
More efficient post-quantum KEMTLS

with pre-distributed public keys

Online Version

Peter Schwabe1,2, Douglas Stebila3, and Thom Wiggers2

1 MPI-SP, Bochum, Germany
2 Radboud University, Nijmegen, The Netherlands

3 University of Waterloo, Waterloo, Canada
peter@cryptojedi.org, dstebila@uwaterloo.ca, thom@thomwiggers.nl

Abstract While server-only authentication with certificates is the most
widely used mode of operation for the Transport Layer Security (TLS)
protocol on the world wide web, there are many applications where
TLS is used in a different way or with different constraints. For exam-
ple, embedded Internet-of-Things clients may have a server certificate
pre-programmed and be highly constrained in terms of communication
bandwidth or computation power. As post-quantum algorithms have a
wider range of performance trade-offs, designs other than traditional
“signed-key-exchange” may be worthwhile. The KEMTLS protocol, pre-
sented at ACM CCS 2020, uses key encapsulation mechanisms (KEMs)
rather than signatures for authentication in the TLS 1.3 handshake, a
benefit since most post-quantum KEMs are more efficient than PQ sig-
natures. However, KEMTLS has some drawbacks, especially in the client
authentication scenario which requires a full additional roundtrip.

We explore how the situation changes with pre-distributed public keys,
which may be viable in many scenarios, for example pre-installed public
keys in apps, on embedded devices, cached public keys, or keys distributed
out of band. Our variant of KEMTLS with pre-distributed keys, called
KEMTLS-PDK, is more efficient in terms of both bandwidth and compu-
tation compared to post-quantum signed-KEM TLS (even cached public
keys), and has a smaller trusted code base. When client authentication is
used, KEMTLS-PDK is more bandwidth efficient than KEMTLS yet can
complete client authentication in one fewer round trips, and has stronger
authentication properties. Interestingly, using pre-distributed keys in
KEMTLS-PDK changes the landscape on suitability of PQ algorithms:
schemes where public keys are larger than ciphertexts/signatures (such
as Classic McEliece and Rainbow) can be viable, and the differences
between some lattice-based schemes is reduced. We also discuss how
using pre-distributed public keys provides privacy benefits compared to
pre-shared symmetric keys in TLS.

Keywords: Post-Quantum Cryptography · Transport Layer Security

Erratum: After publication, we observed an error in the implementation that
resulted in some executions using an incorrect algorithm for ephemeral key
exchange. This revision contains experimental results with the correct algorithms
used in all data collection.

mailto:peter@cryptojedi.org
mailto:dstebila@uwaterloo.ca
mailto:thom@thomwiggers.nl

2 Peter Schwabe, Douglas Stebila, and Thom Wiggers

1 Introduction

The Transport Layer Protocol (TLS) is among the most-used secure channel proto-
cols. In August 2018, the most recent version was standardized as TLS 1.3 [43].
TLS 1.3 uses an (elliptic curve) Diffie–Hellman key exchange to establish an
ephemeral shared secret with forward secrecy. Server (and optionally client)
authentication is provided by digital signatures. Long-term signature public keys
are exchanged in certificates during the handshake. The most commonly used
signature algorithm is RSA, although elliptic curve signatures are also supported.
Migrating to post-quantum TLS. To protect against quantum adversaries, ef-
fort has been made to move the TLS handshake towards post-quantum cryptogra-
phy. The focus has largely been on upgrading the key exchange to post-quantum
security. In [9], Bos, Costello, Naehrig and Stebila showed how to replace Diffie–
Hellman by lattice-based key agreement in TLS 1.3. The lattice-based scheme
was improved in the NewHope proposal [2], which was used in the first real-world
post-quantum TLS experiment by Google in 2016 [10]. A second, more wide-scale,
post-quantum TLS experiment by Google and Cloudflare has been running since
2019 [34,36]. Post-quantum authentication in TLS is widely believed to be less
urgent, as attacks against authentication cannot be mounted retroactively. How-
ever, several works also investigated the use of post-quantum signature schemes
and certificates in TLS [6,7,50] by dropping in replacements of post-quantum
primitives into the existing TLS 1.3 handshake and PKI infrastructure.

KEMTLS [48] is a recent proposal that makes more radical changes to the
TLS 1.3 handshake. Instead of Diffie–Hellman and signatures, KEMTLS uses
key-encapsulation mechanisms (KEMs) not just for confidentiality, but also for
authentication. The main motivation for this design is that most post-quantum
KEMs are much more efficient, both computationally and in terms of bandwidth
requirements, than post-quantum signature schemes. Additional advantages are
a smaller trusted code base and offline deniability. We give a high-level overview
of KEMTLS in comparison to the TLS 1.3 handshake in Appendix A.

1.1 Pre-distributed keys

Both TLS 1.3 and KEMTLS assume that the client does not know the server’s
long-term public-key when sending the ClientHello message; the certificate is
transmitted as part of the handshake, even if the client already knows the public
key. We refer to the scenario when a client already knows the server’s public key
as the pre-distributed-key or cached-key scenario. This occurs, for example, when
web browsers cache certificates of frequently accessed servers; when mobile apps
store certificates of the limited number of servers they connect to; when TLS is
used by IoT devices that only ever connect to one or a handful of servers and
have those certificates pre-installed; or when certificates have been distributed
out of band, for example, through DNS [29].

In fact, the TLS cached information extension [46] allows the client to in-
form the server that it already knows certain certificates so they need not be

More efficient post-quantum KEMTLS with pre-distributed public keys 3

Client Server

static (KEMs): pkS , skSKnows pkS

(pke, ske)← KEMe.Keygen()
(ssS , ctS)← KEMe.Encapsulate(pkS)

pke, ctS

ssS ← KEMs.Decapsulate(ctS , skS)
(sse, cte)← KEMe.Encapsulate(pke)

cte

sse ← KEMe.Decapsulate(cte, ske)

K, K′, K′′, K′′′ ← KDF(ssS∥sse)
AEADK(key confirmation)

AEADK′ (application data)

AEADK′′ (key confirmation)

AEADK′′′ (application data)

(a) Unilaterally authenticated

Client Server

static (KEMs): pkS , skSstatic (KEMc): pkC , skC

Knows pkS

(pke, ske)← KEMe.Keygen()
(ssS , ctS)← KEMe.Encapsulate(pkS)

KS ← KDF(ssS)
pke, ctS , AEADKS (cert [pkC])

ssS ← KEMs.Decapsulate(ctS , skS)
(sse, cte)← KEMe.Encapsulate(pke)

(ssC , ctC)← KEMc.Encapsulate(pkC)
cte

sse ← KEMe.Decapsulate(cte, ske)
K1 ← KDF(ssS∥sse)

AEADK1 (ctC)

ssC ← KEMc.Decapsulate(ctC , skC)

K2, K′
2, K′′

2 , K′′′
2 ← KDF(ssS∥sse∥ssC)

AEADK2 (key confirmation)

AEADK′
2
(application data)

AEADK′′
2

(key confirmation)

AEADK′′′
2

(application data)

(b) With proactive client authentication

Figure 1: Overview of KEMTLS-PDK variants

transmitted. However, this RFC is not widely implemented, perhaps because
(pre-quantum) certificates are fairly short and thus bandwidth savings are limited.
Contributions of this paper. In this paper we investigate how this situa-
tion changes with the move to post-quantum cryptography, both when caching
signature-based certificates in the TLS 1.3 handshake, but more importantly
when using KEM-based authentication as used in KEMTLS. More specifically,

– we introduce KEMTLS-PDK, a variant of KEMTLS that makes use of pre-
distributed keys for earlier authentication in the protocol flow;

– we describe KEMTLS-PDK with proactive client authentication and show
that the benefits of earlier authentication are even more significant;

– we analyse the security properties of KEMTLS-PDK (a complete proof in the
standard model is in the full version of the paper, available online);

– we implement KEMTLS-PDK in the Rustls library using different instantia-
tions of the KEMs with NIST PQC round-3 candidates; and

– we evaluate the performance of KEMTLS-PDK in comparison to TLS 1.3 in-
stantiated with different post-quantum primitives and pre-distributed (cached)
server certificates, and in comparison to KEMTLS.

We give a sketch of KEMTLS-PDK in Fig. 1a. The central property to observe is
that, like in TLS 1.3, but unlike in KEMTLS, the first message from the server
serves as key confirmation. This means that in this variant on KEMTLS, like in
TLS 1.3, the server is explicitly authenticated after a single round trip. Also like
TLS 1.3, the server can send data to the client first. The version of KEMTLS-PDK
with proactive client authentication is shown in Fig. 1b.

4 Peter Schwabe, Douglas Stebila, and Thom Wiggers

Table 1: Summary of performance characteristics of KEMTLS, signed-KEM TLS
1.3 with cached server certificate, and KEMTLS-PDK

KEMTLS Cached TLS KEMTLS-PDK

Unilaterally authenticated

Round trips until client receives response data 3 3 3
Size (bytes) of public key crypto objects transmitted:
• Minimum PQ 932 499 561
• Module-LWE/Module-SIS (Kyber, Dilithium) 5,556 3,988 2,336
• NTRU-based (NTRU, Falcon) 3,486 2,088 2,144

Mutually authenticated

Round trips until client receives response data 4 3 3
Size (bytes) of public key crypto objects transmitted:
• Minimum PQ 1,431 2,152 1,060
• MLWE/MSIS 9,554 10,140 6,324
• NTRU 5,574 4,365 4,185

We give a brief summary how this affects performance in Table 1, for a variety
of post-quantum algorithm combinations. We see that client authentication in
KEMTLS-PDK is just as efficient in terms of round trips as in TLS 1.3. However,
in terms of bandwidth requirements, KEMTLS-PDK is more efficient than TLS 1.3
with cached certificates (Cached TLS) for most instantiations. We will discuss
this in more detail in Section 5, but the unilaterally authenticated “Minimum PQ”
instantiation actually shows another interesting effect of considering TLS with
cached keys: KEMs and signature schemes with small ciphertexts/signatures,
such as Classic McEliece [1] or Rainbow [19], not only become viable but are the
most efficient instantiation.

Related work. The KEMTLS and KEMTLS-PDK proposals follow a long line
of work on authenticated key exchange (AKE) that started from early works by
Bellare and Rogaway [4] and Canetti and Krawczyk [13]. Many earlier works
already considered AKE protocols that do not use signatures for authentication;
often authentication is then obtained from long-term Diffie–Hellman (DH) keys.
See, for example [30,35,38,41]. The approach of constructing AKE with long-
term DH keys for authentication has been considered for TLS in the OPTLS
proposal by Krawczyk and Wee in [33], and in a subsequent IETF draft [44].
Unfortunately, there is no efficient post-quantum instantiation for non-interactive
key exchange required by those DH-based constructions, which means that the
closest proposals to KEMTLS and KEMTLS-PDK are generic AKE constructions
using KEMs or public-key encryption schemes, such as the protocols described
in [17,25,26]. While [17] mentions as an application (post-quantum) TLS, none
of these earlier works on KEM-based AKE actually present an integration (or
implementation) as part of the TLS handshake. This means that they work in
the typical setting for AKE that all long-term keys are distributed beforehand –

More efficient post-quantum KEMTLS with pre-distributed public keys 5

not just the server’s keys as in KEMTLS-PDK. Also those earlier works do not
present concrete TLS handshake performance results.
Availability of software. Our implementation, measurement software, and
data are available at https://thomwiggers.nl/publication/kemtlspdk/ un-
der permissive open-source licenses.

2 Preliminaries

Notation. The TLS protocol has named messages, such as ClientHello, which
we abbreviate like CH. Encrypted messages are written as {Message}key. We
write the transcript constructed by concatenating a sequence of TLS messages
like CH . . . SF. ∅ denotes an empty value.
Symmetric cryptography. We rely on standard definitions such as collision-
resistant hash functions, authenticated encryption, and pseudorandom functions.
In the proof we use message-authentication codes with existential unforgeabil-
ity under chosen message attacks (EUF-CMA). The key schedule is based on
HKDF [31,32], which consists of two functions, HKDF.Extract and HKDF.Expand.
HKDF.Extract takes a random salt and input keying material; the output is a
pseudorandom key that is fed to HKDF.Expand along with context, to derive keys
of specified length for use in the handshake. The key schedule in TLS sets up a
chain of these operations. It passes along the internal state via the salt argument
to HKDF.Extract. New shared secrets are incorporated via the other argument.
The context given to HKDF.Expand is provided as an operation-specific constant
value and the current hash of the transcript. For ease of presentation, we will
write these as if they are separate arguments and omit the desired output length.
Our security analysis of KEMTLS-PDK relies on HKDF.Expand being a dual PRF

(a PRF in either of its two arguments, salt and input keying material).
Key encapsulation mechanisms. A key encapsulation mechanism (KEM) is
an asymmetric primitive that abstracts a basic key exchange and is a focus of the
NIST post-quantum standardization project. A KEM consists of: a key generation
algorithm KEM.Keygen() which generates a public and private keypair (pk, sk);
an encapsulation algorithm KEM.Encapsulate(pk) which generates a shared secret
ss in a shared secret space K and ciphertext (encapsulation) ct against a given
public key pk; and a decapsulation algorithm KEM.Decapsulate(ct, sk) which
decapsulates to obtain the shared secret ss′. Decapsulation might fail; in a δ-
correct scheme, ss′ = ss with probability at least 1− δ. Our security analysis of
KEMTLS-PDK relies on standard IND-CCA-security of the KEMs used for client
and server authentication, and IND-1CCA-security (i.e., IND-CCA restricted to a
single decapsulation query) for the KEM used for ephemeral key exchange.

3 KEMTLS with pre-distributed long-term keys

Even though one of the strengths of the TLS protocol is its ability to establish
a secure channel with a previously unknown party, it is very often not the case

https://thomwiggers.nl/publication/kemtlspdk/

6 Peter Schwabe, Douglas Stebila, and Thom Wiggers

that the communicating party is completely unknown. TLS 1.3’s pre-shared key
mechanism can be used with session tickets to enable fast resumption after an
initial full handshake [43, Fig. 3]. These mechanisms rely mostly on symmetric
cryptography, although TLS 1.3 allows an optional additional ephemeral key
exchange in resumption for forward secrecy. There is nothing precluding the use
of these mechanisms, including the “0-RTT” client-to-server data flow in the
resumption message in KEMTLS.

However, because TLS 1.3 resumption relies on symmetric cryptography, it
is not very flexible. The security properties of a resumed session are tied to the
previous session. This includes, e.g., if the session was mutually authenticated. For
these reasons session tickets expire quickly, after at most 7 days [43, Sec. 4.6.1].
There are also privacy issues, as the tickets, which are opaque to the client,
might contain tracking information. To prevent such tracking, Sy et al. [52] even
suggested limiting session lifetime to only 10 minutes.

Because externally distributed pre-shared keys are symmetric, we quickly run
into concerns there as well. If clients have a common installation profile and share
keys, when a single client is compromised there will be no security for any client
anymore. A client that also acts as a server also needs to use different keys in
each role to prevent the Selfie attack [23]. This means we need a key for each
client and server pair, quickly turning this into a key-management nightmare.

In our proposed KEMTLS-PDK, we employ a more flexible approach by
distributing a server’s long-term KEM public key instead of a symmetric key. A
detailed protocol flow diagram of KEMTLS-PDK is given in Fig. 2.

Like in KEMTLS, the client encapsulates to the server’s long-term KEM public
key pkS , obtaining a ciphertext ctS and a shared secret ssS . However, as we
assume that the client already has pkS , it can do this at the start of the connection
and send ctS in a ClientHello extension. We plug ssS into the key derivation
schedule at the earliest possible stage when deriving the Early Secret ES. Deriving
ES from ssS avoids changing the key schedule. It also intuitively makes sense,
as data encrypted under traffic keys derived from ES has no forward secrecy or
replay protection; just as in TLS 1.3 with PSK and 0-RTT data [43, Sec. 2.3].
The only server who can read a message encrypted under a key derived from ES
is the server that has access to skS ; we consider such keys implicitly authenticated.
For forward secrecy we also send an ephemeral public key pke in the ClientHello
message.

Except for the additional extension transmitting ctS , the CH message is the
same as in KEMTLS. This allows a handshake to fall back to the regular KEMTLS
handshake protocol, e.g., if the client has an out-of-date certificate.

The server replies with the encapsulation cte of ephemeral shared secret sse in
the ServerHello message. It also indicates in an extension that it has accepted
ciphertext ctS and is proceeding with KEMTLS-PDK. Then it proceeds in a
similar fashion as the original TLS 1.3 handshake. The server derives HS from
ES and sse and sends the EncryptedExtensions message encrypted under a key
derived from HS. It then immediately finishes its part the handshake by sending a
MAC over the message transcript in the ServerFinished message. This confirms

More efficient post-quantum KEMTLS with pre-distributed public keys 7

Client Server

static (KEMs): pkS , skSKnows pkS

TCP SYN

TCP SYN-ACK
(pke, ske)←KEMe.Keygen()
(ssS , ctS)←KEMs.Encapsulate(pkS)
ClientHello: pke, rc←$ {0, 1}256, ext_pdk: ctS , H(pkS); supported algs.

ssS←KEMs.Decapsulate(ctS , skS)
ES←HKDF.Extract(∅, ssS)

accept ETS←HKDF.Expand(ES, "early data", CH)
stage 1

dES←HKDF.Expand(ES, "derived", ∅)

(sse, cte)←KEMe.Encapsulate(pke)

ServerHello: cte, rs←$ {0, 1}256, selected algs.
sse←KEMe.Decapsulate(cte, ske)

HS←HKDF.Extract(dES, sse)
accept CHTS←HKDF.Expand(HS, "c hs traffic", CH..SH)

stage 2
accept SHTS←HKDF.Expand(HS, "s hs traffic", CH..SH)

stage 3
dHS←HKDF.Expand(HS, "derived", ∅)

{EncryptedExtensions}stage3

MS←HKDF.Extract(dHS, 0)
fkc←HKDF.Expand(MS, "c finished", ∅)
fks←HKDF.Expand(MS, "s finished", ∅)

{ServerFinished}stage3 : SF←HMAC(fks, CH..EE)

abort if SF ̸= HMAC(fks, CH..EE)

accept SATS←HKDF.Expand(MS, "s ap traffic", CH..SF)
stage 4

record layer, AEAD-encrypted with key derived from SATS

{ClientFinished}stage2 : CF←HMAC(fkc, CH..SF)

abort if CF ̸= HMAC(fkc, CH..SF)
accept CATS←HKDF.Expand(MS, "c ap traffic", CH..CF)

stage 5
record layer, AEAD-encrypted with key derived from CATS

Figure 2: The KEMTLS-PDK handshake for unilateral (server-only) authentication
with pre-distributed server public keys

8 Peter Schwabe, Douglas Stebila, and Thom Wiggers

the server’s view of the handshake to the client and explicitly authenticates the
server. The server can now start sending application data. The client follows up
by also confirming its view of the handshake in a ClientFinished message. This
means the client is now ready to communicate as well.

3.1 Proactive client authentication

In some applications, such as in a VPN, the client already knows that the server
will require mutual authentication. This means that a client can proactively

authenticate by sending its certificate as early in the handshake as possible, and
in particular before the server requests the certificate. For privacy reasons, client
authentication in TLS requires that we verify the identity of the server and
send the certificate encrypted [43, Sec. E.1.2]. Performing client authentication
in KEMTLS thus requires a full additional round-trip: we can only send the
client certificate after authenticating the server and the server cannot send the
ciphertext before it receives pkC .

In KEMTLS-PDK the client already posesses the server’s long-term public key.
We can use the shared secret obtained from encapsulating to the corresponding
long-term key to send a client certificate along in the ClientHello message. This
gives us mutual authentication within a single round-trip. The server supplies
the challenge ciphertext ctC to the client and derives the confirmation and traffic
keys from sse, ssS , and ssC . At this point the server can start sending application
data to the client. The client is implicitly authenticated, as they have not yet
confirmed that they derived the same keys. As the keys are derived from ssC , only
the client who possesses skC can read these messages. To finish the handshake the
client sends its own key confirmation message before proceeding to the application
traffic. KEMTLS-PDK with mutual authentication is shown in Fig. 3.

4 Security analysis

As KEMTLS-PDK is an authenticated-key-exchange protocol, the main security
property it aims for is that keys established should be indistinguishable from
random keys, however there are many subtleties that arise in KEMTLS-PDK. In
this section we describe in greater detail the specific security properties that
KEMTLS-PDK achieves.
Security model. Following the approach of Dowling et al. [21] for the analysis of
TLS 1.3, we model KEMTLS-PDK as a multi-stage key-agreement protocol [24],
where each session has several stages in each of which a shared secret key is
established. This model is an adaptation of the Bellare–Rogaway security model
for authenticated key exchange [4]. The formal model appears in Appendix B.1;
we describe it briefly here.

Each party (client or server) has a long-term public-key/secret-key pair, and
we assume there exists a public-key infrastructure for certifying these public
keys. Each party can run multiple instances of the protocol simultaneously or
in parallel, each of which is called a session. During each party’s execution of

More efficient post-quantum KEMTLS with pre-distributed public keys 9

Client Server

static (KEMs): pkS , skSstatic (KEMc): pkC , skC

Knows pkS TCP SYN

TCP SYN-ACK
(pke, ske)←KEMe.Keygen()
(ssS , ctS)←KEMs.Encapsulate(pkS)
ClientHello: pke, rc←$ {0, 1}256, ext_pdk: ctS , H(pkS); supported algs.

ssS←KEMs.Decapsulate(ctS , skS)
ES←HKDF.Extract(∅, ssS)

accept ETS←HKDF.Expand(ES, "early data", CH)
stage 1

{ClientCertificate}stage1
: cert[pkC]

dES←HKDF.Expand(ES, "derived", ∅)

(sse, cte)←KEMe.Encapsulate(pke)

ServerHello: cte, rs←$ {0, 1}256, selected algs.
sse←KEMe.Decapsulate(cte, ske)

HS←HKDF.Extract(dES, sse)
accept CHTS←HKDF.Expand(HS, "c hs traffic", CH..SH)

stage 2
accept SHTS←HKDF.Expand(HS, "s hs traffic", CH..SH)

stage 3
dHS←HKDF.Expand(HS, "derived", ∅)

{EncryptedExtensions}stage3

(ssC , ctC)←KEMc.Encapsulate(pkC)
{ServerKemCiphertext}stage3

: ctC

ssC←KEMc.Decapsulate(ctC , skC)

MS←HKDF.Extract(dHS, ssC)
fkc←HKDF.Expand(MS, "c finished", ∅)
fks←HKDF.Expand(MS, "s finished", ∅)

{ServerFinished}stage3 : SF←HMAC(fks, CH..SKC)

abort if SF ̸= HMAC(fks, CH..SKC)

accept SATS←HKDF.Expand(MS, "s ap traffic", CH..SF)
stage 4

record layer, AEAD-encrypted with key derived from SATS

{ClientFinished}stage2 : CF←HMAC(fkc, CH..SF)

abort if CF ̸= HMAC(fkc, CH..SF)
accept CATS←HKDF.Expand(MS, "c ap traffic", CH..CF)

stage 5
record layer, AEAD-encrypted with key derived from CATS

Figure 3: The KEMTLS-PDK handshake for proactive client authentication with
pre-distributed server public keys

10 Peter Schwabe, Douglas Stebila, and Thom Wiggers

a session, it maintains a variety of state variables, tracking the configuration of
the session, status of execution, and intermediate values of the protocol itself.
One important session variable is the session identifier, which will be used in the
model to identify pairs of sessions that are partnered to each other. In general the
session identifier consists of all of the protocols transmitted up until that point; as
KEMTLS-PDK permits pre-distributed public keys, those pre-distributed values
will be included in the session identifier.

The adversary controls all communications between parties, and can arbitrarily
relay, change, drop, reorder, or insert messages. The adversary activates all sessions
(via a NewSession query) and delivers all messages (via a Send query). It may
compromise keys established during a stage (Reveal query) and parties’ long-term
keys (Corrupt query). The security model tracks the Reveal and Corrupt queries,
and marks some sessions unfresh if too much information has been revealed and
security can no longer be expected. The adversary may issue a Test query to a
particular session and stage, and obtain either (a) the real key established for
that stage, or (b) a uniformly random key; the choice of (a) or (b) depends on
a hidden (uniform) bit chosen at the start of the experiment. There are some
additional details in the full model in how queries are processed. Stage keys
are marked as for internal or external use; internal-use keys may be used in
subsequent parts of the protocol (e.g., to encrypt handshake messages), so the
adversary must decide whether to Test an internal-use key when it is accepted.
Key indistinguishability. The Test query captures that keys established should
be indistinguishable from random: the goal of the adversary is to guess the
hidden bit in the Test query, thereby distinguishing real keys form random. The
experiment restricts the adversary from issuing the Test query to stages where
the key has been exposed via a Reveal query, including partnered sessions.
Implicit authentication and forward secrecy. Following [48], the security
model captures three levels of forward secrecy for stage keys, which simultaneously
incorporate notions of implicit authentication, meaning that only the intended
party could know the shared secret.

– Weak forward secrecy level 1 (wfs1): The stage key is indistinguishable to
adversaries who were passive in the test stage, even if the adversary obtains
the peer’s long-term key at any point in time. These keys offer no implicit
authentication. KEMTLS-PDK achieves wfs1 for server stages 2–5.

– Weak forward secrecy level 2 (wfs2): The stage key is indistinguishable to
adversaries who were passive in the test stage (wfs1) or who never corrupted
the peer’s long-term key; in the latter case this yields implicit authentication.
KEMTLS-PDK achieves wfs2 for client stages 2–3.

– Forward secrecy (fs): The stage key is indistinguishable to adversaries who
were passive in the test stage (wfs1) or who did not corrupt the peer’s long-
term key before the stage accepted; in the latter case this yields implicit
authentication. KEMTLS-PDK achieves fs for client stages 4 and 5, and for
server stages 4 and 5 in the mutually authenticated version.

The model captures retroactive revision of forward secrecy: a stage-i key may
have a weaker form of forward secrecy at the time it is accepted, but may

More efficient post-quantum KEMTLS with pre-distributed public keys 11

have a stronger form of forward secrecy after some subsequent stage accepts. In
KEMTLS-PDK, earlier stage keys are upgraded to the level of forward secrecy
achieved by later stages once the later stage accepts.

In the unilaterally authenticated version of KEMTLS-PDK (Fig. 2), the client
gets full fs one round trip earlier than in KEMTLS.
Explicit authentication. The security model also tracks at what point in time
each party receives explicit authentication of its peer; explicit authentication
goes a step further than implicit authentication in that the party has received
explicit evidence (e.g., a MAC tag) that the intended peer actually is live.
The model also includes retroactive authentication, in which an earlier stage
may be regarded as explicitly authenticated once a later stage accepts. Client
sessions in KEMTLS-PDK receive explicit authentication right before the stage-
4 key is accepted, one round trip earlier than in KEMTLS. Server sessions,
in mutually authenticated KEMTLS-PDK, receive explicit authentication right
before the stage-5 key is accepted, again one round tip earlier than KEMTLS.
In particular, this means that KEMTLS-PDK gives explicit authentication for
all client application data (although only implicit authentication for the client
certificate).
Downgrade resilience. [48] observed that implicit authentication characteristics
of early stages of keys in KEMTLS meant that some application data would be
transmitted prior to the client having received explicit authentication from the
server of the symmetric encryption algorithms negotiated during the handshake.
This meant that it would be possible for an adversary to cause a downgrade
to a suboptimal (from the server’s perspective) algorithm—although still only
to an algorithm that the client offered to use. In KEMTLS-PDK, explicit server
authentication happens one round trip earlier, and in particular prior to client
transmission of application data, so KEMTLS-PDK offers full downgrade resilience.
Replayability. The model tracks that some stages are not protected against
replays: in particular, stage-1 keys are not guaranteed to be unique at server
instances since an adversary can replay the same ClientHello message multiple
times to induce the same stage-1 key; all subsequent stages are replay-protected.
Anonymity. Like TLS 1.3 and KEMTLS, KEMTLS-PDK does not offer full
anonymity, in particular due to the presence of the ServerNameIndicator exten-
sion in the ClientHello message. Our implementation also identifies the server
certificate that was encapsulated to. (This identifier could be omitted by using
trial-decryption at the server, though if the server has many public keys, this
could be prohibitive.) The TLS working group is considering an “Encrypted
ClientHello” mechanism that relies on the client obtaining a server public key
out-of-band to enable identity protection for the server. KEMTLS-PDK’s use of a
pre-distributed key for encryption of part of the initial client message may be
compatible with a variant of encrypted ClientHello, which we leave as future
work since encrypted ClientHello has not yet been finalized even for TLS 1.3.
Deniability. As KEMTLS-PDK avoids the use of signatures for authentication,
like KEMTLS and unlike TLS 1.3, KEMTLS-PDK offers offline deniability [18],

12 Peter Schwabe, Douglas Stebila, and Thom Wiggers

meaning that a judge, when given a transcript of a protocol execution and
all of the keys involved, cannot tell whether the transcript is genuine or forged.
KEMTLS-PDK does not have the harder-to-achieve online deniability property [20]
when one party tries to frame the other or collaborates with the judge.

5 Instantiation and Evaluation

In this section we describe how we instantiate and implemented KEMTLS-PDK
and compare the performance with KEMTLS and cached TLS.

For a fair comparison with cached TLS we proceed as follows. RFC 7924 [46]
proposes a caching mechanism for certificates, which lets the client indicate
that it already knows the server’s certificate by including the hash of the
ServerCertificate (SCRT) message in the ClientHello message. In TLS 1.2
this amounts to a hash of the certificate chain. In TLS 1.3, however, the SCRT mes-
sage was extended, and may include certificate transparancy [37] or OCSP [45]
status information. This means that the hash value for the message is no longer
stable. For our experiments, we adapt the mechanism of RFC 7924 to TLS 1.3
by using hashes for each individual certificate, instead. The server does not omit
the SCRT message, but the certificates are replaced by their hashes. This allows
the client to use those hashes to look up and replace the certificates by the
originals for validation purposes. When instantiating TLS 1.3 with post-quantum
primitives, we replace ephemeral DH by a KEM as described in [9] (for TLS 1.2)
and implemented in post-quantum TLS experiments [10,34,36].

5.1 Choice of primitives

Table 2 shows the scenarios and primitives considered in our evaluation. We also
show the sizes of the cryptographic objects that need to be transmitted, such as
public keys, ciphertexts and signatures. All experiments require a KEM public
key and ciphertext for ephemeral key exchange. In KEMTLS, we need a full
certificate (signed KEM public key) and a ciphertext for authentication. For the
TLS 1.3 with caching experiments, we only transmit a signature for authentication;
certificates are withheld. Finally, for the KEMTLS-PDK instantiations, we withold
the certificate and only transmit the ciphertext for authentication.

To instantiate KEMs and signatures we choose NIST PQC round-3 candidates
at “level 1 security” (equivalent to AES-128). Kyber-512 [47], LightSABER [16],
and NTRU-HPS-2048 [15] are all finalists, efficient KEMs and suitable for both
ephemeral key exchange and authentication. Classic McEliece 348864 [1] is
the remaining finalist KEM, but its large public key makes it only suitable
for authentication in KEMTLS-PDK. We include alternate candidate SIKEp434-
compressed [28] as it is the KEM with the smallest sum of public key and
ciphertext. For the signature schemes we consider the finalists Dilithium II [39],
Falcon-512 [42], and Rainbow I Classic [19]. We align the chosen instantiations
based on similar assumptions.

More efficient post-quantum KEMTLS with pre-distributed public keys 13

Table 2: Sizes (in bytes) of public-key cryptography objects transmitted and
cached/pre-distributed in KEMTLS, TLS 1.3 with cached certificates, and
KEMTLS-PDK, for server-only and mutual authentication.

Server-only authentication + Client authentication
Ephem.
key ex.
(pk+ct)

Server
auth.

Trans-
mitted

Cached
@client

(server pk)

Client
auth.

(pk+ct/sig)

CA
(sig)

Trans-
mitted

Cached
@server

(CA pk)

K
EM

T
LS

Minimum
SIKE SIKE/Rai.

932
SIKE Rainbow

1,431
Rainbow

197 236 crt+ct 499 – 433 66 161,600

Assumption:
MLWE/MSIS

Kyber Kyber/Dil.
5,556

Kyber Dilithium
9,554

Dilithium
800 768 crt+ct 3,988 – 1,568 2,420 1,312

Assumption:
NTRU

NTRU NTRU/Fal.
3,486

NTRU Falcon
5,574

Falcon
699 699 crt+ct 2,088 – 1,398 690 897

C
a

c
h

e
d

T
L

S

TLS 1.3
X25519 RSA-2048

320
RSA-2048 RSA-2048 RSA-2048

1,104
RSA-2048

32 32 sig 256 272 528 256 272

Minimum
SIKE Rainbow

499
Rainbow Falcon Rainbow

2,152
Rainbow

197 236 sig 66 161,600 1,587 66 161,600

Assumption:
MLWE/MSIS

Kyber Dilithium
3,988

Dilithium Dilithium Dilithium
10,140

Dilithium
800 768 sig 2,420 1,312 3,732 2,420 1,312

Assumption:
NTRU

NTRU Falcon
2,088

Falcon Falcon Falcon
4,365

Falcon
699 699 sig 690 897 1,587 690 897

K
EM

T
LS

-P
D

K

Minimum
SIKE McEliece

561
McEliece SIKE Rainbow

1,060
Rainbow

197 236 ct 128 261,120 433 66 161,600

Finalist:
Kyber

Kyber Kyber
2,336

Kyber Kyber Dilithium
6,324

Dilithium
800 768 ct 768 800 1,568 2,420 1,312

Finalist:
NTRU

NTRU NTRU
2,097

NTRU NTRU Falcon
4,185

Falcon
699 699 ct 699 699 1,398 690 897

Finalist:
SABER

SABER SABER
2,144

SABER SABER Dilithium
5,972

Dilithium
672 736 ct 736 672 1,408 2,420 1,312

These scenarios immediately expose trade-offs that may or may not be
feasible in real-world implementations. For example, the public keys for Rainbow
(≈160 KB) and McEliece (≈260 KB) are very large, so they are probably not
suitable for scenarios where the public keys are cached for shorter amounts of
time, such as TLS resumption. If the cached public key needs to be updated, for
example by having a KEMTLS-PDK handshake fall back to the regular KEMTLS,
sending a certificate with a McEliece or Rainbow public key could be prohibitive.

5.2 Implementation

For our experiments, we implemented KEMTLS-PDK by extending the Rustls
TLS library [8]. It is based on our prior implementation of KEMTLS. We also
extend the TLS 1.3 protocol with the certificate caching for server certificates, as
described in the previous paragraph. The measured post-quantum KEMs and
signature algorithms are provided by the Open Quantum Safe project’s liboqs
library [51]. This library includes optimized, AVX2-accelerated implementations
for every primitive measured, except for Rainbow. For a fair comparison, we
ad-hoc integrated the AVX2 implementation from the Rainbow submitters into
the version of liboqs used.

14 Peter Schwabe, Douglas Stebila, and Thom Wiggers

5.3 Handshake sizes

Table 2 shows the sizes of the public-key cryptographic objects transmitted in
KEMTLS, TLS 1.3 with certificate caching, and KEMTLS-PDK. For KEMTLS,
a full leaf certificate is transmitted (but no intermediate or root certificate);
for TLS 1.3 with caching and KEMTLS-PDK we assume server certificates are
cached. For client authentication, we have not included caching for the end-point
certificate, as servers would presumably talk to many clients.

In scenarios where we aim to minimize communication, TLS 1.3 with caching
transmits 433 fewer bytes of public-key cryptography objects than KEMTLS. It
needs 66 fewer bytes on the wire than KEMTLS-PDK for unilaterally authenti-
cated handshakes. When client authentication is included, KEMTLS-PDK reduces
the number of bytes transmitted in the handshake by 51% (1092 B) compared to
TLS 1.3 with caching, however. Compared to KEMTLS it saves 25% (371 B). The
minimum scenarios for TLS 1.3 with caching and KEMTLS-PDK both heavily
rely on the fact that the (very large) Rainbow and McEliece public keys do not
need to be transmitted. This probably makes this scenario only practical for
those cases where these keys can be used for very long times, such as when the
keys are embedded in IoT devices.

The other instantiations are based on much faster lattice-based cryptography.
These also have more managable public keys. This allows applications where the
handshake is initially done without caching, after which the client remembers the
certificate. In these instantiations, the Kyber instantation of KEMTLS-PDK re-
duces transmission by 58% (3220 B) over KEMTLS for unilaterally authenticated
handshakes and by 33% (3230 B) in mutually authenticated handshakes. For
NTRU and Falcon—the two lattice-based schemes based on NTRU lattices—we
see that KEMTLS-PDK performs better than cached TLS in terms of bandwidth
requirements only when used with client authentication. This is expected as
NTRU ciphertexts have essentially the same size (699 bytes) as Falcon signa-
tures in the worst case (690 bytes). Note the average signature size of Falcon is
advertised as 666 bytes [42], but our API does not use variable-size signatures.

5.4 Handshake times

We measured the times to complete the handshakes for each of our considered
scenarios over both a low-latency, high-bandwidth connection and a high-latency,
low-bandwidth connection. We follow the same methodology as [48], which is in
turn using the methodology from [40]. Table 3 shows the timings of unilaterally
authenticated handshakes. We see there is little difference between the three
scenarios, although compressed SIKE has noticable performance overhead. The
lattice schemes perform very similarly.

For mutually authenticated handshakes, as shown in Table 4, things change.
The extra round-trip for client authentication in KEMTLS is clearly visible.

For a comparison of CPU cycles spent on the asymmetric cryptography,
results for KEMTLS-PDK are similar to those of KEMTLS [48, Table 2 (left)].
The comparison made there also holds for KEMTLS-PDK and TLS 1.3 with

More efficient post-quantum KEMTLS with pre-distributed public keys 15

Table 3: Average time in ms for unilaterally authenticated handshakes of TLS 1.3
with cached leaf certificates and of KEMTLS-PDK.

Unilaterally
authenticated

30.9 ms RTT, 1000 Mbps 195.5 ms RTT, 10 Mbps

Client
sent req.

Client
recv. resp.

Server
expl. auth.

Client
sent req.

Client
recv. resp.

Server
expl. auth.

K
EM

T
LS Minimum 117.4 163.4 163.4 448.2 659.1 659.0

MLWE/MSIS 63.1 94.5 94.4 398.3 595.2 595.2
NTRU 63.0 94.4 94.4 395.5 592.3 592.3

C
a

ch
ed

T
L

S TLS 1.3 66.0 97.1 65.9 396.1 592.1 396.0
Minimum 107.0 138.1 106.9 434.8 630.8 434.7
MLWE/MSIS 63.6 94.8 63.6 396.7 592.7 396.7
NTRU 64.5 95.6 64.4 396.3 592.3 396.2

P
D

K

Minimum 102.5 133.6 102.4 430.8 626.8 430.7
Kyber 62.8 93.9 62.7 394.7 590.7 394.6
NTRU 62.8 93.9 62.7 394.7 590.7 394.6
SABER 62.8 94.0 62.8 394.6 590.6 394.6

caching, as the same cryptographic operations still need to be done and there
have not been significant changes since round 2 of the NIST competition. In other
words, KEMTLS-PDK offers the same massive savings compared to TLS 1.3 with
pre-distributed certificates as KEMTLS offers in comparison to plain TLS 1.3.

6 Discussion

In this paper we presented the first investigation of post-quantum TLS with
pre-distributed server public keys, both with traditional signature-based authen-
tication and in the KEM-based authentication setting of KEMTLS. We believe
that the results show that a combination of KEMTLS and KEMTLS-PDK may
be the more efficient option for the post-quantum future of TLS. However, this
will need to be confirmed (or refuted) through real-world experiments; one such
experiment is currently underway in collaboration with Cloudflare; see [14].

There are some aspects of KEMTLS-PDK that we have not discussed so far
but that deserve being mentioned.

We did not compare KEMTLS-PDK to TLS session resumption using a sym-
metric pre-shared key (for authentication) and DH (or KEMs) for forward secrecy.
The reason is that in this scenario clients need to keep a sensitive secret key that
is shared with the server; see the related discussion in Section 3.

For proactive client authentication, the client needs to pick some symmetric
ciphersuite to use for encrypting and authenticating its certificate; this decision
must be made before any ciphersuite negotiation has taken place. In our imple-
mentation we use a “default” ciphersuite; for example, TLS_AES_128_GCM_SHA256
must be implemented by any TLS 1.3-compliant application [43, Sec. 9.1]. An-
other option would be to store information about the ciphersuite to use alongside

16 Peter Schwabe, Douglas Stebila, and Thom Wiggers

Table 4: Average time in ms for mutually authenticated handshakes of TLS 1.3
with cached leaf certificates and of KEMTLS-PDK.

Mutually
authenticated

30.9 ms RTT, 1000 Mbps 195.5 ms RTT, 10 Mbps

Client
sent req.

Client
recv. resp.

Server
expl. auth.

Client
sent req.

Client
recv. resp.

Server
expl. auth.

K
EM

T
LS Minimum 195.4 226.6 181.8 693.8 890.0 679.8

MLWE/MSIS 95.0 126.2 94.9 597.7 793.8 597.5
NTRU 95.0 126.3 94.9 594.7 790.8 594.5

C
a

ch
ed

T
L

S TLS 1.3 68.8 100.3 66.1 399.1 596.4 396.4
Minimum 108.7 140.3 107.3 437.0 635.2 435.7
MLWE/MSIS 64.2 95.8 63.7 400.8 623.6 400.3
NTRU 66.0 97.8 64.6 397.8 596.7 396.5

P
D

K

Minimum 129.9 161.0 129.8 464.9 660.9 464.8
Kyber 63.3 94.4 63.2 399.5 595.5 399.5
NTRU 63.3 94.5 63.3 396.7 592.7 396.7
SABER 63.3 94.5 63.3 398.8 594.8 398.7

the certificate – one could even consider integrating ciphersuite information
inside certificates. This would clearly constitute a bigger change to the TLS
infrastructure, but is not unprecedented (c.f. HPKE [3]).

Interestingly, if KEMTLS uses KEMs with different cryptographic assumptions
for the ephemeral and the long-term KEM, we obtain hybrid confidentiality
in the following sense: even if the assumption used for the ephemeral KEM
is cryptographically broken at some point in the future, handshakes retain
confidentiality as long as the long-term KEM keys are not compromised. With
KEMTLS-PDK some interesting combinations of ephemeral and long-term KEMs—
e.g., McEliece and Saber, Kyber, or NTRU—may become feasible. We leave it
to future work to investigate this further and to formalize the notion of hybrid
confidentiality sketched here.

Acknowledgements

The authors gratefully acknowledge insightful discussions with Patrick Towa
on the security model, proof, and pre-distributed keys scenario. This work has
been supported by the European Research Council through Starting Grant
No. 805031 (EPOQUE) and the Natural Sciences and Engineering Research
Council of Canada through Discovery grant RGPIN-2016-05146 and a Discovery
Accelerator Supplement.

References

1. Albrecht, M.R., Bernstein, D.J., Chou, T., Cid, C., Gilcher, J., Lange, T.,
Maram, V., von Maurich, I., Misoczki, R., Niederhagen, R., Paterson, K.G., Per-

More efficient post-quantum KEMTLS with pre-distributed public keys 17

sichetti, E., Peters, C., Schwabe, P., Sendrier, N., Szefer, J., Tjhai, C.J., Tom-
linson, M., Wang, W.: Classic McEliece. Tech. rep., National Institute of Stan-
dards and Technology (2020), available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions

2. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange -
A new hope. In: Holz, T., Savage, S. (eds.) USENIX Security 2016. pp. 327–343.
USENIX Association (Aug 2016)

3. Barnes, R.L., Bhargavan, K., Lipp, B., Wood, C.A.: Hybrid public key encryption.
Internet-draft, Internet Research Task Force (2021), https://datatracker.ietf.
org/doc/html/draft-irtf-cfrg-hpke-08

4. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO’93. LNCS, vol. 773, pp. 232–249. Springer (Aug 1994).
https://doi.org/10.1007/3-540-48329-2_21

5. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EURO-
CRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer (May / Jun 2006).
https://doi.org/10.1007/11761679_25

6. Bindel, N., Braun, J., Gladiator, L., Stöckert, T., Wirth, J.: X.509-compliant hybrid
certificates for the post-quantum transition. Journal of Open Source Software 4(40),
1606 (2019). https://doi.org/10.21105/joss.01606

7. Bindel, N., Herath, U., McKague, M., Stebila, D.: Transitioning to a quantum-
resistant public key infrastructure. In: Lange, T., Takagi, T. (eds.) Post-Quantum
Cryptography - 8th International Workshop, PQCrypto 2017. pp. 384–405. Springer
(2017). https://doi.org/10.1007/978-3-319-59879-6_22

8. Birr-Pixton, J.: A modern TLS library in Rust, https://github.com/ctz/rustls
(accessed 2021-04-29)

9. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for the
TLS protocol from the ring learning with errors problem. In: 2015 IEEE Symposium
on Security and Privacy. pp. 553–570. IEEE Computer Society Press (May 2015).
https://doi.org/10.1109/SP.2015.40

10. Braithwaite, M.: Experimenting with post-quantum cryptography. Posting on
the Google Security Blog (2016), https://security.googleblog.com/2016/07/
experimenting-with-post-quantum.html

11. Brzuska, C.: On the foundations of key exchange. Ph.D. thesis, Technische
Universität Darmstadt, Darmstadt, Germany (2013), https://tuprints.ulb.
tu-darmstadt.de/3414/

12. Brzuska, C., Fischlin, M., Warinschi, B., Williams, S.C.: Composability
of Bellare-Rogaway key exchange protocols. In: Chen, Y., Danezis, G.,
Shmatikov, V. (eds.) ACM CCS 2011. pp. 51–62. ACM Press (Oct 2011).
https://doi.org/10.1145/2046707.2046716

13. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453–474. Springer (May 2001). https://doi.org/10.1007/3-540-44987-
6_28

14. Celi, S., Wiggers, T.: KEMTLS: Post-quantum TLS without signatures.
Posting on the Cloudflare Blog (2021), https://blog.cloudflare.com/
kemtls-post-quantum-tls-without-signatures/

15. Chen, C., Danba, O., Hoffstein, J., Hulsing, A., Rijneveld, J., Schanck, J.M.,
Schwabe, P., Whyte, W., Zhang, Z., Saito, T., Yamakawa, T., Xagawa, K.:
NTRU. Tech. rep., National Institute of Standards and Technology (2020),

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hpke-08
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hpke-08
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/11761679_25
https://doi.org/10.21105/joss.01606
https://doi.org/10.1007/978-3-319-59879-6_22
https://github.com/ctz/rustls
https://doi.org/10.1109/SP.2015.40
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://tuprints.ulb.tu-darmstadt.de/3414/
https://tuprints.ulb.tu-darmstadt.de/3414/
https://doi.org/10.1145/2046707.2046716
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-44987-6_28
https://blog.cloudflare.com/kemtls-post-quantum-tls-without-signatures/
https://blog.cloudflare.com/kemtls-post-quantum-tls-without-signatures/

18 Peter Schwabe, Douglas Stebila, and Thom Wiggers

available at https://csrc.nist.gov/projects/post-quantum-cryptography/
round-3-submissions

16. D’Anvers, J.P., Karmakar, A., Roy, S.S., Vercauteren, F., Mera, J.M.B., Beiren-
donck, M.V., Basso, A.: SABER. Tech. rep., National Institute of Stan-
dards and Technology (2020), available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions

17. de Saint Guilhem, C.D., Smart, N.P., Warinschi, B.: Generic forward-secure key
agreement without signatures. In: Nguyen, P.Q., Zhou, J. (eds.) ISC 2017. LNCS,
vol. 10599, pp. 114–133. Springer (Nov 2017)

18. Di Raimondo, M., Gennaro, R., Krawczyk, H.: Deniable authentication and
key exchange. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S.
(eds.) ACM CCS 2006. pp. 400–409. ACM Press (Oct / Nov 2006).
https://doi.org/10.1145/1180405.1180454

19. Ding, J., Chen, M.S., Petzoldt, A., Schmidt, D., Yang, B.Y., Kannwis-
cher, M., Patarin, J.: Rainbow. Tech. rep., National Institute of Stan-
dards and Technology (2020), available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions

20. Dodis, Y., Katz, J., Smith, A., Walfish, S.: Composability and on-line deniability
of authentication. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 146–162.
Springer (Mar 2009). https://doi.org/10.1007/978-3-642-00457-5_10

21. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic anal-
ysis of the TLS 1.3 handshake protocol candidates. In: Ray, I., Li, N.,
Kruegel, C. (eds.) ACM CCS 2015. pp. 1197–1210. ACM Press (Oct 2015).
https://doi.org/10.1145/2810103.2813653

22. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of
the TLS 1.3 handshake protocol. Journal of Cryptology 34(4), 37 (Oct 2021).
https://doi.org/10.1007/s00145-021-09384-1

23. Drucker, N., Gueron, S.: Selfie: reflections on TLS 1.3 with PSK. Cryptology ePrint
Archive, Report 2019/347 (2019), https://eprint.iacr.org/2019/347

24. Fischlin, M., Günther, F.: Multi-stage key exchange and the case of Google’s QUIC
protocol. In: Ahn, G.J., Yung, M., Li, N. (eds.) ACM CCS 2014. pp. 1193–1204.
ACM Press (Nov 2014). https://doi.org/10.1145/2660267.2660308

25. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Strongly secure authenticated
key exchange from factoring, codes, and lattices. In: Fischlin, M., Buchmann, J.,
Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 467–484. Springer (May 2012).
https://doi.org/10.1007/978-3-642-30057-8_28

26. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Practical and post-quantum
authenticated key exchange from one-way secure key encapsulation mechanism. In:
Chen, K., Xie, Q., Qiu, W., Li, N., Tzeng, W.G. (eds.) ASIACCS 13. pp. 83–94.
ACM Press (May 2013)

27. Günther, F.: Modeling Advanced Security Aspects of Key Exchange and Secure
Channel Protocols. Ph.D. thesis, Technische Universität Darmstadt, Darmstadt,
Germany (2018), https://tuprints.ulb.tu-darmstadt.de/7162

28. Jao, D., Azarderakhsh, R., Campagna, M., Costello, C., De Feo, L., Hess, B., Jalali,
A., Koziel, B., LaMacchia, B., Longa, P., Naehrig, M., Renes, J., Soukharev, V.,
Urbanik, D., Pereira, G., Karabina, K., Hutchinson, A.: SIKE. Tech. rep., National
Institute of Standards and Technology (2020), available at https://csrc.nist.
gov/projects/post-quantum-cryptography/round-3-submissions

29. Josefsson, S.: Storing Certificates in the Domain Name System (DNS). RFC 4398
(Mar 2006). https://doi.org/10.17487/RFC4398

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1145/1180405.1180454
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/978-3-642-00457-5_10
https://doi.org/10.1145/2810103.2813653
https://doi.org/10.1007/s00145-021-09384-1
https://eprint.iacr.org/2019/347
https://doi.org/10.1145/2660267.2660308
https://doi.org/10.1007/978-3-642-30057-8_28
https://tuprints.ulb.tu-darmstadt.de/7162
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.17487/RFC4398

More efficient post-quantum KEMTLS with pre-distributed public keys 19

30. Krawczyk, H.: HMQV: A high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer (Aug
2005). https://doi.org/10.1007/11535218_33

31. Krawczyk, H.: Cryptographic extraction and key derivation: The HKDF scheme.
In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 631–648. Springer (Aug
2010). https://doi.org/10.1007/978-3-642-14623-7_34

32. Krawczyk, H., Eronen, P.: HMAC-based Extract-and-Expand Key Derivation
Function (HKDF). RFC 5869 (May 2010). https://doi.org/10.17487/RFC5869

33. Krawczyk, H., Wee, H.: The OPTLS protocol and TLS 1.3. In: EuroS&P 2016.
IEEE (2017), https://eprint.iacr.org/2015/978.pdf

34. Kwiatkowski, K.: Towards post-quantum cryptography in TLS. Post-
ing on the Cloudflare Blog (2019), https://blog.cloudflare.com/
towards-post-quantum-cryptography-in-tls/

35. LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer (Nov 2007)

36. Langley, A.: Cecpq2. Posting on the ImperialViolet Blog (2018), https://www.
imperialviolet.org/2018/12/12/cecpq2.html

37. Laurie, B., Langley, A., Kasper, E.: Certificate transparency. RFC 6962 (Jun 2013).
https://doi.org/10.17487/RFC6962

38. Law, L., Menezes, A., Qu, M., Solinas, J., Vanstone, S.: An efficient protocol for
authenticated key agreement. Designs, Codes and Cryptography 28(2), 119–134
(2003)

39. Lyubashevsky, V., Ducas, L., Kiltz, E., Lepoint, T., Schwabe, P., Seiler, G., Stehlé,
D., Bai, S.: CRYSTALS-DILITHIUM. Tech. rep., National Institute of Stan-
dards and Technology (2020), available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions

40. Paquin, C., Stebila, D., Tamvada, G.: Benchmarking post-quantum cryptogra-
phy in TLS. In: Ding, J., Tillich, J.P. (eds.) Post-Quantum Cryptography -
11th International Conference, PQCrypto 2020. pp. 72–91. Springer (2020).
https://doi.org/10.1007/978-3-030-44223-1_5

41. Perrin, T.: Noise protocol framework (Jul 2018), https://noiseprotocol.org/
noise.html (accessed 2021-04-29)

42. Prest, T., Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T.,
Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: FALCON. Tech. rep., National
Institute of Standards and Technology (2020), available at https://csrc.nist.
gov/projects/post-quantum-cryptography/round-3-submissions

43. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446
(Aug 2018). https://doi.org/10.17487/RFC8446

44. Rescorla, E., Sullivan, N., Wood, C.A.: Semi-static Diffie-Hellman key establishment
for TLS 1.3. Internet-draft, Internet Engineering Task Force (2020), https://tools.
ietf.org/html/draft-rescorla-tls-semistatic-dh-02

45. Santesson, S., Myers, M., Ankney, R., Malpani, A., Galperin, S., Adams, D.C.:
X.509 internet public key infrastructure Online Certificate Status Protocol - OCSP.
RFC 6960 (Jun 2013). https://doi.org/10.17487/RFC6960

46. Santesson, S., Tschofenig, H.: Transport Layer Security (TLS) Cached Information
Extension. RFC 7924 (Jul 2016). https://doi.org/10.17487/RFC7924

47. Schwabe, P., Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky,
V., Schanck, J.M., Seiler, G., Stehlé, D.: CRYSTALS-KYBER. Tech. rep., National
Institute of Standards and Technology (2020), available at https://csrc.nist.
gov/projects/post-quantum-cryptography/round-3-submissions

https://doi.org/10.1007/11535218_33
https://doi.org/10.1007/978-3-642-14623-7_34
https://doi.org/10.17487/RFC5869
https://eprint.iacr.org/2015/978.pdf
https://blog.cloudflare.com/towards-post-quantum-cryptography-in-tls/
https://blog.cloudflare.com/towards-post-quantum-cryptography-in-tls/
https://www.imperialviolet.org/2018/12/12/cecpq2.html
https://www.imperialviolet.org/2018/12/12/cecpq2.html
https://doi.org/10.17487/RFC6962
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/978-3-030-44223-1_5
https://noiseprotocol.org/noise.html
https://noiseprotocol.org/noise.html
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.17487/RFC8446
https://tools.ietf.org/html/draft-rescorla-tls-semistatic-dh-02
https://tools.ietf.org/html/draft-rescorla-tls-semistatic-dh-02
https://doi.org/10.17487/RFC6960
https://doi.org/10.17487/RFC7924
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

20 Peter Schwabe, Douglas Stebila, and Thom Wiggers

48. Schwabe, P., Stebila, D., Wiggers, T.: Post-quantum TLS without handshake
signatures. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 20. pp.
1461–1480. ACM Press (Nov 2020). https://doi.org/10.1145/3372297.3423350

49. Schwabe, P., Stebila, D., Wiggers, T.: Post-quantum TLS without handshake
signatures. Cryptology ePrint Archive, Report 2020/534 (Apr 2021), https://
eprint.iacr.org/2020/534, full version of [48]

50. Sikeridis, D., Kampanakis, P., Devetsikiotis, M.: Post-quantum authentication in
TLS 1.3: A performance study. In: NDSS 2020. The Internet Society (Feb 2020)

51. Stebila, D., Mosca, M.: Post-quantum key exchange for the internet and the open
quantum safe project. In: Avanzi, R., Heys, H.M. (eds.) SAC 2016. LNCS, vol. 10532,
pp. 14–37. Springer (Aug 2016). https://doi.org/10.1007/978-3-319-69453-5_2

52. Sy, E., Burkert, C., Federrath, H., Fischer, M.: Tracking users across the web via
TLS session resumption. In: ACM ACSAC 18. p. 289–299. ACM Press (2018).
https://doi.org/10.1145/3274694.3274708

A KEMTLS

Fig. 4 presents KEMTLS [48] side-by-side with TLS 1.3. Establishing an ephemeral
shared secret happens in a similar way in TLS 1.3 and KEMTLS. The client submits
a public key gx (TLS 1.3) or pke (KEMTLS) to the server in the ClientHello
message. The server then replies with its key share gy (TLS 1.3) or ciphertext cte

(KEMTLS). At this point, the server has the information to derive the handshake
shared secret. This shared secret sse is used to encrypt the server’s certificate
before transmitting it to the client.

In TLS 1.3, this certificate contains a long-term public key for a digital
signature algorithm pkS . The server signs the transcript of all the transmitted
messages so far and submits this signature in the ServerCertificateVerify
message. This allows the client to immediately verify the server’s identity: the
signature proves the server posesses the private key corresponding to the certificate.
The server then finishes the handshake by sending the key confirmation message.
The client replies with its own key confirmation message.

When using long-term public keys for KEMs in certificates, signing the
transcript is not possible. So, in KEMTLS, the client encapsulates a new shared
secret ssS to the server’s long-term public key pkS . It then sends over the
corresponding ciphertext ctS to the server. Only if the server can decapsulate
the shared secret from the ciphertext, can it prove posession of the private key
corresponding to the certificate. The server mixes in the new shared secret with
the ephemeral secret key and derives new handshake keys. The server’s key
confirmation message then proves possesion of the long-term key.

If the client were to wait for the server to prove that it has decapsulated the
ciphertext, KEMTLS would need a full extra round-trip over TLS 1.3. However,
before the confirmation message, the client already knows that only the intended
server would be able to read any data that is encrypted with keys derived from ssS .
KEMTLS uses this to allow the client to send data to the implicitly authenticated

server before it has received the server’s key confirmation message. Once the key
confirmation is received, the server is explicitly authenticated and the client then
knows the server is present.

https://doi.org/10.1145/3372297.3423350
https://eprint.iacr.org/2020/534
https://eprint.iacr.org/2020/534
https://doi.org/10.1007/978-3-319-69453-5_2
https://doi.org/10.1145/3274694.3274708

More efficient post-quantum KEMTLS with pre-distributed public keys 21

Client Server

static (sig): pkS , skSTCP SYN

TCP SYN-ACK

x←$ Zq

gx

y←$ Zq; ss← gxy

K, K′, K′′, K′′′ ← KDF(ss)

gy

ss← gyx

K, K′, K′′, K′′′ ← KDF(ss)

AEADK(cert[pkS]∥Sig(skS , transcript)∥key confirmation)

AEADK′ (application data)

AEADK′′ (key confirmation)

AEADK′′′ (application data)

(a) TLS 1.3

Client Server

static (KEMs): pkS , skSTCP SYN

TCP SYN-ACK

(pke, ske)← KEMe.Keygen()
pke

(sse, cte)← KEMe.Encapsulate(pke)
K1, K′

1 ← KDF(sse)

cte, AEADK1 (cert[pkS])

sse ← KEMe.Decapsulate(cte, ske)
K1, K′

1 ← KDF(sse)
(ssS , ctS)← KEMs.Encapsulate pkS)

AEADK′
1
(ctS)

ssS ← KEMs.Decapsulate(ctS , skS)
K2, K′

2, K′′
2 , K′′′

2 ← KDF(sse∥ssS)
AEADK2 (key confirmation), AEADK′

2
(application data)

AEADK′′
2

(key confirmation)

AEADK′′′
2

(application data)

(b) KEMTLS

Figure 4: Overview of TLS 1.3 and KEMTLS

B Security proof

B.1 Model Syntax

The set of identities of honest participants in the system is denoted as U . Each
identity U ∈ U is associated with a certified long-term public key pkU and the
corresponding private key skU . Sessions of our protocols are uniquely identified
by a label π ∈ U × N. These are pairs (U, n) identifying the nth local session
of U . In this model, each session consists of multiple stages, 1 through M. The
session is run sequentially through each stage with shared state. Each stage aims
to establish a key.

Each participant in each session maintains the following session-specific state
information. The values that are M-length vectors specify values for each stage.

– id ∈ U : The identity of the participant that owns this session.
– pid ∈ U ∪ {∗}: The intended partner in this session. The identity of the

partner may initially be unknown, indicated by ∗.
– role ∈ {initiator, responder}.
– status ∈ {⊥, running, accepted, rejected}M: The status of each stage. statusi ←

accepted is set when stage i accepts the ith stage key. When a key is rejected,
statusi ← rejected and the protocol does not continue. status is initialised as(
running,⊥×5

)
.

– stage ∈ {0, . . . , M}: The last accepted stage. We set stage← i when statusi

is set to accepted. Initially set to 0.
– sid ∈

(
{0, 1}∗ ∪ {⊥}

)M: The session identifier in stage i. There are initially
set to ⊥, and updated when reaching acceptance in that stage.

22 Peter Schwabe, Douglas Stebila, and Thom Wiggers

– cid ∈
(
{0, 1}∗ ∪ {⊥}

)M: The stage-i contributive identifier. Initially all , and
updated until reaching acceptance in that stage.

– key ∈ (K ∪ {⊥})M: Key established in stage i.
– revealed ∈ {true, false}M: Records if keyi has been revealed by the adversary.

Initially all false.
– tested ∈ {true, false}M: Records if keyi has been tested by the adversary.

Initially all false.
– mutualauth ∈ {true, false}: Indicates if mutual authentication will be required.
– auth ∈ {(u, m) ∈ {1, . . . , M,∞}× {1, . . . , M,∞}}M: Indicates at which stage

a stage key is considered to be unilaterally (u) or mutually (m) accepted;
some may never be authenticated (∞).

– FS ∈ {0, wfs1, wfs2, fs}M×M: For j ≥ i, FSi,j indicates the type of forward
secrecy expected of stage key i, assuming stage j has accepted.

– use ∈ {internal, external}M: Indicates if a stage-i key is used internally in the
key exchange protocol.

– replay ∈ {nonreplayable, replayable}M: Indicates whether a stage is expected
to be unique against replay attacks or not. The adversary should still not be
able to distinguish a replayed accepted key and a random one.

We may write π.X as shorthand to refer to π’s element X.
The partner of a session π at stage i is defined to be the π′ where π.sidi =

π′.sidi ̸= ⊥ and π.role ̸= π′.role. We define the contributive partner similarly,
using the contributive identifier cid. Correctness requires this equality holds for
all stages on acceptance, for honest joint executions of the protocol.

B.2 Interacting with the adversary

As in our previous work [48,49] and following [21,22], both Match security and
Multi-Stage security exist within the same adversary interaction model. The
adversary A is a probabilistic algorithm. It controls all communication between
all parties. This means it can intercept, inject or drop any message. In this model,
for two honest parties to establish a connection they need A to facilitate their
communication.

We will now give a number of queries that enable the interaction of the
adversary with the model and the participants. We will not allow all combinations
of queries, as otherwise the adversary might trivially win the test challenge. For
example, allowing A to both reveal and test a particular session key would not
model security appropriately.

The following two queries model honest protocol functionality:

– NewSession(U, V, role, mutualauth) creates a new session π, where π.id ←
U , π.pid ← V , π.role ← role and π.mutualauth = mutualauth. Note that
possibly V = ∗, when V is left unspecified.

– Send(π, m) sends message m to session π. If sent to a session that has not been
created by NewSession, this returns ⊥. Additionally, if π.mutualauth = false,
and m is ClientCertificate, this also returns ⊥. Otherwise, Send will

More efficient post-quantum KEMTLS with pre-distributed public keys 23

operate the protocol on behalf of π.id, record the updated state and return
both the response message and π.statusπ.stage.
To let π initiate the protocol when π.role = initiator, the adversary may
submit the special symbol m = init.
Any keys that have already been used may not be tested. Because internal
keys may be used immediately, we let Send pause execution whenever an
internal key is accepted. It will then return accepted to the adversary. This
allows the adversary to choose to test the session (or do anything in another
session). Whenever the adversary decides to continue the session, they may
call Send(π, continue). They will then receive the next protocol message
and the status of the key in the current stage. On this call, we also set
π.statusπ.stage+1 ← running, except if the current stage is the last one.
If there exists a partner π′ of π at stage i who has been tested (π′.testedi =
true), we set π.tested ← true. If this stage is an internal stage, we also set
π.key← π′.key. This ensures the adversary can not test keys twice and that
session keys are consistently used.

The adversary can compromise participants and learn secret information through
the following two queries:

– Reveal(π, i) gives the adversary session key π.keyi. It also sets π.revealedi ←
true. For non-existing sessions or stages that have not accepted, returns ⊥.

– Corrupt(U) provides the adversary with the long-term secret key skU . The
time of corruption of U is recorded.

The final query models the challenge to the adversary of breaking a key established
by two honest participants:

– Test(π, i) If the π.stagei ̸= accepted or the key π.keyi has already been tested,
or the session’s partner has been tested at stage i, return ⊥.
We do not allow testing any keys that partnered sessions may have used. If
π.usei = internal, we require a partner π′ to π to exist. This partner must
not have yet used the key, i.e. π′.statusi+1 = ⊥. Otherwise, we return ⊥.
We now set π.testedi ← true. The Test oracle has a uniformly random bit
b. This bit is fixed throughout the game. If b = 0, we sample a uniformly
random key K←$K. If b = 1, we set K ← π.keyi. To ensure consistency
with any later-used keys, we set π.keyi = K if π.usei = internal. We then
ensure consistency with partnered sessions. In sessions π′ that are partner
to π at stage i for which π′.statusi = accepted, set π′.testedi ← true and, if
π′.usei = internal, also set π′.keyi ← K. We return K to the adversary.

B.3 Specifics of KEMTLS-PDK

In our protocol, the number of states is M = 5. KEMTLS-PDK without client
authentication is shown in Fig. 2 and with client authentication in Fig. 3 The

24 Peter Schwabe, Douglas Stebila, and Thom Wiggers

session identifiers are set up as follows in unilaterally authenticated sessions:

sid1 = (“ETS”, ServerCertificate, ClientHello) ,

sid2 = (“CHTS”, ServerCertificate, ClientHello . . . ServerHello) ,

sid3 = (“SHTS”, ServerCertificate, ClientHello . . . ServerHello) ,

sid4 = (“SATS”, ServerCertificate, ClientHello . . . ServerFinished) ,

sid5 = (“CATS”, ServerCertificate, ClientHello . . . ClientFinished) .

Each identifier is made up of a label, the server’s certificate, and all the unen-
crypted handshake messages up to that point.

For the contributive identifiers cidi we take some special care. For stage
1, we want to ensure client sessions can be tested, even if the A drops the
client’s message to the server. We set cid1 = (“ETS”, SCRT, ∅) initially. When the
client sends or the server receives the ClientHello message, we update it to
cid1 = (“ETS”, SCRT, CH).

In Case A of our Multi-Stage proof we need to identify the unique pair of honest
contributive server and client sessions, even if A drops the server’s response to the
client. This requires us to set cid2 = (“CHTS”, SCRT, CH) when sending or receiving
the ClientHello message. At that time we also set cid3 = (“SHTS”, SCRT, CH).
If π.mutualauth = true, when the CCRT message is sent or received we update
cid2 and cid3 by updating the transcripts to CH . . . CCRT. When the ServerHello
message is received or sent, they update this to cidi = sidi for i = 2, 3. All other
contributive identifiers (i = 4, 5) are set when the corresponding sidi is set.

The value of replay = (replayable, nonreplayable×4) for both protocols.

We set auth = ((4, m), (4, m), (4, m), (4, m), (∞, m)). In both modes of the
KEMTLS-PDK protocol, the server is explicitly authenticated with the client
accepts stage 4. (Client stage 5 does not achieve explicit authentication because
the client-to-server flow is the last flow in the handshake and there is no assurance
it has been delivered to the server.) In unilaterally authenticated KEMTLS-PDK,
only the server is authenticated, so m =∞. When using mutual authentication,
i.e. π.mutualauth = true, the client is explicitly authenticated when stage m = 5
is accepted.

In client sessions, we set

FS =

0 0 0 0 0

wfs2 wfs2 fs fs
wfs2 fs fs

fs fs
fs

 .

More efficient post-quantum KEMTLS with pre-distributed public keys 25

For server sessions, we set

FS =

0 0 0 0 0

wfs1 wfs1 wfs1 f
wfs1 wfs1 f

f ′ f
f

 ,

where f = fs if π.mutualauth = true and f = wfs1 otherwise, and f ′ = wfs2 if
π.mutualauth = true and f ′ = wfs1 otherwise.

B.4 Match security

As in prior work [11, 12, 21, 22, 24, 48] need to show that our model has sound
behaviour of session matching. Match security ensures that in honest sessions,
π.sid and π′.sid correctly match, where π and π′ are partnered.

Definition 1 (Match security). Let KE be an M-stage key-exchange proto-

col. Probabilistic adversary A interacts with KE via the queries defined in Ap-

pendix B.2. A tries to win the following game GMatch
KE,A :

Setup The challenger generates long-term keypairs (pkU , skU) for each partici-

pant U ∈ U . All keys are provided to A.

Query The adversary has access to the queries NewSession, Send, Reveal, Corrupt
and Test.

Stop At some point, the adversary stops with no output.

Let π, π′ be distinct, partnered sessions for which π.sidi = π′.sidi ̸= ⊥ at some

stage i ∈ {1, . . . , M} The adversary A wins the Match security game, denoted

GMatch
KE,A = 1, if it can falsify any of the following conditions:

1. At every stage j ≤ i, π.keyj = π′.keyj: both sessions agree on the same key

at every stage up to and including stage i.

2. π.role ̸= π′.role, except if π.role = responder and π.replayi = replayable: both

sessions must have opposite roles, except if they are both responders in a

replayable stage.

3. π.cidi = π′.cidi: both sessions have the same contributive identifier.

4. π.authi = π′.authj: both sessions agree on the explicit authentication level.

5. At every stage j, if π.statusj = accepted and, if π.role = initiator, π.stage ≥
π.authj,0; or if π.role = responder, π.stage ≥ π.authj,1; then π.pid = π′.id:

sessions are partnered with the intended (explicitly authenticated) participant.

6. If π.sidi = π′.sidj, then i = j: session labels are different in different stages.

7. If π.replayi = nonreplayable, for any three sessions π, π′, π′′, if π.sidi =
π′.sidi = π′′.sidi ̸= ⊥, then π = π′, or π = π′′, or π′ = π′′: at most two

sessions share the same session label.

26 Peter Schwabe, Douglas Stebila, and Thom Wiggers

We say that KE is Match-secure if for all A that run in polynomial time,

AdvMatch
KE,A :=

∣∣∣∣Pr
[
GMatch

KE,A ⇒ 1
]
− 1

2

∣∣∣∣
is negligible in the security parameter.

Theorem 1. KEMTLS-PDK is Match-secure. Any efficient A has advantage

AdvMatch
KEMTLS-PDK,A ≤ ns(δe + δs + δc) + n2

s/2|nonce|,

where ns is the number of sessions, |nonce| is the length of the nonces rc, rs

in bits. δe is the correctness of the ephemeral KEM, and δs and δc are the

correctness of the long-term KEMs of the server and the client, respectively. If

π.mutualauth = false, δc = 0.

Proof. We will show that the properties of Match-security hold.

1. By definition, the session identifiers contain all handshake messages. The
KEM keys and the hashes of the handshake messages are the only inputs into
the key schedule. At stage 1, the input to the agreed key is the KEMs shared
secret and the ClientHello message. For stages 2 and 3, the input to the
agreed keys are the previous key, messages up to and including ServerHello
and the ephemeral KEMe shared secret. For final stages 4 and 5, the inputs
are the previous keys, messages up to ServerFinished and ClientFinished,
respectively, and, when using mutual authentication, the KEMc shared secret.
These inputs are all included in the session identifiers, which means that
both parties use the same inputs to key computations. The only way they
could arrive at different keys is when any of the KEMs fail. In each of the ns

sessions, the ephemeral KEM KEMe may fail with probability δe, the static
KEM KEMs may fail with probability δs. When using mutual authentication,
the static KEM KEMc may fail with probability δc.

2. All messages are exclusively sent or received by either role. This means no
initiator or responder will accept an incoming message intended for the other
role. This implies any pair of two sessions in a non-replay stage must have
an initiator and responder. As at most two sessions in a non-replay phase
have the same sidi (shown later), these pairings are unique and opposite.
As the only replayable messages are ClientHello and ClientCertificate
messages, not opposite-role pairings can only be between responders.

3. By definition, cidi is final and equal to sidi whenever stage i accepts.
4. The keys in stage 1–4 are fixed to unilateral (retroactive) explicit authentica-

tion up to stage 4. The presence of ServerKemCiphertext in sid5 unambigu-
ously decides if, at stage 5, keys are mutually or unilaterally authenticated.

5. The partnered sessions have to agree once they reach a retroactively au-
thenticated stage, so at stage 4 for unilateral authentication and stage 5
for mutual authentication. For Match security, we are only concerned with
honest client and server sessions. The client already knows the identity of
the server through the pre-distributed key, which is included in the session

More efficient post-quantum KEMTLS with pre-distributed public keys 27

identifiers at stage 1. The server learns the identity of the client through the
ClientCertificate message, which is included in the session identifiers at
stage 5. An honest client will only send its own certificate.

6. As each stage’s session identifier has a unique label, this holds trivially.
7. We are only concerned about stages 2 and later. All session identifiers sid

contain nonces rc and rs embedded in the ClientHello and ServerHello
messages. To get any collision between sessions of honest parties, some session
would need to pick the same nonce as another session. If this happens, the
parties may then be partnered through a regular protocol run to another
one. The probability for such a collision is bounded by the birthday bound
n2

s · 2−|nonce|. Here, ns is the maximum number of sessions and |nonce|= 256
is the nonces’ length in bits. ⊓⊔

B.5 Multi-Stage security

Like [48] we prove the security of KEMTLS-PDK via Multi-Stage security games
as introduced by [24]. The adversary wins, Bellare–Rogaway-style [4], if they
correctly distinguish the keys derived in the protocol from random. They also
win if they get the protocol to maliciously accept (Definition 3); this models the
acceptance of an invalid ServerFinished or ClientFinished message that was
forged by the adversary.

We first define the terms fresh and maliciously accept, that we will throughout
the proof.

Definition 2 (Freshness). In a session π, stage i is said to be fresh if condi-

tions 1, 2, 3, and at least one of 4, 5, or 6 hold:

1. π.revealedi = false: the session key has not been revealed.

2. In any partnered sessions π′ where π′.sidi = π.sidi, π′.revealed = false: no

partnered session at the same stage has been revealed.

3. If stage i is replayable, Corrupt(π.pid) is never called.

4. (Weak forward secrecy 1) There exists j ≥ i such that π.FSi,j = wfs1,

π.statusj = accepted, and there exists a contributive partner at stage i.
5. (Weak forward secrecy 2) There exists j ≥ i such that π.FSi,j = wfs2,

π.statusj = accepted, and either (a) there exists a contributive partner at

stage i or (b) Corrupt(π.pid) was never called.

6. (Forward secrecy) There exists j ≥ i such that π.FSi,j = fs, π.statusj =
accepted, and either (a) there exists a contributive partner at stage i or (b)

Corrupt(π.pid) was not called before π accepted stage j.

Definition 3 (Malicious acceptance). Let (u, m) = π.authi. Here stage u
is the stage at which unilateral authentication is reached. Stage m is the stage

at which mutual authentication is reached. Stage i of session π is said to have

maliciously accepted if all of the following hold:

1. π.statusi = accepted;

28 Peter Schwabe, Douglas Stebila, and Thom Wiggers

2. if π is the initiator then π.statusu = accepted or if π is a responder then

π.statusm = accepted;
3. if stage i is not replayable, there does not exist a unique partner of π at stage

i; and
4. Corrupt(π.pid) was not called before the last stage accepted by π was accepted.

Next we define our version of the Multi-Stage security game. The proof follows
the definition.

Definition 4 (Multi-Stage security). For a M-stage key exchange protocol KE,

let A be a probabilistic adversary. A interacts with KE via the queries defined in

Appendix B.2. The adversary tries to win the following game GMulti-Stage
KE,A :

Setup The challenger chooses the test bit b←$ {0, 1}. It also generates long-term

keys (pkU , skU) for all identities U ∈ U . The public keys pkU are provided to

A.
Query The adversary has access to the queries NewSession, Send, Reveal, Corrupt

and Test.
Stop At some point, A stops and outputs their guess b′ of b.
Finalize The adversary wins the game if either of the following conditions hold:

1. All tested stages are fresh (Definition 2) and b′ = b; or

2. There exists a stage that has maliciously accepted (Definition 3).

In either of these cases the experiment GMulti-Stage
KE,A outputs 1. Otherwise the

adversary has lost the game, in which GMulti-Stage
KE,A outputs a uniformly random

bit.

The Multi-Stage-advantage of A is defined as

AdvMulti-Stage
KE,A =

∣∣∣∣Pr
[
GMulti-Stage

KE,A ⇒ 1
]
− 1

2

∣∣∣∣ .

Theorem 2. Let A be an algorithm. ns is the number of sessions and nu is the

number of identities. There exist algorithms B1, . . . ,B19, given in the proof, such

that

AdvMulti-Stage
KEMTLS-PDK,A ≤

n2
s

2|nonce| + AdvCOLL
H,B1

+ 5ns ·

ns ·

AdvIND-CCA

KEMs,B2
+ AdvPRF-sec

HKDF.Extract,B3

+ AdvPRF-sec
HKDF.Expand,B4

+ AdvIND-1CCA
KEMe,B5

+ AdvPRF-sec
HKDF.Extract,B6

+ AdvPRF-sec
HKDF.Expand,B7

+ Advdual-PRF-sec
HKDF.Extract,B8

+ AdvPRF-sec
HKDF.Expand,B9

+2 AdvEUF-CMA
HMAC,B10

+nu ·

AdvIND-CCA

KEMs,B11
+ Advdual-PRF-sec

HKDF.Extract,B12

+ AdvPRF-sec
HKDF.Expand,B13

+ Advdual-PRF-sec
HKDF.Extract,B14

+ AdvIND-CCA
KEMc,B16

+ AdvPRF-sec
HKDF.Expand,B15

+ Advdual-PRF-sec
HKDF.Extract,B17

+ AdvPRF-sec
HKDF.Expand,B18

+2 AdvEUF-CMA
HMAC,B19

.

More efficient post-quantum KEMTLS with pre-distributed public keys 29

Proof. We follow the basic structure of the proof of the KEMTLS handshake [48].
This in turn is based on the proofs of the TLS 1.3 handshake by Dowling, Fischlin,
Günther and Stebila [21,22]. The proof proceeds by a sequence of games in which
we keep reducing the advantage of the adversary. As the adversary otherwise
loses the game, we assume that all tested sessions remain fresh throughout the
experiment.
Game 0 (Multi-Stage game). We define G0 to be the original Multi-Stage
game:

AdvMulti-Stage
KEMTLS-PDK,A = AdvG0

A .

Game 1 (Nonce collisions). If any honest session uses the same nonce rc or
rs as any other session, the challenger aborts. The chance of such a repeat, and
thus the reduction in advantage of A, is given by the birthday bound over ns

sessions using |nonce|= 256-bit nonces:

AdvG0
A ≤ AdvG1

A + n2
s

2|nonce| .

This means we can now rule out nonce collisions in future games.
Game 2 (Hash collisions). If any two honest sessions compute the same hash
for different inputs of hash function H, the challenger aborts. If this event occurs,
we obtain a reduction B1 that can break the collision-resistance of H. B1 outputs
the two distinct input values when a collision occurs. This gives us the following:

AdvG1
A ≤ AdvG2

A + AdvCOLL
H,B1

.

Game 3 (Single Test query). By invoking a hybrid argument by Günther [27],
we restrict A to only make a single Test-query. This reduces the advantage at
most by 1/5ns for the five stages of KEMTLS-PDK. Any single-query adversary
A1 can emulate the original multi-query adversary A by guessing the to-be-tested
session in advance. Any other Tests that A may submit, A1 simulates by carefully
selected Reveal queries. A1 needs to know how sessions are partnered from the
session identifiers sid. Only the first one is unencrypted, but the later sid can be
obtained by A1 by revealing handshake traffic secrets.

We get the following advantage by letting A1 guess the right session and
stage:

AdvG2
A ≤ 5ns · AdvG3

A1
.

This restriction of A to A1 means we can now refer to the session π at stage
i that is tested. We can also assume we know this from the start.
Two separate cases. We now need to consider two separate cases of game 3.
These cases, respectively, roughly correspond to the specified properties of weak
forward secrecy: wfs1 and wfs2. By rejecting malicious acceptance, we finally
show fs.

A. In these games, denoted GA, the tested session π has a unique contributive
partner in stage 2. This means there exists a session π′ such that π.cid2 =
π′.cid2.

30 Peter Schwabe, Douglas Stebila, and Thom Wiggers

B. In these games, denoted GB , the tested session π does not have a contributive
partner in stage 2. In addition, Corrupt(π.pid) was not called before stage i
of π accepted.

The advantage of the adversary can be considered separately for these cases as:

AdvG3
A1
≤ max

{
AdvGA

A1
, AdvGB

A1

}
≤ AdvGA

A1
+ AdvGB

A1
.

Case A: session π has a unique contributive partner in stage 2

In this case, we assume that π has a π′ with whom they share π.cid2 = π′.cid2.
If the tested session π is a client (initiator) session, then π.cid2 = π.sid2 and a
partner session at π′ also exists. sid2 includes the client and server nonces, and
by game 1 no honest sessions repeat nonces. This means that the contributive
partner at stage 2 is unique.

However, if π has role = responder, then it may have received a replayed CH
message. This would mean a contributive partner session exists at stage 2, but
there is no partnered session. However, there exists only one honest client session
that is a contributive partner: cid2 includes the client nonce (unique by game 1)
and contributive partnering includes roles.

This means we can speak of a particular tested session, π. Its unique con-
tributive stage-2 partner we call π′. Of these two, we let πc be the session that is
the client (role = initiator) session. The other session, with role = responder, is
the server session πs.
Game A1 (guess contributive partner session). In this game, the challenger
tries to guess the π′ ̸= π that is the honest contributive partner to π at stage 2. As
the challenger guesses correctly with probability 1

ns
, this reduces the advantage

of A1 as:
AdvGA

A1
≤ ns · AdvGA1

A1
.

In the remainder of case A, we will keep replacing keys in π and π′.
Game A2 (Static KEM). In this game we replace the shared secret ssS

encapsulated to pkS by a uniformly random s̃sS . We make this replacement in
πc and πs, and, as this stage is replayable, in any other sessions π′′ of S that
received ctS .

Any adversary A1 that can detect this replacement can be used to construct
an adversary B2 that breaks the IND-CCA security of KEMs. B2 obtains the
IND-CCA challenge pk⋆, ct⋆ and challenge shared secret ss⋆ and uses pk⋆ as the
long-term key pkS of party S. In πc, B2 sends ct⋆ in the ClientHello message.
B2 uses ss⋆ for ssS in both πc and πs. If A1 delivers ct⋆ to some other session π′′

of party S, B2 uses ss⋆ as value for ssS in π′′. If A1 delivers a different ct′ ̸= ct⋆

to some other session π′′ of party S, B2 queries its IND-CCA decapsulation oracle
with ct′ to obtain the required shared secret.

Stage 1 cannot maliciously accept since it is replayable. By the definition of
freshness (Definition 2) we also do not need to answer Corrupt queries.

More efficient post-quantum KEMTLS with pre-distributed public keys 31

In the end, A1 terminates and outputs its guess of the uniform bit b. If ss⋆ was
the real shared secret, B2 has exactly simulated GA1 to A1. If it was a random
value, B2 has exactly simulated GA2 to A1. We obtain:

AdvGA1
A1
≤ AdvGA2

A1
+ AdvIND-CCA

KEMs,B2
.

Game A3 (Replacing ES). In this game we replace the early handshake secret
ES by a uniformly random ẼS in both sessions π, π′.

Any adversary A1 that can detect this replacement can be used to construct
an adversary B3 that breaks the PRF security of HKDF.Extract in its second
argument. When B3 needs to compute ES in π or π′ it queries its HKDF.Extract
challenge oracle on (∅, s̃sS) and uses the response as ES. If the response was the
real shared secret, B3 has exactly simulated GA2 to A1. If it was a random value,
B3 has exactly simulated GA3 to A1. We obtain:

AdvGA2
A1
≤ AdvGA3

A1
+ AdvPRF-sec

HKDF.Extract,B3
.

Game A4 (Replacing ETS and dES). In this game we replace the values
ETS and dES by uniformly random values in both sessions πc, πs. All values
derived from dES in both sessions use the new value d̃ES.

Any adversary A1 that can detect this replacement can be used to construct
an adversary B4 that breaks the PRF security of HKDF.Expand. When B4 needs
to compute ETS or dES in πc or πs it queries its HKDF.Expand challenge oracle
with ẼS and the corresponding label and transcript, and uses the responses. If
the response was the real output, B4 has exactly simulated GA3 to A1. If it was
a random value, B4 has exactly simulated GA4 to A1.

We obtain:
AdvGA3

A1
≤ AdvGA4

A1
+ AdvPRF-sec

HKDF.Expand,B4
.

The stage-1 key ETS is now a uniformly random string independent of anything
else in the game. It is, however, not forward-secure.
Game A5 (Ephemeral KEM). In this game, in session πs we replace the
ephemeral shared secret sse with a uniformly random s̃se. In πc we replace sse

with the same s̃se, but only if it received the same cte that πs sent. If sse was
replaced in a session by s̃se, that session will now derive anything originally
derived from sse from s̃se instead.

Any adversary A1 that can detect this replacement can be used to construct
an adversary B5 that breaks the IND-1CCA security of KEMe. B5 obtains the
IND-1CCA challenge pk⋆, ct⋆ and the challenge ciphertext ss⋆. In πc, it uses
pk⋆ in the ClientHello message. In the server session πs B5 sends ct⋆ in the
ServerHello reply. It also sets ss⋆ as the shared secret sse in πs. If A1 sends ct⋆

to πc, B5 also sets sse to ss⋆ in πc. But if A1 sends any other ct′ ̸= ct⋆ to πc, B5

uses its single query to the IND-1CCA decapsulation oracle to obtain πc’s shared
secret.

In the end, A1 terminates it outputs its guess of the uniform bit b. If ss⋆ was
the real shared secret, B5 has exactly simulated GA4 to A1. If it was a random

32 Peter Schwabe, Douglas Stebila, and Thom Wiggers

value, B5 has exactly simulated GA5 to A1. We obtain:

AdvGA4
A1
≤ AdvGA5

A1
+ AdvIND-1CCA

KEMe,B5
.

Game A6 (Replacing HS). In this game we replace the handshake secret HS
by a uniformly random H̃S in πs. If πc received the same cte that πs sent, we
also make this replacement there. If HS was replaced in a session by H̃S, that
session will now derive anything originally derived from HS from H̃S instead.

Any adversary A1 that can detect this replacement can be used to construct
an adversary B6 that breaks the PRF security of HKDF.Extract in its second
argument. When B6 needs to compute HS in πs (or πc if it received the correct
cte) it queries its HKDF.Extract challenge oracle on (dES, s̃sS) and uses the
response as HS. If the response was the real output, B6 has exactly simulated
GA5 to A1. If it was a random value, B6 has exactly simulated GA6 to A1. We
obtain:

AdvGA5
A1
≤ AdvGA6

A1
+ AdvPRF-sec

HKDF.Extract,B6
.

Game A7 (Replacing CHTS, SHTS and dHS). In this game we replace the
handshake traffic secrets CHTS and SHTS and the value of dHS by uniformly
random values in πs. If πc received the same ServerHello and cte that πs sent,
we also make these replacements there. If πc received the same cte but not the
same SH, we replace its dHS by the same d̃HS as set in πs, but πc’s CHTS and
SHTS are set to independent uniformly random values. If dHS was replaced in
a session by d̃HS, that session will now derive anything originally derived from
dHS from d̃HS instead.

Any adversary A1 that can detect this change can be used to construct an
adversary B7 that breaks the PRF security of HKDF.Expand. When B7 needs to
compute CHTS, SHTS or dHS in πs (or πc, if it received the same cte that πs

sent) it queries its HKDF.Expand challenge oracle with H̃S and the corresponding
label and transcript and uses the responses. If the responses are real values,
B7 has exactly simulated GA6 to A1. If the responses are random values, B7

has exactly simulated GA7 to A1. Note that if πc received the same cte that
πs sent, but other parts of the ServerHello were changed such that πs and πc

are no longer partnered at stage 2 or 3, the adversary may issue Reveal(πc, 2)
or Reveal(πc, 3). But since any changes to SH make the transcript in πs and πc

different, the label input to HKDF.Expand is now different for CHTS and SHTS.
This means the simulation in B7 remains good. We obtain:

AdvGA6
A1
≤ AdvGA7

A1
+ AdvPRF-sec

HKDF.Expand,B7
.

The stage-2 and stage-3 keys CHTS and SHTS are now uniformly random
strings independent of anything else in the game. This means that these key have
been shown to have wfs1 security.
Game A8 (Replacing MS). In this game we replace main secret MS by a
uniformly random value M̃S in πs. If πc is a partner to πs at stage 3 and, if
π.mutualauth = true, received the same ctC as πs sent, we replace its MS with

More efficient post-quantum KEMTLS with pre-distributed public keys 33

the same value. Otherwise, we set MS in πc to an independent uniformly random
value. All values derived from MS use these newly randomized values.

Any adversary A1 that can detect this change can be used to construct an
adversary B8 that breaks the PRF security of HKDF.Extract in its first argument
(which we view as the “dual PRF security”). When B8 needs to compute MS in
πs (or in πc, if it received the same ctC that πs sent, if any, and it is partnered
with πs in stage 3) it queries its HKDF.Extract challenge oracle with ssC or ∅
if π.mutualauth = false. It uses the response as MS. If the responses is the real
value, B8 has exactly simulated GA7 to A1. If it is a random value, B8 has exactly
simulated GA8 to A1. We obtain:

AdvGA7
A1
≤ AdvGA8

A1
+ Advdual-PRF-sec

HKDF.Extract,B8
.

Game A9 (Replacing SATS, fks, fkc, and CATS). In this game we replace
the values SATS, fkc, fks and CATS with uniformly random values in πs. If πc

is a partner of πs at stage 4, we also make these replacements there. If it is
not, but it received the same ctC that πs sent (or none, if π.mutualauth = false),
we replace πc’s SATS, fkc, fks and CATS with independent uniformly random
values.

Any adversary A1 that can detect this replacement can be used to construct
an adversary B9 that breaks the PRF security of HKDF.Expand. When B9 needs
to compute SATS, fkc, fks or CATS in πs, it queries its HKDF.Expand oracle
on the corresponding labels and transcripts. If πc received the same ctC that
server session sent (or none, if π.mutualauth = false) and they are partnered in
stage 4, B9 does the same in πc. It uses the responses in those sessions. If the
responses are real values, B9 has exactly simulated GA8 to A1. If the responses
are random values, B9 has exactly simulated GA9 to A1. Note that if πc received
the same ctC (if any was sent) that πs sent, but other parts of the transcript were
changed such that πs and πc are no longer partnered at stage 4, the adversary
may issue Reveal(πc, 4). But since any such changes make the transcript in πs and
πc different, the label input to HKDF.Expand is now different for SATS. Similarly,
if πc received the same ctS (if any was sent) that πs sent, but other parts of the
transcript were changed such that πs and πc are no longer partnered at stage
5, the adversary may issue Reveal(πc, 5). But since any such changes make the
transcript in πs and πc different, the label input to HKDF.Expand is now different
for CATS. This means the simulation in B9 remains good. We obtain:

AdvGA8
A1
≤ AdvGA9

A1
+ AdvPRF-sec

HKDF.Expand,B9
.

The stage-4 key SATS and stage-5 key CATS are now a uniformly random
string independent of everything else in the game. This means that the stage-4
and stage-5 keys have been shown to have wfs1 security.

Let bad denote the event that GA9 maliciously accepts in stage j in the (fresh)
tested session without a session partner in stage j. If π.mutualauth = false, j = 4.
Otherwise, j = 5.
Game A10 (Identical-until-bad). This game is identical to game GA9, except
that we abort the game if the event bad occurs. Games GA9 and GA10 are

34 Peter Schwabe, Douglas Stebila, and Thom Wiggers

identical-until-bad [5]. Thus,

|Pr [GA9 ⇒ 1]− Pr [GA10 ⇒ 1]| ≤ Pr [GA10 reaches bad] .

In game GA9, all stage keys in the tested session are uniformly random and
independent of all messages in the game. The adversary has no possibility to
distinguish stage keys anymore. By this game, it can no longer reach bad. Thus:

AdvGA10
A1

= 0.

It remains to bound Pr [GA10 reaches bad].
Game A11 (HMAC forgery). In this game, πc, if it does not have a ses-
sion partner in stage 4, rejects upon receiving the ServerFinished message. If
πs.mutualauth = true and πs does not have a session partner in stage 5, πs rejects
upon receiving the ClientFinished message.

Any adversary that behaves differently in GA11 compared to GA10 can be
used to construct an HMAC forger B10. The only way that GA10 and GA11 behave
differently is if GA11 rejects a MAC that should have been accepted as valid.
When rejecting SF, if no partner to πc at stage 4 exists, no honest πs exists with
the same session identifier and thus transcript. This means no honest πs ever
created a MAC tag for the transcript that the client verified, and thus it must be
a forgery. When rejecting CF, if no partner to π at stage 5 exists, no honest πc

exists with the same session identifier and thus transcript. This means no honest
πc ever created a MAC tag for the transcript that the server verified, and thus it
must be a forgery. Concluding:

Pr [GA10 reaches bad] ≤ Pr [GA11 reaches bad] + 2 AdvEUF-CMA
HMAC,B10

.

By the above, the event bad is never reached.
Analysis of game A11. By game GA9 , all stage keys are uniformly random
and independent of all messages in the game. By game A11, all events bad are
rejected. Thus: Pr [GA11 reaches bad] = 0.

This concludes case A, yielding:

AdvGA

A1
≤ ns

(
AdvIND-CCA

KEMs,B2
+ AdvPRF-sec

HKDF.Extract,B3
+ AdvPRF-sec

HKDF.Expand,B4
+ AdvIND-1CCA

KEMe,B5

+ AdvPRF-sec
HKDF.Extract,B6

+ AdvPRF-sec
HKDF.Expand,B7

+ Advdual-PRF-sec
HKDF.Extract,B8

+ AdvPRF-sec
HKDF.Expand,B9

+ 2 AdvEUF-CMA
HMAC,B10

)
.

Case B: session π has no contributive partner in stage 2, and π.pid is
not corrupted before stage i accepted.

In this case, the tested session π does not have a contributive partner in stage
2. This means that stages aiming for wfs1 are out of scope of this case. If
π.mutualauth = false, the tested π can be assumed to a client session. Otherwise,
it can both be a server or a client session.

More efficient post-quantum KEMTLS with pre-distributed public keys 35

We also allow the intended peer V of the tested session π to be corrupted,
but not before the tested session accepted. This models forward secrecy: even if
the adversary obtains the peer’s long-term key, the tested keys should still be
indistinguishable.

Allowing Corrupt in this case means that any reductions that replace ssC or
ssS is problematic. However, we show by assumption on the EUF-CMA security
of HMAC that no client can be made to maliciously accept at stage 4 and no
server session at stage 5. This means that if a client accepts in stage 4, then it
has a partner at stage 4, and all prior stages. Similarly, if a server accepts in
stage 5, then it has a partner at stage 5, and all prior stages.

This allows us to make the following conclusions. Once stage 4 accepts, all
client stages are retroactively authenticated. Once stage 5 accepts, all server stages
are retroactively authenticated. By case GA , all stage keys are indistinguishable,
even to an adversary that corrupts any long-term key. This yields retroactive FS
security for all stage keys.
Game B1 (Guessing the intended peer). In this game, we attempt to the
identity of the peer with which the tested session attempts to connect. If we do
not guess this identity V correctly, i.e. this identity V ̸= π.pid, we abort. This
reduces the advantage of A1 by a factor of the number of users nu:

AdvGB

A1
≤ nu · AdvGB1

A1
.

Game B2 (Static KEM). In this game we replace the shared secret ssS in π,
a client session, with a uniformly random s̃sS . In any (server) sessions π′ of V
that received the same ctS as was sent by π in the ClientHello message, we
replace the value of ssS with the same s̃sS . All values derived from ssS in π or
the sessions of V that received the same ctS use the new value s̃sS .

Any adversary A1 that can detect this replacement can be used to construct
an adversary B11 that breaks the IND-CCA security of KEMs. B11 obtains the
IND-CCA challenge pk⋆, ct⋆ and challenge shared secret ss⋆ and gives pk⋆ to
A1. In π, B11 sends ct⋆ in the ClientHello message and uses ss⋆ for ssS . If A1

delivers ct⋆ to any π′ of V , B11 uses ss⋆ as value for ssS in π′. If A1 delivers some
other ct′ ̸= ct⋆, B11 queries its IND-CCA decapsulation oracle with ct′ to obtain
the required shared secret. By the definition of case B, we will never need to
answer any Corrupt(V) queries.

In the end, A1 terminates it outputs its guess of the uniform bit b. If ss⋆ was
the real shared secret, B11 has exactly simulated GB1 to A1. If it was a random
value, B11 has exactly simulated GB2 to A1.

We obtain:
AdvGB1

A1
≤ AdvGB2

A1
+ AdvIND-CCA

KEMs,B11
.

Game B3 (Replacing ES). In this game, we replace the early handshake secret
ES by a uniformly random value ẼS. Additionally, in any sessions π′ of V which
either sent or received the same ctS that was sent or received in π, we make the
same replacement.

Any A1 that can detect this change can be used to construct an adversary
B12 that breaks the PRF security of HKDF.Extract in its first argument as follows.

36 Peter Schwabe, Douglas Stebila, and Thom Wiggers

When B12 needs to compute ES in π or any of the sessions of V that received
or sent the same ctS that was sent or received by π, B12 uses its HKDF.Extract
challenge oracle on ctS . It uses the response as ES. If the responses the real
values, B12 has exactly simulated GB2 to A1. If it was a random value, B12 has
exactly simulated GB3 to A1.

We obtain:
AdvGB2

A1
≤ AdvGB3

A1
+ Advdual-PRF-sec

HKDF.Extract,B12
.

Game B4 (Replacing ETS and dES). In this game we replace the values
ETS and dES by uniformly random values in π. Additionally, in any sessions π′

of V which either sent or received the same ctS that was sent or received in π,
we make the same replacements. All values derived from dES in π and the π′

sessions of V that made the replacements use the new value d̃ES.
Any adversary A1 that can detect this replacement can be used to construct

an adversary B13 that breaks the PRF security of HKDF.Expand. When B13 needs
to compute ETS or dES in π or any of the sessions of V that received or sent the
same ctS that was sent or received by π, it queries its HKDF.Expand challenge
oracle with ES and the corresponding label and transcript and uses the responses.
If the response was the real shared secret, B13 has exactly simulated GB3 to A1.
If it was a random value, B13 has exactly simulated GB4 to A1.

We obtain:
AdvGB3

A1
≤ AdvGB4

A1
+.

The stage-1 key ETS is now a uniformly random string independent of anything
else in the game. It is, however, not forward-secure.
Game B5 (Replacing HS). In this game we replace the value of HS by a
uniformly random value H̃S in π. Additionally, in any sessions π′ of V which
either sent or received the same ctS that was sent or received in π, we make the
same replacement. All values derived from HS in π and the π′ of V that made
the replacement use the new value H̃S.

Any adversary A1 that can detect this replacement can be used to construct
an adversary B14 that breaks the PRF security of HKDF.Extract in its second
argument. When B14 needs to compute HS in π or any of the sessions of V
that received or sent the same ctS that was sent or received by π, it queries its
HKDF.Extract challenge oracle with dES and uses the response. If the response
was the real shared secret, B14 has exactly simulated GB4 to A1. If it was a
random value, B14 has exactly simulated GB5 to A1.

We obtain:
AdvGB4

A1
≤ AdvGB5

A1
+ Advdual-PRF-sec

HKDF.Extract,B14
.

Game B6 (Replacing CHTS, SHTS and dHS). In this game we replace the
values CHTS and SHTS and dHS by uniformly random values in π. Additionally,
in any sessions π′ of V which either sent or received the same ctS that was sent
or received in π, we make the same replacements. All values derived from dHS in
π and the π′ sessions of V that made the replacements use the new value d̃HS.

Any adversary A1 that can detect this replacement can be used to construct
an adversary B15 that breaks the PRF security of HKDF.Expand. When B15 needs

More efficient post-quantum KEMTLS with pre-distributed public keys 37

to compute any of CHTS, SHTS or dHS in π or any of the sessions of V that
received or sent the same ctS that was sent or received by π, it queries its
HKDF.Expand challenge oracle on the corresponding label and transcript and
uses the responses. If the response was the real shared secret, B15 has exactly
simulated GB5 to A1. If it was a random value, B15 has exactly simulated GB6

to A1.
We obtain:

AdvGB5
A1
≤ AdvGB6

A1
+ AdvPRF-sec

HKDF.Expand,B15
.

The stage-2 and stage-3 keys CHTS and SHTS in π are now uniformly random
independent from anything else in the game. Thus, they have been shown to
have wfs2 security in client sessions. Recall that server sessions aim for wfs1 in
this stage, which is out of scope.
Game B7 (Client authentication static KEM). We only play this game if
π.mutualauth = true. Otherwise this game is equal to the previous one as there
is no reduction in advantage.

We replace the client authentication shared secret ssC in π, a server, by a
uniformly random value s̃sC . If any of V ’s client sessions π′ received the same
ctC as π sent in ServerKemCiphertext, we make the same replacement in those
π′ if they have π′.mutualauth = true. Any value derived from ssC in a session
where it was replaced will now use the replacement value s̃sC . Sending any
ServerKemCiphertext to π′ with π′.mutualauth = false will simply terminate
those sessions at no advantage to the adversary.

Any adversary A1 that can detect this replacement can be used to construct
an adversary B16 that breaks the IND-CCA security of KEMc. B16 obtains the
IND-CCA challenge pk⋆, ct⋆ and the challenge ciphertext ss⋆. B16 uses pk⋆ in the
ClientCertificate message sent in V ’s client sessions. In π, B16 uses ct⋆ in
the ServerKemCiphertext message and sets ss⋆ as the shared secret ssC . If A1

sends ct⋆ to any of V ’s π′, B16 also sets ssC to ss⋆ in those π′. But if A1 sends
any other ct′ ̸= ct⋆ to any of V ’s π′, B16 uses the IND-CCA decapsulation oracle
to obtain the appropriate shared secret.

In the end, A1 terminates it outputs its guess of the uniform bit b. If ss⋆ was
the real shared secret, B16 has exactly simulated GB6 to A1. If it was a random
value, B16 has exactly simulated GB7 to A1.

We obtain:
AdvGB6

A1
≤ AdvGB7

A1
+ AdvIND-CCA

KEMc,B16
.

Game B8 (Replacing MS). In this game we replace the value of main secret
MS by a uniformly random value M̃S in π. Additionally, in any sessions π′ of
V which either sent or received the same ctS that was sent or received in π, we
make the same replacement. All values derived from MS in π and the π′ of V

that made the replacement use the new value M̃S.
Any adversary A1 that can detect this replacement can be used to construct

an adversary B17 that breaks the PRF security of HKDF.Extract in its first
argument. When B17 needs to compute MS in π or any of the sessions of V
that received or sent the same ctS that was sent or received by π, it queries its

38 Peter Schwabe, Douglas Stebila, and Thom Wiggers

HKDF.Extract challenge oracle and uses the response. In each of these sessions π′,
if π′.mutualauth = false, B17 calls HKDF.Extract with ∅. If π′.mutualauth = true,
B17 calls HKDF.Extract with ssC . If the response was the real shared secret, B17

has exactly simulated GB7 to A1. If it was a random value, B17 has exactly
simulated GB8 to A1.

We obtain:
AdvGB7

A1
≤ AdvGB8

A1
+ Advdual-PRF-sec

HKDF.Extract,B17
.

Game B9 (Replacing SATS, fks, fkc and CATS). In this game we replace
the application traffic secrets SATS and CATS, and finished keys fks and fkc by
uniformly random values in π. Additionally, in any sessions π′ of V which either
sent or received the same ctS and ctC (or no ctC , if π.mutualauth = false) that
were sent or received in π we make the same replacements.

Any adversary A1 that can detect this replacement can be used to construct
an adversary B18 that breaks the PRF security of HKDF.Expand. When B18 needs
to compute SATS, CATS, fks or fkc in π or any of the sessions of V that received
or sent the same ctS and ctC (or no ctC , if π.mutualauth = false) that were sent
or received by π, it queries its HKDF.Expand challenge oracle with MS and the
corresponding label and transcript and uses the responses. If the response was
the real shared secret, B18 has exactly simulated GB8 to A1. If it was a random
value, B18 has exactly simulated GB9 to A1.

We obtain:
AdvGB8

A1
≤ AdvGB9

A1
+ AdvPRF-sec

HKDF.Expand,B18
.

The stage-4 key SATS and stage-5 key CATS in the tested session π are now
uniformly random independent from anything else in the game. Thus, they have
been shown to have wfs2 security. If π is a server session, and π.mutualauth = false,
wfs2 security of SATS is out of scope.

Let bad denote the event that GB9 maliciously accepts in stage j in the (fresh)
tested session without a session partner in stage j. If π.mutualauth = false, j = 4.
Otherwise, j = 5.
Game B10 (Identical-until-bad).

This game is identical to game GB9, except that we abort the game if the
event bad occurs. Games GB9 and GB10 are identical-until-bad [5]. Thus,

|Pr [GB9 ⇒ 1]− Pr [GB10 ⇒ 1]| ≤ Pr [GB10 reaches bad] .

In game GB9, all stage keys in the tested session are uniformly random and
independent of all messages in the game. The adversary has no possibility to
distinguish stage keys anymore. By this game, it can no longer reach bad. Thus:

AdvGB10
A1

= 0.

It remains to bound Pr [GB10 reaches bad].
Game B11 (HMAC forgery). In this game, π, if it is a client, rejects upon
receiving the ServerFinished message. If π is a server and π.mutualauth = true,
π rejects upon receiving the ClientFinished message.

Any adversary that behaves differently in GB11 compared to GB10 can be
used to construct an HMAC forger B19. The only way that GB10 and GB11 behave

More efficient post-quantum KEMTLS with pre-distributed public keys 39

differently is if GB11 rejects a MAC that should have been accepted as valid.
When rejecting SF, no partner to π at stage 4 exists, so no honest server session
π′ exists with the same session identifier and thus transcript. No honest π′ ever
created a MAC tag for the transcript that the client verified, and thus it must be
a forgery. When rejecting CF, no partner to π at stage 5 exists, so no honest client
session π′ exists with the same session identifier and thus transcript. Concluding:

Pr [GB10 reaches bad] ≤ Pr [GB11 reaches bad] + 2 AdvEUF-CMA
HMAC,B19

.

Since this game rejects all SF messages, the event bad is never reached in
client sessions. If π.mutualauth = true, this game also rejects all CF messages. If
π.mutualauth = false, rejecting ClientFinished is out of scope as we only aim
for wfs1.
Analysis of game B11. By game GB9 , all stage keys are uniformly random
and independent of all messages in the game. By game B11, all events bad are
rejected. Thus: Pr [GB11 reaches bad] = 0.

This concludes case GB , yielding:

AdvGB

A1
≤ nu

(
AdvIND-CCA

KEMs,B11
+ Advdual-PRF-sec

HKDF.Extract,B12
+ AdvPRF-sec

HKDF.Expand,B13

+ Advdual-PRF-sec
HKDF.Extract,B14

+ AdvPRF-sec
HKDF.Expand,B15

+ AdvIND-CCA
KEMc,B16

+ Advdual-PRF-sec
HKDF.Extract,B17

+ AdvPRF-sec
HKDF.Expand,B18

+ 2 AdvEUF-CMA
HMAC,B19

)
.

	More efficient post-quantum KEMTLS with pre-distributed public keys
	Introduction
	Pre-distributed keys

	Preliminaries
	KEMTLS with pre-distributed long-term keys
	Proactive client authentication

	Security analysis
	Instantiation and Evaluation
	Choice of primitives
	Implementation
	Handshake sizes
	Handshake times

	Discussion
	KEMTLS
	Security proof
	Model Syntax
	Interacting with the adversary
	Specifics of KEMTLS-PDK
	Match security
	Multi-Stage security

