement. More concretely, we consider the following
cases where honest parties lie on two consecutive slots (if all honest parties lie
on the same slot, agreement is reached regardless of the coin value):

– s even: If there are honest parties that obtain (0, 0) and (1, 0), respectively,
as output of Proxs, then parties output different bits only if c = G + 1.
Otherwise, assume that there are honest parties that output (b′, g − 1) and
(b′, g), 1 ≤ g ≤ G, respectively. If b′ = 1 (resp. b′ = 0), then parties output
different bits only if c = g +G+ 1 (resp. c = G− g + 1).

– s odd: We only need to consider the case where honest parties output (b′, g−
1) and (b′, g), 1 ≤ g ≤ G, respectively, since we assume that not all honest
parties lie on the same slot. If b′ = 1 (resp. b′ = 0), then parties output
different bits only if c = g +G (resp. c = G− g + 1).

Termination. Obvious.

We obtain the following corollary:

Corollary 2. Assuming unique threshold signatures and a 1-round ideal Coin-
Flip protocol, there are protocols that achieve binary Byzantine Agreement with
probability 1−2−κ secure against a strongly rushing adaptive adversary corrupting
up to t parties, achieving the following:

– For t < n/3, it runs in κ + 1 rounds and has O(κn2) communication com-
plexity. The protocol makes a single multivalued coin-flip invocation.

– For t < n/2, it runs in 3
2κ rounds, and has O(κn2) communication complex-

ity.

Proof. Case t < n/3: The statement follows from Theorem 1 and the use of
a 1-round 1-fair ideal Coin-Flip protocol, setting s = 2κ + 1, and using the
Proxcensus protocol that achieves s slots in κ rounds and O(n2) communication
complexity from Corollary 1.
Case t < n/2: Security follows from Theorem 1 and the use of a 1-round 1-fair
ideal Coin-Flip protocol, setting the number of slots to s = 5 and running the
protocol Πs

iter sequentially κ
2 times.6 Each invocation to Πs

iter takes 3 rounds,
where we run the 3-round Prox5 protocol from Section 3.3, and the coin-flip in
parallel to the third round of Prox5. Note that after round 2 of Prox5, the slot-
pair where the honest parties lie is already fixed. The probability of not reaching
agreement in each invocation to Πs

iter is 1
4 = 2−2. Running the protocol se-

quentially κ
2 times therefore allows to achieve agreement except with probability

6 One can check that other choices of number of slots will not lead to efficiency im-
provements.

15

2−2·κ2 = 2−κ. The total number of rounds is 3
2κ. The claim on communication

complexity is inherited from the communication complexity of the Proxcensus
sub-protocol from Section 3.3.

Efficiency comparison with previous protocols. We give a brief compari-
son with the most efficient, fixed-round protocol that we are aware of in the n/3
and n/2 regime, assuming an ideal 1-round coin flip. To the best of our knowl-
edge, these are the fixed-round variant of the original Feldman-Micali (FM) [11]
construction and the protocol by Micali and Vaikuntanathan (MV) [18]. The bi-
nary versions of these protocols both require 2κ rounds to achieve a termination
error of 2−κ.

Our protocol for t < n/3 requires only κ + 1 rounds.This means that we
achieve the same error probability within roughly half the number of rounds,
with respect to the FM variant.

Our protocol for t < n/2 regime requires 3
2κ rounds, which gives an im-

provement of about 1/4 in the round complexity. Further note that we save a
factor of n in the communication complexity with respect to MV, which incurs
a communication complexity of O(κn3), even assuming threshold signatures.

All protocols can be extended to arbitrary finite domains with an additional
cost of 2 (resp. 3) rounds when t < n/3 (resp. t < n/2) by applying the con-
struction of Turpin and Coan [21].

Finally, in context of MV and the Turpin-Coan construction, we observe an
additional advantage of carefully adjusting the slot range of Proxcensus. In their
original model (standard signatures, player replaceability), the communication
complexity of the MV protocol (for t < n/2) can be reduced by a factor of n
by substituting their 3-round {0, 1, 2}-gradecast protocol by 3-round Prox4s, the
single-sender version of Prox4—see Appendix A.

4 Acknowledgements

The authors would like to thank Ran Cohen for valuable comments on an early
version of this paper.

References

1. Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling Ren. Syn-
chronous Byzantine agreement with expected o(1) rounds, expected o(n2) commu-
nication, and optimal resilience. In International Conference on Financial Cryp-
tography and Data Security, pages 320–334. Springer, 2019.

2. Michael Ben-Or. Another advantage of free choice (extended abstract) completely
asynchronous agreement protocols. In Proceedings of the second annual ACM
symposium on Principles of distributed computing, pages 27–30, 1983.

3. Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance. In OSDI,
volume 99, pages 173–186, 1999.

4. Jing Chen and Silvio Micali. Algorand. arXiv preprint arXiv:1607.01341, 2016.

16

5. Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed ledger.
Theoretical Computer Science, 777:155–183, 2019.

6. Ran Cohen, Sandro Coretti, Juan A. Garay, and Vassilis Zikas. Probabilistic ter-
mination and composability of cryptographic protocols. In Matthew Robshaw and
Jonathan Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages
240–269. Springer, Heidelberg, August 2016.

7. Jeffrey Considine, Matthias Fitzi, Matthew K. Franklin, Leonid A. Levin, Ueli M.
Maurer, and David Metcalf. Byzantine agreement given partial broadcast. Journal
of Cryptology, 18(3):191–217, July 2005.

8. Danny Dolev. The Byzantine generals strike again. J. Algorithms, 3(1):14–30,
1982.

9. Danny Dolev and H. Raymond Strong. Authenticated algorithms for Byzantine
agreement. SIAM Journal on Computing, 12(4):656–666, 1983.

10. Cynthia Dwork and Yoram Moses. Knowledge and common knowledge in a Byzan-
tine environment: crash failures. Information and Computation, 88(2):156–186,
1990.

11. Pesech Feldman and Silvio Micali. An optimal probabilistic protocol for syn-
chronous Byzantine agreement. SIAM Journal on Computing, 26(4):873–933, 1997.

12. Matthias Fitzi and Juan A. Garay. Efficient player-optimal protocols for strong
and differential consensus. In Elizabeth Borowsky and Sergio Rajsbaum, editors,
22nd ACM PODC, pages 211–220. ACM, July 2003.

13. Juan A. Garay, Jonathan Katz, Chiu-Yuen Koo, and Rafail Ostrovsky. Round
complexity of authenticated broadcast with a dishonest majority. In 48th FOCS,
pages 658–668. IEEE Computer Society Press, October 2007.

14. Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for
byzantine agreement. In Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of
LNCS, pages 445–462. Springer, Heidelberg, August 2006.

15. Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals
problem. ACM Transactions on Programming Languages and Systems, 4(3):382–
401, 1982.

16. Benoît Libert, Marc Joye, and Moti Yung. Born and raised distributively: fully dis-
tributed non-interactive adaptively-secure threshold signatures with short shares.
In Magnús M. Halldórsson and Shlomi Dolev, editors, 33rd ACM PODC, pages
303–312. ACM, July 2014.

17. Yehuda Lindell, Anna Lysyanskaya, and Tal Rabin. Sequential composition of
protocols without simultaneous termination. In Aleta Ricciardi, editor, 21st ACM
PODC, pages 203–212. ACM, July 2002.

18. Silvio Micali and Vinod Vaikuntanathan. Optimal and player-replaceable consen-
sus with an honest majority. 2017.

19. Yoram Moses and Mark R Tuttle. Programming simultaneous actions using com-
mon knowledge. Algorithmica, 3(1):121–169, 1988.

20. Michael O. Rabin. Randomized byzantine generals. In 24th FOCS, pages 403–409.
IEEE Computer Society Press, November 1983.

21. Russell Turpin and Brian A Coan. Extending binary Byzantine agreement to
multivalued Byzantine agreement. Information Processing Letters, 18(2):73–76,
1984.

22. Oliver von Rotz. Reduktion von informationstheoretisch sicheren konsistenzprim-
itiven. Master’s thesis, ETH Zürich, 2000.

17

A Efficient Generic Proxcast for t < n

In [13], under the notion M-gradecast, it was demonstrated how to achieve s-
round s-slot Proxcast for odd s secure against t < n. We extend their result to
achieving (s − 1)-round s-slot Proxcast for general s ≥ 2, secure against t < n,
using essentially the same construction.

Definition 3. Let s ∈ N and G
△
= ⌊ s−1

2 ⌋. A protocol among parties P where a
distinguished dealer (or sender) Pd ∈ P inputs a value xd ∈ D from some finite
domain D, and, upon termination, every party Pi ∈ P outputs a value yi ∈ D
and a grade gi ∈ [0, G], achieves s-slot proxcast, or Proxds (or Proxs, in generic
use) if and only if the following conditions hold:

Validity. If the dealer Pd is honest then every honest party Pi outputs yi = xd

and gj = G.
Consistency. For any two honest parties Pi and Pj:

– |gi − gj | ≤ 1.
– min(gi, gj) ≥ 1 ⇒ yi = yj.
– if s = 2k (k ∈ N) and gi > 0 then yi = yj.

Proxcensus

Let s = 2k+ b, b ∈ {0, 1}. The protocol is similar to Dolev-Strong broadcast
with the difference that parties do not add their signatures. In the first round,
the dealer signs his input and sends the signed message to every other player. For
the next k − 1 rounds, the parties collect all validating message/signature pairs
originating from the dealer. If, during any one of these rounds, a “new” valid
message/signature pair is received then this pair is sent to all parties (but only
up to the second time as the existence of two contradicting signed messages by
the dealer is sufficient to detect the dealer’s misbehavior). At the end, a player
accepts a message with grade g ∈ [0, G] if, at the end of any 2g+1−b consecutive
rounds, the same unique message/signature pair from the dealer was seen; and
on grade g = 0, otherwise.

Protocol ΠProxcast(Pd, Pi)

Setup: Parties know the dealer’s public key pk, and the dealer has the secret key
sk as well.
Let G := ⌊ s−1

2
⌋, and s := 2k + b for b ∈ {0, 1}.

The dealer Pd starts with input x.
1: Round 1: Dealer Pd sends (x, σ), σ = Signsk(x), to all Pj . Each party Pi sets

S1
i = {(z, σ) | Verpk(z, σ) = 1}.

2: for r = 2 to s− 1 do
3: Round r: Party Pi sends Sr−1

i . Receive Sr−1
j from each party Pj , and let

Sr
i =

∪
j S

r−1
j .

4: end for
5: yi := 0; gi := 0;
6: for g = 0 to G do
7: if ∃z, r : Sr

i = · · · = Sr+2g−b
i = {(z, σ)} then

18

8: Set yi := z, gi = g.
9: end if

10: end for
11: Pi outputs (yi, gi).

Lemma 6. Let t < n. Assuming that the dealer has a public-key setup, ΠProxcast

achieves a s-slot Proxcensus in s− 1 rounds and O(sn2) message complexity.

Proof. Validity. If the dealer is honest, then each honest party Pi collects the
same set Sr

i = {(x, σ)} at the end of every round r.
Consistency. The cases s ≤ 3 are trivial — thus consider s > 3.

– |gi − gj | ≤ 1: Consider a party Pi with a maximal grade gi > 1 among
all honest parties (the case gi ≤ 1 is trivial). This means, there are L =

2g + 1− b > 2 consecutive rounds such that Sr
i = · · · = Sr+2g−b

i = {(z, σ)}.
We claim that every honest party Pj sees at least L − 2 > 0 such rounds,
namely rounds r + 1, . . . , r + 2g − b− 1:
• As Pi sees a unique (z, σ)-pair at round r+ 2g − b, Pj cannot have seen

a conflicting pair in any round before as, otherwise, he would have sent
it to Pi.

• As Pi sees an (z, σ)-pair at round r, Pj sees it at round r + 1 as Pi sent
it to Pj .

– min(gi, gj) ≥ 1 ⇒ yi = yj : Assume that gi > 0 for an honest party Pi. This
implies a sequence of at least two rounds such that Sr

i = Sr+1
i = {(z, σ)}.

As Sr
j ⊆ Sr+1

i , and the sets grow monotonically, it follows that there is no
round r′ such that Sr′

j = {(z′, σ′)} with z′ ̸= z. Hence, yj = yi or gj = 0.
– If s = 2k (k ∈ N) and gi > 0 then yi = yj : Assume an honest party Pi with

gi = 1 implying that there are L = 2g + 1 − b = 2g + 1 ≥ 3 consecutive
rounds such that Sr

i = · · · = Sr+2g−b
i = {(z, σ)}. Thus, an honest party Pj

sees at least one such round, and yj = yi due to the monotone growth of the
sets.

A player-replaceable variant for t < n/2. The above proxcast protocol for
t < n relies on the fact that a player seeing a signature relays it during the next
round in order to make it public. With player replacement, this is not guaranteed
anymore since the participating player set is now different during every round.
However, this can be compensated for by lowering the threshold to t < n/2, and
strengthening the grade-determination condition

∃z, r : Sr
i = · · · = Sr+2g−b

i = {(z, σ)}

with the additional requirement that each such Sr
i (r > 1) must have been

forwarded by at least n − t parties during round r; implicitly guaranteeing the
global forwarding of such a signature already during the same round as at least
one of these n− t forwarding parties must be honest.

19

B Quadratic Proxcensus for t < n/2

We introduce an improved version (for large r) of Proxcensus that runs in r
rounds and achieves 3 + (r− 3)(r− 2) slots. The protocol develops on the ideas
from the previous Proxcensus protocols in Section 3.3, with some changes: in-
stead of forwarding a signature only after the first round and propagating it,
parties repeatedly create and send an additional signature ωj at each round
j > 1 indicating whether a threshold signature was reconstructed in the previ-
ous round. More precisely, the protocol proceeds as follows. Each party Pi sends
a signature share at round 1 on their input value. If Pi collects n − t signature
shares on the same value v, Pi forms a threshold signature Ω1 for v at the end of
round 1. At round 2, if Ω1 was formed only for v, Pi echoes Ω1 and also sends a
signature share ω2 indicating that Ω1 was formed only for v. If n− t such ω2 are
received at the end of round 2, Pi computes a threshold signature Ω2. In general,
Pi sends (resp. echoes) each formed (resp. received) threshold signature, and in
addition sends a signature share ωj for v at round j if Pi formed a threshold
signature Ωj−1 for v at the end of round j − 1, and was not able to form any
threshold signature Ωk, k ∈ [1, j − 1], for any value v′ ̸= v.

By propagating all these additional signatures ωj , we are able to increase the
number of slots to 3 + (r − 3)(r − 2), for r ≥ 3. At the end of the protocol, Pi

determines the output and grade checking a sequence of condition predicates. Pi

evaluates a sequence of predicates, each indicating whether Pi received a certain
threshold signature at a specific round. We denote Conditiony,g,j the predicate
checking that a certain threshold signature needs to be formed or received at
round j to output a value y with grade g. Moreover, we denote Conditiony,g the
set of all conditions that need to be satisfied to output value y with grade g,
over all rounds.

The condition predicates are defined inductively, starting from the highest
grade (see Table 2 for a concrete example):

– Let G = 1 + (j−3)(j−2)
2 . Then, Conditiony,G,j indicates whether Pi formed

the threshold signature Ωj for value y at round j.
– Conditiony,g,j , 0 < g < G, is inductively derived as follows: Pi formed or

received a threshold signature Σ for value y by the end of round j, where
Σ = Ωj−1 if there is a predicate Conditiony,g+1,j′ , j′ > r, indicating that Ωj

is obtained for value y by round j′. Otherwise, Σ is the threshold signature
that is obtained according to Conditiony,g+1,j−1.

– Conditiony,0,j is always true.

Intuitively, if an honest party satisfies Conditiony,g, g ≥ 1, then every honest
party satisfies Conditiony,g−1 for two reasons: 1) honest parties forward each
threshold signature that they receive or form, and 2) the existence of a threshold
signature Ωj , j > 1, implies that an honest party Pk sent ωj at the beginning
of round j, meaning that Pk obtained Ωj−1 at the end of round j − 1. This Pk

therefore sent Ωj−1 at the beginning of round j, and every honest party received
Ωj−1 by the end of round j.

20

Moreover, the conditions are designed such that any Conditiony,g, g ≥ 1,
requires that the threshold signature Ω3 is obtained in some round. This guar-
antees that the conditions Conditiony,1 and Conditiony′,1 are mutually disjoint,
for y ̸= y′. To see this, suppose Pi outputs (y, 1), and thereby received Ω3 at
the last round. Note that this condition implies that there is an honest Pk that
obtained Ω2 for y and did not receive Ω1 for any other value y′ by round 2. This
implies that no honest party received Ω1 for y′ by round 1, and therefore no
honest party can output (y′, 1).

Ω1 ? ? ? ? ? ? ? ? ? ? ? ? ? Ω1

Ω2 Ω1 Ω1 Ω1 Ω1 Ω1 Ω1 ? Ω1 Ω1 Ω1 Ω1 Ω1 Ω1 Ω2

Ω3 Ω2 Ω2 Ω2 Ω2 Ω2 Ω2 ? Ω2 Ω2 Ω2 Ω2 Ω2 Ω2 Ω3

Ω4 Ω3 Ω3 Ω3 Ω3 Ω2 Ω2 ? Ω2 Ω2 Ω3 Ω3 Ω3 Ω3 Ω4

Ω5 Ω4 Ω4 Ω3 Ω3 Ω3 Ω2 ? Ω2 Ω3 Ω3 Ω3 Ω4 Ω4 Ω5

Ω6 Ω5 Ω4 Ω4 Ω3 Ω3 Ω3 ? Ω3 Ω3 Ω3 Ω4 Ω4 Ω5 Ω6

(v,g): (0,7) (0,6) (0,5) (0,4) (0,3) (0,2) (0,1) (⊥,0) (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7)
Table 2. Conditions for each slot in Prox15 for binary values. Row i indicates the
condition to be satisfied at the end of round i. To output the pair (v, g), all conditions
in the column for that pair need to be satisfied, where Ωr at row i indicates that
a threshold signature Ωr was received at round i, and ? indicates that there is no
requirement. Note that Ω3 is required at some position for every grade g > 0.

Protocol Prox3+(r−3)(r−2)(Pi)

Setup: Parties make use of a unique (n− t)-out-n threshold signature scheme.
Party Pi starts with input v.
1: Round 1:
2: σ ← SignShare(sk, v).
3: Send (v, σ) to all parties. Denote as (vi, σi) the message received from party

Pi.
4: Set S1 := {(v,Σ)|∃k1, ..., kn−t : Σ ← Combine(σk1 , . . . , σkn−t) ∧

Ver(pk,Σ, v) = 1}.
5: Set T := ∅;
6: Rounds j = 2 to r:
7: if Sj−1 = {(v,Ωj−1)} ∧ ∀v′ ̸= v ∀ℓ < j (v′, Ωℓ) /∈ T then
8: ωj ← SignShare(sk, (v, j − 1))
9: end if

10: Forward all new pairs of value and threshold signature received or formed
in the previous round. Moreover, if a signature share ωj was computed on a
value v, also send (v, ωj) to all parties. Denote as (vi, ωi

j) the message received
from party Pi.

11: Set Sj := {(v,Σ)|∃k1, ..., kn−t : Σ ← Combine(ωk1
j , . . . , ω

kn−t

j) ∧
Ver(pk,Σ, v) = 1}.

12: Add to T all newly formed or received threshold signature schemes (with the
corresponding value).

13: Output Determination:

21

14: Output (y, g) with the highest grade such that Conditiony,g is satisfied.

Lemma 7. Let t < n/2 and r ≥ 3. Assuming unique threshold signatures,
Prox3+(r−3)(r−2) achieves a (3 + (r− 3)(r− 2))-slot Proxcensus in r rounds and
O(rn2) message complexity.

We prove validity and consistency in the following lemmas.

Lemma 8. Let r ≥ 3. Protocol Prox3+(r−3)(r−2) satisfies validity.

Proof. Suppose that all honest parties start with input v. Thus, all honest parties
send a signature share on v in the first round, and so all honest parties hold a
S1 = {v,Ω1} after the first round. Note that since no honest party ever signs a
signature share on any other value v′ ̸= v, at each round j ∈ [2, r], all honest
parties compute a signature share ωj on v and send it to all parties, and all
honest parties compute a threshold signature Ωj by the end of round j. Thus,
Conditiony,G is satisfied and all honest parties output v.

Lemma 9. Let r ≥ 3. Protocol Prox3+(r−3)(r−2) satisfies consistency.

Proof. We first prove that any two honest parties Pi and Pℓ output grades gi
and gℓ with |gi − gℓ| ≤ 1.

Let Pi be the honest party that outputs the maximal grade gi among all
honest parties. If gi ≥ 1, then trivially |gi − gℓ| ≤ 1. Hence, suppose that Pi

outputs (v, gi), gi > 1. This implies that Pi satisfies Conditiony,gi . We show that
any honest party Pj satisfies Conditiony,gi−1. Let j ∈ [2, r]. We show that Pℓ

satisfies Conditiony,gi−1,j . There are two cases: 1) Pi obtained Ωj at some round
j′ > j, then there is an honest party Pk that sent ωj at the beginning of round
j. This means that Pk obtained Ωj−1 at the end of round j − 1, and therefore
sent Ωj−1 at the beginning of round j, and every honest party received Ωj−1

by the end of round j; 2) Pi did not obtain such Ωj , in which case every honest
party satisfies Conditiony,gi−1,j by the fact that Pi echoes all formed threshold
signatures.

Now we prove that if gi ≥ 1 and gℓ ≥ 1, then the parties output the same
value, i.e. yi = yℓ.

This follows from the fact that the conditions are designed in such a way that
any condition Conditiony,g, g ≥ 1, requires that the threshold signature Ω3 is
obtained in some round for the corresponding value. That is, Conditionyi,gi (resp.
Conditionyℓ,gℓ) requires obtaining Ω3 for value yi (resp. yℓ). We show that both
conditions cannot be simultaneously satisfied. From Conditionyi,gi , we know that
there is an honest Pk that obtained Ω2 for yi and did not receive Ω1 for yℓ by
round 2. This implies that no honest party received Ω1 for yℓ by round 1, and
therefore no honest party created a signature share ω2 for yjℓ. As a result, Ω2

(and hence also Ω3) cannot be computed for yℓ, and no honest party can satisfy
Conditionyℓ,gℓ .

22

	A New Way to Achieve Round-Efficient Byzantine Agreement

