Probabilistic Dynamic Input Output Automata

Pierre Civit
Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, F-75005 Paris, France
pierre.civit@lip6.fr

Maria Potop-Butucaru
Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, F-75005 Paris, France
maria.potop-butucaru@lip6.fr

Abstract

We present probabilistic dynamic I/O automata, a framework to model dynamic probabilistic systems. Our work extends dynamic I/O Automata formalism [1] to probabilistic setting. The original dynamic I/O Automata formalism included operators for parallel composition, action hiding, action renaming, automaton creation, and behavioral sub-typing by means of trace inclusion. They can model mobility by using signature modification. They are also hierarchical: a dynamically changing system of interacting automata is itself modeled as a single automaton. Our work extends to probabilistic settings all these features. Furthermore, we prove necessary and sufficient conditions to obtain the implementation monotonicity with respect to automata creation and destruction. Our work lays down the premises for extending composable secure-emulation [3] to dynamic settings, an important tool towards the formal verification of protocols combining probabilistic distributed systems and cryptography in dynamic settings (e.g. blockchains, secure distributed computation, cybersecurity distributed protocols etc).

2012 ACM Subject Classification C.2.4 Distributed Systems

Keywords and phrases distributed dynamic systems, probabilistic automata, foundations

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

Distributed computing area faces today important challenges coming from modern applications such as cryptocurrencies and blockchains which have a tremendous impact in our society. Blockchains are an evolved form of the distributed computing concept of replicated state machine, in which multiple agents see the evolution of a state machine in a consistent form. At the core of both mechanisms there are distributed computing fundamental elements (e.g. communication primitives and semantics, consensus algorithms, and consistency models) and also sophisticated cryptographic tools. Recently, [5] stated that despite the tremendous interest about blockchains and distributed ledgers, no formal abstraction of these objects has been proposed. In particular it was stated that there is a need for the formalization of the distributed systems that are at the heart of most cryptocurrency implementations, and leverage the decades of experience in the distributed computing community in formal specification when designing and proving various properties of such systems. Therefore, an extremely important aspect of blockchain foundations is a proper model for the entities involved and their potential behavior. The formalisation of blockchain area has to combine models of underlying distributed and cryptographic building blocks under the same hood.
The formalisation of distributed systems has been pioneered by Lynch and Tuttle [6]. They proposed the formalism of Input/Output Automata to model deterministic distributed system. Later, this formalism is extended with Markov decision processes [7] to give Probabilistic Input/Output Automata [9] in order to model randomized distributed systems. In this model each process in the system is a automaton with probabilistic transitions. The probabilistic protocol is the parallel composition of the automata modeling each participant. This framework has been further extended in [2] to task-structured probabilistic Input/Output automata specifically designed for the analysis of cryptographic protocols. Task-structured probabilistic Input/Output automata are Probabilistic Input/Output automata extended with tasks structures that are equivalence classes on the set of actions. They define the parallel composition for this type of automata. Inspired by the literature in security area they also define the notion of implementation. Informally, the implementation of a Task-structured probabilistic Input/Output automata should look "similar" to the specification whatever the external environment of execution. Furthermore, they provide compositional results for the implementation relation. Even thought the formalism proposed in [2] has been already used in the verification of various cryptographic protocols this formalism does not capture the dynamicity in blockchains systems such as Bitcoin or Ethereum where the set of participants dynamically changes. Moreover, this formalism does not cover blockchain systems where subchains can be created or destroyed at run time [8].

Interestingly, the modelisation of dynamic behavior in distributed systems is an issue that has been addressed even before the born of blockchain systems. The increase of dynamic behavior in various distributed applications such as mobile agents and robots motivated the Dynamic Input Output Automata formalism introduced in [1]. This formalisms extends the Input/Output Automata formalism with the ability to change their signature dynamically (i.e. the set of actions in which the automaton can participate) and to create other I/O automata or destroy existing I/O automata. The formalism introduced in [1] does not cover the case of probabilistic distributed systems and therefore cannot be used in the verification of blockchains such as Algorand [4].

Our contribution. In order to cope with dynamicity and probabilistic nature of blockchain systems we propose an extension of the formalisms introduced in [2] and [1]. Our extension use a refined definition of probabilistic configuration automata in order to cope with dynamic actions. The main result of our formalism is as follows: the implementation of probabilistic configuration automata is monotonic to automata creation and destruction. Our work is an intermediate step before defining composable secure-emulation [3] in dynamic settings.

Paper organization. The paper is organized as follow. Section 2 is dedicated to a brief introduction of the notion of probabilistic measure an recalls notations used in defining Signature I/O automata of [1]. Section 3 builds on the frameworks proposed in [1] and [2] in order to lay down the preliminaries of our formalism. More specifically, we introduce the definitions of probabilistic signed I/O automata and define their composition and implementation. In Section 4 we extend the definition of configuration automata proposed in [1] to probabilistic configuration automata then we define the composition of probabilistic configuration automata and prove its closeness. The key result of our formalisation, the monotonicity of PSIOA implementations with respect to creation and destruction, is presented in Section 5. The Appendix of the paper includes of the proofs and the intermediary results needed to the proof of our key result.

2 Preliminaries

Preliminaries on probability and measure. We assume our reader is comfortable with basic notions of probability theory, such as σ-fields and (discrete) probability measures. An extended abstract is provided in Appendix. A measurable space is denoted by (S, \mathcal{F}_S), where S is a set and \mathcal{F}_S is a σ-algebra over S. A measure space is denoted by (S, \mathcal{F}_S, η) where η is a measure on (S, \mathcal{F}_S). The product measure space $(S_1 \times S_2, \mathcal{F}_{S_1} \otimes \mathcal{F}_{S_2}, \eta_1 \otimes \eta_2)$ is the measure space $(S_1 \times S_2, \mathcal{F}_{S_1} \otimes \mathcal{F}_{S_2}, \eta_1 \otimes \eta_2)$, where $\mathcal{F}_{S_1} \otimes \mathcal{F}_{S_2}$ is the smallest σ-algebra generated by sets of the form $\{A \times B | A \in \mathcal{F}_{S_1}, B \in \mathcal{F}_{S_2}\}$ and $\eta_1 \otimes \eta_2$ is the unique measure s. t. for every $C_1 \in \mathcal{F}_{S_1}, C_2 \in \mathcal{F}_{S_2}, \eta_1 \otimes \eta_2(C_1 \times C_2) = \eta_1(C_1)\eta_2(C_2)$.

A discrete probability measure on a set S is a probability measure η on $(S, 2^S)$, such that, for each $C \subset S, \eta(S) = \sum_{c \in C} \eta(\{c\})$. We define $\text{Disc}(S)$ to be, the set of discrete probability measures on S. In the sequel, we often omit the set notation when we denote the measure of a singleton set. For a discrete probability measure η on a set S, $\text{supp}(\eta)$ denotes the support of η that is, the set of elements $s \in S$ such that $\eta(s) \neq 0$. Given set S and a subset $C \subset S$, the Dirac measure δ_C is the discrete probability measure on S that assigns probability 1 to C. For each element $s \in S$, we note δ_s for $\delta_{\{s\}}$.

Signature I/O Automata (SIOA). Our framework builds on top of Signature I/O Automata (SIOA) introduced in [1]. We assume the existence of a countable set Auts of unique signature input/output automata identifiers, an underlying universal set Auts of SIOA, and a mapping $\text{auts} : \text{Auts} \rightarrow \text{Auts}, \text{auts}(A)$ is the SIOA with identifier A. We use 'the automaton A' to mean "the SIOA with identifier A". We use the letters \mathcal{A}, \mathcal{B}, possibly subscripted or primed, for SIOA identifiers. The executable actions of a SIOA A are drawn from a signature $\text{sig}(A)(q) = (\text{in}(A)(q), \text{out}(A)(q), \text{int}(A)(q))$, called the state signature, which is a function of the current state q of A.

We node $\text{in}(A)(q), \text{out}(A)(q), \text{int}(A)(q)$ pairwise disjoint sets of input, output, and internal actions, respectively. We define $\text{ext}(A)(q)$, the external signature of A in state q, to be $\text{ext}(A)(q) = (\text{in}(A)(q), \text{out}(A)(q))$.

We define $\text{local}(A)(q)$, the local signature of A in state q, to be $\text{local}(A)(q) = (\text{out}(A)(q), \text{in}(A)(q))$. For any signature component, generally, the \bigcup operator yields the union of sets of actions within the signature, e.g., $\text{sig}(A) : q \in Q \mapsto \text{sig}(A)(q) = \text{in}(A)(q) \cup \text{out}(A)(q) \cup \text{int}(A)(q)$. Also define $\text{acts}(A) = \bigcup_{q \in Q} \text{sig}(A)(q)$, that is $\text{acts}(A)$ is the "universal" set of all actions that A could possibly execute, in any state. In the same way $\text{U}(A) = \bigcup_{q \in Q} \text{in}(A)(q), \text{U}(A) = \bigcup_{q \in Q} \text{out}(A)(q), \text{U}(A) = \bigcup_{q \in Q} \text{int}(A)(q), \text{U}(A) = \bigcup_{q \in Q} \text{ext}(A)(q)$.

3 Probabilistic Signature I/O Automata

In the following we extend the definition of Signature I/O Automata introduced in [1] to probabilistic settings. We therefore, combine the formalisme in [1] with the Probabilistic I/O Automata defined in [9]. We will define the composition of PSIOA, measures for executions and traces and the notion of a environment for a PSIOA. Moreover, we extend the operators hidden and renaming to a PSIOA.

Definition 1 (probabilistic signature I/O automata). A probabilistic signature I/O automata (PSIOA) $A = (Q, \cdot, \text{sig}(A), D)$, where:

(a) Q is a countable set of states, $(Q, 2^Q)$ is a measurable space called the state space,
and \(\mathcal{q} \) is the start state.

(b) \(\text{sig}(A) : q \in Q \mapsto \text{sig}(A)(q) = (\text{in}(A)(q), \text{out}(A)(q), \text{int}(A)(q)) \) is the signature function that maps each state to a triplet of countable input, output and internal set of actions.

(d) \(D \subseteq Q \times \text{acts}(A) \times \text{Disc}(Q) \) is the set of probabilistic discrete transitions where \(\forall(q, a, \eta) \in D : a \in \text{sig}(A)(q) \). If \((q, a, \eta) \) is an element of \(D \), we write \(q \xrightarrow{a} \eta \) and action \(a \) is said to be enabled at \(q \). The set of states in which action \(a \) is enabled is denoted by \(E_a \). For \(B \subseteq A \), we define \(E_B \) to be \(\bigcup_{a \in B} E_a \). The set of actions enabled at \(q \) is denoted by \(\text{enabled}(q) \). If a single action \(a \in B \) is enabled at \(q \) and \(q \xrightarrow{a} \eta \), then this \(\eta \) is denoted by \(\eta_{(A,q,a)} \). If \(B \) is a singleton set \(\{a\} \) then we drop the set notation and write \(\eta_{(A,q,a)} \).

In addition, \(A \) must satisfy the following conditions:

- \(E_1 \) (Input action enabling) \(\forall x \in Q : \forall a \in \text{in}(A)(q), \exists \eta \in \text{Disc}(Q) : (q, a, \eta) \in D \).
- \(T_1 \) Transition determinism: For every \(q \in Q \) and \(a \in A \) there is at most one \(\eta \in \text{Disc}(Q) \) such that \((q, a, \eta) \in D \).

For every PSIOA \(A = (Q, \mathcal{q}, \text{sig}(A), D) \), we note \(\text{states}(A) = Q \), \(\text{start}(A) = \mathcal{q} \), \(\text{steps}(A) = D \).

- Definition 2 (fragment, execution and trace of PSIOA). An execution fragment of a PSIOA \(A = (Q, \mathcal{q}, \text{sig}(A), D) \) is a finite or infinite sequence \(\alpha = q_0 a_1 q_1 a_2 \ldots \) of alternating states and actions, such that:
 1. If \(\alpha \) is finite, it ends with a state.
 2. For every non-final state \(q_i \), there is \(\eta \in \text{Disc}(Q) \) and a transition \((q_i, a_{i+1}, \eta) \in D \) s. t. \(q_{i+1} \in \text{supp}(\eta) \).

 We write \(f\text{state}(\alpha) \) for \(q_0 \) (the first state of \(\alpha \)), and if \(\alpha \) is finite, we write \(l\text{state}(\alpha) \) for its last state. We use \(\text{Frags}(A) \) (resp., \(\text{Frags}^1(A) \)) to denote the set of all (resp., all finite) execution fragments of \(A \). An execution of \(A \) is an execution fragment \(\alpha \) with \(f\text{state}(\alpha) = \mathcal{q} \). \(\text{Execs}(A) \) (resp., \(\text{Execs}^1(A) \)) denotes the set of all (resp., all finite) executions of \(A \). The trace of an execution fragment \(\alpha \), written \(t\text{race}(\alpha) \), is the restriction of \(\alpha \) to the external actions of \(A \). We say that \(\beta \) is a trace of \(A \) if there is \(\alpha \in \text{Execs}(P) \) with \(\beta = t\text{race}(\alpha) \). \(\text{Traces}(A) \) (resp., \(\text{Traces}^1(A) \)) denotes the set of all (resp., all finite) traces of \(A \).

- Definition 3 (reachable execution). Let \(A = (Q, \mathcal{q}, \text{sig}(A), D) \) be a PSIOA. A state \(q \) is said reachable if it exists a finite execution that ends with \(q \).

The aim of I/O formalism is to model distributed systems as composition of automata and prove guarantees of the composed system by composition of the guarantees of the different elements of the system. In the following we define the composition operation for PSIOA.

- Definition 4 (Compatible signatures). Let \(S \) be a set of signatures. Then \(S \) is compatible iff, \(\forall \text{sig}, \text{sig}' \in S \), where \(\text{sig} = (\text{in}, \text{out}, \text{int}) \), \(\text{sig}' = (\text{in}', \text{out}', \text{int}') \) and \(\text{sig} \neq \text{sig}' \), we have:
 1. \((\text{in} \cup \text{out} \cup \text{int}) \cap \text{int}' = \emptyset \), and 2. \(\text{out} \cap \text{out}' = \emptyset \).

- Definition 5 (Composition of Signatures). Let \(\Sigma = (\text{in}, \text{out}, \text{int}) \) and \(\Sigma' = (\text{in}', \text{out}', \text{int}') \) be compatible signatures. Then we define their composition \(\Sigma \times \Sigma = (\text{in} \cup \text{in}', (\text{out} \cup \text{out}'), \text{out} \cup \text{out}', \text{int} \cup \text{int}') \).

Signature composition is clearly commutative and associative.

- Definition 6 (partially compatible at a state). Let \(A = (A_1, \ldots, A_n) \) be a set of PSIOA. A state of \(A \) is an element \(q = (q_1, \ldots, q_n) \in Q = Q_1 \times \ldots \times Q_n \). We say \(A_1, \ldots, A_n \) are
partially-compatible at state \(q\) (or \(A\)) if \(\{\text{sig}(A_1)(q_1), \ldots, \text{sig}(A_n)(q_n)\}\) is a set of compatible signatures. In this case we note \(\text{sig}(A)(q) = \text{sig}(A_1)(q_1) \times \ldots \times \text{sig}(A_n)(q_n)\) and we note \(\eta(A,q,a) \in \text{Disc}(Q)\), s. t. for every action \(a \in \text{sig}(A)(q)\), \(\eta(A,q,a) = \eta_1 \otimes \ldots \otimes \eta_n \in \text{Disc}(Q)\) that verifies for every \(j \in [1,n]\):

- If \(a \in \text{sig}(A_j)(q_j)\), \(\eta_j = \delta_{q_j}\).
- Otherwise, \(\eta_j = \delta_{q_j}\)

while \(\eta(A,q,a) = \delta_q\) if \(a \notin \text{sig}(A)(q)\).

Definition 7 (pseudo execution). Let \(A = (A_1, \ldots, A_n)\) be a set of PSIOA. A *pseudo execution fragment* of \(A\) is a finite or infinite sequence \(\alpha = q^0a_1q^1a^2\ldots\) of alternating states of \(A\) and actions, such that:

- If \(\alpha\) is finite, it ends with a n-uplet of state.
- For every non final state \(q\), \(A\) is partially-compatible at \(q\).
- For every action \(a, q \in \text{sig}(A)(q^{i-1})\).
- For every state \(q^i\), such that:

A pseudo execution of \(A\) is a pseudo execution fragment of \(A\) with \(q^0 = (\bar{q}_1, \ldots, \bar{q}_n)\).

Definition 8 (reachable state). Let \(A = (A_1, \ldots, A_n)\) be a set of PSIOA. A state \(q\) of \(A\) is *reachable* if it exists a pseudo execution \(\alpha\) of \(A\) ending on state \(q\).

Definition 9 (partially-compatible PSIOA). Let \(A = (A_1, \ldots, A_n)\) be a set of PSIOA. The automata \(A_1, \ldots, A_n\) are \(\ell\)-partially-compatible with \(\ell \in \mathbb{N}\) if no pseudo-execution \(\alpha\) of \(A\) with \(|\alpha| \leq \ell\) ends on non-partially-compatible state \(q\). The automata \(A_1, \ldots, A_n\) are partially-compatible if \(A\) is partially-compatible at each reachable state \(q\), i. e. \(A\) is \(\ell\)-partially-compatible for every \(\ell \in \mathbb{N}\).

Definition 10 (Compatible PSIOA). Let \(A = (A_1, \ldots, A_n)\) be a set of PSIOA with \(A_i = ((Q_i, F_{Q_i}), \text{sig}(A_i), D_i)\). We say \(A\) is compatible if it is partially-compatible for every state \(q = (q_1, \ldots, q_n) \in Q_1 \times \ldots \times Q_n\).

Note that a set of compatible PSIOA is also a set of partially-compatible automata.

Definition 11 (PSIOA’s composition). If \(A_i = (A_1, \ldots, A_n)\) is a compatible set of PSIOAs, with \(A_i = ((Q_i, F_{Q_i}), \text{sig}(A_i), D_i)\), then their composition \(A_i || A_j\) is defined to be \(A = (Q, \bar{q}, \text{sig}(A), D)\), where:

- \(Q = Q_1 \times \ldots \times Q_n\)
- \(\bar{q} = (\bar{q}_1, \ldots, \bar{q}_n)\)
- \(\text{sig}(A) : q = (q_1, \ldots, q_n) \in Q \mapsto \text{sig}(A)(q) = \text{sig}(A_1)(q_1) \times \ldots \times \text{sig}(A_n)(q_n)\).
- \(D \subseteq Q \times A \times \text{Disc}(Q)\) is the set of triples \((q, a, \eta(A,q,a))\) so that \(q \in Q\) and \(a \in \text{sig}(A)(q)\)

To solve the non-determinism we use schedule that allows us to chose an action in a signature. To do so, we adapt the definition of task of [2] to the dynamic setting. We assume the existence of a subset \(\text{Autids}_0 \subset \text{Autids}\) that represents the 'atomic entenies' that will constitute the configuration automata introduced in the next section.

Definition 12 (Constitution). For every \(A \in \text{Autids}\), we note

\[
\text{constitution}(A) : \begin{cases}
\text{states}(A) & \mapsto \mathcal{P}(\text{Autids}_0) = 2^{\text{Autids}_0} \\
q & \mapsto \text{constitution}(A)(q)
\end{cases}
\]

For every \(A \in \text{Autids}_0\), for every \(q \in \text{states}(A)\), \(\text{constitution}(A)(q) = \{A\}\).
For every \(A = (A_1, \ldots, A_n) \in (\text{Autids}_0)^n \), \(A = A_1 \| \ldots \| A_n \) for every \(q \in \text{states}(A) \).

\textbf{Definition 13} (Task). A task \(T \) is a pair \((id, \text{actions})\) where \(id \in \text{Autids}_0 \) and \(\text{actions} \) is a set of action labels. Let \(T = (id, \text{actions}) \), we note \(id(T) = id \) and \(\text{actions}(T) = \text{actions} \).

\textbf{Definition 14} (Enabled task). Let \(A \in \text{Autids} \). A task \(T \) is said enabled in state \(q \in \text{states}(A) \) if:

\(id(T) \in \text{constitution}(A)(q) \)

\(\exists \) a unique local action \(a \in \text{loc}(A)(q) \cap \text{actions}(T) \) (noted \(a \in T \) to simplify) enabled at state \(q \) (that is it exists \(\eta \in \text{Disc}(Q) \) s. t. \((q, a, \eta) \in D \).

In this case we say that \(a \) is triggered by \(T \) at state \(q \).

We are not dealing with a schedule of a specific automaton anymore, which differs from [2]. However the restriction of our definition to "static" setting matches their definition.

\textbf{Definition 15} (schedule). A schedule \(\rho \) is a (finite or infinite) sequence of tasks.

\textbf{Definition 16}. Let \(A \) be a PSIOA. Given \(\mu \in \text{Disc}(\text{Ffrags}(A)) \) a discrete probability measure on the execution fragments and a task schedule \(\rho \), \(\text{apply}(\mu, \rho) \) is a probability measure on \(\text{Ffrags}(A) \). It is defined recursively as follows.

1. \(\text{apply}_A(\mu, \lambda) := \mu \). Here \(\lambda \) denotes the empty sequence.
2. For every \(T \) and \(\alpha \in \text{Ffrags}^*(A) \), \(\text{apply}_A(\mu, T)(\alpha) := p_1(\alpha) + p_2(\alpha) \), where:
 \[p_1(\alpha) = \begin{cases}
 \mu(\alpha')\eta_\mu,\alpha'(a)(q) & \text{if } \alpha = \alpha'q, q' = \text{lstate}(\alpha') \text{ and } \alpha \text{ is triggered by } T \\
 0 & \text{otherwise}
 \end{cases} \]
 \[p_2(\alpha) = \begin{cases}
 \mu(\alpha) & \text{if } T \text{ is not enabled after } \alpha \\
 0 & \text{otherwise}
 \end{cases} \]
3. If \(\rho \) is finite and of the form \(\rho'T \), then \(\text{apply}_A(\mu, \rho) := \text{apply}_A(\mu, \rho', T) \).
4. If \(\rho \) is infinite, let \(p_\rho \) denote the length-\(i \) prefix of \(\rho \) and let \(pm_i \) be \(\text{apply}_A(\mu, p_\rho) \). Then
 \[\text{apply}_A(\mu, \rho) := \lim_{i \to \infty} pm_i \].

\(\text{tdist}_A(\mu, \rho) : \text{Traces}_A \to [0, 1] \), is defined as \(\text{tdist}_A(\mu, \rho)(E) = \text{apply}(\delta_{E}, \rho)(\text{trace}^{-1}_A(E)) \),

for any measurable set \(E \in \mathcal{F}_{\text{Traces}_A} \).

We write \(\text{tdist}_A(\mu, \rho) \) as shorthand for \(\text{tdist}_A(\text{apply}_A(\mu, \rho)) \) and \(\text{tdist}_A(\rho) \) for \(\text{tdist}_A(\text{apply}_A(\delta(x), \rho)) \), where \(\delta(x) \) denotes the measure that assigns probability 1 to \(x \). A trace distribution of \(\mathcal{A} \) is any \(\text{tdist}_A(\rho) \). We use \(\text{Tdist}_A \) to denote the set \(\{ \text{tdist}_A(\rho) : \rho \text{ is a task schedule} \} \).

We removed the subscript \(\mathcal{A} \) when this is clear in the context.

In the following we introduce the notion of an environment for a PSIOA.

\textbf{Definition 17} (Environment). A probabilistic environment for PSIOA \(\mathcal{A} \) is a PSIOA \(\mathcal{E} \) such that \(\mathcal{A} \) and \(\mathcal{E} \) are partially-compatible.

\textbf{Definition 18} (External behavior). The external behavior of a PSIOA \(\mathcal{A} \), written as \(\text{ExtBeh}_A \), is defined as a function that maps each environment \(\mathcal{E} \) for \(\mathcal{A} \) to the set of trace distributions \(\text{Tdist}_{\mathcal{A}||\mathcal{E}} \).

We introduce in the following the hiding and renaming operators for PSIOA.

\textbf{Definition 19} (hiding on signature). Let \(\text{sig} = (\text{in}, \text{out}, \text{int}) \) be a signature and \(\text{acts} \) a set of actions. We note \(\text{hide}(\text{sig}, \text{acts}) \) the signature \(\text{sig}' = (\text{in}', \text{out}', \text{int}') \) s. t.

\[\text{hide}(\text{sig}, \text{acts}) \]
Towards the extension of the formalism to dynamic settings, in this section we introduce the task-configuration. Then we define I_{out} all automata of the system. Here, the notion is different, it captures a set of some automata above and the notion of configuration of Probabilistic Configuration Automata (PCA) that combines the PSIOA framework defined in the Appendix.

It should be noted that hiding and composition are commutative. A formal proof can be found in the Appendix.

Definition 20 (hiding on PSIOA). Let $\mathcal{A} = (Q,q,sig(\mathcal{A}),D)$ be a PSIOA. Let hiding-actions a function mapping each state $q \in Q$ to a set of actions. We note $\text{hide}(\mathcal{A}, \text{hiding-actions})$ the PSIOA $(Q,q,sig'(\mathcal{A}),D)$, where $\text{sig}'(\mathcal{A}) : q \in Q \mapsto \text{hide}(\text{sig}(\mathcal{A})(q), \text{hiding-actions}(q))$.

Definition 21. (State renaming for PSIOA) Let \mathcal{A} be a PSIOA with $Q_\mathcal{A}$ as set of states, let $Q_{\mathcal{A}'}$ be another set of states and let $\text{ren} : Q_\mathcal{A} \rightarrow Q_{\mathcal{A}'}$ be a bijective mapping. Then $\text{ren}(\mathcal{A})$ is the automaton given by:

- $\text{start}(\text{ren}(\mathcal{A})) = \text{ren}(\text{start}(Q_\mathcal{A}))$
- $\text{states}(\text{ren}(\mathcal{A})) = \text{ren}(\text{states}(Q_\mathcal{A}))$
- $\forall q_{\mathcal{A}'} \in \text{states}(\text{ren}(\mathcal{A})), sig(\text{ren}(\mathcal{A}))(q_{\mathcal{A}'}) = \text{sig}(\mathcal{A})(\text{ren}^{-1}(q_{\mathcal{A}'}))$
- $\forall q_{\mathcal{A}'} \in \text{states}(\text{ren}(\mathcal{A})), \forall a \in \text{sig}(\text{ren}(\mathcal{A}))(q_{\mathcal{A}'})$, if $(\text{ren}^{-1}(q_{\mathcal{A}'},a,\eta)) \in D_{\mathcal{A}'},$ then $(q_{\mathcal{A}'},a,\eta') \in D_{\text{ren}(\mathcal{A})}$ where $\eta' \in \text{Disc}(Q_{\mathcal{A}'},F_{\mathcal{A}'},)$ and for every $q_{\mathcal{A}''} \in \text{states}(\text{ren}(\mathcal{A}))$, $\eta'(q_{\mathcal{A}''}) = \eta(\text{ren}^{-1}(q_{\mathcal{A}''})).$

Definition 22. (State renaming for PSIOA execution) Let \mathcal{A} and \mathcal{A}' be two PSIOA s. t. $\mathcal{A}' = \text{ren}(\mathcal{A}')$. Let $\alpha = q^0 a^1 q^1 ...$ be an execution fragment of \mathcal{A}. We note $\text{ren}(\alpha)$ the sequence $\text{ren}(q^0)a^1 \text{ren}(q^1)...$.

4 Probabilistic Configuration Automata

Towards the extension of the formalism to dynamic settings, in this section we introduce the Probabilistic Configuration Automata (PCA) that combines the PSIOA framework defined above and the notion of configuration of [1]. The main key result we prove here is the closeness of PCA closeness under composition.

Definition 23 (Configuration). A configuration is a pair (\mathcal{A}, S) where

- $\mathcal{A} = (A_1, ..., A_n)$ is a finite sequence of PSIOA identifiers (lexicographically ordered), and
- S maps each $A_k \in \mathcal{A}$ to an $s_k \in \text{states}(A_k)$.

In distributed computing, configuration usually refers to the union of states of all the automata of the system. Here, the notion is different, it captures a set of some automata (\mathcal{A}) in their current state (S).

Definition 24 (Compatible configuration). A configuration (\mathcal{A}, S) is compatible iff, for all $\mathcal{A}, \mathcal{B} \in \mathcal{A}$, $\mathcal{A} \neq \mathcal{B}$: 1. $\text{sig}(\mathcal{A})(S(\mathcal{A})) \cap \text{int}(\mathcal{B})(S(\mathcal{B})) = \emptyset$, and 2. $\text{out}(\mathcal{A})(S(\mathcal{A})) \cap \text{out}(\mathcal{B})(S(\mathcal{B})) = \emptyset$

Definition 25 (Intrinsic attributes of a configuration). Let $C = (\mathcal{A}, S)$ be a compatible task-configuration. Then we define

\[\text{in}' = \text{in} \]
\[\text{out}' = \text{out} \setminus \text{acts} \]
\[\text{int}' = \text{int} \cup (\text{out} \cap \text{acts}) \]

1 lexicographic order will simplify projection on product of probabilistic measure for transition of composition of automata
We note for every properly the "dynamic" distribution. occurs, these definitions can seem redundant, but this is only an intermediate step to define family of automata at the corresponding current state. Since no creation or destruction distribution verifying this definition the notion of configuration transition. automata can be destroyed or created. To define it properly, we start by defining "preserving configurations.

Definition 26 (Reduced configuration). reduce(C) = (A', S'), where A' = {A | A ∈ A and sig(A)(S(A)) ≠ ∅ } and S' is the restriction of S to A', noted S ↪ A' in the remaining.

A configuration C is a reduced configuration iff C = reduce(C).

We recall that we assume the existence of a countable set Autids of unique PSIOA identifiers, an underlying universal set Auts of PSIOA, and a mapping aut : Autids → Auts. aut(A) is the PSIOA with identifier A. We will define a measurable space for configuration. We note for every φ ∈ P(Autids), Qφ = Qφ1 × ... × Qφn and FQφ = FQφ1 ⊗ ... ⊗ FQφ|φ|.

We note Qout = ∪φ∈P(Autids) Qφ, the set of all possible state sets cartesian product for each possible family of automata. FQconf = {∪[i∈[1,k]] ciφ ∈ P(P(Autids)), ci ∈ FQφi} φ = φ1, ..., φk, φi ∈ P(Autids) (Qout, FQconf) is a measurable space.

We note Qconf = {(A, S) | A ∈ P(Autids), ∀Ai ∈ A, S(Ai) ∈ Qi}, the set of all possible configurations.

Let f = \{ Qconf ↦ Qaut (A, S) ↦ QCA(A, S) = S(A1) × ... × S(An) \}.

We note FQconf = {f−1(P) | P ∈ FQaut}. (Qconf, FQconf) is a measurable space.

We will define some probabilistic transition from configurations to others where some automata can be destroyed or created. To define it properly, we start by defining 'preserving transition' where no automaton is neither created nor destroyed and then we define above this definition the notion of configuration transition.

Definition 27 (Preserving distribution). A preserving distribution ηp ∈ Disc(Qconf) is a distribution verifying ∀(A, S), (A', S') ∈ supp(ηp), A = A'. The unique family of automata ids A of the configurations in the support of ηp is called the family support of ηp.

We define a companion distribution as the natural distribution of the corresponding family of automata at the corresponding current state. Since no creation or destruction occurs, these definitions can seem redundant, but this is only an intermediate step to define properly the "dynamic" distribution.
Definition 28 (Companion distribution). Let $C = (A, S)$ be a compatible configuration with $A = (A_1, ..., A_n)$ and $S : A_i \mapsto q_i \in Q_{A_i}$ (with A partially-compatible at state $q = (q_1, ..., q_n) \in Q_A = Q_{A_1} \times ... \times Q_{A_n}$). Let η_p be a preserving distribution with A as family support. The probabilistic distribution $\eta_{(A,q,a)}$ is a companion distribution of η_p if for every $q' = (q'_1, ..., q'_n) \in Q_A$, for every $S'' : A_i \mapsto q''_i \in Q_{A_i}$,

$$\eta_{(A,q,a)}(q') = \eta_p((A, S'')) \iff \forall i \in [1,n], q''_i = q'_i,$$

that is the distribution $\eta_{(A,q,a)}$ corresponds exactly to the distribution η_p.

This is 'a' and not 'the' companion distribution since η_p does not specify the start configuration.

Now, we can naturally define a preserving transition (C, a, η_p) from a configuration C via an action a with a companion transition of η_p. It allows us to say what is the 'static' probabilistic transition from a configuration C via an action a if no creation or destruction occurs.

Definition 29 (preserving transition). Let $C = (A, S)$ be a compatible configuration, $q = US(C)$ and $\eta_p \in P(Q_{conf}, \mathcal{F}_{Q_{conf}})$ be a preserving transition with A_s as family support.

Then say that (C, a, η_p) is a preserving configuration transition, noted $C \xrightarrow{a} \eta_p$ if

- $A_s = A$
- $\eta_{(A,q,a)}$ is a companion distribution of η_p

For every preserving configuration transition (C, a, η_p), we note $\eta_{(C, a), p} = \eta_p$.

The preserving transition of a configuration corresponds to the transition of the composition of the corresponding automata at their corresponding current states.

Now we are ready to define our 'dynamic' transition, that allows a configuration to create or destroy some automata.

At first, we define reduced distribution that leads to reduced configurations only, where all the automata that reach a state with an empty signature are destroyed.

Definition 30 (reduced distribution). A reduced distribution $\eta_r \in Disc(Q_{conf}, \mathcal{F}_{Q_{conf}})$ is a probabilistic distribution verifying that for every configuration $C \in supp(\eta_r)$, $C = reduced(C)$.

Now, we generate reduced distribution with a preserving distribution that describes what happen to the automata that already exist and a family of new automata that are created.

Definition 31 (Generation of reduced distribution). Let $\eta_p \in Disc(Q_{conf})$ be a preserving distribution with A as family support. Let $\varphi \subseteq Autids$. We say the reduced distribution $\eta_r \in Disc(Q_{conf})$ is generated by η_p and φ if it exists a non-reduced distribution $\eta_{nr} \in Disc(Q_{conf})$, s. t.

- (φ is created with probability 1)
- $\forall (A'', S'') \in Q_{conf}$, if $A'' \neq A \cup \varphi$, then $\eta_{nr}((A'', S'')) = 0$
- (freshly created automata start at start state)
- $\forall (A'', S'') \in Q_{conf}$, if $\exists A_i \in \varphi - A$ so that, $S''(A_i) \neq \bar{q}_i$, then $\eta_{nr}((A'', S'')) = 0$
- (The non-reduced transition match the preserving transition)
- $\forall (A'', S'') \in Q_{conf}$, s. t. $A'' = A \cup \varphi$ and $\forall A_j \in \varphi, S''(A_j) = \bar{x}_j$, $\eta_{nr}((A'', S'')) = \eta_{p}(A, S''|A)$
Definition 32 (Intrinsic transition). Let \((A, S)\) be arbitrary reduced compatible configuration, let \(\eta \in \text{Disc}(Q_{\text{conf}})\), and let \(\varphi \subseteq \text{Autids}, \varphi \cap A = \emptyset\). Then \((A, S) \xrightarrow{\text{in}} \eta \varphi\) if \(\eta\) is generated by \(\eta_p\) and \(\varphi\) with \((A, S) \xrightarrow{\eta_p} \eta_p\).

The assumption of deterministic creation is not restrictive, nothing prevents from flipping a coin at state \(s_0\) to reach \(s_1\) with probability \(p\) or \(s_2\) with probability \(1 - p\) and only create a new automaton in state \(s_2\) with probability 1, while the action create is not enabled in state \(s_1\).

Definition 33 (Probabilistic Configuration Automaton). A probabilistic configuration automaton (PCA) \(K\) consists of the following components:

1. A probabilistic signature I/O automaton \(\text{psioa}(K)\). For brevity, we define \(\text{states}(\text{psioa}(K)) = \text{states}(\text{psioa}(K)), \text{start}(K) = \text{start}(\text{psioa}(K)), \text{sig}(K) = \text{sig}(\text{psioa}(K)), \text{steps}(K) = \text{steps}(\text{psioa}(K))\), and likewise for all other (sub)components and attributes of \(\text{psioa}(K)\).

2. A configuration mapping \(\text{config}(K)\) with domain \(\text{states}(K)\) and such that \(\text{config}(K)(x)\) is a reduced compatible configuration for all \(q_K \in \text{states}(K)\).

3. For each \(q_K \in \text{states}(K)\), a mapping \(\text{created}(K)(x)\) with domain \(\text{sig}(K)(x)\) and such that \(\forall a \in \text{sig}(K)(q), \text{created}(K)(q)(a) \subseteq \text{Autids}\).

4. A hidden-actions mapping \(\text{hidden-actions}(K)\) with domain \(\text{states}(K)\) and such that \(\text{hidden-actions}(K)(q_K) \subseteq \text{out}(\text{config}(K)(q_K))\), and satisfies the following constraints

1. If \(\text{config}(K)(q_K) = (A, S), \text{then} \forall A_i \in A, S(A_i) = \tilde{q}_i\)

2. If \((q_K, a, \eta) \in \text{steps}(K)\) then \(\text{config}(K)(q_K) \xrightarrow{a} \eta\varphi\), where \(\varphi = \text{created}(K)(q_K)(a)\) and \(\eta(y) = \eta'(\text{config}(K)(y))\) for every \(y \in \text{states}(K)\)

3. If \(q_K \in \text{states}(K)\) and \(\text{config}(K)(q_K) \xrightarrow{a} \eta'\) for some action \(a, \varphi = \text{created}(K)(x)(a)\), and reduced compatible probabilistic measure \(\eta' \in P(Q_{\text{conf}}, \mathcal{F}_{Q_{\text{conf}}})\), then \((q_K, a, \eta) \in \text{steps}(K)\) with \(\eta(y) = \eta'(\text{config}(K)(y))\) for every \(y \in \text{states}(K)\).

4. For all \(q_K \in \text{states}(K)\), \(\text{sig}(K)(q_K) = \text{hide}(\text{sig(config}(K)(q_K))), \text{hidden-actions}(q_K)\), which implies that

(a) \(\text{out}(K)(q_K) \subseteq \text{out}(\text{config}(K)(q_K))\),

(b) \(\text{in}(K)(q_K) = \text{in}(\text{config}(K)(q_K))\),

(c) \(\text{int}(K)(q_K) \supseteq \text{int}(\text{config}(K)(q_K))\), and

(d) \(\text{out}(K)(q_K) \cup \text{int}(X)(q_K) = \text{out}(\text{config}(K)(q_K)) \cup \text{int}(\text{config}(K)(q_K))\)

4 (d) states that the signature of a state \(q_K\) of \(K\) must be the same as the signature of its corresponding configuration \(\text{config}(K)(q_K)\), except for the possible effects of hiding operators, so that some outputs of \(\text{config}(K)(q_K)\) may be internal actions of \(K\) in state \(q_K\).

Additionally, we can define the current constitution of a PCA, which is the union of the current constitution of the element of its current corresponding configuration.

Definition 34 (Constitution of a PCA). Let \(K\) be a PCA. For every \(q \in \text{states}(K)\),

\[
\text{constitution}(K)(q) = \text{constitution}(\text{psioa}(K))(q) = \bigcup_{A \in \text{Autids}(\text{config}(K)(q))} \text{constitution}(A)\left(\text{map}(\text{config}(K)(q))\right)
\]

We note \(UA(K) = \bigcup_{q \in K} \text{constitution}(K)(q)\) the universal set of atomic components of \(K\).
In the following we lay down the formalism needed to prove that probabilistic configuration automata are closed under composition.

Definition 35 (Union of configurations). Let \(C_1 = (A_1, S_1) \) and \(C_2 = (A_2, S_2) \) be configurations such that \(A_1 \cap A_2 = \emptyset \). Then, the union of \(C_1 \) and \(C_2 \), denoted \(C_1 \cup C_2 \), is the configuration \(C = (A, S) \) where \(A = A_1 \cup A_2 \) (lexicographically ordered) and \(S \) agrees with \(S_1 \) on \(A_1 \), and with \(S_2 \) on \(A_2 \). It is clear that configuration union is commutative and associative. Hence, we will freely use the \(n \)-ary notation \(C_1 \cup \ldots \cup C_n \) (for any \(n \geq 1 \)) whenever \(\forall i, j \in [1 : n], i \neq j, auts(C_i) \cap auts(C_j) = \emptyset \).

Definition 36 (PCA partially-compatible at a state). Let \(X = (X_1, \ldots, X_n) \) be a family of PCA. We note \(\text{psiao}(X) = (\text{psiao}(X_1), \ldots, \text{psiao}(X_n)) \). The PCA \(X_1, \ldots, X_n \) are partially-compatible at state \(q_X = (q_{X_1}, \ldots, q_{X_n}) \in \text{states}(X_1) \times \ldots \times \text{states}(X_n) \) iff:

1. \(\forall i, j \in [1 : n], i \neq j : auts(\text{config}(X_i))(q_{X_i}) \cap auts(\text{config}(X_j))(q_{X_j}) = \emptyset \).
2. \(\{ \text{sig}(X_1)(q_{X_1}), \ldots, \text{sig}(X_n)(q_{X_n}) \} \) is a set of compatible signatures.
3. \(\forall i, j \in [1 : n], i \neq j : \forall a \in \text{\~{s}ig}(X_i)(q_{X_i}) \cap \text{\~{s}ig}(X_j)(q_{X_j}) : \text{created}(X_i)(q_{X_i})(a) \cap \text{created}(X_j)(q_{X_j})(a) = \emptyset \).
4. \(\forall i, j \in [1 : n], i \neq j : \text{constitution}(X_i)(q_{X_i}) \cap \text{constitution}(X_j)(q_{X_j}) = \emptyset \).

We can remark that if \(\forall i, j \in [1 : n], i \neq j : \text{config}(X_i)(q_{X_i}) \cap \text{config}(X_j)(q_{X_j}) = \emptyset \) and \(\{ \text{sig}(X_1)(q_{X_1}), \ldots, \text{sig}(X_n)(q_{X_n}) \} \) is a set of compatible signatures, then \(\text{config}(X_1)(q_{X_1}) \cup \ldots \cup \text{config}(X_n)(q_{X_n}) \) is a reduced compatible configuration.

If \(X \) is partially-compatible at state \(q_X \), for every action \(a \in \text{\~{s}ig}(\text{psiao}(X))(q_X) \), we note \(\eta_{X,q_X,a} = \eta_{(\text{psiao}(X),q_X,a)} \) and we extend this notation with \(\eta_{X,q_X,a} = \delta_{q_X} \) if \(a \notin \text{\~{s}ig}(\text{psiao}(X))(q_X) \).

Definition 37 (pseudo execution). Let \(X = (X_1, \ldots, X_n) \) be a set of PCA. A pseudo execution fragment of \(X \) is a pseudo execution fragment of \(\text{psiao}(A) \), s. t. for every non-final state \(q' \), \(X \) is partially-compatible at state \(q' \) (namely the conditions (1) and (3) need to be satisfied)

A pseudo execution \(\alpha \) of \(X \) is a pseudo execution fragment of \(X \) with \(fstate(\alpha) = (\bar{q}_{X_1}, \ldots, \bar{q}_{X_n}) \).

Definition 38 (reachable state). Let \(X = (X_1, \ldots, X_n) \) be a set of PSIOA. A state \(q \) of \(X \) is reachable if it exists a pseudo execution \(\alpha \) of \(X \) ending on state \(q \).

Definition 39 (partially-compatible PCA). Let \(X = (X_1, \ldots, X_n) \) be a set of PCA. The automata \(X_1, \ldots, X_n \) are \(\ell \)-partially-compatible with \(\ell \in \mathbb{N} \) if no pseudo-execution \(\alpha \) of \(X \) with \(|\alpha| \leq \ell \) ends on non-partially-compatible state \(q \). The automata \(X_1, \ldots, X_n \) are partially-compatible if \(X \) is partially-compatible at each reachable state \(q \), i. e. \(X \) is \(\ell \)-partially-compatible for every \(\ell \in \mathbb{N} \).

Definition 40 (compatible PCA). Let \(X = (X_1, \ldots, X_n) \) be a set of PCA. The automata \(X_1, \ldots, X_n \) are compatible if the automata \(X_1, \ldots, X_n \) are partially-compatible for each state of \(\text{states}(X_1) \times \ldots \times \text{states}(X_n) \).

Definition 41 (Composition of configuration automata). Let \(X_1, \ldots, X_n \), be compatible (resp. partially-compatible) configuration automata. Then \(X = X_1 || \ldots || X_n \) is the state machine consisting of the following components:

1. \(\text{psiao}(X) = \text{psiao}(X_1)||\ldots||\text{psiao}(X_n) \) (where the composition can be the one dedicated to only partially-compatible PCA).
2. A configuration mapping $\text{config}(X)$ given as follows. For each $x = (x_1, ..., x_n) \in \text{states}(X)$, $\text{config}(X)(x) = \text{config}(X_1)(x_1) \cup ... \cup \text{config}(X_n)(x_n)$.

3. For each $x = (x_1, ..., x_n) \in \text{states}(X)$, a mapping $\text{created}(X)(x)$ with domain $\text{sig}(X)(x)$ and given as follows. For each $a \in \text{sig}(X)(x)$, $\text{created}(X)(x)(a) = \bigcup_{a \in \text{sig}(X_i)(x_i), i \in [1, n]} \text{created}(X_i)(x_i)(a)$.

4. A hidden-action mapping $\text{hidden-actions}(X)$ with domain $\text{states}(X)$ and given as follows.

 For each $x = (x_1, ..., x_n) \in \text{states}(X)$, $\text{hidden-actions}(x) = \bigcup_{i \in [1, n]} \text{hidden-actions}(x_i)$

 We define $\text{states}(X) = \text{states}(\text{sioa}(X))$, $\text{start}(X) = \text{start}(\text{sioa}(X))$, $\text{sig}(X) = \text{sig}(\text{sioa}(X))$, $\text{steps}(X) = \text{steps}(\text{sioa}(X))$, and likewise for all other (sub)components and attributes of $\text{sioa}(X)$.

\textbf{Theorem 42} (PCA closeness under composition). Let $X_1, ..., X_n$, be compatible or partially-compatible PCA. Then $X = X_1||...||X_n$ is a PCA.

5 Monotonicity of implementations with respect to automata creation and destruction

This section lays down the formalism to prove the key notion of our framework: the monotonicity of implementations with respect to automata creation and destruction. We will introduce the equivalence classes of executions, the notion of schedule and implementation and finally our key result.

\textbf{Definition 43} (Execution correspondence relation, S_{ABE}). Let A, B be PSIOA, let E be an environment for both A and B. Let α, π be executions of automata $A||E$ and $B||E$ respectively.

Then $\alpha S_{\text{ABE}} \pi$ if

1. A is permanently off in α if and only if B is permanently off in π. A is permanently on in α if and only if B is permanently on in π.

2. (*) A is turned off in α if and only if B is turned off in π. If (*), we can note $\alpha = \alpha_1 \ominus \alpha_2$ and $\alpha_1 = \alpha_1^{\ominus} \hat{\alpha}_q$ where $\text{sig}(A)(\text{last}(\alpha_1) \uparrow A) = \emptyset$, $\text{sig}(A)(\text{last}(\alpha_1^{\ominus}) \uparrow A) \neq \emptyset$ and we can note $\pi = \pi_1 \ominus \pi_2$ similarly.

3. $\pi \upharpoonright E = \alpha \upharpoonright E$. If (*), $\pi_1 \upharpoonright E = \alpha_1 \upharpoonright E$ for $i \in \{1, 2\}$.

4. $\text{trace}_{B \upharpoonright E}(\pi_1) = \text{trace}_{B \upharpoonright (E \upharpoonright \alpha)}$. If (*) $\text{trace}_{B \upharpoonright (E \upharpoonright \alpha)} = \text{trace}_{B \upharpoonright E}(\pi_2)$ for $i \in \{1, 2\}$.

5. $\text{ext}(A)(\text{last}(\alpha) \uparrow A) = \text{ext}(B)(\text{last}(\pi) \uparrow B)$ if $\text{ext}(A)(\text{last}(\alpha) \uparrow A) = \text{ext}(B)(\text{last}(\pi) \uparrow B)$.

S_{ABE} is sometimes written S_{ABS} hen the environment is clear in the context.

\textbf{Definition 44} (equivalence class). Let A be a PSIOA. Let E be an environment of A. Let α be an execution fragment of $A||E$. We note $\bar{\alpha}_{A E} = \{ \alpha' \mid \alpha S_{A E} \alpha \}$

When this is clear in the context, we note $\bar{\alpha}_A$ or even $\bar{\alpha}$ for $\bar{\alpha}_{A E}$ and $\bar{\hat{\alpha}}_A$.

In the following we introduce the notion of schedule.

\textbf{Definition 45} (simple schedule notation). Let $\rho = T^\ell, T^{\ell+1}, ..., T^h$ be a schedule, i.e. a sequence of tasks. For every $q, q' \in [\ell, h], q \leq q'$, we note:

- $\text{hi}(\rho) = h$ the highest index in ρ
- $\text{lo}(\rho) = \ell$ the lowest index in ρ
- $\rho|_q = T^\ell ... T^q$
- $q|_\rho = T^\ell ... T^h$
- $q|\rho|_{q'} = T^q ... T^{q'}$
By doing so, we implicitly assume an indexation of ρ, $\text{ind}(\rho): \text{ind} \in [\text{li}(\rho), \text{hi}(\rho)] \mapsto T^{\text{ind}} \in \rho$. Hence if $\rho = T^1, T^2, \ldots, T^k, T^k+1, \ldots, T^q, T^q+1, \ldots, T^h$, $\rho' = k \mid \rho$, $\rho'' = q \mid \rho'$, then $\rho'' = q \mid \rho$.

Definition 46 (Schedule partition and index). Let ρ be a schedule. A partition p of ρ is a sequence of schedules (finite or infinite) $p = (\rho^m, \rho^{m+1}, \ldots, \rho^n, \ldots)$ so that ρ can be written $\rho = \rho^m, \rho^{m+1}, \ldots, \rho^n, \ldots$. We note $\text{min}(p) = m$ and $\text{max}(p) = \text{card}(p) + m - 1$.

A total ordered set $(\text{ind}(\rho, p), <) \subset \mathbb{N}^2$ is defined as follows:

\[\text{ind}(\rho, p) = \{(k, q) \in (\mathbb{N}^*)^2 | k \in [\text{min}(p), \text{max}(p)], q \in [\text{li}(\rho^k), \text{hi}(\rho^k)]\} \]

For every $\ell = (k, q), \ell' = (k', q') \in \text{ind}(\rho, p)$:

- If $k < k'$, then $\ell < \ell'$
- If $k = k'$ and $q < q'$, then $\ell < \ell'$
- If $k = k'$ and $q = q'$, then $\ell = \ell'$. If either $\ell < \ell'$ or $\ell = \ell'$, we note $\ell \leq \ell'$.

Definition 47 (Schedule notation). Let ρ be a schedule. Let p be a partition of ρ. For every $\ell = (k, q), \ell' = (k', q') \in \text{ind}(\rho, p)^2$, $\ell \leq \ell'$, we note (when this is allowed):

\[\rho_{|p, \ell} = \rho^1, \ldots, \rho^k | q \]

\[\rho_{|p, \ell'} = \rho(k)^q, \ldots, \rho(k')^q | \]

\[\ell | \rho_{|p, \ell'} = \rho(k)^q, \ldots, \rho(k')^q | q \]

The symbol ρ of the partition is removed when it is clear in the context.

Definition 48 (A-partition of a schedule). Let A be a PCA or a PSIOA. Let ρ_{AE} be a schedule. Since each task of ρ_{AE} is either a task of $\text{UA}(A)$ or not. It is always possible to build the unique partition of ρ_{AE}: $(\rho_{A}^1, \rho_{E}^1, \rho_{A}^2, \rho_{E}^2, \ldots)$ where ρ_{A}^k is a sequence of tasks of $\text{UA}(A)$ only and ρ_{E}^k does not contain any task of $\text{UA}(A)$. We call such a partition, the A-partition of ρ_{AE}.

Definition 49 (Environment corresponding schedule). Let A and B be two PCA or two PSIOA. Let ρ_{AE} and ρ_{BE} be two schedules. Let $(\rho_{A}^1, \rho_{E}^1, \rho_{A}^2, \rho_{E}^2, \ldots)$ (resp. ρ_{BE} : $(\rho_{B}^1, \rho_{E}^1, \rho_{B}^2, \rho_{E}^2, \ldots)$) be the A-partition (resp. B-partition) of ρ_{AE} (resp. ρ_{BE}). We say that ρ_{AE} and ρ_{BE} are AB-environment-corresponding if for every k, $\rho_{E}^k = \rho_{E}^k$.

In the following we introduce the notions of implementation and tenacious implementation and the conditions under which the monotonicity theorem holds.

Definition 50 (S_{AE}^A). Let A, B be PSIOA. Let \mathcal{E} be an environment of both A and B.

Let ρ and ρ' be two schedule. We say that $\rho S_{A,B,E}^A \rho'$ if:

- for every executions α, π of $A||\mathcal{E}$ and $B||\mathcal{E}$ respectively, s. t. $\alpha S_{A,B,E} \pi$, then

\[\text{apply}_{A,E}(\delta_{A,E}^{\alpha}(\ell, \rho'), \rho)(\alpha) = \text{apply}_{B,E}(\delta_{B,E}^{\pi}(\ell, \rho'), \rho')(\pi) \]

Definition 51 (Tenacious implementation). Let A, B be PSIOA. We say that A tenaciously implements B, noted $A \leq_{\text{ten}} B$, if for every schedule ρ, it exists an AB-environment-corresponding schedule ρ' s. t. for every environment \mathcal{E} of both A and B, for every $\ell = (2k, q)$, $\ell' = (2k', q') \in \text{ind}(\rho, p) \cap \text{ind}(\rho', \rho) \cap (\ell | \rho) S_{A,B,E}^A(\ell | \rho')$.

Definition 52 (\bowtie_{AB}-corresponding configurations). (see figure ??) Let $\Phi \subseteq \text{Autids}$, and A, B be SIOA identifiers. Then we define $\Phi[B|A] = (\Phi \setminus A) \cup \{B\}$ if $A \in \Phi$, and $\Phi[B|A] = \Phi$ if $A \notin \Phi$. Let C, D be configurations. We define $C \bowtie_{AB} D$ iff (1) $\text{auts}(D) = \text{auts}(C)[B|A]$, (2) for every $A' \notin \text{auts}(C) \setminus \{A\}$: $\text{map}(D)(A') = \text{map}(C)(A')$, and (3) $\text{ext}(A)(s) = \text{ext}(B)(t)$
where $s = \text{map}(C)(A), t = \text{map}(D)(B)$. That is, in \prec_{AB}-corresponding configurations, the SIOA other than A, B must be the same, and must be in the same state. A and B must have the same external signature. In the sequel, when we write $\Psi = \Phi[B/A]$, we always assume that $B \notin \Phi$ and $A \notin \Psi$.

Definition 53 (Creation corresponding configuration automata). Let X, Y be configuration automata and A, B be SIOA. We say that X, Y are creation-corresponding w.r.t. A, B iff

1. X never creates B and Y never creates A.
2. Let $\beta \in \text{traces}^*(X) \cap \text{traces}^*(Y)$, and let $\alpha \in \text{execs}(X), \pi \in \text{execs}(Y)$ be such that $\text{trace}_A(\alpha) = \text{trace}_A(\pi) = \beta$. Let $x = \text{last}(\alpha), y = \text{last}(\pi)$, i.e., x, y are the last states along α, π, respectively. Then $\forall a \in \text{sig}(X)(x) \cap \text{sig}(Y)(y) : \text{created}(Y)(y)(a) = \text{created}(X)(x)(a)[B/A].$

Definition 54 (Hiding corresponding configuration automata). Let X, Y be configuration automata and A, B be PSIOA. We say that X, Y are hiding-corresponding w.r.t. A, B iff

1. X never creates B and Y never creates A.
2. Let $\beta \in \text{traces}^*(X) \cap \text{traces}^*(Y)$, and let $\alpha \in \text{execs}(X), \pi \in \text{execs}(Y)$ be such that $\text{trace}_A(\alpha) = \text{trace}_A(\pi) = \beta$. Let $x = \text{last}(\alpha), y = \text{last}(\pi)$, i.e., x, y are the last states along α, π, respectively. Then $\text{hidden-actions}(Y)(y) = \text{hidden-actions}(X)(x)$.

Definition 55 (\mathcal{A}-fair PCA). Let $A \in \text{Autids}$. Let X be a PCA. We say that X is \mathcal{A}-fair if for every states q_X, q'_X, s.t. $\text{config}(X)(q_X) \setminus A = \text{config}(X)(q'_X) \setminus A$, then $\text{created}(X)(q_X) = \text{created}(X)(q'_X)$ and $\text{hidden-actions}(X)(q_X) = \text{hidden-actions}(X)(q'_X)$.

Definition 56 (\mathcal{A}-conservative PCA). Let X be a PCA, $A \in \text{Autids}$. We say that X is \mathcal{A}-conservative if it is \mathcal{A}-fair and for every state $q_X, C_x = \text{config}(X)(q_X)$ s.t. $A \in \text{aut}(C_X)$ and $\text{map}(C_X)(A) \triangleq q_A$, $\text{hidden-actions}(X)(q_X) = \text{hidden-actions}(X)(q_X) \setminus \text{ext}((A)(q_A))$.

Definition 57 (corresponding w. r. t. A, B). Let $A, B \in \text{Autids}$, X_A and X_B be PCA we say that X_A and X_B are corresponding w. r. t. A, B, if they verify:

- $\text{config}(X_A)(q_{X_A}) \prec_{AB} \text{config}(X_B)(q_{X_B}).$
- X, Y are creation-corresponding w.r.t. A, B
- X, Y are hiding-corresponding w.r.t. A, B
- X_A (resp. X_B) is a \mathcal{A}-conservative (resp. \mathcal{B}-conservative) PCA.

- (No creation from A and B)
 - $\forall q_{X_A}, \in \text{states}(X_A), \forall \text{act} \text{ verifying } \text{act} \notin \text{sig}(\text{config}(X_A)(q_{X_A}) \setminus \{A\}) \wedge \text{act} \in \text{sig}(\text{config}(X_A)(q_{X_A})), \text{created}(X_A)(q_{X_A})(\text{act}) = \emptyset$ and similarly $\forall q_{X_B}, \in \text{states}(X_B), \forall \text{act}' \text{ verifying } \text{act}' \notin \text{sig}(\text{config}(X_B)(q_{X_B}) \setminus \{B\}) \wedge \text{act}' \in \text{sig}(\text{config}(X_B)(q_{X_B})), \text{created}(X_B)(q_{X_B})(\text{act}') = \emptyset$

Theorem 58 (Implementation monotonicity wrt creation/destruction). Let A, B be PSIOA. Let X_A, X_B be PCA corresponding w.r.t. A, B.

If A tenaciously implements B ($A \leq_{\text{ten}} B$) then X_A tenaciously implements X_B ($X_A \leq_{\text{ten}} X_B$).

References

Probabilistic Dynamic Input Output Automata

Pierre Civit
Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, F-75005 Paris, France
pierre.civit@lip6.fr

Maria Potop-Butucaru
Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, F-75005 Paris, France
maria.potop-butucaru@lip6.fr

Abstract

We present probabilistic dynamic I/O automata, a framework to model dynamic probabilistic systems. Our work extends dynamic I/O Automata formalism [1] to probabilistic setting. The original dynamic I/O Automata formalism included operators for parallel composition, action hiding, action renaming, automaton creation, and behavioral sub-typing by means of trace inclusion. They can model mobility by using signature modification. They are also hierarchical: a dynamically changing system of interacting automata is itself modeled as a single automaton. Our work extends to probabilistic settings all these features. Furthermore, we prove necessary and sufficient conditions to obtain the implementation monotonicity with respect to automata creation and destruction. Our work lays down the premises for extending composable secure emulation [3] to dynamic settings, an important tool towards the formal verification of protocols combining probabilistic distributed systems and cryptography in dynamic settings (e.g. blockchains, secure distributed computation, cybersecurity distributed protocols etc).

2012 ACM Subject Classification C.2.4 Distributed Systems

Keywords and phrases distributed dynamic systems, probabilistic automata, foundations

Digital Object Identifier 10.4230/LIPIcs...

Introduction

Distributed computing area faces today important challenges coming from modern applications such as cryptocurrencies and blockchains which have a tremendous impact in our society. Blockchains are an evolved form of the distributed computing concept of replicated state machine, in which multiple agents see the evolution of a state machine in a consistent form. At the core of both mechanisms there are distributed computing fundamental elements (e.g. communication primitives and semantics, consensus algorithms, and consistency models) and also sophisticated cryptographic tools. Recently, [5] stated that despite the tremendous interest about blockchains and distributed ledgers, no formal abstraction of these objects has been proposed. In particular it was stated that there is a need for the formalization of the distributed systems that are at the heart of most cryptocurrency implementations, and leverage the decades of experience in the distributed computing community in formal specification when designing and proving various properties of such systems. Therefore, an extremely important aspect of blockchain foundations is a proper model for the entities involved and their potential behavior. The formalisation of blockchain area has to combine models of underlying distributed and cryptographic building blocks under the same hood.
The formalisation of distributed systems has been pioneered by Lynch and Tuttle [6]. They proposed the formalism of Input/Output Automata to model deterministic distributed system. Later, this formalism is extended with Markov decision processes [7] to give Probabilistic Input/Output Automata [9] in order to model randomized distributed systems. In this model each process in the system is a automaton with probabilistic transitions. The probabilistic protocol is the parallel composition of the automata modeling each participant. This framework has been further extended in [2] to task-structured probabilistic Input/Output automata specifically designed for the analysis of cryptographic protocols. Task-structured probabilistic Input/Output automata are Probabilistic Input/Output automata extended with tasks structures that are equivalence classes on the set of actions. They define the parallel composition for this type of automata. Inspired by the literature in security area they also define the notion of implementation. Informally, the implementation of a Task-structured probabilistic Input/Output automata should look "similar" to the specification whatever the external environment of execution. Furthermore, they provide compositional results for the implementation relation. Even thought the formalism proposed in [2] has been already used in the verification of various cryptographic protocols this formalism does not capture the dynamicity in blockchains systems such as Bitcoin or Ethereum where the set of participants dynamically changes. Moreover, this formalism does not cover blockchain systems where subchains can be created or destroyed at run time [8].

Interestingly, the modelisation of dynamic behavior in distributed systems is an issue that has been addressed even before the born of blockchain systems. The increase of dynamic behavior in various distributed applications such as mobile agents and robots motivated the Dynamic Input Output Automata formalism introduced in [1]. This formalism extends the Input/Output Automata formalism with the ability to change their signature dynamically (i.e. the set of actions in which the automaton can participate) and to create other I/O automata or destroy existing I/O automata. The formalism introduced in [1] does not cover the case of probabilistic distributed systems and therefore cannot be used in the verification of blockchains such as Algorand [4].

Our contribution. In order to cope with dynamicity and probabilistic nature of blockchain systems we propose an extension of the formalisms introduced in [2] and [1]. Our extension use a refined definition of probabilistic configuration automata in order to cope with dynamic actions. The main result of our formalism is as follows: the implementation of probabilistic configuration automata is monotonic to automata creation and destruction. Our work is an intermediate step before defining composable secure-emulation [3] in dynamic settings.

Paper organization. The paper is organized as follow. Section 2 is dedicated to a brief introduction of the notion of probabilistic measure an recalls notations used in defining Signature I/O automata of [1]. Section 3 builds on the frameworks proposed in [1] and [2] in order to lay down the preliminaries of our formalism. More specifically, we introduce the definitions of probabilistic signed I/O automata and define their composition and implementation. In Section 4 we extend the definition of configuration automata proposed in [1] to probabilistic configuration automata then we define the composition of probabilistic configuration automata and prove its closeness. The key result of our formalisation, the monotonicity of PSIOA implementations with respect to creation and destruction, is presented in Section 8. This result is based on intermediate results presented in sections 5, 6 and 7.
2 Preliminaries on probability and measure

We assume our reader is comfortable with basic notions of probability theory, such as σ-fields and (discrete) probability measures. A measurable space is denoted by (S, \mathcal{F}_s), where S is a set and \mathcal{F}_s is a σ-algebra over S that is $\mathcal{F}_s \subseteq \mathcal{P}(S)$, is closed under countable union and complementation and its members are called measurable sets ($\mathcal{P}(S)$ denotes the power set of S). A measure over (S, \mathcal{F}_s) is a function $\eta : \mathcal{F}_s \rightarrow \mathbb{R}^\geq 0$, such that $\eta(\emptyset) = 0$ and for every countable collection of disjoint sets $\{S_i\}_{i \in I}$ in \mathcal{F}_s, $\eta(\bigcup_{i \in I} S_i) = \sum_{i \in I} \eta(S_i)$. A probability measure (resp. sub-probability measure) over (S, \mathcal{F}_s) is a measure η such that $\eta(S) = 1$ (resp. $\eta(S) < 1$). A measure space is denoted by (S, \mathcal{F}_s, η) where η is a measure on (S, \mathcal{F}_s).

The product measure space $(S_1, \mathcal{F}_{s_1}, \eta_1) \otimes (S_2, \mathcal{F}_{s_2}, \eta_2)$ is the measure space $(S_1 \times S_2, \mathcal{F}_{s_1} \otimes \mathcal{F}_{s_2}, \eta_1 \otimes \eta_2)$, where $\mathcal{F}_{s_1} \otimes \mathcal{F}_{s_2}$ is the smallest σ-algebra generated by sets of the form $\{A \times B | A \in \mathcal{F}_{s_1}, B \in \mathcal{F}_{s_2}\}$ and $\eta_1 \otimes \eta_2$ is the unique measure s. t. for every $C_1 \in \mathcal{F}_{s_1}, C_2 \in \mathcal{F}_{s_2}, \eta_1 \otimes \eta_2(C_1 \times C_2) = \eta_1(C_1)\eta_2(C_2)$. If S is countable, we note $\mathcal{P}(S) = 2^S$. If S_1 and S_2 are countable, we note have $2^{S_1} \otimes 2^{S_2} = 2^{S_1 \times S_2}$.

A discrete probability measure on a set S is a probability measure η on $(S, 2^S)$, such that, for each $C \subseteq S$, $\eta(S) = \sum_{c \in C} \eta(c)$. We define $\text{Disc}(S)$ to be, the set of discrete probability measures on S. In the sequel, we often omit the set notation when we denote the measure of a singleton set. For a discrete probability measure η on a set S, $\text{supp}(\eta)$ denotes the support of η, that is, the set of elements $s \in X$ such that $\eta(s) \neq 0$. Given set S and a subset $C \subset S$, the Dirac measure δ_C is the discrete probability measure on S that assigns probability 1 to C. For each element $s \in S$, we note δ_s for $\delta_{\{s\}}$.

If $\{m_i\}_{i \in I}$ is a countable family of measures on (S, \mathcal{F}_s), and $\{p_i\}_{i \in I}$ is a family of non-negative values, then the expression $\sum_{i \in I} p_i m_i$ denotes a measure μ on (S, \mathcal{F}_s) such that, for each $C \in \mathcal{F}_s$, $\mu(C) = \sum_{i \in I} p_i f_i(C)$. A function $f : X \rightarrow Y$ is said to be measurable from (X, \mathcal{F}_X) to (Y, \mathcal{F}_Y) if the inverse image of each element of \mathcal{F}_Y is an element of \mathcal{F}_X, that is, for each $C \in \mathcal{F}_Y$, $f^{-1}(C) \in \mathcal{F}_X$. In such a case, given a measure η on (X, \mathcal{F}_X), the function $f(\eta)$ defined on \mathcal{F}_Y by $f(\eta)(C) = \eta(f^{-1}(C))$ for each $C \in Y$ is a measure on (Y, \mathcal{F}_Y) and is called the image measure of η under f.

3 PSIOA

3.1 Action Signature

We use the signature approach from [1].

We assume the existence of a countable set Auts of unique probabilistic signature input/output automata (PSIOA) identifiers, an underlying universal set Auts of PSIOA, and a mapping $\text{aut} : \text{Auts} \rightarrow \text{Auts}$. $\text{aut}(A)$ is the PSIOA with identifier A. We use "the automaton A" to mean "the PSIOA with identifier A". We use the letters A, B, possibly subscripted or primed, for PSIOA identifiers. The executable actions of a PSIOA A are drawn from a signature $\text{sig}(A)(q) = (\text{in}(A)(q), \text{out}(A)(q), \text{int}(A)(q))$, called the state signature, which is a function of the current state q of A.

$\text{in}(A)(q), \text{out}(A)(q), \text{int}(A)(q)$ are pairwise disjoint sets of input, output, and internal actions, respectively. We define $\text{ext}(A)(q)$, the external signature of A in state q, to be $\text{ext}(A)(q) = (\text{in}(A)(q), \text{out}(A)(q))$.

We define $\text{local}(A)(q)$, the local signature of A in state q, to be $\text{local}(A)(q) = (\text{out}(A)(q), \text{in}(A)(q))$.
For any signature component, generally, the $\hat{\cdot}$ operator yields the union of sets of actions within the signature, e.g., $\hat{\text{sig}}(A) : q \in Q \mapsto \hat{\text{sig}}(A)(q) = \text{in}(A)(q) \cup \text{out}(A)(q) \cup \text{int}(A)(q)$.

Also define $\hat{\text{acts}}(A) = \bigcup_{q \in Q} \hat{\text{sig}}(A)(q)$, that is $\hat{\text{acts}}(A)$ is the 'universal' set of all actions that A could possibly execute, in any state. In the same way $\hat{\text{UI}}(A) = \bigcup_{q \in Q} \text{in}(A)(q)$, $\hat{\text{UO}}(A) = \bigcup_{q \in Q} \text{out}(A)(q)$, $\hat{\text{UL}}(A) = \bigcup_{q \in Q} \text{local}(A)(q)$, $\hat{\text{UE}}(A) = \bigcup_{q \in Q} \text{exit}(A)(q)$.

3.2 PSIOA

We combine the SIOA of [1] with the PIOA of [9]:

Definition 1. A PSIOA $A = (Q, \bar{q}, \text{sig}(A), D)$, where:

- (a) Q is a countable set of states, $(Q, 2^Q)$ is a measurable space called the state space, and \bar{q} is the start state.
- (b) $\text{sig}(A) : q \in Q \mapsto \text{sig}(A)(q) = (\text{in}(A)(q), \text{out}(A)(q), \text{int}(A)(q))$ is the signature function that maps each state to a triplet of countable input, output and internal set of actions.
- (d) $D \subset Q \times \text{acts}(A) \times \text{Disc}(Q)$ is the set of probabilistic discrete transitions where $\forall (q, a, \eta) \in D : a \in \hat{\text{sig}}(A)(q)$. If (q, a, η) is an element of D, we write $q \xrightarrow{a} \eta$ and action a is said to be *enabled* at q. The set of states in which action a is enabled is denoted by E_a. For $B \subseteq A$, we define E_B to be $\bigcup_{a \in B} E_a$. The set of actions enabled at q is denoted by $\hat{\text{enabled}}(q)$. If a single action $a \in B$ is enabled at q and $q \xrightarrow{a} \eta$, then this η is denoted by $\eta(A,q,B)$. If B is a singleton set $\{a\}$ then we drop the set notation and write $\eta(A,q,a)$.

In addition A must satisfy the following conditions:

- E_1 (Input action enabling) $\forall x \in Q : \forall a \in \text{in}(A)(q), \exists \eta \in \text{Disc}(Q) : (q, a, \eta) \in D$.
- T_1 Transition determinism: For every $q \in Q$ and $a \in A$ there is at most one $\eta \in \text{Disc}(Q)$ such that $(q, a, \eta) \in D$.

Notation

For every PSIOA $A = (Q, \bar{q}, \text{sig}(A), D)$, we note $\text{states}(A) = Q$, $\text{start}(A) = \bar{q}$, $\text{steps}(A) = D$.

3.3 Execution, Trace

We use the classic notions of execution and trace from [9].

Definition 2 (fragment, execution and trace of PSIOA). An *execution fragment* of a PSIOA $A = (Q, \bar{q}, \text{sig}(A), D)$ is a finite or infinite sequence $\alpha = q_0a_1q_1a_2...$ of alternating states and actions, such that:

1. If α is finite, it ends with a state.
2. For every non-final state q_i, there is $\eta \in \text{Disc}(Q)$ and a transition $(q_i, a_{i+1}, \eta) \in D$ s. t. $q_{i+1} \in \text{supp}(\eta)$.

We use $\text{fstate}(\alpha)$ for q_0 (the first state of α), and if α is finite, we write $\text{lstate}(\alpha)$ for its last state. We use $\text{Ffrags}(A)$ (resp., $\text{Ffrags}^*(A)$) to denote the set of all (resp., all finite) execution fragments of A. An *execution* of A is an execution fragment α with $\text{fstate}(\alpha) = \bar{q}$. $\text{Execs}(A)$ (resp., $\text{Execs}^*(A)$) denotes the set of all (resp., all finite) executions of A. The *trace* of an execution fragment α, written $\text{trace}(\alpha)$, is the restriction of α to the external
actions of A. We say that β is a trace of A if there is $\alpha \in \text{Execs}(P)$ with $\beta = \text{trace}(\alpha)$.

$\text{Traces}(A)$ (resp., $\text{Traces}^*(A)$) denotes the set of all (resp., all finite) traces of A.

Definition 3 (reachable execution). Let $A = (Q, q, \text{sig}(A), D)$ be a PSIOA. A state q is said reachable if it exists a finite execution that ends with q.

3.4 Compatibility and composition

The main aim of IO formalism is to compose several automata $A = (A_1, \ldots, A_n)$ and obtain some guarantees of the system by composition of the guarantees of the different elements of the system. Some syntaxic rules have to be satisfied before defining the composition operation.

Definition 4 (Compatible signatures). Let S be a set of signatures. Then S is compatible if, $\forall \text{sig}, \text{sig}' \in S$, where $\text{sig} = (\text{in}, \text{out}, \text{int})$, $\text{sig}' = (\text{in}', \text{out}', \text{int}')$ and $\text{sig} \neq \text{sig}'$, we have:

1. $(\text{in} \cup \text{out} \cup \text{int}) \cap \text{int}' = \emptyset$, and
2. $\text{out} \cap \text{out}' = \emptyset$.

Definition 5 (Composition of Signatures). Let $\Sigma = (\text{in}, \text{out}, \text{int})$ and $\Sigma' = (\text{in}', \text{out}', \text{int}')$ be compatible signatures. Then we define their composition $\Sigma \times \Sigma = (\text{in} \cup \text{in}' - (\text{out} \cup \text{out}'), \text{out} \cup \text{out}', \text{int} \cup \text{int}')$.

Signature composition is clearly commutative and associative.

Definition 6 (partially compatible at a state). Let $A = (A_1, \ldots, A_n)$ be a set of PSIOA. A state of A is an element $q = (q_1, \ldots, q_n) \in Q = Q_1 \times \ldots \times Q_n$. We say A_1, \ldots, A_n are partially-compatible at state q (or A is) if $\{\text{sig}(A_1)(q_1), \ldots, \text{sig}(A_n)(q_n)\}$ is a set of compatible signatures. In this case we note $\text{sig}(A)(q) = \text{sig}(A_1)(q_1) \times \ldots \times \text{sig}(A_n)(q_n)$ and we note $\eta_{A,q,a} \in \text{Disc}(Q)$, s. t. for every action $a \in \text{sig}(A)(q)$, $\eta_{A,q,a} = \eta_1 \otimes \ldots \otimes \eta_n \in \text{Disc}(Q)$ that verifies for every $j \in [1, n]$:

- $a \in \text{sig}(A_j)(q_j)$, $\eta_j = \eta_{A_j,q_j,a}$,
- Otherwise, $\eta_j = \delta_{q_j}$

while $\eta_{A,q,a} = \delta_q$ if $a \notin \text{sig}(A)(q)$.

Definition 7 (pseudo execution). Let $A = (A_1, \ldots, A_n)$ be a set of PSIOA. A pseudo execution fragment of A is a finite or infinite sequence $\alpha = q^0 \sigma_1 q^1 \sigma_2 \ldots$ of alternating states of A and actions, such that:

- If α is finite, it ends with a n-uplet of state.
- For every non final state q^i, A is partially-compatible at q^i.
- For every action σ_i, $\sigma_i \in \text{sig}(A)(q^i-1)$.
- For every state q^i, with $i > 0$, $q^i \in \text{supp}(\eta_{A,q^{i-1},\sigma_i})$.

A pseudo execution of A is a pseudo execution fragment of A with $q^0 = (q_{A_1}, \ldots, q_{A_n})$.

Definition 8 (reachable state). Let $A = (A_1, \ldots, A_n)$ be a set of PSIOA. A state q of A is reachable if it exists a pseudo execution α of A ending on state q.

Definition 9 (partially-compatible PSIOA). Let $A = (A_1, \ldots, A_n)$ be a set of PSIOA. The automata A_1, \ldots, A_n are ℓ-partially-compatible with $\ell \in \mathbb{N}$ if no pseudo-execution α of A with $|\alpha| \leq \ell$ ends on non-partially-compatible state q. The automata A_1, \ldots, A_n are partially-compatible if A is partially-compatible at each reachable state q, i. e. A is ℓ-partially-compatible for every $\ell \in \mathbb{N}$.

Figure 1 The family transition is obtained by the transitions of the automata in the family.

Definition 10 (Compatible PSIOA). Let $\mathcal{A} = (A_1, \ldots, A_n)$ be a set of PSIOA with $A_i = ((Q_i, F_{Q_i}), \text{sig}(A_i), D_i)$. We say \mathcal{A} is compatible if it is partially-compatible for every state $q = (q_1, \ldots, q_n) \in Q_1 \times \ldots \times Q_n$.

Of course a set of compatible PSIOA is also a set of partially-compatible automata. The latter allows us to extend the formalism of [1] which will be useful later.

Definition 11 (PSIOAs composition). If $\mathcal{A} = (A_1, \ldots, A_n)$ is a compatible set of PSIOAs, with $A_i = ((Q_i, F_{Q_i}), \text{sig}(A_i), D_i)$, then their composition $A_1|||\ldots|||A_n$, is defined to be $\mathcal{A} = ((Q, \bar{q}, \text{sig}(\mathcal{A})), D)$, where:

- $Q = Q_1 \times \ldots \times Q_n$
- $\bar{q} = (\bar{q}_1, \ldots, \bar{q}_n)$
- $\text{sig}(\mathcal{A}) : q = (q_1, \ldots, q_n) \in Q \mapsto \text{sig}(\mathcal{A})(q) = \text{sig}(A_1)(q_1) \times \ldots \times \text{sig}(A_n)(q_n)$.
- $D \subseteq Q \times \mathbb{A} \times \text{Disc}(Q)$ is the set of triples $(q, a, \eta(\mathcal{A}, q, a))$ so that $q \in Q$ and $a \in \text{sig}(\mathcal{A})(q)$.

Definition 12 (partially-compatible PSIOA composition). If $\mathcal{A} = (A_1, \ldots, A_n)$ is a partially-compatible set of PSIOA, with $A_i = ((Q_i, F_{Q_i}), \text{sig}(A_i), D_i)$, then their partial-composition $A_1|||\ldots|||A_n$, is defined to be $\mathcal{A} = ((Q, \bar{q}, \text{sig}(\mathcal{A})), D)$, where:

- $Q = \{q \in Q_1 \times \ldots \times Q_n | q$ is a reachable state of $\mathcal{A}\}$.
- $\bar{q} = (\bar{q}_1, \ldots, \bar{q}_n)$
- $\text{sig}(\mathcal{A}) : q = (q_1, \ldots, q_n) \in Q \mapsto \text{sig}(\mathcal{A})(q) = \text{sig}(A_1)(q_1) \times \ldots \times \text{sig}(A_n)(q_n)$.
- $D \subseteq Q \times \mathbb{A} \times \text{Disc}(Q)$ is the set of triples $(q, a, \eta(\mathcal{A}, q, a))$ so that $q \in Q$ and $a \in \text{sig}(\mathcal{A})(q)$.
3.5 Measure for executions and traces

To solve the non-determinism we use schedule that allows us to chosen an action in a signature. To do so, we adapt the definition of task of [2] to the dynamic setting. We assume the existence of a subset $Autids_0 \subset Autids$ that represents the 'atomic ententies' that will constitute the configuration automata introduced in the next section.

Definition 13 (Constitution). For every $A \in Autids$, we note

$$ constitution(A) : \begin{cases} \text{states}(A) & \rightarrow & P(Autids_0) = 2^{Autids_0} \\ q & \mapsto & constitution(A)(q) \end{cases} $$

For every $A \in Autids_0$, for every $q \in \text{states}(A)$, $constitution(A)(q) = \{A\}$.

For every $A = (A_1, \ldots, A_n) \in (Autids_0)^n$, $A = A_1 || \ldots || A_n$ for every $q \in \text{states}(A)$, $constitution(A)(q) = A$.

In the next section we will define the constitution mapping for a new kind of automata, with a 'dynamic' constitution that can change from one state to another one.

Definition 14 (Task). A task T is a pair $(id, actions)$ where $id \in Autids_0$ and actions is a set of action labels. Let $T = (id, actions)$, we note $id(T) = id$ and $actions(T) = actions$.

Definition 15 (Enabled task). Let $A \in Autids$. A task T is said enabled in state $q \in \text{states}(A)$ if:

1. $id(T) \in constitution(A)(q)$
2. It exists a unique local action $a \in \text{loc}(A)(q) \cap actions(T)$ (noted $a \in T$ to simplify) enabled at state q (that is it exists $\eta \in Disc(Q)$ s.t. $(q, a, \eta) \in D$.

In this case we say that a is triggered by T at state q.

We are not dealing with a schedule of a specific automaton anymore, which differs from [2]. However the restriction of our definition to 'static' setting matches their definition.

Definition 16 (schedule). A schedule ρ is a (finite or infinite) sequence of tasks.

We use the measure of [2].

Definition 17. Let A be a PSIOA. Given $\mu \in Disc(Frags(A))$ a discrete probability measure on the execution fragments and a task schedule ρ, $\text{apply}(\mu, \rho)$ is a probability measure on $Frags(A)$. It is defined recursively as follows.

1. $apply_A(\mu, \lambda) := \mu$. Here λ denotes the empty sequence.
2. For every T and $\alpha \in Frags^*(A)$, $apply(\mu, T)(\alpha) := p_1(\alpha) + p_2(\alpha)$, where:
 $$ p_1(\alpha) = \begin{cases} \mu(\alpha')\eta(A_\alpha, A_0)'(q) & \text{if } \alpha = \alpha'q, q' = \text{last}(\alpha', \alpha) \text{ and } a \text{ is triggered by } T \\ 0 & \text{otherwise} \end{cases} $$
 $$ p_2(\alpha) = \begin{cases} \mu(\alpha) & \text{if } T \text{ is not enabled after } \alpha \\ 0 & \text{otherwise} \end{cases} $$

3. If ρ is finite and of the form ρT, then $apply_A(\mu, \rho) := apply_A(apply_A(\mu, \rho'), T)$.
4. If ρ is infinite, let ρ_i denote the length-i prefix of ρ and let pm_i be $apply_A(\mu, \rho_i)$. Then
 $$ apply_A(\mu, \rho) := \lim_{i \to \infty} pm_i $$

$$ tdist_A(\mu, \rho) : \text{Traces}_A \to [0, 1] $$ is defined as $tdist_A(\mu, \rho)(E) = apply(\delta_{\rho}, \rho)(\text{trace}_A^{-1}(E))$, for any measurable set $E \in F_{\text{Traces}_A}$.
273 Figure 2 Non-deterministic execution: The scheduler allows us to solve the non-determinism, by triggering an action among the enabled one. We give an example with an automaton $A = (\mathcal{Q}, \delta, q_0, \text{sig}(A), D_A)$ and the tasks T_y, T_o, T_p, T_b (for green, orange, pink, blue) with the respective actions $\{a\}$, $\{d\}$, $\{b, b'\}$, $\{c, c'\}$, and the tasks T_{yo}, T_{bo} with the respective actions $\{a, d\}$, $\{c, c', d\}$. At state q_0, $\text{sig}(A)(q_0) = (\emptyset, \{a\}, \{d\})$. Hence both a and d are enabled local action at q_0, which means both T_y and T_o are enabled at state q_0, but T_{yo} is not enabled at state q_0 since it does not solve the non-determinism (a and d are enabled local action at q_0). At state q_1, T_p is enabled but neither T_o or T_b. We give some results: $\text{apply}(\delta, T_y, T_o)(q_0, a, q_1, \emptyset, b, q_2, w) = 1/2$ $\text{apply}(\delta, T_y, T_o, T_b)(q_0, a, q_1, \emptyset, b, q_2, c, q_3, w) = 3/8$, since T_o is not enabled at state q_3, w.

276 We write $\text{tdist}_A(\mu, \rho)$ as shorthand for $\text{tdist}_A(\text{apply}_A(\mu, \rho))$ and $\text{tdist}_A(\rho)$ for $\text{tdist}_A(\text{apply}_A(\delta(\bar{x}), \rho))$, where $\delta(\bar{x})$ denotes the measure that assigns probability 1 to \bar{x}. A trace distribution of A is any $\text{tdist}_A(\rho)$. We use $Tdist_A$ to denote the set $\{\text{tdist}_A(\rho) : \rho$ is a task schedule $\}$.

278 We removed the subscript A when this is clear in the context.

3.6 Implementation

- **Definition 18** (Environment). A probabilistic environment for PSIOA A is a PSIOA \mathcal{E} such that A and \mathcal{E} are partially-compatible.

- **Definition 19** (External behavior). The external behavior of a PSIOA A, written as ExtBeh_A, is defined as a function that maps each environment \mathcal{E} for A to the set of trace distributions $Tdist_A(\mathcal{E})$.

- **Definition 20** (Comparable PSIOA). Two PSIOA A_1 and A_2 are comparable if $UI(A_1) = UI(A_2)$ and $UO(A_1) = UO(A_2)$.

- **Definition 21**. If A_1 and A_2 are comparable then A_1 is said to implement A_2, written as $A_1 \leq A_2$, if, for every environment \mathcal{E} for both A_1 and A_2, $\text{ExtBeh}_A_1(\mathcal{E}) \subseteq \text{ExtBeh}_A_2(\mathcal{E})$.
This definition of implementation as a functional map from environment automata gives us the desired compositionality result for task-PSIOAs.

\textbf{Theorem 22.} Suppose \(A_1, A_2 \) and \(B \) are PSIOAs, where \(A_1, A_2 \) are comparable and \(A_1 \leq A_2 \). If \(B \) is compatible with \(A_1, A_2 \) then \(A_1||B \leq A_2||B \).

\textbf{Proof.} Immediate with the associativity of the parallel composition. Indeed, if \(E \) is an environment for both \(A_1||B \) and \(A_2||B \), then \(E' = B||E \) is an environment for both \(A_1 \) and \(A_2 \). Since \(A_1 \leq A_2 \), for any schedule \(\rho \), it exists a corresponding schedule \(\rho' \), s. t. \(\text{tdist}_{A_1||B}(\rho') = \text{tdist}_{A_2||B}(\rho) \). Thus, for any schedule \(\rho \), it exists a corresponding schedule \(\rho' \) s. t. \(\text{tdist}_{A_1||B}(\rho') = \text{tdist}_{A_2||B}(\rho) \), that is \(A_1||B \leq A_2||B \).

\subsection{3.7 Hiding operator}

We anticipate the definition of configuration automata by introducing the classic hiding operator.

\textbf{Definition 23 (hiding on signature).} Let \(\text{sig} = (\text{in}, \text{out}, \text{int}) \) be a signature and \(\text{acts} \) a set of actions. We note \(\text{hide} \text{sig}, \text{acts} \) the signature \(\text{sig}' = (\text{in}', \text{out}', \text{int}') \) s. t.

\begin{align*}
\text{in}' &= \text{in} \\
\text{out}' &= \text{out} \setminus \text{acts} \\
\text{int}' &= \text{int} \cup (\text{out} \cap \text{acts})
\end{align*}

\textbf{Definition 24 (hiding on PSIOA).} Let \(A = (Q, \bar{q}, \text{sig}(A), D) \) be a PSIOA. Let \(\text{hiding}-\text{actions} \) a function mapping each state \(q \in Q \) to a set of actions. We note \(\text{hide} \text{(A, hiding-} \text{actions)} \) the PSIOA \((Q, \bar{q}, \text{sig}'(A), D) \), where \(\text{sig}'(A) : q \in Q \rightarrow \text{hide} \text{sig(A)}(q), \text{hiding-} \text{actions}(q) \).

\textbf{Lemma 25 (hiding and composition are commutative).} Let \(\text{sig}_a = (\text{in}_a, \text{out}_a, \text{int}_a) \), \(\text{sig}_b = (\text{in}_b, \text{out}_b, \text{int}_b) \) be compatible signature and \(\text{acts}_a, \text{acts}_b \) some set of actions, s. t. \((\text{acts}_a \cap \text{out}_a) \cap \text{sig}_a = \emptyset \) and \((\text{acts}_b \cap \text{out}_b) \cap \text{sig}_b = \emptyset \), then \(\text{sig}'_a \triangleq \text{hide} \text{sig}_a, \text{acts}_a \triangleq (\text{in}'_a, \text{out}'_a, \text{int}'_a) \) and \(\text{sig}'_b \triangleq \text{hide} \text{sig}_b, \text{acts}_b \triangleq (\text{in}'_b, \text{out}'_b, \text{int}'_b) \) are compatible. Furthermore, if \(\text{out}_b \cap \text{acts}_a = \emptyset \) and \(\text{out}_a \cap \text{acts}_b = \emptyset \) then \(\text{sig}'_a \times \text{sig}'_b \triangleq \text{hide} \text{sig}_a \times \text{sig}_b, \text{acts}_a \cup \text{acts}_b \).

\textbf{Proof.} = compatibility: After hiding operation, we have:

\begin{align*}
\text{in}'_a &= \text{in}_a, \text{in}'_b = \text{in}_b \\
\text{out}'_a &= \text{out}_a \setminus \text{acts}_a, \text{out}'_b &= \text{out}_b \setminus \text{acts}_b \\
\text{int}'_a &= \text{int}_a \cup (\text{out}_a \cap \text{acts}_a), \text{int}'_b &= \text{int}_b \cup (\text{out}_b \cap \text{acts}_b)
\end{align*}

Since \(\text{out}_a \cap \text{out}_b = \emptyset \), a fortiori \(\text{out}'_a \cap \text{out}'_b = \emptyset \). \(\text{int}_a \cap \text{sig}_b = \emptyset \), thus if \(\text{out}_a \cap \text{acts}_a \cap \text{sig}_a = \emptyset \), then \(\text{int}'_a \cap \text{sig}_b = \emptyset \) and with the symmetric argument, \(\text{int}'_b \cap \text{sig}_a = \emptyset \). Hence, \(\text{sig}'_a \) and \(\text{sig}'_b \) are compatible.

= commutativity:

After composition of \(\text{sig}'_a \times \text{sig}'_b \) operation, we have:

\begin{align*}
\text{out}'_c &= \text{out}'_a \setminus \text{out}'_b = (\text{out}_a \setminus \text{acts}_a) \cup (\text{out}_b \setminus \text{acts}_b). \text{ If } \text{out}_b \cap \text{acts}_a = \emptyset \text{ and } \text{out}_a \cap \text{acts}_b = \emptyset, \text{ then } \text{out}'_c = (\text{out}_a \cup \text{out}_b) \setminus (\text{acts}_a \cup \text{acts}_b). \\
\text{int}'_c &= \text{int}_a \cup \text{int}_b \setminus \text{out}'_c = \text{int}_a \cup \text{int}_b \setminus \text{out}_c \\
\text{int}'_d &= \text{int}_a \cup \text{int}_b = \text{int}_a \cup (\text{out}_a \cap \text{acts}_a) \cup \text{int}_b \cup (\text{out}_b \cap \text{acts}_b) = \text{int}_a \cup \text{int}_b \cup (\text{out}_a \cap \text{acts}_a) \cup (\text{out}_b \cap \text{acts}_b) \cup (\text{acts}_a \cup \text{acts}_b). \text{ If } \text{out}_b \cap \text{acts}_a = \emptyset \text{ and } \text{out}_a \cap \text{acts}_b = \emptyset, \text{ then } \text{int}'_d = \text{int}_a \cup \text{int}_b \cup (\text{out}_a \cap \text{out}_b) \cap (\text{acts}_a \cup \text{acts}_b) \text{ and after composition of } \text{sig}_d = \text{sig}_a \times \text{sig}_b \)
We combine the notion of configuration of [1] with the probabilistic setting of [9].

3.8 State renaming operator

We anticipate the definition of isomorphism between PSIOA that differs only syntactically.

Definition 26. (State renaming for PSIOA) Let A be a PSIOA with Q_A as set of states, let $Q_{A'}$ be another set of states and let $\text{ren} : Q_A \to Q_{A'}$ be a bijective mapping. Then $\text{ren}(A)$ is the automaton given by:

- $\text{start}(\text{ren}(A)) = \text{ren}(\text{start}(Q_A))$
- $\text{states}(\text{ren}(A)) = \text{ren}(\text{states}(Q_A))$
- $\forall q_A \in \text{states}(\text{ren}(A)), \text{sig}(\text{ren}(A))(q_A) = \text{sig}(A)(\text{ren}^{-1}(q_A))$
- $\forall q_A \in \text{states}(\text{ren}(A)), \forall a \in \text{acts}(\text{ren}(A))(q_A)$, if $(\text{ren}^{-1}(q_A), a, \eta) \in D_A$, then $(q_{A'}, a, \eta') \in D_{\text{ren}(A)}$ where $\eta' \in \text{Disc}(Q_{A'}, F_{Q_{A'}})$ and for every $q_{A''} \in \text{states}(\text{ren}(A))$, $\eta'(q_{A''}) = \eta(\text{ren}^{-1}(q_{A''}))$.

Definition 27. (State renaming for PSIOA execution) Let A and A' be two PSIOA s. t. $A' = \text{ren}(A')$. Let $\alpha = q^0a^1q^1...$ be an execution fragment of A. We note $\text{ren}(\alpha)$ the sequence $\text{ren}(q^0)a^1\text{ren}(q^1)...$.

Lemma 28. Let A and A' be two PSIOA s. t. $A' = \text{ren}(A')$. Let α be an execution fragment of A. The sequence $\text{ren}(\alpha)$ is an execution fragment of A.

Proof. Let $q^0a^{i+1}q^{i+1}$ be a subsequence of α. $\text{ren}(q^i) \in \text{states}(A')$ by definition, $q^i \in \text{sig}(A')(\text{ren}(q^i))$ since $\text{sig}(A')(\text{ren}(q^i)) = \text{sig}(A)(q^i)$, and $\eta_{(A',\text{ren}(q^i),a^{i+1})}^{(\text{ren}(q^{i+1}))} = \eta_{(A,q^i,a^{i+1})}^{(q^{i+1})} > 0$.

4 Probabilistic Configuration Automata

We combine the notion of configuration of [1] with the probabilistic setting of [9].
4.1 Configuration

Definition 29 (Configuration). A configuration is a pair \((A, S)\) where

- \(A = (A_1, \ldots, A_n)\) is a finite sequence of PSIOA identifiers (lexicographically ordered \(^1\)),
- and
- \(S\) maps each \(A_k \in A\) to an \(s_k \in \text{states}(A_k)\).

In distributed computing, configuration usually refers to the union of states of all the automata of the system. Here, the notion is different, it captures a set of some automata (\(A\)) in their current state (\(S\)).

Definition 30 (Compatible configuration). A configuration \((A, S)\) is compatible iff, for all \(A, B \in A, A \neq B\):

1. \(\text{sig}(A)(S(A)) \cap \text{int}(B)(S(B)) = \emptyset\), and
2. \(\text{out}(A)(S(A)) \cap \text{out}(B)(S(B)) = \emptyset\)

Definition 31 (Intrinsic attributes of a configuration). Let \(C = (A, S)\) be a compatible task-configuration. Then we define

- \(\text{auts}(C) = A\) represents the automata of the configuration,
- \(\text{map}(C) = S\) maps each automaton of the configuration with its current state,
- \(\text{out}(C) = \bigcup_{A \in A} \text{out}(A)(S(A))\) represents the output action of the configuration,
- \(\text{in}(C) = \bigcup_{A \in A} \text{in}(A)(S(A))\) represents the input action of the configuration,
- \(\text{int}(C) = \bigcup_{A \in A} \text{int}(A)(S(A))\) represents the internal action of the configuration,
- \(\text{ext}(C) = \text{in}(C) \cup \text{out}(C)\) represents the external action of the configuration,
- \(\text{sig}(C) = (\text{in}(C), \text{out}(C), \text{int}(C))\) is called the intrinsic signature of the configuration,
- \(CA(C) = (\text{out}(A_1), \ldots, \text{out}(A_n))\) represents the composition of all the automata of the configuration,
- \(US(C) = (S(A_1), \ldots, S(A_n))\) represents the states of the automaton corresponding to the composition of all the automata of the configuration,

Here we define a reduced configuration as a configuration deprived of the automata that are in the very particular state where their current signatures are the empty set. This mechanism will allow us to capture the idea of destruction.

Definition 32 (Reduced configuration). \(\text{reduce}(C) = (A', S')\), where \(A' = \{A | A \in A \text{ and } \text{sig}(A)(S(A)) \neq \emptyset\}\) and \(S'\) is the restriction of \(S\) to \(A'\), noted \(S \upharpoonright A'\) in the remaining.

A configuration \(C\) is a reduced configuration iff \(C = \text{reduce}(C)\).

We recall that we assume the existence of a countable set \(\text{Autids}\) of unique PSIOA identifiers, an underlying universal set \(\text{Auts}\) of PSIOA, and a mapping \(\text{aut} : \text{Autids} \to \text{Auts}\). \(\text{aut}(A)\) is the PSIOA with identifier \(A\). We will define a measurable space for configuration.

We note for every \(\varphi \in \mathcal{P}(\text{Autids})\), \(Q_{\varphi} = Q_{\varphi_1} \times \ldots \times Q_{\varphi_n}\) and \(\mathcal{F}_{Q_{\varphi}} = \mathcal{F}_{Q_{\varphi_1}} \otimes \ldots \otimes \mathcal{F}_{Q_{\varphi_n}}\).

We note \(Q_{\text{aut}} = \bigcup_{\varphi \in \mathcal{P}(\text{Autids})} Q_{\varphi}\), the set of all possible state sets cartesian product for each possible family of automata. \(\mathcal{F}_{Q_{\text{aut}}} = \bigcup_{i \in [1, k]} \{c_i | \phi \in \mathcal{P}(\text{Autids}), c_i \in \mathcal{F}_{Q_{\varphi_i}}, \varphi = \varphi_1, \ldots, \varphi_k, \varphi_i \in \mathcal{P}(\text{Autids})\} (Q_{\text{aut}}, \mathcal{F}_{Q_{\text{aut}}})\) is a measurable space.

We note \(Q_{\text{conf}} = \{(A, S) | A \in \mathcal{P}(\text{Autids}), \forall A_i \in A, S(A_i) \in Q_i\}\), the set of all possible configurations.

\(^1\) lexicographic order will simplify projection on product of probabilistic measure for transition of composition of automata
Let \(f = \{ Q_{\text{conf}} \to Q_{\text{out}} \mid (A, S) \to Q_{CA((A, S))} = S(A_1) \times \ldots \times S(A_n) \} \)

We note \(F_{Q_{\text{conf}}} = \{ f \neq 1 | P \in F_{Q_{\text{aut}}} \} \).

4.2 Configuration transition

We will define some probabilistic transition from configurations to others, where some automata can be destroyed or created. To define it properly, we start by defining 'preserving transition’ where no automaton is neither created nor destroyed and then we define above this definition the notion of configuration transition.

Definition 33 (Preserving distribution). A preserving distribution \(\eta_p \in \text{Disc}(Q_{\text{conf}}) \) is a distribution verifying \(\forall (A, S), (A', S') \in \text{supp}(\eta_p), A = A' \). The unique family of automata ids \(A \) of the configurations in the support of \(\eta_p \) is called the family support of \(\eta_p \).

We define a companion distribution as the natural distribution of the corresponding family of automata at the corresponding current state. Since no creation or destruction occurs, these definitions can seem redundant, but this is only an intermediate step to define properly the "dynamic" distribution.

Definition 34 (Companion distribution). Let \(C = (A, S) \) be a compatible configuration with \(A = (A_1, ..., A_n) \) and \(S : A_i \in A \to q_i \in Q_{A_i} \) (with \(A \) partially-compatible at state \(q = (q_1, ..., q_n) \in Q_A = Q_{A_1} \times \ldots \times Q_{A_n} \)). Let \(\eta_p \) be a preserving distribution with \(A \) as family support. The probabilistic distribution \(\eta_{(A,q,a)} \) is a companion distribution of \(\eta_p \) if for every \(q' = (q'_1, ..., q'_n) \in Q_A, \) for every \(S'' : A_i \in A \to q''_i \in Q_{A_i} \),

\[
\eta_{(A,q,a)}(q') = \eta_p((A,S'')) \iff \forall i \in [1,n], q''_i = q'_i,
\]

that is the distribution \(\eta_{(A,q,a)} \) corresponds exactly to the distribution \(\eta_p \).

This is "a" and not "the" companion distribution since \(\eta_p \) does not explicit the start configuration.

Figure 3 A preserving distribution is matching its companion distribution.

Lemma 35 (Joint preserving probability distribution for union of configuration). Let \(A_X, A_Y, A_Z = A_X \cup A_Y \) be family of automata. Let \(C_X = (A_X, S_X) \) and \(C_Y = (A_Y, S_Y) \) be
two compatible configurations. Let \(C_Z \) be a compatible configuration. Let \(A_X \) (resp. \(A_Y \) and \(A_Z \)) be the automata issued from the composition of automata in \(A_X \) (resp. \(A_Y \) and \(A_Z \)). Let \(q_X \) (resp. \(q_Y \) and \(q_Z \)) be the current states of \(A_X \) at configuration \(C_X \) (resp. \(A_Y \) at configuration \(C_Y \) and \(A_Z \) at configuration \(C_Z \)).

Let \(\eta^X_p \) and \(\eta^Y_p \) be preserving distributions that have \(\eta(X,q_X,a) \) and \(\eta(Y,q_Y,a) \) as companion distribution. We note \(\eta^Z_p \) the preserving distributions that have \(\eta(Z,q_Z,a) \) as companion distribution.

For every configuration \(C'_Z = (A_Z, S'_Z) \) = \(C'_Y \cup C'_X \), with \(C'_X = (A_X, S'_X) \) and \(C'_Y = (A_Y, S'_Y) \), \(\eta^Z_p(C'_Z) = (\eta^X_p \otimes \eta^Y_p)((C'_X, C'_Y)). \)

Proof. We have \(\eta(A_{X,q_X,a}) = \eta(A_{X,q_X,a}) \otimes \eta(A_{Y,q_Y,a}) \). Parallely, \(\eta^X_p \) and \(\eta^Y_p \) are preserving distributions that have \(\eta(A_{X,q_X,a}) \) and \(\eta(A_{Y,q_Y,a}) \) as companion distribution, while \(\eta^Z_p \) is preserving distributions that have \(\eta(A_{Z,q_Z,a}) \) as companion distribution.

Now, we can naturally define a preserving transition \((C,a,\eta_p) \) from a configuration \(C \) via an action \(a \) with a companion transition of \(\eta_p \). It allows us to say what is the 'static' probabilistic transition from a configuration \(C \) via an action \(a \) if no creation or destruction occurs.

Definition 36 (preserving transition). Let \(C = (A,S) \) be a compatible configuration, \(q = US(C) \) and \(\eta_p \in P(Q_{conf_f}, F_{Q_{conf_f}}) \) be a preserving transition with \(A_S \) as family support.

Then say that \((C,a,\eta_p) \) is a preserving configuration transition, noted \(\eta \triangleright_{conf} \eta_p \) if

- \(A_S = A \)
- \(\eta(A_S,q,a) \) is a companion distribution of \(\eta_p \)

For every preserving configuration transition \((C,a,\eta_p) \), we note \(\eta(C,a,p) = \eta_p \).

The preserving transition of a configuration corresponds to the transition of the composition of the corresponding automata at their corresponding current states.

No we are ready to define our *dynamic* transition, that allows a configuration to create or destroy some automata.

At first, we define reduced distribution that leads to reduced configurations only, where all the automata that reach a state with an empty signature are destroyed.

Definition 37 (reduced distribution). A reduced distribution \(\eta_r \in Disc(Q_{conf_f}, F_{Q_{conf_f}}) \) is a probabilistic distribution verifying that for every configuration \(C \in supp(\eta_r), C = \) reduced \((C) \).

Now, we generate reduced distribution with a preserving distribution that describes what happen to the automata that already exist and a family of new automata that are created.

Definition 38 (Generation of reduced distribution). Let \(\eta_p \in Disc(Q_{conf_f}) \) be a preserving distribution with \(A \) as family support. Let \(\varphi \subset Autids \). We say the reduced distribution \(\eta_r \in Disc(Q_{conf_f}) \) is generated by \(\eta_p \) and \(\varphi \) if it exists a non-reduced distribution \(\eta_{nr} \in Disc(Q_{conf_f}) \), s. t.

- \(\varphi \) is created with probability 1
- \(\forall (A', S') \in Q_{conf_f}, \text{ if } A' \neq A \cup \varphi, \text{ then } \eta_{nr}((A', S')) = 0 \)
- \(\forall (A', S') \in Q_{conf_f}, \text{ if } \exists A_i \in \varphi - A \text{ so that, } S'(A_i) \neq \bar{q}_i, \text{ then } \eta_{nr}((A', S')) = 0 \)
Definition 39 (Intrinsic transition). Let \((A, S)\) be arbitrary reduced compatible configuration, let \(\varphi \subseteq \text{Autids}, \varphi \cap A = \emptyset\). Then \(\langle A, S \rangle \xrightarrow{a, \varphi} \eta\) if \(\eta\) is generated by \(\eta_p\) and \(\varphi\) with \((A, S) \xrightarrow{a} \eta_p\).

\[
C = (A, S) \quad \varphi = \{A_1\} \quad A' = (A_2, A_3, A_4)
\]

\[
A = (A_1, A_2, A_3)
\]

\[
A' = (A_2, A_3, A_4)
\]

\[
\eta_p(A, S')(A) = \eta_p(A, S')(A') = \eta_p(A, S')(A_j) = \varphi(j), \forall \varphi \in \text{states}(psioa(K))
\]

The assumption of deterministic creation is not restrictive, nothing prevents from flipping a coin at state \(s_0\) to reach \(s_1\) with probability \(p\) or \(s_2\) with probability \(1 - p\) and only create a new automaton in state \(s_2\) with probability 1, while the action create is not enabled in state \(s_1\).

4.3 Probabilistic Configuration Automata

Definition 40 (Probabilistic Configuration Automaton). A probabilistic configuration automaton (PCA) \(K\) consists of the following components:

1. A probabilistic signature I/O automaton \(psioa(K)\). For brevity, we define \(\text{states}(K) = \text{states}(psioa(K))\), \(\text{start}(K) = \text{start}(psioa(K))\), \(\text{sig}(K) = \text{sig}(psioa(K))\), \(\text{steps}(K) = \text{steps}(psioa(K))\), and likewise for all other (sub)components and attributes of \(psioa(K)\).

2. A configuration mapping \(\text{config}(K)\) with domain \(\text{states}(K)\) and such that \(\text{config}(K)(x)\) is a reduced compatible configuration for all \(q_K \in \text{states}(K)\).

3. For each \(q_K \in \text{states}(K)\), a mapping \(\text{created}(K)(x)\) with domain \(\text{sig}(K)(x)\) and such that \(\forall a \in \text{sig}(K)(q), \text{created}(K)(q)(a) \subseteq \text{Autids}\)

4. A hidden-actions mapping \(\text{hidden-actions}(K)\) with domain \(\text{states}(K)\) and such that \(\text{hidden-actions}(K)(q_K) \subseteq \text{out}(\text{config}(K)(q_K))\).

and satisfies the following constraints
1. If $config(K)(\bar{q}_K) = (\mathbf{A}, \mathbf{S})$, then $\forall A_i \in \mathbf{A}, S(A_i) = \bar{q}_i$.

2. If $(q_K, a, \eta) \in steps(K)$ then $config(K)(q_K) \xrightarrow{a, \eta} \eta'$, where $\varphi = created(K)(q_K)(a)$ and $\eta(y) = \eta'(config(K)(y))$ for every $y \in states(K)$.

3. If $q_K \in states(K)$ and $config(K)(q_K) \xrightarrow{a, \varphi} \eta'$ for some action a, $\varphi = created(K)(x)(a)$, and reduced compatible probabilistic measure $\eta' \in P(Q_{conf}, F_{Q_{conf}})$, then $(q_K, a, \eta) \in steps(K)$ with $\eta(y) = \eta'(config(K)(y))$ for every $y \in states(K)$.

4. For all $q_K \in states(K)$, $\text{sig}(K)(q_K) = \text{hide}(\text{sig}(config(K)(q_K)), \text{hidden-actions}(q_K))$.

4 (d) states that the signature of a state q_K of K must be the same as the signature of its corresponding configuration $config(K)(q_K)$, except for the possible effects of hiding operators, so that some outputs of $config(K)(q_K)$ may be internal actions of K in state q_K.

Figure 5 A PCA life cycle.

Additionally, we can define the current constitution of a PCA, which is the union of the current constitution of the element of its current corresponding configuration.

Definition 41 (Constitution of a PCA). Let K be a PCA. For every $q \in states(K)$,

$constitution(K)(q) = constitution(psioa(K))(q) =$

Figure 5 A PCA life cycle.
whenever compatible at state \(I\). We note \(I\) and associative. Hence, we will freely use the n-ary notation the configuration are either \(\{U\}\) or \(\{U, V\}\). The internal action \(i\) of \(U\) aims to create the automaton \(V\). do represents a destruction order, while \(d\) is a destruction action. The step \((s_V, d, s'_V)\) is so that \(\text{sig}(V)(s_V) = \emptyset\), thus \(\langle A_8, S_8 \rangle\) does not handle \(V\) because of reduction.

\[
\bigcup_{A \in \text{aul}(\text{config}(K)(q))} \text{constitution}(A)(\text{map}(\text{config}(K)(q))(A)).
\]

We note \(UA(K) = \bigcup_{q \in K} \text{constitution}(K)(q)\) the universal set of atomic components of \(K\).

4.4 Compatibility, composition

\(\triangleright\) Definition 42 (Union of configurations). Let \(C_1 = (A_1, S_1)\) and \(C_2 = (A_2, S_2)\) be configurations such that \(A_1 \cap A_2 = \emptyset\). Then, the union of \(C_1\) and \(C_2\), denoted \(C_1 \cup C_2\), is the configuration \(C = (A, S)\) where \(A = A_1 \cup A_2\) (lexicographically ordered) and \(S\) agrees with \(S_1\) on \(A_1\), and with \(S_2\) on \(A_2\). It is clear that configuration union is commutative and associative. Hence, we will freely use the n-ary notation \(C_1 \cup \ldots \cup C_n\) (for any \(n \geq 1\)) whenever \(\forall i, j \in [1 : n], i \neq j, \text{aul}(C_i) \cap \text{aul}(C_j) = \emptyset\).

\(\triangleright\) Definition 43 (PCA partially-compatible at a state). Let \(X = (X_1, \ldots, X_n)\) be a family of PCA. We note \(\text{psioa}(X) = (\text{psioa}(X_1), \ldots, \text{psioa}(X_n))\). The PCA \(X_1, \ldots, X_n\) are partially-compatible at state \(q_X = (q_{X_1}, \ldots, q_{X_n}) \in \text{states}(X_1) \times \ldots \times \text{states}(X_n)\) iff:

1. \(\forall i, j \in [1 : n], i \neq j : \text{aul}(\text{config}(X_i)(q_{X_i})) \cap \text{aul}(\text{config}(X_j)(q_{X_j})) = \emptyset\).
2. \(\{\text{sig}(X_1)(q_{X_1}), \ldots, \text{sig}(X_n)(q_{X_n})\}\) is a set of compatible signatures.
3. \(\forall i, j \in [1 : n], i \neq j : \forall a \in \text{sig}(X_i)(q_{X_i}) \cap \text{sig}(X_j)(q_{X_j}) : \text{created}(X_i)(q_{X_i})(a) \cap \text{created}(X_j)(q_{X_j})(a) = \emptyset\).
Proof. We need to show that X verifies all the constraints of definition 40.

(Constraint) 1: The demonstration is basically the same as the one in [1], section 5.1, proposition 21, p 32-33. Let \tilde{q}_X and $(A, S) = config(X)(\tilde{q}_X)$. By the composition of
psioa, then \(q_X = (\tilde{q}_X_1, ..., \tilde{q}_X_n) \). By definition, \(\text{config}(X)(\tilde{q}_X) = \text{config}(X_1)(\tilde{q}_X_1) \cup ... \cup \text{config}(X_n)(\tilde{q}_X_n) \). Since for every \(j \in [1 : n] \), \(X_j \) is a configuration automaton, we apply constraint 1 to \(X_j \) to conclude \(\mathcal{S}(\mathcal{A}_j) = \tilde{q}_X_j \). For brevity, let \(\mathcal{A}_i = \text{sioa}(X_i) \) for \(i \in [1 : n] \). Now \((x, a, \eta) \in \text{steps}(X)\). So \((x, a, \eta) \in \text{steps}(\text{sioa}(X))\) by definition. Also by Definition 48, \(\text{sioa}(X) = \text{sioa}(X_1) \cup ... \cup \text{sioa}(X_n) = A_1 \cup ... \cup A_n \). From definition of sioa composition, there exists a nonempty \(\phi_n^x \subseteq [1 : n] \) such that for \(\forall i \in \phi_n^x, a \in \text{sig}(A_i)(x_i) \) and \(\forall j \in \phi_n^x = \{ [1 : n] \setminus \phi_n^x \}, a \notin \text{sig}(A_j)(x_j) \).

So, \((x, a, \eta) \in \text{steps}(A_1 \cup ... \cup A_n)\). Since \(x \in \text{states}(A_1 \cup ... \cup A_n) \), we can write \(x, a \) as \((x_1, ..., x_n)\) where \(x_i \in \text{states}(A_i) \) for \(i \in [1 : n] \). In the same way, we can write \(\eta = \eta_1 \otimes ... \otimes \eta_n \) where for each \(i \in \phi_n^x, \eta_i = \eta_{X_i, a} (x \mapsto \eta_i) \) and \(j \in \phi_n^x, \eta_j = \delta_{X_j} \).

We have \(\lambda_{i \in \phi_n^x} a \in \text{sig}(A_i)(x_i) \land (x_i, a, \eta_i) \in \text{steps}(A_i) \land (\lambda_{j \in [1 \setminus \phi_n^x]} a \notin \text{sig}(A_j)(x_j)) \land \eta_j = \delta_{X_j}(a) \).

Each \(X_j, i \in [1 : n] \), is a configuration automaton. Hence, by (a) and constraint 2 applied to each \(X_i \), with \(i \in \phi_n^x \), we have: \(\lambda_{i \in \phi_n^x} \text{config}(X_i)(x_i) \xrightarrow{a} \varphi_i, \eta_i \) with \(\varphi_i = \text{created}(X_i)(x_i)(a) \) and \(\eta_i(\text{config}(X_i)(y_i)) = \eta_i(y_i) \) for every state \(y_i \in \text{states}(X_i) \), and \(\lambda_{j \in [1 \setminus \phi_n^x]} \text{config}(X_j)(x_j) \xrightarrow{a} \delta_{X_j} \).

Since \(X_1, ..., X_n \) are compatible, we have that \(\text{config}(X_1)(x_1) \cup ... \cup \text{config}(X_n)(x_n) \) and \(\text{config}(X_1)(y_1) \cup ... \cup \text{config}(X_n)(y_n) \) are both reduced compatible configurations for every \(y = (y_1, ..., y_n) \). s. t. \(y_k \in \text{supp}(\eta_k) \) for every \(k \in [1 : n] \).

By definition, \(\varphi = \text{created}(X)(x)(a) = \bigcup_{i \in \phi_n^x} \text{created}(X_i)(x_i)(a) \).

Thereafter, we obtain \(\bigcup_{i \in [1 : n]} \text{config}(X_i)(x_i) \xrightarrow{a} \eta \) where \(\eta' = \eta_1 \otimes ... \otimes \eta_n \).

For every \(y \in \text{states}(X) \), \(\eta'(\text{config}(X)(y)) = \eta(y) \).

Finally, we obtain \(\text{config}(X)(x) \xrightarrow{a} \text{created}(X)(x)(a) \eta' \) with \(\eta'(\text{config}(X)(y)) = \eta(y) \) for every \(y \in \text{states}(X) \).

(Constraint 3) Let \(x \) be an arbitrary state in \(\text{states}(X) \) and \(\eta' \) an arbitrary probability measure on the configuration with a support corresponding to reduced compatible configuration such that \(\text{config}(X)(x) \xrightarrow{a} \varphi \) for some action \(a \) with \(\varphi = \text{created}(X)(x)(a) \).

We must show \(\exists \eta_{\text{sioa}} \in P(Q(X), \mathcal{F}_{\text{sioa}}) : (x, a, \eta_{\text{sioa}}) \in \text{steps}(X) \) \((x \xrightarrow{a} \eta_{\text{sioa}}) \) and for every state \(y \in \text{states}(X), \eta'(\text{config}(X)(y)) = \eta_{\text{sioa}}(y) \).

We can write \(x \) as \((x_1, ..., x_n)\) where \(x_i \in \text{states}(X_i) \) for \(i \in [1 : n] \). Since \(X_1, ..., X_n \) are compatible, we have, by compatibility of configuration automata, that \(\text{auto}(\text{config}(X_i)(x_i)) \cap \text{auto}(\text{config}(X_j)(x_j)) = \emptyset, \forall i, j \in [1 : n], i \neq j \), (thus, all SIOAs in these configurations are unique) and that \(\text{config}(X_i)(x_1) \cup ... \cup \text{config}(X_n)(x_n) \) is a reduced compatible configuration. Also, from configuration composition, \(\text{config}(X)(x) = \bigcup_{i \in [1 : n]} \text{config}(X_i)(x_i) \), that is \(\bigcup_{i \in [1 : n]} \text{config}(X_i)(x_i) \xrightarrow{a} \eta' \).

From definition of sioa composition, there exists a nonempty \(\phi_n^x \subseteq [1 : n] \) such that for \(\forall i \in \phi_n^x, a \in \text{sig}(A_i)(x_i) \) and \(\forall j \in \phi_n^x = \{ [1 : n] \setminus \phi_n^x \}, a \notin \text{sig}(A_j)(x_j) \).

We have \(\text{config}(X)(x) \xrightarrow{a} \varphi_i \) with \(\eta_i = \eta_i' \otimes ... \otimes \eta_i' \) and for every \(i \in \phi_n^x, \text{supp}(\eta_i') \subseteq \{ c_i' \mid \exists c_i' (c_i = \text{reduced}(c_i') \land \text{auto}(c_i') = \text{auto}(\text{config}(X_i)(x_i) \cup \varphi_i) \land \forall A \in \varphi_i, \text{maps}(c_i')(A) = X_i) \} \) with \(\varphi_i = \text{created}(X_i)(x_i)(a) \) and for every \(j \in \phi_n^x = \{ [1 : n] \setminus \phi_n^x \}, \eta_j = \delta_{\text{config}(X_j)(x_j)} \).

We have for every \(i \in \phi_n^x \text{config}(X_i)(x_i) \xrightarrow{a} \varphi_i, \eta_i' \), which means for every \(i \in \phi_n^x \),
(x_i, a, \eta_i) \in \text{steps}(X_i) \text{ with for every } y_i, \eta_i(y_i) = \eta'_i(\text{config}(X_i)(y_i)).

For every \(j \in \phi^0_n = [1 : n] \setminus \phi^e_n \), we note \(\eta_j = \delta_{x_j} \).

From this, \(x = (x_1, ..., x_n), \eta = \eta_1 \otimes ... \otimes \eta_n \), and definition of configuration composition, we conclude \((x, a, \eta) \in \text{steps}(X) \) and for every \(y \in \text{states}(Y), \eta(y) = \eta'(\text{config}(X)(y)) \).

\[\text{(Constraint 4).} \]

For every \(i \in [1, n] \), we note \(h_{X_i} = \text{hidden-actions}(X_i)(q_{X_i}) \) and \(h = \bigcup_{i \in [1, n]} h_{X_i} \).

Since \(\{X_i | i \in [1, n]\} \) are partially-compatible in state \(q_X = (q_{X_1}, ..., q_{X_n}) \), we have both \(\{\text{config}(X_i)(q_{X_i}) | i \in [1, n]\} \) compatible and \(\forall i, j \in [1, n], \text{in}(\text{config}(X_i)(q_{X_i})) \cap h_{X_j} = \emptyset. \)

By compatibility, \(\forall i, j \in [1, n], \text{out}(\text{config}(X_i)(q_{X_i})) \cap \text{out}(\text{config}(X_j)(q_{X_j})) = \emptyset. \)

This terminates the proof.

5 Projection

This section aims to formalise the idea of a PCA \(X_A \) considered without an internal PSIOA \(A \). This PCA will be noted \(Y_A = X_A \setminus \{A\} \). This is an important step in our reasoning since we will be able to formalise in which sense \(X_A \) and \(psioa(X_A \setminus \{A\}) \) are similar.

5.1 projection on configurations

At first we need some particular precautions to define properly the probabilistic spaces.

The next definition captures the idea of probabilistic measure deprived of a psioa \(A \).

Definition 50 (probabilistic measure projection). Let \(A = (A_1, ..., A_n) \) be a (lexically ordered) family of PSIOA partiall-compatible at state \(q = (q_1, ..., q_n) \in Q_{A_1} \times ... \times Q_{A_n} \). Let \(A^* = (A_{i_1}, ..., A_{i_{n'}}) \subset A \). We note:

\[q \setminus \{A_k\} = (q_1, ..., q_{k-1}, q_{k+1}, ..., q_n) \text{ if } A_k \in A \text{ and } q \setminus \{A_k\} = q \text{ otherwise.} \]

\[q \setminus A^* = (q \setminus \{A_{i_{n'}}\}) \setminus (A^* \setminus \{A_{i_{n'}}\}) \text{ (recursive extension of the previous item).} \]

\[q \setminus \{A_k\} = A_k \text{ if } A_k \in A \text{ only.} \]

\[q \setminus A^* = q \setminus (A \setminus A^*) \text{ (recursive extension of the previous item).} \]

Let \(q' = q \setminus A^* \) and \(q'' = q \setminus A' \) if \(A^* \subset A \). Let \(A' = A \setminus A^* \text{ and } A'' = A^* \subset A \). Let \(a' \in \widetilde{\text{sig}}(A')(q') \) and \(a'' \in \widetilde{\text{sig}}(A'')(q'') \). We note

\[\eta(A, q', a') \setminus A^* \triangleq \eta(A', q', a') \] and

\[\eta(A, q'', a'') \setminus A^* \triangleq \eta(A'', q'', a'') \text{ if } A^* \subset A \].

Then we apply this notation to preserving distributions.

Definition 51 (preserving distribution projection). Let \(\eta_p \) be a preserving distribution. Let \(A = (A_1, ..., A_n) \) its family support. Let \(H \) be its set of companion distributions of \(\eta_p \) (s.
\[\mathbf{A} = (A_1, A_2, A_3, A_4, A_5) \]

\[\mathbf{A}' = (A_1, A_6) \]

\[q = (q_1, q_2, q_3, q_4) \]

\[q' \upharpoonright A_6 = (q_2, q_3) \]

\[q' \upharpoonright [A_6] = (q_2, q_3) \]

\[t. \text{ for every } \eta \in H, \eta = \eta_1 \otimes \ldots \otimes \eta_n \text{ with } \eta_i \in \text{Disc}(Q_{A_i}). \text{Then } \eta' \downarrow \mathbf{A}^* \text{ is the preserving distribution with } \mathbf{A} \setminus \mathbf{A}^* \text{ as family support and } H' = \{\eta \setminus \mathbf{A}^* | \eta \in H\} \text{ as companion distribution set. If } \mathbf{A}^* \subset \mathbf{A}, \text{ then } \eta' \downarrow \mathbf{A}^* \text{ is the preserving distribution with } \mathbf{A} \downarrow \mathbf{A}^* \text{ as family support and } H'' = \{\eta \setminus \mathbf{A}^* | \eta \in H\} \text{ as companion distribution set.} \]

Definition 52 (intrinsic transition projection). Let \(\eta \in \text{Disc}(Q_{conf}) \) generated by \(\varphi \) and \(\eta_{\mathbf{A}} \in \text{Disc}(Q_{conf}) \). We note \(\mathbf{A} \setminus \mathbf{A}^* \) the probabilistic measure on configurations generated by \(\varphi \setminus \mathbf{A}^* \) and \(\eta_{\mathbf{A}} \setminus \mathbf{A}^* \) and we note \(\eta \downarrow \mathbf{A}^* \) the probabilistic measure on configurations generated by \(\varphi \downarrow \mathbf{A}^* \) and \(\eta_{\mathbf{A}} \downarrow \mathbf{A}^* \).

Then we can easily determine some results when projection is applied.

Lemma 53 (family distribution projection). (see figure 11) Let \(\mathbf{A} = (A_1, \ldots, A_n) \), let \(\eta = \eta_1 \otimes \ldots \otimes \eta_n \) with \(\eta_i \in \text{Disc}(Q_{A_i}) \) for every \(i \in [1, n] \). Let \(\eta' = \eta \setminus \{A_k\} \). Let \(Q'_{A_i} = \{q \setminus \{A_k\} | q \in Q_{A_i}\} \).

For every \(q' \in Q'_{A_i} \): \(\eta'(q') = \sum_{q \in Q_{A_i}, q \setminus \{A_k\} = q'} \eta(q) \)

Proof. This comes directly from the law of total probability. The Bayes law gives \(\eta'(q') = \sum \eta(q') \eta(q) \) with \(\eta(q'|q) = \delta_{q' = q \setminus \{A_k\}} \). Thus \(\eta(q) = \sum_{q' = q \setminus \{A_k\}} \eta(q') \).

Lemma 54 (preserving distribution projection). (see figure 12) Let \(\eta_{\mathbf{A}} \) be a preserving distribution with \(\mathbf{A} = (A_1, \ldots, A_n) \) as family support. Let \(C_Y \) be a configuration \((\eta_{\mathbf{A}} \setminus \{A_k\})(C_Y) = \sum_{q \in C_X, q \setminus \{A_k\} = C_Y} \eta_{\mathbf{A}}(C_X) \).

Proof. We can apply lemma 53 for every pair \((\eta, \eta \setminus \{A_k\})\) s. t. \(\eta\) is a companion distribution of \(\eta_p\) (and \(\eta \setminus \{A_k\}\) is a companion distribution of \(\eta_p \setminus \{A_k\}\) by definition). Then we substitute in the sum of 53 every state \(q\) by the corresponding configuration.

\[\eta \setminus \{A_k\} \]

\[\eta_p \]

\[\eta \]

\[\eta \setminus \{A_k\} \]

\[\eta_p \setminus \{A_k\} \]

\[\eta_p \]

\[\eta \setminus \{A_k\} \]

\[\eta_p \]

\[\eta \setminus \{A_k\} \]

\[\eta_p \setminus \{A_k\} \]

\[\eta_p \]

\[\eta \setminus \{A_k\} \]

\[\eta_p \setminus \{A_k\} \]

\[\eta_p \]

\[\eta \setminus \{A_k\} \]

\[\eta_p \setminus \{A_k\} \]

\[\eta_p \]

\[\eta \setminus \{A_k\} \]

\[\eta_p \setminus \{A_k\} \]

\[\eta_p \]

\[\eta \setminus \{A_k\} \]

\[\eta_p \setminus \{A_k\} \]

\[\eta_p \]

\[\eta \setminus \{A_k\} \]

\[\eta_p \setminus \{A_k\} \]

\[\eta_p \]

\[\eta \setminus \{A_k\} \]

\[\eta_p \setminus \{A_k\} \]

\[\eta_p \]

\[\eta \setminus \{A_k\} \]

\[\eta_p \setminus \{A_k\} \]

\[\eta_p \]

\[\eta \setminus \{A_k\} \]

\[\eta_p \setminus \{A_k\} \]

\[\eta_p \]

\[\eta \setminus \{A_k\} \]

\[\eta_p \setminus \{A_k\} \]

\[\eta_p \]

\[\eta \setminus \{A_k\} \]

\[\eta_p \setminus \{A_k\} \]

\[\eta_p \]

\[\eta \setminus \{A_k\} \]

\[\eta_p \setminus \{A_k\} \]

\[\eta_p \]

\[\eta \setminus \{A_k\} \]

\[\eta_p \setminus \{A_k\} \]

\[\eta_p \]

\[\eta \setminus \{A_k\} \]

\[\eta_p \setminus \{A_k\} \]

\[\eta_p \]

\[\eta \setminus \{A_k\} \]

\[\eta_p \setminus \{A_k\} \]

\[\eta_p \]

\[\eta \setminus \{A_k\} \]

\[\eta_p \setminus \{A_k\} \]

\[\eta_p \]

\[\eta \setminus \{A_k\} \]

\[\eta_p \setminus \{A_k\} \]

\[\eta_p \]

\[\eta \setminus \{A_k\} \]

\[\eta_p \setminus \{A_k\} \]

\[\eta_p \]

\[\eta \setminus \{A_k\} \]

\[\eta_p \setminus \{A_k\} \]

\[\eta_p \]

\[\eta \setminus \{A_k\} \]

\[\eta_p \setminus \{A_k\} \]

\[\eta_p \]

\[\eta \setminus \{A_k\} \]

\[\eta_p \setminus \{A_k\} \]

\[\eta_p \]

\[\eta \setminus \{A_k\} \]

\[\eta_p \setminus \{A_k\} \]

\[\eta_p \]

\[\eta \setminus \{A_k\} \]

\[\eta_p \setminus \{A_k\} \]

\[\eta_p \]

\[\eta \setminus \{A_k\} \]

\[\eta_p \setminus \{A_k\} \]

\[\eta_p \]
every configuration C_Y from lemma 54. By definition 38, it follows the same relation for
the non-reduced transition which is matching the preserving transition. It follows the same
relation for the reduced transition which is matching the non-reduced transition.

Lemma 56 (projection on an intrinsic transition). Let C be a configuration, P an automaton
$a \in \text{sig}(C \setminus P)$, $\varphi \subset \text{Autids}$ and $\eta \in \text{Disc}(Q_{\text{conf}})$, s.t. $C \xrightarrow{a, \varphi} \eta$. Then $C \setminus \{P\} \xrightarrow{a, \varphi \setminus \varphi\setminus \{P\}}$
Proof. We note \(\text{autos}(C) = A = (A_1, \ldots, A_n) \), \(S = \text{autos}(C) \) and \(A = A_1 \| \ldots \| A_n \). We note \(q = (S(A_1), \ldots, S(A_n)) \). Since \(a \) is enabled in \(C \setminus \{ P \} \), \((q \setminus \{ P \}, a, \eta) \) is a transition of \(A \) (unique from \(q \) and \(a \) by transition determinism), while \((q, a, \eta \setminus \{ P \}) \) is a transition of \(A' \) the automaton issued from the composition of automata in \(A \setminus \{ P \} \). This comes from the definition of composition 11. Now \(\eta_{\tau} \) is generated from \(\varphi \) and \(\eta_{\tau} \) where \(\eta \) is a companion distribution of \(\eta_{p} \). In the same way, \(\eta_{\tau} \setminus \{ P \} \) is generated from \(\varphi \setminus \{ P \} \) and \(\eta_{\tau} \setminus \{ P \} \) where \(\eta \setminus \{ P \} \) is a companion distribution of \(\eta_{p} \setminus \{ P \} \).

Thus, \(C \setminus \{ P \} \xrightarrow{\eta} (\eta_{p} \setminus \{ P \}) \) and then \(C \setminus \{ P \} \xrightarrow{\varphi(\setminus \{ P \})} (\eta_{\tau} \setminus \{ P \}) \).

\[\text{(5.2 projection on PCA)} \]

Now we can define our PCA deprived of a PSIOA.

\[\text{(Definition 57 (A-fair PCA), Let } A \in \text{Autids. Let } X \text{ be a PCA. We say that } X \text{ is } A\text{-fair if for every states } q_X, q'_X, \text{ s.t. } \text{config}(X)(q_X) \setminus A = \text{config}(X)(q'_X) \setminus A, \text{ then } \text{created}(X)(q_X) = \text{created}(X)(q'_X) \text{ and hidden-actions}(X)(q_X) = \text{hidden-actions}(X)(q'_X). \]

A \(A \)-fair PCA is a PCA s.t. we can deduce its current properties from its current configuration deprived of \(A \). This allows the next definition to be well-defined.

\[\text{(Definition 58 (X \setminus \{ P \}), (see figure 13) Let } P \in \text{Autids. Let } X \text{ be a } P\text{-fair PCA. We note } X \setminus \{ P \} \text{ the automaton } Y, \text{ verifying:} \]

- it exists a total map \(\mu_s : \text{states}(X) \to \text{states}(Y) \) and \(\mu_d : \text{Disc}(Q_X, F_{Q_X}) \to \text{Disc}(Q_Y, F_{Q_Y}) \)
 - s.t.
 - \(\mu_s(q_X) = \varphi \)
 - if \(\text{config}(X)(x) = (A, S), \text{config}(Y)(\mu_s(x)) = (A \setminus \{ P \}, S \setminus (A \setminus \{ P \})) \)
 - \(\text{sig}(Y)(\mu_s(x)) = \text{sig}(X)(x) \setminus P \)
 - \(\forall x \in \text{states}(X), \forall a \in \text{sig}(Y)(\mu_s(x)), \text{created}(Y)(\mu_s(x)) = \text{created}(X)(x)(a) \setminus \{ P \} \)
 - \(\forall x \in \text{states}(X), \forall a \in \text{sig}(Y)(\mu_s(x)) \text{ if } (x, a, \eta) \in \text{step}(X), (\mu_s(x), a, \mu_d(\eta)) \in \text{step}(Y) \)
 - where \(\mu_d(\eta)(y) = \sum_{x, \mu_s(x) = y} \eta(x) \).
 - \(\forall x \in \text{states}(X), \text{if } A \in \text{autos(config}(X)(q_X)) \), then
 - \(\text{hidden-actions}(Y)(\mu_s(x)) = \text{hidden-actions}(X)(x)\setminus \text{out}(A)(\text{maps(config}(X)(q_X))(A), \text{otherwise} \text{hidden-actions}(Y)(\mu_s(x)) = \text{hidden-actions}(X)(x). \)

In the remaining, if we consider a PCA \(X \) deprived of a PSIOA \(A \) we always implicitly assume that \(X \) is \(A \)-fair.

Here we prove a serie of lemma to show that \(Y = X \setminus \{ P \} \) is indeed a PCA. by verifying all the constraints.

\[\text{(Lemma 59 (corresponding transition measure for projection). Let } P \text{ be a PSIOA. Let } X \text{ be a } P\text{-fair PCA. Let } Y = X \setminus \{ P \}. \text{ Let } (q_X, a, \eta_X) \text{ be a transition of } X \text{ where } a \in \text{act(config}(X)(q_X) \setminus \{ P \}). \text{ Let } \eta_Y \text{ s.t. } \text{Config}(X)(q_X) \xrightarrow{a, \eta_X} \text{config}(Y)(q_Y) = \eta_X(\text{config}(X)(q'_X)) \text{ for every } q'_X \text{ and } \varphi_X = \text{created}(X)(q_X)(a) \text{ (which exists by definition).} \]

Then \((q_Y = \mu_s(q_X), a, \eta_Y = \mu_d(\eta_X)) \) is a transition of \(Y \) and \(\text{Config}(Y)(q_Y) \xrightarrow{a, \varphi_Y} \eta_Y \)
with \(\eta_Y = \eta_X \setminus \{ P \}, \eta_Y(q'_Y) = \eta_X(\text{config}(Y)(q'_Y)) \) for every \(q'_Y \) and \(\varphi_Y = (\varphi_X \setminus \{ P \}) = \text{created}(Y)(q_Y)(a). \)
Proof. At first, by definition of Y, $\text{Config}(Y)(q_Y = \mu_d(q_X)) = \text{Config}(X)(q_X) \setminus \{P\}$. Then, since $a \in \text{act}(\text{Config}(X)(q_X) \setminus \{P\})$, we can apply lemma 56. Thus $\text{Config}(Y)(q_Y) \xrightarrow{\alpha} \varphi_Y$. Let q'_Y with $q'_Y = q_Y \setminus \{P\}$ and $\varphi_Y = (q_X \setminus \{P\})$. By definition, $\text{created}(Y)(q_Y)(a) = \text{created}(X)(q_X)(a) \setminus \{P\}$, thus $\varphi_Y = \text{created}(Y)(q_Y)(a)$.

Let q_Y be a state of Y. By definition of $Y = X \setminus \{P\}$, $(\mu_d(\eta_X))(q_Y) = \Sigma_{q_X, \mu_d(q_X) = q_Y} \eta_X(q_X)$.

By assumption, $\eta_X(q_X) = \eta'_X(\text{config}(X)(q_X))$, thus $(\mu_d(\eta_X))(q_Y) = \Sigma_{q_X, \mu_d(q_X) = q_Y} \eta'_X(\text{config}(X)(q_X))$.

We substitute q_X with $\text{config}(X)(q_X)$ in the sum and obtain $(\mu_d(\eta_X))(q_Y) = \Sigma_{\text{config}(X)(q_X), \text{config}(X)(q_X) \setminus \{P\} = \text{config}(Y)(q_Y)}$ since $\mu_d(q_X) = q_Y$ if and only if $\text{config}(X)(q_X) \setminus \{P\} = \text{config}(Y)(q_Y)$ by definition of $Y = X \setminus \{P\}$. Thereafter, we use the lemma 55 and get $(\mu_d(\eta_X))(q_Y) = \eta'_Y(\text{config}(Y)(q_Y))$ with $\eta'_Y = \eta'_X \setminus \{P\}$.

\[\blacktriangleleft\]

Lemma 60 (extension of a preserving transition). Let C_Y be a configuration, P an automaton that is not contained in $A_Y = \text{auts}(C_Y)$, $a \in \text{sig}(C_Y)$, s. t. $C_Y \xrightarrow{\alpha} \eta_Y, \text{p}$ with A_Y as family support and η as companion distribution.

Then for every $q_P \in \text{states}(P)$, for every configuration $C_X = (\text{auts}(C_Y) \cup \{P\})$, maps ($C_Y \cup \{P, q_P\}$) we have $C_X \xrightarrow{\alpha} \eta_X, p$ with $A_X = A_Y \cup \{P\}$ as family support and η' as companion distribution where

$$\eta' = \eta' \odot \eta_{\eta_p, a} \text{ if } a \in \text{sig}(P)(q_p) \text{ or } \eta = \eta \odot \delta_{q_p} \text{ otherwise.}$$

Proof. Let $A_Y = \text{auts}(C_Y)$ and A_Y the automaton issued from the composition of mathbf{A_Y}.

Let $A_X = \text{auts}(C_X) = \text{auts}(C_Y) \cup \{P\}$ and A_X the automaton issued from the composition of mathbf{A_X}.

Let (q, a, η) be transition of A_Y, then by definition of composition, for every $q_P \in \text{states}(P)$ for the unique state q', s. t. both $q' \setminus \{P\} = q$ and $q' \setminus P = q_P$. Then, by definition 11 of composition (q', a, η') is a transition of A_X with $\eta' = \eta \odot \eta_{\eta_p, a} \text{ if } a \in \text{sig}(P)(q_p)$ or $\eta' = \eta \odot \delta_{q_p}$ otherwise.

Then η' is a companion distribution of $\eta_{X, p}$, while η is a companion distribution of $\eta_{Y, p}$.

\[\blacktriangleleft\]

Lemma 61 (extension of an intrinsic transition). Let C_Y be a configuration, $\varphi_Y \subseteq \text{Autids}$, P an automaton that is not contained in $\text{auts}(C_Y) \cup \varphi_Y$, $a \in \text{sig}(C_Y)$, s. t. $C_Y \xrightarrow{\alpha} \varphi_Y, \eta_Y$ where η_Y is generated by η_Y, p and φ_Y where η is a companion distribution of $\eta_{Y, p}$.

Then for every $q_P \in \text{states}(P)$, for every configuration $C_X = (\text{auts}(C_Y) \cup P)$, maps ($C_Y \cup \{P, q_P\}$), for every set φ_X, s. t. $\varphi_Y = \varphi_X \setminus \{P\}$, we have $C_X \xrightarrow{\alpha} \varphi_X, \eta_X$ where η_X is generated by η_X, p and φ_Y with $\varphi_Y = \varphi_X \setminus \{P\}$ where η' is a companion distribution of $\eta_{X, p}$ with $\eta' = \eta \odot \eta_{\eta_{\eta_p, a}} \text{ if } a \in \text{sig}(P)(q_p)$ or $\eta = \eta \odot \delta_{q_p}$ otherwise.

Proof. Immediate from last lemma and definition of intrinsic transition generated by a preserving transition and a set of automata ids.

\[\blacktriangleleft\]

Lemma 62 (existence of intrinsic transition). Let X be a PCA, $P \in \text{Autids}$ and $Y = X \setminus \{P\}$.

Then $\exists y \in \text{States}(Y), \eta'_Y \in \text{Disc}(Q_{\text{conf}}, F_q_{\text{conf}}), a \in \text{sig}(\text{Config}(Y)(y)), \varphi_Y = \text{created}(Y)(y)(a)$ s. t.

$$\text{Config}(Y)(y) \xrightarrow{\alpha} \varphi_Y, \eta'_Y \text{ implies}$$
Proof. By definition of Y, if $y \in \text{states}(Y)$, it exists $x \in \text{states}(X)$, $\mu_x(x) = y$, $\text{config}(X)(x) \setminus \{P\}$, $P = \text{config}(Y)(y)$ and $\text{created}(X)(x)(a) = \text{created}(Y)(y)(a) \setminus P$. If $P \notin \text{auts}(\text{config}(X)(x))$ with maps($\text{config}(X)(x))(P) = q_p$, we can apply the lemma 61. We obtain $\text{config}(X)(x) \xrightarrow{a} \text{created}(X)(x)(a) \eta_X'$ and $\eta_X' = \eta_Y' \setminus P$. If $P \notin \text{auts}(\text{config}(X)(x))$, the conclusion is the same. □

Now we are able to demonstrate the theorem of the section that claims the PCA set is closed under projection.

Theorem 63 ($X \setminus \{P\}$ is a PCA). Let $P \in \text{Auts}$. Let X be a P-fair PCA, then $Y = X \setminus \{P\}$ is a PCA.

Proof.

(Constraint 1) By definition, $\text{config}(Y)(\tilde{q}_Y) = \text{config}(X)(\mu_\tilde{q}_Y)$. Since the constraint 1 is respected by X, it is a fortiori respected by Y.

(Constraint 2) Let $(q_y, a, \eta_y) \in \text{steps}(Y)$. By definition of Y, we know it exists $(q_x, a, \eta_X) \in \text{steps}(X)$ with $\eta_Y = \mu_\eta(\eta_X)$ and $q_Y = \mu_q(q_x)$. Then, because of constraint 2 ensured by X, we obtain $\text{config}(X)(q_x) \xrightarrow{a} \eta_X'$ with $q_X(q'_X) = q_X(q'_X) \text{config}(X)(q'_X)$ for every $q'_X \in \text{states}(X)$, $\varphi_X = \text{created}(X)(q'_X)(a)$. Finally, we can apply lemma 59 to obtain that $\text{config}(Y)(y) \xrightarrow{a} \varphi_Y$ with $\eta_Y'(q'_Y) = \eta_Y'(\text{config}(Y)(q'_Y))$ for every $q'_Y \in \text{states}(Y)$, $\varphi_Y = \text{created}(Y)(q_Y)(a)$. Since X respect the constraint 3 of PCIOA, we obtain that (x, a, η_X) exists with $\eta_X(x) = \eta_X'(\text{config}(X)(x))$. Then we get $(y = \mu_x(x), a, \eta_Y = \mu_\eta(q_X))$ by definition of Y. We can use the lemma 59 to deduce that $\eta_Y(y) = \eta_Y' \text{config}(Y)(y)$ for every $y' \in \text{states}(Y)$.

(Constraint 4) By definition $\text{sig}(Y)(q_Y) = \mu_\eta(q_X) \triangleq \text{hid}(\text{sig}(\text{config}(Y)(q_Y)), \text{hidden-actions}(Y)(q_Y))$ where hidden-actions(Y)(q_Y) where hidden-actions(X)(q_X) \text{out}(A)(\text{map}(\text{config}(X)(q_X))(A))$, if (*) $A \in \text{auts}(\text{config}(X)(q_X))$, hidden-actions($Y$)(q_Y) \triangleq hidden-actions(X)(q_X) otherwise (**). Since X is supposed to be P-fair, even if it exists q'_X, s. t. $\mu_q(q'_X) = q_Y$, then hidden-actions(X)(q_X) \triangleq hidden-actions(X)(q'_X), so hidden-actions(Y)(q_Y) is well-defined. Furthermore, if (*), hidden-actions(X)(q_X) \text{out}(A)(\text{map}(\text{config}(X)(q_X))(A)) \subseteq \text{out}(\text{config}(X)(q_X))(A)$ (A) because of compatibility of $\text{config}(X)(q_X)$, $\text{out}(A)(\text{map}(\text{config}(X)(q_X))(A)) \cap \text{out}(\text{config}(Y)(q_Y)) = 0$, thus $\text{out}(\text{config}(X)(q_X))(A) \subseteq \text{out}(\text{config}(Y)(q_Y))$, which means hidden-actions(Y)(q_Y) \subseteq out($\text{config}(Y)(q_Y))$. Otherwise (**), we have hidden-actions(Y)(q_Y) \subseteq hidden-actions(X)(q_X) and $\text{out}(\text{config}(X)(q_X)) = \text{out}(\text{config}(Y)(q_Y))$ Thus hidden-actions(Y)(q_Y) \subseteq out($\text{config}(Y)(q_Y))$.
6 Reconstruction

In last section, we have shown that \(Y = X \setminus A \) was a PCA. In this section we want to show that, (as long as no re-creation of \(A \) occurs), \(psioa(X \setminus \{ A \}) \| A \) and \(X \) are linked by an homomorphism. This concept is formalised in theorems 78 and 82. Hence it is always possible to transfer a reasoning on \(X \) into a reasoning on \(psioa(X \setminus \{ A \}) \| A \) if no re-creation of \(A \) occurs.

6.1 Simpleton wrapper

Definition 64 (Simpleton wrapper). (see figure 14) Let \(A \) be a PSIOA. We note \(\tilde{A}^{sw} \) the simpleton wrapper of \(A \) as the following PCA:

1. It exists a bijection \(ren_{sw} : \{ Q_A \rightarrow Q_{\tilde{A}^{sw}} \mid q_A \rightarrow \tilde{q}_{\tilde{A}^{sw}} = ren_{sw}(q_A) \} \) s. t. \(psioa(\tilde{A}^{sw}) = ren_{sw}(A) \), that is \(psioa(\tilde{A}^{sw}) \) differs from \(A \) only syntactically.
2. \(\forall \tilde{q}_{\tilde{A}^{sw}}(\tilde{A}^{sw}), \text{config}(\tilde{A}^{sw})(\tilde{q}_{\tilde{A}^{sw}}) = \text{reduced}(\{ A \}, S : A \rightarrow q_{\tilde{A}^{sw}} = ren_{sw}(q_A)) \)
3. \(\forall \tilde{q}_{\tilde{A}^{sw}}(\tilde{A}^{sw}), \forall a \in \text{sig}(\tilde{A}^{sw})(\tilde{q}_{\tilde{A}^{sw}}), \text{hidden-actions}(\tilde{A}^{sw})(\tilde{q}_{\tilde{A}^{sw}}) = \emptyset \) and \(\text{created}(\tilde{A}^{sw})(\tilde{q}_{\tilde{A}^{sw}})(a) = \emptyset \).

We can remark that when \(\tilde{A}^{sw} \) enters in \(\tilde{q}_{\tilde{A}^{sw}} = ren_{sw}(q_A) \) where \(\text{sig}(\tilde{A}^{sw})(\tilde{q}_{\tilde{A}^{sw}}) = \emptyset \), this matches the moment where \(A \) enters in \(q_A \) where \(\text{sig}(A)(q_A) = \emptyset \), s. t. the corresponding configuration is the empty one.

Lemma 65. Let \(A \) be a PSIOA. Let \(\tilde{A}^{sw} \) its simpleton wrapper with \(psioa(\tilde{A}^{sw}) = ren_{sw}(A) \). Let \(\rho \in \text{Disc} (\text{frags}(\tilde{A}^{sw})) \) apply\(\tilde{A}^{sw}(\text{ren}_{sw}(\mu), \rho)(\text{ren}_{sw}(\alpha)) = \text{apply}_A(\mu, \rho)(\alpha) \).

Proof. By induction. The only key point is that (i) \(\forall q \in \text{states}(A), \text{constitution}(\tilde{A}^{sw})(\text{ren}_{sw}(q)) = \text{constitution}(A)(q) \) and (ii) for \(q^\phi \) s. t. \(\text{sig}(A)(q^\phi) = \emptyset \), \(\text{constitution}(\text{tilde},\tilde{A}^{sw})(\text{ren}_{sw}(q^\phi)) = \emptyset \) which means that (*) \(T \) is enabled in \(q \) iff \(T \) is enabled in \(\text{ren}_{sw}(q) \) and that (**) \(a \) is triggered by \(T \) in state \(q \) if \(a \) is triggered by \(T \) in state \(\text{ren}_{sw}(q) \).

By induction on \(|\rho| \).

Basis: \(\text{apply}_A(\mu, \lambda)(\alpha) = \mu(\alpha) \), while \(\text{apply}_{\tilde{A}^{sw}}(\text{ren}_{sw}(\mu), \lambda)(\text{ren}_{sw}(\alpha)) = \text{ren}_{sw}(\mu)(\text{ren}_{sw}(\alpha)) = \mu(\alpha) \).

Let assume this is true for \(\rho_1 \). We consider \(\alpha^{s+1} = \alpha^s \cdot a^{s+1} q^{s+1} \) and \(\rho_2 = \rho_1 T \).

\[\text{apply}_A(\mu, \rho_1 T)(\alpha^{s+1}) = \text{apply}_A(\text{apply}_A(\mu, \rho_1), T)(\alpha^{s+1}) = p_1(\alpha^{s+1}) + p_2(\alpha^{s+1}) \]

\[p_1(\alpha^{s+1}) = \begin{cases} \text{apply}_A(\mu, \rho_1)(\alpha^s) \cdot \eta_{A',q',\alpha^{s+1}}, q^{s+1} & \text{if } \alpha^{s+1} = \alpha^s \cdot a^{s+1} q^{s+1}, \text{\alpha^{s+1} triggered by } T \text{ enabled otherwise} \\ 0 & \text{otherwise} \end{cases} \]

\[p_2(\alpha^{s+1}) = \begin{cases} \text{apply}_A(\mu, \rho_1)(\alpha^{s+1}) & \text{if } T \text{ is not enabled after } \alpha^{s+1} \\ 0 & \text{otherwise} \end{cases} \]

Parallelly, we have

\[\text{apply}_{\tilde{A}^{sw}}(\text{ren}_{sw}(\mu), \rho_1 T)(\text{ren}_{sw}(\alpha^{s+1})) = \text{apply}_{\tilde{A}^{sw}}(\text{apply}_{\tilde{A}^{sw}}(\text{ren}_{sw}(\mu), \rho_1), T)(\text{ren}_{sw}(\alpha^{s+1})) = \]

\[p_1'(\text{ren}_{sw}(\alpha^{s+1})) + p_2'(\text{ren}_{sw}(\alpha^{s+1})) \]

\[p_1'(\text{ren}_{sw}(\alpha^{s+1})) = \begin{cases} \text{apply}_{\tilde{A}^{sw}}(\text{ren}_{sw}(\mu), \rho_1)(\text{ren}_{sw}(\alpha^s)) \cdot \eta_{\tilde{A}^{sw}}(\text{ren}_{sw}, q^a), a^{s+1}, q^{s+1} & \text{if } (**), \text{otherwise} \\ 0 & \text{otherwise} \end{cases} \]

\[p_2'(\text{ren}_{sw}(\alpha^{s+1})) = \begin{cases} \text{apply}_{\tilde{A}^{sw}}(\text{ren}_{sw}(\mu), \rho_1)(\text{ren}_{sw}(\alpha^{s+1})) & \text{if } T \text{ is not enabled after } \text{ren}_{sw}(\alpha^{s+1}) \\ 0 & \text{otherwise} \end{cases} \]
with (**) : \(\text{ren}_{\text{sw}}(\alpha^{*+1}) = \text{ren}_{\text{sw}}(\alpha^*)a^{*+1}\text{ren}_{\text{sw}}(q^{*+1}), \alpha^{*+1} \) triggered by \(T \).

We have : \(T \) enabled after \(\alpha \leftrightarrow T \) enabled after \(\text{ren}_{\text{sw}}(\alpha) \). The leftward terms are equal by induction hypothesis, since \(|\rho_1| = |\rho_2| - 1 \). Since the probabilistic distributions are in bijection we can obtain the equality for rightward terms. The conditions are matched in the same manner because of signature bijection \(a \). Thus we can conclude that \(p_1(\text{ren}_{\text{sw}}(\alpha^{*+1})) = p_1(\alpha^{*+1}) \) and \(p_2(\text{ren}_{\text{sw}}(\alpha^{*+1})) = p_2(\alpha^{*+1}) \), which leads to the result.

\[
\]

6.2 Partial-compatibility

In this section, we show that \((X_A \setminus \{A\}) \) and \(\tilde{A}_{\text{sw}}\) are partially-compatible and that \((X_A \setminus \{A\})||\tilde{A}_{\text{sw}}\) mimics \(X_A\) as long as no creation of \(A\) occurs (see figure 15).

In this subsection we show that \(\text{psioa}(X \setminus \{A\})\) and \(A\) are partially-compatible if minor conditions are respected. We will use the notation \(Z = \text{psioa}(X \setminus \{A\}), \Lambda\) and in case of partial-compatibility of \(Z, Z = \text{psioa}(X \setminus \{A\})||\Lambda\).

Definition 66 \((A\)-conservative PCA). Let \(X\) be a PCA, \(A \in \text{Autids}\). We say that \(X\) is \(A\)-conservative if it is \(A\)-fair and for every state \(q_X, C_x = \text{config}(X)(q_X)\) s. t. \(A \in \text{aut}(C_X)\) and \(\text{map}(C_X)\{A\} \cong q_A, \text{hidden-actions}(X)(q_X) = \text{hidden-actions}(X)(q_X) \setminus \text{ext}(\Lambda)(q_A)\).

A \(A\)-conservative PCA is a PCA that does not hide any output action that could be an external action of \(A\). This allows the compatibility between \(X \setminus A\) and \(A\).

This allows the compatibility between \(X \setminus A\) and \(\tilde{A}_{\text{sw}}\).

Definition 67 \((\mu_A^2 \text{ and } \mu_A^4 \text{ mapping})\). Let \(A \in \text{Autids}, X\) be a \(A\)-fair PCA, \(Y = X \setminus A\). Let \(\tilde{A}_{\text{sw}}\) be the simpleton wrapper of \(A\), where \(\text{psioa}(\tilde{A}_{\text{sw}}) = \text{ren}_{\text{sw}}(A)\). Let \(q_A^0 \in \text{states}(A)\) the (assumed) unique state s. t. \(\text{sig}(A)(q_A^0) = 0\). We note \(\mu_A^2 : \text{states}(X) \rightarrow \text{states}(Y) \times \text{states}(\tilde{A}_{\text{sw}})\) s. t. \(\forall x \in \text{states}(X), \mu_A^2(x) = (\mu_A^4(x), \text{ren}_{\text{sw}}(q_A))\) with \(q_A = \text{map}(\text{config}(X)(x))(A)\) if \(A \in \{\text{aut}(\text{config}(X)(x))\}\) and \(q_A = q_A^0\) otherwise.

For every alternating sequence \(\alpha = x^0, a^1, s^1, a^2, \ldots\) of states of and actions of \(X \alpha_X\), we note \(\mu_A^4(\alpha_X)\) the alternating sequence \(\alpha = \mu_A^2(x^0), a^1, \mu_A^4(x^1), a^2, \ldots\).

The symbol \(A\) is omitted when this is clear in the context.

Lemma 68 \(\text{preservation of signature compatibility of configurations})\). Let \(A \in \text{Autids}\). Let \(X\) be a \(A\)-conservative PCA, \(Y = X \setminus A\). Let \(q_X \in \text{states}(X), C_X = \text{config}(X)(q_X), A_X = \text{aut}(C_X), S_X = \text{map}(C_X)\).

If \(A \in A_X\) and \(q_A = S_X(A)\), then \(\text{sig}(C_Y)\) and \(\text{sig}(\tilde{A}_{\text{sw}})(\text{ren}_{\text{sw}}(q_A))\) are compatible and \(\text{sig}(C_X) = \text{sig}(C_Y) \times \text{sig}(\tilde{A}_{\text{sw}})(\text{ren}_{\text{sw}}(q_A))\).

If \(A \notin A_X\), then \(\text{sig}(C_Y)\) and \(\text{sig}(\tilde{A}_{\text{sw}})(\text{ren}_{\text{sw}}(q_A^0))\) are compatible and \(\text{sig}(C_X) = \text{sig}(C_Y) \times \text{sig}(\tilde{A}_{\text{sw}})(\text{ren}_{\text{sw}}(q_A^0))\).

Proof. Let \(A \in \text{Autids}\) Let \(X\) and \(Y \setminus \{A\}\) be PCA. Let \(q_X \in \text{states}(X)\). Let \(C_X = \text{config}(X)(q_X), A_X = \text{auts}(C_X)\) and \(S_X = \text{map}(C_X)\). Let \(q_Y \in \text{states}(Y), q_Y = \mu_s(q_X)\).

Let \(C_Y = \text{config}(Y)(q_Y), A_Y = \text{auts}(C_Y)\) and \(S_Y = \text{map}(C_Y)\). By definition of \(Y, C_Y = C_X \setminus \{A\}\).

Case 1: \(A \in A_X\)
Since X is a PCA, C_X is a compatible configuration, thus $((A_Y, S_Y) \cup (A, q_A))$ is a compatible configuration. Finally $\text{sig}(C_Y)$ and $\text{sig}(A)(q_A)$ are compatible with $\text{sig}(A)(q_A) = \text{sig}(\hat{A}^{sw})(\text{ren}_{sw}(q_A^\sw))$.

By definition of intrinsic attributes of a configuration, that are constructed with the attributes of the automaton issued from the composition of the family of automata of the configuration, we have $A_X = A_Y \cup \{A\}$ and $\text{sig}(C_X) = \text{sig}(C_Y) \times \text{sig}(A)(q_A)$, that is $\text{sig}(C_X) = \text{sig}(C_Y) \times \text{sig}(\hat{A}^{sw})(\text{ren}_{sw}(q_A))$.

Case 2: $A \notin A_X$

Since X is a PCA, C_X is a compatible configuration, thus $C_Y = C_X$ is a compatible configuration. Finally $\text{sig}(C_Y)$ and $\text{sig}(A)(q_A^\sw) = (\emptyset, \emptyset, \emptyset) = \text{sig}(A)(q_A) = \text{sig}(\hat{A}^w)(\text{ren}_{sw}(q_A^\sw))$ are compatible.

By definition of intrinsic attributes of a configuration, that are constructed with the attributes of the automaton issued from the composition of the family of automata of the configuration (here A_Y and $A_X = A_Y$), we have $\text{sig}(C_X) = \text{sig}(C_Y)$. Furthermore, $\text{sig}(\hat{A}^w)(\text{ren}_{sw}(q_A^\sw)) = \text{sig}(A)(q_A^\sw) = (\emptyset, \emptyset, \emptyset)$. Thus $\text{sig}(C_X) = \text{sig}(C_Y) \times \text{sig}(\hat{A}^w)(\text{ren}_{sw}(q_A^\sw))$.

Lemma 69 (preservation of signature). Let $A \in \text{Autids}$. Let X be a A-conservative PCA, $A \in \text{Autids}$, $Y = X \setminus \{A\}$. For every $q_X \in \text{states}(X)$, we have $\text{sig}(X)(q_X) = \text{sig}(Y)(q_Y) \times \text{sig}(\hat{A}^w)(\text{ren}_{sw}(q_A))$ with $\langle q_Y, \text{ren}_{sw}(q_A) \rangle = \mu^A(q_X)$.

Proof. The last lemma 68 tell us for every $q_X \in \text{states}(X)$, we have $\text{sig}(\text{config}(X)(q_X)) = \text{sig}(\text{config}(Y)(q_Y)) \times \text{sig}(\hat{A}^w)(\text{ren}_{sw}(q_A))$ with $\langle q_Y, \text{ren}_{sw}(q_A) \rangle = \mu^A(q_X)$. Since X is A-conservative, we have $\langle * \rangle \text{sig}(X)(q_X) = \text{hide}(\text{sig}(\text{config}(X)(q_X))(\text{acts}))$ where $\text{acts} \subseteq (\text{out}(X)(q_X) \setminus \{\text{ext}(A)(q_A)\})$. Hence $\text{sig}(Y)(q_Y) = \text{hide}(\text{sig}(\text{config}(Y)(q_Y))(\text{acts}))$. Since $\langle ** \rangle \text{acts} \cap \text{ext}(A)(q_A) = \emptyset$, $\text{sig}(Y)(q_Y)$ and $\text{sig}(A)(q_A)$ are also compatible. We have $\text{sig}(\text{config}(X)(q_X)) = \text{sig}(\text{config}(Y)(q_Y)) \times \text{sig}(A)(q_A) = \text{sig}(\text{config}(Y)(q_Y)) \times \text{sig}(\hat{A}^w)(\text{ren}_{sw}(q_A))$

which gives because of $\langle * \rangle \text{hide}(\text{sig}(\text{config}(X)(q_X))(\text{acts})) = \text{hide}(\text{sig}(\text{config}(Y)(q_Y))(\text{acts})) \times \text{sig}(A)(q_A)$, that is $\text{sig}(X)(q_X) = \text{sig}(Y)(q_Y) \times \text{sig}(A)(q_A) = \text{sig}(Y)(q_Y) \times \text{sig}(\hat{A}^w)(\text{ren}_{sw}(q_A))$.

Lemma 70 (preservation of partial-compatibility at any reachable state). Let $A \in \text{Autids}$, X be a A-conservative PCA, $Y = X \setminus \{A\}$, $Z = (\text{psioo}(Y), \hat{A}^w)$. Let $x = (y, \tilde{q}_{\hat{A}^w}) \in \text{states}(Y) \times \text{states}(\hat{A}^w)$ and $x \in \text{states}(X)$ s. t. $\mu_x(x) = z$. Then Z is partially compatible at state z (in the sense of definition 43).

Proof. Since X is a A-conservative PCA, the previous lemma 69 ensures that $\text{sig}(Y)(q_Y)$ and $\text{sig}(A)(q_A) = \text{sig}(\hat{A}^w)(\text{ren}_{sw}(q_A))$ are compatible, thus by definition Z is partially compatible at state z.

We show that reconstruction preserves probabilistic distribution of corresponding transition.

Lemma 71 (preservation of transition). Let $A \in \text{Autids}$, X be a A-conservative PCA, $Y = X \setminus \{A\}$, $Z = (Y, \hat{A}^w)$. Let $y = (q_Y, \tilde{q}_{\hat{A}^w}) \in \text{states}(Y) \times \text{states}(\hat{A}^w)$ and $q_X \in \text{states}(X)$ s. t. $\mu_{y}(q_Y) = \mu_{x}(q_X) = q_X$. Let $a \in \text{sig}(X)(x) = \text{sig}(Y)(y) \times \text{sig}(\hat{A}^w)(\tilde{q}_{\hat{A}^w})$, verifying $= (\text{No creation from } A)$ If both $A \in \text{map}(\text{config}(X)(q_X))$ and $a \notin \text{sig}(\text{config}(X)(q_X) \setminus \text{A})$, then $\text{created}(X)(x)(a) = \emptyset$.
If we are in one of this case

1. \(A \in \text{auts}(\text{config}(X)(x)) \)
2. \(A \notin \text{auts}(\text{config}(X)(x)) \) and \(A \notin \text{created}(X)(x)(a) \) (\(X \) does not create \(A \) with probability 1)

Then for every \(q'_X \in \text{states}(X) \), \(\eta_{(X,q_X,a)}(q'_X) = \eta_{(Z,q_z,a)}(\mu_z(q'_X)) \).

Proof. By lemma 69, we have \(\text{sig}(X)(q_X) = \text{sig}(Y)(q_Y) \times \text{sig}(A)(q_A) = \text{sig}(Y)(y) \times \text{sig}(A_{sw})(\bar{q}_{A_{sw}} = \text{ren}_{sw}(q_A)) \).

We note \(\varphi_X = \text{created}(X)(q_X)(a) \), \(\varphi_Y = \text{created}(X)(q_X)(a) \setminus A \). We note \(A_X = \text{auts}(\text{config}(X)(q_X)) \), \(A_Y = \text{auts}(\text{config}(Y)(q_Y)) \), \(S_X = \text{map}(\text{config}(X)(q_X)) \), \(S_Y = \text{map}(\text{config}(Y)(q_Y)) \), \(A_X \) (resp. \(A_Y \)) the composition of automata in \(A_X \) (resp. \(A_Y \)).

If \(a \notin \text{sig}(\text{config}(X)(q_X) \setminus A) \land a \in \text{sig}(A)(q_A) \), then \(\varphi_X = \varphi_Y = \emptyset \).

Since \(X \) (resp. \(Y \)) is a PCA and \((q_X,a,\eta_{(X,q_X,a)}) \in D_X \) (resp. if \(a \in \text{sig}(Y)(q_Y) \), \((q_X,a,\eta_{(X,q_X,a)}) \in D_X \)) the constraint says that it exists \(\eta_{(C_X,a)} \) reduced configuration distribution s. t. \(\text{config}(X)(q_X) \Rightarrow \varphi_X \) \(\eta_{(C_X,a)} \) (resp. \(\text{config}(Y)(q_Y) \Rightarrow \varphi_Y \) \(\eta_{(C_Y,a)} \)) where for every \(q'_X \in \text{states}(X) \), \(\eta_{(C_X,a)}(\text{config}(X)(q'_X)) = \eta_{(X,q_X,a)}(q'_X) \) (resp. \(\eta_{(C_X,a)}(\text{config}(Y)(q'_Y)) = \eta_{(Y,q_Y,a)}(q'_Y) \) and \(\eta_{(C_Y,a)} \) generated from \(\varphi_X \) (resp. \(\varphi_Y \)) and \(\eta_{(C_X,a),b} \) (resp. \(\eta_{(C_Y,a),b} \)) with companion distribution \(\eta_{(A_X,q_X,a)} \in \text{Disc}(Q_{AX}) \) (resp. \(\eta_{(A_Y,q_Y,a)} \in \text{Disc}(Q_{AY}) \)).

If \(a \in \text{sig}(A)(q_A) \), it exists \(\eta_{(A,q_{a},a)} \in \text{Disc}(Q_{A})\), \((q_{a},a,\eta_{(A,q_{a},a)}) \in D_{A} \). By construction of \(Y = X \setminus \{A\} \), if \(A \in A_X \), \(\eta_{(A_X,q_X,a)} = \eta_{(A_Y,q_Y,a)} \otimes \eta_{(A,q_{a},a)} \) and otherwise \(\eta_{(A_X,q_X,a)} = \eta_{(A_Y,q_Y,a)} \). Finally, also by construction of \(Y = X \setminus \{A\} \) we know that for every \(a \in \text{sig}(Y)(q_Y) \), for every \(q'_X \in \text{states}(X) \), \(\eta_{(X,q_X,a)}(q'_X) = \eta_{(Y,q_Y,a)}(\mu_{s}(q'_X)) \).

1. \(A \in \text{auts}(\text{config}(X)(x)) \). We know that \(\eta_{A_X,q_X,a} = \eta_{A_Y,q_Y,a} \otimes \eta_{(A,q_{a},a)} \). This means that for every configuration \(C'_X = C'_Y \cup C'_A \) with \(C'_X = (A_X,S_X'), C'_Y = (A_Y,S_Y'), C'_A = (A, (q'_A)) \), \(\eta_{(C_X,a,b)}(C'_X) = (\eta_{(C_Y,a,b)} \otimes \eta_{(A,q_{a},a)}))(C'_X,C'_A). \) Since we assume no creation from \(A \), we also have for every configuration \(C''_X = C''_Y \cup C''_A \) with \(C''_X = (A'_X, S'_X) \), \(C''_Y = (A'_Y, S'_Y) \), \(C''_A = (A, (q'_A)) \), \(\eta_{(C_X,a,b)}(C''_X) = (\eta_{(C_Y,a,b)} \otimes \eta_{(A,q_{a},a)}))(C''_X,C''_A). \) Hence for every states \(q'_X, q'_Y = (q'_Y, q''_Y = \mu_z(q'_Y), \eta_{(X,q_X,a)}(q'_X) = (\eta_{(Y,q_Y,a)} \otimes \eta_{(A,q_{a},a)}))(q'_Y, q''_Y = \eta_{(Y,q_Y,a)}(\mu_{s}(q''_Y)) = \eta_{Z,q_{a},a}(\mu_{s}(q''_Y)), \) which ends the proof for this case.

2. \(A \notin \text{auts}(\text{config}(X)(q_X)) \) and \(A \notin \text{created}(X)(x)(a) \). In this case \(\varphi_X = \varphi_Y \) because we assume no creation of \(A \) and we obtain \(\eta_{(C_X,a)} = \eta_{(C_Y,a)} \). Furthermore, \(q_A = q''_A \) and thus \(a \notin \text{sig}(A)(q_A) \), i. e. \(\eta_{(Z,q_{a},a)}(\mu_{s}(q''_X)) = (\eta_{(Y,q_Y,a)} \otimes \delta_{\text{ren}_{sw}(q_A)}) (q''_Y, \text{ren}_{sw}(q''_A)) = (\eta_{(Y,q_Y,a)} \otimes \delta_{\text{ren}_{sw}(q_A)}) (q''_Y, \text{ren}_{sw}(q''_A)) = \eta_{(X,q_X,a)}(\mu_{s}(q''_X)) \) which ends the proof for this case.

Definition 72 (A-twin). Let \(A \in \text{Autids} \). Let \(X, X' \) be PCA. We say that \(X' \) is an \(A \)-twin of \(X \) if it differs from \(X \) at most by its start states \(q'_X \) reachable by \(X \) s. t. \(A \in \text{config}(X')(q_X) \) and \(\text{map}(\text{config}(X')(q_X)) = (A \) if \(X' \) is a \(A \)-twin of \(X \) and \(Y = X \setminus A \) and \(Y' = X' \setminus A \), we slightly abuse the notation and say that \(Y' \) is a \(A \)-twin of \(Y' \).

Lemma 73 (I-partial-compatibility after reconstruction). Let \(A \in \text{Autids} \). Let \(X \) be a PCA \(A \)-conservative. Let \(Y = X \setminus A \). Let \(Y' \) be a \(A \)-twin of \(Y \).
We note which will be the standard notation in the remaining.

Proof. Since \(q_X \in \text{states}(X) \) and \(X \) is a PCA, \(C_X \triangleq \text{config}(X)(q_X) \) is a compatible configuration by definition, which implies \(\text{sig}(\text{config}(Y)(q_Y)) \) and \(\text{ren}_{\text{sw}}(A)(\text{ren}_{\text{sw}}(q_A)) \) are compatible signatures and equally for \(\text{sig}(\text{config}(Y')(q_Y')) \) and \(\text{ren}_{\text{sw}}(A)(\text{ren}_{\text{sw}}(q_A)) \). Since \(X \) is \(A \)-conservative, \(\text{sig}(Y')(\tilde{q}_{Y'}) \) and \(\text{sig}(A)(\tilde{q}_A) = \text{ren}_{\text{sw}}(A)(\text{ren}_{\text{sw}}(q_A)) \) are compatible signatures. (a compatible output of \(\text{config}(X)(q_X) \) cannot become an internal action of \(\text{sig}(Y')(\mu_x(q_X)) \) non-compatible with \(\text{sig}(A)(\text{map}(C_X)) \).) □

Lemma 74 (partial surjectivity 1). Let \(A \in \text{Autids} \). Let \(X \) be a PCA \(A \)-conservative. Let \(Y = X \setminus A \). Let \(Y' \) be a \(A \)-twin of \(Y \). Let \(Z = (Y', \tilde{A}^{sw}) \).

Let \(\alpha = q^0, a^1, \ldots, a^k, q^k \) be a pseudo execution of \(Z \). Let assume \(q^i_{\tilde{A}^{sw}} \neq \text{ren}_{\text{sw}}(q^i_A) \) for every \(s \in [0,k] \). Then it exists \(\tilde{\alpha} \in \text{frags}(X) \), s. t. \(\mu_x(\tilde{\alpha}) = \alpha \). If \(Y' = Y \), it exists \(\tilde{\alpha} \in \text{execs}(X) \), s. t. \(\mu_x(\tilde{\alpha}) = \alpha \).

Proof. By induction on each prefix \(\alpha^s = q^0, a^1, \ldots, a^s, q^s \) with \(s \leq k \).

Basis: For \(Y = Y' \), \(\mu_x(q^i_X) = (\tilde{q}_{Y'}, \text{ren}_{\text{sw}}(q^i_A)) \) For \(Y \neq Y' \), it exists \(q^i_X \) s. t. \(\mu_x(q^i_X) = (\tilde{q}_{Y'}, \text{ren}_{\text{sw}}(q^i_A)) \) by definition of \(A \)-twin. Hence \(\mu_x(q^i_X) = (\tilde{q}_{Y'}, \text{ren}_{\text{sw}}(q^i_A)) \)

Induction: we assume this is true for \(s \) and we show it implies this true for \(s + 1 \).

We note \(\tilde{\alpha}_s \), s. t. \(\mu_x(\tilde{\alpha}_s) = \alpha^s \). We also note \(\tilde{q} = \text{lstate}(\tilde{\alpha}^s) \) and we have by induction assumption \(\mu_x(\tilde{q}) = q^s = (q^s_{Y'}, \tilde{q}_A) \). Because of preservation of signature compatibility, \(\text{sig}(X)(\tilde{q}) = \text{sig}(Y)(q^s_{Y'}) \times \text{ren}_{\text{sw}}(A)(q^s_{\text{ren}_{\text{sw}}}(A)) \). Hence \(\sigma^{k+1} = \text{sig}(X)(\tilde{q}) \).

Finally we can use preservation of transition since no creation of \(A \) can occur to conclude. □

Theorem 75 (Partial-compatibility after reconstruction). Let \(A \in \text{Autids} \). Let \(X \) be a PCA \(A \)-conservative. Let \(Y = X \setminus A \). Let \(Y' \) be a \(A \)-twin of \(Y \). Let \(Z = (Y', \tilde{A}^{sw}) \). Then \(Y' \) and \(\tilde{A}^{sw} \) are partially-compatible.

Proof. Let \(q_Z = (q_{Y'}, q_{\tilde{A}^{sw}}) \) be a reachable state of \(Z \). Case 1) \(q_{\tilde{A}^{sw}} = q^0_{\tilde{A}^{sw}} \). The compatibility is immediate since \(\text{sig}(\tilde{A}^{sw})(q^0_{\tilde{A}^{sw}}) = \emptyset \). Case 2) \(q_{\tilde{A}^{sw}} \neq q^0_{\tilde{A}^{sw}} \). Since \(q_{\tilde{A}^{sw}} \) is reachable, it exists a pseudo execution \(\alpha \) of \(Z \) with \(\text{lstate}(\alpha) = q_{\tilde{A}^{sw}} \). Since \(A \) cannot be re-created after destruction by either \(Y \) or \(\tilde{A}^{sw} \) we can use the previous lemma to show it exists \(\tilde{\alpha} \in \text{frags}(X) \), s. t. \(\mu_x(\tilde{\alpha}) = \alpha \). Thus, \(\text{lstate}(\alpha) = \mu_x(\text{lstate}(\tilde{\alpha})) \) which means \(Z \) is partially-compatible at \(\text{lstate}(\alpha) \). Hence \(Z \) is partially-compatible at every reachable state, which means \(Y' \) and \(\tilde{A}^{sw} \) are partially-compatible. We can legitimately note \(Z' = Y'||\tilde{A}^{sw} \).

Since \(Z' = (Y', \tilde{A}^{sw}) \) is partially-compatible, we can legitimately note \(Z' = Y'||\tilde{A}^{sw} \), which will be the standard notation in the remaining.

6.3 Probabilistic distribution preservation without creation

Lemma 76 (partial surjectivity 2). Let \(A \in \text{Autids} \). Let \(X \) be a PCA \(A \)-conservative. Let \(Y = X \setminus A \). Let \(Y' \) be a \(A \)-twin of \(Y \). Let \(Z = Y'||\tilde{A}^{sw} \).

Let \(\alpha = q^0, a^1, \ldots, a^k, q^k \) be an execution of \(Z \). Let assume (a) \(q^i_{\tilde{A}^{sw}} \neq \text{ren}_{\text{sw}}(q^i_A) \) for every \(s \in [0,k] \) (b) \(q^i_{\tilde{A}^{sw}} = q^i_{\tilde{A}^{sw}} \) for every \(s \in [k^* + 1, k^* + 1, k - 1] \), for every \(q^s \), s. t. \(\mu_x(q^s) = q^s \), \(\tilde{A} \notin \text{created}(X)(\tilde{q})(a^{s+1}) \). Then it exists \(\tilde{\alpha} \in \text{frags}(X) \), s. t. \(\mu_x(\tilde{\alpha}) = \alpha \). If \(Y' = Y \), it exists \(\tilde{\alpha} \in \text{execs}(X) \), s. t. \(\mu_x(\tilde{\alpha}) = \alpha \).
Proof. We already know this is true up to k^* because of lemma 74. We perform the
same induction than the one of the previous lemma on partial surjectivity: We note $\tilde{\alpha}$
and $\tilde{\mu}$ of $\tilde{\alpha}$.

We also note $\tilde{q} = lstate(\tilde{\alpha})$ and we have by induction assumption
$\tilde{\mu}(\tilde{q}) = q^\ast = (q^\ast_{\tilde{\alpha}}, q^\ast_\delta)$. Because of preservation of signature compatibility, $\sig(\tilde{X})(\tilde{q}) =
\sig(Y)(q^\ast_Y)) \times \sig(\text{ren}_w(A))(\text{ren}_w(q^\ast_{\delta}), q^\ast_\delta)$. Hence $a^{k+1} \in \sig(X)(\tilde{q})$. Now we use the
assumption (c), that says that $A \notin \text{created}(X)(\tilde{q}^\ast)(a^{k+1})$ to be able to preserve transition
since no creation of A can occurs. □

Lemma 77. Let $A \in \text{Autids}$. Let X be a PCA A-conservative. Let $Y = X \setminus A$. Let Y' be
a A-twin of Y. Let $Z' = (Y', \tilde{A}^w)$.

1. Y' and \tilde{A}^w are partially-compatible, thus we can legitimately note $Z' = Y'|\tilde{A}^w$.
2. Furthermore, for every execution fragment $\alpha \in \text{frags}(X)$, with $\mu_\alpha(f\text{state}(\alpha)) \in \text{states}(Z')$
 verifying
 - No creation of A: If $A \notin \text{acts}(\text{config}(X)(q^\ast_X))$ then $A \notin \text{created}(X)(q^\ast_X)(a^{k+1})$.
 - No creation from A: $\forall s \in [0, k - 1]$, verifying $a^{k+1} \notin \sig(\text{config}(X)(q^\ast_X) \setminus A) \land a^{k+1} \in
 \sig(\tilde{A}^w)(q^\ast_{\tilde{A}^w})$, with $\mu_\alpha(q^\ast_X) = q_Z = (q^\ast_{\tilde{\alpha}}, q^\ast_{A^w})$, $\text{created}(X)(q^\ast_X)(a) = \emptyset$.

 then $\mu_\alpha(\alpha) \in \text{frags}(Z)$.

Proof. By induction on the size s of a prefix a^s of α. Basis: The result is immediate by
assumption for $a^s = q^0_X$, since $\mu_\alpha(q^0_X)$ is assumed to be a state of Z. Induction: We assume
this is true for a^s and we want to show this is also true for $a^{s+1} = a^s \cdot a^{s+1} q^s$. We have
signature preservation for q^s and $\mu_\alpha(q^s)$, thus $a^{s+1} \in \sig(Z)$. Moreover, we have transition
preservation, thanks to the assumptions, thus $\mu_\alpha(q^{s+1}) \in \supp(\eta_{Z, \mu_\alpha(q^s), a})$ which means
that $\mu_\alpha(a^{s+1})$ is an execution of a^{s+1}, this ends the induction and the proof. □

Theorem 78 (Preserving probabilistic distribution without creation). Let $A \in \text{Autids}$. Let X
be a A-conservative PCA. Let $Y = X \setminus A$. Let Y' be a A-twin of Y. Let $Z' = Y'|\tilde{A}^w$. Let E
be an environment of X. Let ρ be a schedule.

For every execution fragment $\alpha = q^0 a^1 q^2 \ldots q^k \in \text{frags}(X||E)$ with $\mu_\alpha(q^0) \in \text{states}(Z)$,
verifying:

- No creation of A: For every $s \in [0, k - 1]$, if $A \notin \text{acts}(\text{config}(X)(q^s_X))$ then $A \notin
\text{created}(X)(q^s_X)(a^{k+1})$.
- No creation from A: $\forall s \in [0, k - 1]$, verifying $a^{k+1} \notin \sig(\text{config}(X)(q^s_X) \setminus A) \land a^{k+1} \in
\sig(\tilde{A}^w)(q^s_{\tilde{A}^w})$, with $\mu_\alpha(q^s_X) = q_Z = (q^s_{\tilde{\alpha}}, q^s_{A^w})$, $\text{created}(X)(q^s_X)(a) = \emptyset$.

then for every $q_X \in \text{states}(X)$ s. t. $\mu_\alpha(q_X) \in \text{states}(Z')$, apply $X||E(\delta_{(q_X, q_Z)}, \rho)(\alpha) =
\text{apply}(Z||E)(\delta_{(\mu_\alpha(q_X), q_Z)})(\rho_{(\mu_{\gamma}(\alpha)})$.

Proof. We recall that for every $s \in [0, k - 1]$, if $(q^s_Z, q^s_\delta) = (\mu_\alpha(q^s_X), q^s_\delta)$, $\eta_{X, q^s_X, a^{s+1}}(q^{s+1}_X) =
\eta_{Z, q^s_Z, a^{s+1}}(\mu_\alpha(q^{s+1}_X))$, since $q^s_Z = \mu_\alpha(q^s_X)$. Hence $\eta_{X, q^s_X, a^{s+1}}(q^{s+1}_X) \otimes \eta_{E, q^s_\delta, a^{s+1}}(q^{s+1}_\delta) =
\eta_{Z, q^s_Z, a^{s+1}}(\mu_\alpha(q^{s+1}_X)) \otimes \eta_{E, q^s_\delta, a^{s+1}}(q^{s+1}_\delta)$, which gives $\eta_{X||E}(q^s_X, q^s_\delta, a^{s+1})(q^{s+1}_X, q^{s+1}_\delta)$ which
finally $\eta_{X||E, q^{s+1}, a^{s+1}}(q^{s+1}) = \eta_{Z||E, q^{s+1}}(\mu_\alpha(q^{s+1}))$.

By induction on s.\]

Basis: apply $X||E(\delta_{(q_X, q_Z)}, \lambda) = \delta_{(q_X, q_Z)}$, while apply $Z||E(\delta_{(\mu_\alpha(q_X), q_Z)}, \lambda) = \delta_{(\mu_\alpha(q_X), q_Z)}$ and
$\mu_{\gamma}(q_X, q_Z) = (\mu_{\gamma}(q_X), q_Z)$.

Let assume this is true for ρ_1. We consider $a^{s+1} = a^s \cdot a^{s+1} q^{s+1}$ and $\rho_2 = \rho_1 T$.\]
We say that so if A config I can conclude that because of signature homomorphism and we assume no creation from or of p.

\[p_1(\alpha^{s+1}) = \begin{cases}
\text{apply}X||\varepsilon(\delta(q_{x,q_x},q_1),T)(\alpha^{s+1}) = \text{apply}X||\varepsilon(\delta(q_{x,q_x},q_1),\rho_1),T)(\alpha^{s+1}) = p_1(\alpha^{s+1}) + \\
0
\end{cases} \]

\[p_2(\alpha^{s+1}) = \begin{cases}
\text{apply}X||\varepsilon(\delta(q_{x,q_x},q_1),\rho_1)(\alpha^{s+1}) & \text{if } \alpha^{s+1} = \alpha^{-}\alpha^{s+1}q^{s+1}, \alpha^{s+1} \text{ triggered by } T \text{ enabled} \\
0 & \text{otherwise}
\end{cases} \]

with $\eta^Y = \eta(X||\varepsilon, q^a, \alpha^{s+1})$

Parallely, we have

\[p'_1(\mu_e(\alpha^{s+1})) = \begin{cases}
\text{apply}Z||\varepsilon(\delta(\mu_e(q_{x,q_x}),q_1),T)(\mu_e(\alpha^{s+1})) = \text{apply}Z||\varepsilon(\delta(\mu_e(q_{x,q_x}),q_1),\rho_1),T)(\mu_e(\alpha^{s+1})) = \\
0
\end{cases} \]

\[p'_2(\mu_e(\alpha^{s+1})) = \begin{cases}
\text{apply}Z||\varepsilon(\delta(\mu_e(q_{x,q_x}),q_1),\rho_1)(\mu_e(\alpha^{s+1})) = \eta^Z'(\mu_e(\alpha^{s+1})) & \text{if } (**) \text{ not enabled after } \mu_e(\alpha^{s+1}) \\
0 & \text{otherwise}
\end{cases} \]

with $\eta^Z' = \eta(Z||\varepsilon, \mu_e(q^a), \alpha^{s+1})$ and $(**): \mu_e(\alpha^{s+1}) = \mu_e(\alpha^{s}a^{s+1})\mu_e(q^{s+1}), \alpha^{s+1} \text{ triggered by } T$

We have : T enabled after $\alpha \iff T$ enabled after $\mu_e(\alpha)$. The leftward terms are equal by induction hypothesis, since $|p_1| = |p_2| - 1$. Using transition preservation we can obtain the equality for rightward terms. The conditions are matched in the same manner because of signature homomorphism and we assume no creation from or of A. Thus we can conclude that $p'_1(\mu_e(\alpha^{s+1})) = p_1(\alpha^{s+1})$ and $p'_2(\mu_e(\alpha^{s+1})) = p_2(\alpha^{s+1})$, which leads to $\text{apply}(X||\varepsilon)(\delta(q_{x,q_x},q_1),T)(\alpha^{s+1}) = \text{apply}(Z||\varepsilon(\delta(\mu_e(q_{x,q_x}),q_1),\rho_1),T)(\mu_e(\alpha^{s+1}))$, which terminates the proof.

6.4 Partial homomorphism

- **Definition 79** (configuration-equivalents states). Let X be a PCA. Let $q, q' \in states(X)$.

We say that q and q' are configuration-equivalents if $\text{config}(X)(q) = \text{config}(X)(q')$. The PCA X is said configuration-equivalence-free if for every configuration-equivalents pair (q, q'), $q = q'$.

- **Lemma 80** (injectivity of μ_e (modulo configuration-equivalence)). Let $A \in \text{Autids}$. Let X be a A-conservative configuration-equivalence-free PCA, $Y = X \setminus A$, Y' a A-twin of Y.

Then μ_e is an injection.

Proof. Let (q_Y, \tilde{q}_A) be a states of $Y'||\tilde{A}^{sw}$. Let q_X and q'_X s. t. $\mu_e(q_X) = \mu_e(q'_X) = (q_Y, \tilde{q}_A)$. We will show that $q_X = q'_X$, by showing they are configuration-equivalent. At first $\text{config}(X)(q_X) \setminus A = \text{config}(X \setminus A)(q_Y) = \text{config}(X)(q'_X) \setminus A$. Then $\text{config}(X)(q_X) = \text{config}(X)(q'_X) \setminus A = \text{config}(X)(q'_X)$ if $A \notin \text{aut}(\text{config}(X)(q_X))$. So we treat the case where $A \in \text{aut}(\text{config}(X)(q_X))$ and $\text{aut}(\text{config}(X)(q_X))(A) = q_A$. In this case $\text{config}(X)(q_X) = (\text{config}(X)(q_X) \setminus A \cup \{(A, q_A)\}) = \text{config}(X)(q'_X)$. Thus q_X, q'_X are configuration-equivalent, so if X is configuration-equivalence-free, then $q_X = q'_X$. Hence, μ_e is an injective function.

- **Lemma 81** (injectivity of μ_e (modulo configuration-equivalence)). Let $A \in \text{Autids}$. Let X be a A-conservative configuration-equivalence-free PCA, $Y = X \setminus A$, Y' a A-twin of Y.

Then μ_e is an injection.
Proof. Let $\alpha = q^0 a^1 \ldots a^k a^{k+1} q^{k+1} \ldots$. We have $\mu_\epsilon(\alpha) = \mu_\epsilon(q^0), a^1, \ldots, \mu_\epsilon(q^k), a^{k+1}, \mu_\epsilon(q^{k+1}) \ldots$ with μ_ϵ an injection and identity function on actions an injection too. Thus μ_ϵ is an injection. ▲

Theorem 82 (partial bijectivity). Let $A \in \text{Autids}$. Let X be a A-conservative, configuration-equivalence-free PCA. Let $Y = X \setminus A$. Let Y' be a A-twin of Y. Let $Z' = \psi_{\text{out}}(Y') | A$.

Let $\alpha = q^0, a^1, \ldots, a^k, q^k$ be an execution fragment of Z' where (a) $q^*_A \neq q^*_A$ for every $s \in [0, k^*]$ (b) $q^*_A = q^*_A$ for every $s \in [k^* + 1, k]$ (c) for every $s \in [k^* + 1, k - 1]$, for every q^*_s, s. t. $\mu_\epsilon(q^*_s) = q^*_s$, $A \notin \text{created}(X)(q^*_s)(a^{*+1})$. Then it exists a unique $\tilde{\alpha} \in \text{frags}(X)$, s. t. $\mu_\epsilon(\tilde{\alpha}) = \alpha$. If $Y' = Y$, it exists a unique $\tilde{\alpha} \in \text{execs}(X)$, s. t. $\mu_\epsilon(\tilde{\alpha}) = \alpha$.

Proof. We use partial surjectivity 2 for existence and partial injectivity for uniqueness. ▲

6.5 Composition and projection are commutative

Definition 83 (\simeq relation between PCA states). Let $U = ((Q_U, F_{Q_U}), \bar{q}_U, \text{sig}(U), D_U)$,

$V = ((Q_V, F_{Q_V}), \bar{q}_V, \text{sig}(V), D_V)$ be two PCA. Let $(q_U, q_V) \in Q_U \times Q_V$ s. t.

- $\text{config}(U)(q_U) = \text{config}(V)(q_V)$
- $\text{hidden-actions}(U)(q_U) = \text{hidden-actions}(V)(q_V)$
- $(\text{sig}(U)(q_U) = \text{sig}(V)(q_V))$
- $\forall a \in \text{sig}(U)(q_U) \cup \text{sig}(V)(q_V)$, created$(U)(q_U)(a) = \text{created}(V)(q_V)(a)$

then we say that $q_U \simeq q_V$.

The third point is implied by the two first points.

Lemma 84. Let $U = ((Q_U, F_{Q_U}), \bar{q}_U, \text{sig}(U), D_U)$, $V = ((Q_V, F_{Q_V}), \bar{q}_V, \text{sig}(V), D_V)$ be two PCA. Let $(q_U, q_V), (q'_U, q'_V) \in (Q_U \times Q_V)^2$ s. t.

- $\text{config}(U)(q_U) = \text{config}(V)(q_V)$
- $\forall a \in \text{sig}(U)(q_U) \cup \text{sig}(V)(q_V), \text{created}(U)(q_U)(a) = \text{created}(V)(q_V)(a)$

then $\forall a \in \text{sig}(U)(q_U) \cup \text{sig}(V)(q_V), \eta(U, q_U, a)(q'_U) = \eta(V, q_V, a)(q'_V)$.

Proof. We know that $\text{config}(U)(q_U) = \text{config}(V)(q_V) \triangleq C$ and $\text{config}(U)(q'_U) = \text{config}(V)(q'_V) \equiv C'$. Thus if it exists a reduced configuration distribution η' an action a and $\varphi \subset \text{Autids}$

s. t. $C \xrightarrow{\varphi} \eta'$, then both $(q_U, a, \eta(U, q_U, a)) \in D_U$ with $\eta(U, q_U, a)(q'_U) = \eta'(C')$ and $\text{created}(U)(q_U)(a) = \varphi$ and $(q_V, a, \eta(V, q_V, a)) \in D_V$ with $\eta(V, q_V, a)(q'_V) = \eta'(C')$, $\text{created}(V)(q_V)(a) = \varphi$ that is

$\eta(U, q_U, a)(q'_U) = \eta(V, q_V, a)(q'_V)$ and $\text{created}(U)(q_U)(a) = \text{created}(V)(q_V)(a)$.

Also if it exists $(q_U, a, \eta(U, q_U, a)) \in D_U$, then it exists a reduced configuration distribution η' s. t. $C \xrightarrow{\eta'} \eta'$ with $\varphi = \text{created}(U)(q_U)(a) = \text{created}(V)(q_V)(a)$ and $\eta(U, q_U, a)(q'_U) = \eta'(C')$. Thus it exists $(q_V, a, \eta(V, q_V, a)) \in D_V$ with $\eta(V, q_V, a)(q'_V) = \eta'(C') = \eta(U, q_U, a)(q'_U)$.

Hence we obtain for every $(q_U, q'_U), (q'_V, q_V) \in (Q_U \times Q_V)^2$, s. t.

- $\text{config}(U)(q_U) = \text{config}(V)(q_V)$
- $\forall a \in \text{sig}(U)(q_U) = \text{sig}(V)(q_V)$, $\text{created}(U)(q_U)(a) = \text{created}(V)(q_V)(a)$
- $\text{config}(U)(q'_U) = \text{config}(V)(q'_V)$
then $\forall a \in \text{sig}(U)(qv) = \text{sig}(V)(qv), \eta_{(U,qv,a)}(q'_U) = \eta_{(V,qv,a)}(q'_V).$

Definition 85 (isomorphism relation between PCA). Let $U = ((Q_U, F_{Q_U}), q_U, \text{sig}(U), D_U), V = ((Q_V, F_{Q_V}), q_V, \text{sig}(V), D_V)$ be two PCA where it exists an isomorphism $\text{iso}_{Q_UV} : Q_U \to Q_V$

$\text{iso}_{Q_UV} = (\text{iso}_{Q_UV})^{-1} : Q_V \to Q_U$ s. t.

$\hat{q}_V = \text{iso}_{Q_UV}(\hat{q}_U) \implies$ for every $(qv, q_v) \in Q_U \times Q_V,$ s. t. $qv = \text{iso}_{Q_UV}(qv), q_v \simeq qv$

\implies for every $(qv, q_v), (q'_U, q'_V) \in (Q_U \times Q_V)^2,$ s. t. $qv = \text{iso}_{Q_UV}(qv)$ and $q'_V = \text{iso}_{Q_UV}(q'_U),

\forall a \in \text{sig}(U)(qv) \cup \text{sig}(V)(qv), \eta_{(U,qv,a)}(q'_U) = \eta_{(V,qv,a)}(q'_V).

then we say that $U \simeq V$

Lemma 86. Let $A \in \text{Autids}.$ Let X be a A-conservative PCA. Let E be a PCA compatible with $X.$

1. E is compatible with Y'.

2. Let $q_E \in \text{states}(E), C_E = \text{config}(E)(q_E).$ Let $q_X \in \text{states}(X), C_X = \text{config}(X)(q_X).$ If it exists $q'_X \in \text{states}(X),$ s. t. $A \in \text{auts}(\text{config}(X)(q'_X)),$ then $(C_X \cup C_E) \setminus A = (C_X \setminus A) \cup C_E.$

3. Let $V = (X||E) \setminus A$ and $V = (X \setminus A)||E.$ Let $q_X \in \text{states}(X)$ and $q_E \in \text{states}(E).$ Let $q_U = \mu_a^x((q_X, q_E))$ and $q_V = (\mu_a^x(q_X), q_E).$ If it exists $q'_X \in \text{states}(X),$ s. t. $A \in \text{auts}(\text{config}(X)(q'_X))$, then

$\hat{q}_U \simeq q_V$

$\hat{q}_U = \mu_a^x((q_X, \hat{q}_E))$ and $\hat{q}_V = (\mu_a^x(q_X), \hat{q}_E)$

Proof. 1. E is partially compatible with X for every state $(q_E, q_X) \in \text{states}(E) \times \text{states}(X),$ thus this is a fortiori true for every state $(q_E, q_V) \in \text{states}(E) \times \text{states}(Y),$ since the configurations are the same excepting A is absent in $\text{config}(Y)(qv) = \mu_a^x(q_X).$ Thus E is partially compatible with Y' for every state $(q_E, q_V) \in \text{states}(E) \times \text{states}(Y),$ which means E is compatible with $Y'.$

2. We note $A_E = \text{auts}(C_E), S_E = \text{map}(C_E)$ and $A_X = \text{auts}(C_X)$ and $S_X = \text{map}(C_X).$

Since E is partially compatible with X for every state $(q_E, q_X) \in \text{states}(E) \times \text{states}(X),$ if it exists $q'_X \in \text{states}(X),$ s. t. $A \in \text{auts}(\text{config}(X)(q'_X)),$ then $A \notin A_E.$ Hence $(A_X \cup A_E) \setminus A = (A_X \setminus A) \cup A_E,$ thus we obtain $(C_X \cup C_E) \setminus A = (C_X \setminus A) \cup C_E.$

3. Let $U = (X||E) \setminus A$ and $V = (X \setminus A)||E.$ Since E is partially compatible with X for every state $(q_E, q_X) \in \text{states}(E) \times \text{states}(X),$ if it exists $q'_X \in \text{states}(X),$ s. t. $A \in \text{auts}(\text{config}(X)(q'_X)),$ then $A \notin A_E.$

- $\text{config}(U)(q_U) = (\text{config}(X)(q_X) \cup \text{config}(E)(q_E)) \setminus A = (\text{config}(X)(q_X) \setminus A) \cup \text{config}(E)(q_E) = \text{config}(V)(q_V)$

We note $q_A = \text{map}(\text{config}(X)(q_X))(A)$ if $A \in \text{auts}(\text{config}(X)(q_X)), q_A = \mu^a_A$ otherwise. We note $h_X = \text{hidden-actions}(X)(q_X)$ and $h_E = \text{hidden-actions}(E)(q_E),$ and $h = (h_X \cup h_E) \setminus \text{ext}(A)(q_A)$ and $h' = (h_X \setminus \text{ext}(A)(q_A)) \cup h_E.$ Since X and E are partially-compatible in state $(q_X, q_E),$ we have both $\text{config}(X)(q_X)$ and $\text{config}(E)(q_E)$ compatible and $\text{in}(\text{config}(X)(q_X)) \cap h_E = \text{in}(\text{config}(E)(q_E)) \cap h_X = \emptyset.$

By compatibility, $\text{out}(\text{config}(X)(q_X)) \cap \text{out}(\text{config}(E)(q_E)) = \text{int}(\text{config}(X)(q_X)) \cap \text{int}(\text{config}(E)(q_E)) = \emptyset,$ which gives $\text{loc}(\text{config}(X)(q_X)) \cap h_E = \emptyset$ and finally $\text{sig}(\text{config}(X)(q_X)) \cap h_E = \text{sig}(\text{config}(E)(q_E)) \cap h_X = \emptyset.$ This lead us to $h = h'.$

We have $\text{sig}(U)(q_U) = \text{hide}(\text{sig}(\text{config}(U)(q_U)), h)$ and $\text{sig}(V)(q_V) = \text{hide}(\text{sig}(\text{config}(V)(q_V), h'))$

Since $\text{config}(U)(q_U) = \text{config}(V)(q_V)$ and $h = h',$ $\text{sig}(U)(q_U) = \text{sig}(V)(q_V).$
Since \mathcal{E} is compatible with X, if it exists q'_X, s. t. $A \in \text{auts}(\text{config}(X)(q'_X)), \mathcal{E}$ never creates A. For every $a \in \text{sig}(q'_U), \text{created}(U)(q'_U)(a) = (\text{created}(X)(q'_X)(a) \cup \text{created}(\mathcal{E})(q'_E)(a)) \setminus A = (\text{created}(X)(q'_X)(a) \cup \text{created}(\mathcal{E})(q'_E)(a) = \text{created}(V)(q'_V)(a)$.

- By definition of projection and composition, we have $\overline{q}_V = \mu^A_s((\overline{q}_X, \overline{q}_E))$ and $\overline{q}_V = (\mu^A_s(\overline{q}_X), \overline{q}_E).

Theorem 87 (Projection and composition are commutative). Let $A \in \text{Autids}$. Let X be a PCA. where it exists $q''_X \in \text{states}(X)$, s. t. $A \in \text{auts}(\text{config}(X)(q''_X))$. Let \mathcal{E} be an environment for X. $(X||\mathcal{E}) \setminus A \simeq (X \setminus A)||\mathcal{E}$.

Proof. Let $U = (X||\mathcal{E}) \setminus A = ((Q_U, F_{Q_U}), \overline{q}_U, \text{sig}(U), D_U)$ and $V = (X \setminus A)||\mathcal{E} = ((Q_V, F_{Q_V}), \overline{q}_V, \text{sig}(V), D_V)$.

We have to show that there is an isomorphism iso between $U = (X||\mathcal{E}) \setminus A = ((Q_U, F_{Q_U}), \overline{q}_U, \text{sig}(U), D_U)$ and $V = (X \setminus A)||\mathcal{E} = ((Q_V, F_{Q_V}), \overline{q}_V, \text{sig}(V), D_V)$, s. t. it exists a bijection $\text{iso}_{U,V}$ between (Q_U, F_{Q_U}) and (Q_V, F_{Q_V}), where

$\overline{q}_V = \text{iso}_{U,V}(\overline{q}_U)$

for every $(q_U, q'_V) \in Q_U \times Q_V$, s. t. $q_U \simeq q'_V$.

$\overline{q}_V = \text{iso}_{U,V}(q_U)$

for every $(q_U, q'_V), (q'_U, q'_V) \in (Q_U \times Q_V)^2$, s. t. $q' = \text{iso}_{U,V}(q_U)$ and $q'_V = \text{iso}_{U,V}(q'_V)$, then $\forall a \in \text{sig}(U)(q_U) \cup \text{sig}(V)(q'_V), \eta_U(q_U,a)(q'_V) = \eta_V(q'_U,a)(q'_V)$.

Let $q_X, q'_X \in \text{states}(X)$ and $q_E, q'_E \in \text{states}(\mathcal{E})$. Let $q_U = \mu^A_s((q_X, q_E)), q'_U = \mu^A_s((q'_X, q'_E)), q' = \text{iso}_{U,V}(q'_U)$.

At first we need to show there is a bijection between QU and QV. We note $\text{iso}_{U,V} : \mu_s((q_X, q_E)) \mapsto (\mu_s(q_X), q_E)$ and $\text{iso}_{V,U} : (\mu_s(q_X), q_E) \mapsto \mu_s((q_X, q_E))$ Thus mutual surjection is obvious, we need to show these are also injection. If $\text{iso}_{U,V}(q_U) = \text{iso}_{V,U}(q'_U)$, this implies $q_U = q'_U$, which implies $q_X \setminus A = q'_X \setminus A$ and so $q_V = q'_V$. For the same reasons if $\text{iso}_{V,U}(q_V) = \text{iso}_{U,V}(q'_V)$, this implies $q_V = q'_V$, which implies $q_X \setminus A = q'_X \setminus A$ and so $q'_U = q'_U$.

Second, the choice of $\text{iso}_{U,V}$ and $\text{iso}_{V,U}$ gives the same criteria of the last lemma.

Third, we already know that for every $(q_U, q_V), (q'_U, q'_V) \in (Q_U \times Q_V)^2$, s. t. $q_U = \text{iso}_{U,V}(q_U), q'_V = \text{iso}_{V,U}(q'_V)$ and $\text{config}(V)(q'_V) = \text{config}(U)(q'_U), \forall a \in \text{sig}(U)(q_U) = \text{sig}(V)(q'_V), \eta_U(q_U,a)(q'_U) = \eta_V(q'_U,a)(q'_V)$.

It rest to show that if $\text{config}(V)(q'_V) = \text{config}(U)(q'_U)$ and $q'_V \in \text{supp}(\eta_U(q_U,a))$, then $q'_V = \text{iso}_{V,U}(q'_V)$. Because of constraint 3 of PCA, if $q''_U \in \text{supp}(\eta_U(q_U,a))$ and $\text{config}(U)(q''_U) = \text{config}(U)(q'_U)$, then $q''_U = q'_U$ and in the same manner, if $q''_V \in \text{supp}(\eta_U(q_U,a))$ and $\text{config}(V)(q''_V) = \text{config}(V)(q'_V)$, then $q''_V = q'_V$. Moreover $\text{config}(V)(\text{iso}_{U,V}(q'_U)) = \text{config}(U)(q'_U)$, so we necessarily have $q'_V = \text{iso}_{V,U}(q'_V)$, which means $q'_V \simeq q'_V$. Finally, we obtain for every $(q_U, q_V), (q'_U, q'_V) \in (Q_U \times Q_V)^2$, s. t. $q_V = \text{iso}_{U,V}(q_U)$ and $\text{config}(V)(q'_V) = \text{config}(U)(q'_U), \forall a \in \text{sig}(U)(q_U) = \text{sig}(V)(q'_V), \eta_U(q_U, a)(q'_U) = \eta_V(q'_U, a)(q'_V)$.

There is an isomorphism between $(X||\mathcal{E}) \setminus A$ and $(X \setminus A)||\mathcal{E}$ and the syntactic name of each state is arbitrary, which justify the choice of the sign \simeq.
Travel from one probabilistic space to another

In last section we have shown that the probability distribution of \(X\||\mathcal{E} \) was preserved by \(\mathcal{A}\ast|\mathcal{E}' = (X \setminus \{A\})\||\mathcal{E}' \), as long as \(\mathcal{A} \) was not re-created by \(X \).

In this section we take an interest in PCA \(X_A \) and \(X_B \) that differ only on the fact that \(B \) supplants \(A \) in \(X_B \). We define some equivalence classes on set of executions. These equivalence classes will allow us to transfer some reasoning on a situation on an execution \(\alpha \) of \(A||psioa(X_A \setminus \mathcal{A}||\mathcal{E}) \) into an execution \(\tilde{\alpha} \) of \(X_A||\mathcal{E} \).

7.1 Correspondence between two PCA

We formalise the idea that two configurations are the same excepting the fact that the process \(B \) supplants \(A \) but with the same external signature. The next definition comes from [1].

Definition 88 (<__AB_>-corresponding configurations). (see figure 16) Let \(\Phi \subseteq Autids \) and \(A, B \) be PSIOA identifiers. Then we define \(\Phi[B/A] = (\Phi \setminus \mathcal{A}) \cup \{B\} \) if \(A \in \Phi \), and \(\Phi[B/A] = \Phi \) if \(A \notin \Phi \). Let \(C, D \) be configurations. We define \(C <__AB_> D \) iff (1) \(auts(D) = auts(C)[B/A] \), (2) for every \(\mathcal{A}' \notin auts(C) \setminus \{A\} : \text{map}(D)(\mathcal{A}') = \text{map}(C)(\mathcal{A}') \), and (3) \(\text{ext}(A)(s) = \text{ext}(B)(t) \)

where \(s = \text{map}(C)(A), t = \text{map}(D)(B) \). That is, in <__AB_>-corresponding configurations, the SIOA other than \(A, B \) must be the same, and must be in the same state. \(A \) and \(B \) must have the same external signature. In the sequel, when we write \(\Psi = \Phi[B/A] \), we always assume that \(B \notin \Phi \) and \(A \notin \Psi \).

Proposition 1. Let \(C, D \) be configurations such that \(C <__AB_> D \). Then \(\text{ext}(C) = \text{ext}(D) \).

Proof. The proof is in [1], section 6, p. 38.

Remark. It is possible to have to configurations \(C, D \) s. t. \(C <__AB_> D \). That would mean that \(C \) and \(D \) only differ on the state of \(A \) (\(s \) or \(t \)) that has even the same external signature in both cases \(\text{ext}(A)(s) = \text{ext}(A)(t) \), while we would have \(\text{int}(A)(s) \neq \text{int}(A)(t) \).

Lemma 89 (Same configuration). Let \(A, B \in Autids \). Let \(X_A, X_B \) be \(A\)-fair and \(B\)-fair PCA respectively, where \(X_A \) never contains \(B \) and \(X_B \) never contains \(A \). Let \(Y_A = X_A \setminus \{A\} \), \(Y_B = X_B \setminus \{B\} \). Let \(x_a, x_b \) s. t. \(\text{config}(X_A)(x_a) <__AB_> \text{config}(X_B)(x_b) \). Let \(y_a = \mu_s(x_a) \), \(y_b = \mu_s(x_b) \)

Then \(\text{config}(Y_A)(y_a) = \text{config}(Y_B)(y_b) \).

Proof. By projection, we have \(\text{config}(Y_A)(y_a) <__AB_> \text{config}(Y_B)(y_b) \) with each configuration that does not contain \(A \) nor \(B \), thus for \(\text{config}(Y_A)(y_a) \) and \(\text{config}(Y_B)(y_b) \) contain the same set of automata ids (rule (1) of <__AB_>) and map each automaton of this set to the same state (rule (2) of <__AB_>).

Now, we formalise the fact that two PCA create some PSIOA in the same manner, excepting for \(B \) that supplants \(A \).

Definition 90 (Creation corresponding configuration automata). Let \(X, Y \) be configuration automata and \(A, B \) be SIOA. We say that \(X, Y \) are creation-corresponding w.r.t. \(A, B \) iff

1. \(X \) never creates \(B \) and \(Y \) never creates \(A \).
2. Let $\beta \in \text{traces}^*(X) \cap \text{traces}^*(Y)$ a finite trace of both X and Y, and let $\alpha \in \text{execs}^*(X), \pi \in \text{execs}^*(Y)$ a finite execution of both X and Y be such that $\text{trace}_A(\alpha) = \text{trace}_A(\pi) = \beta$.

Let $x = \text{last}(\alpha), y = \text{last}(\pi)$, i.e., x, y are the last states along α, π, respectively. Then $\forall a \in \text{sig}(X)(x) \cap \text{sig}(Y)(y) : \text{created}(Y)(y)(a) = \text{created}(X)(x)(a)[B/A]$.

Lemma 91 (Same creation). Let $A, B \in \text{Autids}$. Let X_A, X_B be A-fair and B-fair PCA respectively, where X_A never contains B and X_B never contains A.

Let $Y_A = X_A \setminus A, Y_B = X_B \setminus B$

Let $(x_a, x_b) \in \text{states}(X_A) \times \text{states}(X_B)$ and act $\in \text{sig}(X_A)(x_a) \cap \text{sig}(X_B)(x_b)$ s. t. $\text{created}(X_B)(x_b)(act) = \text{created}(X_A)(x_a)(act)[B/A]$.

Let $y_a = \mu_s(x_a), y_b = \mu_s(x_b)$

Then $\text{created}(Y_B)(x_b)(act) = \text{created}(Y_A)(x_a)(act)$

Proof. By definition of PCA projection, we have $\text{created}(Y_B)(x_b)(act) = (\text{created}(X_B)(x_b)(act)) \setminus B = (\text{created}(X_A)(x_a)(act)[B/A]) \setminus B = \text{created}(X_A)(x_a)(act) \setminus A = \text{created}(Y_A)(x_a)(act)$.

Definition 92 (Hiding corresponding configuration automata). Let X, Y be configuration automata and A, B be PSIOA. We say that X, Y are hiding-corresponding w.r.t. A, B iff

1. X never creates B and Y never creates A.

2. Let $\beta \in \text{traces}^*(X) \cap \text{traces}^*(Y)$, and let $\alpha \in \text{execs}^*(X), \pi \in \text{execs}^*(Y)$ be such that $\text{trace}_A(\alpha) = \text{trace}_A(\pi) = \beta$. Let $x = \text{last}(\alpha), y = \text{last}(\pi)$, i.e., x, y are the last states along α, π, respectively. Then hidden-actions(Y)(y) = hidden-actions(X)(x).

Lemma 93 (Same hidden-actions). Let $A, B \in \text{Autids}$. Let X_A, X_B be A-fair and B-fair PCA respectively, where X_A never contains B and X_B never contains A.

Let $Y_A = X_A \setminus A, Y_B = X_B \setminus B$

Let x_a, x_b s. t. hidden-actions(X_B)(x_b)(act) = hidden-actions(X_A)(x_a) and if $A \in \text{acts}(\text{config}(X_A)(x_a))$, then ext($A$)(map($A$)($x_a$)) = ext($B$)(map($A$)($x_b$))$.$

Let $y_a = \mu^A_s(x_a), y_b = \mu^B_s(x_b)$

Then hidden-actions(Y_B)(x_b) = hidden-actions(Y_A)(x_a)

Proof. By definition of PCA projection, we have hidden-actions(Y_B)(x_b)(act) = (hidden-actions(X_B)(x_b)(act)) \setminus B(\text{map}(\text{config}(X_B)(x_b))) = (\text{hidden-actions}(X_A)(x_a) \setminus \text{out}(B)(\text{map}(\text{config}(X_B)(x_b)))) = \text{hidden-actions}(X_A)(x_a) \setminus \text{out}(A)(\text{map}(\text{config}(X_B)(x_b))) = \text{hidden-actions}(Y_A)(x_a)$.

Definition 94. Let Q_U, Q_V be sets of states and $Acts$ be a set of actions. Let α (resp. α') be an alternating sequence of states of Q_U (resp. Q_V) and actions of $Acts$ so that $\alpha = q^0, a^1, q^1, a^n, q^n$, $\alpha' = q'^0, a'^1, q'^1, a'^n, q'^n$ and for every $i \in [0, n], q^i \simeq q'^i$ and for every $i \in [1, n], a^i = a'^i$, then we say that $\alpha \simeq \alpha'$.

Definition 95 (η^u bij η^v). Let U and V be PCA. Let $Q_U = \text{states}(U), Q_V = \text{states}(V)$ be sets of states and $Acts$ be a set of actions. Let $(\eta^u, \eta^v) \in \text{Disc}(Q_U) \times \text{Disc}(Q_V)$. We note η^u bij η^v if $\text{supp}(\eta^u)$ and $\text{supp}(\eta^v)$ are in bijection where for every $q^u \in \text{supp}(\eta^u)$ it exists a unique $q^v \in \text{supp}(\eta^v)$ s. t. $\text{config}(U)(q^u) = \text{config}(V)(q^v)$ and for every $(q^u, q^v) \in \text{supp}(\eta^u) \times \text{supp}(\eta^v)$ s. t. $\text{config}(U)(q^u) = \text{config}(V)(q^v)$, we have $\eta^u(q^u) = \eta^v(q^v)$.

Lemma 96. Let $\mathcal{A}, \mathcal{B} \in \text{Autids}$. Let X_A, X_B be \mathcal{A}-fair and \mathcal{B}-fair PCA respectively, where X_A never contains \mathcal{B} and X_B never contains \mathcal{A}. Let $Y_A = X_A \setminus \mathcal{A}$, $Y_B = X_B \setminus \mathcal{B}$.

Let $(q_{Y_A}, q_{Y_B}) \in Q_{Y_A} \times Q_{Y_B}$ and an action a s. t.

\begin{itemize}
 \item $\text{config}(Y_A)(q_{Y_A}) = \text{config}(Y_B)(q_{Y_B})$
 \item $\text{act} \in \text{sig}(\text{config}(Y_A)(q_{Y_A})) = \text{sig}(\text{config}(Y_B)(q_{Y_B}))$
 \item $\text{created}(Y_A)(\text{act})(q_{Y_A}) = \text{created}(Y_B)(q_{Y_B})(\text{act})$
\end{itemize}

then $\eta(Y_A \cup \mathcal{A}, \eta_{Y_A \cup \mathcal{A}})(a) \sim \eta(Y_B \cup \mathcal{B}, \eta_{Y_B \cup \mathcal{B}})(a)$

Proof. We note $C_a \triangleq \text{config}(Y_A)(q_{Y_A})$ and $C_b \triangleq \text{config}(Y_B)(q_{Y_B})$. Since $q_{Y_A} \sim q_{Y_B}$, $C \triangleq C_a = C_b$, and hence $\phi \triangleq \text{sig}(C_a) = \text{sig}(C_b)$ and for every $\phi \text{ created}(Y_A)(q_{Y_A})(\text{act}) = \text{created}(Y_B)(q_{Y_B})(\text{act})$. Thus there is a unique η_p s. t. $C \triangleq \eta_p$ and a unique η_p generated by ϕ and η_p s. t. $C \triangleq \eta_p$. Because of constraint 3, it exists $(\text{config}(Y_A), \text{act}, \eta^a) \in D_{Y_A}$ and $(\text{config}(Y_A), \text{act}, \eta^b) \in D_{Y_B}$ s. t. for every for every $C' \in \text{supp}(\eta^a)$, it exists a unique state $q_{Y_A}' \in \text{supp}(\eta^a)$ (resp. $q_{Y_B}' \in \text{supp}(\eta^b)$) of Y_A (resp. Y_B) s. t. $\text{config}(Y_A)(q_{Y_A}') = C'$ (resp. $\text{config}(Y_B)(q_{Y_B}') = C'$) and $\eta^a(q_{Y_A}') = \eta_p(C')$ (resp. $\eta^b(q_{Y_B}') = \eta_p(C')$). Thus $\text{supp}(\eta^a)$ and $\text{supp}(\eta^b)$ are in bijection where for every $q_{Y_A}' \in \text{supp}(\eta^a)$ it exists a unique $q_{Y_B}' \in \text{supp}(\eta^b)$ s. t. $\text{config}(Y_A)(q_{Y_A}') = \text{config}(Y_B)(q_{Y_B}')$ and for every $(q_{Y_A}', q_{Y_B}') \in \text{supp}(\eta^a) \times \text{supp}(\eta^b)$ s. t. $\text{config}(Y_A)(q_{Y_A}') = \text{config}(Y_B)(q_{Y_B}')$, we have $\eta^a(q_{Y_A}') = \eta^b(q_{Y_B}')$. Thus η^a bij η^b.

Definition 97 ($\eta^a \sim \eta^b$). Let U and V be PCA. Let $\text{states}(U), \text{states}(V)$ be sets of states and Actics be sets of actions. Let $(\eta^a, \eta^b) \in \text{Disc}(\text{states}(U) \times \text{Actics}(V))$. We note $\eta^a \sim \eta^b$ if $\text{supp}(\eta^a)$ and $\text{supp}(\eta^b)$ are in bijection where for every $\eta^a \in \text{supp}(\eta^a)$ it exists a unique $\eta^b \in \text{supp}(\eta^b)$ s. t. $\eta^a \sim \eta^b$, and for every $(\eta^a, \eta^b) \in \text{supp}(\eta^a) \times \text{supp}(\eta^b)$ s. t. $\eta^a \sim \eta^b$, we have $\eta^a(\eta^a) = \eta^b(\eta^b)$.

Definition 98 (corresponding w. r. t. \mathcal{A}, \mathcal{B}). Let $\mathcal{A}, \mathcal{B} \in \text{Autids}$, X_A and X_B be PCA we say that X_A and X_B are corresponding w. r. t. \mathcal{A}, \mathcal{B} if they verify:

\begin{itemize}
 \item $\text{config}(X_A)(q_{X_A}) \triangleq_{\mathcal{A}, \mathcal{B}} \text{config}(X_B)(q_{X_B})$
 \item X_A, X_B are creation-corresponding w.r.t. \mathcal{A}, \mathcal{B}
 \item X_A, X_B are hiding-corresponding w.r.t. \mathcal{A}, \mathcal{B}
 \item X_A (resp. X_B) is a \mathcal{A}-conservative (resp. \mathcal{B}-conservative) PCA.
\end{itemize}

Lemma 99. Let $\mathcal{A}, \mathcal{B} \in \text{Autids}$. Let X_A, X_B be corresponding w. r. t. \mathcal{A}, \mathcal{B}. Let $Y_A = X_A \setminus \mathcal{A}$, $Y_B = X_B \setminus \mathcal{B}$.

Let $(\alpha^a, \alpha^b) \in \text{execs}(Y_A) \times \text{execs}(Y_B)$, s. t. $\alpha^a \sim \alpha^b$, where $\text{lhs}(\alpha^a) = q_{Y_A}$ and $\text{lhs}(\alpha^b) = q_{Y_B}$ and act $\in \text{sig}(\text{config}(Y_A)(q_{Y_A})) = \text{sig}(\text{config}(Y_B)(q_{Y_B}))$

then $\eta(Y_A \cup \mathcal{A}, \eta_{Y_A \cup \mathcal{A}})(\alpha^a) \sim \eta(Y_B \cup \mathcal{B}, \eta_{Y_B \cup \mathcal{B}})(\alpha^b)$

Proof. We already have $\eta(Y_A \cup \mathcal{A}, \eta_{Y_A \cup \mathcal{A}})(\alpha^a) \sim \eta(Y_B \cup \mathcal{B}, \eta_{Y_B \cup \mathcal{B}})(\alpha^b)$, by the previous lemma. Let $(q_{Y_A}', q_{Y_B}') \in \text{supp}(\eta(Y_A \cup \mathcal{A}, \eta_{Y_A \cup \mathcal{A}}))(\alpha^a) \times \text{supp}(\eta(Y_B \cup \mathcal{B}, \eta_{Y_B \cup \mathcal{B}}))(\alpha^b)$, s. t. $\text{config}(Y_A)(q_{Y_A}') = \text{config}(Y_B)(q_{Y_B}')$

$\text{hidden-actions}(Y_A)(q_{Y_A}') = \text{hidden-actions}(Y_B)(q_{Y_B}')$, because of hiding-corresponding w.r.t. \mathcal{A}, \mathcal{B}.
Proof. By induction. Basis At first \(\tilde{B}^w \) and \(Y_B \) are 0-partially-compatible. Moreover, we have \(\text{conf}(Y_B)(\tilde{q}_{Y_B}) = \text{conf}(Y'_B)(\tilde{q}_{Y'_B}) \), thus \(\tilde{B}^w \) and \(Y_A \) are 0-partially-compatible. Induction: Now we want to show that every pseudo-execution of \((\tilde{B}^w, Y_A)\) ends on a partially-compatible state. Let \(\alpha^a = q^{(a,0)}act^0, \ldots, act^\ell q^{a,\ell} \) be a pseudo-execution of \((\tilde{B}^w, Y_A)\). We will show by induction that \(P^\ell \) : it exists a unique execution \(\alpha^b = q^{(b,0)}act^0, \ldots, act^\ell q^{b,\ell} \) of \(Y_B || \tilde{B}^w \), s.t.

\[
\exists \beta \in \{1, \ldots, \ell\}, \eta((Y_B', \tilde{B}^w), q^{(a, \beta - 1), \text{act}^\beta}) \simeq \eta((Y_B', \tilde{B}^w), q^{(b, \beta - 1), \text{act}^\beta})
\]

We assume \(P^{\ell - 1} \) to be true and we show it imples \(P^\ell \). We have \(\eta((Y_B', \tilde{B}^w), q^{(a, t - 1), \text{act}^t}) \simeq \eta((Y_B', \tilde{B}^w), q^{(b, t - 1), \text{act}^t}) \) from the last lemma. Because of this, if \(q^{b, t} \in \supp(\eta((Y_B', \tilde{B}^w), q^{(b, t - 1), \text{act}^t})) \), then it exists \(q^{a, t} \in \supp(\eta((Y_B', \tilde{B}^w), q^{(a, t - 1), \text{act}^t})) \) s.t. \(q^{(a, t)} \simeq q^{(b, t)} \), that shows \(P^\ell \). Hence \(P^\ell \) is true for every \(\ell \in \mathbb{N} \). Furthermore, \(q^{a, \ell} \) is a state of \(Y_B || \tilde{B}^w \). Thus \((\tilde{B}^w, Y_A) \) are partially-compatible at state \(q^{(a, \ell)} \). We conclude that that every pseudo-execution of \((\tilde{B}^w, Y_A)\) ends on a partially-compatible state, which ends the proof.

Definition 101. Let \(A, B \in \text{Autids} \). Let \(X_A, X_B \) be PCA corresponding w. r. t. \(A, B \). Let \(Y_A = X_A \setminus A, Y_B = X_B \setminus B \). Let \(Y'_A \) be a -twin of \(Y_A \) and \(Y'_B \) a -twin of \(Y_B \). We say that \(Y'_A \) and \(Y'_B \) are \(AB \)-co-twin of \(Y_A \) and \(Y_B \) if it exists \(a^a \in \text{excs}(Y_A) \) and \(b^b \in \text{excs}(Y_B) \), s.t. (1) \(\text{lstate}(a^a) = \tilde{q}_{Y'_A} \) (2) \(\text{lstate}(b^b) = \tilde{q}_{Y'_B} \) and (3) \(a^a \simeq b^b \).

Lemma 102. Let \(A, B \in \text{Autids} \). Let \(X_A, X_B \) be PCA corresponding w. r. t. \(A, B \). Let \(Y_A = X_A \setminus A, Y_B = X_B \setminus B \). Let \(Y'_A \) and \(Y'_B \) be \(AB \)-co-twin of \(Y_A \) and \(Y_B \).

Then \(\tilde{B}^w \) and \(Y_A \) are partially-compatible. (Symetrically, \(\tilde{A}^w \) and \(Y'_B \) are partially-compatible.)

Proof. Immediate from previous lemma, since \(\tilde{q}_{Y'_A} \) is reachable by \(Y_A \).

Theorem 103 \((\tilde{B}^w || Y'_A) \simeq (\tilde{B}^w || Y'_B)\). Let \(A, B \in \text{Autids} \). Let \(X_A, X_B \) be PCA corresponding w. r. t. \(A, B \). Let \(Y_A = X_A \setminus A, Y_B = X_B \setminus B \). Let \(Y'_A \) and \(Y'_B \) be \(AB \)-co-twin of \(Y_A \) and \(Y_B \).

\(\tilde{B}^w \) and \(Y'_A \) are partially-compatible. (Symetrically, \(\tilde{A}^w \) and \(Y'_B \) are partially-compatible.)

and for every \((a^a, b^b) \in \text{frags}(B^w || Y'_A) \times \text{frags}(B^w || Y'_B)\) s.t. \(a^a \simeq b^b \), for every \((\mu^a, \mu^b) \in \text{Disc(} \text{frags}(B^w || Y'_A) \times \text{Disc(} \text{frags}(B^w || Y'_B)\))\) s.t. \(\mu^a \simeq \mu^b \) and for every sequence of tasks \(\rho \), \(\text{apply}(\tilde{B}^w || Y'_A)(\mu^a, \rho)(b^b) = \text{apply}(\tilde{B}^w || Y'_B)(\mu^b, \rho)(a^a)\).

Proof. We reuse the property \(P^\ell \) that we proved to be true for every \(\ell \in \mathbb{N} \).

\(P^\ell \). For every \(a^a = q^{a,0}act^0, \ldots, act^\ell q^{a,\ell} \) being an execution of \(\tilde{B}^w || Y_A \), it exists a unique execution \(b^b = q^{b,0}act^0, \ldots, act^\ell q^{b,\ell} \) of \(Y_B || \tilde{B}^w \) s. t.\n
\[
\alpha^b \simeq \alpha^a \text{ and } \\
\forall s \in [1, t], \quad \eta((V'_s, B'_{\omega}), \delta(\alpha, s^{-1}: \text{act})) \simeq \eta((V'_s, B'_{\omega}), \delta(\beta, s^{-1}: \text{act})).
\]

Furthermore, the equality of probability of corresponding states gives the equality of corresponding executions for the same schedule.

We show it by induction on the size of \(\rho \) exactly as we did in the theorem of preservation of probabilistic distribution without creation.

Basis: \(\text{apply } G(\omega) \mid Y'_{\alpha}(\mu^b, \lambda)(\alpha^b) = \mu^b(\alpha^b) \), while \(\text{apply } G(\omega) \mid Y'_{\lambda}(\mu^a, \lambda)(\alpha^a) = \mu^a(\alpha^a) \).

Let assume this is true for \(\rho_1 \). We consider \(\alpha^{a,s+1} = \alpha^{a,s-1}q^{a,s+1}, \quad \alpha^{b,s+1} = \alpha^{b,s-1}q^{b,s+1} \) and \(\rho_2 = \rho_1T \).

\[
\text{apply } G(\omega) \mid Y'_{\alpha}(\mu^b, \rho_1T)(\alpha^{b,s+1}) = \text{apply } G(\omega) \mid Y'_{\alpha}(\mu^a, \rho_1)(\alpha^{a,s+1}) + \text{p}_2(\alpha^{b,s+1})
\]

\[
\text{p}_2(\alpha^{b,s+1}) = \begin{cases}
\text{apply } G(\omega) \mid Y'_{\alpha}(\mu^b, \rho_1)(\alpha^{b,s+1}) \cdot \eta^b(q^{b,s+1}) & \text{if } \alpha^{b,s+1} = \alpha^{b,s-1}q^{b,s+1}, \alpha^{s+1} \text{ triggered by } T \\
0 & \text{otherwise}
\end{cases}
\]

with \(\eta^b = \eta((B'_{\omega} \mid Y'_{\alpha}), q^{b,s-1}: \alpha^{b,s+1}) \).

Parallely, we have

\[
\text{apply } G(\omega) \mid Y'_{\alpha}(\mu^a, \rho_1T)(\alpha^{a,s+1}) = \text{apply } G(\omega) \mid Y'_{\alpha}(\mu^a, \rho_1)(\alpha^{a,s+1}) + \text{p}_2(\alpha^{a,s+1})
\]

\[
\text{p}_2(\alpha^{a,s+1}) = \begin{cases}
\text{apply } G(\omega) \mid Y'_{\alpha}(\mu^a, \rho_1)(\alpha^{a,s+1}) \cdot \eta^a(q^{a,s+1}) & \text{if } \alpha^{a,s+1} = \alpha^{a,s-1}q^{a,s+1}, \alpha^{s+1} \text{ triggered by } T \\
0 & \text{otherwise}
\end{cases}
\]

with \(\eta^a = \eta((B'_{\omega} \mid Y'_{\alpha}), q^{a,s-1}: \alpha^{a,s+1}) \).

We have: \(T \text{ enabled after } \alpha^a \iff T \text{ enabled after } \alpha^b \), since \(\text{constitution}((B'_{\omega} \mid Y'_{\alpha}))(\text{lstate}(\alpha^a)) = \text{constitution}((B'_{\omega} \mid Y'_{\beta}))(\text{lstate}(\alpha^b)) \) The leftward terms are equal by induction hypothesis, since \(|\rho_1| = |\rho_2| - 1 \). Since the probabilistic distributions are in bijection we can obtain the equality for rightward terms. The conditions are matched in the same manner because of signature equality. Thus we can conclude that \(\text{p}_2'(\alpha^{a,s+1}) = \text{p}_1(\alpha^{b,s+1}) \) and \(\text{p}_2'(\alpha^{a,s+1}) = \text{p}_2(\alpha^{b,s+1}) \), which leads to the result.

\[\]

7.2 Handle destruction

Definition 104 (Ending on creation). Let \(K_A \) be a PCA. We say that \(\alpha \in \text{frags}(K_A) \) ends on \(A \) creation if \(\alpha = (a'aq) \) and \(A \in \text{map} \left(\text{config}(K_A)(q) \right) \) and \(A \notin \text{map} \left(\text{config}(K_A)(\text{lstate}(\alpha')) \right) \).

Definition 105 (Ending on destruction). Let \(K_A \) be a PCA. We say that \(\alpha \in \text{frags}(K_A) \) ends on \(A \) destruction if \(\alpha = (a'aq) \) and \(A \notin \text{map} \left(\text{config}(K_A)(q) \right) \) and \(A \in \text{map} \left(\text{config}(K_A)(\text{lstate}(\alpha')) \right) \).

Definition 106 (No creation). Let \(K_A \) be a PCA. We say that \(\alpha \in \text{frags}(K_A) \) does not create \(A \) if no prefix \(\alpha' \) of \(\alpha \) ends on \(A \) creation.
Definition 107 (No destruction). Let K_A be a PCA. We say that $(\alpha) \in \text{frags}(K_A)$ does not destroy A if no prefix α' of α ends on A destruction.

Definition 108 (Permanence). Let A be a PSIOA. Let K_A be a PCA. Let $\alpha \in \text{frags}(K_A)$. We say that A is permanently present in α if $A \in \text{map(config}(K_A)(\text{fstate}(\alpha)))$ and α does not destroy A. We say that A is permanently absent in α if $A \notin \text{map(config}(K_A)(\text{fstate}(\alpha)))$ and α does not create A. We say that α is A-permanent if A is either permanently present or permanently absent in α.

Let B be another PSIOA partially-compatible with A and $\alpha \in \text{frags}(A||B)$. We say that A is permanently on in α if $\forall j \in [0,|\alpha|], \hat{\text{sig}}(A)(q_{\alpha}^j) \neq \emptyset$ and permanently off in α if $\forall j \in [0,|\alpha|], \hat{\text{sig}}(A)(q_{\alpha}^j) = \emptyset$.

Definition 109 (Segment). Let A be a PSIOA. Let K_A be a PCA. Let $\alpha \in \text{frags}(K_A)$. We say that α' is a A-filled-segment if $\alpha' = \alpha^{\sim} a q$, A is permanently present in α but not in α', and $\text{map(config}(K_A)(\text{fstate}(\alpha')))(A) = \bar{q}_A$. We say that α' is a A-unfilled-segment if $\alpha' = \alpha^{\sim} a q$, A is permanently absent in α but not in α'. We say α' is a A-segment if it is either A-filled-segment or a A-unfilled-segment.

Let B be another PSIOA partially-compatible with A and $\alpha' \in \text{frags}(A||B)$. We say that α is turned off in $\alpha' = \alpha^\sim a q$, if A is permanently on in α but not in α'. We say that α' is a A-segment if it is turned off in α' and $\text{fstate}(\alpha') \upharpoonright A = \bar{q}_A$.

Definition 110. Let A be a PSIOA. Let \bar{A}^w its simpleton wrapper. Let E be an environment of \bar{A}^w. Let $\tilde{\alpha} = q^0 a^1 q^2 \ldots$ be an execution of $\bar{A}^w||E$ with $\text{PSIOA}(\bar{A}^w) = \text{ren}^w_{\text{su}}(A)$ where each state $q^j = (q^j_{\bar{A}^w}, q^j_E)$. We note $\gamma^A_{\text{e}}(\alpha) = q^0 a^1 q^2 \ldots$ the execution of $A||PSIOA(E)$ s. t. for every j, $q^j = (q^j_{\bar{A}^w}, q^j_E) = (\text{ren}^{-1}_{\text{su}}(q^i_{\bar{A}^w}), q^j_E)$.

Lemma 111. Let A be a PSIOA. Let \bar{A}^w its simpleton wrapper. Let E be an environment of \bar{A}^w. Let $\tilde{\alpha} = \text{an execution of } A^w||E$ with $\text{PSIOA}(A^w) = \text{ren}^w_{\text{su}}(A)$, let $\alpha = \gamma^A_{\text{e}}(\tilde{\alpha})$ the corresponding execution of $A||\text{PSIOA}(E)$.

Then

1. A is permanently on in $\alpha \iff A$ is permanently present in $\tilde{\alpha}$.
2. A is permanently off in $\alpha \iff A$ is permanently absent in $\tilde{\alpha}$.
3. α is a A-segment $\iff \tilde{\alpha}$ is a A-filled-segment.
4. $\alpha = \tilde{\alpha}^{\sim} a^2$ where $\tilde{\alpha}^1$ is a A-segment and A is permanently off in $\alpha^2 \iff \tilde{\alpha} = \tilde{\alpha}^{\sim} \tilde{\alpha}^2$ where $\tilde{\alpha}^1$ is a A-filled-segment and A is permanently absent in $\tilde{\alpha}^2$ and $\gamma^A_{\text{e}}(\tilde{\alpha}^i) = a^i$ for $i \in \{1,2\}$.

Proof. 1. A is permanently present in $\tilde{\alpha} \implies$ for every $j \in [0,n]$, $A \in \text{aut}(\bar{A}^w)(q^j_{\bar{A}^w})$.

Since each state of \bar{A}^w is mapped to a reduced configuration, for every $j \in [0,n]$, $\text{map(config}(\bar{A}^w)(q^j_{\bar{A}^w}))(A) \neq q^0_{\alpha}$. Thus, for every $j \in [0,n]$, if $(q^j_{\bar{A}^w}, q^j_E) = \gamma^A_{\text{e}}(q^j_{\bar{A}^w}, q^j_E)$, then $q^j_{\bar{A}^w} \neq q^0_{\alpha}$, which means A is permanently on in α. We obtained A is permanently present in $\tilde{\alpha} \implies A$ permanently present in α.

A is not permanently present in $\tilde{\alpha} \implies$ it exists $j \in [0,n]$, $A \notin \text{aut(config}(\bar{A}^w)(q^j_{\bar{A}^w}))$. If $(q^j_{\bar{A}^w}, q^j_E) = \gamma^A_{\text{e}}(q^j_{\bar{A}^w}, q^j_E)$, with $A \notin \text{aut(config}(\bar{A}^w)(q^j_{\bar{A}^w}))$, then $q^j_{\bar{A}^w} = q^0_{\alpha}$, which means A is not permanently on in α. By contraposition, A is permanently present in α.

2. A is permanently absent in $\tilde{\alpha} \implies$ for every $j \in [0,n]$, $A \notin \text{aut(config}(X)(q^j_{\bar{A}^w}))$.

Thus for every $j \in [0,n]$ where $(q^j_{\bar{A}^w}, q^j_E) = \mu_{\epsilon}(q^j_{\bar{A}^w}, q^j_E)$, $q^j_{\bar{A}^w} = q^0_{\alpha}$, which means A is
Let \mathcal{A} be a PSIOA. Let X be a \mathcal{A}-conservative PCA. Let X' be a \mathcal{A}-twin of X. Let $Y' = X' \setminus \{A\}$. Let $(\tilde{\alpha}, \alpha) \in \text{frags}(X') \times \text{frags}(\hat{\mathcal{A}}^w || Y')$, s. t. no creation of \mathcal{A} occurs in $\tilde{\alpha}$ and $\mu^0(\tilde{\alpha}) = \alpha$. Then

1. \mathcal{A} is permanently present in $\alpha \iff \mathcal{A}$ is permanently present in $\tilde{\alpha}$.
2. \mathcal{A} is permanently absent in $\alpha \iff \mathcal{A}$ is permanently absent in $\tilde{\alpha}$.
3. α is a \mathcal{A}-filled-segment $\iff \tilde{\alpha}$ is a \mathcal{A}-filled-segment.
4. $\alpha = \alpha^1 - \alpha^2$ where α^1 is a \mathcal{A}-filled-segment and \mathcal{A} is permanently present in $\alpha^2 \iff \tilde{\alpha} = \tilde{\alpha}^1 - \tilde{\alpha}^2$ where $\tilde{\alpha}^1$ is a \mathcal{A}-filled-segment and \mathcal{A} is permanently absent in $\tilde{\alpha}^2$ and $\mu^0(\tilde{\alpha}^i) = \alpha^i$ for $i \in \{1, 2\}$.

Proof. For each state $(q, q') = \mu_x(q_X)$, \text{config}(\hat{\mathcal{A}}^w || Y')((q_{\hat{\mathcal{A}}^w}^i, q_{Y'}^i)) = \text{config}(X')((q_X^i, q_{Y'}^i))$, which gives the result immediately.
2. remove each \(x_i a_{i+1} \) such that \(A \notin \text{auts}(X)(x_i) \),
3. remove each \(x_i a_{i+1} \) such that \(a_{i+1} \notin \text{sig}(A)(\text{map}(config(X)(x_i))(A)) \),
4. if \(\alpha \) is finite, \(x = \text{last}(\alpha) \), and \(A \notin \text{auts}(X)(x) \), then remove \(x \),
5. replace each \(x_i \) by \(\text{map}(config(X)(x_i))(A) \). \(\alpha || A \) is, in general, a sequence of several (possibly an infinite number of) executions of \(A \), all of which are terminating except the last. That is, \(\alpha || A = \alpha_1 \ldots \alpha_k \) where \((\forall j, 1 \leq j < k : \alpha_j \in \text{execs}(A)) \land \alpha_k \in \text{execs}(A) \).

Definition 115 (Prefix relation among sequences of executions). Let \(\alpha_1 \ldots \alpha_k \) and \(\delta_1 \ldots \delta^\ell \) be sequences of executions of some SIOA. Define \(\alpha_1 \ldots \alpha_k \leq \delta_1 \ldots \delta^\ell \) if \(k \leq \ell \land (\forall j, 1 \leq j < k : \alpha_j = \delta_j) \land \alpha_k \leq \delta^\ell \). If \(\alpha_1 \ldots \alpha_k \leq \delta_1 \ldots \delta^\ell \) and \(\alpha_1 \ldots \alpha_k \neq \delta_1 \ldots \delta^\ell \) then we write \(\alpha_1 \ldots \alpha_k < \delta_1 \ldots \delta^\ell \).

Definition 116 (Trace of a sequence of executions \(\text{trace}_A(\alpha_1 \ldots \alpha_k) \)). Let \(\alpha_1 \ldots \alpha_k \) be a sequence of executions of some SIOA \(A \). Then \(\text{trace}_A(\alpha_1 \ldots \alpha_k) = \text{trace}_A(\alpha_1) \ldots \text{trace}_A(\alpha_k) \), i.e., a sequence of traces of \(A \), corresponding to the sequence of executions \(\alpha_1 \ldots \alpha_k \).

Definition 117 (\(A \)-partition of an execution). Let \(A \) be a PSIOA. Let \(K_A \) be a PCA. Let \(\alpha \) be an execution of \(K_A \). A \(A \)-partition of \(\alpha \) is a sequence \((\alpha^1, \alpha^2, \ldots, \alpha^n) \) of execution fragments s.t. \(\forall i \in [1 : n] \setminus \{1, n\} \alpha^i \) is a \(A \) segment.

\(\alpha^i \) is either a \(A \)-segment or is \(A \)-permanent.

Lemma 118. Let \(A \) be a PSIOA. Let \(K_A \) be a PCA. Let \(\alpha \) be a finite execution of \(K_A \). It exists a unique \(A \)-partition of \(\alpha \).

Proof. By induction on the number \(k \) of states in \(\alpha \). Basis: \(\alpha = q^0 \). \((\alpha^1) \) with \(\alpha^1 = q^0 \) is the unique partition of \(\alpha \) with \(n = 1 \). If \(A \) is present in \(q^0 \), and \(A \) is permanently present, otherwise \(A \) is absent in \(\alpha^1 \), and \(A \) is permanently absent \(\alpha^1 \). Induction: We assume the predicate is true for \(k \) states in \(\alpha \) and we want to show this is also true for \(\alpha' = \alpha^1 a_{k+1} q^{k+1} \).

We have \((\alpha^1, \ldots, \alpha^n) \) the unique \(A \)-partition of \(\alpha \). By definition, \(\alpha^n \) is either a \(A \)-segment or a \(A \)-permanent. We deal with 8 cases:

- \(\alpha^n \) is a \(A \)-segment.
 - \(\alpha^n \) is a \(A \)-filled-segment. \((\alpha^1, \ldots, \alpha^n, (q^k a_{k+1} q^{k+1})) \) is a \(A \)-partition of \(\alpha' \), with \((q^k a_{k+1} q^{k+1}) \) a \(A \)-unfilled-segment. Unicity: \((\alpha^1, \ldots, \alpha^n a_{k+1} q^{k+1}) \) is not a partition since \(\alpha^n a_{k+1} q^{k+1} \) is neither a \(A \)-segment nor \(A \)-permanent.
 - \(\alpha^n \) is a \(A \)-unfilled-segment. \((\alpha^1, \ldots, \alpha^n, (q^k a_{k+1} q^{k+1})) \) is a \(A \)-partition of \(\alpha' \), with \((q^k a_{k+1} q^{k+1}) \) a \(A \)-permanent execution fragment where \(A \) is permanently present. Unicity: \((\alpha^1, \ldots, \alpha^n a_{k+1} q^{k+1}) \) is not a partition since \(\alpha^n a_{k+1} q^{k+1} \) is neither a \(A \)-segment nor \(A \)-permanent.

- \(\alpha^n \) is \(A \)-permanent.
 - \(\alpha^n \) is permanently absent in \(\alpha^n \). \((\alpha^1, \ldots, \alpha^n a_{k+1} q^{k+1}) \) is a \(A \)-partition of \(\alpha' \), with \(\alpha^n a_{k+1} q^{k+1} \) a \(A \)-unfilled-segment. Unicity: \((\alpha^1, \ldots, \alpha^n, (q^k a_{k+1} q^{k+1})) \) is not a partition since \(\alpha^n \) is not a segment.
 - \(\alpha^n \) is permanently present in \(\alpha^n \). \((\alpha^1, \ldots, \alpha^n a_{k+1} q^{k+1}) \) is a \(A \)-partition of \(\alpha' \), with \(\alpha^n a_{k+1} q^{k+1} \) a \(A \)-unfilled-segment. Unicity: \((\alpha^1, \ldots, \alpha^n, (q^k a_{k+1} q^{k+1})) \) is not a partition since \(\alpha^n \) is not a segment.
* α^n is a \mathcal{A}-filled-segment. $(\alpha^1, ..., \alpha^n, (q^k a^{k+1} q^{k+1}))$ is a \mathcal{A}-partition of α', with \mathcal{A} permanently absent in $(q^k a^{k+1} q^{k+1})$. Unicity: $(\alpha^1, ..., \alpha^n, (q^k a^{k+1} q^{k+1}))$ is not a partition since $\alpha^n a^{k+1} q^{k+1}$ is neither a \mathcal{A}-segment nor \mathcal{A}-permanent.

* α^n is a \mathcal{A}-unfilled-segment. $(\alpha^1, ..., \alpha^n, (q^k a^{k+1} q^{k+1}))$ is a \mathcal{A}-partition of α', where $(q^k a^{k+1} q^{k+1})$ is a \mathcal{A}-filled-segment. Unicity: $(\alpha^1, ..., \alpha^n, (q^k a^{k+1} q^{k+1}))$ is not a partition since $\alpha^n a^{k+1} q^{k+1}$ is neither a \mathcal{A}-segment nor \mathcal{A}-permanent.

α^n is \mathcal{A}-permanent.

* \mathcal{A} is permanently absent in α^n. $(\alpha^1, ..., \alpha^n a^{k+1} q^{k+1})$ is a \mathcal{A}-partition of α', with \mathcal{A} permanently absent in $\alpha^n a^{k+1} q^{k+1}$. Unicity: $(\alpha^1, ..., \alpha^n, (q^k a^{k+1} q^{k+1}))$ is not a partition since α^n is not a segment.

* \mathcal{A} is permanently present in α^n. $(\alpha^1, ..., \alpha^n a^{k+1} q^{k+1})$ is a \mathcal{A}-partition of α', where $\alpha^n a^{k+1} q^{k+1}$ is a \mathcal{A}-filled-segment. Unicity: $(\alpha^1, ..., \alpha^n, (q^k a^{k+1} q^{k+1}))$ is not a partition since α^n is not a segment.

We covered all the possibilities and at each time, it exists a unique \mathcal{A}-partition. By induction this is true for every finite execution.

Lemma 119. Let \mathcal{A} be a PSIOA. Let $K_\mathcal{A}$ be a PCA. Let α be an execution of $K_\mathcal{A}$. Let (α^1) be the \mathcal{A}-partition of α.

- if α is an unfilled segment that is ends on \mathcal{A} creation, then
 - \mathcal{A} is absent at $fstate(\alpha)$ and $\alpha \parallel \mathcal{A} = map(config(K_\mathcal{A}))(lstate(\alpha))(\mathcal{A})$.
 - otherwise, either
 - \mathcal{A} is present at $fstate(\alpha)$ and $\alpha \parallel \mathcal{A} = (\alpha^1 \parallel \mathcal{A})$ or
 - \mathcal{A} is absent at $fstate(\alpha)$ and $\alpha \parallel \mathcal{A}$ is the empty sequence.

Proof. if α is an unfilled segment that is ends on \mathcal{A} creation.

- \mathcal{A} is absent at $fstate(\alpha)$. We apply the rule (2) until $lstate(\alpha)$ excluded and we apply the rule (5) for $lstate(\alpha)$.
- otherwise, either
 - \mathcal{A} is present at $fstate(\alpha)$. $\alpha \parallel \mathcal{A} = (\alpha^1 \parallel \mathcal{A})$ (this a totology since $\alpha = \alpha^1$)
 - \mathcal{A} is absent at $fstate(\alpha)$. We apply the rule (2) until $lstate(\alpha)$ excluded and we apply the rule (4) for $lstate(\alpha)$.

Lemma 120. Let \mathcal{A} be a PSIOA. Let $K_\mathcal{A}$ be a PCA. Let α be an execution of $K_\mathcal{A}$. Let (α^1, α^2) be the \mathcal{A}-partition of α, where α^1 ends on \mathcal{A}-creation, then

- \mathcal{A} is absent at $fstate(\alpha)$ and $\alpha \parallel \mathcal{A} = (\alpha^2 \parallel \mathcal{A})$.

Proof. Since $n = 2$, α^1 is a segment, so this is a \mathcal{A}-unfilled-segment, we apply the rule (2) until $lstate(\alpha^1)$ excluded and we apply the projection to the rest of execution fragment that is to α^2.

Lemma 121. Let \mathcal{A} be a PSIOA. Let $K_\mathcal{A}$ be a PCA. Let α be an execution of $K_\mathcal{A}$. Let $(\alpha^1, \alpha^2, ..., \alpha^n)$ be the \mathcal{A}-partition of α.

- if α ends on an unfilled segment that is ends on \mathcal{A} creation, then either
 - \mathcal{A} is present at $fstate(\alpha)$ and
 - $\alpha \parallel \mathcal{A} = (\alpha^1 \parallel \mathcal{A})(\alpha^3 \parallel \mathcal{A})...(\alpha^{2^{[n/2]-1}} \parallel \mathcal{A}) \cap map(config(K_\mathcal{A}))(lstate(\alpha))(\mathcal{A})$ or...
\[\begin{align*}
\text{\textbf{Proof.}} \quad & \text{By induction on the size } n \text{ of the } A - \text{ partition. We already proved the basis, in the last two lemma. We assume this is true for integer } n \text{ and we show this is true for } n + 1:\text{ Let } \\
& \alpha' = \alpha^1 - \alpha^2 - \cdots - \alpha^n - \alpha^{n+1} = \alpha - \alpha^{n+1}. \text{ Case 1 If } \alpha' \text{ ends on an unfilled segment that is ends on } A \text{ creation, then } \alpha^n \text{ is a filled-segment. Case 1a If } A \text{ is present in } fstate(\alpha), \text{ then } \alpha' \mid A \text{ and we find the waited value. Case 1b If } A \text{ is absent in } fstate(\alpha), \text{ then } \alpha' \mid A \text{ and we find the waited value.} \\
& \text{Case 2 } \alpha' \text{ does not end on } A \text{ creation.} \\
& \text{Case 2a. } A \text{ is present in } fstate(\alpha) \\
& \text{Case 2ai. } n \text{ even } (2^n/2 - 1 = n - 1 \text{ and } 2[(n + 1)/2] - 1 = n + 1) \text{ We have } \alpha^n \text{ unfilled-segment and } A \text{ present in } \alpha^{n+1}, \text{ thus } \alpha' \mid A = \alpha \mid A = \alpha \mid A - (\alpha^{n+1} \mid A) = (\alpha^1 \mid A)(\alpha^2 \mid A)(\alpha^3 \mid A) \cdots (\alpha^{2^{(n/2)} - 1} \mid A) \text{ and we find the waited value.} \\
& \text{Case 2a(ii n odd } (2^n/2 - 1 = n \text{ and } 2[(n + 1)/2] = n) \text{ We have } \alpha^n \text{ filled-segment and } A \text{ absent in } \alpha^{n+1}, \text{ thus } \alpha' \mid A = \alpha \mid A = (\alpha^1 \mid A)(\alpha^2 \mid A)(\alpha^3 \mid A) \cdots (\alpha^{2^{(n/2)} - 1} \mid A) = (\alpha^1 \mid A)(\alpha^3 \mid A) \cdots (\alpha^{2^{(n/2)} - 1} \mid A) \text{ and we find the waited value.} \\
& \text{Case 2b. } A \text{ is absent in } fstate(\alpha) \\
& \text{Case 2bi. } n \text{ even } (2^n/2 = n \text{ and } 2[(n + 1)/2] = n) \text{ We have } \alpha^n \text{ filled-segment and } A \text{ absent in } \alpha^{n+1}, \text{ thus } \alpha' \mid A = \alpha \mid A = (\alpha^1 \mid A)(\alpha^2 \mid A)(\alpha^3 \mid A) \cdots (\alpha^{2^{(n/2)}} \mid A) = (\alpha^1 \mid A)(\alpha^3 \mid A) \cdots (\alpha^{2^{(n/2)}} \mid A) \text{ and we find the waited value.} \\
& \text{Case 2bii. } n \text{ odd } (2^n/2 = n - 1 \text{ and } 2[(n + 1)/2] = n + 1) \text{ We have } \alpha^n \text{ unfilled-segment and } A \text{ present in } \alpha^{n+1}, \text{ thus } \alpha' \mid A = \alpha \mid A = (\alpha^1 \mid A)(\alpha^2 \mid A) \cdots (\alpha^{2^{(n/2)}} \mid A) = (\alpha^1 \mid A)(\alpha^3 \mid A) \cdots (\alpha^{2^{(n/2)}} \mid A) \text{ and we find the waited value.} \\
& \text{All the cases have been covered.}
\end{align*} \]

7.3 \bar{S}_{AB}, S_{AB} relation

Here we define a relation between executions α and π that captures the fact that they are the same excepting for internal aspects of A and B. To define this relation, we needed to take particular care with destruction and creation of A and B.

Definition 122 (Execution correspondence relation, S_{AB}). Let A, B be PSIOA, let E be an environment for both A and B. Let α, π be executions of automata $A || E$ and $B || E$ respectively.

Then we say that α is in relation $S_{(AB)}$ with π, denoted $\alpha S_{(AB)} \pi$ if

1. A is permanently off in $\alpha \iff B$ is permanently off in π. A is permanently on in $\alpha \iff B$ is permanently on in π.

\[\begin{align*}
\text{case } 1: \quad & A \text{ is present in } fstate(\alpha) \text{ and } \alpha \mid A = (\alpha^1 \mid A)(\alpha^2 \mid A) \cdots (\alpha^{2^{(n/2)}} \mid A) \text{ map } (config(K_A))(lstate(\alpha))(A) \\
\text{case } 2: \quad & \alpha \mid A = (\alpha^1 \mid A)(\alpha^2 \mid A) \cdots (\alpha^{2^{(n/2)}} \mid A) \text{ or } \alpha \mid A = (\alpha^1 \mid A)(\alpha^2 \mid A) \cdots (\alpha^{2^{(n/2)}} \mid A) \text{ otherwise either} \\
\text{case } 3: \quad & \alpha \mid A = (\alpha^1 \mid A)(\alpha^2 \mid A) \cdots (\alpha^{2^{(n/2)}} \mid A) \text{ or } A \text{ is absent at } fstate(\alpha) \text{ and } \alpha \mid A = (\alpha^1 \mid A)(\alpha^2 \mid A) \cdots (\alpha^{2^{(n/2)}} \mid A) \\
\end{align*} \]
2. \((\ast)\) \(A\) is turned off in \(\alpha \iff B\) is turned off in \(\pi\). If \((\ast)\), we can note \(\alpha = \alpha_1 \sim \alpha_2\) and \(\alpha_1 \equiv \alpha_1' \sim \alpha_1q_{1}\) where \(\Sigma_i(\text{state}(\alpha_1) \mid A) = \emptyset, \Sigma_i(\text{state}(\alpha_1') \mid A) \neq \emptyset\) and we can note \(\pi = \pi_1 \sim \pi_2\) similarly.

3. \(\pi \mid \mathcal{E} = \alpha \mid \mathcal{E}\). If \((\ast)\), \(\pi_i \mid \mathcal{E} = \alpha_i \mid \mathcal{E}\) for \(i \in \{1, 2\}\).

4. \(\text{trace}_B(\mathcal{E}(\pi)) = \text{trace}_A(\mathcal{E}(\alpha))\). If \((\ast)\), \(\text{trace}_B(\mathcal{E}(\pi_i)) = \text{trace}_A(\mathcal{E}(\alpha_i))\) for \(i \in \{1, 2\}\).

5. \(\text{exec}(\mathcal{E}(\pi)) \mid A = \text{exec}(\mathcal{E}(\alpha)) \mid B\); \(\text{exec}(\mathcal{E}(\pi)) \mid A = \text{exec}(\mathcal{E}(\alpha)) \mid B\).

\(S_{AB\mathcal{E}}\) is sometimes written \(S_{AB}\) when the environment is clear in the context.

The definition captures the fact that \(\alpha\) and \(\pi\) only differs in the internal state and internal actions of \(A\) and \(B\). The conditions \((1)\) and \((2)\) say that \(A\) and \(B\) are destroyed in the same tempo in \(\alpha\) and \(\pi\). The condition \((3)\) says \(\alpha\) and \(\pi\) are the same executions from the common environment’s point of view, condition \((4)\) says the trace are equal, that is the actions can only differs in the internal actions of \(A\) and \(B\).

Remark. It is possible to have \((\alpha, \alpha') \in \text{execs}(\mathcal{E})^2\) and \(\alpha S_{A\mathcal{E}}\alpha'\), that is \(\alpha'\) and \(\alpha\) only differs on internal state and internals action of \(A\). We note \(S_{A\mathcal{E}}\) to simplify \(S_{A\mathcal{E}}\) or even \(S_{A}\) when the environment is clear in the context.

Lemma 123. For every PSIOA \(A\), for every environment \(\mathcal{E}\) of \(A\), \(S_A\) is an equivalence relation on \(\text{frags}(\mathcal{E})\).

Proof. The conjonction of equivalence relations is an equivalence relation. \((1)\), \((2)\) are equivalence relation since the predicates are linked by the the equivalence relation \(\iff\). \((3)\), \((4)\) and \((5)\) are equivalence relation since the predicates are linked by the the equivalence relation \(=\).

Lemma 124. Let \(A, B\) be PSIOA, let \(\mathcal{E}\) be an environment for both \(A\) and \(B\) Let \((\alpha, \alpha') \in \text{frags}(\mathcal{E})\), \((\pi, \pi') \in \text{frags}(\mathcal{E})\), s. t. \(\alpha S_A\alpha'\), \(\pi S_B\pi'\) and \(\alpha' S_{AB}\pi'\)

Then \(\alpha S_{AB}\pi\).

Proof. Each relation is true for \(\alpha'\) and \(\pi'\). By equivalence, each relation stay true for \(\alpha\) and \(\pi\). By conjonction of all the relations, the relation stays true for \(S_{AB}\).

Definition 125 (Execution correspondence relation, \(\tilde{S}_{AB}\)). Let \(A, B\) be PSIOA. Let \(K_A, K_B\) be PCA. Let \(\alpha, \pi\) be execution fragments of configuration automata \(K_A, K_B\) respectively. Then we say that \(\alpha\) is in relation \(\tilde{S}_{AB}\) with \(\pi\), denoted \(\alpha \tilde{S}_{AB} \pi\) if

1. The partitions \((\alpha_1, \ldots, \alpha_n)\) and \((\pi_1, \ldots, \pi_n)\) of \(\alpha\) and \(\pi\) respectively have the same size \(n\).
2. \(\forall i \in [1 : n], \text{(*)}\) \(A \in \text{aut}(\text{config}(K_A)(\text{state}(\alpha_i))) \iff B \in \text{aut}(\text{config}(K_B)(\text{state}(\pi_i)))\) and \((***)\) \(B \in \text{aut}(\text{config}(K_B)(\text{state}(\alpha_i))) \iff B \in \text{aut}(\text{config}(K_B)(\text{state}(\pi_i)))\)
3. \(\forall i \in [1 : n], \text{for every automaton aut } \neq \{A, B\} \pi_i \mid \text{aut} = \alpha_i \mid \text{aut} \).
4. \(\forall i \in [1 : n] \text{trace}_{K_A}(\pi_i) = \text{trace}_{K_A}(\alpha_i)\)
5. \(\forall i \in [1 : n], \text{if (**)} \text{exec}(\text{map}(\text{config}(K_A)(\text{state}(\alpha_i)))(\mathcal{A})) = \text{exec}(\text{map}(\text{config}(K_B)(\text{state}(\pi_i)))(\mathcal{B}))\) and \((***)\) \(\text{exec}(\text{map}(\text{config}(K_A)(\text{state}(\alpha_i)))(\mathcal{A})) = \text{exec}(\text{map}(\text{config}(K_B)(\text{state}(\pi_i)))(\mathcal{B}))\).

Remark. It is possible to have \((\alpha, \alpha') \in \text{execs}(K_A)^2\) and \(\alpha \tilde{S}_{A\mathcal{E}}\alpha'\), that is \(\alpha'\) and \(\alpha\) only differs on internal state and internals action of \(K_A\). We note \(\tilde{S}_A\) to simplify \(\tilde{S}_{A\mathcal{E}}\).

Lemma 126. Let \(A \in \text{Autids}, K_A\) be a PCA. \(\tilde{S}_A\) is an equivalence relation on \(\text{frags}(K_A)\).
Proof. The conjunction of equivalence relations is an equivalence relation. (2) is an equivalence relation since the predicates are linked by the the equivalence relation \iff. (1), (3), (4) and (5) are equivalence relation since the predicates are linked by the the equivalence relation \Rightarrow.

Lemma 127. Let $A \in \mathrm{Autids}$, K_A be a PCA. Let $(\alpha, \alpha') \in \text{frags}(K_A), (\pi, \pi') \in \text{frags}(K_B)$, s. t. $\alpha \tilde{S}_A \alpha'$, $\pi \tilde{S}_B \pi'$ and $\alpha' \tilde{S}_A B \pi'$

Then $\alpha \tilde{S}_A B \pi$.

Proof. Each relation is true for α' and π'. By equivalence, each relation stay true for α and π. By conjonction of all the relations, the relation stays true for $\tilde{S}_A B$.

Proposition 2. Let α, π be executions of configuration automata K_A, K_B respectively. If $\alpha \tilde{S}_A B \pi$, then $\text{trace}_{K_A}(\alpha) = \text{trace}_{K_B}(\pi)$.

Proof. By clause 1 and 5 of the definition $\tilde{S}_A B$.

Equivalence class:

Definition 128 (equivalence class). Let A be a PSIOA. Let E be an environment of A. Let α be an execution fragment of $A || E$. We note $\alpha_{AE} = \{\alpha'| \alpha' S_A \alpha\}$ Let K_A be a PCA. Let $\bar{\alpha}$ be an execution fragment of K_A. We note $\bar{\alpha}_A = \{\bar{\alpha}' | \bar{\alpha}' S_A \bar{\alpha}\}$.

When this is clear in the context, we note $\bar{\alpha}_A$ or even $\bar{\alpha}$ for α_{AE} and $\bar{\alpha}$ for $\bar{\alpha}_A$.

Lemma 129. Let A be a PSIOA. Let K_A be a PCA. Let α be an execution of K_A. Let $(\alpha^1, \alpha^2, ..., \alpha^n)$ be the A-partition of α.

$$\alpha = \{\bar{\alpha}_1 \tilde{A} \bar{\alpha}_2 \ldots \bar{\alpha}_n | \bar{\alpha}_1 \tilde{S}_A \bar{\alpha}_1 \forall i \in [1 : n]\}$$

Proof. By induction on the size n of the partition. The basis is a tautology. Induction we assume this is true for integer n. Let $\alpha' = \alpha^1 \tilde{A} \alpha^{n+1}$ and $(\alpha^1, ..., \alpha^n)$ the A-partition of α and $(\alpha^1, ..., \alpha^n, \alpha^{n+1})$ the A-partition of α'. We show $\alpha' = \{\bar{\alpha}_1 \tilde{A} \bar{\alpha}_2 \ldots \bar{\alpha}_n \tilde{A} \bar{\alpha}_{n+1} | \bar{\alpha}_i \tilde{S}_A \bar{\alpha}_i \forall i \in [1 : n + 1]\}$ by double inclusion.

Let $\bar{\alpha}' \in \alpha'$ with $(\bar{\alpha}_1, \bar{\alpha}_2, ..., \bar{\alpha}_n, \bar{\alpha}_{n+1})$ as A-partition. We have $\bar{\alpha}' = \bar{\alpha}_a \tilde{A} \bar{\alpha}_b$ with $\bar{\alpha}_a, \bar{\alpha}_b \in \alpha$.

By construction, the conditions (2), (3), (4), (5), (6) of definition of $\tilde{S}_A B$ are met for $\bar{\alpha}_{n+1}$ and α_{n+1}. The condition (1) is met since $(\bar{\alpha}_{n+1})$ is the A-partition of $\bar{\alpha}_{n+1}$ and (α_{n+1}) is the A-partition of α_{n+1}. Hence $\bar{\alpha}_{n+1} \tilde{S}_A \bar{\alpha}_{n+1}$. Thus $\alpha' \subset \{\bar{\alpha}_1 \tilde{A} \bar{\alpha}_2 \ldots \bar{\alpha}_n \tilde{A} \bar{\alpha}_{n+1} | \bar{\alpha}_i \tilde{S}_A \bar{\alpha}_i \forall i \in [1 : n + 1]\}$.

Let $\bar{\alpha}' = \bar{\alpha}_1 \tilde{A} \bar{\alpha}_2 \ldots \bar{\alpha}_n \tilde{A} \bar{\alpha}_{n+1}$ with $\bar{\alpha}_i \tilde{S}_A \bar{\alpha}_i \forall i \in [1 : n + 1]$. Thus $\bar{\alpha}_1, \bar{\alpha}_2, ..., \bar{\alpha}_n, \bar{\alpha}_{n+1}$ is the A-partition of $\bar{\alpha}'$. By construction, the conditions (2), (3), (4), (5), (6) of definition of $\tilde{S}_A B$ are met for each i for $\bar{\alpha}_i$ and α_i. The condition (1) is also met by construction with a size of $n + 1$. Thus $\bar{\alpha}' \in \alpha'$. We have shown that if the claim was true for a partition of size n, it was also true for a partition of size $n + 1$. Furthermore, the claim is true for $n = 1$.

Thus, by induction this is true for every integer n which ends the proof.

Lemma 130 (μ_e preserves the equivalence relation intra automaton). Let A be a PSIOA. Let X_A be a A-conservative PCA. Let E be an environment of X_A. Let $\bar{\alpha}, \bar{\alpha}'$ be execution fragments of $PCA X_A || E$ s. t. no creation of A occurs in $\bar{\alpha}$. We note $E' = (X_A \setminus A) || E = (X_A || E) \setminus A$. We have $\mu_e(\bar{\alpha}), \mu_e(\bar{\alpha}') \in \text{frags}(\tilde{A}^w || E')$ and
\[\tilde{\alpha} \mathcal{S}_A \tilde{\alpha'} \iff \mu_e(\tilde{\alpha}) \mathcal{S}_A \mu_e(\tilde{\alpha'}) \]

Proof. For every state \(q^i = (\tilde{q}^i_A, \tilde{q}^i_{\mathcal{E}}) \) and \(q^j = \mu^A_e(\tilde{q}^j) = (\tilde{q}^j_A, \tilde{q}^j_{\mathcal{E}}) \), \(\text{config}(X_A|\mathcal{E})(\tilde{q}^i) = \text{config}(\mathcal{A}^u|\mathcal{E}')(q^j) \). Namely \(A \in \text{auts}(\text{config}(X_A|\mathcal{E})(\tilde{q}^i)) \iff A \in \text{auts}(\text{config}(\mathcal{A}^u|\mathcal{E}')(q^j)) \).

Thus the respect of condition (1) is equivalent and we can reason by segment of the partition. For the same reason, the respect of condition (1) is equivalent. Since the configuration are the same and the actions are the same, the respect of condition (3) is equivalent. Since the actions are the same, then the external actions are the same and the respect of condition (4) is equivalent. Since the configuration are the same, the external signature of \(A \) in case of presence is the same and the respect of condition (5) is equivalent. Thus for every \(i \in \{1, 2, 3, 4, 5\} \), \(\tilde{\alpha} \) and \(\tilde{\alpha'} \) respect the condition \(i \) of \(\mathcal{S}_A \). This gives a fortiori \(\tilde{\alpha} \mathcal{S}_A \tilde{\alpha'} \iff \mu_e(\tilde{\alpha}) \mathcal{S}_A \mu_e(\tilde{\alpha'}) \).

Lemma 131 (\(\gamma \) preserves the equivalence relation intra automata). Let \(A \) be a PSIOA. Let \(\mathcal{A}^{sw} \) be its simpleton wrapper. Let \(\mathcal{E} \) be an environment of \(\mathcal{A}^{sw} \) and \(\mathcal{E}' = \psi_{ioa}(\mathcal{E}) \).

Let \(\tilde{\alpha}, \tilde{\alpha'} \) be execution fragments of \(\text{PCA} \mathcal{A}^{sw}|\mathcal{E} \) We have \(\gamma_e(\tilde{\alpha}), \gamma_e(\tilde{\alpha'}) \in \text{frags}(\mathcal{A}|\mathcal{E}') \) and

\[\tilde{\alpha} \mathcal{S}_A \tilde{\alpha'} \iff \gamma_e(\tilde{\alpha}) \mathcal{S}_A \gamma_e(\tilde{\alpha'}) \]

Proof. We have to deal with 4 cases:

1. \((\tilde{\alpha}_1) \) is a \(\mathcal{A} \)-partition of \(\tilde{\alpha} \) where \(\mathcal{A} \) is permanently absent in \(\tilde{\alpha}_1 \). This is equivalent to \(\mathcal{A} \) is permanently off in \(\gamma_e(\tilde{\alpha}_1) \). We have \(\tilde{\alpha} \mathcal{S}_A \tilde{\alpha'} \iff \tilde{\alpha} = \tilde{\alpha'} \iff \gamma_e(\tilde{\alpha}) = \gamma_e(\tilde{\alpha'}) \iff \gamma_e(\tilde{\alpha}) \mathcal{S}_A \gamma_e(\tilde{\alpha'}) \).
2. \((\tilde{\alpha}_1) \) is a \(\mathcal{A} \)-partition of \(\tilde{\alpha} \) where \(\mathcal{A} \) is permanently absent in \(\tilde{\alpha}_1 \). This is equivalent to \(\mathcal{A} \) is permanently on in \(\gamma_e(\tilde{\alpha}_1) \). This implies that conditions (1) and (2) are met for \(\mathcal{S}_A \). Also if the conditions (1) and (2) are met for \(\mathcal{S}_{AB} \), with \(\mathcal{A} \) permanently on in \(\gamma_e(\tilde{\alpha}) \) and \(\gamma_e(\tilde{\alpha'}) \), then the second condition is only for \(\mathcal{S}_A \) with \((***) \) true, while the condition (1) is verified with size 1. So the conditions (1) and (2) for \(\mathcal{S}_A \) are equivalent to the conditions (1) and (2) for \(\mathcal{S}_{AE} \). The conditions (3) and (4) for \(\mathcal{S}_A \) are equivalent to the condition (3) for \(\mathcal{S}_{AE} \). The condition (5) for \(\mathcal{S}_A \) is equivalent to the condition (4) for \(\mathcal{S}_{AE} \) since the actions are not modified by \(\gamma_e \). The condition (6) for \(\mathcal{S}_A \) is equivalent to the condition (5) for \(\mathcal{S}_{AE} \).
3. Thus \(\tilde{\alpha} \mathcal{S}_A \tilde{\alpha'} \iff \gamma_e(\tilde{\alpha}) \mathcal{S}_A \gamma_e(\tilde{\alpha'}) \).

Lemma 132 (\(\mu_e \) preserves the equivalence relation intra automaton). Let \(A \) be a PSIOA. Let \(X_A \) be a \(\mathcal{A} \)-conservative PCA. Let \(\mathcal{E} \) be an environment of \(X_A \). Let \(\tilde{\alpha}, \tilde{\alpha'} \) be execution fragments of \(\text{PCA} X_A|\mathcal{E} \) s. t. no creation of \(\mathcal{A} \) occurs in \(\tilde{\alpha} \). We note \(\mathcal{E}' = \psi_{ioa}(X_A | \mathcal{A}|\mathcal{E}) \).
We have $\gamma_e(\mu_e(\tilde{\alpha})), \gamma_e(\mu_e(\tilde{\alpha}')) \in \text{frags}(A||E')$ and
\[
\tilde{\alpha}S_A\tilde{\alpha}' \iff \gamma_e(\mu_e(\tilde{\alpha}))S_{A\tilde{\alpha}'}\gamma_e(\mu_e(\tilde{\alpha}')).
\]

Proof. By conjunction of the two last lemma.

Lemma 133 (\(\mu_e\) preserves the equivalence class). Let \(A\) be a PSIOA. Let \(X_A\) be a \(A\)-conservative configuration-equivalence-free PCA. Let \(E\) be an environment of \(X_A\).

Let \(\tilde{\alpha}\) be an execution fragments of PCA \(X_A||E\) s. t. no creation of \(A\) occurs in \(\tilde{\alpha}\).

Then $\mu_e(\tilde{\alpha}) = \mu_e(\tilde{\alpha})$.

Proof. We have
\[
\mu_e(\tilde{\alpha}) = \mu_e(\{\tilde{\alpha}' \in \text{frags}(X_A||E) | \tilde{\alpha}'S_A\tilde{\alpha}\}) = \{\mu_e(\tilde{\alpha}') | \tilde{\alpha}' \in \text{frags}(X_A||E), \tilde{\alpha}'S_A\tilde{\alpha}\}
\]
and
\[
\mu_e(\tilde{\alpha}) = \{\tilde{\alpha}' \in \text{frags}(\tilde{A}^s||E') | \tilde{\alpha}'S_A\mu_e(\tilde{\alpha})\}
\]
with $E' = X_A \setminus \{A\}||E$.

Since \(\tilde{\alpha}'\) does not create \(A\), because of partial bijectivity, $\mu_e(\tilde{\alpha}) = \{\mu_e(\tilde{\alpha}') | \tilde{\alpha}' \in \text{frags}(X_A||E), \mu_e(\tilde{\alpha}')S_A\mu_e(\tilde{\alpha})\}$

Furthermore, $\tilde{\alpha}S_A\tilde{\alpha}' \iff \mu_e(\tilde{\alpha})S_{A\tilde{\alpha}'}\mu_e(\tilde{\alpha}')$ from the lemma. of preservation of S relation by μ_e.

So $\mu_e(\tilde{\alpha}) = \mu_e(\tilde{\alpha})$.

Lemma 134 (γ_e preserves the equivalence class). Let \(A\) be a PSIOA. Let \(\tilde{A}^s_w\) be its simpleton wrapper. Let \(E\) be an environment of \(\tilde{A}^s_w||E' = \text{psi}(E)\). Let \(\tilde{\alpha} \in \text{frags}(\tilde{A}^s_w||E')\)

Then $\gamma_e(\tilde{\alpha}) = \gamma_e(\tilde{\alpha})$.

Proof. We have
\[
\gamma_e(\tilde{\alpha}) = \gamma_e(\{\tilde{\alpha}' \in \text{frags}(\tilde{A}^s_w||E) | \tilde{\alpha}'S_A\tilde{\alpha}\}) = \{\gamma_e(\tilde{\alpha}') | \tilde{\alpha}' \in \text{frags}(\tilde{A}^s_w||E), \tilde{\alpha}'S_A\tilde{\alpha}\}
\]
and
\[
\gamma_e(\tilde{\alpha}) = \{\tilde{\alpha}' \in \text{frags}(A||E') | \tilde{\alpha}'S_A\gamma_e(\tilde{\alpha})\}.
\]

Because of bijectivity of γ_e, $\gamma_e(\tilde{\alpha}) = \{\gamma_e(\tilde{\alpha}') | \tilde{\alpha}' \in \text{frags}(\tilde{A}^s_w||E'), \gamma_e(\tilde{\alpha}')S_{A\tilde{\alpha}'}\gamma_e(\tilde{\alpha})\}$

Furthermore, $\tilde{\alpha}S_{\tilde{A}}\tilde{\alpha}' \iff \gamma_e(\tilde{\alpha})S_{A\tilde{\alpha}'}\gamma_e(\tilde{\alpha}')$ from the lemma of preservation of S relation by γ_e.

So $\gamma_e(\tilde{\alpha}) = \gamma_e(\tilde{\alpha})$.

Lemma 135 ($\gamma_e \circ \mu_e$ preserves the equivalence class). Let \(A\) be a PSIOA. Let \(X_A\) be a \(A\)-conservative configuration-equivalence-free PCA. Let \(E\) be an environment of \(X_A\).

Let \(\tilde{\alpha}\) be an execution fragments of PCA \(X_A||E\) s. t. no creation of \(A\) occurs in \(\tilde{\alpha}\).

Then $\gamma_e(\mu_e(\tilde{\alpha})) = \gamma_e(\mu_e(\tilde{\alpha}))$.

Proof. By conjunction of the two last lemma.
\textbf{Theorem 136} \textit{(Preserving probabilistic distribution without creation for equivalence class).}

Let $A \in \text{Autids}$. Let X be a A-conservative PCA. Let $X' = X \setminus A$. Let $Z = A^w || X'$. Let E be an environment of X. Let $E' = \text{psioa}(Y' || \mathcal{E})$. Let ρ be a schedule.

For every execution fragment $\alpha = q^0 a^1 q^4 \ldots q^k \in \text{frags}(X || \mathcal{E})$, verifying:

\begin{itemize}
 \item No creation of A: For every $s \in \{0, k-1\}$, if $A \not\in \text{auts} (\text{config}(X)(q^s_X))$ then $A \not\in \text{created}(X)(q^{s+1}_X)$. \(\square\)
 \item No creation from A: \(\forall s \in \{0, k-1\}, \) verifying $a^{s+1} \notin \text{config}(X)(q^s_X) \wedge a^{s+1} \in \text{sig}(A)(q^s_X)$, with $\mu_e(q^s_X) = q^s = (q^s_X, q^s_{E})$, created$(X)(q^s_X)(a) = \emptyset$.
 \item Then apply $\mathcal{E}|| \iota(\delta(q^s_X, q^s_E), \alpha(\gamma_e)) = \text{apply}_E(\mathcal{E}|| \iota(\delta(q^s_X, q^s_E), \rho)(\mu_e(\alpha))) = \text{apply}_{\mathcal{E}}(\mathcal{E}|| \iota(\delta(q^s_X, q^s_E), \rho)(\mu_e(\alpha)))$. \(\square\)
\end{itemize}

\textbf{Proof.} We already have $\text{apply}_E(\mathcal{E}|| \iota(\delta(q^s_X, q^s_E), \alpha)) = \text{apply}_E(\mathcal{E}|| \iota(\delta(q^s_X, q^s_E), \rho)(\mu_e(\alpha)))$. Thus

\begin{equation}
\sum_{\alpha \in \mathcal{E}} \text{apply}_E(\mathcal{E}|| \iota(\delta(q^s_X, q^s_E), \alpha)) = \sum_{\alpha \in \mathcal{E}} \text{apply}_E(\mathcal{E}|| \iota(\delta(q^s_X, q^s_E), \rho)(\mu_e(\alpha))).
\end{equation}

Hence, $\text{apply}_E(\mathcal{E}|| \iota(\delta(q^s_X, q^s_E), \alpha)) = \text{apply}_E(\mathcal{E}|| \iota(\delta(q^s_X, q^s_E), \rho)(\mu_e(\alpha)))$. Furthermore, we know that $\mu_e(\alpha) = \mu_e(\alpha)$, thus $\text{apply}_E(\mathcal{E}|| \iota(\delta(q^s_X, q^s_E), \alpha)) = \text{apply}_E(\mathcal{E}|| \iota(\delta(q^s_X, q^s_E), \rho)(\mu_e(\alpha)))$.

In the same manner, we obtain the second result with $\gamma_e(\mu_e(\alpha)) = \gamma_e(\mu_e(\alpha))$. \(\square\)

\subsection{Implementation monotonicity without creation}

\textbf{Lemma 137} \textit{(i$\!$S$\!$A$\!$B-balanced distribution without creation).} Let A, B be PSIOA. Let K_A, K_B be PCA corresponding w. r. t. A and B. Let K'_A, K'_B be AB-co-twin of K_A and K_B.

Let $E'_A = K'_A \setminus A$, $E'_B = K'_B \setminus B$, $E''_A = \text{psioa}(E'_A)$ and $E''_B = \text{psioa}(E'_B)$. Let $E'' = E''_A$ (or $E'' = E''_B$, it does not matter).

Let ρ, ρ' be schedule s. t. for every executions α, π of $\mathcal{A}|| E''$ and $\mathcal{B}|| E''$, verifying $\alpha S_{AB}^e \pi$, apply$_A(\mathcal{E}|| E''(\delta(q_A, \bar{q}_A), \rho)) = \text{apply}_B(\mathcal{E}|| E''(\delta(q_B, \bar{q}_B), \rho'), \bar{\pi})$.

Let q^s_K, s. t. $\mu_e^s(q^s_K) = (\text{ren}_n(q^s_K), \bar{q}_A^s)$. Let q^s_K, s. t. $\mu_e^s(q^s_K) = (\text{ren}_n(q^s_K), \bar{q}_B^s)$.

Then for every execution fragments $\tilde{\alpha}, \tilde{\pi}$ of K'_A and K'_B, verifying $\tilde{\alpha} S_{AB}^e \tilde{\pi}$ and $\tilde{\alpha}$ does not create A, we have:

\begin{equation}
\text{apply}^K_A(\delta(q^s_K), \rho)(\tilde{\alpha}) = \text{apply}^K_B(\delta(q^s_K), \rho')(\tilde{\pi}).
\end{equation}

\textbf{Proof.} Let $\tilde{\alpha}, \tilde{\pi}$ be execution fragments of K'_A and K'_B, verifying $\tilde{\alpha} S_{AB}^e \tilde{\pi}$ with $\tilde{\alpha}$ that does not create A.

We have

\begin{equation}
\text{apply}^K_A(\delta(q^s_K), \rho)(\tilde{\alpha}) = \text{apply}^K_A(\mathcal{E}|| E''(\delta(q^s_K), \rho)(\mu_e^A(\tilde{\alpha}))) = \text{apply}^K_A(\mathcal{E}|| E''(\delta(q^s_K), \rho')(\gamma_e^A(\mu_e^A(\tilde{\alpha})))) = \text{apply}^K_A(\mathcal{E}|| E''(\delta(q^s_K), \rho')(\gamma_e^A(\mu_e^A(\tilde{\alpha})))) = \text{apply}^K_A(\mathcal{E}|| E''(\delta(q^s_K), \rho')(\mu_e^A(\tilde{\alpha}))).
\end{equation}

Hence we have $\text{apply}^K_A(\delta(q^s_K), \rho)(\tilde{\alpha}) = \text{apply}^K_B(\delta(q^s_K), \rho')(\tilde{\pi})$. \(\square\)

\textbf{Definition 138} \textit{(S$^a_{AB}e$ relation for schedules).} Let A, B be PSIOA. Let \mathcal{E} be an environment of both A and B. Let ρ and ρ' be two schedules. We say that $\rho S_{AB}^a \rho'$ if:

for every executions α, π of $\mathcal{A}|| \mathcal{E}$ and $\mathcal{B}|| \mathcal{E}$ respectively, s. t. $\alpha S_{AB}^e \pi$. \(\square\)
Theorem 139 (Monotonicity of S^* relation without creation). Let A, B be PSIOA. Let X_A, X_B be PCA corresponding w. r. t. A and B. Let \mathcal{E} be an environment for both X_A, X_B. Let $X'_A||\mathcal{E}'$, $X'_B||\mathcal{E}'$ be AB-co-twin of $X_A||\mathcal{E}$ and $X_B||\mathcal{E}$. Let $\mathcal{E}'_A = \text{psioa}(X'_A \setminus A||\mathcal{E}')$ and $\mathcal{E}'_B = \text{psioa}(X'_B \setminus B||\mathcal{E}')$. Let $\mathcal{E}'' = \mathcal{E}'_A$ (or $\mathcal{E}'' = \mathcal{E}'_B$, it does not matter).

Let ρ, ρ' be schedule s. t. $\rho S^t_{A,B,\mathcal{E}'_A,\mathcal{E}''} \rho'$. Then for every $(\alpha, \pi) \in \text{execs}(X'_A||\mathcal{E}') \times \text{execs}(X'_B||\mathcal{E}')$ that does not create A and B s. t. $\alpha S(X'_A, X'_B, \mathcal{E}') \pi$

\[
\text{apply}_{X_A||\mathcal{E}'}(\delta(q_A,q'), \rho)(\alpha) = \text{apply}_{X_B||\mathcal{E}'}(\delta(q_B,q'), \rho')(\alpha).
\]

Proof. By application of previous lemma with $K_A = X_A||\mathcal{E}$ and $K_B = X_B||\mathcal{E}$, since projection and composition are commutative.

8 Monotonicity of implementation w. r. t. PSIOA creation and destruction

In last section we have shown a weak version of our final monotonicity theorem (160), where we only consider executions that do not create A (see theorem 139).

Here we want to show this is also true with the creation of A and B.

8.1 schedule notations

Definition 140 (simple schedule notation). Let $\rho = T^\ell, T^{\ell+1}, ..., T^h, ...$ be a schedule, i. e. a sequence of tasks, beginning with T^ℓ and terminating by T^h if ρ is finite with $\ell, h \in \mathbb{N}^*$.

For every $\alpha \in [\ell, h], q \leq q'$, we note:

- $hi(\rho) = h$ the highest index in ρ ($hi(\rho) = \omega$ if ρ is infinite)
- $li(\rho) = \ell$ the lowest index in ρ
- $\rho[q] = T^q$
- $\rho[q] = T^\ell ... T^q$
- $\rho[\ell] = T^\ell ... T^h$
- $\rho[q'] = T^\ell ... T^q$

By doing so, we implicitly assume an indexation of ρ, $\text{ind}(\rho) : \text{ind} \in [li(\rho), hi(\rho)] \mapsto T^{\text{ind}} \in \rho$. Hence if $\rho = T^1, T^2, ..., T^k, T^{k+1}, ..., T^q, T^{q+1}, ..., T^h, ..., \rho' = \ell | \rho, \rho'' = q | \rho'$, then $\rho'' = q | \rho$.

Definition 141 (Schedule partition and index). Let ρ be a schedule. A partition p of ρ is a sequence of schedules (finite or infinite) $p = (\rho^m, \rho^{m+1}, ..., \rho^n, ...)$ so that ρ can be written $\rho = \rho^m \rho^{m+1} ..., \rho^n, ...$. We note $\text{min}(p) = m$ and $\text{max}(p) = \text{card}(p) + m - 1$ (if p is infinite, $\text{max}(p) = \omega$).

A total ordered set $(\text{ind}(\rho), \rho, \prec) \subset \mathbb{N}^2$ is defined as follows:

$$\text{ind}(\rho, p) = \{ (k, q) \in (\mathbb{N}^*)^2 | k \in [\text{min}(p), \text{max}(p)], q \in [li(\rho^k), hi(\rho^k)] \}$$

For every $\ell = (k, q), \ell' = (k', q') \in \text{ind}(\rho, p)$:
If $k < k'$, then $\ell < \ell'$
If $k = k'$, $q < q'$, then $\ell < \ell'$
If $k = k'$ and $q = q'$, then $\ell = \ell'$. If either $\ell < \ell'$ or $\ell = \ell'$, we note $\ell \geq \ell'$.

For every $\ell = (k, q) \in \text{ind}(\rho, p)$, we note $\ell + 1$ the smaller element (according to \prec) of $\text{ind}(\rho, p)$ that is greater than ℓ. For convenience, we extend $\text{ind}(\rho, p)$ with $\{(k, 0) \in (N^*)^2 | k \leq \text{card}(p)\}$, where $(k + 1, 0) \triangleq (k, \text{card}(\rho^k))$.

Definition 142 (Schedule notation). Let ρ be a schedule. Let p be a partition of ρ. For every $\ell = (k, q), \ell' = (k', q') \in \text{ind}(\rho, p)^2$, we note (when this is allowed):
- $\rho[\ell, \ell'] = \rho^k|q|
- \rho[\ell, \ell'] = \rho^k|q'
- (\ell, \ell')\rho = (q|\rho^k),...
- \ell(\ell, \ell')\rho = (q|\rho^k),...(\rho^k|q)

The symbol p of the partition is removed when it is clear in the context.

Definition 143 (Environment). Let \mathcal{V} be a PCA (resp a PSIOA). An environment \mathcal{E} for \mathcal{V} is a PCA (resp a PSIOA) partially-compatible with \mathcal{V} s. t. $UA(\mathcal{E}) \cap UA(\mathcal{V}) = \emptyset$.

Definition 144 (Environment-partition of a schedule). Let \mathcal{V} be a PCA or a PSIOA. Let $\rho_{\mathcal{V}}$ be a schedule. Let $p = (p^k_1, p^k_2, p^k_3, p^k_4,...)$ be a partition of $\rho_{\mathcal{V}}$ where each $p^k_{2^{k+1}}$ is a sequence of tasks of $UA(\mathcal{V})$ only and each $p^k_{2^k}$ does not contain any task of $UA(\mathcal{V})$. We call such a partition, a \mathcal{V}-partition of $\rho_{\mathcal{V}}$.

Proposition 3. Let $\rho_{\mathcal{V}}$ be a schedule. It exists a unique \mathcal{V}-partition of $\rho_{\mathcal{V}}$.

Proof. Since $UA(\mathcal{E}) \cap UA(\mathcal{V}) = \emptyset$ the partition exists. The uniqueness is also due to the fact that $UA(\mathcal{E}) \cap UA(\mathcal{V}) = \emptyset$. □

Thus, in the remaining we say the \mathcal{V}-partition of a schedule.

Definition 145 (Environment corresponding schedule). Let \mathcal{V} and \mathcal{W} be two PCA or two PSIOA. Let $\rho_{\mathcal{V}}$ and $\rho_{\mathcal{W}}$ be two schedules. Let $(\rho^k_1, \rho^k_2, \rho^k_3, \rho^k_4,...)$ (resp. $\rho_{\mathcal{W}} : (\rho^k_1, \rho^k_2, \rho^k_3, \rho^k_4,...)$) be the \mathcal{V}-partition (resp. \mathcal{W}-partition) of $\rho_{\mathcal{V}}$ (resp. $\rho_{\mathcal{W}}$). We say that $\rho_{\mathcal{V}}$ and $\rho_{\mathcal{W}}$ are \mathcal{W}-environment-corresponding if for every k, $\rho^k_{\mathcal{V}} = \rho^k_{\mathcal{W}}$.

Environment corresponding schedules only differ on the tasks that do not concerns the environment.

Definition 146 ($S_{\mathcal{A}, \mathcal{B}, \mathcal{E}}$ relation for schedules). Let \mathcal{A}, \mathcal{B} be PSIOA. Let \mathcal{E} be an environment of both \mathcal{A} and \mathcal{B}. Let ρ and ρ' be two schedule. We say that $\rho S_{\mathcal{A}, \mathcal{B}, \mathcal{E}} \rho'$ if:
- for every executions α, π of $\mathcal{A}||\mathcal{E}$ and $\mathcal{B}||\mathcal{E}$ respectively, s. t. $\alpha S_{\mathcal{A}, \mathcal{B}, \mathcal{E}} \pi$,
- $\text{apply}_{\mathcal{A}}(\delta_{\mathcal{A}, \mathcal{D}, \mathcal{E}}(\alpha), \rho)(\alpha) = \text{apply}_{\mathcal{B}}(\delta_{\mathcal{B}, \mathcal{D}, \mathcal{E}}(\rho', \pi))$.

This definition says that each member of each pair of corresponding classes of equivalence deserve the same probability measure.

8.2 sub-classes according to the schedule

Definition 147. Let X be an automaton, let α be an execution of X, and $\rho = \rho'T$ be a schedule of X. We say that α match ρ if $\alpha \in \text{supp}(\text{apply}_X(\delta_{\text{state}(\alpha)}, \rho))$ but $\alpha \notin \text{supp}(\text{apply}_X(\delta_{\text{state}(\rho')}, \rho'))$.
Definition 148. Let α be an execution. Let ρ be a schedule, p be a fixed partition of ρ, $\ell_1, \ell_2, \ell_3, \ell_4, \ell_5 \in \text{ind}(\rho, p)$, we note:

$\alpha(\ell_1, \rho) = \{ \tilde{\alpha} \in \alpha | \tilde{\alpha} \text{ matches } \rho|_{\ell_1} \}$

$\alpha(\ell_2, \rho) = \{ \tilde{\alpha} \in \alpha | \tilde{\alpha} \text{ matches } \ell_2 | \rho|_{\ell_2} \}$

$\alpha(\ell_3, \ell_4, \rho) = \{ \alpha \in \alpha \exists \ell \in [\ell_4, \ell_5], \alpha \text{ matches } \ell_3 | \rho|_{\ell_3} \}$

Lemma 149. Let X be a PSIOA, α be an execution of X, ρ be a schedule of X, p be a fixed partition of ρ. $\{ \alpha_{\ell, \rho} \cap \text{supp}(\text{apply}_X(\delta_{\text{fstate}(\rho)}, \rho)) | \ell^T \in \text{ind}(\rho, p) \}$ is a partition of $\alpha \cap \text{supp}(\text{apply}_X(\delta_{\text{fstate}(\rho)}, \rho))$.

Proof. = empty intersection: Let $\ell, \ell' \in \text{ind}(\rho, p)$. Let $\alpha \in \alpha_{\ell, \rho}$, we show that $\alpha \notin \alpha_{\ell', \rho}$.

By contradiction, we assume the contrary: thus, $\alpha \in \text{supp}(\text{apply}_X(\delta_{\text{fstate}(\rho)}, \rho|_{\ell}))$, $\alpha \in \text{supp}(\text{apply}_X(\delta_{\text{fstate}(\rho)}, \rho|_{\ell'}))$ but $\alpha \notin \text{supp}(\text{apply}_X(\delta_{\text{fstate}(\rho)}, \rho|_{\ell-1}))$ and $\alpha \notin \text{supp}(\text{apply}_X(\delta_{\text{fstate}(\rho)}, \rho|_{\ell'-1}))$.

If $\ell = \ell' + 1$ or $\ell' = \ell + 1$, the contradiction is immediate.

Without lost of generality, we assume $\ell' < \ell + 1$. Since $\alpha \in \text{supp}(\text{apply}_X(\delta_{\text{fstate}(\rho)}, \rho|_{\ell})), \alpha \in \text{supp}(\text{apply}_X(\delta_{\text{fstate}(\rho)}, \rho|_{\ell'}))$, all the tasks in $\ell_{\ell+1} | \rho|_{\ell}$ are not enabled in $\text{Istate}(\alpha)$, but this is in contradiction with the fact that both $\alpha \in \text{supp}(\text{apply}_X(\delta_{\text{fstate}(\rho)}, \rho|_{\ell})))$ and $\alpha \notin \text{supp}(\text{apply}_X(\delta_{\text{fstate}(\rho)}, \rho|_{\ell'-1})))$.

= complete union: Let $\alpha' = \alpha^{\alpha'' \alpha'''} \in \text{supp}(\text{apply}_X(\delta_{\text{fstate}(\rho)}, \rho))$, with $q'' = \text{Istate}(\alpha^{\alpha''})$.

We show it exists $\ell \in \text{ind}(\rho, p)$, so that α' matches $\rho|_{\ell}$. By contradiction, it means α' matches $\rho|_{\ell}$ for every $\ell \in \text{ind}(\rho, p)$, namely α' matches $\rho|_{\ell} = \lambda$ (the empty sequence) and that for every task T in T, T is not enabled in q''. Thus $\text{apply}_X(\delta_{\text{fstate}(\rho)}, \lambda)(\alpha') > 0$, which is in contradiction with $\alpha' \neq \text{fstate}(\alpha)$. If $\alpha' = q^0$ and for every task T in T, T is not enabled in q'', then α' matches $\rho|_{\ell} = 0$.

Lemma 150. Let X be a PSIOA, α be an execution of X, ρ be a schedule of X, p be a fixed partition of ρ.

$\text{apply}_X(\delta_{\text{fstate}(\rho)}, \rho)(\alpha) = \sum_{\ell \in \text{ind}(\rho, p)} \text{apply}_X(\delta_{\text{fstate}(\rho)}, \rho)(\alpha_{\ell, \rho})$

Proof. $\{ \alpha_{\ell, \rho} \cap \text{supp}(\text{apply}_X(\delta_{\text{fstate}(\rho)}, \rho)) | \ell^T \in \text{ind}(\rho, p) \}$ is a partition of $\alpha \cap \text{supp}(\text{apply}_X(\delta_{\text{fstate}(\rho)}, \rho))$. That is the result.

Definition 151 (A-brief-partition). Let A be a PSIOA, X be PCA. Let ρ be a schedule of X. Let $\alpha \in \text{frags}(X)$. Let $p = \{ \tilde{\alpha}^{s_1}, \tilde{\alpha}^{s_2}, ... \tilde{\alpha}^{s_n} \}$ be the A-partition of α A-brief-partition of α is a sequence $\alpha^1, \alpha^2, ..., \alpha^n$. s.t.

$\alpha = \alpha^1 - \alpha^2 - ... - \alpha^n$

$\forall i \in [1, n], \exists (\ell_i, h_i) \in [1, m]^2, \alpha^i = \tilde{\alpha}^{s_{i_1} - ... - s_{i_1}}$

$\forall i \in [1, n - 1], \ell_{i+1} = h_i + 1$

Lemma 152. Let A be a PSIOA, X be PCA. Let ρ be a schedule of X. Let $\alpha^{12} = \alpha^1 - \alpha^2$ a non single state execution of X that matches ρ, where α^{12} is a A-brief-partition of α^{12}. Let $\ell_2 = \text{max}(\text{ind}(\rho, p))$ where p is any partition of ρ.

$\text{apply}_X(\delta_{\text{fstate}(\rho)}, \rho)(\alpha^{12}) = \sum_{\ell < \ell_1 < \ell_2} \text{apply}_X(\rho|_{\ell_1})(\alpha_{\ell_1, \rho}^1) \cdot \text{apply}_X((\ell_1 + 1) | \rho)(\alpha_{\ell_1}^2)$

Proof. $\text{apply}_X(\delta_{\text{fstate}(\rho)}, \rho)(\alpha^{12}) = \sum_{\ell < \ell_1 < \ell_2} \text{apply}_X(\rho|_{\ell_1})(\alpha_{\ell_1}^1 - \alpha_{\ell_1}^2)$
\[
\sum_{\alpha_i \in A} \sum_{\alpha_j \in A} \text{apply}(\rho(\ell_2))(\alpha_1 - \alpha_2) = \\
\sum_{\alpha_i \in A} \sum_{\alpha_j \in A} \text{apply}(\rho(\ell_1, \alpha_i))(\alpha_1) \cdot \text{apply}(\rho(\ell_2, \alpha_j))(\alpha_2) = \\
\sum_{\ell_1 < \ell_2} \sum_{\alpha_i \in A} \sum_{\alpha_j \in A} \text{apply}(\rho(\ell_1))(\alpha_1) \cdot \text{apply}(\rho(\ell_2))(\alpha_2) = \\
\sum_{\ell_1 < \ell_2} \sum_{\alpha_i \in A} \text{apply}(\rho(\ell_1))(\alpha_1) \cdot \sum_{\alpha_j \in A} \text{apply}(\rho(\ell_2))(\alpha_2) = \\
\sum_{\ell_1 < \ell_2} \text{apply}(\rho(\ell_1))(\alpha_1) \cdot \text{apply}(\rho(\ell_2))(\alpha_2) = \\
\sum_{\ell_1 < \ell_2} \text{apply}(\rho(\ell_1))(\alpha_1) \cdot \text{apply}(\rho(\ell_2))(\alpha_2)
\]

\[\blacktriangleright\text{Lemma 153}\ (\text{Total probability law with all the possible cuts})\] Let \(A\) be a PSIOA, \(X\) be PCA, Let \(\rho\) be a schedule of \(X\). Let \(\alpha^{(1,n)} = \alpha^1 - \alpha^2 - \ldots - \alpha^{(n-1)} - \alpha^n\) an execution of \(X\) that matches \(\rho\), where \((\alpha^1, \alpha^2, \ldots, \alpha^n)\) is a \(\mathcal{A}\)-brief-partition of \(\alpha^{(1,n)}\). Let \(\ell_n = \max(\text{ind}(\rho, p))\) where \(p\) is any partition of \(\rho\).

\[
\text{apply}(\delta_{\text{state}}(\alpha^{(1,n)}), \rho((\alpha^{(1,n)}))) = \\
\sum_{\ell_1 < \ell_2 < \ldots < \ell_{n-1} < \ell_n} \Gamma(\alpha^1, \ell^1, \rho)[\Pi_{i \in [2:n-1]} \Gamma'(\alpha^i, \ell^i, \rho)]\Gamma''(\alpha^n, \ell^{n-1}, \rho)
\]

with

\[
\Gamma(\alpha^1, \ell^1, \rho) = \text{apply}(\delta_{\text{state}}(\alpha^1), \rho(\ell^1))(\alpha_1^1), \\
\Gamma'(\alpha^1, \ell^1, \rho, \ell^2) = \text{apply}(\delta_{\text{state}}(\alpha^1), \rho(\ell^1))(\alpha_1^1), \Gamma''(\alpha^1, \ell^2, \rho, \ell^3) = \text{apply}(\delta_{\text{state}}(\alpha^1), \rho(\ell^1))(\alpha_1^1)
\]

\[\text{Proof.}\] By induction on the size of the brief-partition. Basis is true by the previous lemma. We assume the predicate true for \(n - 1\) and we show this implies the predicate is true for integer \(n\).

Let \((\alpha^1, \ldots, \alpha^{n-1}, \alpha^n)\) be a \(\mathcal{A}\)-brief-partition of \(\alpha^{1n}\).

We note \(\alpha^{(1,n)} = \alpha^1 - \alpha^{(2,n)}\). \((\alpha^2, \ldots, \alpha^n)\) is clearly a \(\mathcal{A}\)-brief-partition of \(\alpha^{(2,n)}\) of size \(n - 1\), \((\alpha^1, \alpha^{(2,n)})\) is a \(\mathcal{A}\)-brief-partition of \(\alpha^{1n}\) with size 2 lower or equal than \(n\).

Now \(\text{apply}(\delta_{\text{state}}(\alpha^1), \rho)(\alpha^{(1,n)}) = \\
\sum_{\ell^1 < \ell^n} \text{apply}(\delta_{\text{state}}(\alpha^1), \rho(\ell^1))(\alpha_1^1) \cdot \text{apply}(\delta_{\text{state}}(\alpha^{2n}), (\ell^1 + 1 | \rho))(\alpha^{(2,n)})\)

by induction hypothesis.

We note \(\rho' = \ell^1 + 1 | \rho\), and reuse the induction hypothesis, which gives

\[
\text{apply}(\delta_{\text{state}}(\alpha^{(2,n)}), \rho')(\alpha^{(2,n)}) = \\
\sum_{\ell_2, \ldots, \ell_{n-1}} \Gamma(\alpha^2, \ell^2, \rho'')[\Pi_{i \in [3:n-1]} \Gamma'(\alpha^i, \ell^i, \rho'])\Gamma''(\alpha^n, \ell^{n-1}, \rho')
\]

\[
\sum_{\ell_2, \ldots, \ell_{n-1}} \Gamma'(\alpha^2, \ell^2, \rho)[\Pi_{i \in [3:n-1]} \Gamma'(\alpha^i, \ell^i, \rho)]\Gamma''(\alpha^n, \ell^{n-1}, \rho)
\]
We compose the last two results to obtain
\[
\text{apply} X (\delta_{\text{finite}(\alpha^{(1,n)}), \rho})(\alpha^{(1,n)}) =
\]
\[
\sum_{t_1, t_2, \ldots, t_{n-1}
0 < t_1 < t_2 < \ldots < t_{n-1} < t_n}
\Gamma(\alpha^1, \ell^1, \rho)|\Pi_{i \in [2, n-1]} \Gamma'(\alpha^i, \ell_i^{i-1}, \ell^i, \rho)| \Gamma''(\alpha^n, \ell_n^{n-1}, \rho)
\]
, which is the desired result.

Lemma 154. Let \(A, B\) be PSI0A. Let \(E\) be an environment of both \(A\) and \(B\). Let \(\rho\) and \(\rho'\) be \(AB\)-environment-corresponding schedule with \(p\) the \(A\)-partition of \(\rho\) and \(\rho'\) the \(B\)-partition of \(\rho\) s. t. for every \((k, q) \in \mathbb{N}^2\), for every \(\ell = (2k, q) \in \text{ind}(\rho, p) \cap \text{ind}(\rho', p')\), \((\rho|_c)S^{s}_{(A, B, E)}(\rho'|_c).

Then

for every \(\tilde{\ell} = (2\tilde{k}, \tilde{q}) \in \text{ind}(\rho, p) \cap \text{ind}(\rho', p')\) with \((\tilde{k}, \tilde{q}) \in \mathbb{N}^2\):

\[
\sum_{\ell \in \text{ind}(\rho, p)} \text{apply}_{A|E}(\delta_{\tilde{k}, A, \tilde{q}, E})(p)|_{\ell, \tilde{\ell}} = \sum_{\ell \in \text{ind}(\rho', p')} \text{apply}_{B|E}(\delta_{\tilde{k}, B, \tilde{q}, E})(p)|_{\ell, \tilde{\ell}}
\]

for every \(\ell = (2k, q) \in \text{ind}(\rho, p) \cap \text{ind}(\rho', p')\) with \((k, q) \in \mathbb{N} \times \mathbb{N}^*\), for every \(\ell = (2k, q) \in \text{ind}(\rho, p) \cap \text{ind}(\rho', p')\) with \((k, q) \in \mathbb{N} \times \mathbb{N}^*\) and \(\ell \leq \tilde{\ell}:

\[
\text{apply}_{A|E}(\delta_{\tilde{k}, A, \tilde{q}, E})(p)|_{\ell, \tilde{\ell}} = \text{apply}_{B|E}(\delta_{\tilde{k}, B, \tilde{q}, E})(p)|_{\ell, \tilde{\ell}}
\]

Proof. By induction on \(k\).

We deal with two induction hypothesis for every \(\tilde{\ell}^* = (2\tilde{k}^*, \tilde{q}^*) \in \text{ind}(\rho, p) \cap \text{ind}(\rho', p')\)

with \((\tilde{k}^*, \tilde{q}^*) \in \mathbb{N} \times \mathbb{N}\).

\(IH^1(\tilde{\ell}^*)\) : for every \(\tilde{\ell} = (2\tilde{k}, \tilde{q}) \in \text{ind}(\rho, p) \cap \text{ind}(\rho', p')\) with \((\tilde{k}, \tilde{q}) \in \mathbb{N} \times \mathbb{N}\) and \(\tilde{\ell} \leq \tilde{\ell}^*

\[
\sum_{\ell \in \text{ind}(\rho, p)} \text{apply}_{A|E}(\delta_{\tilde{k}, A, \tilde{q}, E})(p)|_{\ell, \tilde{\ell}} = \sum_{\ell \in \text{ind}(\rho', p')} \text{apply}_{B|E}(\delta_{\tilde{k}, B, \tilde{q}, E})(p)|_{\ell, \tilde{\ell}}
\]

\(IH^2(\tilde{\ell}^*)\) : for every \(\tilde{\ell} = (2\tilde{k}, \tilde{q}) \in \text{ind}(\rho, p) \cap \text{ind}(\rho', p')\) with \((\tilde{k}, \tilde{q}) \in \mathbb{N} \times \mathbb{N}\) \(\forall \ell = (2k, q) \in \text{ind}(\rho, p) \cap \text{ind}(\rho', p')\), s. t. \(\ell \leq \tilde{\ell} \leq \tilde{\ell}^*

\[
\text{apply}_{A|E}(\delta_{\tilde{k}, A, \tilde{q}, E})(p)|_{\ell, \tilde{\ell}} = \text{apply}_{B|E}(\delta_{\tilde{k}, B, \tilde{q}, E})(p)|_{\ell, \tilde{\ell}}
\]

Basic: Let \(\alpha' \in \text{supp}(\text{apply}(\delta_{\tilde{k}, A, \tilde{q}, E}), \lambda)) \cap \alpha\), then \(\{\alpha'\} = \alpha(0, \rho) = \{(\tilde{q}, \tilde{q}E)\}\). Similarly if \(\pi' \in \text{supp}(\text{apply}(\delta_{\tilde{k}, A, \tilde{q}, E}), \lambda)) \cap \pi\), then \(\{\pi'\} = \pi(0, \rho) = \{(\tilde{q}, \tilde{q}E)\}\).

Thus \(\text{apply}_{A|E}(\delta_{\tilde{k}, A, \tilde{q}, E})|_{0} |\rho|_{(0, \rho)} = \text{apply}_{A|E}(\delta_{\tilde{k}, B, \tilde{q}, E})|_{0} |\rho|_{(0, \rho)} = \text{apply}_{B|E}(\delta_{\tilde{k}, B, \tilde{q}, E})|_{0} |\rho'|_{(0, \rho)} = \text{apply}_{B|E}(\delta_{\tilde{k}, A, \tilde{q}, E})|_{0} |\rho'|_{(0, \rho)}\)

Hence \(\text{apply}_{A|E}(\delta_{\tilde{k}, A, \tilde{q}, E})|_{0} |\rho|_{(0, \rho)} = \text{apply}_{B|E}(\delta_{\tilde{k}, B, \tilde{q}, E})|_{0} |\rho'|_{(0, \rho)}\), which means that \(IH^1(0)\) and \(IH^2(0)\) are true.

Induction:

Let \(\tilde{\ell} = (2\tilde{k}, \tilde{q}), \tilde{\ell}' = (2\tilde{k}', \tilde{q}') \in \text{ind}(\rho, p) \cap \text{ind}(\rho', p')\) with \(\tilde{k}, \tilde{q}, \tilde{k}', \tilde{q}' \in \mathbb{N}\) and \(\tilde{\ell} < \tilde{\ell}'\).

We note that
\[
\sum_{\ell \in \text{ind}(\rho, p)} \text{apply}_{A|E}(\delta_{\tilde{k}, A, \tilde{q}, E})(p)|_{\ell, \tilde{\ell}} =
\]
\[
\text{apply}_{A|E}(\delta_{\tilde{k}, A, \tilde{q}, E})(p)|_{\tilde{\ell}, \tilde{\ell}'} - \sum_{\ell \in \text{ind}(\rho, p)} \text{apply}_{A|E}(\delta_{\tilde{k}, A, \tilde{q}, E})(p)|_{\ell, \tilde{\ell}}
\]
and
\[
\sum_{t \in \text{ind}(\rho', p')} \text{apply}_{B}^{\text{\ell}}(\delta_{(\tilde{q}B, \tilde{q}E)} \cdot \rho_{I} | p_{I}) (\xi, \rho'_{I}) = \\
\text{apply}_{B}^{\text{\ell}}(\delta_{(\tilde{q}B, \tilde{q}E)} \cdot \rho'_{I}) (\xi) - \sum_{t \in \text{ind}(\rho, p)} \text{apply}_{B}^{\text{\ell}}(\delta_{(\tilde{q}B, \tilde{q}E)} \cdot \rho'_{I}) (\xi, \rho'_{I}) \quad (**)
\]

We assume \(IH^{1}(\ell) \) and \(IH^{2}(\ell) \) to be true for every \(\ell = (2k, q) \) with \(k, q \in \mathbb{N} \), then \(\ell \leq \bar{\ell} \).

We need to consider two cases:

Case 1: \(\bar{\ell} + 1 = (2k, q + 1) \); Case 2: \(\bar{\ell} + 1 \neq (2k, q + 1) \)

Case 1: We evaluate (*) and (**) with \(\bar{\ell} = \bar{\ell} + 1 \)

\[
\text{apply}_{A}^{\text{\ell}}(\delta_{(\tilde{q}A, \tilde{q}E)} \cdot \rho_{I} | p_{I}) (\xi_{\ell+1}, \rho_{I+1}) = \text{apply}_{A}^{\text{\ell}}(\delta_{(\tilde{q}A, \tilde{q}E)} \cdot \rho_{I}) (\xi_{\ell}, \rho_{I})
\]

and similarly

\[
\text{apply}_{B}^{\text{\ell}}(\delta_{(\tilde{q}B, \tilde{q}E)} \cdot \rho'_{I}) (\xi) = \text{apply}_{B}^{\text{\ell}}(\delta_{(\tilde{q}B, \tilde{q}E)} \cdot \rho'_{I}) (\xi)
\]

Thus, we apply \(IH^{1}(\bar{\ell}) \) and the equality \(\text{apply}_{A}^{\ell}(\delta_{(\tilde{q}A, \tilde{q}E)} \cdot \rho_{I}) (\alpha) = \text{apply}_{B}^{\ell}(\delta_{(\tilde{q}B, \tilde{q}E)} \cdot \rho'_{I}) (\xi) \)

by assumption to obtain both \(IH^{1}(\bar{\ell}) \) and \(IH^{2}(\bar{\ell}) \).

By induction, we obtain the desired result:

\[
\sum_{t \in \text{ind}(\rho, p) \cap \text{ind}(\rho', p')} \text{apply}_{A}^{\text{\ell}}(\delta_{(\tilde{q}A, \tilde{q}E)} \cdot \rho_{I}) (\xi_{\ell}, \rho_{I}) = \sum_{t \in \text{ind}(\rho', p')} \text{apply}_{B}^{\text{\ell}}(\delta_{(\tilde{q}B, \tilde{q}E)} \cdot \rho'_{I}) (\xi, \rho'_{I})
\]

for every \(\ell = (2k, q) \in \text{ind}(\rho, p) \cap \text{ind}(\rho', p') \) with \((k, q) \in \mathbb{N}^{2} \), for every \(\ell = (2k, q) \in \text{ind}(\rho, p) \cap \text{ind}(\rho', p') \) with \((k, q, \tilde{k}, \tilde{q}) \in \mathbb{N} \times \mathbb{N}^{*} \), for every \(\ell = (2k, q) \in \text{ind}(\rho, p) \cap \text{ind}(\rho', p') \) with \((k, q) \in \mathbb{N} \times \mathbb{N}^{*} \) and \(\ell \leq \bar{\ell} \):

\[
\text{apply}_{A}^{\text{\ell}}(\delta_{(\tilde{q}A, \tilde{q}E)} \cdot \rho_{I}) (\xi_{\ell}, \rho_{I}) = \text{apply}_{B}^{\text{\ell}}(\delta_{(\tilde{q}B, \tilde{q}E)} \cdot \rho'_{I}) (\xi, \rho'_{I})
\]

\[\blacktriangleleft\]

Lemma 155 (subdivision in sub-classes of probability distribution correspondence). Let \(A \), \(B \) be PSIOA. Let \(\mathcal{E} \) be an environment of both \(A \) and \(B \). Let \(\rho \) and \(\rho' \) be AB-environment-corresponding schedule with \(p \) the A-partition of \(\rho \) and \(\rho' \) the B-partition of \(\rho' \) s. t. for every \((k, q) \in \mathbb{N}^{2} \), for every \(\ell = (2k, q) \in \text{ind}(\rho, p) \cap \text{ind}(\rho', p') \), \((\ell | \rho_{I}) S^{A}_{\mathcal{A}, \mathcal{E}} (\ell | \rho'_{I}) \).

Then

\[
\text{apply}_{A}^{\text{\ell}}(\delta_{(\tilde{q}A, \tilde{q}E)} \cdot \rho_{I}) (\xi_{\ell}, \rho_{I}) = \text{apply}_{B}^{\text{\ell}}(\delta_{(\tilde{q}B, \tilde{q}E)} \cdot \rho'_{I}) (\xi, \rho'_{I})
\]

Proof. We apply the previous lemma with \(\tilde{\rho} = \ell | \rho \) and \(\tilde{\rho}' = \ell | \rho' \). \[\blacktriangleleft\]
8.3 Implementation

Definition 156 (Strong implementation). Let \(\mathcal{A}, \mathcal{B} \) be PSIOA. We say that \(\mathcal{A} \) strongly implements \(\mathcal{B} \) iff for every environment \(\mathcal{E} \) of both \(\mathcal{A} \) and \(\mathcal{B} \), for every schedule \(\rho \), it exists an \(\mathcal{AB} \)-environment-corresponding schedule \(\rho' \), s. t. for every \(\ell = (2k, q) \):
\[
(\rho|\ell)S^\rho_{\mathcal{A}\mathcal{B}\mathcal{E}}(\rho'|\ell).
\]

The implementation says that for each schedule dedicated to \(\mathcal{A}\mathcal{E} \) there is a counterpart dedicated to \(\mathcal{B}\mathcal{E} \) so that each corresponding equivalence classes have the same probability measure. Hence there is no statistical experimentation for an environment to distinguish \(\mathcal{A} \) from \(\mathcal{B} \). Also the definition requires that the relationship stays true for every prefix cut at an environment’s task at an arbitrary (even) index.

Definition 157 (Tenacious implementation). Let \(\mathcal{A}, \mathcal{B} \) be PSIOA. We say that \(\mathcal{A} \) tenaciously implements \(\mathcal{B} \), noted \(\mathcal{A} \lesssim \mathcal{B} \), iff for every schedule \(\rho \), it exists a \(\mathcal{AB} \)-environment-corresponding schedule \(\rho' \), s. t. for every environment \(\mathcal{E} \) of both \(\mathcal{A} \) and \(\mathcal{B} \), for every \(\ell = (2k, q) \),
\[
\ell' = (2k', q') \in \text{ind}(\rho, p) \cap \text{ind}(\rho', p'), (\ell|\rho|\ell')S^\rho_{\mathcal{A}\mathcal{B}\mathcal{E}}(\ell|\rho'|\ell')
\]

The tenacious implementation is a variant of strong implementation where the relationship stays true for every suffix cut at an environment’s task at an arbitrary index. Moreover, the choice of the corresponding schedule does not depend of the environment. Hence, to stay indistinguishable by the environment \(\mathcal{A} \) and \(\mathcal{B} \) do not need to change their 'strategy', the same pair of corresponding schedule is enough to prevent the distinction of \(\mathcal{A} \) and \(\mathcal{B} \) by any environment with any 'strategy'.

8.4 Implementation Monotonicity

Lemma 158 (Corresponding-environment relation is preserved in the upper level). Let \(\mathcal{A}, \mathcal{B} \) be PSIOA. Let \(X_A, X_B \) be PCA corresponding w.r.t. \(\mathcal{A}, \mathcal{B} \). Let \(\rho, \rho' \) be \(\mathcal{AB} \)-environment-corresponding schedules. \(\rho, \rho' \) are also \(X_A X_B \)-environment-corresponding schedules.

Proof. We note \(Y_A = X_A \setminus \mathcal{A} \) and \(Y_B = X_B \setminus \mathcal{B} \). It is sufficient to partition each sub-schedule \(\rho^\ell_{\mathcal{E}} \) into tasks with id in \(UA(Y_A) = UB(Y_B) \) and tasks with id not in \(UA(Y_A) = UB(Y_B) \). If \(\rho^\ell_{\mathcal{E}} \) begins (resp. ends) by a sequence of tasks with ids in \(UA(Y_A) \), we can combine them with tasks of \(\rho^\ell_{\mathcal{E}} \) (resp. \(\rho^\ell_{\mathcal{E}} \)) to obtain a sequence of tasks in \(UA(X_A) \). The other tasks are not in \(UA(X_A) \). If \(\rho^\ell_{\mathcal{E}} \) begins (resp. ends) by a sequence of tasks with ids in \(UA(Y_B) \), we can combine them with tasks of \(\rho^\ell_{\mathcal{E}} \) (resp. \(\rho^\ell_{\mathcal{E}} \)) to obtain a sequence of tasks in \(UA(X_B) \). The other tasks are not in \(UA(X_B) \).

Lemma 159 (\(S^n \) monotonicity wrt creation and destruction). Let \(\mathcal{A}, \mathcal{B} \) be PSIOA. Let \(X_A, X_B \) be PCA corresponding w.r.t. \(\mathcal{A}, \mathcal{B} \). Let \(\rho, \rho' \) be \(\mathcal{AB} \)-environment-corresponding schedules s. t. for every environment \(\mathcal{E}' \) of both \(\mathcal{A} \) and \(\mathcal{B} \), for every \(\ell = (2k, q) \), \(\ell' = (2k', q') \in \text{ind}(\rho, p) \cap \text{ind}(\rho', p'), (\ell|\rho|\ell')S^\rho_{\mathcal{A}\mathcal{B}\mathcal{E}'}(\ell|\rho'|\ell').
\]

Then for every environment \(\mathcal{E} \) of both \(X_A \) and \(X_B \), for every \(\ell = (2k, q) \), \(\ell' = (2k', q') \in \text{ind}(\rho, p) \cap \text{ind}(\rho', p'), (\ell|\rho|\ell')S^{\rho}_{X_A X_B \mathcal{E}}(\ell|\rho'|\ell').
\]

Proof. By induction.

We assume this is true up to \(\ell^+ \leq 2k \) and we show this is also true for \(2k + 1 \) and \(2k + 2 \).
We have two cases: The first case is \(\mathcal{A} \) never created, where the results is true because of homorphism without creation. Thus we investigate only the second case \(\mathcal{A} \) is created at least once:

We note \(\ell_4 = (2k_3, q_3) = \max(\text{ind}(\rho, p)) = \max(\text{ind}(\rho', p')) \) (potentially \(q_4 = 0 \)), \(\alpha = \alpha^{13} \cdot \alpha^{4} \) (resp. \(\pi = \pi^{13} \cdot \pi^{4} \)) where \(\alpha^{13} \) (resp \(\pi^{13} \)) ends on \(\mathcal{A} \) (resp. \(\mathcal{B} \)) creation.

Because of lemma 153, we have both

\[
\sum_{\ell_3 \in \text{ind}(\rho, p)} \text{apply}_{X_{\mathcal{A}}}[\mathcal{E}(\delta_{\text{state}(\pi)}, \rho)(\omega)] = 0
\]

Indeed, we note

\[
\text{apply}_{X_{\mathcal{A}}}[\mathcal{E}(\delta_{\text{state}(\pi)}, \rho')(\omega)] = 0
\]

Since \(\alpha^{13} \) (resp \(\pi^{13} \)) ends on \(\mathcal{A} \) (resp \(\mathcal{B} \)) creation, \(\alpha^{13} \cdot \omega_{3, p} \neq 0 \) only if \(\ell_3 = (2k_3, q_3) \) with \((k_3, q_3) \in \mathbb{N} \times \mathbb{N}^{*} \).

We already have for every \(\ell_3 = (2k_3, q_3) \),

\[
\text{apply}_{X_{\mathcal{A}}}[\mathcal{E}(\delta_{\text{state}(\pi)}, \rho)(\omega)] = 0
\]

and

\[
\text{apply}_{X_{\mathcal{A}}}[\mathcal{E}(\delta_{\text{state}(\pi)}, \rho')(\omega)] = 0
\]

for every \(\ell_3 = (2k_3, q_3) \in \text{ind}(\rho, p) \) by the theorem 139 of preservation of probabilistic distribution without creation.

Indeed, we note \(Y_{13}^{\mathcal{A}} \) (resp \(Y_{13}^{\mathcal{B}} \)) the \(\mathcal{A} \)-twin (resp \(\mathcal{B} \)-twin) PCA of \(Y_{\mathcal{A}} = X_{\mathcal{A}} \setminus \mathcal{A} \) (resp \(Y_{\mathcal{B}} = X_{\mathcal{B}} \setminus \mathcal{B} \)) where the initial state is \(\mu_{13}^{A}(\text{state}(\alpha^{13}) \setminus X_{\mathcal{A}}) \) (resp \(\mu_{13}^{B}(\text{state}(\pi^{13}) \setminus X_{\mathcal{B}}) \)), we note \(\mathcal{E}_{\mathcal{A}}^{13} \) the PCA equal to \(\mathcal{E} \) except that its initial state is \((\text{state}(\pi^{13}) \setminus \mathcal{E}) \) and we note

\[
\mathcal{E}_{\mathcal{A}}^{13} = Y_{13}^{\mathcal{A}}[\text{psio}(\mathcal{E}^{13})], \mathcal{E}_{\mathcal{B}}^{13} = Y_{13}^{\mathcal{B}}[\text{psio}(\mathcal{E}^{13})] \text{ and } \mathcal{E}^{13} = \mathcal{E}_{\mathcal{A}}^{13} \text{ or } \mathcal{E}^{13} = \mathcal{E}_{\mathcal{B}}^{13} \text{ arbitrarily.}
\]

The premises of the lemma give

\[
\text{apply}_{X_{\mathcal{A}}}[\mathcal{E}^{13}](\delta_{\text{state}(\gamma_{13}^{A}(\alpha^{13})), (\ell_3 + 1|\rho)}(\gamma_{13}^{A}(\alpha^{13})) = \text{apply}_{X_{\mathcal{B}}}[\mathcal{E}^{13}](\delta_{\text{state}(\gamma_{13}^{B}(\alpha^{13})), (\ell_3 + 1|\rho)}(\gamma_{13}^{B}(\alpha^{13}))
\]

for every \(\ell_3 = (2k_3, q_3) \in \text{ind}(\rho, p) \). And the theorem 139 of preservation of probabilistic distribution without creation gives for every \(\ell_3 = (2k_3, q_3) \in \text{ind}(\rho, p) \):

\[
\text{apply}_{X_{\mathcal{A}}}[\mathcal{E}^{13}](\delta_{\text{state}(\pi), (\ell_3 + 1|\rho)}(\omega)) = \text{apply}_{X_{\mathcal{A}}}[\mathcal{E}^{13}](\delta_{\text{state}(\pi), (\ell_3 + 1|\rho)}(\omega))
\]

for every \(\ell_3 = (2k_3, q_3) \in \text{ind}(\rho, p) \).

Then we consider several cases:

Case 1: \(\mathcal{A} \) (resp \(\mathcal{B} \)) not destroyed (originally absent) in \(\alpha^{13} \) (resp \(\pi^{13} \))

In this case \(\alpha^{13} = \{\alpha^{13}\} \) and \(\pi^{13} = \{\pi^{13}\} \) with \(\alpha^{13} \simeq \pi^{13} \). Since \(\mathcal{A} \) and \(\mathcal{B} \) are absent, all the tasks of odd index are ignored, hence

\[
\text{apply}_{X_{\mathcal{A}}}[\mathcal{E}(\delta_{\text{state}(\pi), (\ell_3 + 1|\rho)}(\omega)) = \text{apply}_{X_{\mathcal{B}}}[\mathcal{E}(\delta_{\text{state}(\pi), (\ell_3 + 1|\rho)}(\omega))
\]

and

\[
\text{apply}_{X_{\mathcal{A}}}[\mathcal{E}(\delta_{\text{state}(\pi), (\ell_3 + 1|\rho)}(\omega)) = \text{apply}_{X_{\mathcal{A}}}[\mathcal{E}(\delta_{\text{state}(\pi), (\ell_3 + 1|\rho)}(\omega))
\]

with

\[
\rho'' = \rho_{13}^{\mathcal{A}} \rho_{13}^{\mathcal{B}} \cdots \rho_{21}^{\mathcal{A}} \rho_{21}^{\mathcal{B}} \text{ card}(\mathcal{B}/2).
\]

Since \(\alpha^{13} \simeq \pi^{13} \),

\[
\text{apply}_{X_{\mathcal{A}}}[\mathcal{E}(\delta_{\text{state}(\pi), (\ell_3 + 1|\rho)}(\omega)) = \text{apply}_{X_{\mathcal{B}}}[\mathcal{E}(\delta_{\text{state}(\pi), (\ell_3 + 1|\rho)}(\omega))
\]

for every \(\ell_3 = (2k_3, q_3) \in \text{ind}(\rho, p) \). Moreover it exists at most one \(\ell_3 = (2k_3, q_3) \) s. t.

\[
\text{apply}_{X_{\mathcal{A}}}[\mathcal{E}(\delta_{\text{state}(\pi), (\ell_3 + 1|\rho)}(\omega)) = 0
\]

Hence either

\[
\text{apply}_{X_{\mathcal{A}}}[\mathcal{E}(\delta_{\text{state}(\pi), (\ell_3 + 1|\rho)}(\omega)) = 0
\]

and

\[
\text{apply}_{X_{\mathcal{A}}}[\mathcal{E}(\delta_{\text{state}(\pi), (\ell_3 + 1|\rho)}(\omega)) = 0
\]

In both cases

\[
\text{apply}_{X_{\mathcal{A}}}[\mathcal{E}(\delta_{\text{state}(\pi), (\ell_3 + 1|\rho)}(\omega)) = 0
\]

which terminates.
Case 2: \mathcal{A} (resp. \mathcal{B}) destroyed.

We note $\alpha^3 = \alpha^{2+}$ and $\alpha^3 = \pi^2 \sim \pi^3$ where α^2 (resp. π^2) ends on \mathcal{A} (resp. \mathcal{B}) destruction.

Here again, since α^3 (resp. π^3) ends on \mathcal{A} (resp. \mathcal{B}) creation, if $\alpha^3_{\ell_3, p} \neq \emptyset$ (resp. $\pi^3_{\ell_3, p'} \neq \emptyset$), then $\ell_3 = (k_3, q_3)$ with $(k_3, q_3) \in \mathbb{N} \times \mathbb{N}^*$. Let $\ell_3 = (2k_3, q_3)$ with $(k_3, q_3) \in \mathbb{N} \times \mathbb{N}^*$. Because of lemma 153, we have

$$\text{apply}_{\mathcal{X}_A\mid \mathcal{E}}(\delta_{\mathcal{F}_{\text{state}}(\alpha)}, \rho_{\ell_3})(\alpha^3_{\ell_3, p}) = \sum_{\ell_2 \leq \ell_3} \text{apply}_{\mathcal{X}_A\mid \mathcal{E}}(\delta_{\mathcal{F}_{\text{state}}(\alpha)}, \rho_{\ell_2})(\alpha^3_{\ell_2, p}) \cdot \text{apply}_{\mathcal{X}_A\mid \mathcal{E}}(\delta_{\mathcal{F}_{\text{state}}(\alpha)}, (\ell_2 + 1)\rho_{\ell_3})(\alpha^3_{\ell_2 + 1, \ell_3, p})$$

and

$$\text{apply}_{\mathcal{X}_A\mid \mathcal{E}}(\delta_{\mathcal{F}_{\text{state}}(\pi)}, \rho'_{\ell_3})(\pi^3_{\ell_3, p'}) = \sum_{\ell_2 \leq \ell_3} \text{apply}_{\mathcal{X}_A\mid \mathcal{E}}(\delta_{\mathcal{F}_{\text{state}}(\pi)}, \rho'_{\ell_2})(\pi^3_{\ell_2, p'}) \cdot \text{apply}_{\mathcal{X}_A\mid \mathcal{E}}(\delta_{\mathcal{F}_{\text{state}}(\pi)}, (\ell_2 + 1)\rho'_{\ell_3})(\pi^3_{\ell_2 + 1, \ell_3, p'})$$

Since α^2 (resp. π^2) ends on \mathcal{A} (resp. \mathcal{B}) destruction, all task of \mathcal{A} (resp. \mathcal{B}) are ignored after the destruction. Thus, if $\alpha^3_{\ell_3, p} \neq \emptyset$ (resp. $\pi^3_{\ell_3, p'} \neq \emptyset$), then $\ell_2 = (2k_2 + 1, q_2)$ with $(k_2, q_2) \in \mathbb{N} \times \mathbb{N}^*$.

For the same reason, for every $\ell_2 = (2k_2 + 1, q_2) \in \mathbb{N} \times \mathbb{N}^*$, $\ell_2^+ = (2k_2 + 2, 0)$, we have

$$= (\alpha^3_{\ell_2, \ell_3, p}) = (\alpha^3_{\ell_2, \ell_3, p})^+,$$

$$= (\pi^3_{\ell_2, \ell_3, p}) = (\pi^3_{\ell_2, \ell_3, p})^+.$$

Thus we obtain

$$\text{apply}_{\mathcal{X}_A\mid \mathcal{E}}(\delta_{\mathcal{F}_{\text{state}}(\alpha)}, \rho_{\ell_3})(\alpha^3_{\ell_3, p}) = \sum_{k_2} \sum_{\ell_2 = (2k_2 + 1, q_2) \in \text{ind}(\rho, p)} \text{apply}_{\mathcal{X}_A\mid \mathcal{E}}(\delta_{\mathcal{F}_{\text{state}}(\alpha)}, \rho_{\ell_2})(\alpha^3_{\ell_2, p}) \cdot \text{apply}_{\mathcal{X}_A\mid \mathcal{E}}(\delta_{\mathcal{F}_{\text{state}}(\alpha)}, (\ell_2 + 1)\rho_{\ell_3})(\alpha^3_{\ell_2 + 1, \ell_3, p})$$

In this case $\alpha^3 = \{\alpha^3\}$, $\pi^3 = \{\pi^3\}$ and $\alpha^3 \sim \pi^3$. Since \mathcal{A} and \mathcal{B} are absent in α^3 and π^3 respectively (excepting at the last state) all the tasks of odd index are ignored. Thus, for each $(2k_2 + 2, 1) \prec (2k_3, q_3)$,

$$\text{apply}_{\mathcal{X}_A\mid \mathcal{E}}(\delta_{\mathcal{F}_{\text{state}}(\alpha)}, (2k_2 + 2, 1)\rho_{\ell_3})(\alpha^3_{(2k_2 + 2, 1), \ell_3}) = \text{apply}_{\mathcal{X}_A\mid \mathcal{E}}(\delta_{\mathcal{F}_{\text{state}}(\pi)}, (2k_2 + 2, 1)\rho'_{\ell_3})(\pi^3_{(2k_2 + 2, 1), \ell_3, p'})$$

So we still need to show that for every k_2 s. t. $(2k_2 + 2, 1) \prec (2k_3, q_3)$,

$$\sum_{\ell_2 \leq \ell_2^+} \text{apply}_{\mathcal{X}_A\mid \mathcal{E}}(\delta_{\mathcal{F}_{\text{state}}(\alpha)}, \rho_{\ell_2})(\alpha^3_{\ell_2, p}) = \sum_{\ell_2 \leq \ell_2^+} \text{apply}_{\mathcal{X}_A\mid \mathcal{E}}(\delta_{\mathcal{F}_{\text{state}}(\pi)}, \rho'_{\ell_2})(\pi^3_{\ell_2, p'})$$

(1)

Case 2a: \mathcal{A} (resp. \mathcal{B}) created only once (in $\text{Istate}(\alpha^3)$ and in $\text{Istate}(\pi^3)$) (originally
Thus induction and the proof for case 2a.

To obtain for every $\ell_2 = (2k_2, q_2) \in \text{ind}(p, p)$ with no creation of A and B in α^{12} and π^{12} respectively. Thus we can apply the theorem 139 of preservation of probabilistic distribution to obtain $\text{apply}_{X_A}(\varepsilon(\delta_{\text{state}(\alpha)}), \rho|_{\ell_2})(\tilde{A}_{(\ell_2, p, p)}) = \text{apply}_{X_A}(\varepsilon(\delta_{\text{state}(\pi)}), \rho'|_{\ell_2})(\tilde{A}_{(\ell_2, p', p')})$ for every $\ell_2 = (2k_2, q_2) \in \text{ind}(p, p)$, which allows to verify the equation 1, which terminates the induction and the proof for case 2a.

Case 2b: A (resp. B) created twice. We note $\alpha^{12} = \alpha^{1} - \alpha^{2}$ (resp. $\pi^{12} = \pi^{1} - \pi^{2}$) where α^{1} (resp. π^{1}) ends on A (resp. B) creation. For every k_2, we note $\ell_2(k_2) = (2k_2 + 1, 1)$ and $\ell_2(k_2) = (2k_2 + 2, 0)$. We fix k_2. Let ℓ_2, s. t. $\ell_2(k_2) \preceq \ell_2 \preceq \ell_2(k_2)$.

Because of lemma 153, we have:

$$\text{apply}_{X_A}(\varepsilon(\delta_{\text{state}(\alpha)}), \rho|_{\ell_2})(\tilde{A}_{(\ell_2, p, p)}) =$$

$$\sum_{\ell_2} \text{apply}_{X_A}(\varepsilon(\delta_{\text{state}(\alpha)}), \rho|_{\ell_2})(\tilde{A}_{(\ell_2, p, p)})$$

and

$$\text{apply}_{X_B}(\varepsilon(\delta_{\text{state}(\pi)}), \rho'|_{\ell_2})(\tilde{A}_{(\ell_2, p', p')}) =$$

$$\sum_{\ell_2} \text{apply}_{X_B}(\varepsilon(\delta_{\text{state}(\pi)}), \rho'|_{\ell_2})(\tilde{A}_{(\ell_2, p', p')})$$

Hence,

$$\text{apply}_{X_A}(\varepsilon(\delta_{\text{state}(\alpha)}), \rho|_{\ell_2})(\tilde{A}_{(\ell_2, p, p)}) =$$

$$\sum_{\ell_2} \text{apply}_{X_A}(\varepsilon(\delta_{\text{state}(\alpha)}), \rho|_{\ell_2})(\tilde{A}_{(\ell_2, p, p)})$$

Thus $\text{apply}_{X_A}(\varepsilon(\delta_{\text{state}(\alpha)}), \rho|_{\ell_1})(\tilde{A}_{(\ell_1, p, p)}) \neq 0$ and $\ell_1 \prec \ell_2$ implies $\ell_1 \prec \ell_2$ and $\text{apply}(\delta_{\text{state}(\pi)}), \rho'|_{\ell_1})(\tilde{A}_{(\ell_1, p', p')}) \neq 0$ and $\ell_1 \prec \ell_2$ implies $\ell_1 \prec \ell_2$.

Thus,

$$\text{apply}_{X_A}(\varepsilon(\delta_{\text{state}(\alpha)}), \rho|_{\ell_2})(\tilde{A}_{(\ell_2, p, p)}) =$$

$$\sum_{\ell_2} \text{apply}_{X_A}(\varepsilon(\delta_{\text{state}(\alpha)}), \rho|_{\ell_2})(\tilde{A}_{(\ell_2, p, p)})$$

which gives:
which ends the induction and the proof.

Moreover, since q applies μ^2, we can show that:

For every $\ell_1 < (2k_2 + 1, 1) < (2k_2 + 2, 0) < (2k_3, q_3) < (2k_4, q_4).

So we need to show that for every $\ell_1 < \ell_2$

$$
\sum_{\ell_2 \in \text{ind}(\rho, \rho')} \text{apply}_{\mathcal{X}_A} |E(\delta_{\text{state}(\rho)}, (\ell_1, \ell_2))\rangle \langle \alpha^2_{\ell_1, \ell_2, \rho, \rho'} |
= \sum_{\ell_2 \in \text{ind}(\rho', \rho')} \text{apply}_{\mathcal{X}_A} |E(\delta_{\text{state}(\rho)}, (\ell_1, \ell_2))\rangle \langle \alpha^2_{\ell_1, \ell_2, \rho, \rho'} |
\rho
= \sum_{\ell_2 \in \text{ind}(\rho', \rho')} \text{apply}_{\mathcal{X}_A} |E(\delta_{\text{state}(\rho)}, ((\ell_1 + 1)\rho|\ell_2))\rangle \langle \alpha^2_{\ell_1 + 1, \ell_2, \rho, \rho'} |
\rho
= \sum_{\ell_2 \in \text{ind}(\rho', \rho')} \text{apply}_{\mathcal{X}_A} |E(\delta_{\text{state}(\rho)}, ((\ell_1 + 1)\rho|\ell_2 - 1))\rangle \langle \alpha^2_{\ell_1 + 1, \ell_2, \rho, \rho'} |
\rho
(2)

We note $Y_A = X_A \setminus A$ and $Y_B = X_B \setminus B$. We note Y_A' (resp. Y_B') the \mathcal{A}-twin (resp. \mathcal{B}-twin) of Y_A (resp. Y_B) with $\mu^2_A(lstate(\alpha^2) \cup X_A)$ (resp. $\mu^2_B(lstate(\pi^2) \cup X_B)$) as initial state. We note E' the PCA equal to E excepting that its initial state is $lstate(\alpha^2) \cup E$.

We note $E'' = Y_A'\cup psi\sigma(E')$, $E''' = Y_B'\cup psi\sigma(E')$ and $E'''' = E_A''$ or $E'''' = E_B''$ arbitrarily.

Since $\ell_1 = (2k_1, q_1)$, $\ell_2 - 1 = (2k_2, 1, 0)$, $\ell_2 = (2k_2 + 1, 0)$, we have for every E'''',

$$
\text{apply}_{\mathcal{A}}|E''(\delta_{\text{state}(\gamma_\mu(\alpha^2))}, ((\ell_1 + 1)\rho|\ell_2))^2\rangle \langle \gamma_\mu(\alpha^2) | = \text{apply}_{\mathcal{B}}|E''(\delta_{\text{state}(\gamma_\mu(\alpha^2))}, ((\ell_1 + 1)\rho|\ell_2 - 1)\rangle \langle \gamma_\mu(\alpha^2) |
\rho
$$

and $\text{apply}_{\mathcal{A}}|E''(\delta_{\text{state}(\gamma_\mu(\alpha^2))}, ((\ell_1 + 1)\rho|\ell_2 - 1))\rangle \langle \gamma_\mu(\alpha^2) | = \text{apply}_{\mathcal{B}}|E''(\delta_{\text{state}(\gamma_\mu(\alpha^2))}, ((\ell_1 + 1)\rho|\ell_2 - 1)\rangle \langle \gamma_\mu(\alpha^2) |
\rho
$,

Moreover, since α^2 (resp. π^2) does not create A (resp. B) we can apply the theorem 139 of preservation of probabilistic distribution without creation to show 2.

Hence $\text{apply}_{\mathcal{A}}|E''(\delta_{\text{state}(\alpha)}, ((\ell_1 + 1)\rho|\ell_2))\rangle \langle \alpha | = \text{apply}_{\mathcal{B}}|E''(\delta_{\text{state}(\alpha)}, ((\ell_1 + 1)\rho|\ell_2 - 1))\rangle \langle \alpha |
\rho
$.

This implies that $\text{apply}_{\mathcal{A}}|E''(\delta_{\text{state}(\alpha)}, \rho)\rangle \langle \alpha | = \text{apply}_{\mathcal{B}}|E''(\delta_{\text{state}(\alpha)}, \rho)\rangle \langle \alpha |$ in very case, which ends the induction and the proof.

Theorem 160 (Implementation monotonicity wrt creation/destruction). Let A, B be PSIOA.

Let X_A, X_B be PCA corresponding w.r.t. A, B. ▶
If A tenaciously implements B ($A \leq_{ten} B$) then X_A tenaciously implements X_B ($X_A \leq_{ten} X_B$).

Proof. Let ρ be a schedule, Since $A \leq_{ten} B$ it exists a schedule ρ' AB-environment-corresponding with ρ s. t. for every E' environment of both A and B, for every $\ell = (2k, q)$, $\ell' = (2k', q') \in \text{ind}(\rho, p) \cap \text{ind}(\rho', p')$, $(i|\rho|e)S^s_{(A,B,E)}(i|\rho'|e)$.

Because of previous lemma 159 for every environment E of both X_A and X_B, for every $\ell = (2k, q)$, $\ell' = (2k', q') \in \text{ind}(\rho, p) \cap \text{ind}(\rho', p')$, $(\ell|\rho|e)S^s_{(X_A,X_B,E)}(\ell|\rho'|e)$, where p is the A-partition of ρ and p' is the B-partition of ρ'.

Moreover ρ and ρ' are also $X_A X_B$-environment-corresponding because of lemma 158. Since the relation (*) is true for every $\ell = (2k, q)$, $\ell' = (2k', q') \in \text{ind}(\rho, p) \cap \text{ind}(\rho', p')$, it is a fortiori true for every $\ell = (2k, q)$, $\ell' = (2k', q') \in \text{ind}(\rho, p) \cap \text{ind}(\rho', p')$ where \tilde{p} is the X_A-partition of ρ and \tilde{p}' is the X_B-partition of ρ'.

Hence for every schedule ρ it exists a schedule ρ' $X_A X_B$-environment-corresponding with ρ s. t. for every E environment of both X_A and X_B, for every $\ell = (2k, q)$, $\ell' = (2k', q') \in \text{ind}(\rho, \tilde{p}) \cap \text{ind}(\rho', \tilde{p}')$, $(\ell|\rho|e)S^s_{(X_A,X_B,E)}(\ell|\rho'|e)$ where \tilde{p} is the X_A-partition of ρ and \tilde{p}' is the X_B-partition of ρ'.

This ends the proof.

9 Conclusion

We formalised dynamic probabilistic setting. We exhibited the necessary and sufficient conditions to obtain implementation monotonicity w. r. t. Automata creation/destruction.

References

Figure 13 Projection on PCA
\[\forall \bar{q} \in \mathbb{Q}, \text{config}(\tilde{A}^m)(\bar{q}) = (A, (A, \rho_{m}(\bar{q}))) \]
\[\forall \bar{q} \in \mathbb{Q}, \forall act, \text{created}(\tilde{A}^m)(\bar{q})(act) = 0 \]
\[\forall \bar{q} \in \mathbb{Q}, \text{hidden - action}(\tilde{A}^m)(\bar{q}) = 0 \]
\[pos\text{ion}(\tilde{A}^m) = \rho_{m}(A) \]

Figure 14 Simpleton wrapper
Figure 15 Reconstruction of a PCA

Figure 16 \prec_{AB} corresponding-configuration
Figure 17: Creation substitutivity for PCA. Each blue or red box represents a set of actions. The one blue band ones are output actions for A or B, the one red band ones are input actions for A or B. The two blue bands ones are input actions for E' that do not come from A or B, the two red bands ones are output actions for E' that do go into A or B. The other squares represents internal states.