
Lower bounds on lattice sieving
and information set decoding

Elena Kirshanova1,2, Thijs Laarhoven3

1 Immanuel Kant Baltic Federal University, Kaliningrad, Russia
2 Horst Görtz Institute for IT-Security, Ruhr University Bochum

elenakirshanova@gmail.com
3 Eindhoven University of Technology, Eindhoven, The Netherlands

mail@thijs.com

Abstract. In two of the main areas of post-quantum cryptography, based on lattices and codes, near-
est neighbor techniques have been used to speed up state-of-the-art cryptanalytic algorithms, and to
obtain the lowest asymptotic cost estimates to date [May–Ozerov, Eurocrypt’15; Becker–Ducas–Gama–
Laarhoven, SODA’16]. These upper bounds are useful for assessing the security of cryptosystems against
known attacks, but to guarantee long-term security one would like to have closely matching lower
bounds, showing that improvements on the algorithmic side will not drastically reduce the security in
the future. As existing lower bounds from the nearest neighbor literature do not apply to the nearest
neighbor problems appearing in this context, one might wonder whether further speedups to these
cryptanalytic algorithms can still be found by only improving the nearest neighbor subroutines.
We derive new lower bounds on the costs of solving the nearest neighbor search problems appearing
in these cryptanalytic settings. For the Euclidean metric we show that for random data sets on the
sphere, the locality-sensitive filtering approach of [Becker–Ducas–Gama–Laarhoven, SODA 2016] using
spherical caps is optimal, and hence within a broad class of lattice sieving algorithms covering almost
all approaches to date, their asymptotic time complexity of 20.292d+o(d) is optimal. Similar conditional
optimality results apply to lattice sieving variants, such as the 20.265d+o(d) complexity for quantum
sieving [Laarhoven, PhD thesis 2016] and previously derived complexity estimates for tuple sieving
[Herold–Kirshanova–Laarhoven, PKC 2018]. For the Hamming metric we derive new lower bounds
for nearest neighbor searching which almost match the best upper bounds from the literature [May–
Ozerov, Eurocrypt 2015]. As a consequence we derive conditional lower bounds on decoding attacks,
showing that also here one should search for improvements elsewhere to significantly undermine security
estimates from the literature.

Keywords: nearest neighbor searching · locality-sensitive hashing · lattice sieving · information set
decoding · lower bounds

elenakirshanova@gmail.com
mail@thijs.com

1 Introduction

Post-quantum cryptography. After Shor’s breakthrough work in the 90s [Sho94], showing that current so-
lutions in public-key cryptography are vulnerable to quantum attacks, many researchers have shifted their
attention towards developing new, quantum-safe alternatives. Within the field of post-quantum cryptogra-
phy, arguably two subfields stand out: lattice-based cryptography, offering efficient, small, and versatile solu-
tions [Reg05,Reg10,Gen09,GGH13] and relatively strong security guarantees [AD97,MR07,SSTX09,LPR10];
and code-based cryptography, relying on long-studied problems from coding theory, dating back as far as
RSA [McE78,RSA78], and having remained unbroken ever since [Lan20]. In both these fields, it is crucial to
obtain a good understanding of the true hardness of the underlying hard problems; both by trying to find
new techniques that may lead to faster algorithms, and by studying what are the limits of known algorithms,
when using algorithmic techniques we are currently aware of.

Hardness estimates for lattices. In the field of lattice-based cryptography, currently the fastest known ap-
proach for solving hard lattice problems is commonly referred to as lattice sieving. Theoretically, the fastest
sieving algorithms for solving e.g. the shortest vector problem (SVP) on random d-dimensional lattices
run in time (3/2)d/2+o(d) ≈ 20.292d+o(d) [BDGL16] under plausible heuristic assumptions about random
lattices4In practice all recent record-breaking computations on random lattices were done with sieving as
well [svp20,ADH+19]. Accurately estimating the true cost of lattice sieving is therefore essential for choosing
parameters for lattice-based cryptographic primitives. As the constant 1

2 log2(3
2) ≈ 0.292 in the exponent

has not been improved for several years now (with many improvements happening between 2008 and 2016),
one might wonder whether this constant is optimal, and if one can confidently use it as an asymptotic lower
bound on the cost of any algorithm trying to break the underlying lattice problem.

Hardness estimates for decoding. In the context of code-based cryptography, the most important algorithms
to solve the problem of decoding random binary codes are information set decoding (ISD) algorithms. A ran-
dom binary code of length d asymptotically has a minimum distance λ of the order λ = Θ(d).5 In this regime
all known ISD algorithms have a single-exponential running time 2cd+o(d), where the constant c has been im-
proved over the last 60 years from c = 0.121 [Pra62] through a series of works [Ste89,MMT11,BJMM12,MO15]
to the current best leading constant c = 0.0885 [BM18]. These runtimes hold for average-case instances and
are provable. The recent improvements in ISD come from a combination of various techniques, so it is im-
portant to pin down which techniques are already optimal and which should be further explored to see if
the current best result from [BM18] can be improved upon.

Note that in this paper, we do not consider the so-called sparse error regime in decoding, i.e., when the
error weight is promised to be o(d). The aforementioned improvements for ISD do not hold in this regime,
and the asymptotically fastest known algorithm for the sparse case is due to Prange’s [Pra62].

Lower bounds for cryptanalytic algorithms. Both in the context of lattice algorithms and decoding random
binary codes, most work has focused on upper bounds, i.e. constructing algorithms solving these problems
as efficiently as possible. However, for applications in cryptography we are equally interested in (tight) lower
bounds, stating that any attacker that tries to break the scheme by solving these underlying hard problems
needs to spend at least this amount of time to find a solution. Any such lower bound would clearly be
conditional on the approach used to solve the problem, but even such conditional lower bounds may already
be valuable for choosing parameters in a more conservative manner than optimistically assuming that the
current best algorithms are still the best algorithms an attacker can use in 20 years. Unfortunately not
much is known about lower bounds in either area, with e.g. [ANSS18] obtaining lower bounds on lattice
enumeration.

4 The literature on lattice algorithms is divided into two classes: algorithms with provable guarantees on
the worst-case complexity for any input lattice [PS09,MV10a,ADRS15]; and algorithms making some heuris-
tic assumptions about the “behavior” of random lattices, to obtain tighter average-case complexity esti-
mates [NV08,GNR10,MV10b,Laa15a,ANSS18].

5 We choose d to denote the length of the code rather than its minimum distance here, to be consistent with lattice
and near neighbor literature.

2

Nearest neighbor subroutines. Both in lattice sieving and in decoding, an important subroutine in the state-
of-the-art algorithms for solving these problems is to solve a nearest neighbor problem in the `1 and `2-
norms: given a large database of uniformly random vectors, store it in a convenient data structure such
that, when given a random query vector, we can efficiently extract nearby vectors (under the corresponding
metric) from the database. These relations were explicitly established in [Laa15a,MO15], and especially in
lattice sieving many subsequent improvements were directly related to only improving the nearest neighbor
subroutine [BGJ15,LdW15,BL16,BDGL16]. As a first step towards finding tight lower bounds on the overall
decoding algorithms, we aim at obtaining lower bounds on the nearest neighbor subroutines, so that we can
rule out further improvements which only target the nearest neighbor routine.

Nearest neighbor lower bounds. For the applications of interest in this paper (lattice sieving and decoding
algorithms), the nearest neighbor methods that have worked best to date are hashing–based solutions, for
which lower bounds have previously been studied in e.g. [MNP07,OWZ14,Chr17]. These lower bounds were
mostly in a slightly different model than the models which naturally appear in cryptanalysis, and it is
therefore unclear whether similar lower bounds apply in the context of cryptography, and whether the best
nearest neighbor methods in these other models must also translate to the best methods for the problems of
interest in cryptography.

On the strict inequivalence between different models. For the last question, we can explicitly derive a coun-
terexample, showing that a method which is asymptotically optimal in one setting is not necessarily optimal
in the other. Namely, for the often-considered sparse regime, cross-polytope hashing is known to be asymp-
totically optimal [TT07,AIL+15], but when applied to lattice sieving it leads to a suboptimal time complexity
of 20.298d+o(d), compared to the 20.292d+o(d) obtained via the spherical filters of [BDGL16]. In other words:
optimal solutions in other models may be suboptimal in our model, and lower bounds may not carry over
to our setting either.

1.1 Contributions

After covering the preliminaries (Section 2), and explicitly describing the nearest neighbor search model
considered in this paper and how it differs from other models commonly considered in the nearest neighbor
literature (Section 3), our main contributions are covered in Sections 4–7:

Nearest neighbor searching on the Euclidean sphere (Section 4). For the problem of finding nearest neighbors
in data sets uniformly distributed on the sphere, we prove that the best partitioning and filtering approaches
– main subroutines in the hash-based Near neighbor searching – must necessarily be based on spherical caps.
This shows that the spherical filters introduced in [BDGL16] and further analyzed in [ALRW17,Chr17] are
optimal not only in the sparse regime, but also in the dense regime. Note that this result is even stronger than
previous optimality results [AINR14,AIL+15,ALRW17], as there are no hidden order terms in the statement
that spherical caps are optimal for shaping hash regions.

Application to lattice sieving and lattice-based cryptography (Section 5). As a direct application of the above
result, we prove that within the framework of running a “pairwise” lattice sieve with some form of hash-
based nearest neighbor search (a technique inside the sieves is described in e.g., [NV08,Laa15a,BDGL16]), the
lattice sieve of Becker–Ducas–Gama–Laarhoven [BDGL16] is optimal, and the associated asymptotic time
complexity 20.292d+o(d) is the best possible. Similar optimality results extend to the tuple sieving results of
Herold–Kirshanova–Laarhoven [HKL18], the pairwise sieve with quantum speedups [Laa16], and applications
to closest vector problems [DLvW20].

Nearest neighbor searching for the Hamming distance (Section 6). Moving from `2 to `1 norm, we show that
spherical caps in Hamming space are optimal in the sparse regime and almost match the lower bound in
the dense regime. We point to the source of the small discrepancy between our lower bound and what is
achievable by spherical caps.

3

Application to decoding and code-based cryptography (Section 7). Similar to lattices, our lower bound for
nearest neighbor searching on the Hamming cube suggests that trying to improve only the nearest neighbor
subroutine in information set decoding algorithms will not result in a noticeable asymptotic gain. For exam-
ple, trying to replace a random code, which is used to construct spherical caps, with another code will not
improve the overall algorithm.

However, the situation differs from lattices in the fact that near neighbor search is not necessarily the
dominant subroutine and its complexity can be rebalanced with other combinatorial steps. This way, Both-
May [BM18] were able to improve over [MO15] using the near neighbor routine differently. Thus one should
interpret our lower bound as an indication that any faster algorithm for decoding will necessarily require a
novel ideal of how (if at all) use near neighbor search.

2 Preliminaries

2.1 Notation

We write (M,d) for a metric space, where M is the underlying set and d : M ×M → R is the distance
function (metric) associated to this set. We write 1{E} for the indicator function, which is 1 if event E holds
and 0 otherwise. For random variables X sampled uniformly from a set S, we may write X ∼ S. We denote
vectors (lowercase) and matrices (uppercase) in boldface. We write ‖ · ‖p for the `p-norm, and in this work
we will be using both the `1 and `2-norms. Throughout, d will always refer to the dimension of the space.

We denote the Euclidean sphere in d dimensions by Sd−1 = {z ∈ Rd : ‖z‖2 = 1} ⊂ Rd. On this sphere
we will make use of the uniform surface measure σ which is normalized such that σ(Sd−1) = 1. We write
〈·, ·〉 for standard dot products.

We denote the Hamming cube in d dimensions by {0, 1}d. We define the binary entropy function for
x ∈ [0, 1] as H(x) = −x log2 x− (1− x) log2(1− x). For asymptotic results on the Hamming cube, we shall
be using the approximation for the binomial coefficient

(
d
αd

)
≈ 2H(α)d which holds for constant α ∈ (0, 1)

and large d.

2.2 Lattices

A full-rank lattice L(B) is a discrete additive subgroup of Rd generated by the columns of a matrix B ∈
Rd×m (with polynomially-sized entries). Various hard lattice problems have been studied over time, with the
shortest and closest vector problems being the classical hard problems. We state the shortest vector problem
below, as efficient algorithms for this (exact) problem are often a key ingredient for the best cryptanalytic
attacks for lattice-based cryptosystems. For simplicity, one may assume that the rank m below is equal to
d.

Definition 1 (The shortest lattice vector problem). Let d,m be positive integers, and suppose we are
given a basis B ∈ Rd×m generating a lattice L = {Bz : z ∈ Zm} ⊂ Rd. Find a vector s ∈ L satisfying
‖s‖2 = minv∈L\{0} ‖v‖2.

We express complexities for algorithms for solving lattice problems in terms of their main security parameter
d, i.e. in the form 2cd+o(d) for a constant c.

2.3 Codes

We refer to a binary linear code C as a [d, k, λ]-code, with d being the dimension, k the rank of the code,
and λ the minimum distance. While the shortest lattice vector problem is one of the central hard problems
on lattices, upon which the security of lattice-based cryptography relies, the following problem is crucial in
understanding the security of code-based cryptosystems.

Definition 2 (The information set decoding problem). Let d, k, λ be positive integers, and suppose we

are given a parity check matrix H ∈ F(d−k)×d
2 and a syndrome vector s ∈ Fd−k2 satisfying s = He for some

e ∈ Fd2 with Hamming weight w := ‖e‖1 ≤ λ. Find the error vector e.

4

In the analysis of information set decoding algorithms, it is common to relate the parameter w (the error
weight) to the rank of the code k and to the dimension d. To do so, we make use of the Gilbert–Varshamov
bound which states that k

d = 1−H
(
w
d

)
as d→∞. This gives us a way to express w as a function of d and k.

Then for any chosen k ∈ (0, 1), the runtime of an information set decoding algorithm simplifies to the form
2cd+o(d) for some constant c. We are interested in the setting when w = Θ(d), the so-called dense regime.

3 Nearest neighbor model

3.1 Closest pairs problem

For the applications in post-quantum cryptanalysis, which are ultimately the main objective of this study,
we are commonly interested in solving the following general closest pairs problem: finding nearby pairs of
vectors in a given list of vectors living in some bounded metric space.

Definition 3 (Closest pairs problem). Let (M,d) be a bounded metric space, and let r ≥ 0 be a given
target distance. Let L ⊂M be a finite subset of M , with elements drawn uniformly at random from M . Find
almost all6 pairs x,y ∈ L satisfying d(x,y) ≤ r.

In the above definition, we assume the list L follows a uniform distribution over the underlying metric
space M ; in the applications for the Euclidean sphere and Hamming cube it will be clear what this uniform
distribution looks like. This is different from various other models in the nearest neighbor literature, where
one might aim to find a solution to the closest pairs problem which works even for worst-case data sets,
albeit with a certain approximation factor. In cryptanalytic applications, these uniform distributions appear
naturally, and average-case analyses give a better idea of the overall performance than worst-case analyses.

A common approach for solving variants of the closest pairs problem is by first building, and then
repeatedly querying a well-chosen nearest neighbor data structure:
1. Initialize a nearest neighbor data structure D;
2. Populate this data structure D with all elements x ∈ L;
3. For each x ∈ L, query the data structure D to find nearby y ∈ L, x 6= y, with d(x,y) ≤ r.

Note that within this framework, we need to index the list L in the data structure D (corresponding to |L|
insertions), and we need to run |L| queries on the list L to find almost all closest pairs (corresponding to
|L| queries). While there is often a trade-off between the insertion and query complexities for such nearest
neighbor data structures, this outline naturally tells us that to optimize the overall time complexity for
solving the closest pairs problem, we should balance the insertion and query complexities. If insertions and
queries can both be done in time |L|ρ+o(1) for some ρ ∈ (0, 1), then the above algorithm would solve the
closest pairs problem in time and memory |L|1+ρ+o(1). There exists memory-efficient version of the above
approach that uses only |L|1+o(1) memory [BGJ15,BDGL16] that consists in building D “on-the-fly”. Each
bucket is processed once constructed and is never stored. Such a modification improves memory but not the
runtime of the algorithm, hence, the lower bound we obtain applies.

3.2 Nearest neighbor problem

As outlined above, the problem of finding all close pairs in a long list can be solved via the nearest neighbor
problem.

Definition 4 (Nearest neighbor problem). Let (M,d) be a bounded metric space, and let r ≥ 0 be a
given target distance. Let L ⊂ M be a finite subset of M , with elements drawn uniformly at random from
M . Preprocess L in a data structure such that, when later given a uniformly random query x ∈ M , we can
efficiently find almost all vectors y ∈ L satisfying d(x,y) ≤ r.
6 The term “almost all” can intuitively be interpreted as finding at least 90% of all such pairs (or, if only one such

pair exists, making sure it is found with probability at least 0.90). Although this minimum success rate is not a
hard limit, and the high-level ideas would still work if only e.g. 50% or 10% of all pairs are found, the complexities
of these underlying algorithms are usually inversely proportional to the ratio of good pairs that are found in the
closest pairs subroutine: finding a smaller ratio of good pairs commonly means having to use bigger lists, which in
turn translates to a higher space complexity and a higher overall runtime due to having to search bigger lists.

5

Algorithm 3.1 Hash-based nearest neighbor searching

Scheme Parameters:
• t ∈ N — the number of hash regions
• r ∈ R — target distance
• U1, . . . , Ut ⊂M — hash regions for insertions
• Q1, . . . , Qt ⊂M — hash regions for queries

1: function Insert(y) . Add y to all relevant buckets
2: for all i ∈ [t] with y ∈ Ui do
3: Bi ← Bi ∪ {y}

4: function Query(x) . Find near neighbors y ∈ L with d(x,y) ≤ r
5: C ← ∅
6: for all i ∈ [t] with x ∈ Qi do
7: for all y ∈ Bi with d(x,y) ≤ r do
8: C ← C ∪ {y}
9: return C

10: function Preprocess(L) . Store all y ∈ L in the data structure
11: B1, . . . , Bt ← ∅
12: for all y ∈ L do
13: Insert(y)

14: function ClosestPairs(L) . Find close pairs {x,y} ∈ L with d(x,y) ≤ r
15: Preprocess(L)
16: P ← ∅
17: for all x ∈ L do
18: P ← P ∪ ({x} ×Query(x))

19: return P

Similar to the closest pairs problem, we assume that the data set is drawn uniformly at random from the
space M , which we therefore assume is bounded. We also assume that the query vector x ∈ M is drawn
uniformly at random from M , which closely matches the nearest neighbor subroutine that needs to be solved
to solve the closest pairs problem defined earlier.

3.3 Hash-based nearest neighbor searching

While many solutions have been proposed for solving such nearest neighbor problems, the most promising
approaches for high-dimensional problem instances all seem to be based around the idea of (randomized)
divide and conquer : divide the space in regions, and solve the closest pairs problem (nearest neighbor problem)
in each region separately. By using well-chosen hash regions, and by using many rerandomizations to account
for unfortunate separations of nearby vectors, we hope that each pair of nearby vectors will eventually end
up in the same hash region at least once.

Formally, with the added generalization that combinations of these hash regions do not necessarily have
to form a partition of the space [BDGL16,ALRW17], this leads to the following definition of hash-based
nearest neighbor searching.

Definition 5 (Hash-based nearest neighbor searching). Let the data set L ⊂ M and target radius
r > 0 be given. To solve the nearest neighbor problem, hash-based nearest neighbor searching preprocesses the
data set L and processes queries x as outlined in Algorithm 3.1.

Observe that the pseudocode in Algorithm 3.1 is not quite precise on how we recover the indices i ∈ [t]
with either y ∈ Ui (for insertions) or x ∈ Qi (for queries). A naive linear search would take time t, by
checking for each i if the condition is satisfied. If there is some additional structure in these hash regions Ui
and Qi, then ideally we may hope for an algorithm finding the set Y = {i ∈ [t] : y ∈ Ui} in time O(|Y |),
and the set X = {i ∈ [t] : x ∈ Qi} in time O(|X|). Throughout we will often assume the existence of an
oracle O which achieves these optimal time complexities, as the technicalities for implementing this (as in

6

e.g. [BDGL16,ALRW17]) are not necessary for understanding our results, and may distract the reader from
the essence of our contributions.

At the end of the query phase, we search the set of candidates C = ∪i:x∈QiBi for potential nearest
neighbors to x. Ideally we would like this set C to only contain nearby vectors in the data set, and not any
other vectors. In other words, ideally we would like to guarantee that for random vectors y ∈ L the event
{x ∈ Qi,y ∈ Ui} is rare, while for nearby vectors y ∈ L the probability of {x ∈ Qi,y ∈ Ui} happening is
large. Therefore, the following quantities are of interest, which capture the probabilities of hash collisions for
nearby and random vectors.

Definition 6 (Collision probabilities). Given a hash-based nearest neighbor scheme, with hash regions
U1, . . . , Ut and Q1, . . . , Qt, and a target distance r > 0, we define the following quantities:

p1 :=

t∑
i=1

p1,i, p1,i := Pr
x,y∼M

(x ∈ Qi,y ∈ Ui | d(x,y) ≤ r), (1)

p2 :=

t∑
i=1

p2,i, p2,i := Pr
x,y∼M

(x ∈ Qi,y ∈ Ui). (2)

To obtain the best performance for a hash-based scheme, we wish to maximize p1 and minimize p2. An
often considered quantity capturing both these goals is ρ := ln p1/ ln p2. Maximizing p1 and minimizing p2
means making the exponent ρ as small as possible, and when the parameters of the scheme are chosen to
balance insertion and query costs (and one assumes the existence of an efficient oracle for finding relevant
buckets), both these costs can be made equal to Õ(nρ). In general however one can obtain arbitrary trade-offs
between the costs of this approach, as described in e.g. [Laa15b,BDGL16,ALRW17]. The shapes of the hash
buckets may vary, but intuitively the relative sizes of Qi and Ui control the trade-off between the query time
on the one hand, and the insertion time, preprocessing time, and memory complexity on the other hand as
follows:
– For Qi ⊂ Ui, we are more selective with buckets in the query phase, often leading to better query times

but worse insertion and preprocessing complexities, as we will need more buckets to guarantee we still
find the nearest neighbors in the few buckets we query for near neighbors.

– For Qi ⊃ Ui, we are less selective in the query phase, and overall we need a smaller number of buckets t
(less memory, better preprocessing time) to make sure we find the nearest neighbor in one of the queried
buckets. However, as we also consider “bad quality” hash buckets, we will commonly spend more time
in the query phase. (Choosing Qi ⊃ Ui is intuitively similar to probing in locality-sensitive hashing
literature [Pan06,AIL+15].)

– For Qi = Ui, we balance the query and insertion complexities. This is sometimes called the balanced
regime, and most lower bounds from the literature on ρ apply to this regime.

Usually it does not make sense to choose regions Ui and Qi for which neither Ui ⊆ Qi nor Qi ⊆ Ui; we want
x and y to be as similar as possible, so if we know y ∈ Ui we will want to compare x to y only if x lies in a
similar region in space.

3.4 Assumptions about the data set

While most of the above model is still very much in line with most of the existing (hash-based) nearest
neighbor literature, and lower bounds that have previously appeared, there are some subtle differences we
make about the data set, which warrant the new search for lower bounds in this paper. We will describe the
two key properties below, which have to do with two assumptions about the data set: the distribution of
points, and the size of the data set n relative to d.

The distribution of the data set. As described in the nearest neighbor definitions above, in this paper
we specifically assume that the data set follows a uniform distribution over the underlying metric space.
(Concretely we will consider the Euclidean sphere and the Hamming cube, for which this uniform distribution
is well-defined.) Most literature on the nearest neighbor problem however makes no such assumptions, and
aims to provide solutions for worst-case data sets. In practice however it often turns out that these “random
data sets” are, in fact, worst-case data sets for most hash-based solutions [AINR14,AR15,ALRW17]. One may

7

argue that here we are making stronger assumptions about the problem than in most of the past literature.
On the other hand, in most applications the most natural distribution of points for the data set is uniform,
and uniform data sets are often considered the hardest to deal with anyway. One could therefore consider
this as only a minor additional assumption. Note that without this additional assumption, we would not be
able to strengthen our model compared to previous work as described in the next paragraph.

The sparsity of data set. Most past work on nearest neighbor searching focused specifically on the so-called
sparse regime, where the number of points n in the data set scales as n = 2o(d), or equivalently log n = o(d).
For log n � d, i.e. for extremely sparse data sets, one can always use a dimension reduction step [JL84] to
obtain log n ∝ d/ log d; one can always go from an extremely sparse data set to a less sparse data set. This is
however the limit, and one cannot reduce the dimensionality to log n ∝ d without losing guarantees on the
preservation of distances between points in the data set. The entire sparse regime can therefore be reduced
by only solving the regime where log n ∝ d/ log d, but this leaves open the regime where log n = Ω(d). The
latter is exactly the regime of interest for the cryptanalytic applications in this paper, and unfortunately
lower bounds are specifically tailored to the sparse regime.

To summarize: whereas most past work made no assumptions about the distribution of the data set, it
did make assumptions about the sparsity of the data set. In this paper we make no assumptions about the
sparsity of the data set, but we do specifically assume that the data set follows a uniform distribution.

3.5 Inapplicability of existing lower bounds

Various lower bounds have previously been derived for (hash-based) nearest neighbor searching in a long
series of works [MNP07,PTW10,OWZ14,Chr17], but all of these have focused on the sparse regime, discussed
above. As we are interested in the dense regime of log n = O(d), one might wonder whether applying the
same lower bounds to the dense regime is just a “technicality”, and if schemes which are known to be
asymptotically optimal in the sparse regime are also optimal in the dense regime.

We can counter this reasoning with an explicit counterexample, showing that indeed the study in this
paper is needed. For the sparse regime and for the angular distance (or nearest neighbor searching on the
sphere; see Section 4), different schemes are known to be optimal:

– The spherical hashing from [AINR14] and the cross-polytope hashing from e.g. [TT09,AIL+15] are both
known to be optimal for the sparse regime. They both achieve the optimal scaling of the query ex-
ponent ρ for the balanced regime as ρ ∼ 1/(2c2 − 1) for random data sets, when the target distance
r is a factor c less than the average distance on the unit sphere (

√
2). Matching lower bounds are

known [AINR14,AR15,AR16,ALRW17] showing their optimality for the sparse regime. When applying
these schemes in the context of lattice sieving, where we substitute the nearest neighbor step by these
optimized hashing schemes, the best possible time complexity for solving lattice problems in dimension
d with both these hash-based approaches becomes 20.297...d+o(d) [LdW15,BL16].

– Later on, spherical filtering was presented in [BDGL16], and further studied in [Laa15b,ALRW17]. Spher-
ical filtering is also known to be optimal in the sparse regime, again obtaining the optimal scaling of
ρ ∼ 1/(2c2 − 1), up to lower order terms. When applying these results to lattice sieving however, again
substituting this scheme for the nearest neighbor step that needs to be done, the time complexity for
solving lattice problems becomes 20.292...d+o(d) [BDGL16]. In other words, using this nearest neighbor
scheme leads to a strict asymptotic improvement over the previous results from [LdW15,BL16], even
though these other results were also relying on a hash-based scheme which was known to be optimal in
the sparse regime.

The essence lies exactly in the fact that all existing lower bounds were derived specifically for the sparse
regime, and do not necessarily carry over to the dense regime. And as the above situation in lattice sieving
shows, indeed asymptotically optimal schemes in the sparse regime may be strictly suboptimal in the dense
regime. This motivates the study of this work: to derive lower bounds for the dense regime, which do apply
to regimes of interest in cryptanalysis (and potentially in other applications with dense data sets as well).

8

4 Nearest neighbor searching on the Euclidean sphere

For the Euclidean sphere, we instantiate the metric space (M,d) from Section 3 by the Euclidean metric
d(x,y) = ‖x−y‖2 and the unit sphere M = Sd−1 = {x ∈ Rd : ‖x‖2 = 1}. Throughout Sections 4–5, we will
write ‖ · ‖ = ‖ · ‖2 for the Euclidean norm.

4.1 The Baernstein–Taylor rearrangement inequality

A key ingredient for deriving the optimal hash-based approaches for the Euclidean sphere is the following
result of Baernstein–Taylor from the 1970s [BT76]. This inequality is closely related to the Riesz–Sobolev
rearrangement inequality [Rie30], but instantiated on the unit sphere rather than the entire real space. The
original statement and its proof can be found in [BT76, Theorem 2]. Below σ denotes the normalized surface
measure on Sd−1, such that σ(Sd−1) = 1.

Lemma 1 (Baernstein–Taylor inequality for Sd−1 [BT76, Theorem 2]). Let f, g : Sd−1 → R be
arbitrary Lebesgue-integrable functions. Let h : [−1, 1] → R be a non-decreasing, bounded, and measurable
function. Let f∗, g∗ : Sd−1 → R be functions satisfying the following conditions:
– f∗(z) only depends on the first coordinate z1 of z and is a non-decreasing function of z1;
– g∗(z) only depends on the first coordinate z1 of z and is a non-decreasing function of z1;
– For all λ ∈ R: σ({z ∈ Sd−1 : f∗(z) > λ}) = σ({z ∈ Sd−1 : f(z) > λ});
– For all λ ∈ R: σ({z ∈ Sd−1 : g∗(z) > λ}) = σ({z ∈ Sd−1 : g(z) > λ}).

Then: ∫∫
Sd−1×Sd−1

f(x)g(y)h(〈x,y〉) dσ(x) dσ(y) ≤
∫∫

Sd−1×Sd−1

f∗(x)g∗(y)h(〈x,y〉) dσ(x) dσ(y).

4.2 Optimal hash collision probabilities

At first sight it may not be obvious how the above inequality is useful for us. The following corollary shows
that with a proper instantiation of the functions f, g, h this naturally leads to an upper bound on collision
probabilities for regions on the sphere in the hash-based nearest neighbor framework.

Theorem 1 (Collision probabilities for Sd−1). Let Q,U ⊆ Sd−1 be arbitrary subsets of the sphere, and
let CQ, CU ⊆ Sd−1 be spherical caps of the following form:

CQ := {z ∈ Sd−1 : z1 ≥ α}, with α ∈ [−1, 1] such that σ(CQ) = σ(Q),

CU := {z ∈ Sd−1 : z1 ≥ β}, with β ∈ [−1, 1] such that σ(CU) = σ(U).

Then, for any γ ∈ [−1, 1] we have:

Pr
x,y∼Sd−1

[x ∈ Q,y ∈ U | 〈x,y〉 ≥ γ] ≤ Pr
x,y∼Sd−1

[x ∈ CQ,y ∈ CU | 〈x,y〉 ≥ γ] ,

Pr
x,y∼Sd−1

[x ∈ Q,y ∈ U] = Pr
x,y∼Sd−1

[x ∈ CQ,y ∈ CU] .

Proof. The second equality follows trivially by factoring the joint probability into two individual probabilities,
and noting that the spherical caps CQ, CU have the same volume as the sets Q,U :

Pr
x,y∼Sd−1

[x ∈ Q,y ∈ U] = σ(Q) · σ(U) = σ(CQ) · σ(CU) = Pr
x,y∼Sd−1

[x ∈ CQ,y ∈ CU] .

The first inequality follows almost directly from the Baernstein–Taylor inequality with the proper choice of
functions. We define the functions f, g, h as:

f(x) := 1{x ∈ Q}, g(y) := 1{y ∈ U}, h(s) := 1{s ≥ γ}.

9

Note that, for λ ∈ R, the functions f and g satisfy:

σ({f > λ}) =

1, λ < 0;

σ(Q), 0 ≤ λ < 1;

0, 1 ≤ λ;

σ({g > λ}) =

1, λ < 0;

σ(U), 0 ≤ λ < 1;

0, 1 ≤ λ.

For the function f∗ from Lemma 1 we need σ({f∗ > λ}) = σ({f > λ}) to hold for all λ ∈ R, with f∗ only
depending on x1 and being non-decreasing in x1. To satisfy f∗(x1) > 0 with measure σ(Q) and f∗(x1) ≥ 0
with measure 1, it follows that f∗(x1) = 0 with measure 1− σ(Q). Similarly f∗(x1) = 1 with measure σ(Q).
This means that f∗(x1) must be a heaviside step function in one variable x1 ∈ [−1, 1], with an increase from
0 to 1 at the value x1 = α satisfying σ(Q) = σ({z ∈ Sd−1 : z1 ≥ α}). Defining CQ := {z ∈ Sd−1 : z1 ≥ α} for
the above α, this translates to σ(Q) = σ(CQ), and together with a similar derivation for g∗ we obtain the
expressions:

f∗(x) := 1{x ∈ CQ}, with CQ = {z ∈ Sd−1 : z1 ≥ α} such that σ(Q) = σ(CQ);

g∗(y) := 1{y ∈ CU}, with CU = {z ∈ Sd−1 : z1 ≥ β} such that σ(U) = σ(CU).

Now, with all conditions for Lemma 1 satisfied, we can instantiate the Baernstein–Taylor inequality for these
functions f, f∗, g, g∗, h. Observing that the integrals can be interpreted as probabilities, and combining the
indicator functions, we obtain:

Pr
x,y∼Sd−1

[x ∈ Q,y ∈ U, 〈x,y〉 ≥ γ] =

∫∫
Sd−1×Sd−1

1{x ∈ Q,y ∈ U, 〈x,y〉 ≥ γ} dσ(x) dσ(y)

≤
∫∫

Sd−1×Sd−1

1{x ∈ CQ,y ∈ CU , 〈x,y〉 ≥ γ} dσ(x) dσ(y) = Pr
x,y∼Sd−1

[x ∈ CQ,y ∈ CU , 〈x,y〉 ≥ γ] .

Note that the above derivation applies for all γ ∈ [−1, 1]. Now finally, we can easily obtain a similar inequality
for the conditional probabilities as follows, where all probabilities are over x,y ∼ Sd−1:

Pr [x ∈ Q,y ∈ U | 〈x,y〉 ≥ γ] =
Pr [x ∈ Q,y ∈ U, 〈x,y〉 ≥ γ]

Pr [〈x,y〉 ≥ γ]

≤ Pr [x ∈ CQ,y ∈ CU , 〈x,y〉 ≥ γ]

Pr [〈x,y〉 ≥ γ]
= Pr [x ∈ CQ,y ∈ CU | 〈x,y〉 ≥ γ] .

This completes the proof of the first inequality.

The above theorem states that, if we replace the hash regions Q and U by spherical caps of equal volume
as Q and U , then (i) uncorrelated pairs of vectors are still equally likely to be found as candidate near
neighbors, while (ii) nearby pairs of vectors are at least as likely (and perhaps more likely) to be considered
as potential near neighbors. So ignoring e.g. the potential decoding overhead or the cost of membership
queries for these different hash regions, this shows that the optimal choice for the hash regions is to use
spherical caps. Note that for this optimality to hold, it is crucial that CQ, CU are spherical caps centered at
the same point on the sphere, although the same inequalities hold if both are centered at a different point
v ∈ Sd−1 with v 6= e1.

4.3 Optimal hash-based nearest neighbor searching

The previous result suggests that using spherical caps is optimal, and the following result formalizes this
statement in the asymptotic setting. Here by “optimal” we mean that choosing the hash regions Ui or Qi of
shape different from spherical caps will not asymptotically improve the performance of Algorithm 3.1.

Theorem 2 (Spherical caps are optimal for Sd−1). Suppose we have access to an efficient decoding
oracle for retrieving relevant hash regions. Then to get the best asymptotic performance for hash-based nearest
neighbor searching, the following choice of hash regions is asymptotically optimal:

10

– Choose t ∈ N, and for each i ∈ [t] choose thresholds αi, βi ∈ [−1, 1] and draw vi ∼ Sd−1;
– Define Qi = {z ∈ Sd−1 : 〈z,vi〉 ≥ αi} and Ui = {z ∈ Sd−1 : 〈z,vi〉 ≥ βi}.

Proof. First, observe that with access to an efficient decoding algorithm, the costs of the hash-based nearest
neighbor search are equal for two schemes which use regions of equal size; the data set and queries are
assumed to be uniform, and therefore the number of hash collisions within each bucket and the number of
buckets to check only depend on their volumes, and not on their shapes. Given the volumes of the regions,
and the number of regions, the costs in terms of having to compare a query x with random vectors y ∈ L
which are not near neighbors, does not depend on the shapes of the regions. The only thing that is influenced
by the (relative) shapes of the regions is the probability of finding nearby vectors in the list: given a query
x ∼ Sd−1, the probability of finding a nearby vector y ∈ L with 〈x,y〉 ≥ γ in at least one of the t potential
buckets.

Recall that the hash collision probabilities for nearby vectors can be expressed in terms of probabilities
of inserting and querying the same bucket, for at least one of the indices i = 1, . . . , t. Letting Ei = {x ∈
Qi,y ∈ Ui | 〈x,y〉 ≥ γ} denote the event that for a nearby vector y to the query x, we insert y into bucket
Ui and we later query Qi for x in the query phase. Then we have:

p1 = Pr

[
t⋃
i=1

Ei

]
≤

t∑
i=1

Pr[Ei] =

t∑
i=1

Pr
x,y∼Sd−1

[x ∈ Qi,y ∈ Ui | 〈x,y〉 ≥ γ] . (3)

The first inequality becomes more of an equality when the events are more disjoint; this tells us that
ideally we should minimize the probabilities that two events Ei and Ej happen at the same time, e.g.
by carefully spreading out these hash regions over the unit sphere7. Note that asymptotically, as analyzed in

e.g. [BDGL16,Laa15b], we do indeed have Pr
[⋃t

i=1Ei

]
=
∑t
i=1 Pr[Ei] · (1 + o(1)) for all common parameter

choices, as it is extremely unlikely that multiple events Ei happen at the same time for random vi. So the
right hand side of (3) is asymptotically equal to p1.

Finally, by Theorem 1 the right hand side of (3) is maximized when the shapes of the regions are spherical
caps. So the probability of finding nearby vectors is maximized when the Qi and Ui are spherical caps centered
around the same vector vi on the sphere. With the other collision probability p2 being invariant under these
replacements of arbitrary regions by equal-volume spherical caps, and with the decoding costs assumed to
be not an issue, this shows that up to lower order terms, this hash-based scheme is optimal.

All that now remains is choosing the thresholds αi and βi. The following result shows that all the βi’s
should be equal to get the best asymptotic performance, and that their optimal value is determined purely by
the list size n. For the αi we also derive that they should all be equal to the same value α, but together with
t this parameter allows us to obtain trade-offs between the query and update complexities of the underlying
hash-based scheme.

In the following theorem by “optimal” we mean that choosing the spherical caps Ui’s (or Qi’s) of different
sizes for different i will not improve the performance of Algorithm 3.1.

Theorem 3 (Equal spherical caps are optimal for Sd−1). Suppose we have access to an efficient
decoding oracle for retrieving relevant hash regions. Then to get the best asymptotic performance for hash-
based nearest neighbor searching, the following choice is asymptotically optimal:
– Choose t ∈ N, choose α ∈ [−1, 1] and compute β such that σ({z ∈ Sd−1 : z1 ≥ β}) ≈ 1/n;
– For each i ∈ [t] draw vi ∼ Sd−1;
– Define Qi = {z ∈ Sd−1 : 〈z,vi〉 ≥ α} and Ui = {z ∈ Sd−1 : 〈z,vi〉 ≥ β}.

Proof. Compared to the optimality result from Theorem 2 we need to prove that (1) fixing one parameter
β, rather than choosing each separately, cannot decrease the asymptotic performance; and (2) with β fixed,
it does not make sense to use different values αi for the different buckets.

Fixing βi ≡ β. For populating the buckets Bi, observe that we do not want most buckets to be empty
(which happens when βi is too large). In that case the overhead of retrieving these hash buckets will be

7 This further illustrates the need for good spherical codes for determining where to place these vectors vi to obtain
the best performance in practice [AI06,TT07,AIL+15,Laa20].

11

much larger than the actual comparisons with potential near neighbors, as the number of buckets is larger
than the number of vectors in these buckets. If many buckets are empty, we would be better off creating
larger buckets, corresponding to larger spherical caps, until these buckets contain at least a few vectors each,
decreasing the decoding cost and not affecting other costs more than no(1). So we never want to choose βi
such that σ({z ∈ Sd−1 : z1 ≥ β})� 1/n.

On the other hand, if we use spherical caps with too small parameters βi, then these buckets will contain
nΘ(1) vectors each. Note that such a bucket corresponds to a spherical cap, which can essentially be seen
as a sphere of one dimension less, with a smaller radius, and where again the vectors in this bucket are
uniformly distributed over this lower-dimensional sphere. This is again a NNS instance on a smaller sphere,
and we can do better than to put all nΘ(1) vectors in one big list and having to query the whole list when
we want to search this region for near neighbors. It cannot be worse to partition this bucket into smaller
buckets, so that we can either choose α so large that the entire list is queried (if necessary), or we can choose
α larger to only query some of these smaller buckets. So we also do not want to choose βi too small, such
that σ({z ∈ Sd−1 : z1 ≥ β})� 1/n.

In other words, we want each βi to satisfy σ({z ∈ Sd−1 : z1 ≥ β}) ∝ 1/n. Small deviations in individual
bucket sizes may not be worse in practice, but asymptotically we need all βi to be approximately equal to
the β satisfying σ({z ∈ Sd−1 : z1 ≥ β}) = 1/n (see [HKL18][Appendix A]).

Fixing αi ≡ α. With all βi fixed to the same value β, and with all buckets containing (in expectation) a
small number of vectors, the parameters αi now control when buckets are queried. Note that for a fixed β, all
buckets are identically shaped as a spherical cap of a fixed size, and with the data set being uniform on the
sphere, all buckets are essentially equivalent. For a given query x however, the distribution of dot products
〈x,y〉 for vectors y ∈ Bi depends on 〈x,vi〉: if x is almost equal to vi, we have a stronger guarantee that
the vectors in this bucket (which are uniform in a spherical cap centered at yi) are close to x as well. On
the other hand, if 〈x,vi〉 is relatively small, then the vectors centered around vi will on average be further
away from x. As each bucket contains equally many vectors, we therefore want to select only the buckets
with the best potential for near neighbors, i.e. those buckets for which 〈x,vi〉 is largest. Sorting the buckets
by 〈x,vi〉 and only going through the highest-quality buckets is equivalent to selecting a single appropriate
parameter α and only checking those buckets for which 〈x,vi〉 ≥ α.

So ultimately, we may set βi ≡ β to one fixed value, determined immediately by n and d, and fix αi ≡ α
to one value which together with t then trades off the space and query complexities.

Note that the optimal choice of α is not obvious. The free parameters α and t together control the trade-
off between the query time complexity and the update complexity. Concretely we can minimize for the query
time by choosing both α and t to be large (generate a large number of buckets, and only query the buckets
for which vi is almost identical to x), or we can minimize for the update and space complexities by choosing
α and t to be small (using fewer hash buckets, but being less selective in the query phase and visiting most
of these buckets).

Summarizing, the asymptotically optimal scheme (up to order terms) is now written all the way down
up to selecting the best parameters t, α, and implementing such an efficient decoding oracle. This problem
has previously been studied in [BDGL16,Laa15b,ALRW17], and here we will merely state that the schemes
analyzed in these works are therefore optimal.

Theorem 4 (Spherical filtering is optimal for Sd−1). The hash-based near neighbor schemes studied
in [Laa15b,BDGL16,ALRW17] are optimal within the hash-based framework for uniformly random data sets
on the sphere.

4.4 Results for dense data sets

Note that [ALRW17] already claimed optimality of the filtering approach described in [BDGL16,ALRW17],
by proving matching lower bounds in the sparse regime. For the dense regime, no lower bounds were previously
known, and as explained in Section 3.4 this was not just a matter of applying optimal algorithms from the
sparse regime to the dense regime and claiming optimality in the dense regime as well. Our results settle the
issue for uniformly random data sets, showing that spherical caps of specific sizes are indeed optimal.

The resulting optimal complexities for the dense regime can be found in e.g. [Laa15b, Theorem 2], where
the parameters α and t were optimized to obtain the best performance. We restate these upper bounds
below, where based on our lower bounds we now add that these trade-offs are optimal for the dense regime.

12

Theorem 5 (Trade-offs for the dense regime). Let θ ∈ (0, 12π), let the target dot product be 〈x,y〉 ≥
cos θ, and let the data set consist of n = 2Θ(d) random points on the unit sphere. Then to obtain asymptotically
optimal trade-offs for the query and update complexities, we should choose u ∈ [cos θ, 1/ cos θ] and set the
parameters as:

α = u ·
√

1− n−2/d , β =
√

1− n−2/d .

We can then find nearest neighbors on the Euclidean sphere with query and update exponents:

ρq =
−d

2 log n
log

[
1−

(
1− n− 2

d

) 1 + u2 − 2u cos θ

sin2 θ

]
+

d

2 log n
log
[
1−

(
1− n− 2

d

)
u2
]
,

ρu =
−d

2 log n
log

[
1−

(
1− n−2/d

) 1 + u2 − 2u cos θ

sin2 θ

]
− 1.

The resulting algorithm has a query time complexity Õ(nρq), an update time complexity Õ(nρu), a preprocess-
ing time complexity Õ(n1+ρq), and a total space complexity of Õ(n1+ρq). The total number of filters scales
as t = Õ(n1+ρq).

While the above formulas are a bit more technical, note that the query and update exponents only involve
the input parameters d, n, θ and the trade-off parameter u. Choosing u = 1 leads to a “balanced” trade-off
with ρq = ρu, and e.g. for the lattice sieving regime of the next section, where θ = π

2 and n = (4/3)d/2+o(d),

for u = 1 we obtain ρq = ρu = log(9/8)/ log(4/3) with query complexity nρ = (9/8)d/2+o(d) and closest pairs
complexity n1+ρ = (3/2)d/2+o(d).

5 Application to lattice sieving and lattice-based cryptography

With the results from Section 4 in mind, showing that the best hash-based nearest neighbor search tech-
nique is what has already been studied in the context of lattice cryptanalysis, we immediately get conditional
optimality results for various current lattice sieving approaches. These optimality results are all under the
assumption that we are only allowed to make tweaks to the nearest neighbor subroutine within these algo-
rithms.

5.1 Lattice sieving

The lattice sieving approach introduced by Ajtai–Kumar–Sivakumar [AKS01] is currently the best known
method for solving the shortest vector problem in practice on random high-dimensional lattices. For a d-
dimensional lattice, the time and memory complexity are both of the order 2Θ(d), compared to a time
complexity of 2Ω(d log d) for enumeration-based approaches [Kan83,FP85,GNR10].

Given as input an arbitrary basis B of a lattice, sieving algorithms start by sampling an exponentially
long list L of lattice vectors using efficient discrete Gaussian sampling procedures like [Kle00,GPV08]. Note
that sampling exactly from a discrete Gaussian is not important; all that matters is that the sampled points
are distinct, and are as short as possible. The points from the list are then combined to produce new shorter
vectors z = x− y where x,y ∈ L. Note that z is short if and only if x and y are “near neighbors” in space,
and this naturally leads us to using closest pairs algorithms for performing these sieving steps. The process
of sieving is then executed iteratively with the new and shorter vectors added to the list (and longer vectors
getting removed from the list), until we ultimately find a shortest vector in our list.

The complexity of sieving algorithms is determined by the size of the starting list required for the iterative
process to succeed, and by the complexity of finding short pairwise combinations of vectors in the list to form
new short vectors. Note that by volume arguments over the sphere, if all lattice vectors in the list L have
roughly the same norm, then (i) for a list of size n = |L| � (4/3)d/2+o(d) we expect the number of nearby
pairs x,y ∈ L with ‖x−y‖ < ‖x‖ to be significantly less than n, while (ii) for a list of size n = (4/3)d/2+o(d)

we do expect the number of such pairs to be proportional to n. So if we wish to repeat this sieving step a
polynomial number of times and end up with sufficiently many new vectors each time, we need the input
list to be of size n = (4/3)d/2+o(d). The closest pairs subroutine then consists of: given a list of n vectors of

13

roughly equal norms as input, find all pairs of vectors whose mutual distance is shorter than their individual
norms. This translates to a target angle of π/3.

The above requirements on the algorithm lead to the following results, where we know that within the
hash-based nearest neighbor framework, the results from Theorem 5 are optimal. So unless we modify other
parts of the algorithm, or solve the closest pairs problem differently, these complexities are optimal for the
standard pairwise sieving framework.

Theorem 6 (Classical sieve, heuristic). Suppose we use a pairwise sieve with a hash-based nearest neigh-
bor search subroutine to solve the closest pairs problem. Then the following time and space complexities of
Becker–Ducas–Gama–Laarhoven [BDGL16] are asymptotically optimal:

T =

(
3

2

)d/2+o(d)
≈ 20.292d+o(d), S =

(
4

3

)d/2+o(d)
≈ 20.208d+o(d).

Note that the space complexity S is determined by the list sizes required by the sieving, but not by the
number of the buckets from the hashing as in Theorem 5. This is due to the fact that the number of query
points in sieving is S, hence, a one can use a memory-efficient bucket processing (see end of Section 3.3).

Lattice sieving variants. Various variants of lattice sieving have been studied, aiming to solve slightly dif-
ferent problems or optimizing other parts of the underlying algorithm. We will briefly cover three of these
variants: (i) quantum sieving [LMvdP15,Laa16,KMPM19], (ii) tuple sieving [BLS16,HK17,Laa17,HKL18],
and (iii) sieving for the closest vector problem with preprocessing [Laa21,DLvW20]. Almost these algorithms
(exception is the tuple sieve from [BLS16]) use near neighbor routines. Therefore, our lower bounds apply: if
we are only allowed to replace the nearest neighbor subroutine by some other hash-based nearest neighbor
subroutine, then we cannot do better than the above results. Of course, this does not rule out potential
improvements coming from another modifications.

Relevance for lattice-based cryptography. As a take-away for cryptographic applications, one can view our
lower bounds on sieving with nearest neighbor searching as a further motivation for most concrete parameter
selection methods currently used in practice, which assume that the leading time complexity exponents 0.292
and 0.265 are the best an attacker can do [BDK+18,BGML+18,BCD+16]. There is always the possibility
that faster algorithms will be found, but if an attacker uses sieving with some form of nearest neighbor
searching, they will not be able to improve upon these exponents.

The question remains how to estimate concrete costs in e.g. dimension 768 or 1024, as our lower bounds
and most asymptotic analyses of upper bounds are asymptotic: the exponent scales as 0.292d+o(d) for large
d (or 0.265d + o(d) quantumly), but the o(d) may be arbitrarily small or large when d is fixed. Some past
work has looked at trying to estimate the o(d)-term of the best upper bounds [Sch19,AGPS20].

Observe that when studying concrete attack costs in fixed dimensions d, it is also necessary to take into
account further potential subexponential speedups, proposed in e.g. [Duc18,ADH+19,DLdW20]. Furthermore
it may not be sufficient to only look at the asymptotically fastest approaches: in a fixed dimension d,
another nearest neighbor method may have less overhead in practice and lead to better time and space
complexities than the spherical filters, which match our asymptotic lower bounds. Especially here, where
the gap between the time complexities for sieving with spherical filtering (0.292d+ o(d)) and cross-polytope
hashing (0.298d + o(d)) is so small, there is no guarantee that spherical filtering will be faster than cross-
polytope hashing.

6 Nearest neighbor searching on the Hamming cube

We instantiate the nearest neighbor problem from Definition 4 with the the Hamming cube M = {0, 1}d
and the Hamming metric d(x,y) = |{i ∈ [d] : xi 6= yi}| = ‖x− y‖1. Throughout Sections 6–7, we will write
‖ · ‖ = ‖ · ‖1 for the Hamming distance, and for the Hamming weight of vectors on the Hamming cube. It will
further be easier to work with dimensionless versions of Hamming distances. In particular, we will denote
the dimensionless target distance of the nearest neighbor problem by γ, i.e., γ := r/d. This applies to other
distances we introduce below.

14

We start this section by obtaining a lower bound on nearest neighbor search using the result of Andoni–
Razenstein [AR16]. Next we show that the algorithm of May–Ozerov [MO15] matches this lower bound in
the sparse regime and comes extremely close to it in the dense regime.

6.1 The Andoni–Razenshteyn lower bound

Following [AR16], for x ∈ Fd2 and 0 ≤ γ < 1/2, let us denote by Nγ(x) a vector from Fd2 such that
(Nγ(x))i = xi with probability 1− γ and (Nγ(x))i = xi⊕ 1 with probability γ. So for any x and Nγ(x), the
Hamming distance between them is on expectation γ · d. For any hash function h, define

p1 = Pr
x∼Fd2

y∼Nγ(x)

[h(x) = h(y)] , p2 = Pr
x,y∼Fd2

[h(x) = h(y)] .

We are interested in the quantity ρ = ln(1/p1)/ ln(1/p2), which defines the complexity of the nearest neighbor
search when applied to the closest pairs problem. In particular, we are interested in a lower bound on ρ given
in the following lemma.

Lemma 2 (Collision probabilities for {0, 1}d [AR16, Lemma 5]). For every hash function h : {0, 1}d →
Z and every 0 ≤ γ ≤ 1/2:

Pr
x∼Fd2

y∼Nγ(x)

[h(x) = h(y)] ≤ Pr
x,y∼Fd2

[h(x) = h(y)]
γ

1−γ . (4)

This lemma gives the relation between the probabilities p1, p2 and thus, tells what is the best sensitivity
parameter ρ we can hope for. Namely, for the target distance r = γd, using the above lemma we obtain
the lower bound ρ ≥ γ/(1 − γ). So the best we could achieve is the query time T Query = |L|ρ and the total

runtime of the nearest neighbor problem is T = |L|1+ρ, which is the runtime of both the preprocessing step
and the query step, when the number of queries is |L|. Taking the logarithm, we obtain the following lower
bound:

log2 T ≥
1

1− γ
log2 |L| . (5)

Next we compare the obtained lower bound with what is achieved in [MO15].

6.2 Spherical caps on the Hamming cube

For the dense case, the best known algorithm for the nearest neighbor problem is due to May–Ozerov [MO15]
(see a recent result of Esser et. al [EKZ21] for a different analysis of this algorithm). At the heart of May–
Ozerov is a hashing technique analogous to the one defined in Theorem 3, which is based on spherical caps in
the Hamming space. As the main application of this hashing technique is to solve the closest pairs problem,
we shall describe it the setting when the insert regions Ui and the query regions Qi are the same.

The set up for the nearest neighbor data structure is as follows. An insertion region is defined by a center
vi ⊆ Fd2 of the spherical cap Ui = {z ∈ Fd2 : ‖z− vi‖ ≤ β} ⊆ Fd2, where β is the insertion parameter subject
to optimization. The purpose of these regions is similar to the Euclidean metric case: when two vectors end
up in the same region, i.e., both are close to some vi, then these vectors are also likely to be nearby to one
another on the cube.

Given on input a list L ⊂ Fd2, the nearest neighbor search assigns each y ∈ L to its regions thus defining
the buckets as Bi = Ui ∩L. The nearest neighbor data structure D consists of the union of all these buckets.
Given a query x we then look at all buckets Bi that are α-close to x (i.e., all vi with ‖x− vi‖ ≤ α), and we
check if any of the vectors y stored in these buckets gives a solution to the nearest neighbor problem with
parameter γ.

Similar to Theorem 3, we assume that we can efficiently find all relevant centers to a given point. An
efficient procedure for that is called the ‘stripes technique’ and is described in [MO15]. The idea is to make
the filter vectors structured (i.e., a concatenation of several codewords from some lower-dimensional codes).

15

We will not describe this technique here in detail (for that, see [BDGL16,MO15]), but remark the main
advantage of such a construction: it allows us find all close buckets in time (up to lower-order terms) equal
to the output size.

When nearest neighbor searching is applied to the closest pairs problem, the number of queries is equal
to |L|. In this case, the optimal choice of parameters is α = β = H−1(1− log2 |L|/d) so that the runtime T
of the nearest neighbor search step are determined by the total number of buckets |Ui| which we denote as
t. This number is computed in [MO15, Theorem 1].

Theorem 7 (Hash-based complexities for {0, 1}d [MO15, Thm. 1]). To solve the nearest neighbor
problem in the Hamming metric with some fixed target 0 ≤ γ ≤ 1/2, with γ = Θ(d), the May–Ozerov
algorithm uses a number t of hash regions satisfying:

log2 t = (1− γ)

(
1−H

(
H−1(1− log2 |L|/d)− γ/2

1− γ

))
. (6)

The following observation is important for our result: when the list size |L| becomes subexponential in

the dimension d, then the number of hash regions given above converges to |L|
1

1−γ . More precisely, [MO15,
Corollary 1] shows that:

lim
1
d log2|L|→0

log2 t

log2 |L|
=

1

1− γ
. (7)

We shall next compare the lower and upper bounds for nearest neighbor searching on the Hamming cube.

6.3 Comparison between upper and lower bounds

Notice first that the lower bound given in Equation 5 matches exactly the performance of the May–Ozerov
upper bound in the setting when the input list size is subexponential in the dimension, i.e., in the sparse
regime.

Decoding algorithms we discuss in the next section work in the dense regime, i.e., when |L| = 2cd for
a constant c. In this regime the above lower bound does not exactly match the complexity of May–Ozerov
given in Equation (6) as one can see from the plot given in Figure 1, where we compare the two nearest

neighbor search runtimes given in Equation (5). For a given target distance γ we set |L| = 2
1
2−

1
2H(γ), so

we expect only sub-exponentially many pairs from L to satisfy the target distance condition, assuming L
consists of uniformly randomly vectors. Notice that the larger γ is, the smaller the list sizes we choose and
the closer both bounds are to each other. This is consistent with the fact that May–Ozerov is optimal in the
sparse regime.

One source of the discrepancy between the upper bound of May–Ozerov and the lower bound based on
the Andoni–Razensteyn result is that the latter uses the probabilistic distance between the two close vectors
x,y, namely the distance follows a binomial distribution with expected value γ · d, while the algorithm
of [MO15] targets to find x,y whose distance is at most γ · d (with high concentration at the boundary).
The tails of the distributions of the distances differ in these two cases leading to a gap between the bounds.

Another source of the gap lies in an inequality which Andoni–Razensteyn used in the proof of Lemma 2.
In particular, they use the fact (see [KV15] for a proof) that for an arbitrary set A ⊆ Fd2, the inequality

Prx∼Fd2 ,y∼Nγ(x) [x ∈ A | y ∈ A] ≤
(
|A| /2d

)γ/(1−γ)
holds. This inequality is not tight when A is chosen to be

a spherical cap in the Hamming space. This leaves the question of whether one can construct a set A, which
would be useful for nearest neighbor searching (that is, it would have an efficient membership oracle), and
for which the inequality holds with equality. That would give an improvement to nearest neighbor searching
in the dense regime, albeit a very small one, as we shall see in the next section.

7 Application to decoding and code-based cryptography

All currently known fastest information set decoding algorithms for the dense setting make use of nearest
neighbor searching. The goal of this chapter is to see how far down we could push the complexity of these

16

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

γ = r/d

(l
og

2
t)
/d

query time complexity (upper bound)

query time complexity (lower bound)

list size exponent 1
2
− 1

2
H(γ)

Fig. 1: Nearest neighbor search runtime exponents (dimensionless) for the target distance γ for lists of sizes

2(1
2−

1
2H(γ))d, i.e., we expect sub-exponentially many solutions. Upper bounds are determined by the number

of hash regions t and follow from Equation (6), while lower bounds are based on Equation (5).

decoding algorithms if we had a nearest neighbor search technique that matches the lower bound derived in
the previous section.

In this section we will consider two algorithms: Stern’s algorithm [Ste89], and the most recent algorithm
of Both–May [BM18]. The first is the simplest information set decoding algorithm where nearest neighbor
searching can be applied, while the second is the one that achieves the best currently known asymptotic time
complexities.

7.1 Stern’s algorithm

Recall from Definition 2, that as input the information set decoding problem receives a parity check matrix
H ∈ Fd−k×d2 and a syndrome s ∈ Fd−k2 . Stern’s algorithm transforms the parity check matrix H into
systematic form [Q | Id−k] (provided the last d− k columns of H form an invertible matrix, which happens
with constant success probability). The same transformation is applied to the syndrome s giving a new
syndrome s̄. So the task is to find e that satisfies the equation:

[Q | Id−k] · e = s̄ for Q ∈ Fd−k×k2 . (8)

Stern’s algorithm searches for a vector e whose weight is p > 0 on the last d− k coordinates (hence, weight
w − p on the first k coordinates). The probability that this happens is P =

(
k
p

)(
d−k
w−p

)
/
(
d
w

)
. The inverse of

this quantity is the expected number of permutations we need to apply on H to obtain the desired weight
distribution on e. Once a good permutation is found, Equation (8) rewrites as:

Qe1 + Qe2 + e3 = s̄ =⇒ Qe1 ≈ Qe2 + s̄. (9)

Here e1 has weight p/2 on the first k/2 coordinates and is 0 on the last d− k/2 coordinates, e2 has weight
p/2 on the coordinates {k/2 + 1, . . . , k} and is 0 elsewhere, and ‖e3‖ = w − p. Enumerating over all e1 and

17

e2 into the lists L1 = {(Qe1, e1)} and L2 = {(Qe2 + s, e2)}, we receive an instance of the nearest neighbor
problem with target distance w − p in the Hamming metric.

May–Ozerov in [MO15] propose to solve this task with nearest neighbor searching and obtain the runtime
of Stern’s algorithm as illustrated in Figure 2. We compare this with the decoding complexities if instead of
the upper bound of May–Ozerov, the lower bound runtimes from Equation (5) are substituted. Note that
this is different from the comparison given in Figure 1 since the complexity of Stern’s algorithm is not only
determined by the complexity of the nearest neighbor subroutine, but also by the number of permutations.
For various code rates k, Figure 2 compares the runtime exponents c for Stern’s algorithm when (i) the
nearest neighbor technique of [MO15] as in Equation (6) is used, or (ii) the lower bound for nearest neighbor
searching is used. It also gives corresponding list sizes |L1| = |L2| =

(
k
p

)
≈ 2kH(p/k), but note that the

optimal value for p slightly differs between the two runtimes. As the nearest neighbor search step becomes
cheaper, the p is allowed to increase leading to larger lists.

7.2 The Both–May algorithm

The recent information set decoding algorithm due to Both–May [BM18] significantly improves Stern’s
algorithm, and is currently the fastest algorithm for solving the information set decoding problem in the
dense regime. We shall not describe the algorithm here but point out that the algorithm uses two-step nearest
neighbor searching.

Similar to Stern’s algorithm we compare the runtime of the Both–May algorithm when for the nearest
neighbor steps, either (i) the best known nearest neighbor approach of May–Ozerov is used, or (ii) the
lower bound given in Equation (5) is used. Optimal runtimes for each code rate k are given in Figure 3.
We notice that the Both–May algorithm, while being quite close to the lower bound, leaves more potential
for improvement than Stern’s algorithm. This can be explained by looking at the lists sizes: the Both–May
algorithm allows for larger lists that Stern’s algorithm, thus making the contribution of the nearest neighbor
subroutine more substantial. Still, our conclusion is that a potential improvement in the nearest neighbor
subroutine will not significantly improve the overall algorithm.

7.3 Relevance for code-based cryptography

The hardness of the information set decoding problem is essential for the security of prominent code-based
cryptosystems, such as the McEliece cryptosystem [McE78]. All proposed constructions for the NIST stan-
dardization competition [BCL+19] work in the regime where the error is of weight sub-linear in d, thus
making Stern’s algorithm and other faster information set decoding algorithms like [BM18] asymptotically
irrelevant [CTS16]. This does not imply, however, that these information set decoding algorithms are practi-
cally irrelevant for concrete parameters. To the best of our knowledge, the question of the exact complexity
of the fastest information set decoding algorithms using recent improvements has not been investigated. This
leaves the possibility that information set decoding algorithms which do use nearest neighbor techniques will
eventually be recognized as being actually applicable to cryptographic parameters as well, in which case our
lower bounds may serve as conservative estimates for potential attack costs, and for choosing parameters.

Acknowledgments

Elena Kirshanova is supported by the “5-100” Russian academic excellence project and by the Young Russian
Mathematics scholarship. Thijs Laarhoven is supported by a Veni grant from NWO under project number
016.Veni.192.005. Part of this work was done while both authors were visiting the Simons Institute for the
Theory of Computing at UC Berkeley for the Spring 2020 program “Lattices: Algorithms, Complexity, and
Cryptography.”

References

AD97. Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-case/average-case equivalence.
In STOC, pages 284–293, 1997.

18

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

R = k/d

(l
og

2
t)
/d

Stern time complexity (upper bound)

Stern time complexity (lower bound)

list size exponents (upper bound)

list size exponents (lower bound)

Fig. 2: Runtime exponents for Stern’s information set decoding algorithm when either May–Ozerov’s nearest
neighbor search approach is used (blue circles), or when the lower bound is implemented (red squares). The
code rate R is on the horizontal axis. The other two plots show the list size exponents that Stern’s algorithm
runs the nearest neighbor step on. The faster nearest neighbor searching (the lower bound) allows larger
lists, hence there is a bigger gap between the list sizes in the most dense regime (around R = 0.5). The larger
or the smaller the code rate is, the closer we are to the sparse setting, so the closer the bounds are.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

R = k/d

(l
og

2
t)
/d

Both–May time complexity (upper bound)

Both–May time complexity (lower bound)

list size exponents (upper bound)

list size exponents (lower bound)

Fig. 3: Runtime exponents for the Both–May [BM18] algorithm when either the May–Ozerov [MO15] upper
bound is used (blue circles), or our lower bound is substituted (red squares). The other two plots show the
list size exponents that nearest neighbor searching receives on input. The code rate R is on the X-axis.

19

ADH+19. Martin R. Albrecht, Léo Ducas, Gottfried Herold, Elena Kirshanova, Eamonn Postlethwaite, and Marc
Stevens. The general sieve kernel and new records in lattice reduction. In EUROCRYPT, pages 717–746,
2019.

ADRS15. Divesh Aggarwal, Daniel Dadush, Oded Regev, and Noah Stephens-Davidowitz. Solving the shortest
vector problem in 2n time via discrete Gaussian sampling. In STOC, pages 733–742, 2015.

AGPS20. Martin R. Albrecht, Vlad Gheorghiu, Eamonn W. Postlethwaite, and John M. Schanck. Estimating
quantum speedups for lattice sieves. In ASIACRYPT, pages 583–613, 2020.

AI06. Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest neighbor
in high dimensions. In FOCS, pages 459–468, 2006.

AIL+15. Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig Schmidt. Practical and
optimal LSH for angular distance. In NIPS, pages 1225–1233, 2015.

AINR14. Alexandr Andoni, Piotr Indyk, Huy Lê Nguyên, and Ilya Razenshteyn. Beyond locality-sensitive hashing.
In SODA, pages 1018–1028, 2014.

AKS01. Miklós Ajtai, Ravi Kumar, and Dandapani Sivakumar. A sieve algorithm for the shortest lattice vector
problem. In STOC, pages 601–610, 2001.

ALRW17. Alexandr Andoni, Thijs Laarhoven, Ilya Razenshteyn, and Erik Waingarten. Optimal hashing-based
time-space trade-offs for approximate near neighbors. In SODA, pages 47–66, 2017.

ANSS18. Yoshinori Aono, Phong Q. Nguyen, Takenobu Seito, and Junji Shikata. Lower bounds on lattice enu-
meration with extreme pruning. In CRYPTO, pages 608–637, 2018.

AR15. Alexandr Andoni and Ilya Razenshteyn. Optimal data-dependent hashing for approximate near neigh-
bors. In STOC, pages 793–801, 2015.

AR16. Alexandr Andoni and Ilya Razenshteyn. Tight lower bounds for data-dependent locality-sensitive hash-
ing. In SOCG, pages 1–15, 2016.

BCD+16. Joppe Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria Nikolaenko, Ananth Raghu-
nathan, and Douglas Stebila. Frodo: Take off the ring! practical, quantum-secure key exchange from LWE.
In CCS, pages 1006–1018, 2016.

BCL+19. Daniel J. Bernstein, Tung Chou, Tanja Lange, Ingo von Maurich, Rafael Misoczki, Ruben Niederhagen,
Edoardo Persichetti, Christiane Peters, Peter Schwabe, Nicolas Sendrier, Jakub Szefer, and Wen Wang.
Classic McEliece: conservative code-based cryptography, 2019.

BDGL16. Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in nearest neighbor
searching with applications to lattice sieving. In SODA, pages 10–24, 2016.

BDK+18. Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M. Schanck, Peter
Schwabe, and Damien Stehlé. CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM. In Euro
S&P, pages 353–367, 2018.

BGJ15. Anja Becker, Nicolas Gama, and Antoine Joux. Speeding-up lattice sieving without increasing the
memory, using sub-quadratic nearest neighbor search. Cryptology ePrint Archive, Report 2015/522,
pages 1–14, 2015.

BGML+18. Sauvik Bhattacharya, Oscar Garcia-Morchon, Thijs Laarhoven, Ronald Rietman, Markku-Juhani O.
Saarinen, Ludo Tolhuizen, and Zhenfei Zhang. Round5: Compact and fast post-quantum public-key
encryption. Cryptology ePrint Archive, Report 2018/725, 2018.

BJMM12. Anja Becker, Antoine Joux, Alexandre May, and Alexandre Meurer. Decoding random binary linear
codes in 2n/20: How 1 + 1 = 0 improves information set decoding. In EUROCRYPT, pages 520–536,
2012.

BL16. Anja Becker and Thijs Laarhoven. Efficient (ideal) lattice sieving using cross-polytope LSH. In
AFRICACRYPT, pages 3–23, 2016.

BLS16. Shi Bai, Thijs Laarhoven, and Damien Stehlé. Tuple lattice sieving. In ANTS, pages 146–162, 2016.
BM18. Leif Both and Alexander May. Decoding linear codes with high error rate and its impact for lpn security.

In PQCrypto, pages 25–46, 2018.
BT76. Albert Baernstein and B.A. Taylor. Spherical rearrangements, subharmonic functions, and ∗ -functions

in n -space. Duke Math. J., 43(2):245–268, 06 1976.
Chr17. Tobias Christiani. A framework for similarity search with space-time tradeoffs using locality-sensitive

filtering. In SODA, pages 31–46, 2017.
CTS16. Rodolfo Canto Torres and Nicolas Sendrier. Analysis of information set decoding for a sub-linear error

weight. In Proceedings of the 7th International Workshop on Post-Quantum Cryptography - Volume
9606, PQCrypto 2016, page 144–161, 2016.

DLdW20. Emmanouil Doulgerakis, Thijs Laarhoven, and Benne de Weger. Sieve, enumerate, slice, and lift: Hybrid
lattice algorithms for SVP via CVPP. In AfricaCrypt, 2020.

DLvW20. Léo Ducas, Thijs Laarhoven, and Wessel van Woerden. The randomized slicer for CVPP: Sharper, faster,
smaller, batchier. In PKC, pages 3–36, 2020.

20

Duc18. Léo Ducas. Shortest vector from lattice sieving: a few dimensions for free. In EUROCRYPT, pages
125–145, 2018.

EKZ21. Andre Esser, Robert Kübler, and Floyd Zweydinger. A faster algorithm for finding closest pairs in
hamming metric, 2021.

FP85. Ulrich Fincke and Michael Pohst. Improved methods for calculating vectors of short length in a lattice.
Mathematics of Computation, 44(170):463–471, 1985.

Gen09. Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178, 2009.
GGH13. Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lattices. In EU-

ROCRYPT, pages 1–17, 2013.
GNR10. Nicolas Gama, Phong Q. Nguyên, and Oded Regev. Lattice enumeration using extreme pruning. In

EUROCRYPT, pages 257–278, 2010.
GPV08. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new crypto-

graphic constructions. In STOC, pages 197–206, 2008.
HK17. Gottfried Herold and Elena Kirshanova. Improved algorithms for the approximate k-list problem in

Euclidean norm. In PKC, pages 16–40, 2017.
HKL18. Gottfried Herold, Elena Kirshanova, and Thijs Laarhoven. Speed-ups and time-memory trade-offs for

tuple lattice sieving. In PKC, pages 407–436, 2018.
JL84. William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space.

Contemporary Mathematics, 26(1):189–206, 1984.
Kan83. Ravi Kannan. Improved algorithms for integer programming and related lattice problems. In STOC,

pages 193–206, 1983.
Kle00. Philip Klein. Finding the closest lattice vector when it’s unusually close. In SODA, pages 937–941, 2000.
KMPM19. Elena Kirshanova, Erik Martensson, Eamonn W. Postlethwaite, and Subhayan Roy Moulik. Quantum

algorithms for the approximate k-list problem and their application to lattice sieving. In ASIACRYPT,
pages 521–551, 2019.

KV15. Subhash A. Khot and Nisheeth K. Vishnoi. The unique games conjecture, integrality gap for cut problems
and embeddability of negative-type metrics into `1. J. ACM, 62(1), 2015.

Laa15a. Thijs Laarhoven. Sieving for shortest vectors in lattices using angular locality-sensitive hashing. In
CRYPTO, pages 3–22, 2015.

Laa15b. Thijs Laarhoven. Tradeoffs for nearest neighbors on the sphere. arXiv:1511.07527 [cs.DS], pages 1–16,
2015.

Laa16. Thijs Laarhoven. Search problems in cryptography. PhD thesis, Eindhoven University of Technology,
2016.

Laa17. Thijs Laarhoven. Faster tuple lattice sieving using spherical locality-sensitive filters. arXiv:1705.02828
[cs.DS], pages 1–14, 2017.

Laa20. Thijs Laarhoven. Polytopes, lattices, and spherical codes for the nearest neighbor problem. In ICALP,
2020.

Laa21. Thijs Laarhoven. Approximate Voronoi cells for lattices, revisited. Journal of Mathematical Cryptology,
15:1–21, 2021.

Lan20. Tanja Lange. Overview of code-based crypto assumptions. Talk at Quantum Cryptanalysis of Post-
Quantum Cryptography, 2020.

LdW15. Thijs Laarhoven and Benne de Weger. Faster sieving for shortest lattice vectors using spherical locality-
sensitive hashing. In LATINCRYPT, pages 101–118, 2015.

LMvdP15. Thijs Laarhoven, Michele Mosca, and Joop van de Pol. Finding shortest lattice vectors faster using
quantum search. Designs, Codes and Cryptography, 77(2):375–400, 2015.

LPR10. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over
rings. In EUROCRYPT, pages 1–23, 2010.

McE78. Robert J. McEliece. A public-key cryptosystem based on algebraic coding theory. The Deep Space
Network Progress Report, pages 114–116, 1978.

MMT11. Alexandre May, Alexandre Meurer, and Enrico Thomae. Decoding random linear codes in Õ(20.54n). In
ASIACRYPT, volume 7073 of LNCS, pages 107–124, 2011.

MNP07. Rajeev Motwani, Assaf Naor, and Rina Panigrahy. Lower bounds on locality sensitive hashing. SIAM
Journal of Discrete Mathematics, 21(4):930–935, 2007.

MO15. Alexander May and Ilya Ozerov. On computing nearest neighbors with applications to decoding of binary
linear codes. In EUROCRYPT, pages 203–228, 2015.

MR07. Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on Gaussian measures.
SIAM Journal on Computing, 37(1):267–302, 2007.

MV10a. Daniele Micciancio and Panagiotis Voulgaris. A deterministic single exponential time algorithm for most
lattice problems based on Voronoi cell computations. In STOC, pages 351–358, 2010.

21

MV10b. Daniele Micciancio and Panagiotis Voulgaris. Faster exponential time algorithms for the shortest vector
problem. In SODA, pages 1468–1480, 2010.

NV08. Phong Q. Nguyên and Thomas Vidick. Sieve algorithms for the shortest vector problem are practical.
Journal of Mathematical Cryptology, 2(2):181–207, 2008.

OWZ14. Ryan O’Donnell, Yi Wu, and Yuan Zhou. Optimal lower bounds for locality-sensitive hashing (except
when q is tiny). ACM Transactions on Computation Theory, 6(1):5:1–5:13, 2014.

Pan06. Rina Panigrahy. Entropy based nearest neighbor search in high dimensions. In SODA, pages 1186–1195,
2006.

Pra62. Eugene Prange. The use of information sets in decoding cyclic codes. IRE Trans. Inf. Theory, 8:5–9,
1962.

PS09. Xavier Pujol and Damien Stehlé. Solving the shortest lattice vector problem in time 22.465n. Cryptology
ePrint Archive, Report 2009/605, pages 1–7, 2009.

PTW10. Rina Panigrahy, Kunal Talwar, and Udi Wieder. Lower bounds on near neighbor search via metric
expansion. In FOCS, pages 805–814, Oct 2010.

Reg05. Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In STOC, pages
84–93, 2005.

Reg10. Oded Regev. The learning with errors problem (invited survey). In CCC, pages 191–204, 2010.
Rie30. Frederic Riesz. Sur une inégalité intégrale. Journal of the London Mathematical Society, s1-5(3):162–168,

1930.
RSA78. Ronald L. Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining digital signatures and

public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.
Sch19. John Schanck. Sieve tables, 2019. https://github.com/jschanck/sieve-tables.
Sho94. Peter W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In FOCS, pages

124–134, 1994.
SSTX09. Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Efficient public key encryption based

on ideal lattices. In ASIACRYPT, pages 617–635, 2009.
Ste89. Jacques Stern. A method for finding codewords of small weight. In Coding Theory and Applications,

pages 106–113, 1989.
svp20. SVP challenge, 2020. http://latticechallenge.org/svp-challenge/.
TT07. Kengo Terasawa and Yuzuru Tanaka. Spherical LSH for approximate nearest neighbor search on unit

hypersphere. In WADS, pages 27–38, 2007.
TT09. Kengo Terasawa and Yuzuru Tanaka. Approximate nearest neighbor search for a dataset of normalized

vectors. IEICE Transactions on Information and Systems, 92(9):1609–1619, 2009.

22

https://github.com/jschanck/sieve-tables
http://latticechallenge.org/svp-challenge/

	Lower bounds on lattice sieving and information set decoding

		k		NN		NNLow		ListSize		ListSizeLB

		0.0100000000000000		 0.00799379789748889		 0.00797242743567428		 0.00475336046343533		 0.00483975267846820

		0.0350000000000000		 0.0230126434688465		 0.0230126434688465		 0.0140408650993790		 0.0140408650993790

		0.0600000000000000		 0.0354767026787075		 0.0350390082911637		 0.0214563337204995		 0.0212517806010913

		0.0850000000000000		 0.0456968787287925		 0.0450301899339997		 0.0282365291846183		 0.0285168968578450

		0.100000000000000		 0.0512672641085846		 0.0503058956165674		 0.0304992155014027		 0.0304710126069774

		0.125000000000000		 0.0592675113245369		 0.0566435274940152		 0.0364341385782299		 0.0382576424201106

		0.150000000000000		 0.0662182416451941		 0.0636798278117728		 0.0416016966992156		 0.0432176305225392

		0.175000000000000		 0.0722136597373545		 0.0708387481253522		 0.0475969689432313		 0.0467484967238319

		0.200000000000000		 0.0774705254555057		 0.0758619033858334		 0.0518484667733109		 0.0527921920940007

		0.225000000000000		 0.0820465586713069		 0.0802409421429857		 0.0554823519820973		 0.0570651070150811

		0.250000000000000		 0.0858734634968130		 0.0840248481123846		 0.0594129464729306		 0.0596479536697517

		0.275000000000000		 0.0891696588103225		 0.0871643140625732		 0.0620761167783428		 0.0638505673663711

		0.300000000000000		 0.0919021403874274		 0.0897892930608416		 0.0644637913955641		 0.0658867913394144

		0.325000000000000		 0.0941065764114368		 0.0919101065405790		 0.0664929533172983		 0.0687335173256275

		0.350000000000000		 0.0958128734425180		 0.0935406411569519		 0.0680670383907354		 0.0703813582853978

		0.375000000000000		 0.0970459209660197		 0.0947228269895352		 0.0695399634607996		 0.0719224180689845

		0.400000000000000		 0.0978283292197101		 0.0954585033140967		 0.0700675772739228		 0.0726237088891271

		0.425000000000000		 0.0981707374465356		 0.0957800841370122		 0.0710622678859196		 0.0734929018102332

		0.450000000000000		 0.0980935330978555		 0.0957224537559155		 0.0714743938791250		 0.0749592758182422

		0.475000000000000		 0.0976095463982463		 0.0952205998025809		 0.0716883569898401		 0.0736414051151166

		0.500000000000000		 0.0967305041549239		 0.0943666679673680		 0.0717053995251205		 0.0742308309779326

		0.525000000000000		 0.0954725663333590		 0.0931400688422407		 0.0723932136604581		 0.0725012997575840

		0.550000000000000		 0.0938212481484831		 0.0915458019825347		 0.0711489031207767		 0.0722584895693324

		0.575000000000000		 0.0918108472827409		 0.0896003968796878		 0.0702311072706052		 0.0711422771323027

		0.600000000000000		 0.0894407515516082		 0.0873011413607802		 0.0680383371010578		 0.0696805048204740

		0.625000000000000		 0.0866960763328606		 0.0846524904377438		 0.0672889296909463		 0.0688471698895579

		0.650000000000000		 0.0836164238899491		 0.0816768269966814		 0.0667658745938988		 0.0675005390065433

		0.675000000000000		 0.0801567515918687		 0.0783242848742288		 0.0629444596333350		 0.0649699910580299

		0.700000000000000		 0.0763554425598443		 0.0746370129066461		 0.0614183427724304		 0.0610271117122176

		0.725000000000000		 0.0721977805474853		 0.0706085518557473		 0.0579670741590240		 0.0582361436317307

		0.750000000000000		 0.0676881914975228		 0.0662414540496511		 0.0550577711812908		 0.0560253595630364

		0.775000000000000		 0.0628019740794636		 0.0615120190393081		 0.0516712207347329		 0.0522425732532767

		0.800000000000000		 0.0575610694021910		 0.0564252194992819		 0.0483067791740759		 0.0478632290568810

		0.825000000000000		 0.0523454807786205		 0.0514885435453173		 0.0480858513163567		 0.0471877669278249

		0.850000000000000		 0.0460418539026503		 0.0453088985078243		 0.0414637934085086		 0.0411488327399876

		0.875000000000000		 0.0395582064204796		 0.0389423763591940		 0.0343495357133587		 0.0353477240267372

		0.900000000000000		 0.0328314177585694		 0.0322465582808552		 0.0281843416772859		 0.0285185729615221

		0.925000000000000		 0.0257917350451114		 0.0252437739723517		 0.0217519648106556		 0.0220972720517876

		0.950000000000001		 0.0187047396301406		 0.0187047396301406		 0.0162212606658851		 0.0162212606658851

		0.975000000000001		 0.00987770984981453		 0.00987770984981453		 0.00821776528953924		 0.00821776528953924

		k		 NN		 NNLow		 ListSize

		0.0100000000000000		 0.465718451716449		 0.464245890961661		 0.459603432052044

		0.0200000000000000		 0.440612559193828		 0.438040539519479		 0.429279728729090

		0.0300000000000000		 0.418676896670924		 0.415261928952796		 0.402804071084212

		0.0400000000000000		 0.398700064398690		 0.394639484852909		 0.378853905458793

		0.0500000000000000		 0.380128312796927		 0.375580548886339		 0.356801521442022

		0.0600000000000000		 0.362646813873034		 0.357742064279534		 0.336277540422762

		0.0700000000000000		 0.346054470297694		 0.340901262956869		 0.317038174549888

		0.0800000000000000		 0.330213022711006		 0.324902614020504		 0.298910404898864

		0.0900000000000000		 0.315022463446004		 0.309631968646097		 0.281765091467949

		0.100000000000000		 0.300407730036339		 0.295002448005955		 0.265502203205359

		0.110000000000000		 0.286310893656818		 0.280946090918805		 0.250042020917736

		0.120000000000000		 0.272686283255295		 0.267408599268543		 0.235319567356318

		0.130000000000000		 0.259497292380838		 0.254345870673570		 0.221280907486005

		0.140000000000000		 0.246714205664436		 0.241721621137875		 0.207880594178572

		0.150000000000000		 0.234312671770185		 0.229505703108000		 0.195079847641800

		0.160000000000000		 0.222272601897035		 0.217672884142520		 0.182845222679717

		0.170000000000000		 0.210577357502664		 0.206201940515530		 0.171147610627890

		0.180000000000000		 0.199213140047355		 0.195074972116903		 0.159961477135860

		0.190000000000000		 0.188168525287326		 0.184276876614878		 0.149264270058051

		0.200000000000000		 0.177434103226661		 0.173794940695398		 0.139035952556319

		0.210000000000000		 0.167002196805839		 0.163618519030839		 0.129258630034363

		0.220000000000000		 0.156866640315755		 0.153738780152586		 0.119916248519017

		0.230000000000000		 0.147022603881216		 0.144148504190560		 0.110994348226731

		0.240000000000000		 0.137466454046571		 0.134841921457551		 0.102479860307739

		0.250000000000000		 0.128195643119864		 0.125814583693911		 0.0943609377704336

		0.260000000000000		 0.119208621776684		 0.117063261829312		 0.0866268137536911

		0.270000000000000		 0.110504770807047		 0.108585865610839		 0.0792676818959122

		0.280000000000000		 0.102084348891389		 0.100381381555465		 0.0722745947199347

		0.290000000000000		 0.0939484540591603		 0.0924498265215461		 0.0656393768302977

		0.300000000000000		 0.0860989970720863		 0.0847922148352195		 0.0593545503846536

		0.310000000000000		 0.0785386854373630		 0.0774105374073502		 0.0534132708110716

		0.320000000000000		 0.0712710171311066		 0.0703077516731662		 0.0478092711377530

		0.330000000000000		 0.0643002834165778		 0.0634877815076659		 0.0425368136101362

		0.340000000000000		 0.0576315804215947		 0.0569555265355833		 0.0375906475134850

		0.350000000000000		 0.0512708293633323		 0.0507168804803916		 0.0329659723122545

		0.360000000000000		 0.0452248055407487		 0.0447787583941466		 0.0286584053722538

		0.370000000000000		 0.0395011764360464		 0.0391491327880429		 0.0246639536564670

		0.380000000000000		 0.0341085494867233		 0.0338370788497584		 0.0209789888868502

		0.390000000000000		 0.0290565303371845		 0.0288528290941907		 0.0176002257474563

		0.400000000000000		 0.0243557926428308		 0.0242078379544427		 0.0145247027726656

		0.410000000000000		 0.0200181608205455		 0.0199148569848949		 0.0117497656210880

		0.420000000000000		 0.0160567074926866		 0.0159880215227125		 0.00927305248317323

		0.430000000000000		 0.0124858678241234		 0.0124429498430528		 0.00709248141054009

		0.440000000000000		 0.00932157348755524		 0.00929685605173596		 0.00520623938897213

		0.450000000000000		 0.00658140966844669		 0.00656867819290157		 0.00361277300609586

		0.460000000000000		 0.00428479936925056		 0.00427922331460574		 0.00231078058988710

		0.470000000000000		 0.00245322035776404		 0.00245133153986827		 0.00129920571613018

		0.480000000000000		 0.00111046150400409		 0.00111006154307512		 0.000577232002399064

		0.490000000000000		 0.000282927078054200		 0.000282900242343232		 0.000144279123595048

		

		k		NN		NNLow		ListSize		ListSizeLB

		0.0100000000000000		 0.0110032573429920		 0.0109983387985257		 0.00234497796794641		 0.00234497796794641

		0.0300000000000000		 0.0231454324132165		 0.0230180161434632		 0.0132193634884604		 0.0132193634884604

		0.0500000000000000		 0.0340422058100434		 0.0338566346921149		 0.0170019261432070		 0.0170019261432070

		0.0700000000000000		 0.0437210876798848		 0.0435017272969676		 0.0193727542909154		 0.0193727542909154

		0.0900000000000000		 0.0524027562377213		 0.0521610691439083		 0.0211048017115177		 0.0211048017115177

		0.110000000000000		 0.0602341245452361		 0.0599764411927309		 0.0224704418584002		 0.0224704418584002

		0.130000000000000		 0.0673191777494324		 0.0670493430266531		 0.0235980194852462		 0.0235980194852462

		0.150000000000000		 0.0737356207262164		 0.0734548586268345		 0.0245583689365857		 0.0249536379538153

		0.170000000000000		 0.0795438806231183		 0.0792358000181111		 0.0253947583769876		 0.0274343415062788

		0.190000000000000		 0.0847862394463700		 0.0844408841142865		 0.0272077109260158		 0.0294973869062968

		0.210000000000000		 0.0894961953529463		 0.0891150853134002		 0.0290005199030336		 0.0315410988233021

		0.230000000000000		 0.0937106080019793		 0.0932955309168451		 0.0307777244225091		 0.0335698921315094

		0.250000000000000		 0.0974605108108285		 0.0970133340864129		 0.0323201623948718		 0.0353736057988864

		0.270000000000000		 0.100772161628340		 0.100294713195796		 0.0338471150651390		 0.0369460724765994

		0.290000000000000		 0.103668061645748		 0.103162345481140		 0.0351323674169501		 0.0385010452538612

		0.310000000000000		 0.106167699315945		 0.105635597567595		 0.0364013744616820		 0.0398182224809591

		0.330000000000000		 0.108288051500545		 0.107731543307106		 0.0374210854055818		 0.0411174207608689

		0.350000000000000		 0.110043881585289		 0.109464932156447		 0.0386618009977744		 0.0421716159914078

		0.370000000000000		 0.111448219740704		 0.110848872264416		 0.0394098205991726		 0.0432066868094019

		0.390000000000000		 0.112512615227403		 0.111894876848648		 0.0403829489287792		 0.0442249191156875

		0.410000000000000		 0.113247181496524		 0.112612992026350		 0.0410966082153906		 0.0449894964519889

		0.430000000000000		 0.113660928599608		 0.113012305226008		 0.0417942494337888		 0.0454929117478369

		0.450000000000000		 0.113761657301621		 0.113100607480099		 0.0422236218742019		 0.0462187359617556

		0.470000000000000		 0.113556447397668		 0.112884991737277		 0.0426340515651228		 0.0466808954521829

		0.490000000000000		 0.113051337440129		 0.112371562858040		 0.0430271396272476		 0.0471234938788559

		0.510000000000000		 0.112251699537113		 0.111565561194316		 0.0434042923746709		 0.0472931255884604

		0.530000000000000		 0.111161993850292		 0.110471671914945		 0.0435002143826180		 0.0474399649497161

		0.550000000000000		 0.109786201461143		 0.109093811293547		 0.0435764938810603		 0.0475655806996740

		0.570000000000000		 0.108127551826839		 0.107435112608722		 0.0436344106888668		 0.0474060584083113

		0.590000000000000		 0.106188453857636		 0.105498304762242		 0.0433983266558733		 0.0472212851929589

		0.610000000000000		 0.103971009116316		 0.103285372055637		 0.0431393654752552		 0.0467396300226206

		0.630000000000000		 0.101476481945372		 0.100797577391721		 0.0428586751652141		 0.0465048595483572

		0.650000000000000		 0.0987055206340720		 0.0980357605364482		 0.0422691250082065		 0.0459681763260916

		0.670000000000000		 0.0956581570354853		 0.0949998947468292		 0.0416522171782995		 0.0451187667667391

		0.690000000000000		 0.0923335860014171		 0.0916895119910947		 0.0410089100600621		 0.0442342003106890

		0.710000000000000		 0.0887304524628235		 0.0881031552157608		 0.0403400637450974		 0.0433154384368882

		0.730000000000000		 0.0848465073246756		 0.0842388487181826		 0.0393411729683638		 0.0423633222314641

		0.750000000000000		 0.0806785933481464		 0.0800934026161886		 0.0383092636532439		 0.0410747471487185

		0.770000000000000		 0.0762225193081832		 0.0756628084289114		 0.0369290915655746		 0.0394342953874833

		0.790000000000000		 0.0714728784523152		 0.0709420473465373		 0.0355060332595304		 0.0377403992096472

		0.810000000000000		 0.0664369822141900		 0.0659243294382499		 0.0356692649114759		 0.0359926478074838

		0.830000000000000		 0.0611379467240875		 0.0606222501533606		 0.0358284928459499		 0.0358284928459499

		0.850000000000000		 0.0555996128587625		 0.0550891408145540		 0.0359839087768737		 0.0359839087768737

		0.870000000000000		 0.0498760352933031		 0.0493890620475940		 0.0361189134925088		 0.0361189134925088

		0.890000000000000		 0.0432478527107131		 0.0428561042931306		 0.0305554719891667		 0.0305554719891667

		0.910000000000000		 0.0363503606046163		 0.0360480819695116		 0.0249749583846725		 0.0249749583846725

		0.930000000000000		 0.0291461332098780		 0.0289269347025553		 0.0193864071148651		 0.0193864071148651

		0.950000000000001		 0.0215676313903188		 0.0214122756267707		 0.0154610718953378		 0.0154610718953378

		0.970000000000001		 0.0135307770561376		 0.0134493089981781		 0.0113884830414985		 0.0113884830414985

