
Dynamic Volume-Hiding Encrypted Multi-Maps with

Applications to Searchable Encryption

Ghous Amjad∗ Sarvar Patel† Giuseppe Persiano‡ Kevin Yeo§ Moti Yung¶

July 11, 2023

Abstract

We study encrypted storage schemes where a client outsources data to an untrusted third-party server
(such as a cloud storage provider) while maintaining the ability to privately query and dynamically update
the data. We focus on encrypted multi-maps (EMMs), a structured encryption (STE) scheme that stores
pairs of label and value tuples. EMMs allow queries on labels and return the associated value tuple.
As responses are variable-length, EMMs are subject to volume leakage attacks introduced by Kellaris et
al. [CCS’16]. To prevent these attacks, volume-hiding EMMs were introduced by Kamara and Moataz
[Eurocrypt’19] that hide the label volumes (i.e., the value tuple lengths).

As our main contribution, we present the first fully dynamic volume-hiding EMMs that are both
asymptotically and concretely efficient. Furthermore, they are simultaneously forward and backward
private which are the de-facto standard security notions for dynamic STE schemes. Additionally, we
implement our schemes to showcase their concrete efficiency. Our experimental evaluations show that
our constructions are able to add dynamicity with minimal to no additional cost compared to the prior
best static volume-hiding schemes of Patel et al. [CCS’19].

1 Introduction

Structured encryption (STE) schemes, introduced by Chase and Kamara [10], enable a client to outsource
the storage of an encrypted version of their structured data to an untrusted third-party server (such as a
cloud storage provider). The encrypted data is stored in a structured manner so that the client may still
perform operations on it without the server ever viewing the plaintext data. For privacy, the ideal goal is to
ensure that the adversarial server does not learn any information about the outsourced data or operations
performed by the client. Currently, this ideal privacy is only known to be achievable by using expensive
cryptographic primitives such as fully homomorphic encryption or oblivious RAMs (ORAMs). Instead, STE
schemes aim to strike a delicate balance between efficiency and privacy by enabling some leakage that is
upper bounded by a well-defined and “sensible” leakage function to obtain efficiency that is necessary for
real-world applications.

In our work, we focus on the encrypted multi-map (EMM) primitive that is an important example of
an STE scheme that manage collections of pairs of labels and value tuples consisting of one or more values.
EMMs form the basis of many important applications where clients outsourced encrypted data to a untrusted
cloud server. By leveraging EMMs, one can build systems that enable searching over the encrypted data (also
known as searchable encryption [39, 11, 9]), or performing SQL queries over the encrypted databases [19].

∗Brown University. ghous_amjad@alumni.brown.edu.
†Google. sarvar@google.com.
‡Università di Salerno. giuper@gmail.com.
§Google. kwlyeo@google.com.
¶Google. moti@google.com.

1

Therefore, the construction of efficient and private EMMs is an important line of research to enable these
real-world applications. We will focus on dynamic EMMs that also enable clients to update the outsourced
encrypted data.

While efficiency is clear to evaluate, assessing the level of privacy guaranteed by the leakage profile of
an EMM (and STE schemes in general) is a challenging problem. So far, our only measure of privacy is a
“sensible” or “reasonable” leakage function, which is both vague and subjective. This has motivated the
study of leakage-abuse attacks that aim at leveraging specific leakage profiles to compromise privacy. The
first leakage-abuse attack was presented by Islam et al. [18]. Many follow up works (such as [8, 28, 15, 22,
36, 43, 16, 14]) improve the accuracy of the attack or consider either different leakage profiles and/or weaker
assumptions. These attacks significantly further our understanding of the dangers of various types of leakage
profiles.
Volume-Hiding EMMs. One recent line of works have leveraged volume leakage to compromise privacy
in certain settings (see [22, 17, 5, 24] and references therein). Previous works (such as [5]) have shown
that volume leakage may be used to compromise even the most powerful cryptographic primitives including
ORAMs. Kamara and Moataz [20] introduced the notion of volume-hiding EMMs to protect against these
attacks. These schemes ensure that the number of values (the volume) associated with any single label is
never leaked to the adversary to protect against volume leakage attacks. This was subsequently improved by
Patel et al. [35] that presented asymptotically optimal schemes for the static setting. In a concurrent work,
Wang and Chow [42] presented another static volume-hiding EMM that slightly reduced server storage by
increasing query computation.

Prior works focused on volume-hiding EMMs in the static setting where users are only able to query the
outsourced, encrypted data. In many applications, dynamic EMMs are necessary where users are able to
manipulate the multi-map (MM) by either adding, modifying or deleting pairs of label and value tuples.
Kamara and Moataz [20] briefly studied dynamic volume-hiding EMMs but only present a scheme offering
a subset of natural update operations (see Appendix A for more details). Furthermore, these schemes are
less efficient than the static volume-hiding EMMs presented by Patel et al. [35]. In our work, we fill this
gap by presenting dynamic EMMs offering natural update operations while being as efficient as their static
counterparts.
Dynamic EMMs. Before presenting our dynamic volume-hiding EMMs schemes, we first elaborate on the
importance of enabling dynamicity for real-world usage. Consider any natural application of EMMs where
the storage of highly sensitive data is outsourced to a potentially untrusted cloud server (outsourcing is
typically done for many reasons including fault tolerance and/or availability). In many such applications,
updating this data regularly is necessary.

Classic examples of highly sensitive data are financial or medical information. For example, a firm may
wish to keep track of the transactions that occurred at each hour during a work day by uploading its financial
transactions to an outsourced EMM hourly meaning the EMM is updated every hour. It can be immediately
seen that volume-hiding is important in this setting as the volume directly reveals the number of transactions
by the hour. A similar situation can occur for hospitals that record their medical inventory usage at the
end of each day. The volume is correlated to the number of patients that were treated. Both cases are
examples where volume-hiding is integral as volumes would reveal information that is not exposed elsewhere
(for example, the patterns of updates do not reveal anything as they occur at fixed, regular time intervals).
Moreover, even with volume-hiding during updates, (changes in) volume during queries can essentially reveal
the same information.

With medical data, any new information from patient examinations or lab tests must be stored in the
EMM that require modifying the outsourced data. Similar updates are necessary for financial settings where
the information from every new transaction must be propagated into the EMM. Even more importantly,
it is straightforward to see that volume-hiding is also necessary in these scenarios. For medical data, the
number of examinations for a patient is, typically, correlated to the current health status of the patient.
Similarly, the number of financial transactions may correspond to that party’s interest (or lack thereof) in
the current market. By enabling dynamicity, our work will help open up volume-hiding EMMs to more
practical applications.

2

From a technical perspective, there are significant difficulties when dealing with operations that enable
updating the encrypted data even when ignoring volume-hiding requirements. At a high level, EMMs (and,
generally, STE schemes) are attempting to find a delicate balance between functionality, efficiency and
privacy. As dynamicity is increasing functionality, EMMs must ensure that only minimal loss of efficiency
and/or privacy are incurred compared to the static setting. Due to this difficulty, there has been prior works
that explored and defined standard privacy requirements in dynamic settings to avoid privacy degradation.
Formally, these standard notions for dynamic STE schemes are forward and backward privacy [40, 6, 7].
Forward privacy guarantees that insertion operations do not leak information on previous queries. Backward
privacy addresses a similar concern with respect to deletion ensuring that it is not possible to apply a query
to data that has been deleted. Enabling update operations only becomes more difficult when studying
volume-hiding EMMs. For static volume-hiding EMMs, schemes must ensure volume is not leaked only on
query operations. In the dynamic setting, volume must not be leaked by either query or update operations.
Furthermore, designers must ensure that combining leakage between query and update operations does not
reveal volumes as well.

In our work, we will design dynamic volume-hiding encrypted multi-maps that provide forward and
backward privacy while simultaneously being efficient.

1.1 Our Contributions

As our main contribution, we present dynamic volume-hiding EMMs that are forward and backward private
with better efficiency than prior works. The state-of-the-art, dynamic, volume hiding scheme was presented
in the original work by Kamara and Moataz [20] and is denoted as the Dense Subgraph Transform (DST).
For a MM with n total values and maximum volume ℓ, DST requires O(ℓ log n) overhead for both queries
and updates. Furthermore, DST supports only a subset of update operations and is not forward private, a
standard security notion of the dynamic setting. With this in mind, there are four main challenges that we
address in our work.

1. Dynamicity and Hiding Volume. The volume-hiding scheme in [20] only enables adding, deleting
or overwriting the entire tuple associated with a label. In particular, users may not append a single
value or remove a value from an existing value tuple. While one can achieve this functionality using
a query before an update, it turns out that this degrades privacy significantly (see Appendix A). This
motivates the following question: Is it possible to construct fully-dynamic volume-hiding schemes with
the ability to add/remove a set of values from an already existing tuple that is both efficient and private?

2. Forward and Backward Privacy. Introduced by [6, 7] for the special case of dynamic searchable
encryptions, forward and backward privacy are the de-facto standard security notions for dynamic STEs
to protect against various injection attacks [43]. At a high level, these notions guarantee that modified
data is not leaked until a query for the data is performed. Prior volume-hiding schemes [20, 35] are
not forward and backward private, which motivates the following problem: Is it possible to construct
volume-hiding dynamic EMMs that are both forward and backward private?

3. Efficiency. DST [20] requires O(ℓ · log n) overhead for both queries and updates, which is larger than
the O(ℓ) overhead needed by the best static volume-hiding scheme [35] and raises the following question:
Is it possible to construct a dynamic volume-hiding scheme with better efficiency while simultaneously
providing forward and backward privacy?

4. Leakage. Beyond forward and backward privacy, our schemes will aim to leak as little information
as possible. We identify three leakages that are necessary for functionality or efficiency: MM size n,
maximum volume ℓ and label equality leakage (whether two operations are for the same label). The
MM size n is necessary as the server stores the EMM. We show that hiding the maximum volume ℓ
would require Ω(n) communication for any reasonable error probability in Appendix B. Patel et al. [34]
showed that avoiding label equality leakage would require overhead equivalent to ORAMs [13, 31, 3]
(see Appendix I for more details). It is not a coincidence that prior works [20, 35, 42] leaked all three

3

Query Comm. Query Comp. Query RT Update Comm. Update Comp. Client Storage VH FP BP Correct %-age Leakage
Sofos [6] O(ℓlabel) O(ℓlabel) 1 O(ulabel) O(ulabel) O(m) × ✓ × 1 (n, ℓlabel, leq)
Fides [7] O(ℓlabel) O(ℓlabel) 2 O(ulabel) O(ulabel) O(m) × ✓ II 1 (n, ℓlabel, leq)
SDa [12] O(ℓlabel) O(ℓlabel) 1 O(ulabel log n) O(ulabel log n) O(1)∗ × ✓ II 1 (n, ℓlabel, leq)

DST [20] O(ℓ log n) O(ℓ log n) 1 O(ℓ log n) O(ℓ log n) O(1) ✓ × II 1 (n, ℓ, leq)
S4 [42] O(bℓ) O(bℓ log n) 1 O(ℓ) O(ℓ) O(m) ✓ ✓ II 1 (n, ℓ, leq)

DSSE [44] O(ℓ+ log n) O(ℓ+ log n) 1 O(ℓ log n) O(ℓ log n) O(1) ✓ ✓ I ℓ/n (n, leq)
DSSEk [44] Oλ(ℓ+ log n) Oλ(ℓ+ log n) 1 Oλ(ℓ log n) Oλ(ℓ log n) O(1) ✓ ✓ I ℓ/n (n, leq)

2ch O(ℓ log log n) O(ℓ log log n) 1 O(ℓ log log n) O(ℓ log log n) ω(log n) ✓ × II 1 (n, ℓ, leq)
2chFB O(ℓ log log n) O(ℓ log log n) 1 O(ℓ) O(ℓ) O(m) ✓ ✓ II 1 (n, ℓ, leq)
2chs

FB O(ℓ log log n) O(ℓ log log n) 2 O(ℓ log n) O(ℓ log n) ω(log n)∗ ✓ ✓ II 1 (n, ℓ, leq)

Table 1: A comparison of amortized query and update overhead of dynamic schemes that provide either volume-
hiding, forward or backward privacy with our schemes. We use the following abbreviations: roundtrips (RT), volume-
hiding (VH), forward privacy (FP) and backward privacy (BP). For notation, n denotes the maximum number of
values in the multi-map MM and m denotes the number of unique labels in the MM. For volume-hiding schemes,
ℓ represents the maximum volume. We denote ℓlabel to be the volume associated with the queried label and ulabel

to be the number of updated values. Correct %-age refers to the percentage of returned correct values. For client
storage, an asterisk* means client storage may increase up to O(n) temporarily. For [42], b refers to the number of
batch updates. In [44], Oλ(x) means there are hidden λ factors. Label equality leakage is referred to by leq.

of n, ℓ and label equality. This leads to the natural question: Is it possible to construct dynamic
volume-hiding schemes supporting the above properties with minimal leakage?

We present two schemes 2chFB and 2chs
FB that address all three problems simultaneously and present

different trade-offs between client storage and update overhead. We remind the reader that in the following
statements that ℓ is the maximum length of any value tuple and n is the maximum total number of values.

Theorem 1 (Informal). There exists a fully-dynamic, volume-hiding, forward and type-II backward private
EMM, 2chFB with query overhead of O(ℓ log log n), amortized update overhead of O(ℓ), server storage of
O(n) and client storage of size O(m) where m is the number of unique labels in the MM.

2chFB achieves all our goals of dynamicity, volume-hiding, efficiency, forward/backward privacy and
minimal leakage of only n, ℓ and label equality. However, 2chFB requires O(m) client storage, which is
common to the majority of forward private schemes, such as schemes in [6, 7]. We present 2chs

FB with
smaller permanent client storage at the cost of slightly larger overhead.

Theorem 2 (Informal). There exists a fully-dynamic, volume-hiding, forward and type-II backward private
EMM 2chs

FB with query overhead of O(ℓ log log n), amortized update overhead of O(ℓ log n), server storage
of O(n) and permanent client storage of size at most f(n), for every function f(n) = ω(log n).

To our knowledge, 2chFB and 2chs
FB are the first dynamic EMM schemes that simultaneously pro-

vide volume-hiding, forward and backward privacy while being concretely efficient with a small number of
roundtrips with minimal leakage of n, ℓ and label equality. A comparison of the asymptotic performance of
our schemes and prior dynamic schemes obtaining at least one of volume-hiding, forward or backward privacy
are presented in Table 1. The experimental evaluation in Section 5.1 shows that our schemes also improve
on the concrete performance of prior schemes. It also shows that we enable dynamicity without incurring
any additional cost when compared with prior static schemes [35]. This is very surprising as static schemes
are optimized for query communication whereas experimentally our schemes, despite having to support a
very rich set of dynamic operations, have query cost comparable with the static scheme of [35]. In addition,
our schemes exhibit a 2-3x improvement in query communication cost over DST [20], the best existing non-
lossy volume hiding dynamic scheme, while supporting a wider range of dynamic operations and providing
stronger security guarantees.
Discussion about Concurrent Works. Zhao et al. [44] give two schemes for volume-hiding dynamic
EMMs. Even though their schemes offer stronger type-I backward privacy and avoid leaking ℓ (along with
similar security guarantees elsewhere), they fail to return the correct value tuple for all instances. In par-
ticular, only an ℓ/n-fraction is guaranteed to be returned. However, their schemes obtain smaller query
computation and communication of O(ℓ+ log n) compared to our schemes.

4

Wang and Chow [42] also construct dynamic volume-hiding EMMs with the same privacy guarantees as
ours along with very small server storage overhead by using consistent hashing. To guarantee forward and
backward privacy, they cache the update operations and then execute them as part of the first available query
operation. A query then requires time proportional to the number of cached updates as it needs to handle
them. To improve query performance, they allow updates to be processed in batches. A set of updates make
a batch, if they arrive simultaneously. Each batch update is stored in a separate volume-hiding EMM. A
query consists of querying all uploaded EMMs increasing query overhead for each set of batch updates. Thus,
the ability of handling updates in batches does not improve the worst-case running time, unless the client
is willing to accumulate the updates in local memory to form a batch. Our schemes also employ caching
of the update operations (that is, the updates are not instantly implemented on the main data structure).
However, this is done while guaranteeing that the worst case query overhead is independent of the number
of updates. We note that when the number of batched updates is small such as b = O(1), the scheme in [42]
has smaller query communication O(bℓ) but either larger query computation O(bℓ log n)1 or client storage
O(m) compared to 2chFB and 2chs

FB respectively.
Discussion about Backward Privacy. Both of 2chFB and 2chs

FB provide type-II backward privacy
as defined in [7]. We note that there are several schemes that provide stronger type-I backward privacy.
However, current type-I backward private schemes are expensive and resort to usage of ORAMs. As a result,
we do not consider type-I backward privacy and leave it as an open problem for future work.
Discussion about Oblivious RAMs. From a theoretical perspective, ORAMs [13, 31, 3] address the
problems of dynamicity, forward and backward privacy (as outlined in [20]). However, ORAMs are expensive
as they require logarithmic number of client-server roundtrips or fully homomorphic encryption schemes. As
evidenced by prior works such as [37], the high number of roundtrips of ORAMs significantly hinder efficiency.
In our work, we ensure our schemes use either 1 or 2 roundtrips and only use cheap, symmetric primitives
instead of expensive cryptographic tools such as ORAMs and FHE. DST [20] has the same asymptotic
overhead as an ORAM, but is faster in practice due to 1 roundtrip and no FHE usage.

Discussion about Parallelism. Prior works [21, 40, 26] investigated enabling the client to issue multiple
operations in parallel. In our work, we will focus on constructing dynamic volume-hiding schemes in the
sequential setting that were previously not known to exist with our efficiency and privacy guarantees. To
our knowledge, we believe that DST [20] and DSSE [44] may enable issuing parallel queries (but could not
verify this). We believe all other volume-hiding works (including [42] and ours) do not have this property.
We leave it as an open problem to enable parallel queries in our schemes.

2 Definitions

2.1 Structured Encryption

In a STE scheme, a client may encrypt and outsource storage of the data structure to a server. The encryption
is structured in such a way that the underlying data structure may be operated on by the client in a private
manner. The notion of STE was first presented by Chase and Kamara [10]. While we consider generic
definitions for encrypting any data structure, our work focuses on MMs as they are a simple data structure
with several applications.

STE schemes may be differentiated using several criteria. Static STE schemes only enable clients to
query the underlying data structure while dynamic STE schemes additionally enable clients to update the
underlying data structure. We will focus on dynamic STE schemes that consist of three protocols to be
executed between the client and the server: the Setup protocol to compute the initial encryption of the
data structure, the Query protocol to query the data structure, and the Update protocol to update the data
structure.

The number of communication rounds between the client and server is an important measure. We say that
an operation of an STE scheme is r-interactive if it can be completed in at most r rounds of communication

1Theoretically, the authors in [42] mention the usage of more complex predecessor data structures can reduce this to
O(bℓ log logn).

5

between the client and the server. An STE scheme is r-interactive if all operations use at most r rounds
of interaction. In our work, we will exclusively focus on STE schemes with a low number of rounds of
interaction as they are more practical.

Definition 1. An r-interactive dynamic STE scheme Σ = (Setup,Query,Update) consists of the following
protocols between client C and server S:

1. (st;EDS) ← Setup((1λ, params,DS); 1λ). The setup protocol is executed jointly by C and S where C
receives (1λ, params,DS) and S receives 1λ. At termination, C receives its state st and S receives the
encrypted data structure EDS.

2. ((Response, stnew);EDSnew)← Query((st, qop);EDS). The query protocol is executed jointly by C and S
where C receives (st, qop) and S receives EDS. For each i ∈ {0, . . . , r−1}, C generates the i-th message
using the state st, the query operation qop and all previous messages. S generates the i-th message
using the encrypted data structure EDS and all previous messages. At termination, C receives the query
result Response and an updated state stnew, and S receives an updated encrypted data structure EDSnew.

3. (stnew;EDSnew) ← Update((st, up);EDS). The update protocol is executed jointly by C and S where C
receives (st, up) and S receives EDS. For each i ∈ {0, . . . , r − 1}, C generates the i-th message using
the state st, the update operation up and all previous messages. S generates the i-th message using the
encrypted data structure EDS and all previous messages. At termination, C receives an updated state
stnew and the S receives an updated the encrypted data structure EDSnew.

2.2 Adaptive Security

We consider the notion of security for STE schemes against an honest-but-curious PPT adversary A with
respect to a leakage function L = (LSetup,LQuery,LUpdate). The leakage function is an upper bound on the
amount of information leaked to the adversary in the sense that (1) the initial setup reveals no information
beyond LSetup; (2) a query reveals no information beyond LQuery; and (3) an update operation reveals no
information beyond LUpdate. The leakage on an operation may depend on all the previous operations and
the setup phase.

We consider adaptive security that considers adversaries that view the execution of one operation before
choosing the next operation that was first formalized by Curtmola et al. [11]. The definition utilizes the
real-ideal paradigm with a stateful, honest-but-curious, PPT adversary A and a stateful, PPT simulator S.

More formally, let Σ = (Setup,Query,Update) be a dynamic STE and consider the following real game

RealΣ,A and ideal game IdealL,S
Σ,A between a stateful PPT adversary A and a challenger C. In the ideal

game, S is a stateful PPT simulator and L = (LSetup,LQuery,LUpdate) is a leakage function. RealΣ,A(1
λ, z):

Adversary A(1λ, z), takes as input the security parameter 1λ and the auxiliary information z, outputs an
input data structure DS. The challenger C executes Setup on DS obtaining client state st and encrypted data
structure EDS. C sends EDS to A.
For i = 1, . . . , poly(λ) :

• A adaptively picks operation oi.

• If oi is a query operation, A and C jointly execute ((Response, stnew);EDSnew)← Query((st, oi);EDS).

• If oi is an update operation, A and C jointly execute (stnew;EDSnew)← Update((st, oi);EDS).

• In both cases A plays the role of the server S and challenger C plays the role of the client C. Therefore,
A receives a transcript of the protocol and updates EDS by setting EDS← EDSnew and C updates the
client state by setting st← stnew.

Finally, A outputs b ∈ {0, 1}.

6

IdealL,S
Σ,A(1

λ, z): Adversary A(1λ, z), on input the security parameter λ and the auxiliary information z,
outputs an input data structure DS. The challenger C runs the simulator S on input leakage LSetup(DS, n, ℓ)
and the auxiliary information z to obtain the encrypted data structure EDS that is sent to the adversary A.
For i = 1, . . . , poly(λ),

• A adaptively picks operation oi

• If oi is a query operation, then A and S jointly execute Query on input LQuery(DS, o1, . . . , oi).

• If oi is an update operation, then A and S jointly execute Update on input LUpdate(DS, o1, . . . , oi).

• In both cases A plays the role of the server S and S the role of the client C. Therefore, A receives a
protocol transcript and an updated version of EDS. Note, S may deviate from the protocol.

Finally, A outputs b ∈ {0, 1}.

Definition 2 (Adaptive Security). STE scheme Σ is adaptively L-secure if there exists a stateful, PPT
simulator S such that for all stateful, PPT adversaries A and all auxiliary information z ∈ {0, 1}∗:∣∣Pr [RealΣ,A(1

λ, z) = 1
]
− Pr

[
IdealL,S

Σ,A(1
λ, z) = 1

]∣∣ ≤ negl(λ)

2.3 Multi-Maps

A MM stores a collection of label and value tuple pairs (label, v⃗) where label is from the label universe
L and v⃗ is a tuple of values from the value universe V. For a multi-map MM we denote by LABEL(MM)
the set of labels in MM and, for each label ∈ LABEL(MM), we denote by MM[label] the tuple v⃗ such that
(label, v⃗) ∈ MM. If label ̸∈ LABEL(MM) then MM[label] :=⊥. We will use m := |LABEL(MM)| to denote
the number of unique labels in MM and its size by n :=

∑
label∈LABEL(MM) |MM[label]|. We denote the

volume of label ∈ LABEL(MM) by ℓMM(label) := |MM[label)]|. The maximum volume of MM, denoted ℓ,
is the maximum volume of a label; that is, ℓ := maxlabel∈LABEL(MM) |MM[label]|. Dynamic MMs support the
following operations.

1. Response← Query(label,MM). The query operation retrieves the tuple MM[label].

2. MMnew ← Update(op ∈ {edit, app, rm, del}, label, v⃗,MM, n, ℓ). The following types of update opera-
tions are supported:

(a) If op = edit, then the label edit operation sets the entry MM[label]← v⃗.

(b) If op = rm, then the label removal operation removes the pair (label,MM[label]) from MM. If
label ̸∈ LABEL(MM), the label removal operation has no effect. The input v⃗ is ignored.

(c) If op = app, then the label value append operation sets MM[label]← (MM[label], v⃗); to append
tuple v⃗ to the current tuple.

(d) If op = del, then the label value deletion operation. sets MM[label] ← MM[label] \ v⃗. That is,
all values in v⃗ are removed from MM[label].

For convenience, we represent MM operations as the tuple o = (op, label, v⃗) where op is the operation
type, label is the input label and v⃗ is the input value tuple. We use op(o) ∈ {qop, edit, rm, app, del} to
denote the type of an operation o, label(o) to be the label of o and v⃗(o) to be the value tuple of o.

If the size n or maximum volume ℓ may change, the new values must be submitted as parameters to
Update.

7

2.4 Label Equality Leakage

The label equality pattern leaks whether two operations are performed on the same label or not. For a
sequence of operations o1, . . . , ot, leq(o1, . . . , ot) = M consists of a t × t matrix such that M [i][j] = 1 iff
label(oi) = label(oj).

We note that [34] proved a lower bound showing mitigating label equality leakage in any small way would
require Ω(ℓ log n) computational overhead. Our schemes will all leak label equality to obtain better efficiency.

2.5 Volume Hiding Leakage Functions

Volume-hiding leakage functions were introduced in [20] and formally defined in [35] for static schemes. We
present a definition of a volume-hiding leakage function for dynamic EMMs that extends the definition of
Patel et al. [35] using game-based definitions.

For a leakage function L = (LSetup,LQuery,LUpdate) and adversary A, we consider games VHGameA,L
η

with η ∈ {0, 1}. The adversary A selects two MMs of his choice MM0 and MM1 with size at most n and
maximum volume at most ℓ. The adversary then issues a sequence of operations and, in game VHGameη
it receives the leakage with respect to MMη. After each operation, A must report a valid upper bound of
the size and maximum volume for both MM0 and MM1.

VHGameA,L
η :

1. A picks size and volume upper bounds n and ℓ and sends two multi-maps MM0
0 and MM0

1 to C satisfying
n and ℓ.

2. C computes LSetup(MM0
η, n, ℓ) which is sent to A.

3. For t = 1, . . . ,

(a) A adaptively picks ot0 = (opt0, label
t
0, v⃗

t
0, n

t, ℓt) and ot1 = (opt1, label
t
1, v⃗

t
1, n

t, ℓt) such that

i. The operation types and label equality leakage are the same: opt0 = opt1 and leq(o10, . . . , o
t
0) =

leq(o11, . . . , o
t
1).

ii. Let MMt
0 (MMt

1) be the MM obtained by executing ot0 (ot1) on MMt−1
0 (MMt−1

1). nt and ℓt

must be valid size and volume upper bounds for MMt
0 and MMt

1.

(b) C returns LQuery(MMt
η, o

1
η, . . . , o

t
η) for queries and LUpdate(MMt

η, o
1
η, . . . , o

t
η) for updates.

4. Finally, A outputs a bit b ∈ {0, 1}.

We denote by pA,L
η as the probability that A outputs η when playing game VHGameA,L

η (n, ℓ).

Definition 3 (Volume-Hiding Leakage Functions). A leakage function L = (LSetup,LQuery,LUpdate) is volume-
hiding if and only if for all adversaries A and for all values n ≥ ℓ ≥ 1,

pA,L
0 (n, ℓ) = pA,L

1 (n, ℓ).

Definition 4 (Volume-Hiding Encrypted Multi-Maps). An EMM scheme Σ is volume-hiding if there exists
a leakage function L = (LSetup,LQuery,LUpdate) such that:

1. Σ is adaptively L-secure according to Definition 2.

2. L is a volume-hiding according to Definition 3.

We note this definitions reflects that both the MM size n and maximum volume ℓ will grow over time
as more operations occur. An upper bound on n and ℓ will be inherently leaked after each operation. In a
concurrent work [44], an alternative definition is provided where ℓ is not leaked. In Appendix B, we show
such a definition inherently requires large query communication. If we want to even guarantee that ϵ-fraction
of matching values are returned, we show a query communication lower bound of Ω(ϵn). In other words, if

8

we want at least half the matching values, then the query communication is already linear. As a result, we
choose to use a definition that leaks ℓ to ensure better efficiency and correctness. The construction in [44]
adheres to our lower bound as they can only return (ℓ/n)-fraction of matching values when using O(ℓ) query
communication.

Discussion about Label Equality Leakage. In our volume hiding definition, the adversary must choose
two sequences with the same label equality leakage. Instead, we could have chosen a more general definition
by parameterizing the game with some leakage function Llabel,op over the labels and operations and force the
adversary to submit two sequences with the same leakage with respect to Llabel,op. We chose label equality as
prior works [34] showed mitigating label equality requires large overhead similar to ORAMs (see Appendix I
for more details). On the other hand, leaking only label equality is sufficient for faster constructions.
Therefore, label equality seems to be the minimal leakage required to obtain efficient constructions faster
than ORAMs.

2.6 Forward and Backward Privacy

Forward and backward privacy provide guarantees on the amount of information leaked to an adversary as
the client performs update operations. We present the standard definitions of forward and backward privacy
(readers may also refer to [6, 7]).

Forward privacy guarantees that the leakage of update operations is independent of all previous oper-
ations. For any forward private leakage, an update o does not give any information on the sequence of
operations O except the update operation itself.

Definition 5 (Forward Privacy). A leakage function L = (LSetup,LQuery,LUpdate) is forward private if there
exists a leakage function L′

Update such that for any MM, sequence O and update operation o, LUpdate(MM, (O, o)
) = L′

Update(op(o), v⃗(o)).

Backward privacy controls the leakage viewed by the adversary during queries about previous deletion
operations. In our work, we obtain type-II backward privacy where only the total number of updates and
their timestamps are revealed for deleted items.

Bost et al. [7] formally defined three types of backward privacy where type-I provides the strongest privacy
to type-III with the weakest privacy. To define backward privacy, we need the following three additional
leakage functions that takes as argument a sequence O of operations that is omitted for convenience.

TimeDB(label) = {(time(oi), v) | v ∈ MM[label] and oi is the last operation to add v to MM[label]}.

TimeDB(label) contains values appearing in MM[label] and the timestamp of the operation that inserted
those values into MM[label]. Next, we define

TimeUpdate(label) = {time(oi) | op(oi) ∈ {edit, rm, app, del}, label(oi) = label}

that consists of the timestamps of all update operations that modify label. Finally,

DelHist(label) = {(time(oi), time(oj)) | oi inserted v for label, later removed by oj}

is a list of pairs of timestamps for operations oi and oj where oi inserted a value into MM[label] that was
later deleted by oj . Finally, let alabel denote the total number of values inserted into MM[label] in total
(including those values that were later deleted).

Definition 6 (Type-II Backward Privacy). A leakage function L = (LSetup, LQuery, LUpdate) is Type-II
backward private if there exist leakage functions L′ and L′′ such that:

LUpdate(MM, (O, o)) = L′(op(o), label(o));

LQuery(MM, (O, o)) = L′′(TimeDB(label(o)),TimeUpdate(label(o))).

We note that Type-II backward privacy reveals the total number of updates performed on label and the
timestamps of each update operation for label. All our constructions will be type-II backward private. We
point readers to Appendix C for definitions of other types of backward privacy.

9

2.7 Cryptographic Tools

We will utlize pseudorandom functions (PRFs) and IND-CPA encryption. PRF F guarantees its output is
computationally indistinguishable from random functions for a secret seed. In our proofs, we may model
them as random oracles. IND-CPA encryption scheme SKE = (Gen,Enc,Dec) ensures each ciphertext is
computationally indistinguishable from random strings.

3 Our Constructions

In this section, we present our new constructions. We start with a warm-up construction 2ch that achieves
full dynamicity, efficiency and backward privacy but not forward privacy. Next, we present 2chFB and
2chs

FB that build upon 2ch to obtain forward privacy with different efficiency trade-offs. Throughout this
section, we focus on the simpler setting where the upper bounds on MM size n and volume ℓ are fixed through
all operations. In Section 4, we present generic transformations to handle changing n and ℓ.

3.1 Problems with Naive Padding

We start by discussing a naive solution of adding padding to prior dynamic constructions (such as [6, 7]) to
obtain volume-hiding. At a high level, one could pad the storage and communication with sufficient dummy
values to always return ℓ values. Unfortunately, this straightforward approach incurs O(nℓ) blowup in server
storage, which can be very large for many values of ℓ (such as ℓ =

√
n). Instead, we will utilize hashing (like

prior works [20, 35, 42]) to enable re-using encryptions of real values as padding for multiple queries and
avoid significant storage increase. As a result, all our constructions will require the minimal O(n) storage.

3.2 2ch: Warm-Up Scheme

We start from the optimal static volume-hiding scheme by Patel et al. [35]. Their construction utilizes cuckoo
hashing [30, 23] to embed data into server storage. Cuckoo hashing guarantees that each value is stored in
one of two hash table locations or in a small client stash. To perform a query, one can simply access 2ℓ hash
table locations, two for each of the ℓ possible values associated with the label. Unfortunately, inserting values
with cuckoo hashing is much more complex. Cuckoo hashing insertion works in an iterative fashion where
a value is placed into two locations and, if both locations are occupied, the algorithm displaces one of the
values; the displaced value is inserted by using the same algorithm. This algorithm is not volume-hiding as
the adversary learns whether certain entries are occupied or not by viewing how long the insertion algorithm
runs.

Looking closer, the query algorithm with cuckoo hashing [35] is volume-hiding because 2ℓ entries are
retrieved regardless of the hash table’s contents. On the other hand, the insertion algorithm heavily depends
on the hash table’s contents. It turns out that the simple balls-into-bins hashing scheme obtains the property
that both query and update operations are independent of the table contents. The balls-and-bins hashing
scheme considers n bins. To insert a value, it is placed into one of the n bins uniformly at random. If we
have n values and n bins, the maximum number of values assigned to a bin will be Θ(log n) (see [27]). To
obtain volume-hiding, all bins must be padded to the maximum load of Θ(log n). Both query and update
operations will access ℓ bins possibly with dummies to attain volume-hiding resulting in O(ℓ log n) overhead
as employed by DST [20].

Our goal is to find a hashing scheme with efficiency better than balls-into-bins hashing while ensuring
both queries and updates are volume-hiding. To achieve this goal, we utilize two-choice hashing by Azar et
al. [4]. Once again, there are n bins. To insert an value, two bins are chosen uniformly at random and the
item is placed into the bin that is least loaded (i.e. currently contains less items). Using this technique, the
maximum bin size becomes O(log log n). Unfortunately, the server storage grows to O(n log log n) since each
of the n bins must be padded to O(log log n) size to hide the true number of values in each bin.

To avoid this extra storage, we can utilize a modified version of two-choice hashing introduced by Patel
et al. [33] that we denote by H2ch. This hashing scheme reduces the amount of unused space by arranging

10

bins to share physical memory. At a high level, the hash table consists of n/ log n binary trees each of height
log log n such that there are n leaf nodes. All node store at most one value. As a result, the total size
becomes at most 2n. Each bin is uniquely assigned to a binary tree leaf and the bin’s storage corresponds
to the nodes that appear on the unique path from the bin’s leaf to the root of its respective binary tree. For
insertion, the least loaded bin is the one with the empty node that is at the highest level (i.e. furthest away
from its corresponding root). Additionally, there is a stash to store overflows. Whenever a value is inserted
into two bins that are completely filled (all nodes appearing on the unique leaf-to-root paths are occupied),
the item is instead placed into the stash. We formally present bounds on the stash size and point readers to
the proof in [33].

Theorem 3 ([33]). Let f(n) = ω(log n). When mapping at most n items using H2ch, the stash stores at
most f(n) items except with probability negl(n).

Using the H2ch hashing scheme and padding empty binary nodes with dummy values, we may obtain a
dynamic volume-hiding scheme with O(ℓ log log n) overhead that we denote as 2ch (standing for 2-choice
hashing) following the same techniques as [20, 35] that maps values to bins using pseudorandom functions.
We note that 2ch already results in a more efficient, volume-hiding construction than DST [20].

However, 2ch does not achieve forward privacy as updating a label enables association with previous
queries to the same label. Our next constructions will solve this problem to obtain forward privacy. In
contrast, 2ch is already type-II backward private as updates only reveal the timestamp of previous queries
and updates for the same label (encapsulated by TimeDB and TimeUpdate respectively in Definition 6).

We present the pseudocode for 2ch in Appendix D along with a formal proof of security and efficiency.

Comparison with [33]. Both [33] and our work aim to build privacy-preserving maps. However, [33] aims
to hide access patterns using dummy queries for maps that store at most one value per label. In contrast,
our work aims to mitigate volume leakage for MMs storing multiple values per label.

3.3 Construction 2chFB

We formally present our dynamic volume-hiding STE scheme for MMs, 2chFB (standing for 2-choice hashing
with Forward and Backward privacy). 2chFB builds upon our hashing techniques from the prior section.
The major difference between 2chFB and prior volume-hiding works lies in the update algorithms. For
forward privacy, we need to make sure that an update on a label does not leak anything about previous
queries on the same label. In particular, we need to hide label equality leakage during updates. In 2ch
and [20], identical bins are retrieved for both queries and updates. Otherwise, an adversary can link that
both operations were performed on the same label, which is why prior constructions (as well as 2ch) are not
forward private.

We take a different approach to update operations for 2chFB where update operations are not imme-
diately applied to the underlying MM inspired by prior works such as [6, 7, 26] to obtain forward privacy.
The update operation is only applied when a query for the same label is performed. In more detail, 2chFB

outsources two encrypted data stores to the server. The first multi-map Table stores all values of update
operations that have already been queried (i.e. the update operations were applied). The other multi-map
EMMu will accumulate update operations for labels that have not yet been queried. A table of PRF keys
used to generate locations for storing updates in EMMu is stored locally by the client. Once a query for
label is performed, all update operations pertaining to label will be retrieved from EMMu and applied to
Table before returning the final result. As a result, all the accumulated updates for label in EMMu cannot
be linked until a query for label is performed ensuring 2chFB achieves forward privacy. We note these ideas
have been abstracted in [26]. 2chFB is also type-II backward private inheriting the same properties as 2ch.

We present the pseudocode of 2chFB in Figure 1.

Setup. The setup algorithm is executed by the client C to construct an EMM. It takes as input a security
parameter 1λ, params = (n, ℓ), where n is an upper bound on the total number of values that will be stored
and ℓ is an upper bound on the maximum volume, and a multi-map MM. Setup creates a two-choice hash

11

Let F , G, H be PRFs and SKE = (Gen,Enc,Dec) be an IND-CPA encryption scheme.

(st;EMM)← 2chFB.Setup
(
1λ, params = (n, ℓ, c),MM = {(labeli, v⃗i)}i∈[|label∈MM|]

)
:

1. C randomly selects a PRF seeds K,Ku ← {0, 1}λ and generates KEnc ← Gen(1λ).

2. C creates s := ⌈n/(c logn)⌉ full binary trees, Table ← (B1, . . . , Bs) each of height h := ⌈log(c logn)⌉.
Roots are at level 0 and leaf nodes are at height h. Each node has the capacity to hold a single encryption.
Each of the n bins are uniquely assigned to n different leaf nodes.

3. C initializes Stash← ∅ and two empty MMs: EMMu, MMst.

4. For each labeli ∈ MM:

(a) Compute κ← FK(labeli) and for each j ∈ [|⃗vi|]:
i. C computes b0 ← Gκ(j || 0) and b1 ← Gκ(j || 1) and locates the two leaf-to-root paths

associated with bins b0 and b1.

ii. C computes Enc(KEnc, (labeli, j, v⃗[j])) and places it into the empty node at the highest level
in either bin b0 or b1.

iii. If both bin b0 and bin b1 contain no empty nodes, add (labeli, j, v⃗[j]) to Stash.

5. For all empty nodes in the binary trees, C adds a fresh encryption of Enc(KEnc, (⊥,⊥,⊥)).
6. C sets its state st← (K,Ku,KEnc, Stash,MMst) and S stores EMM← (B1, . . . , Bs,EMMu).

(st′;EMM′)← 2chFB.Update (((op, label, v⃗), st) ,EMM):

1. If label ̸∈ MMst, C sets MMst[label]← (0, 0).

2. C computes x← H(Ku, label ||MMst[label][0]) and y ← H(x,MMst[label][1]) .

3. C pads v⃗ up to ℓ values with ⊥ and computes z ← Enc(KEnc, (op, v⃗)).

4. C sends (y, z) to S who updates EMMu by setting EMMu[y]← z.

5. C updates MMst[label][1]← MMst[label][1] + 1.

((st′, v⃗);EMM′)← 2chFB.Query (((qop, label), st) ,EMM):

1. C sends κ := FK(label) to S and if label ∈ MMst and MMst[label] > 0, C computes x := H(Ku, label ||
MMst[label][0]) and sends (x, cnt := MMst[label][1]) to S.

2. S computes {Gκ(j ||0), Gκ(j ||1)}j∈[ℓ] and retrieves the 2ℓ associated bins that are sent to C.
3. S also sends entries EMMu[H(x, 0)], . . . ,EMMu[H(x, cnt− 1)] to C.
4. C decrypts the 2ℓ bins and all cached update operations for label.

5. C locally compiles v⃗ containing all values tagged with label and deletes them from the downloaded bins
and Stash.

6. For each i = 0, . . . , cnt− 1:

(a) C computes (opi, v⃗i)← Dec(KEnc,EMMu[H(x, i)]).

(b) If opi = app, append v⃗i to v⃗. If opi = edit, set v⃗← v⃗i. If opi = rm, set v⃗←⊥. If opi = del, remove
any values in v⃗i from v⃗. Afterwards, C compacts results so that all non-dummies appear before
dummies.

7. C adds back v⃗ to the 2ℓ bins and Stash, encrypts the bins and uploads them back to S.
8. C increments the version number MMst[label][0] by 1, resets the count MMst[label][1] to 0 and outputs

v⃗.

Figure 1: Pseudocode for Construction 2chFB

12

table Table by constructing s = ⌈n/(c log n)⌉ full binary trees each of height ⌈log(c log n)⌉ = O(log log n) for
a sufficiently large constant c ≥ 1. In the above, all logarithms are base 2. Each bin is assigned uniquely
to a binary tree leaf arbitrarily. The bin’s storage consists of the storage of all nodes appearing on the
root-to-leaf path to the assigned leaf. A stash is also initialized for overflows that will be stored by the client
locally. Next, setup inserts all labels and values of MM into the two-choice hash table. The algorithm selects
a random seed K for PRF F and an encryption key KEnc. For each label ∈ MM, setup first computes
the seed FK(label); then, for each v⃗[j] ∈ MM[label], the two bins to store (label, v⃗[j]) are computed as
GFK(label)(j || 0) and GFK(label)(j || 1), where G is a PRF. An encryption of (label, j, v⃗[j]) is stored in the
empty node of either bin with the highest level. If both bins are full, the tuple (label, j, v⃗[j]) is stored in
the stash. Remaining empty tree nodes are filled with encrypted dummies.

The forest of binary trees Table will be sent to the server S, along with an empty multi-map EMMu

(which is meant to store future updates temporarily). The client maintains storage of the stash, an initially
empty multi-map MMst and seed K and key Ku for accessing EMMu.

Update. For an update operation (op, label, v⃗), the client checks locally if MMst[label] is defined. If
not defined, the client sets MMst[label] := (0, 0). MMst[label][0] will denote the version of the PRF seed
currently being used for label and MMst[label][1] will denote the number of tuples for label in the update
encrypted structure EMMu. To cache the update operation, first v⃗ is padded with dummies until its length
is exactly ℓ. Next, the client computes x := H(Ku, label || MMst[label][0]), y := H(x,MMst[label][1])
and z := Enc(KEnc, (op, v⃗)) and sends the pair (y, z) to the server that sets EMMu[y] := z. The client also
increments the count at MMst[label][1] by one as the number of update tuples for label in EMMu has
incremented by one. The label version in entry MMst[label][0] remains unchanged.

Query. To query for label, the client computes seed FK(label) and checks if MMst[label] exists and
MMst[label][1] > 0. If so, the client computes another seed x := H(Ku, label || MMst[0]) and sends seeds
FK(label) and x to the server. Otherwise, when MMst[label] is not defined or MMst[label][1] = 0, the
client only sends FK(label). The server expands the seed FK(label) to find the 2ℓ bins {GFK(label)(i ||
b)}i∈[ℓ],b∈{0,1} in the binary trees. Afterwards, the server returns the encryptions stored at {EMMu[H(x, i)]}
i∈[MMst[label][1]] along with the encrypted contents of all 2ℓ bins to the client. The server also deletes the
encryptions retrieved from EMMu.

The client decrypts all contents to find all values that are associated with label in the 2ℓ bins along with
values that may be stored in the overflow stash. The client then decrypts the updates returned from EMMu,
applies them locally to the downloaded 2ℓ bins or the overflow stash. These updated 2ℓ bins are re-encrypted
with fresh randomness and sent back to the server for storage. All values associated with label in these 2ℓ
bins and the overflow stash are finally returned as the query’s answer. The client increments the label version
MMst[label][0] := MMst[label][0] + 1 in order to ensure forward privacy for future updates as the server
now knows the current seed for label and EMMu. The client also resets the count MMst[label][1] := 0 as
there are no unapplied updates for label in EMMu.

3.3.1 Security

We present the leakage of 2chFB against a persistent adversary. At setup, the adversary learns nothing
except for the public parameter n. Therefore, LSetup(MM) = n. Let O be any sequence of operations and
o be the current operation. Then, the update leakage is LUpdate(MM, (O, o)) = (ℓ, uop) where uop leaks
that the operation is an update but not anything specific about the type of update operation (as exactly ℓ
encrypted values are inserted into a random entry of EMMu). We observe that our update operations are
forward private as the update leakage is independent of all previous operations. Type-II backward privacy
is inherited as 2chFB has essentially the same properties as 2ch for deletions. Finally, the query leakage
LQuery(MM, (O, o)) = (ℓ, leq(O, o), qop). Label equality is revealed by retrieving all cached unapplied updates
for label(o) from EMMu and from the fact that all query operations on the same label, access the same
2ℓ bins from the two-choice hash table Table. The proof that 2chFB is L-secure for the leakage function L
described above is in Appendix E.

13

Theorem 4. If SKE is IND-CPA secure, F and G are PRFs, and H is a keyed hash function modeled as a
random oracle, 2chFB is a volume-hiding, forward private and type-II backward private L-secure dynamic,
EMM scheme.

3.3.2 Efficiency

We split our analysis into amortized and worst case overhead starting with amortized. The amortized
communication and computational cost of an update operation is O(ℓ). During updates, ℓ encrypted values
are inserted into EMMu. During a query operation, the same ℓ encrypted values are downloaded and
decrypted locally. Amortized communication and computational complexity of a query is O(ℓ log log n) as
exactly 2ℓ bins are retrieved where each bin contains O(log log n) values.

Next, we consider worst case overhead. For update operations, ℓ encrypted values are always uploaded to
EMMu. The worst case query overhead heavily depends on the number of unapplied update operations. For
label, we denote the number of unapplied update operations since the last query for label by u(label).
Then, the worst case overhead of a query operation is O(ℓ log log n+ℓu(label)) from retrieving 2ℓ bins along
with applying all prior update operations for label.

The server storage consists of O(n) value along with the number of unapplied update operations. While
this may be unbounded, we present a variant in Appendix G where the update operations in EMMu may
be applied every O(n/ℓ) update operations to ensure that server storage never exceeds O(n). The client
storage consists of MMst requiring at most O(m) storage where m is the number of unique labels. The other
portion of client storage is the two-choice hashing overflow stash using f(n) storage except with probability
negligible in n for any f(n) = ω(log n).

Discussion about Forward Privacy. In 2chFB, the client storage increases as there are more update
operations without intermediate query operations. This directly maps to the setting that forward privacy
becomes more important as more information in the updates are protected from the adversarial server. In
other words, the additional client storage is a direct result of providing stronger protection for updates
without intermediate queries. In the next section, we present a construction providing the same forward
privacy protection without the increasing client storage.

3.4 Construction 2chs
FB

Next, we present our final scheme 2chs
FB (standing for 2-choice hashing with Forward andBackward privacy

and small client storage) that is also volume-hiding, forward and type-II backward private like 2chFB. 2ch
s
FB

improves upon 2chFB by using smaller permanent client storage. Recall that 2chFB uses client storage
potentially linear in the number of unique labels O(m). 2chs

FB will only require permanent client storage of
size ω(log n). Recall that 2chFB required the client to locally store MMst. For any label ∈ L, MMst[label]
stores two integers; a version number required by the keyed hash H and the number of unapplied update
operations that are in EMMu. Instead, we will outsource the storage of MMst to the server inspired by ideas
from recent work in ORAMs [25, 31] and encrypted search [12].

In order to get rid of MMst at the client, 2chs
FB will explicitly store the location of cached operations

in EMMu, in a series of static, encrypted multi-maps EMMloc
0 , . . . ,EMMloc

t−1 of geometrically increasing sizes
stored on the server. The number of encrypted multi-maps will be t = O(log u) where u is the number of previ-
ous update operations. For any i, EMMloc

i stores at most 2i cached update operations. We instantiate these t
structures using PiBas∗ (a modified version of PiBas [9]) that is a static, response-hiding, volume-revealing,
encrypted multi-map scheme as described in [12]. We note however that any static encrypted search scheme
with setup leakage being the size of the input multi-map and query leakage being at most query equality and
volume of the tuple, will suffice as a replacement to PiBas∗. Specifically, 2chs

FB maintains the invariant

that the encrypted multi-map EMMloc
i will store the locations of cached operations per label over the latest

update operations that are not stored in smaller encrypted multi-maps, EMMloc
0 , . . . ,EMMloc

i−1. As smaller
encrypted multi-maps are filled, their contents are percolated to larger encrypted multi-maps in an efficient,
but amortized, manner. As an example, suppose that all encrypted multi-maps EMMloc

0 , . . . ,EMMloc
i−1 are

14

fully occupied. For the next update operation, the contents will be combined and placed into the larger
encrypted multi-map EMMloc

i .
By querying all of EMMloc

0 [label], . . . ,EMMloc
t−1[label], the client learns the entries of EMMu that con-

tain all cached update operations. The result is the client forgoes local storage of MMst at the cost of an
additional roundtrip and t additional encrypted multi-map queries.

We present the pseudocode for 2chs
FB in Figure 2.

Setup. The client executes the same setup algorithm as 2chFB except that the client does not store MMst.

Update. For an update operation (op, label, v⃗), the client chooses a random location x and stores an encryp-
tion of the current update operation at EMMu[x] after padding v⃗ to be length ℓ. To store x, the client identifies
the smallest, empty multi-map. Say, this is EMMloc

i . Next, the client downloads all EMMloc
0 , . . . ,EMMloc

i−1,
decrypts them locally and combines all counts into a single multi-map MMi. For each label′ that ap-
pears in one of the i downloaded encrypted multi-maps, the client sets MMi[label

′] = (EMMloc
0 [label′],

. . . ,EMMloc
i−1[label

′]). The random location of the current update x is also appended to MMi[label]. MMi

is then encrypted using the setup algorithm of PiBas∗ or a valid replacement and sent to S for storage as
EMMloc

i while all EMMloc
0 , . . . ,EMMloc

i−1 are emptied.

Query. For a query to label ∈ L, 2chs
FB performs t queries with the server S to retrieve the locations of

all cached update operations for label in EMMu. Afterwards, C uses the same algorithm as 2chFB.Query
to retrieve the final result. The only difference being that instead of sending a seed to S to compute the
locations in EMMu, C sends the locations directly.

3.4.1 Security

We present the leakage profile for 2chs
FB when each EMMloc

i is initialized by PiBas∗. While one could
present generic leakage, we choose to present leakage of a specific instantiation for ease of readability. Recall
this construction has setup leakage of simply the total number of values and query leakage of label-equality
and the queried label volume. Let MM be the input multi-map, O be a operation sequence and o be the
current operation. The setup leakage of 2chs

FB is identical to 2chFB as the adversary’s view is the same.
Therefore, LSetup(MM) = n. In terms of update leakage, the server learns information about which EMMs
are downloaded and uploaded by the client. Note, this is a pre-determined schedule depending only on the
number of previous updates. So, the update leakage is LUpdate(MM, (O, o)) = (ℓ, uop) which is also same as
2chFB. Finally, the query leakage of 2chs

FB is similar to 2chFB but it also has an extra leakage of queries

on EMMloc
i that we denote as Lloc. However, Lloc is a strict subset of the label-equality leakage. Therefore,

LQuery(MM, (O, o)) = (ℓ, leq(O, o), qop,Lloc). As this is essentially the same leakage as 2chFB, 2ch
s
FB also

inherits forward and type-II backward privacy. The security proof of 2chs
FB is found in Appendix F.

Theorem 5. If SKE is IND-CPA secure and PiBas∗ is a static, response-hiding EMM scheme, then 2chs
FB

is a volume-hiding, forward private and type-II backward private L-secure dynamic, EMM scheme.

3.4.2 Efficiency

We start with the main improvement of 2chs
FB over 2chFB that is client storage. The client storage of

2chs
FB becomes only the overflow stash of size at most f(n) for any function f(n) = ω(log n) except with

negligible probability. In Section 5.1, we show the overflow stash never exceeded more than a couple of items
at a time through experimental evaluation. We note that client storage may be temporarily higher during
operation time if and when rebuilding (discussed in Appendix G) is required. The additional server storage
consists of EMMloc

0 , . . . ,EMMloc
t−1 that stores at most |Update(O)| values. So, 2chs

FB has identical worst case
client storage cost as 2chFB.

Note, the only additional query and update overhead costs consist of the downloading, uploading, con-
structing and querying the encrypted multi-maps used to store counts. Consider the encrypted multi-
map EMMloc

i that stores at most 2i counts. We note that EMMloc
i is downloaded and re-uploaded when

EMMloc
0 , . . . ,EMMloc

i−1 are full. This occurs every 2i update operations. For u update operations, the total

15

Let SKE = (Gen,Enc,Dec) be an IND-CPA encryption scheme, 2chFB be as described in Figure 1 and PiBas∗

(a modified version of PiBas [9]) be a static, response-hiding, encrypted multi-map scheme as described in [12].

(st;EMM)← Setup
(
1λ, params = (n, ℓ, c),MM = {(labeli, v⃗i)}i∈[|label∈MM|]

)
:

1. C executes
(
st2,EMM2

)
← 2chFB.Setup(1

λ, params,MM).

2. C sets t = 0 and stores st← (t, st2), and S stores EMM = (EMM2).

(st′;EMM′)← Update (((op, label, v⃗), st) ,EMM):

1. C generates random x ← {0, 1}λ, pads v⃗ with dummies until v⃗ contains ℓ values and computes y ←
Enc(KEnc, (op, v⃗)).

2. S stores EMMu[x] ← y, finds the smallest i such that EMMloc
i is empty or un-initialized and sends

EMMloc
0 , . . . ,EMMloc

i−1 to C.
3. For each j ∈ {0, . . . , i− 1}, C decrypts each EMMloc

j using stj to obtain MMj .

4. For each label′ appearing in at least one of the MMj , C computes MMi such that MMi[label
′] =

(EMMloc
0 [label′], . . . ,EMMloc

i−1[label
′]).

5. C incorporates the current update operation by appending x to MMi[label].

6. C executes (sti;EMMloc
i)← PiBas∗.Setup(1λ,MMi).

7. C updates st by removing st0, . . . , sti−1 and adding sti. If i ≥ t, C updates st by setting t← i+ 1.

8. C sends EMMloc
i to S. S empties all of EMMloc

0 , . . . ,EMMloc
i−1 and adds EMMloc

i to EMM.

((st′, v⃗);EMM′)← Query (((qop, label), st) ,EMM):

1. C executes PiBas∗.Query for label to all non-empty EMMloc
i to obtain EMMloc

i [label] and sets L ←
(EMMloc

0 [label], . . . ,EMMloc
t−1[label]). S removes all entries in L from their corresponding EMMloc

i .

2. C and S execute ((st2′, v⃗);EMM2′)← 2chFB.Query(((qop, label), st2);EMM2). In the execution, C uses
L as the locations of cached update operations for label in EMMu instead of sending a seed to S to
compute these locations.

3. C computes st′ by updating st2 to st2′ and S computes EMM′ by updating EMM2 to EMM2′.

Figure 2: Pseudocode for construction 2chs
FB

cost of EMMloc
i is O(2i · u/2i) = O(u) or O(1) amortized cost across all 2i update operations. Over all t en-

crypted multi-maps, the amortized cost of update operations becomes O(t). As we set t = O(log u) where u is
the number of prior update operations, the additional additive cost is O(log n) assuming at most a polynomial
number of operations u = poly(n). The cost of querying each EMMloc

i is equivalent to O(log n+ u(label))
as O(log n) queries occur and a total of u(label) encrypted values are retrieved in the worst case. Therefore,
the worst case communication and computational cost of queries are O(ℓ log log n + ℓu(label) + log n). In
terms of amortized cost, we note that each update operation incurs O(ℓ) overhead at update time by writing
ℓ encrypted values into the smallest multi-map. As each of these encrypted values may move up through the
O(log n) levels, the amortized update cost may be viewed as O(ℓ log n). Through this lens, the amortized
query overhead remains O(ℓ log log n).

4 Modifying n and ℓ

In Section 3, we assume that the upper bounds multi-map size (n) and volume (ℓ) never change. We will
now present a generic transformations to handle changing upper bounds. In this section, will use n and ℓ as
the current size and volume upper bounds respectively. Values n and ℓ will also be inputs for each operation.

4.1 Changing Multi-Map Size n

We start with handling either growing or shrinking the multi-map (i.e., changes to n). To do this, we
will leverage a technique used in most common data structure implementations. Consider a dynamic array

16

implementation (such as std::vector in C++). The array is initialized in memory with some fixed capacity
upper bound. Once data grows beyond the capacity, the array implementation increases the capacity by
some multiplicative factor (such as 2x), allocates new memory for the increased capacity and copies the
contents to the new allocation. Our transformation will use the same paradigm.

Consider any dynamic volume-hiding EMM Σ with leakage L for fixed n and ℓ. We build Σ′ with an
additional Rebuild functionality.

(st′,EMM′)← Σ′.Rebuild((st, n, ℓ), (EMM, n, ℓ)) :

1. C downloads EMM and decrypts using st to get plaintext MM.

2. C and S execute Σ.Setup(1λ, (n, ℓ, params),MM) to receive st′ and EMM′ respectively.

First, we evaluate the leakage of executing Rebuild. The first step leaks nothing as C simply downloads
EMM. The second step leaks setup leakage LSetup(MM, n, ℓ). So, LRebuild = LSetup.

When the client reports a change to n, Σ′ will first execute Rebuild before running the original algorithm
of Σ for either queries or updates. So, there is additional leakage informing when n changes that we will
model with N such that N [i] = LSetup(MM, n, ℓ) if n changes on the i-th operation and N [i] =⊥ otherwise.
We choose n to double (halve) to increase (decrease) capacity.

Theorem 6. Let Σ be a dynamic volume-hiding encrypted multi-map EMM with leakage function L for fixed
values of n and ℓ. Then, Σ′ is a dynamic volume-hiding EMM with leakage (LSetup, (LQuery,M), (LUpdate,M)).
If n is only doubled or halved, Σ′ has no increased amortized overhead.

Proof. For leakage, the simulator can detect when Rebuild is run and simulate setup using M . In terms of
efficiency, consider the setting where capacity is doubled. That means, there must have been at least Ω(n)
values added. The cost of Rebuild is O(n) meaning that the amortized overhead is at most O(1) per updated
value. A similar argument can be applied if capacity is halved.

Instantiation with 2chFB or 2chs
FB. If Σ is chosen to be 2chFB or 2chs

FB, then LSetup(MM, n, ℓ) = n. So,
the leakage of Σ′ is L′ = (LSetup, (LQuery, n), (LUpdate, n)) asM may be upper bounded with LSetup(MM, n, ℓ) =
n.

Discussion about Approach. At a high level, the transformation is a straightforward approach of down-
loading, modifying locally and re-uploading the multi-map. To our knowledge, this remains the most efficient
technique in the literature. For example, similar techniques were used in [12] for avoiding local storage of
large count tables. We also employ similar techniques in 2chs

FB. To our knowledge, techniques with smaller
client storage utilize more expensive algorithms including oblivious shuffling or sorting [1, 29, 32, 2]. We leave
it as an open problem to improve handling multi-map size changes beyond the straightforward approach.

4.2 Changing Maximum Volume ℓ

For changing values of ℓ, we could also apply the same technique for handling changing n. However, the
amortized overhead may be larger as only a small number of keys need to be added to force a change in ℓ.
Instead, we present an even simpler transformation that may be applied to either 2chFB or 2chs

FB.
We augment the Query and Update algorithms in the following way. The state of the client will also

include the current maximum volume ℓ. Whenever ℓ changes, the client communicates the new value to
the server. Afterwards, the protocols use the new value of ℓ to continue. Combining with techniques in
Section 4.1, we get the following theorem that we prove in Appendix H:

Theorem 7. Let Σ′ be either 2chFB or 2chs
FB with the above modifications to handle changing n and ℓ

with leakage L = (LSetup,LQuery, LUpdate). Then, Σ′ is a dynamic volume-hiding EMM with leakage L′ =
(LSetup, (LQuery, n, ℓ), (LUpdate, n, ℓ)).

17

DST 2chFB 2chs
FB

Input MM
Number of Values (n) 216 218 220 222 216 218 220 222 216 218 220 222

EMM Storage
Server (MB) 13.8 56.85 220.6 961 7.99 44.78 167.90 634.98 13.52 66.59 255.14 983.95
Client (KB) < 1 < 1 < 1 < 1 4.09 11.58 32.76 92.68 < 1 < 1 < 1 < 1

Table 2: Observed sizes of structures. We denote n as the total number of label, value pairs in the input
MM.

 0

 5

 10

 15

 20

 25

 30

 35

 40

2
16

2
17

2
18

2
19

2
20

2
21

2
22

T
im

e
 (

s
)

Number of label, value pairs

2chFB
2ch

s
FB

Figure 3: Setup time for 2chFB and 2chs
FB

5 Experimental Evaluation

In this section, we evaluate the practicality of our volume-hiding schemes. First, we describe the experimental
setup and our choice of parameters for our constructions. Using these experiments, we aim to answer whether
our constructions concretely efficient while providing better privacy and more operations.

5.1 Experimental Setup

Our experiments are performed using the same machine for both the client and the server; a Ubuntu PC
with an Intel(R) Core(TM) i5-9400 CPU with 6 cores, and 64 GB of RAM. Our schemes are implemented
in Rust in about 500-800 lines of code each. Both schemes are instantiated in-memory. All the results of our
experiments have standard deviations less than 2% of their average and were repeated at least 10 times.

Primitives. We use and build on top of cryptographic primitives provided by ring [38] and OPENSSL [41]
rust crates. For symmetric encryption, we use AES in CTR mode with key of size 32 bytes. In all our
experiments, we consider PRFs with 32 byte outputs. In particular, we implement our PRFs using HMAC
with SHA256.

Input Multi-Maps. We will consider general multi-maps containing n ∈ {216, 218, 220, 222} maximum
values which are considered standard in the literature [12, 35]. As our schemes are dynamic, we initialize
our input multi-maps with 90% of their maximum capacity. The final 5% is set aside to support updates.
Since we are trying to guage efficiency of volume-hiding schemes, we set the number of unique labels to be
n/100 so that volume of labels are large and also comparable to experiments in other works such as [12].
The size of label and value strings will be 20 bytes.

Setup Protocol. The time taken by the setup algorithm of both 2chFB and 2chs
FB ranges from 0.35s to

36.7s as the size of the input multi-map increases. For our experiments, we set the value for the parameters
c = 1. We refer the readers to Figure 3 for a detailed plot of setup times. We also varied the value of c from

18

 0

 5

 10

 15

 20

 25

 0 0.5 1 1.5 2 2.5 3 3.5 4

 C
lie

n
t

S
ta

s
h

 S
iz

e
 /

 S
e

rv
e

r
S

to
ra

g
e

 S
iz

e
 (

%
)

Value of parameter ’c’

n= 65,536
n= 262,144

n= 1,048,576
n= 4,194,304

Figure 4: Stash size as a % of total encrypted storage size on the server for different values of n and c

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0.06

 128 256 512 1024 2048 4096 8192 16384

T
im

e
 (

m
s
)

Maximum Volume for a label

2
16

2
18

2
20

2
22

(a) 2chFB Query

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0.06

 128 256 512 1024 2048 4096 8192 16384

T
im

e
 (

m
s
)

Maximum Volume for a label

2
16

2
18

2
20

2
22

(b) 2chs
FB Query

 0

 5

 10

 15

 20

 25

 30

 128 256 512 1024 2048 4096 8192 16384

T
im

e
 (

m
s
)

Maximum Volume for a label

2
16

2
18

2
20

2
22

(c) 2chFB Update

 40

 45

 50

 55

 60

 65

 70

 75

 80

 128 256 512 1024 2048 4096 8192 16384

T
im

e
 (

m
s
)

Maximum Volume for a label

2
16

2
18

2
20

2
22

(d) 2chs
FB Update

Figure 5: Query and Update times for different values of ℓ and different database sizes.

0.01 to 4 to study how the value of c effects the stash size when we put up to n values in our encrypted
multi-map. This experiment was repeated 100 times and results are plotted in Figure 4. We find that for
values of c ≥ 0.1 the client stash size averaged 0 regardless of the value of n we picked.
Query Protocol. For both our schemes, we computed the total latency taken by the client and the server
collectively on average to produce a final query result. We first focus on query times without any updates. In

19

our experiments, for each data point, we would do multiple rounds of three queries on the same label but each
time we would increase the number of updates done on that label prior to a round of queries. At a certain
point the volume of the label would approach the maximum volume set for that particular instantiation of
the scheme and we would stop updating further. We would then take the average of query times for this
label across these rounds. This experiment is done in this way to factor in the effect of updates on query
times. Figures 5a and 5b show query times for different input multi-map sizes against different maximum
volumes. Note that the query time in these graphs are per result where the number of results for a query is
the maximum volume. This is done so that a direct comparison to the static volume hiding schemes in [35]
can be made. Here we note that the query times are comparable to the query times in [35] even though our
schemes support dynamic operations. The query times of 2chFB and 2chs

FB are also very comparable even
though updates are stored differently in both schemes. Queries for both schemes ranged from 0.027ms to
0.051ms per result.
Update Protocol. For 2chFB, the time taken by an update stays under 25ms and for 2chs

FB under 76ms
even for maximum volume of 20, 000 as shown in Figures 5c and 5d. This is primarily becuase of forward
and backward privacy, updates are not directly applied to the two-choice hashing structure and some of
the work is postponed, until queries. The updates for 2chs

FB are costly compared to 2chFB as expected
because unlike 2chFB where a tuple is directly inserted into an encrypted multi-map, in 2chs

FB multiple
encrypted structures are downloaded and rebuilt which takes extra time. However, 2chs

FB is still desirable
due to smaller permanent client state.

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 1 2 3 4 5 6 7 8 9

T
im

e
 (

m
s
)

ith Query, Maximum Volume for a label = 100

2
16

2
18

2
20

2
22

 20

 25

 30

 35

 40

 45

 50

 55

 60

 1 2 3 4 5 6 7 8 9

T
im

e
 (

m
s
)

ith Query, Maximum Volume for a label = 1000

2
16

2
18

2
20

2
22

 200

 250

 300

 350

 400

 450

 500

 550

 600

 1 2 3 4 5 6 7 8 9

T
im

e
 (

m
s
)

ith Query, Maximum Volume for a label = 10,000

2
16

2
18

2
20

2
22

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1 2 3 4 5 6 7 8 9

T
im

e
 (

m
s
)

ith Query, Maximum Volume for a label = 20,000

2
16

2
18

2
20

2
22

Figure 6: This is the time cost when executing queries in 2chFB for ℓ ∈ {100, 1000, 10000, 20000}. For each
value of ℓ, we executed queries over varying database sizes as shown in the graphs.

Effects of Updates on Queries. We refer to Figure 6 for a detailed look at 2chFB’s query times interposed
with its updates to show the effects updates have on a query. In each of the graphs in this figure, there are
9 queries issued and the x-axis represents the ith query of the 9 queries. The y-axis represents the total
query time for each query. Right before the first, fourth and seventh query on a label, there were 10 , 50 and

20

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 1 2 3 4 5 6 7 8 9

T
im

e
 (

m
s
)

ith Query, Maximum Volume for a label = 100

2
16

2
18

2
20

2
22

 20

 25

 30

 35

 40

 45

 50

 55

 60

 1 2 3 4 5 6 7 8 9

T
im

e
 (

m
s
)

ith Query, Maximum Volume for a label = 1000

2
16

2
18

2
20

2
22

 200

 250

 300

 350

 400

 450

 500

 550

 600

 1 2 3 4 5 6 7 8 9

T
im

e
 (

m
s
)

ith Query, Maximum Volume for a label = 10,000

2
16

2
18

2
20

2
22

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1 2 3 4 5 6 7 8 9

T
im

e
 (

m
s
)

ith Query, Maximum Volume for a label = 20,000

2
16

2
18

2
20

2
22

Figure 7: Similar to Fig. 6, this figure represent total time taken when executing queries in 2chs
FB.

100 updates made on that label, respectively. The size of each update was randomly sampled. The graphs,
hence show small spikes in the first, fourth and seventh query times because of unresolved updates at those
times and sudden speed up of the following two queries. We observed that 2chs

FB (Figure 7) which saves
a lot on client storage, tends to be comparable but slower than 2chFB. This is because its query protocol
takes two rounds and has to do considerably more rebuilding than 2chFB. We, however, note that our query
times are in order of microseconds (25µs to 50µs) per single label, value pairs for both 2chFB and 2chs

FB.
Compared to Figures 5a and 5b, we do see a slight increase as queries now need to apply updates.

Comparison with DST [20]. We compare with DST [20]. The other construction based on Pseudo-Random
Transform in [20] is lossy in nature and leads to inaccurate query results. Hence, we do not believe a fair
comparison is possible there. For DST, we note that it lacks several features offered by our constructions
such as forward privacy and full-dynamicity (see App. A). For a comprehensive treatment, we still present a
comparison with DST. We will show that 2chFB and 2chs

FB offer the additional functionalities with minimal
(or no) increased costs compared to DST.

For updates, DST takes from 7ms-1000ms for ℓ ranging from 128 to 20,000. During an update of a label x,
DST downloads all the bins for x, deletes them on the server and re-uploads the edited bins. In comparison
Figures 5c and 5d, show that for updates, our schemes have smaller communication and computation than
DST. This is not surprising as for an update 2chFB only uploads a vector of size ℓ to the server and 2chs

FB

rebuilds a series of encrypted structure up until the smallest empty one. For smaller values of ℓ (≤ 1024),
2chs

FB takes more time than DST during updates due to additional cost of re-executing setup protocols on
the underlying data structures dominating the cost incurred due to value of ℓ.

Starting with the simple case when ignoring updates, our schemes 2chFB and 2chs
FB improve the com-

munication during queries by 2-3x as our bins contain 4-5 items each using c = 1 whereas bins in DST
contain at least 21-32 items (see experiments in [35]). Now taking updates into account during queries, and
for different values of ℓ and n, we observed that 12-22 updates on a label before a query on that label would

21

increase the query time to as much as that of DST. This is because downloading these additional updates
during our queries makes our communication/computation costs similar to DST (countering our small bin
size advantage). This is not surprising as we provide more stronger privacy guarantees. The total cost would
still be same or better than DST as this increase in cost of query time is actually amortized over updates in
DST.

References

[1] Miklós Ajtai, János Komlós, and Endre Szemerédi. An 0 (n log n) sorting network. In Proceedings of
the fifteenth annual ACM symposium on Theory of computing, pages 1–9, 1983.

[2] Gilad Asharov, TH Hubert Chan, Kartik Nayak, Rafael Pass, Ling Ren, and Elaine Shi. Bucket oblivious
sort: An extremely simple oblivious sort. In Symposium on Simplicity in Algorithms, pages 8–14. SIAM,
2020.

[3] Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kartik Nayak, Enoch Peserico, and Elaine Shi. Op-
torama: Optimal oblivious RAM. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020,
pages 403–432, 2020.

[4] Yossi Azar, Andrei Z Broder, Anna R Karlin, and Eli Upfal. Balanced allocations. SIAM journal on
computing, 29(1):180–200, 1999.

[5] Laura Blackstone, Seny Kamara, and Tarik Moataz. Revisiting leakage abuse attacks. In NDSS 2020,
01 2020.

[6] Raphael Bost. Sophos: Forward secure searchable encryption. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pages 1143–1154. ACM, 2016.

[7] Raphael Bost, Brice Minaud, and Olga Ohrimenko. Forward and backward private searchable encryption
from constrained cryptographic primitives. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 1465–1482. ACM, 2017.

[8] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. Leakage-abuse attacks against search-
able encryption. In CCS ’15, 2015.

[9] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel-Catalin Rosu,
and Michael Steiner. Dynamic searchable encryption in very-large databases: data structures and
implementation. In NDSS, volume 14, pages 23–26, 2014.

[10] Melissa Chase and Seny Kamara. Structured encryption and controlled disclosure. In Masayuki Abe,
editor, Advances in Cryptology - ASIACRYPT 2010, pages 577–594, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg.

[11] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. Searchable symmetric encryption:
improved definitions and efficient constructions. In CCS ’06, pages 79–88, 2006.

[12] Ioannis Demertzis, Javad Ghareh Chamani, Dimitrios Papadopoulos, and Charalampos Papamanthou.
Dynamic searchable encryption with small client storage. In NDSS, 2020.

[13] Oded Goldreich and Rafail Ostrovsky. Software Protection and Simulation on Oblivious RAMs. J.
ACM, 43(3), 1996.

[14] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G. Paterson. Pump up the volume:
Practical database reconstruction from volume leakage on range queries. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2018, Toronto, ON, Canada,
October 15-19, 2018, pages 315–331, 2018.

22

[15] Paul Grubbs, Richard McPherson, Muhammad Naveed, Thomas Ristenpart, and Vitaly Shmatikov.
Breaking web applications built on top of encrypted data. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pages 1353–1364. ACM, 2016.

[16] Paul Grubbs, Kevin Sekniqi, Vincent Bindschaedler, Muhammad Naveed, and Thomas Ristenpart.
Leakage-abuse attacks against order-revealing encryption. In 2017 IEEE Symposium on Security and
Privacy (SP), pages 655–672. IEEE, 2017.

[17] Zichen Gui, Oliver Johnson, and Bogdan Warinschi. Encrypted databases: New volume attacks against
range queries. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’19, page 361–378, New York, NY, USA, 2019. Association for Computing Machinery.

[18] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. Access pattern disclosure on search-
able encryption: Ramification, attack and mitigation. In 19th Annual Network and Distributed System
Security Symposium, NDSS 2012, San Diego, California, USA, February 5-8, 2012, 2012.

[19] Seny Kamara and Tarik Moataz. SQL on structurally-encrypted databases. In International Conference
on the Theory and Application of Cryptology and Information Security, pages 149–180. Springer, 2018.

[20] Seny Kamara and Tarik Moataz. Computationally volume-hiding structured encryption. In EURO-
CRYPT 2019, pages 183–213, 2019.

[21] Seny Kamara and Charalampos Papamanthou. Parallel and dynamic searchable symmetric encryption.
In International conference on financial cryptography and data security, pages 258–274. Springer, 2013.

[22] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’Neill. Generic attacks on secure out-
sourced databases. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communi-
cations Security, Vienna, Austria, October 24-28, 2016, pages 1329–1340, 2016.

[23] Adam Kirsch, Michael Mitzenmacher, and Udi Wieder. More robust hashing: Cuckoo hashing with a
stash. SIAM J. Comput., 39(4):1543–1561, 2009.

[24] Evgenios M. Kornaropoulos, Charalampos Papamanthou, and Roberto Tamassia. Response-hiding
encrypted ranges: Revisiting security via parametrized leakage-abuse attacks. In 2021 IEEE Symposium
on Security and Privacy, SP 2021, May 24-27, 2021. IEEE, 2021.

[25] Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the (in) security of hash-based oblivious ram and
a new balancing scheme. In Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete
Algorithms, pages 143–156. SIAM, 2012.

[26] Russell WF Lai and Sherman SM Chow. Forward-secure searchable encryption on labeled bipartite
graphs. In International Conference on Applied Cryptography and Network Security, pages 478–497.
Springer, 2017.

[27] Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomization and probabilistic
techniques in algorithms and data analysis. Cambridge university press, 2017.

[28] Muhammad Naveed, Seny Kamara, and Charles V. Wright. Inference attacks on property-preserving
encrypted databases. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Commu-
nications Security, Denver, CO, USA, October 12-16, 2015, pages 644–655, 2015.

[29] Olga Ohrimenko, Michael T Goodrich, Roberto Tamassia, and Eli Upfal. The melbourne shuffle: Im-
proving oblivious storage in the cloud. In International Colloquium on Automata, Languages, and
Programming, pages 556–567. Springer, 2014.

[30] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. In European Symposium on Algorithms,
pages 121–133. Springer, 2001.

23

[31] Sarvar Patel, Giuseppe Persiano, Mariana Raykova, and Kevin Yeo. PanORAMa: Oblivious RAM with
logarithmic overhead. In FOCS ’18, 2018.

[32] Sarvar Patel, Giuseppe Persiano, and Kevin Yeo. Cacheshuffle: A family of oblivious shuffles. In 45th
International Colloquium on Automata, Languages, and Programming (ICALP 2018). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2018.

[33] Sarvar Patel, Giuseppe Persiano, and Kevin Yeo. What storage access privacy is achievable with small
overhead? In Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, PODS ’19, pages 182–199, New York, NY, USA, 2019. Association for Computing
Machinery.

[34] Sarvar Patel, Giuseppe Persiano, and Kevin Yeo. Leakage cell probe model: Lower bounds for key-
equality mitigation in encrypted multi-maps. In CRYPTO 2020, 2020.

[35] Sarvar Patel, Giuseppe Persiano, Kevin Yeo, and Moti Yung. Mitigating leakage in secure cloud-hosted
data structures: Volume-hiding for multi-maps via hashing. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’19, pages 79–93, New York, NY, USA,
2019. Association for Computing Machinery.

[36] David Pouliot and Charles V Wright. The shadow nemesis: Inference attacks on efficiently deployable,
efficiently searchable encryption. In CCS ’16, 2016.

[37] Daniel S Roche, Adam Aviv, and Seung Geol Choi. A practical oblivious map data structure with
secure deletion and history independence. In 2016 IEEE Symposium on Security and Privacy (SP),
pages 178–197. IEEE, 2016.

[38] Brian Smith. Ring. 2012. docs.rs/ring/0.17.0-alpha.1/ring/index.html.

[39] D. Song, D. Wagner, and A. Perrig. Practical techniques for searches on encrypted data. In Proceeding
2000 IEEE Symposium on Security and Privacy. S&P 2000, pages 44–55, 2000.

[40] Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. Practical dynamic searchable encryption
with small leakage. In NDSS, volume 71, pages 72–75, 2014.

[41] docs.rs/openssl/0.10.29/openssl/. Openssl-rust. 1998.

[42] Jiafan Wang and Sherman SM Chow. Simple storage-saving structure for volume-hiding encrypted
multi-maps. In IFIP Annual Conference on Data and Applications Security and Privacy, pages 63–83.
Springer, 2021.

[43] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. All your queries are belong to us:
The power of file-injection attacks on searchable encryption. In USENIX Security Symposium, pages
707–720, 2016.

[44] Yongjun Zhao, Huaxiong Wang, and Kwok-Yan Lam. Volume-hiding dynamic searchable symmetric
encryption with forward and backward privacy. Cryptology ePrint Archive, Report 2021/786, 2021.
https://eprint.iacr.org/2021/786.

A Semi-Dynamicity of DST [20]

Throughout our work, we refer to the DST construction of Kamara and Moataz [20] as semi-dynamic. In
particular, the construction only provides adding, deleting or overwriting an entire value tuple associated
with a label. The missing functionality is appending or removing values from an existing value tuple. The
acute reader might note that one could implement this using two semi-dynamic EMM operations: querying
the value tuple, modifying the value tuple locally and updating the entire value tuple. While this achieves

24

docs.rs/ring/0.17.0-alpha.1/ring/index.html
docs.rs/openssl/0.10.29/openssl/
https://eprint.iacr.org/2021/786

the desired functionality, it degrades privacy significantly. A recent work [34] shows that, unless one is willing
to utilize ORAM-like overheads, leakage of label equality patterns must be revealed by queries. Recall that
label equality patterns reveal whether two different operations are performed on the same label or not (see
Section 2.4). Using the above approach of replacing an update with two semi-dynamic operations will leak
label equality leakage for every update (due to the usage of the semi-dynamic query). This ends up being
a significant privacy degradation as label equality leakage during updates violates the privacy requirements
of being forward private. Therefore, the above transformation requires either the EMM to use ORAM-like
overhead or not provide forward privacy. In our work, we avoid this problem by directly building update
operations that avoid performing query operations.

B Lower Bounds when Hiding ℓ

In this section, we analyze the dynamic volume-hiding definition in [44] that hides the maximum volume ℓ.
Additionally, they introduce the notion of (p, ϵ)-correctness meaning that ϵ-fraction of matching values are
returned with probability at least p. We refer readers to [44] for both definitions. We show a strong and
simple query communication lower bound in this model.

Theorem 8. Let Σ be a dynamic volume-hiding encrypted multi-map EMM according to the definition in [44]
that is (p, ϵ)-correct. Then, the sum of the expected query communication and client storage of Σ must be
Ω(p · ϵ · n).

Proof. Consider any MM. We show that when MM is input to Σ, the query communication must be Ω(ϵn).
To do this, we construct the following adversary A. In the first phase of the definition in [44], A chooses
any label k appearing in MM and constructs MM′ with k associated with a value tuple of size |MM|. For
operations, A chooses to query k repeatedly. Note, that the size of the query communication is viewed by the
adversary. By the correctness requirement, it must be that Ω(ϵn) values are returned when querying MM′

with probability at least p. So, the query communication and client storage must be Ω(p ·ϵ ·n) in expectation.
By the volume-hiding requirement and the fact that the adversary sees the size of query communication,
this means that queries to MM must satisfy the same requirement.

For reasonable parameters such as p ≥ 0.5 and ϵ ≥ 0.5 and sublinear client storage, then Ω(n) expected
query communication is required.

C Backward Privacy

Definition 7 (Backward Privacy). A leakage function L = (LSetup, LQuery, LUpdate) is Type-I, Type-II,
Type-III backward private if there exist leakage functions L′ and L′′ such that the following conditions are
satisfied.

Type-I backward private:

LUpdate(MM, (O, o)) = L′(op(o));

LQuery(MM, (O, o)) = L′′(TimeDB(label(o)), alabel);

Type-II backward private:

LUpdate(MM, (O, o)) = L′(op(o), label(o));

LQuery(MM, (O, o)) = L′′(TimeDB(label(o)),TimeUpdate(label(o)));

Type-III backward private:

LUpdate(MM, (O, o)) = L′(op(o), label(o));

LQuery(MM, (O, o)) = L′′(TimeDB(label(o)),DelHist(label(o)));

25

As seen from the definition, at query time for label, type-I backward privacy reveals the total number of
updates performed on label. Type-II backward privacy also reveals the timestamps of each update operation
for label. Finally, type-III backward privacy additionally reveals pairings of update operations that deleted
values inserted by a prior update operation. All our constructions will be type-II backward private.

D 2ch: Pseudocode and Analysis

The pseudocode of 2ch is presented in Figure 8.

Security. We present the leakage profile for our scheme against a persistent adversaries. During Setup, no
information is leaked about the plaintext MM other than an upper bound n on the total number of values
stored and hence LSetup(MM) = n. As far as query and update operations are concerned, we observe that
operations on the same label access the same 2ℓ bins. So, the adversary may link different operations as
operating on the same label or not. Moreover, update operations write back the bins accessed whereas
query operations do not and so the type of operation, update or query, is also leaked. For a sequence of
operations O and the last operation o, we have query leakage LQuery(MM, (O, o)) = (op(o), leq(O, o), ℓ) and
update leakage LUpdate(MM, (O, o)) = (op(o), leq(O, o), ℓ). We now prove that following theorem for 2ch.

Theorem 9. If SKE is an IND-CPA-secure encryption and F,G are pseudorandom functions, then for
every n ≥ ℓ ≥ 1, 2ch is a volume-hiding and type-II backward private, L-secure dynamic STE scheme for
multi-maps.

In order to prove this Theorem 9, we first prove Theorem 10, Lemma 1 and Lemma 2.

Theorem 10. If SKE is an IND-CPA-secure encryption and F,G are pseudorandom functions, then for
every n ≥ ℓ ≥ 1, 2ch is an adaptive L-secure dynamic STE scheme for multi-maps.

Proof of Theorem 10. We consider a stateful simulator S
with state st that works as follows:

EMM← S.SimSetup(1λ, n):

1. Construct s = ⌈n/c log(n)⌉ full binary trees B1, . . . , Bs each with height h = ⌈log(c log n)⌉.

2. Fill each node of every tree with an encryption of ⊥.

3. Return B1, . . . , Bs.

Response← S.SimQuery(1λ, leq(O, o), ℓ):

1. From leq(O, o), fix smallest i where label(o) = label(O[i]).

2. If no such i exists, set st[|O|+ 1] to be a uniformly random string from {0, 1}λ and set i← |O|+ 1.

3. Return st[i].

Response← S.SimUpdate(1λ, leq(O, o), ℓ):

1. From leq(O, o), fix smallest i where label(o) = label(O[i]).

2. If no such i exists, set st[|O|+ 1] to be a uniformly random string from {0, 1}λ and set i← |O|+ 1.

3. Return st[i].

4. Return 2 · ℓ arrays (A0,i, A1,i)i∈[1,ℓ] of size h each. Each entry of the array is an encryption of ⊥.

We now show that for all PPT adversaries A, the probability that Real2ch,A(1
λ) outputs 1 is negligibly

different from the probability that Ideal2ch,A,S(1
λ) outputs 1. To do this, we use the following sequence of

games:

26

Let F and G be PRFs and SKE = (Gen,Enc,Dec) be an IND-CPA encryption scheme.

(st;EMM)← 2ch.Setup
(
1λ, params = (n, ℓ, c),MM = {(labeli, v⃗i)}i∈[m]

)
:

1. C randomly selects a PRF key K ← {0, 1}λ and generates KEnc ← Gen(1λ).

2. C creates s := ⌈n/(c logn)⌉ full binary trees, Table ← (B1, . . . , Bs) each of height h := ⌈log(c logn)⌉.
Roots are at level 0 and leaf nodes are at height h. Each node has the capacity to hold a single encryption.
Each of the n bins are uniquely assigned to n different leaf nodes.

3. C initializes Stash← ∅.
4. For each labeli ∈ MM:

(a) Compute x← FK(labeli) and for each j ∈ [|⃗vi|]:
i. C computes b0 ← Gx(j || 0) and b1 ← Gx(j || 1) and locates the two leaf-to-root paths

associated with bins b0 and b1.

ii. C computes Enc(KEnc, (labeli, j, v⃗[j])) and places it into the empty node at the highest level
in either bin b0 or b1.

iii. If both bin b0 and bin b1 contain no empty nodes, add (labeli, j, v⃗[j]) to Stash.

5. For all empty nodes in the binary trees, C adds a fresh encryption of Enc(KEnc, (⊥,⊥,⊥)).
6. C sets its state st← (K,KEnc, Stash) and sets EMM← (B1, . . . , Bs).

((st′, v⃗);EMM′)← 2ch.Query ((st, (qop, label)) ,EMM).

1. C parses st as (K,KEnc, Stash), and S parses EMM as (B1, . . . , Bs).

2. C computes x← FK(label) that is sent to the S.
3. S computes {Gx(i || 0), Gx(i || 1)}i∈[ℓ] and retrieves the 2ℓ associated bins that are sent to C.
4. C decrypts all 2ℓ bins and returns v⃗ consisting of all values that are tagged with label in the bins as

well as in Stash.

(st′;EMM′)← 2ch.Update ((st, (op, label, v⃗′)) ,EMM):

1. C computes x← FK(label) that is sent to the S.
2. S computes {Gx(i || 0), Gx(i || 1)}i∈[ℓ] and retrieves the 2ℓ associated bins that are sent to C.
3. C decrypts all 2ℓ bins and compiles v⃗ consisting of all values that are tagged with label that are removed

the downloaded bins.

4. C checks Stash for any values also tagged with label that should be added to v⃗. All entries corresponding
to label are removed from Stash.

5. If op = app, C appends v⃗′ to v⃗. If op = edit, C sets v⃗← v⃗′. If op = del, C removes the values in v⃗′ from
v⃗. If op = rm, C sets v⃗← ⊥.

6. For i ∈ [|⃗v|]:

(a) C computes b0 ← Gx(i || 0) and b1 ← Gx(i || 1).
(b) C locally checks bin b0 and bin b1, finds highest level node with a dummy encryption and replaces

the dummy with Enc(KEnc, (label, i, v⃗[i])).

(c) If both bin b0 and bin b1 contain no nodes with dummy encryptions, add (label, i, v⃗[i]) to Stash.

7. C re-encrypts all 2ℓ bins and sends back to S for storage.

Figure 8: Pseudocode for Construction 2ch

27

• Game0 is identical to Real2ch,A(1
λ).

• Game1 replaces the PRF F with a random function. This is indistinguishable from Game0 because
of the pseudo-randomness of F .

• Game2 replaces the IND-CPA encryption SKE.Enc steps with encryptions of ⊥ that are indistinguish-
able due to IND-CPA guarantees.

• Game3 replaces the outputs of random functions with uniformly random chosen values. This is indis-
tinguishable from Game2 as the output of random function and a random string are indistinguishable.

Game3 is the same as the ideal experiment completing the proof.

Next we will prove that 2ch is volume-hiding.

Lemma 1. Leakage function L is volume-hiding.

Proof. To prove that L is volume-hiding, we consider any two multi-maps with the number of values ≤ n and
with maximum volume of a label ≤ ℓ. Note that the only other leakage is the label-equality pattern which
is independent of the input maps as well as the response lengths of the query operations even after updates.
As a result, the input to the adversary in both games with different multi-maps is identical, completing the
proof.

Next we will prove that 2ch is type-II backward private.

Lemma 2. Leakage function L is type-II backward private.

Proof. Note that LUpdate is dependent on the public parameter ℓ and the label on which the update is being
performed. The leakage during queries on previous updates is the timestamps of all previous updates via
leq. This leakage profile falls under the definition of type-II backward privacy.

Proof of Theorem 9. Follows directly from Theorem 10,
Lemma 1 and Lemma 2.

Efficiency. Communicational and computational query and update operations are O(ℓ log log(n)) as the
client uploads a single PRF evaluations and uploads and/or downloads 2ℓ bins of size O(log log n). By
the analysis of [33], the overflow stash in client storage contains at most f(n) values, for any function
f(n) = ω(log n), except with probability negligible in n. Server storage for our scheme is ⌈n/(c log n)⌉ ·
⌈log(c log n)⌉ = O(n) encrypted values. If we had used standard two-choice hashing, server storage would
be O(n log log n) without a client stash.

Variants. In our pseudocode, query and update algorithms are distinguishable since query algorithms
are non-interactive while update algorithms are interactive. If we wish to hide operational types from the
adversary, we can modify the query algorithm in the following way. After receiving the 2ℓ bins, the query
algorithm re-encrypts all values in 2ℓ bins and re-uploads them back to the server. The resulting variant of
2ch will ensure that adversaries cannot distinguish between query and update algorithms.

E Security Proof of 2chFB

For convenience, we present the leakage function L of 2chFB (repeated from Section 3.3.1).

• LSetup(MM) = n.

• LUpdate(MM, (O, o)) = (ℓ, uop).

• LQuery(MM, (O, o)) = (ℓ, leq(O, o), qop).

28

As a reminder, the above leakage means that only the size of the multi-map is leaked during setup. During
the update operation, only the maximum volume and update operation is leaked. Finally, the maximum
volume, query operation and label equality leakage pattern are revealed during queries.

Theorem 11. If SKE is an IND-CPA-secure encryption and F,G are pseudorandom functions and H is
modeled as a random oracle, then for every n ≥ ℓ ≥ 1, 2chFB is an adaptive L-secure dynamic STE scheme
for multi-maps.

Proof. We consider a stateful simulator S with state st that works as follows:

EMM← S.SimSetup(1λ, n):

1. Construct s = ⌈n/c log(n)⌉ full binary trees B1, . . . , Bs each with height h = ⌈log(c log n)⌉.

2. Fill each node of every tree with an encryption of ⊥ and initialize an empty multi-map EMMu.

3. Set st←
(
M, U

)
where M is an empty map and U is an empty array.

4. Return (B1, . . . , Bs,EMMu).

Response← S.SimQuery(1λ, qop, ℓ, leq(O, o)):

1. Using leq(O, o), find smallest i such that label(o) = label(O[i]) and O[i] is a query.

2. If no such i exists, set i← |O|+ 1 and M[i] to be a uniformly random string from {0, 1}λ.

3. Let j be the largest integer such that O[j] is a query and label(O[j]) = label(o). If no such j
exists, set j to −1. For all m > j, is label(o) = label(O[m]) and if O[m] is an update, append the
corresponding string from U to a list U ′.

4. If | U ′ |> 0, set x to be a uniformly random string from {0, 1}λ and program the random oracle H as
follows: for all s ∈ [| U ′ |], H(x, s) := U ′[s].

5. If | U ′ |> 0, return ((x, | U ′ |),M[i]). Else, return M[i].

6. Initialize 2 · ℓ arrays (A0,i, A1,i)i∈[1,ℓ] of size h each. Each entry of the array is an encryption of ⊥.

7. Return (A0,i, A1,i)i∈[1,ℓ].

(st,Response)← S.SimUpdate(1λ, uop, ℓ):

1. Compute an y that is an encryption of tuple (⊥, v⃗⊥) where v⃗⊥ consists of ℓ values of ⊥.

2. Choose x uniformly at random from {0, 1}λ and append x to U .

3. S returns (x, y).

We now show that for all PPT adversaries A, the probability that Real2chFB,A(1
λ) outputs 1 is negligibly

different from the probability that Ideal2chFB,A,S(1
λ) outputs 1. To do this, we use the following sequence

of games:

• Game0 is identical to Real2chFB,A(1
λ).

• Game1 replaces the PRFs F,G with a random function. This is indistinguishable fromGame0 because
of the pseudo-randomness of F,G.

• Game2 replaces output of H with random strings during update protocol and during search the
random oracle H is programmed so that H outputs the random strings picked during update when
queried.

29

• Game3 replaces the IND-CPA encryption SKE.Enc steps with simply producing a random string.
RCPA security of SKE guarantees indistinguishability between a ciphertext and a randomly generated
string.

• Game4 replaces the outputs of random functions with uniformly random chosen values. This is indis-
tinguishable from Game3 as the output of random function and a random string are indistinguishable.

Game4 is the same as the ideal experiment.

Note that the random oracle assumption may be removed by using H as a pseudo-random function PRF
and the client sending all PRF evaluations to the server.

Lemma 3. Leakage function L is volume-hiding.

Proof. To prove that L is volume-hiding, we consider any two multi-maps with the number of values ≤ n and
with maximum volume of a label ≤ ℓ. Note that the only other leakages are the global label-equality pattern
and the number of updates performed for queried labels since the last searches on them. In particular, no
leakage about the value tuples associated with update operations is leaked. As a result, the input to the
adversary in both volume-hiding games with different multi-maps is identical.

Lemma 4. Leakage function L is forward private and type-II backward private.

Proof. Note that LUpdate is only dependent on the public parameter ℓ and independent of all previous
operations. Therefore, L is forward private. For type-II backward privacy, we note that the leakage during
queries on previous updates is the number of previous updates on the queried label that may be computed
using TimeUpdate(O) where O is all previous operations. Therefore, L is also type-II backward private.

Proof of Theorem 4. Follows directly from above.

F Security Proof of 2chs
FB

For convenience, we present the leakage function L of 2chs
FB (repeated from Section 3.4.1).

• LSetup(MM) = n.

• LUpdate(MM, (O, o)) = (ℓ, uop).

• LQuery(MM, (O, o)) = (ℓ, leq(O, o), qop).

The leakage is identical to 2chFB for all of setup, updates and queries. We note that the proof will
consider the leakage of Lloc from EMMloc

i . However, this turns out to be a subset of label equality leakage.

Theorem 12. If SKE is an IND-CPA-secure encryption and F , G are pseudorandom functions, then for
every n ≥ ℓ ≥ 1, 2chs

FB is an adaptive L-secure dynamic STE scheme for multi-maps.

Proof. We will utilize a simulator Spi for our initialization of each EMMloc
i using the PiBas∗ construction.

We assume S ′ to be the simulator for 2chFB. We consider a stateful simulator S with state st that works
as follows:

EMM← S.SimSetup(1λ, n):

1. Execute S ′.SimSetup(1λ, n)

Response← S.SimQuery(1λ, uop, ℓ, leq(O, o),Lloc):

1. Using the total number of updates so far, determine encrypted multi-maps EMMloc
i that are non-empty.

2. For each EMMloc
i that is non-empty, execute and return Spi.SimQuery(1λ,Lloc).

30

3. Using leq(O, o), find smallest i such that label(o) = label(O[i]) and O[i] is a query.

4. If no such i exists, set i← |O|+ 1 and M[i] to be a uniformly random string from {0, 1}λ.

5. Let j be the largest integer such that O[j] is a query and label(O[j]) = label(o). If no such j
exists, set j to −1. For all m > j, if label(o) = label(O[m]) and if O[m] is an update, append the
corresponding string from U to a list U ′.

6. Return (U ′,M[i]).

7. Initialize 2 · ℓ arrays (A0,i, A1,i)i∈[1,ℓ] of size h each. Each entry of the array is an encryption of ⊥.

8. Return (A0,i, A1,i)i∈[1,ℓ].

(st,Response)← S.SimUpdate(1λ, ℓ, uop):

1. Using the total number of updates so far, determine the encrypted multi-map EMMloc
i that will be

constructed and uploaded. Execute and return Spi.SimSetup(1λ, 2i).

2. Compute an y that is an encryption of tuple (⊥, v⃗⊥) where v⃗⊥ consists of ℓ values of ⊥.

3. Choose x uniformly random from {0, 1}λ and append x to U .

4. S returns (x, y).

We now show that for all PPT adversaries A, the probability that Real2chs
FB,A(1

λ) outputs 1 is negligibly

different from the probability that Ideal2chs
FB,A,S(1

λ) outputs 1. To do this, we use the following sequence
of games:

• Game0 is identical to Real2chs
FB,A(1

λ).

• Game1 replaces the PRFs F,G with a random function. This is indistinguishable fromGame0 because
of the pseudo-randomness of F,G.

• Game2 replaces the IND-CPA encryption SKE.Enc steps with simply producing a random string.
RCPA security of SKE guarantees indistinguishability between a ciphertext and a randomly generated
string.

• Game3 replaces the outputs of random functions with uniformly random chosen values. This is indis-
tinguishable from Game2 as the output of random function and a random string are indistinguishable.

• Game4 replaces the search and setup algorithms of PiBas∗ with corresponding algorithms of Spi.
This is indistinguishable from Game3 as otherwise this would break the security of PiBas∗.

Game4 is the same as the ideal experiment.

Lemma 5. Leakage function L is volume-hiding.

Proof. As discussed above, the only additional leakage of 2chs
FB compared to 2chFB is Lloc when the query

protocol is executed and that adds no additional information about the volume of the searched-for label.

Lemma 6. Leakage function L is forward private and type-II backward private.

Proof. Note, the update leakage remains independent of all previous operations. Hence, 2chs
FB is forward

private. The query leakage is identical for both 2chFB and 2chs
FB except for Lloc. Looking closer, Lloc only

reveals the number of updates that occured for ℓ, which is something that is already revealed by 2chFB.
Therefore L is type-II backward private.

Proof of Theorem 5. Follows directly from above.

31

G Variants of 2chFB and 2chs
FB

Note that both 2chFB and 2chs
FB require server storage linear in the number of update operations in the

worst case (i.e. the updated labels are never queried). Moreover, the static structures EMMloc
i in 2chs

FB do
not take into account the space wasted due to resolved updates. We show that one can ensure the server
storage stays at O(n) using a scheduled clean-up algorithm. Every O(n/ℓ) update operations, the client and
server agree to perform a scheduled clean-up. The client downloads the entire encrypted storage, decrypts
locally, applies all cached update operations and re-uploads a freshly encrypted version of the two-choice
hash table. As a result, the server storage never exceeds O(n). Furthermore, the additional amortized cost of
each update operation increases by O(ℓ) that does not increase the total cost. Also particularly for 2chs

FB,

one can modify the update algorithm in such a way that EMMloc
i that is selected to be locally reconstructed

is one that has some space newly freed due to a deletion of an entry from EMMloc
i during update resolution

in a past query operation.

Discussion about Forward Privacy. We note that the server storage increases as there are more update
operations without intermediate query operations. Similar to the growing client storage of 2chFB discussed
in Section 3.3.2, the additional server storage enables providing stronger protection for updates without
intermediate queries. We leave it as an open problem to achieve this protecting without additional storage
costs.

H Proof of Theorem 7

Proof of Theorem 7. We note that the proof is essentially identical to Theorems 4 and 5. The only mod-
ification is that after each operation, the simulator is provided n and ℓ. The simulator will run the same
algorithm with these newly provided values. For correctness, both 2chFB and 2chs

FB compact their results
such that non-dummy values appear before dummy values. As long as ℓ is a valid upper bound, then all
correct values are always returned.

I Circumventing Label Equality Lower Bound [34]

In a work by Patel et al. [34], it was shown that encrypted multi-map scheme that aims to leak anything
less than label equality leakage will inevitably require Ω(log n) overhead that is similar to an oblivious RAM
(ORAM). Throughout our work, we justify the leakage of label equality leakage as a way to obtain efficiency
faster than ORAMs and circumvent this lower bound.

One may wonder whether it is possible to circumvent the lower bound in [34] in other ways without
leaking label equality. One attempt may be to restrict the sequence of valid operations to avoid the one
that was used to prove the lower bound in [34]. Recall that the proof in [34] considers a hard sequence of
k operations with k/2 updates with value tuples of length ℓ to unique labels followed by k/2 queries to the
same labels in any order. For this set of sequences, it was shown that Ω(log(kℓ)) overhead is required for a
wide range of choices for k and ℓ. One obtains the above lower bound by setting kℓ = nα for any constant
0 < α ≤ 1.

In theory, it is possible to construct an encrypted multi-map that is faster for sequences that are not
the above hard sequences without leaking label equality. That is, the construction is faster for non-hard
sequence but slower for hard sequences. Unfortunately, the set of hard sequences is large and considers a
natural setting of updating k/2 different labels followed by querying them. Therefore, the practical benefits
of such a construction remain unclear. Nevertheless, we leave it as an interesting open question as to whether
this efficiency dichotomy is achievable.

32

	Introduction
	Our Contributions

	Definitions
	Structured Encryption
	Adaptive Security
	Multi-Maps
	Label Equality Leakage
	Volume Hiding Leakage Functions
	Forward and Backward Privacy
	Cryptographic Tools

	Our Constructions
	Problems with Naive Padding
	2ch: Warm-Up Scheme
	Construction 2chFB
	Security
	Efficiency

	Construction 2chFBs
	Security
	Efficiency

	Modifying n and l
	Changing Multi-Map Size n
	Changing Maximum Volume l

	Experimental Evaluation
	Experimental Setup

	Semi-Dynamicity of DST[KM19]
	Lower Bounds when Hiding l
	Backward Privacy
	2ch: Pseudocode and Analysis
	Security Proof of 2chFB
	Security Proof of 2chFBs
	Variants of 2chFB and 2chFBs
	Proof of Theorem 7
	Circumventing Label Equality Lower Bound[PPY19]

