
Covert Learning: How to Learn with an Untrusted Intermediary∗

Ran Canetti
Boston University
canetti@bu.edu

Ari Karchmer
Boston University
arika@bu.edu

September 17, 2021

Abstract

We consider the task of learning a function via oracle queries, where the queries and responses
are monitored (and perhaps also modified) by an untrusted intermediary. Our goal is twofold: First,
we would like to prevent the intermediary from gaining any information about either the function
or the learner’s intentions (e.g. the particular hypothesis class the learner is considering). Second,
we would like to curb the intermediary’s ability to meaningfully interfere with the learning process,
even when it can modify the oracles’ responses.

Inspired by the works of Ishai et al. (Crypto 2019) and Goldwasser et al. (ITCS 2021), we
formalize two new learning models, called Covert Learning and Covert Verifiable Learning, that
capture these goals. Then, assuming hardness of the Learning Parity with Noise (LPN) problem, we
show:

• Covert Learning algorithms in the agnostic setting for parity functions and decision trees,
where a polynomial time eavesdropping adversary that observes all queries and responses learns
nothing about either the function, or the learned hypothesis.

• Covert Verifiable Learning algorithms that provide similar learning and privacy guarantees,
even in the presence of a polynomial-time adversarial intermediary that can modify all oracle
responses. Here the learner is granted additional random examples and is allowed to abort
whenever the oracles responses are modified.

Aside theoretical interest, our study is motivated by applications to the secure outsourcing of au-
tomated scientific discovery in drug design and molecular biology. It also uncovers limitations of
current techniques for defending against model extraction attacks.

∗Supported by the DARPA SIEVE program, Agreement Nos. HR00112020020 and HR00112020021.

1

Contents

1 Introduction 1
1.1 Our Contributions . 1

1.1.1 New Learning Models: Covert and Verifiable Learning . 2
1.1.2 Overview of Results . 5
1.1.3 Algorithmic Ideas . 8

1.2 Real World Applications . 9
1.3 Related Work . 11

1.3.1 Cryptographic Sensing . 11
1.3.2 PAC-verification . 11
1.3.3 Other Related Models . 12

2 Covert Learning 12
2.1 Preliminaries . 12
2.2 Definition of Covert Learning . 13

2.2.1 Discussion . 15
2.3 A Warm-Up: Covert Learning of Noisy Parity Functions . 16

2.3.1 The Learning Problem . 17
2.3.2 The Construction . 18

2.4 Covert Learning of Low-degree Fourier Coefficients . 22
2.4.1 Our Task . 22
2.4.2 The Construction . 24

2.5 Covert Learning of Polynomial Size Decision Trees . 32

3 Covert Verifiable Learning 36
3.1 Definition of Covert Verifiable Learning . 36

3.1.1 Discussion . 38
3.2 Making CLF Verifiable . 38
3.3 Making CLDT Verifiable . 43
3.4 Verifiability Without Secret Examples . 44
3.5 Perfect Privacy and Statistical Soundness With Fully Private Examples 51

4 Key Exchange from Covert Learning 54
4.1 How Does Our Protocol Differ from Alekhnovich’s? . 56

Appendices 61

A More on Related Work 61
A.1 Cryptographic Sensing . 61
A.2 PAC-verification . 61

B Variants of Definition 2.7 and Definition 3.3 62
B.1 Covert Learning Variants . 62
B.2 Covert Verifiable Learning Variants . 63

C Frequently Used Concepts and Lemmas 66

D Fourier Analysis 67

E Proofs of CVLDT Guarantees 68

2

1 Introduction

A motivating scenario. Imagine a biologist, Alice, who wishes to learn a model—within some class
of hypothesized models—for the relationship between the structure of a molecule and its “activity”
(e.g. whether or not the molecule binds to a certain protein). Alice plans to conduct a variety of lab
experiments in order to learn her model.

However, in Alice’s lab all experiments are public: they are observable by anyone. Can Alice design
experiments so that only she will learn her model? Furthermore, can Alice design the experiments so that
they will not leak her initial hypotheses on the possible models, which encode Alice’s innovative, secret
list of molecule features that are likely to influence activity? In fact, can Alice design the experiments
so that no one else but her learns anything at all from her experiments?

To complicate things further, suppose that after starting the experiments, Alice is notified that she
has been exposed to COVID-19 and has to quarantine at home; she has no choice but to delegate the
recording of the results from her experiments to an untrusted colleague, Bob. Thus, in addition to
concealing her learned model, hypothesized class of models, and any information about the molecular
relationship, Alice needs a way to verify the results reported by Bob. In summary, Alice needs a learning
algorithm that will carry the following (informal) guarantees:

• Learning : If Bob reports the results correctly, then Alice is guaranteed to acquire some satisfactory
model for the studied molecular relationship.

• Verifiability : Even if Bob behaves maliciously, Alice is guaranteed to acquire a satisfactory model,
as long as she does not decide to reject Bob’s report.

• Hypothesis-hiding : Bob does not learn anything about the model Alice has learned or about Alice’s
hypothesized class of models.

• Concept-hiding : Bob does not learn anything about the molecular relationship.

The learning requirement mimics classic learning-theoretic formalisms. In particular, it naturally
corresponds to agnostic learning with membership queries: the molecular relationship corresponds to a
concept, Alice’s experiments correspond to queries to the concept at arbitrary points, and Alice’s task of
finding a model within a class of models corresponds to learning a hypothesis out of a given hypothesis
class (e.g. polynomial size decision trees).

Put in these terms, our work is focused on the following questions: Can we devise agnostic learning
algorithms in the membership query model that satisfy the above verifiability and hiding guarantees? If
so, then for which hypothesis classes, and under what computational assumptions? In fact, how should
we even define these (so far informal) goals?

Before proceeding to present our contributions, we note that this work has been inspired by the
works of Ishai et al. [IKOS19] and Goldwasser et al. [GRSY20] that consider related models. We
elaborate on these works and the relationships in Section 1.3.

1.1 Our Contributions

We define and construct learning algorithms that satisfy the above requirements. We first present
our definitions (Section 1.1.1), then state our results (Section 1.1.2), then overview our techniques
(Section 1.1.3).

1

1.1.1 New Learning Models: Covert and Verifiable Learning

We propose two new learning models: the basic Covert Learning model, which considers a passive
adversary only, and the Covert Verifiable Learning model, which considers an intermediary who may
observe queries and even modify responses.

The Covert Learning model. Our model is grounded in the learning with membership queries
setting, where a learner is allowed to directly query the concept, with an added twist: every query
and response obtained by the learner is also obtained by a computationally bounded adversary. The
high level goal is for the learner to construct queries that are useful to herself, but are completely
unintelligible to any adversary.

Figure 1: A Covert Learning scenario. The learner interacts with the concept by making queries to an oracle that
implements access to the concept at arbitrary points. Meanwhile, an adversary attempts to deduce information
about the learner’s hypothesis or about the concept itself, given a view: the set of queries and responses obtained
by the learner.

One may be tempted to formulate this property by requiring that the adversary gains nothing from
the interaction between the learner and the concept. However, this would be too much to demand, since
the adversary does (at the very least) learn the responses to the learner’s queries. We thus somewhat
relax the hiding property to say that the adversary learns nothing except for some number of random
examples from the concept. In other words, the view of the adversary can be simulated in probabilistic
polynomial time (p.p.t.), given only random examples from the concept. This in particular means that
the notion of Covert Learning is meaningful only when the learning task at hand is computationally
hard in the traditional PAC learning model, where a concept must be learned from random examples
only.

A bit more formally, Let X be a set, and consider a distribution D over X × {0, 1}. We will call
a sample (x, y) ∼ D an example, where x is an input and y is a label, and call D a concept1. Let H
denote a hypothesis class, which is a subset of functions h : X → {0, 1}. A learning algorithm under the
Covert Learning model is tasked with finding an hypothesis h ∈ H that best approximates the concept
D on unobserved examples (x, y) ∼ D. This notion is captured by a loss function (w.r.t. to a concept).
For example: LD(h) = Pr(x,y)∼D[h(x) 6= y]. The learning goal of the Covert Learning model is then the

1Alternatively, one may think of a concept as a tuple consisting of a distribution DX over the input domain X and
a target function f : X → {0, 1} which labels inputs. However, the notion described above (and used in the rest of this
paper) is more general, as a joint distribution allows concepts which are probabilistic.

2

requirement that the learner outputs h ∈ H such that LD(h) ≤ LD(H)+ε = infh∈H LD(h)+ε with high
probability, and we will call such an h ε-good. In order to achieve this goal, the learner is given access to
a (possibly probabilistic) oracle that labels a queried input xj ∈ X with a corresponding yj . The novelty
of the Covert Learning model is the guarantee that—in addition to the learning goal—no information
about the hypothesis class or the concept is leaked to a passive adversary, except some random examples
from the concept. This guarantee holds even when the adversary has access to extraneous information
on the concept.

Definition 1.1. Covert Learning (informal version of Definition 2.7). A covert learning algorithm—
for a collection of hypothesis classes and with respect to a class of concepts and a loss function—is
an algorithm that, for any concept in the class and accuracy parameters ε, δ, takes as input a target
hypothesis class in the collection, and interacts with an oracle that labels queries to the concept such
that the following are true:

• Completeness. The learning algorithm outputs an ε-good hypothesis for the concept with proba-
bility 1− δ.

• Privacy. There exists a p.p.t. simulation algorithm that, given access to additional random
examples from the concept, generates a distribution of queries and responses which is compu-
tationally indistinguishable from that of the real interaction. The simulation algorithm should
function without further access to the oracle, or knowledge of the target hypothesis class within the
collection.

On hypothesis-hiding. In addition to hiding the learned concept, the above definition also requires
that a covert learning algorithm hides the initial hypothesis class. Let us motivate this requirement.
Indeed, when operating in a setting where the concept is included in a fixed class and can be learned
fully, there is little motivation for hypothesis-hiding. However, in the more realistic setting of agnostic
learning—where no assumptions are made about the concept—one resorts to learning the best approxi-
mation to the concept that is contained in some chosen hypothesis class. Clearly, the choice of hypothesis
class is crucial in determining the value of the resulting approximation. Therefore, the chosen hypothe-
sis class reflects the learner’s prior beliefs about the concept, and is itself valuable information in need
of protection. Indeed, the main motivation of tolerance testing2 is to decide if a class of hypotheses
contains a good approximator to an unknown concept. Concretely, the learner could be motivated to
hide the results of a tolerant testing procedure that were received as advice. Alternatively, relating back
to the motivating scenario, the specific domain knowledge that Alice has might influence her choices of
experiments, which could in turn reveal information about her sensitive domain knowledge. Alice may
be motivated to conceal her sensitive domain knowledge.

As a matter of fact, digging deeper into real world applications of learning with membership queries
reveals further motivation for hypothesis-hiding, even when the concept is known to be from a fixed
class (and therefore may be learned fully). In some specific practical applications (see Section 1.2 for
more details), arbitrarily synthesized membership queries are difficult or expensive (in some measure)
to obtain. For example, conducting a biological assay using an unstable compound. As is the case,
and despite the fact that a concept may be known to be contained in a fixed class, the learner might

2In tolerance testing [PRR06], a generalization of property testing, the goal is distinguish the case where a function is
“close” to a class of functions, or “far.” A further generalization is the problem of estimating the distance of a function to
a certain class of functions.

3

voluntarily submit itself to an agnostic learning setting (i.e., settle for a hypothesis from a less expressive,
easier to learn class, that does not contain the full set of potential concepts). Doing so is motivated by
either the desire to reduce the total number of membership queries needed, or avoid making contrived
or artificial queries (e.g. the inclusion of a highly unstable chemical in the biological assay).

The Covert Verifiable Learning (CVL) model. The Covert Verifiable Learning model considers
the case where, in addition to observing all queries and responses, the adversary (henceforth, the
adversarial intermediary) also actively modifies the oracle’s responses. Still, we require the learner to
either detect the modifications and abort, or else come up with a good approximation of the actual
concept represented by the oracle (which may in and of itself be an arbitrary function).

To make this requirement meaningful—namely, to allow the learner to meaningfully distinguish
between responses that were modified by the adversarial intermediary and those that were not—we give
the learner access to some number of ground truth random examples from the concept. (See Figure 2).
We consider three variants of the CVL model, depending when the adversarial intermediary learns these
additional random examples: In the weakest variant, the queries remain completely hidden throughout.
In the intermediate model, we consider the case where the examples become known once the learning
process completes. Finally, we consider our strongest variant, where these examples are publicly known
in advance.

Figure 2: The “intermediate model” Covert Verifiable Learning scenario. A learner, given a set of random
examples of a concept, accesses supplementary data on the concept using an oracle in the presence of an adver-
sarial intermediary. While attempting to deduce information about the concept or the learner’s hypothesis, the
adversarial intermediary may tamper with the oracle responses (both to help steal information and to simply
deceive the learner). Whereas, the learner aims to output a hypothesis that models the concept.

In more detail, the Covert Verifiable Learning model requires that, like Covert Learning, the output
of the learner is a hypothesis h ∈ H that such that (w.r.t. the concept D) LD(h) ≤ LD(H) + ε with
high probability, but only when the adversarial intermediary simply observes and does not tamper with
oracle responses. The Covert Verifiable Learning model then augments the Covert Learning model by
requiring that, for any adversarial intermediary that tampers with the oracle, the output of the learner
is an h ∈ H that such that LD(h) > LD(H) + ε with low probability, assuming that the learner did not
reject the interaction all together.

The concept-hiding and hypothesis-hiding guarantees should still hold—albeit with an adversarial
intermediary. To capture this stronger requirement, we adapt the simulation-based privacy of Covert
Learning to embrace the active nature of the adversarial intermediary. Basically, we require that for
any adversarial intermediary, there is a simulator that can interact with the adversarial intermediary
such that no computationally bounded adversary be able to tell whether the adversarial intermediary
is interacting with the actual learner or with the simulator. As in Covert Learning, the simulator will

4

access random examples from the concept, but operate with no further knowledge about the concept
and no knowledge of the learner’s hypothesis class. Depending on the variant we consider, the adversary
may have access to the learner’s random examples (recall that in the intermediate setting, they leak
subsequent the interaction).

Definition 1.2. Covert Verifiable Learning (informal version of Definition 3.3) A covert verifiable
learning algorithm—for a collection of hypothesis classes and with respect to a class of concepts and a
loss function—is a learning algorithm that, for any concept in the class and accuracy parameters ε, δ,
takes as input a target hypothesis class in the collection, a set of random examples from the concept,
and interacts with an oracle that labels queries on the concept such that the following are true:

• Completeness. If the adversarial intermediary acts honestly (i.e. no oracle responses are cor-
rupted), then the learning algorithm outputs an ε-good hypothesis for the concept with probability
1− δ.

• Soundness. For any computationally bounded adversarial intermediary who tampers with oracle
responses, if the learning algorithm does not reject then it outputs a hypothesis which is not ε-good
with probability at most δ.

• Privacy (intermediate model). For any adversarial intermediary, there exists a simulator
such the following two random variables are indistinguishable to an external adversarial entity
which chooses the concept, the target hypothesis class, and accuracy parameters:

Real execution: The output of the intermediary from a real interaction with the learning algo-
rithm and the oracle, along with the set of random examples that the learner received in this
interaction (the intermediary does not see the random examples).

Ideal execution: The output of the simulator, along with the set of random examples that the
learning algorithm received in the interaction. The simulator is given access to the set of
random examples that were known to the learning algorithm, plus an additional set of random
examples. However, the simulator can neither have further access to the concept nor have
knowledge of the target hypothesis class.

If the output of the real execution does not include the random examples given to the learning
algorithm, then we say that the algorithm is a covert verifiable learning algorithm with fully private
examples.

If the random examples given to the learning algorithm are also given to the intermediary, then
we say that the protocol is a public covert verifiable learning algorithm.

For simplicity, we don’t give the intermediary the ability to modify the queries. Indeed, an intermediary
that is able to modify the learner’s queries is arguably able to learn the function to begin with.

1.1.2 Overview of Results

As discussed, meaningful covert learning algorithms can exist only for learning problems where learning
from random examples is hard, whereas learning with membership queries is feasible. However, it is
not a priori clear that meaningful covert learning algorithms exist at all. In fact, to the best of our
knowledge, for all known learning algorithms in the membership query model, an external observer

5

can learn the function by just observing the queries and responses. This holds even when no efficient
learning algorithms are known in the traditional PAC model (for instance, consider the algorithm of
Kushilevitz and Mansour for decision trees [KM93], which is thought to be hard in the traditional PAC
model [Blu03, OS07]).

This works constructs polynomial time, covert learning algorithms for salient learning tasks within
the two new learning models. First, we consider the problem of Covert Learning for noisy parity
functions. In this problem, a secret n-bit parity function is generated by drawing an n-bit vector k,
where each bit is sampled i.i.d. from a Bernoulli random variable with mean 1/

√
n, and defining the

parity function to be f(x) = 〈x, k〉. An example (x, y) is generated from a concept Dk
LPN which draws

a uniformly random input x, and returns y = f(x)⊕ 1 with probability 1/
√
n, and y = f(x) otherwise.

By the low-noise LPN assumption [Ale03], learning the hidden vector parity function from examples
(x, y) ∼ Dk

LPN is not possible in polynomial time. On the other hand, oracle queries to Dk
LPN make the

problem tractable. Let DLPN = {Dk
LPN |k ∈ {0, 1}n}. To this end, we define a hypothesis class HT as

the set of all parity functions on a subset of T ⊆ [n]. We show:

Theorem 1.3. (Informal version of Theorem 2.15) Assuming hardness of the low-noise LPN assump-
tion, there is a covert learning algorithm for the collection C = {HT | T ⊆ [n]}, with respect to the
concept class DLPN and the loss function LD.

Switching gears slightly, we demonstrate that our Covert Learning algorithm for noisy parities (up to
syntactic modifications) suffices as a cryptographic key exchange protocol. Our key exchange protocol
may be transformed into a public key encryption by following the KEM paradigm. The resulting
protocol is similar in spirit to the public-key encryption scheme of Alekhnovich [Ale03] (over the binary
field, from low-noise LPN, pseudorandom public keys and ciphertexts), but Alekhnovich encrypts a
single bit directly. On the other hand, our key exchange communicates many bits at a time, and the
resulting public-key encryption scheme allows sending messages of nearly

√
n bits at once.

Next, we consider the following concept class. Let F be a class of functions f : {0, 1}n → {−1, 1}.
DF is a concept class indexed by f ∈ F , where for any Df ∈ DF , an example (x, y) ∼ Df is generated
by first sampling an input x uniformly at random, and then a returning (x, f(x)).

The first problem we consider is that of learning the “heavy” Fourier coefficients of a function. In
this problem, the goal of a learner (given a function f : {0, 1}n → {−1, 1}) is to find the set of all k such
that Ex[f(x)χk(x)] ≥ τ , where τ ≥ 1/poly(n) is a given parameter and χk(x) = (−1)〈k,x〉. We denote
by f̂≥τb the aforementioned set of k with the added stipulation that |k| ≤ b. Achieving this goal using
only examples (x, y) ∼ Df is known to be as hard many longstanding open problems in computational
learning theory, such as PAC learning DNF formulas, even when it is only required to find k such
that |k| = O(log n) [Blu03, Jac97, OS07]. On the other hand, membership queries make the problem
tractable [GL89]. With this in mind, we define a hypothesis classHbT = {χk | ki = 0 =⇒ i 6∈ T, |k| ≤ b},
where T ⊆ [n], and a loss function Lτ,b : P([n])→ [0, 1] given by

Lτ,b(T) = Pr
k∼f̂≥τb

[
χk ∈ T

]
where k ∼ f̂≥τb is a uniformly random sample k ∈ f̂≥τb and P(S) denotes the powerset of a set S (we
also require that |T | ≤ poly(n)). We show:

Theorem 1.4. (Informal version of Theorem 2.26) Let F be the class of all n-bit boolean functions.

6

Assuming sub-exponential hardness of the standard LPN problem, there is a covert learning algorithm
for the collection C = {HbT | T ⊆ [n]}, with respect to the concept DF and the loss function Lτ,b and for
b ≤ O(log n), τ ≥ 1/poly(n).

In the problem of agnostically learning decision trees, a learner is given access to Df ∈ DF and
tasked with finding (close to) the best decision tree that minimizes some loss function with respect to
Df . This learning problem, too, is thought to be difficult in the traditional PAC model, but is known to
be efficiently learnable with membership queries [KM93, Blu03]. Building on top of the covert learning
algorithm for O(log n)-degree Fourier coefficients, we show:

Theorem 1.5. (Informal version of Theorem 2.34) Assuming sub-exponential hardness of the standard
LPN problem, there is a covert learning algorithm for the collection of all subsets of functions computable
by poly(n) size decision trees with respect to the concept class DF and the loss function LD.

Unsatisfied with only the covert learning algorithms, we demonstrate how to transform our covert
learning algorithms into covert verifiable learning algorithms. We do so both according to the interme-
diate setting and the stronger public variant. Specifically, in the intermediate setting we show:

Theorem 1.6. (Informal version of Theorem 3.4) Assuming sub-exponential hardness of the standard
LPN problem, there is a covert verifiable learning algorithm for the collection C = {HbT | T ⊆ [n]}, with
respect to the concept DF and the loss function Lτ,b, and for b ≤ O(log n), τ ≥ 1/poly(n).

Theorem 1.7. (Informal version of Theorem 3.8) Assuming sub-exponential hardness of the standard
LPN problem, there is a covert verifiable learning algorithm for the collection of all subsets of functions
computable by poly(n) size decision trees with respect to the concept class DF and the loss function LD.

In the public variant, we prove:

Theorem 1.8. (Informal version of Theorem 3.10) Let s-DNFn be the class of all f : {0, 1}n → {−1, 1}
computable by a size s DNF formula. Assuming sub-exponential hardness of the standard LPN problem,
there is a public covert verifiable learning algorithm for the collection C = {HbT | T ⊆ [n]}, with respect
to the concept class Ds-DNFn and loss function and the loss function Lτ,b, for s ≤ poly(n), b ≤ O(log n),
and τ ≥ 1/poly(n).

In particular, the result of Theorem 3.10 gives the first verifiable PAC learning protocol without
any private examples, even in the model of [GRSY20] which does not consider privacy. We also show a
Covert Verifiable Learning algorithm with fully private examples, that obtains strong verifiability and
hiding. Let s-JUNT A be the class of all f : {0, 1}n → {−1, 1} computable by an s-junta. An s-junta
is an n-bit boolean function with n− s irrelevant variables. A variable is irrelevant if changing its value
in the input never changes the output of the function.

Theorem 1.9. (Informal version of Theorem 3.20) There is a covert verifiable learning algorithm with

7

fully private examples with respect to the concept class Ds-JUNT A, with statistical soundness and perfect
privacy, where s ≤ O(log n).

1.1.3 Algorithmic Ideas

We give high level descriptions of the algorithmic techniques. More formal overviews precede the
constructions in the body of the paper.

Covert Learning of noisy parities. Our Covert Learning algorithm for learning noisy parities
employs a “masked query” technique which works as follows. To mask a query q ∈ {0, 1}n, the learner
starts by requesting n uniformly random examples from the oracle. Then, by taking the inputs of
those random examples and drawing a random LPN secret, a “mask” is produced by multiplying the
random inputs with the secret, and corrupting the resulting vector with independent random noise for
each entry. Each query desired by the learner is then “masked” by adding the resulting sequence of
LPN samples. In other words, each query is one-time-padded with an LPN instance. By the LPN
assumption, a single masked query is pseudorandom. Moreover, the joint distribution for a set of
masked queries is pseudorandom. The learner proceeds by sending the set of masked queries to the
oracle, and upon receiving the results, decodes each one using the LPN secrets, the random examples,
and by leveraging natural homomorphic properties provided by the LPN problem (with low noise). The
simulation algorithm works by simply sampling queries from the uniform distribution, and pairing them
with uniformly random results. We reduce the hardness of distinguishing the simulated transcript from
the real transcript to solving the low-noise LPN problem.

Covert Learning of low-degree Fourier coefficients and decision trees. The covert learning
algorithms for low-degree Fourier coefficients and decision trees use the same “masked query” technique
as the covert learning algorithm for noisy parities. In particular, we use our “masked query” technique
to run Goldreich-Levin queries on the (arbitrary) function in question. In contrast to the noisy parity
setting, each individual query is not correctly decoded. Instead, the entire set of results is aggregated in
a way resembling the original technique of Goldreich and Levin [GL89]. This allows us to then recover
heavy Fourier coefficients belonging to O(log n)-degree parity functions. Due to the noise of the masking,
the technique fails to extract higher degree coefficients. Once the set of O(log n)-degree parities that
have noticeable Fourier coefficients is known, we employ standard techniques to produce a hypothesis
which is the sign of a low-degree polynomial. We give a Fourier-based analysis that obtains agnostic
learning guarantees on the hypothesis for the class of polynomial size decision trees. To demonstrate
privacy, we adopt a variant of the LPN assumption that works over sparse secrets. The variant is due
to [YZ16], whose hardness is implied by a sub-exponential hardness assumption on the standard LPN
problem. We then construct a simulator that returns uniformly random examples of the function. We
reduce solving the variant of the LPN problem to a constructing putative distinguisher between a real
execution and a simulated execution.

Augmenting the covert learning algorithms with verifiability. In order to engineer the ver-
ifiability guarantee into our covert learning algorithms, we use one main technique which works as
follows. We take the the covert learning algorithms and wrap them with an outer loop, which at each
iteration randomly decides to do a “learning” phase, where the covert learning algorithm is executed,
or do a“test” phase. In a test phase, the algorithm sends a subset of the privately held queries to
the oracle. Naturally, if the intermediary modifies any responses in this case, then the algorithm will

8

detect that. Crucially, the distribution of queries in the learning phase (pseudorandom) is compution-
ally indistinguishable from the distribution of queries in the test phase (uniformly random), due to the
masking technique (and the LPN assumption). Therefore, this allows us to formalize the notion that
no computationally bounded adversarial intermediary can reliably lie on the learning phase but not the
testing phase—it would entail breaking the indistinguishability of the distributions of queries of the two
phases and therefore the LPN hardness assumption.

When considering verifiability in the Public Covert Verifiable Learning setting (recall, here the
learner does not have any private examples to leverage), the above technique does not immediately work.
However, we can modify it in a simple way as follows. As before, the learning phase consists of executing
a covert learning algorithm. The testing phase is instead conducted by taking the public random
examples and applying the same masking technique as used on the learning queries. Now, the test phase
and the learning phase are still computationally indistinguishable to the adversarial intermediary, but
the queries of the testing phase cannot be linked back to the public random examples. The learner
can then decide if the intermediary is lying on the masked public examples by using the secret keys
of the masks to unlock and measure a correlation between the oracle’s responses on the masked public
examples and the public labels. Like above, the adversarial intermediary generating an “acceptable”
correlation, while reliably lying on the learning phase, would entail breaking the indistinguishability of
the distributions of queries of the two phases and therefore the LPN hardness assumption.

Unconditional Covert Verifiable Learning with fully private examples. We design a Covert
Verifiable Learning with fully private examples algorithm for O(log n)-juntas. The algorithm works
by requesting random hamming neighbors of the privately held uniformly random example set, and
using them to find all the O(log n) relevant variables. Clearly, this means that the distribution of the
membership queries is also uniform, despite the joint distribution being far from the concatenation of
independent and uniformly random distributions. Since the adversary cannot see one component of
the joint distribution, this suffices to give perfect privacy. By planting other private random examples
(those which did not have random hamming neighbors requested), we may also prove that the protocol
achieves statistical soundness against computationally unbounded adversarial intermediaries.

1.2 Real World Applications

Outsourcing of drug design and discovery. The drug design and discovery process begins by
searching a massive space of chemical compounds for an “active” compound [LPP04, DAG06, DGRDR08].
A compound is called active (with respect to some biological structure) if it produces a reaction un-
der some biological test (e.g. whether or not a molecule or compound binds with a protein). Quickly
finding (and optimizing) active compounds among a massive search space is a primary goal of the drug
discovery process.

The recent trend of drug companies delegating elements of the R&D process to well-equipped and
specialized third parties who can carry out the necessary biological experiments on behalf of the drug
companies has greatly enhanced the efficiency of the drug discovery process (for more information, see
[Cla11] and the references therein). However, currently the outsourcing of experiments carries within
it the risk of exposure of both the experimental design and experimental results. Indeed, much of the
proprietary knowledge and intellectual property underpinning pharmaceutical science is generated in
this way, but only until relatively recently was it not conducted in-house [Cla11].

One of the famous methods for carrying out drug discovery is Quantitive Structure-Activity Relation-
ship modelling, or QSAR (for more information, see [DAG06] and the references therein). The QSAR
methodology attempts to identify a relationship between compound activity and compound structure.

9

As noted in [BHZ19], a compound or molecule may be described using a predefined set of features,
which may then be linked to positive classification if it is active, and a negative classification if inactive.
A membership query can be simulated by assembling a compound according to the specific attributes
defined by the algorithm’s query and submitting it to face some biological test. Thus, the process of
privately and verifiably delegating QSAR modelling can be distilled to the following covert verifiable
learning setting: Drug company A contracts a private lab to gather relevant data labelled by a function
f , with the end goal of learning a model that provides a good approximation to f . In this case, A may
want to prevent the private lab from:

1. Reselling or releasing the data (queries to f) to a competing drug company B, after collecting the
data for A.

2. Leaking to B that A is interested in a certain type of model, or certain trade secrets like cutting
edge domain knowledge that is revealed by the design of the queries.

3. Charging more money for arbitrary, complex or “high value” data (that is, data needed to learn
expressive models like polynomial size DNF formulas).

4. Cutting costs by providing faulty data.

Using a covert verifiable learning algorithm in this setting achieves each of the above points, while
maintaining the usual learning guarantees of the plain learning with membership queries setting. In
particular, the concept-hiding guarantee prevents (1), as the queries requested by A are essentially
useless to any other (computationally bounded) party. Meanwhile, hypothesis-hiding (for a relevant
collection of hypothesis classes) counters (2) and (3), as ability to efficiently do either would clearly
violate the guarantee. Ultimately, the verifiability requirement also prohibits a private lab from (4).

We note that decision trees are one of the standard ways used in QSAR modelling to obtain a
relationship between molecule features and activity. Thus, the decision tree learning algorithms in this
work are highly relevant.

Outsourcing of automated scientific discovery. Aside from the above drug discovery example,
there are many more potential applications for the secure outsourcing of automated scientific discovery.
Indeed, learning with membership queries [Ang88] has jump-started the exploration of its many diverse
applications [BHZ19], in various areas of scientific discovery including functional genomics and molecular
biology [KWJ+04], whole-genome shotgun sequencing [ABK+04], program synthesis [BDCVY17], VLSI
testing and many others. In general, in any setting where a query can be synthesized and automatically
answered (e.g. experiments such as lab tests), learning with membership queries may be a fruitful
technique for automated scientific discovery [BHZ19]. In the same way as in the drug discovery example,
many of the aforementioned applications can benefit from privacy and verifiability guarantees.

Attacks on MLaaS systems. Another notable application of Covert (Verifiable) Learning is in the
context of model extraction attacks on machine-learning-as-a-service (MLaaS). In MLaaS, a machine
learning company often deploys a trained ML model for (paying) clients to use, given access to an
interface that implements query access to the model. In a model extraction attack, an adversary
interacts with the query interface, attempting to obtain enough information about the underlying ML
model to reverse engineer it. The relation of this attack threat to the learning with membership queries
setting is clear, though (to the best of our knowledge) has just begun to be formalized in [CCG+20].
Due to the obvious financial and security motives of preventing proprietary MLaaS models from being

10

abused—and specifically reverse-engineered—many defenses have been recently proposed. In one main
type of defense that has been proposed, MLaaS providers monitor the queries submitted by a user,
to decide when a client is benign (i.e. using the query interface in an honest way), or malicious (is
attempting to reverse engineer the model) (e.g. [KMAM18], [JSMA19]). A cat-and-mouse sequence of
attacks and defenses has ensued, while no rigorous guarantees have been obtained (for neither cat nor
mouse). The Covert (Verifiable) Learning model provides a framework for studying the viability of query
monitoring defenses. In fact, membership query learning algorithms under the (aptly named) Covert
Learning model can be seen to circumvent such defenses. Indeed, the Covert Learning hiding guarantees
prevent any computationally bounded passive adversary (in this case, any efficient extraction monitors)
from using a learner’s (extractor’s) queries to gather information about the concept (the MLaaS model),
or the learner’s resulting hypothesis (the extractor’s reverse engineering). This raises concerns about
the efficacy of query monitor defenses.

1.3 Related Work

Two recent works explore models related to ours and have influenced this work.

1.3.1 Cryptographic Sensing

Ishai et al. study a related scenario, called Cryptographic Sensing [IKOS19]. Like the present work,
Cryptographic Sensing focuses on the goal of sensing (or, learning) properties of a physical object, while
keeping these same properties secret to any passive adversary who does not have access to the internal
randomness of the sensing algorithm. However, Cryptographic Sensing does not consider our notion of
hypothesis-hiding, nor does it consider active intermediaries and verifiability. Furthermore, [IKOS19]
chiefly focuses on exact learning of the object, where the aim is to decode the object exactly with non-
noisy queries, and hiding is achieved for any high-entropy object. In contrast, our focus is on agnostic
learning, where membership queries may return noisy responses. As a result, our model allows learning
parities, whereas [IKOS19] only obtain learning algorithms for linear functions over larger moduli or
over the integers. Another effect of noisy membership queries is that they allow concept-hiding even
when there is a large and public labeled data set (the latter would rule out hiding a linear function
in the noiseless setting of [IKOS19]). Indeed, our simulation-based definition will allow us to consider
hiding in relation to auxiliary information about the concept, in a strong, zero-knowledge-like way. For
more details on Cryptographic Sensing, see Section A.1.

1.3.2 PAC-verification

Goldwasser et al. initiated the study of PAC-verification [GRSY20], which aims to answer questions
about the complexity of verifying machine learning models via interactive proofs. Among other scenar-
ios, they consider the task where a prover, having learned a concept (perhaps via membership queries),
wishes to convey the learned model to a distrusting third party (a verifier) that has only random exam-
ples from the concept. In this setting, they obtain a protocol for PAC-verification for the heavy Fourier
coefficients (of any degree) of arbitrary functions. Their protocol is statistically sound in a model that
corresponds to our CVL with fully private random examples model. That is, the prover has no access to
the random examples available to the verifier. For more details about PAC-verification, see Section A.2.
We note, however, that Goldwasser et al. do not consider (or obtain) any hiding requirements—neither
concept hiding nor hypothesis hiding. Furthermore, while our covert verifiable learning algorithms offer
only computational soundness, some of them provide soundness even in the setting where the random
examples are known to the prover in advance.

11

1.3.3 Other Related Models

Delegation of computation. Though bearing some resemblance to the traditional cryptographic
task of delegation of computation, our setting focuses on the specific task of learning. In this respect,
we are focused on good outcomes, that is, guarantees on the efficacy of the learned hypothesis. In
contrast, delegation of computation provides guarantees on the correctness of the computation steps
themselves, and provides no guarantees on the learned hypothesis. For example, the delegation of
computation model does not address the use of incorrect or poisoned data.

The PAC+MQ model. The power of membership queries in the agnostic setting was studied by
Feldman in [Fel09]. Feldman defines an agnostic PAC+MQ learning model and, assuming existence
of one-way functions, shows a particular learning problem that is computationally hard to learn in
the agnostic PAC model with uniformly random examples, while efficiently learnable in the agnostic
PAC+MQ model. Essentially, the agnostic PAC+MQ model augments the agnostic PAC learning model
(Definition C.2) with query access to a membership oracle for the concept. It is possible to view our
Covert Learning algorithms as working in a model that is between PAC and PAC+MQ, where the
membership queries cannot be synthesized arbitrarily (as in PAC+MQ), but must be generated in a
way that can be emulated by a simulation algorithm.

r-local membership queries. Another learning model lying between PAC and PAC+MQ was in-
troduced in [AFK13]. There, r-local membership queries are permitted, in that any membership query
must have have hamming distance r from an example received from the concept D. This requirement
forces the membership queries to “look” like they are distributed according to D, but it falls short of
our model. In contrast, we require that the membership queries, in conjunction with the examples from
D, can be emulated by a simulation algorithm.

Differentially private learning. The study of differentially private learning was initiated in [KLN+11].
Roughly, the work of [KLN+11] asks what can hypothesis classes can learned by an algorithm whose
output does not depend too heavily on any one specific training example. In essence, differentially pri-
vate learning is concerned with maintaining the privacy of sensitive training data used by the learner.
In contrast, our notion of privacy is orthogonal, as it pertains to the secrecy (with respect to third
parties) of the underlying concept, and the hypothesis of the learner itself.

2 Covert Learning

In this section, we concentrate on the basic Covert Learning setting, which considers only eavesdropping
attacks. We give a formal definition of Covert Learning. Next, we demonstrate how to construct a Covert
Learning algorithm for a noisy parity learning problem as a warm-up. Then we extend the techniques
used in the warm-up and show a Covert Learning algorithm for learning the O(log n)-degree Fourier
coefficients of any function f : {0, 1}n → {−1, 1}. Using this algorithm as a subroutine, we obtain a
Covert Learning algorithm for functions computable by polynomial size decision trees.

2.1 Preliminaries

We briefly recall here the standard terminology and notation which we use throughout the paper.

12

Definition 2.1. A concept Dn is a joint distribution over an input domain Xn and label domain Yn.

Definition 2.2. A hypothesis class Hn is a set of functions Hn = {h : Xn → Yn}.

We call a sampled (x, y) ∼ Dn an example, where x is the input and y is the label. We use
Xn = {0, 1}n, and either Yn = {0, 1} or Yn = {−1, 1}. We will use the term concept class denoted by
Dn to signify a set of concepts (which are joint distributions over the input domain {0, 1}n and label
domain {0, 1}).

Definition 2.3. A concept oracle ODn for a concept Dn is a (probabilistic) oracle with the property
that on query z ∈ {0, 1}n, ODn(z) = y with probability PrDn [(x, y)|x = z], and y ⊕ 1 otherwise.

Finally, we very often use the notation to denote random variables of n-bit vectors.

Definition 2.4. βnµ denotes the distribution over an n-bit vector where each of the bits is drawn i.i.d.
from a Bernoulli random variable with mean µ.

2.2 Definition of Covert Learning

In defining Covert Learning, we wish to require that the transcript of the interaction between a learner
and a membership oracle reveals no information to a passive adversary about either:

• the concept, or

• the learner’s chosen hypothesis class, or any auxiliary information that the learner has on the
concept prior to the interaction.

Furthermore, these requirements should hold even when there is auxiliary information (in the form of
random examples from the concept) available to the adversary.

As a starting point, we consider the learning with membership queries model, where the learner is
given query access to a probabilistic oracle that responses queries about a concept (a concept oracle ODn
for the concept Dn). The learner’s goal is to find a hypothesis, out of some given class of hypotheses
Hn, that best approximates the concept Dn with respect to a loss function. For example, a loss function
LDn(h) = Pr(x,y)∼Dn [h(x) 6= y]. This gives us a baseline model for accuracy guarantees in the learning
with access to membership queries setting. However, we diverge from this model in an important way.
Rather than define learning with respect to a single, fixed hypothesis class (as is common in learning
theory), we use a collection of hypothesis classes. This will provide a natural way to model the desire
to hide auxiliary information on the concept, as well as the chosen hypothesis class.

In more detail, we fix a collection of hypothesis classes Cn, and require accuracy guarantees for every
hypothesis class Hn ∈ Cn: the learning algorithm will receive as input a description of a specific target
hypothesis class within the collection, along with accuracy parameters ε, δ > 0. Then, the learning
algorithm will agnostically learn the target hypothesis class with respect to a given loss function. For
example, using the above example loss function, the learner will try to find an h ∈ Hn such that
Pr(x,y)∼Dn [h(x) 6= y] ≤ infh∈Hn Pr(x,y)∼Dn [h(x) 6= y] + ε, with probability at least 1 − δ . That is,
the algorithm should output a hypothesis—within the given target class—that best approximates the

13

concept (up to the given accuracy parameters and a distribution over inputs). The input to the learner
naturally models the intent of the learner, by capturing the particular choice of hypothesis class within
the collection, and any auxiliary information used to select the class (e.g. the results of a tolerant testing
algorithm or specific domain knowledge).

Finally, we will require that the transcript of the communication between the learner and the concept
oracle does not leak any knowledge to an eavesdropper, in the following sense: we require that there exists
a p.p.t. algorithm (a simulator) that generates an (ideal) simulated transcript of the (real) interaction
between the learner and the concept oracle, with access to random examples from the concept, but
not further access to the concept oracle. Furthermore, the simulator should operate without knowledge
of the learner’s target hypothesis class. The simulated transcript should be indistinguishable from a
real transcript, even to a (polynomial time) adversary that has access to auxiliary information on the
concept.

More formally, we define two distributions, {realODnA } and {idealSim} as follows.

Definition 2.5. Let Dn be a concept class, and Cn a collection of hypothesis classes. We define {realODnA }
to be the distribution generated by the following process.

1. An adversary (a distinguisher) selects ε, δ > 0, a hypothesis class Hn ∈ Cn, and a concept Dn ∈ Dn.

2. A set of examples S is drawn from Dn.

3. A learner A receives ε, δ and Hn, and begins interacting with the concept by querying the oracle
ODn on examples of his choosing, receiving back responses for each queried example. A tries to
agnostically learn Hn using this oracle. Denote the queries and responses as transcriptAODn (Hn,ε,δ).

4. Output (
Hn, ε, δ, transcriptAODn (Hn,ε,δ)

)
Definition 2.6. Let Sim be a p.p.t. algorithm, which takes as input a set of random examples to a
concept, and a length parameter which denotes the number of queries requested by the learner in the real
interaction. We define {idealSim} to be the distribution generated by the following process.

1. An adversary (a distinguisher) selects ε, δ > 0, a hypothesis class Hn ∈ Cn, and a concept Dn ∈ Dn.

2. A set of examples S is drawn from Dn.

3. A p.p.t. simulator Sim receives S, `, and “interacts” with the ODn and outputs the set queries and
responses denoted as transcriptSim(S,`). Here ` is the number of queries that the learner requests
in the real interaction.

4. Output (
Hn, ε, δ, transcriptSim(S,`)

)
We note that the size of the random example set obtained by the simulator is given as a parameter

of the definition of Covert Learning. Formally,

14

Definition 2.7. Covert Learning. Let Cn be a collection of hypothesis classes, let Dn be a concept
class, let ODn be a class of oracles indexed by Dn ∈ Dn, and let L be a loss function. A is a (m(n), α)-
covert learning algorithm for C with respect to Dn, ODn and L if for every ε, δ > 0, A satisfies the
following:

• Completeness. For every distribution Dn ∈ Dn, and every Hn ∈ Cn, the random variable h =
AODn (Hn, ε, δ) satisfies

Pr
h

[
L(h) ≤ α · L(Hn) + ε

]
≥ 1− δ

The loss function may depend on the distribution Dn. For proper Covert Learning, the output of
A must be an element of H, i.e. h ∈ Hn.

• Privacy. There exists a p.p.t. simulator Sim such that:{
real
ODn
A

}
c
≈
{
idealSim

}
where

c
≈ denotes computational indistinguishability3. We stipulate that the number of random

examples given to the simulator is O(m(n)).

See Figure 3 for an illustration of the model. Often, we will use the terminology from the computa-
tional learning theory literature, and say that a collection of hypothesis classes C is α-covertly learnable
if there exists an α-covert learning algorithm for C.

In Appendix B, we give relaxations of the Covert Learning definition, namely concept-hiding learning
(which focuses on the concept-hiding guarantee).

Figure 3: Privacy of Covert Learning. The “real world,” where the adversary views the learner access the
oracle, should be indistinguishable from the “ideal world,” where the adversary interacts with a simulator that
simulates the learner accessing the oracle. The adversary gets to choose the concept which is implemented by
oracle (within the given class). Observe that, the simulator is also allowed random examples from the concept,
and these are “leaked.”

2.2.1 Discussion

About the simulation. We note that the simulation paradigm lends itself well to our setting: It
allows formalizing the requirement that sensitive information is not revealed by the interaction, while

3For a definition, see Appendix C.

15

maintaining the overall usefulness of the interaction. In this case, we formalize the notion that whatever
could have been learned by a passive adversary about the concept or learner’s hypothesis after the
interaction, could have been learned before the interaction. Furthermore, we can model the presence of
other, unavoidable information leakage (e.g. random examples on the concept).

Our focus is on collections of hypothesis classes that are not efficiently PAC learnable.
When every hypothesis class in a collection is efficiently learnable without membership queries (i.e.
with random examples only), Covert Learning is considered trivial. This is because in this case the
privacy requirement is easily satisfied by a transcript full of random examples (and it does not even rule
out leakage, because the adversary can learn the function from them). We thus concentrate on the case
where the hypothesis classes within the collection need (or are assumed to need) membership queries
to be learned.

2.3 A Warm-Up: Covert Learning of Noisy Parity Functions

In this section, we concentrate on Covert Learning of parity functions with noise. Indeed, this class of
learning problems is broadly assumed to not be efficiently agnostically PAC-learnable in a very strong
sense, as per the Learning Parity with Noise (LPN) assumption:

Definition 2.8. Search/Decision LPN assumption: For µ ∈ (0, 0.5), n ∈ N, the (m(n), T (n))-
DLPNµ,n assumption states that for every distinguisher D running in time T (n),∣∣∣∣ Pr

s,A,e
[D(A,As⊕ e)] = 1− Pr

r,A
[D(A, r)] = 1

∣∣∣∣ ≤ 1

T (n)

where s
$← Zn2 ,A

$← Zm(n)×n
2 , e

$← β
m(n)
µ , r

$← Zm(n)
2 .

For µ ∈ (0, 0.5), n ∈ N, the (m(n), T (n))−SLPNµ,n search assumption states that for every inverter I
running in time T (n),

Pr
s,A,e

[I(A,As⊕ e) = s] ≤ 1

T (n)

where s
$← Zn2 ,A

$← Zm(n)×n
2 , e

$← β
m(n)
µ .

Remark 2.9. The search and decisional LPNµ,n assumptions are polynomially equivalent, in that an
algorithm that breaks one of them can be turned into an algorithm that breaks the other in polynomial
time. For more information, consult [Pie12] and the references therein.

One typical setting of parameters gives the DLPN1/
√
n,n problem, which is conjectured to be (O(n), poly(n))-

hard [Ale03]. However, for even super polynomial queries, the best known attacks are not asymptoti-
cally better than the O(n) case [YS16]. Furthermore, an important variant was introduced in [ACPS09].
Specifically, it was shown that solving the decisional LPN problem when drawing the secret from the
same distribution as the noise vector is as hard as drawing the secret from the uniform distribution.
Henceforth, when referring to the DLPNµ,n problem, we refer to this setting.

In the remainder of this section, we construct a Covert Learning algorithm for the learning parity
with noise problem using only the assumption that DLPN1/

√
n,n is hard itself—the minimal assumption

that keeps the problem nontrivial: for any rate of noise bounded away from one half by an inverse

16

polynomial, it easy (using majority voting) to solve DLPNµ,n when membership queries are available,
and even in the “adversarial” noise case [GL89]. However, this is not enough for Covert Learning. It
is clear that running membership query algorithms “in the open” (like Figure 1) may violate all our
previously mentioned privacy goals.

2.3.1 The Learning Problem

As a warm-up, we will consider a distributional variant of Covert Learning. Here, the learning and
privacy guarantees are required when the concept is drawn from a distribution over the concept class,
rather than for every concept in the class. For privacy, this means that the distinguisher will not have
the privilege of choosing the concept from the class, but instead it is sampled from the distribution.
Our concept class is the following:

Definition 2.10. Let Xn = {0, 1}n. We define the concept class Dµ,nLPN to be the family of distributions
over Xn × {0, 1} indexed by a k ∈ {0, 1}n, that have the following properties,

• The input (marginal) distribution over X of any Dk ∈ Dµ,nLPN is uniform.

• For any Dk ∈ Dµ,nLPN, the label y ∈ {0, 1} of the input x is generated by taking 〈k, x〉 and flipping
the result with probability µ.

For our learning problem, the concept will be drawn using a distribution over Dµ,nLPN:

Definition 2.11. We define a distribution Mn
LPN over the concept class Dµ,nLPN as follows. Dk ∈ Dµ,nLPN

is selected by drawing k
$← βn

1/
√
n

.

The learner will get membership access to the concept by using the following class of oracles:

Definition 2.12. Let OD be a concept oracle for a concept D. Recall the concept oracle that implements
“membership query access” to a distribution D over X × Y in the following sense: on a query q to the
oracle, a sample from the conditional distribution over Y is returned, given that X = q.

Hence, when the concept Dk is drawn from Mn
LPN, the learner will obtain access to ODk . We will do

Covert Learning for the following collection of hypothesis classes:

Definition 2.13. For a ∈ {0, 1}n, let `a : {0, 1}n → {0, 1}, defined by `a(x) = 〈a, x〉. Let PARITYA,n =
{`a | i 6∈ A =⇒ ai = 0}. Let CPARITY,n = {PARITYA,n | A ⊆ [n]}.

Our Covert Learning task is then as follows. We would like to design a learning algorithm that takes
as input any hypothesis class PARITYA,n ∈ CPARITY,n (we will call A the relevant set). Then, given
access to ODk , the learning algorithm outputs `a ∈ PARITYA,n which minimizes the following loss (with
respect to Dk):

17

Definition 2.14. Let the loss function LD be defined as

LD(h) = Pr
(x,y)∼D

[h(x) 6= y]

for a concept D.

Meanwhile, the privacy guarantee of Covert Learning should be satisfied. In particular, any information
about A or k should be hidden.

2.3.2 The Construction

Overview. We will refer to D
1√
n
,n

LPN as DLow
LPN. We construct Covert Learning for CPARITY,n with respect

to DLow
LPN, ODLow

LPN
, and LD, and where learning is considered when the concept is drawn fromMn

LPN. The

Covert Learning algorithm begins by requesting “masked queries” from ODk . For x1, · · · , xn
$← βn1/2,

let

X =

x1 x2 x3 · · · xn


Note that, each xi is a column of X. Furthermore, let e, s

$← βn
1/
√
n
. A masked query q̂ ∈ {0, 1}n for

query q ∈ {0, 1}n is generated by taking

q̂ = Xs⊕ e⊕ q

In our algorithm, each query q requested by the learner is a unit vector under the above masking, plus
requests for the columns of X. Indeed, the ith unit vector is only masked and requested if the ith index
is in the relevant set A. Upon receiving the results to the masked unit vectors, denoted by ODk(q̂), the
algorithm decodes each one by taking ODk(q̂)⊕〈y, s〉, where y = (ODk(x1), · · · ,ODk(xn)). It turns out
that,

Pr
[
ODk(q̂)⊕ 〈y, s〉 = 〈k, q〉

]
> 0.501

And so, our algorithm requests each masked unit vector some constant number of times—the final
decoding for each is done by taking the majority bit over the set of results from the duplicate queries.
Note that, for a pair duplicate queries (say, two copies of the ith unit vector), the masks are independently
generated. Once the decoded results to the masked unit vectors are obtained, the algorithm produces
a hypothesis in the natural way: if ri is the decoded result of the masking query of the ith unit vector,
then the output hypothesis is r(x) = 〈(r1, · · · , rn), x〉.

We now give the construction.

18

1 Algorithm: ConstructQueries(s,A)

2 Let ui denote the vector with the ith component as 1 and all other components 0.
3 Draw n uniformly random queries x1, · · ·xn.

4 Let X be the matrix formed by letting xi be the ith row.
5 m = |A|
6 for j ∈ [m] do

7 ej
$← βnn−0.5

8 end
9 for a ∈ A do

10 qaj = XTsj ⊕ ej ⊕ ua
11 end
12 Q = {qaj | j ∈ [m]}
13 X = {xi | i ∈ [n]}
14 output X,Q

Algorithm 1: Algorithm to construct membership queries for CLP

1 Algorithm: CLPODk (PARITYA,n, ε, δ)

2 m = |A|
3 for i ∈ [O(log(m/δ))] do
4 for j ∈ [m] do

5 sj
$← βnn−0.5

6 end
7 s = (s1, · · · , sj)
8 X,Q = ConstructQueries(s,A)

9 Query the oracle for all the queries in X. Denote the result on xi as yi.

10 for each qaj ∈ Q do

11 Query the oracle for qaj . Denote the result as raj .

12 di,j,a = raj ⊕ 〈(y1, · · · , yn), sj〉
13 end

14 end
15 if a ∈ A then
16 zj = majorityi(di,j,a)
17 else
18 zj = 0
19 end
20 z = (z1, · · · , zj)
21 Let `z(x) = 〈x, z〉
22 output `z

Algorithm 2: Covert Learning algorithm for noisy parities

We claim that the above algorithm CLP is a (poly(n), 1)-covert learning algorithm for CPARITY,n. We
state the theorem first, and spend the rest of this section assembling the proof. We divide the proof
into two separate claims, which then combine to prove Theorem 2.15.

19

Theorem 2.15. Assuming DLPNµ,n is (O(n), poly(n))-hard, CPARITY,n is (poly(n), 1)-covertly learnable
with respect to DLow

LPN, ODLow
LPN

, and LD, and where the concept is drawn according to Mn
LPN.

Proposition 2.16. For any n ∈ N, and ε, δ > 0, and Dk ∼Mn
LPN, CLPODk (PARITYA,n, ε, δ) satisfies

Pr
(x,y)∼Dk

[
CLPODk (PARITYA,n, ε, δ)(x) 6= y

]
− inf
h∈PARITYA,n

Pr
(x,y)∼Dk

[
h(x) 6= y

]
≤ ε

with probability at least 1− δ.

Proof. Let K = {i | ki = 1} (recall that k denotes the hidden parity from the concept Dk). First, we
consider the case that K ⊆ A. Let us examine the line 12 of CLP at each iteration. For each di,j,a we
have that

di,j,a = ODk(qaj)⊕ 〈(y1, · · · , yn), sj〉

= 〈qaj , k〉 ⊕ r ⊕ 〈Xk ⊕ rn, sj〉 (where r
$← βn−0.5 , rn

$← βnn−0.5)

= 〈XTsj ⊕ ej ⊕ ua, k〉 ⊕ r ⊕ 〈Xk ⊕ rn, sj〉 (where ua is the ath unit vector)

= 〈ua, k〉 ⊕ 〈ej , k〉 ⊕ r ⊕ 〈rn, sj〉
= 〈ua, k〉 (with probability at least 0.501)

where the first step follows from the definition of ODk , the second and third steps use linearity, and the
final step is implied by the Piling-up lemma (Lemma C.5), and the fact that the terms 〈ej , k〉, r, 〈rn, sj〉
are each independent from each other. In particular, for sufficiently large n, Pr[〈rn, sj〉 = 1] > 0.56 and
Pr[〈ej , k〉 = 1] > 0.56, while Pr[r = 0] ≥ 0.99. Thus for sufficiently large n,

Pr
[
〈ej , k〉 ⊕ r ⊕ 〈rn, sj〉 = 0

]
≥ 0.99

(
0.562 + (1− 0.56)2

)
> 0.501

By standard arguments following from the sampling bound (Lemma C.11) and the union bound (Lemma C.10),
we can conclude that iterating (see lines 3-13 of CLP) O(log(mδ)) times and taking a majority vote for
each bit (lines 14-16), suffices to satisfy the statement in Proposition 2.16. In slightly more detail, the
sampling bound gives that the fraction of the O(log(mδ)) trials that are equal to 〈ua, k〉 is larger than a

half, with probability 1 − δ
m . Then, by the union bound, we can conclude that with probability 1 − δ

for all bit indices in A the majority vote winner equals 〈ua, k〉. As a result, CLP outputs the correct
underlying parity function of ODk . Since any pair of parity functions are 1

2 -far from each other, it
follows that the output hypothesis is ε-close to the optimal hypothesis in PARITYA,n. Formally,

Pr
(x,y)∼Dk

[
CLPODk (PARITYA,n, ε, δ)(x) 6= y

]
− inf
h∈PARITYA,n

Pr
(x,y)∼Dk

[
h(x) 6= y

]
≤ ε

with probability at least 1− δ.
Now, we consider the alternative case, namely, when K 6⊆ A. In this case, it is clear that the output

of CLP is always a parity function which is 1
2 -far from the hidden parity. Since the noise is independently

generated for each example, it follows that

Pr
(x,y)∼Dk

[
CLPODk (PARITYA,n, ε, δ)(x) 6= y

]
= inf

h∈PARITYA,n
Pr

(x,y)∼Dk

[
h(x) 6= y

]

20

Thus,

Pr
(x,y)∼Dk

[
CLPODk (PARITYA,n, ε, δ)(x) 6= y

]
− inf
h∈PARITYA,n

Pr
(x,y)∼Dk

[
h(x) 6= y

]
≤ ε

with probability 1.

Continuing with the proof of Theorem 2.15, we introduce a second claim.

Proposition 2.17. Assuming that the DLPN 1√
n
,n problem is (O(n), poly(n))-hard, CLP satisfies the

privacy guarantee of Covert Learning for CPARITY,n with respect to DLow
LPN, ODLow

LPN
, and LD.

Proof. We will construct a simulator Sim that satisfies{
real
ODk
CLP

}
c
≈
{
idealSim

}
We first point out that, since the chosen queries are not inherently adaptive, it is possible to run all the
iterations of CLP in parallel. We may compress all the messages into one large message that fits into a
O(n · log(nδ))×n matrix, and decode the results from there. We argue security in this setting. Consider
the following p.p.t. simulation algorithm.

1 Algorithm: Sim(S, `)
2 Let (R, r) = (` uniformly random queries, ` uniformly random bits)
3 output (R, r)

Algorithm 3: Simulation algorithm for privacy of CLP

Observe that the simulator never actually makes any use of the random examples from the concept,
so we will actually prove a stronger statement than necessary.

Note that {
real
ODk
CLP

}
=
{(

PARITYA,n, ε, δ, transcriptCLPODk (PARITYA,n,ε,δ)

)}
where PARITYA,n, ε, δ are chosen ahead of time by the adversary, and where Dk ∼Mn

LPN. In a similar
fashion, we define the hybrid distribution

hybrid =
{

(PARITYA,n, ε, δ, R,ODk(R))|R← ` uniformly random queries
}

First, we will show that {realODkCLP }
c
≈ hybrid. We may write {realODkCLP } as{

(PARITYA,n, ε, δ, transcript-queries, transcript-responses)
}

Observe that then,{
real
ODk
CLP

}
=
{(

PARITYA,n, ε, δ, transcript-queries,ODk(transcript-queries)
)}

Supposing that there is an algorithm D that can distinguish {realODkCLP } and hybrid, it is clear that there
exists an algorithm that distinguishes R and transcript-queries by drawing the concept from Mn

LPN,

21

choosing the hypothesis class and accuracy parameters according to D, simulating oracle access inter-
nally, and then using D as a subroutine. This contradicts the LPN assumption, since distinguishing

transcript-queries) from R amounts to solving O(n · log(nδ)) DLPN 1√
n
,n instances. Thus real

c
≈ hybrid. It

remains to show that
hybrid

c
≈
{
idealSim

}
This follows immediately from the same low noise LPN hardness assumption, and taking into account

that ODk implements low noise LPN examples. Assuming a distinguisher D for hybrid and {idealM
n
LPN

Sim },
an algorithm to solve the DLPN 1√

n
,n would be as follows: Select a hypothesis class and accuracy pa-

rameters as D would. Then, pair them with the challenge, and run the distinguisher. Clearly, any
distinguishind advantage of D is inherited. We can thus conclude that{

real
ODk
CLP

}
c
≈
{
idealSim

}

Proof of Theorem 2.15. Theorem 2.15 follows immediately by combining Proposition 2.16 and Propo-
sition 2.17 to satisfy the necessary guarantees.

Remark 2.18. The algorithm is efficient. The queries are constructed in time polynomial in n, and
the same is true for the decoding process. From there, it’s easy to see that since we run O(log(n/δ))
iterations, the entire algorithm runs in time polynomial in n and log(1/δ).

2.4 Covert Learning of Low-degree Fourier Coefficients

In this section, we will extend our techniques from the warm-up to present a Covert Learning algorithm
for “heavy” O(log n)-degree Fourier coefficients. We refer the reader to Appendix D for a very brief in-
troduction to Fourier analysis if necessary. This learning problem will no longer live in the distributional
learning case, as in the warm-up.

The learning problem is nontrivial for Covert Learning: the problem of efficiently identifying heavy,
even O(log n)-degree, Fourier coefficients from random examples is a fundamental problem that has so
far evaded intense research effort from the learning theory community. In particular, such an algorithm
would imply the PAC learnability of DNFs via a “weak learning” parity function and boosting results
[Jac97]. Moreover, such an algorithm would be considered a massive breakthrough in computational
learning theory [Blu03, OS07].

2.4.1 Our Task

We consider the following natural class of concepts.

Definition 2.19. Let Xn = {0, 1}n, and Fn be a class of functions f : Xn → {−1, 1}. We define DFn.
to be the concept class containing all distributions over Xn ×{−1, 1} that have the following properties,

• The input (marginal) distribution over Xn of any Df ∈ DFn is uniform.

22

• For any Df ∈ DFn, there exists a polynomial time computable target function f : Xn → {−1, 1}
such that f ∈ Fn and

Pr
(x,y)∼Df

[f(x)y = 1] = 1

The learner will be allowed to interact with a membership query oracle to any concept in DFn .

Definition 2.20. Let OFn be a class of membership oracles indexed by Df ∈ DFn, such that Of imple-
ments membership query access to f . To simplify notation, we may write Of instead of ODf .

Hence, the learner will have access to Of when tasked with learning the “heavy” Fourier coefficients
of the target function of Df .

In plain English, the task is as follows. The learner chooses a hypothesis class characterized by a
subset T of [n] and a bound b < n, where the hypothesis class consists of a subset of all n-bit parity
functions. A parity function is in the hypothesis class if it is of degree less than b and if all its relevant
variables are included in T . The learner must then find all parity functions in the hypothesis class which
have Fourier coefficients larger than some given threshold τ .

More formally, the goal is to learn the following hypothesis class with respect to the following loss
function:

Definition 2.21. Let k ∈ {0, 1}n. Define the parity function χk : {0, 1}n → {−1, 1} as

χk(x) = (−1)〈k,x〉

We will call |k| the degree of χk.

Definition 2.22. Let T ⊆ [n]. Define the hypothesis class FOURIERT,b,n = P{χk | ki 6∈ T =⇒ ki =
0,∧|k| ≤ b}. In other words, FOURIERT,b,n is the powerset of the set all parity functions on subsets
of [n] contained in T , with degree at most b. Let the collection of hypothesis classes CFOURIER,b,n =
{FOURIERT,b,n | T ⊆ [n]}. For any hypothesis class FOURIERT,b,n ∈ CFOURIER,b,n, we will call T the
relevant set.

Definition 2.23. Let f : {0, 1}n → {0, 1} be a function. Let P = P{χk | k ∈ {0, 1}n}. Also, let
f̂≥τb = {χk | f̂(k) ≥ τ, |k| ≤ b}. Lτ,b : P → [0, 1] is a loss function given by

Lτ,b(T) =

 Pr
χk∼f̂≥τb

[
χk ∈ T

]
when |T | ≤ poly(n)

1 otherwise

where χk ∼ f̂≥τb is a uniformly random sample χk ∈ f̂≥τb .

The learning algorithm, given a hypothesis class FOURIERT,b,n ∈ CFOURIER,b,n, should hide any
information about the relevant set T , as well as any information about f , as formalized by the privacy
guarantee of Covert Verifiable Learning. Finally, the protocol should achieve computational soundness
and be efficient (i.e. run in time poly(n, 1/τ, log(1/δ) for a soundness parameter δ).

23

2.4.2 The Construction

Overview. We construct Covert Verifiable Learning for CFOURIER,b,n with respect to DFn , OFn , and
Lτ,b. The overall flow of the algorithm will be similar to that of our Covert Learning algorithm for noisy
parities. Instead of using the masking technique to encode unit vectors, we instead use masking to run
Goldreich-Levin queries.

Theorem 2.24. Goldreich-Levin learning algorithm. Given query access to a function f : {0, 1}n →
{−1, 1} and given parameters τ, δ, there exists a poly(n, 1

τ ,
1
δ) time algorithm that outputs a list L =

{S1, ..., S`} such that the following hold,

1. if |f̂(S)| ≥ τ , then S ∈ L.

2. if S ∈ L, |f̂(S)| ≥ τ
2 .

with probability 1− δ.

The Goldreich-Levin queries are those that are selected by the above algorithm. Using the Goldreich-
Levin algorithm, all the Fourier coefficients satisfying |f̂(S)| ≥ 1/poly(n) can be found in polynomial
time (with high probability).

For any subset T ⊆ [n], the Goldreich-Levin algorithm can be executed in a way that it only outputs
subsets S such that S ⊆ T . In this case, the algorithm skips doing majority voting on the indices not in
T , and uses less queries. In the event that the algorthim is executed in the described restricted manner,
we will refer to the queries as the Goldreich-Levin queries on T .

For our construction, we will need the following “chopped tail” binomial distribution.

Definition 2.25. Define the distribution, β̃nµ , as the output of the following process. Draw y ∼ βnµ , and
if µn/2 ≤ |y| ≤ 3µn/2 output y, else output ⊥.

For µ = log(n)/n, β̃nµ can be seen to have min-entropy Θ(log2 n) [YZ16].

Fixing a Df ∈ DFn , the Covert Learning algorithm begins by requesting “masked queries” from Of .

Let ` = Θ(log2n). For x1, · · · , xn
$← β`1/2 and y1, · · · , y`

$← βn1/2, let

U1 =

x1 x2 x3 · · · xn

 ,U2 =

y1 y2 y3 · · · x`


Note that, each xi or yi is a column of U1,U2. Now, let X = U2U1 Furthermore, let s

$← β̃nµ for
µ = log(n)/n. A masked query q̂ ∈ {0, 1}n for query q ∈ {0, 1}n is generated by taking

q̂ = Xs⊕ e⊕ q

In the algorithm, each query q requested by the learner is a Goldreich-Levin query under the above
masking. Indeed, the Goldreich-Levin queries are only masked and requested if they are one of the
Goldreich-Levin queries on the relevant set T given by the target hypothesis class (as discussed above).

24

Upon receiving the responses to the masked Goldreich-Levin queries, denoted by Of (q̂), the secret
s for the masked query q̂ is utilized to post-process Of (q̂). The post-processed responses correlate
with f ′(q), where f ′ is a function whose O(log n)-degree Fourier coefficients are greater than Ω(τn−c)
(for some small constant c > 0) wherever f has a Fourier coefficient greater than τ . By following the
technique of Goldreich and Levin, we recover all the O(log n)-degree Fourier coefficients of f ′ greater
than Ω(τn−c)—and therefore all the O(log n)-degree Fourier coefficients of f greater than τ .

To prove privacy of the algorithm, the idea is to produce a simulator that first emulates the learner’s
queries, and then can interact with an AI by also passing as the oracle to the concept. It turns out
that, assuming subexponential hardness of LPN, the masking procedure described above maps each
query to a pseudorandom distribution. Thus, we will construct a simulator that requests truly random
queries. Intuitively, it can then be shown that if there exists and AI such that an adversary can
distinguish between the simulated interaction and the real interaction (where the requested queries
are pseudorandom), then the adversary can distinguish the pseudorandom masked queries from truly
random queries.

We now give the construction.

25

1 Algorithm: CLF(FOURIERT,b,n, ε, δ, τ)

2 Initialize L = Ø, c = log(4
3) + 2, θ = 10τn−c, t = 2log(1

θ), k = |T |, m = O(log n) · k2t

3 for i ∈ [O(log(δ/τ))] do
4 L = Ø
5 Select x1, · · · , xt ∈ {0, 1}n uniformly at random.

6 Define xS =
⊕

σ∈S xσ, and let uj be the jth unit vector of length n.

7 Initialize the Goldreich-Levin queries on T as follows:
8 for ` ∈ [O(log n)] do

9 z
$← {0, 1}n

10 for S ⊆ [t] \Ø, j ∈ T do
11 Define glS,j,z = xS ⊕ uj ⊕ z
12 Define glS,−,z = xS ⊕ z
13 end

14 end

15 Initialize and apply the masking of the GL queries as follows:
16 for i ∈ [m] do
17 Ri = Un×λUλ×n where Uq×r is a uniformly random q × r binary matrix and λ = Θ(log2n).

18 si
$← β̃nµ∗ for µ∗ = log(n)/n (si is the ith secret.)

19 If β̃nµ∗ outputs ⊥, then repeat up to n times. If all output ⊥ then stop and output reject.

20 ei
$← βnµ for µ = 1/8.

21 end
22 For each GL query, apply a masking as follows: Without loss of the indexing defined above, we define

the ith masked GL query as ĝl
i

S,j,z = Risi ⊕ ei ⊕ glS,j,z and ĝl
i

S,−,z = Risi ⊕ ei ⊕ glS,−,z

23 Request the masked Goldreich-Levin queries from the oracle

24 Letting f̃(x) be the claimed result by the AI of query x, define an ith “unmasking function”

φi(x) = f̃(x)χsi(r) where r
$← βn1/2.

25 for every (b1, · · · , bt) ∈ {−1, 1}t do
26 Initialize a ∈ {0, 1}n by aj = 0 ∀j ∈ [n].
27 Define bS =

∏
σ∈S bσ

28 for j ∈ T do

29 Compute ajz = majorityS⊆[t]\Ø(φi(ĝl
i

S,−,z) · bS) ·majorityS⊆[t]\Ø(φi(ĝl
i

S,j,z) · bS). Here, we apply

φi to the ith masked GL query, which is indexed by S, j/−, z.
30 Compute aj = majorityz(ajz)

31 end
32 a = (a1 · · · an)
33 L = L ∪ χa
34 end
35 L = L ∪ L

36 end

37 Repeat lines 3-36, while instead defining φi(x) = (−1)f̃(x)χsi(r) (in line 24)
38 output L

Algorithm 4: Covert Learning of large, low-degree Fourier coefficients

26

Henceforth, we will letN denote the number of queries requested by CLF. Note that, N = O(log(δ/τ)·
k(log n)/θ2).

Theorem 2.26. Under the (2ω(n
1
2), 2ω(n

1
2))−SLPNµ,n assumption and for sufficiently large n, CLF is a

proper (poly(n), 1)-covert learning algorithm for CFOURIER,b,n with respect to DFn, OFn, and Lτ,b, and
where b ≤ O(log n), τ ≥ 1/poly(n), δ ≥ exp(−n).

We claim that CLF satisfies completeness, privacy and computational soundness, and now prove
each. The following completeness proof (Proposition 2.30) will use standard Fourier-analytic notation.
We refer the reader to Appendix D for an overview (if necessary).

We need the following sequence of lemmas to prove completeness.

Lemma 2.27. For any integer n ≥ 4 and a ∼ βn1
2

, b ∼ βnµ∗, µ∗ = log(n)/n, Pr[〈a, b〉 = 0] ≥ 1
2 + 1

2n2 .

Proof. Note that, for n ≥ 4, 1 − 1
n2 ≥ 1 − (1 − log n

n)n. By the Piling-up lemma, Pr[〈a, b〉 = 1] =
1
2(1− (1− µ∗)n), and therefore Pr[〈a, b〉 = 1] ≤ 1

2(1− 1
n2), and the statement follows.

Lemma 2.28. For µ∗ = log(n)/n, a ∼ βnµ , b ∼ β̃nµ∗, and sufficiently large n, Pr[〈a, b〉 = 0] ≥ 1
2 + 1

3n2 .

Proof. Let E be the event that log(n)/2 ≤ |a| ≤ 3log(n)/2. By Chernoff bound, Pr[¬E] ≤ 2exp(− log(n)
10).

By Lemma 2.27, we have that 1
2 + 1

2n2 ≤ Pr[〈a, b〉 = 0], and therefore

1

2
+

1

2n2
≤ Pr[〈a, b〉 = 0 |¬E] Pr[¬E] + Pr[〈a, b〉 = 0 |E] Pr[E]

≤ Pr[¬E] + Pr[〈a, b〉 = 0]

1

2
+

1

2n2
− Pr[¬E] ≤ Pr[〈a, b〉 = 0]

and the statement follows.

Lemma 2.29. LPN on squared-log entropy (Simplified from [YZ16]). Let n be a security parameter

and let µ ≤ 1/2 be a constant. Assume that the SLPNµ,n problem is (2ω(n
1
2), 2ω(n

1
2))-hard, then for every

λ = Θ(log2 n), q = poly(n), and every polynomial time sampleable x ∈ {0, 1}n with H∞(x) ≥ 2λ,

(A,Ax+ e)
c
≈ (A, u)

where A = Uq×λUλ×n and Um×n is a uniformly random m× n binary matrix, and e ∼ βqµ, u ∼ {0, 1}q.
We will call the task of distinguishing the above distributions the decisional squared-log entropy LPN
problem.

Proposition 2.30. Under the (2ω(n
1
2), 2ω(n

1
2))−SLPNµ,n assumption, CLF satisfies the completeness

guarantee of Covert Learning for CFOURIER,b,n with respect to DFn, OFn, and Lτ,b, and where b ≤
O(log n), τ ≥ 1/poly(n), δ ≥ exp(−n).

27

Proof Idea. We first analyze the “unmasking” procedure φ defined in line 24. Essentially, the un-
masking φi, which is applied to the response for the ith masked query, reintroduces a dependency on
the secret used to construct the masking for the ith query. In this way, we may cancel some noisy
terms in an expanded analysis of the oracle responses. We then leverage the pseudorandomness of the
masked queries to show that, roughly, the responses to the unmasked queries can be written as noisy
inner products with any O(log n)-degree parity function which the target function of the concept has a
“heavy” Fourier coefficient attached. Using this fact, we prove that running a “local decoding” of each
bit of any O(log n)-degree parity function where this is true suffices to recover the parity functions we
are interested in. We prove that this is the case by using techniques inspired by the original analysis of
the Goldreich-Levin algorithm [GL89].

Before beginning the proof of Proposition 2.30 prove a lemma that uncovers the relationship between
a masked query and the underlying query. Recall that the “unmasking” operation (line 24) is defined
by φi(x) = f̃(x)χsi(r), where si is the ith secret and r ∼ βn1/2. Furthermore, we refer the reader to
Algorithm 4 to see the constructions of the Goldreich-Levin queries and their masks.

Lemma 2.31. Let k ∈ {0, 1}n with |k| = O(log n). Also, for i ∈ [poly(n)], let xi ∈ {0, 1}n be a query
and x̂i be the masked version, as in line 22 of CLF. If |f̂(k)| ≥ τ , then there exists a small constant c
such that ∣∣∣E [φi(x̂i)χk(xi)]∣∣∣ ≥ 1

3
τn−c

where the expectation is over the randomness of φi and the masking of xi, unless the (2ω(n
1
2), 2ω(n

1
2))−SLPNµ,n

assumption does not hold.

Proof. By Lemma 2.29 and using closure under polynomial composition,

(x̂i)i∈[m]
c
≈ (ui)i∈[m]

is immediate (where m = poly(n) and ui
$← {0, 1}n).

Since f is computable in polynomial time and x̂i
c
≈ ui, we have that∣∣∣∣ E

ui,e,s,r

[
χk(xi)χk(ei)Ek(ui)χsi(r)

]
− E
φi

[
φi(x̂i)

]∣∣∣∣ ≤ negl(n)

and also that ∣∣∣∣ E
ui,e,s,r

[
χk(ei)Ek(ui)χsi(r)

]
− E
φi

[
φi(x̂i)χk(xi)

]∣∣∣∣ ≤ negl(n)

for all i ∈ [m]. Using the Piling-up lemma (Lemma C.5), Eei [χk(ei)] ≥ 1/nlog(4/3). Since |f̂(k)| ≥ τ ,
|Eui [Ek(ui)]| ≥ τ . By Lemma 2.28, E[χsi(r)] ≥ 1/3n2. As a result,∣∣∣∣E [Ek(ui)χk(ei)χsi(r)]∣∣∣∣ ≥ 1

3
τn−(log(4/3)+2)

since each term is independent. And therefore∣∣∣∣ E
φi

[
φi(x̂i)χk(xi)

]∣∣∣∣ ≥ 1

3
τn−c

for c = log(4/3) + 2 and all i ∈ [m], as desired.

28

Proof of Proposition 2.30. For completeness, we assume that the AI is honest, in that it never tampers
with any of the oracle responses to the learner’s queries. Now, let us consider one iteration of CLF,
assuming that line 20 of CLF does not reject (we remove this assumption later). First, let us examine the
“unmasking” function φi that is applied to each of the masked queries in the non-negated case (see line
37), without loss of generality—the negated case is analogous. In the following, let Ek(x) = f(x)χk(x).
We observe that,

φi(ĝl
i
) = f(ĝl

i
)χsi(r) (where r is a uniformly random n-bit vector)

= f(Risi ⊕ ei ⊕ gli)χsi(r)

= χk(Risi)χk(ei)χk(gli)Ek(ĝl
i
)χsi(r)

= χk(gli)χk(ei)Ek(ĝl
i
)χsi(r̂) (where r̂ is a uniformly random n-bit vector)

The last step is justified by using linearity to rearrange the first term to χsi(R
T
i k), and then “cancelling”

by using linearity to combine it with the last term.

Now, we turn our attention to line 29 of CLF. Let Ei = 1
2(1 + φi(ĝl

i

S,−,z)χk(gliS,−,z)). Observe that,

for any k such that f̂(k) ≥ τ and k = O(log n), Lemma 2.31 implies that, E[Ei] ≥ 1
2 + 1

3τn
−c. Thus,

when bS = χk(x
S) (xS is as defined in line 7 of CLF) the following is true,

Pr

[
majority
S⊆[t]\Ø

(φi(ĝl
i

S,−,z) · bS) 6= χk(z)

]
= Pr

[∑
i

Ei < 2t/2

]

≤ Pr

[∣∣∣∣∑
i

Ei − E
[∑

i

Ei

]∣∣∣∣ < 1

3
τn−c2t

]

≤
(1

3
τn−c · 2t

)−2
·
∑
i

V ar
[
Ei
]

≤
(1

3
τn−c · 2t

)−2
· 2t

4

≤ 9n2c

4τ22t

where the probability is taken over φi, z and the randomness of ĝl
i

S,−,z∀S ⊆ [t]\Ø. The second inequality
follows by the pairwise independence of the masked Goldreich-Levin queries and Chebyshev’s inequality.
The third implication follows from the fact that the variance of a 0/1 variable Ei is at most 1/4, and
all Ei are pairwise independent. Likewise, the above probability bound is true for every j ∈ [n] when

replacing ĝl
i

S,−,z with ĝl
i

S,j,z, χk(z) with χk(z ⊕ uj), and appropriately modifying the definition of Ei
(recall, uj is the jth unit vector).

Since in CLF we have taken t = −2log(10τn−c), we may conclude by Markov’s inequality that

Pr

[
Pr
z

[
majority
S⊆[t]\Ø

(φi(ĝl
i

S,−,z) · bS) 6= χk(z)

]
≤ 1

8

]
≥ 3

4

and likewise

29

Pr

[
Pr
z

[
majority
S⊆[t]\Ø

(φi(ĝl
i

S,j,z) · bS) 6= χk(z ⊕ uj)
]
≤ 1

8

]
≥ 3

4

where the outer probabilities are taken over φi and the randomness of ĝl
i

S,−,z, ĝl
i

S,j,z∀S ⊆ [t] \Ø.
We will now show that the “local decoding” of lines 30-34 of CLF correctly recovers (bit-by-bit) any

single O(log n)-degree Fourier coefficient of size at least τ with constant probability. Let C1 be the
event that

majorityS⊆[t]\Ø(φi(ĝl
i

S,j,z) · bS) = χk(z ⊕ uj)

and let C2 be the event that

majorityS⊆[t]\Ø(φi(ĝl
i

S,−,z) · bS) = χk(z)

We thus have that given bS = χk(x
S),

Pr

[
Pr
z

[
ajz = kj

]
≥ 3

4

]
≥ Pr

[
Pr
z

[
C1 ∧ C2

]
≥ 3

4

]
≥ 1

2

where the outer probability is taken over φi and the randomness of ĝl
i

S,−,z, ĝl
i

S,j,z∀S ⊆ [t] \Ø.
In CLF, we iterate over all possible assignments of (b1, · · · bt). Therefore,

Pr
[
a = k

]
≥ 1−

∑
j

Pr
[
aj 6= kj

]
≥ 1−

∑
j

Pr
[
majorityz(ajz) 6= kj

]
≥ 1−

∑
j

exp
(
−O(log n)

)
≥ 1−

∑
j

O(1/n)

≥ O(1)

The first inequality follows from the union bound, while the second is justified since aj = majorityz(ajz).
The number of ajz for a fixed j is O(log n), and therefore a standard application of a Hoeffding bound
gives the third inequality. Thus, with probability at least some constant, we have recovered any single
parity function with Fourier coefficient at least τ (in one inner iteration). We may remove the initial
condition on the event that line 19 does not reject; the event of rejection happens with probability
negligible in n, so the probability remains larger than a constant.

Hence, the set of O(log(δ/τ)) independent iterations of CLF obtains every Fourier coefficient in
f̂≥τO(log n), with constant probability (for an appropriate constant, and because Parseval’s theorem entails

that there are at most 1/τ2 Fourier coefficients larger than τ , then applying the union bound). We note
that, |L| must be bounded by a polynomial in n. To see that this is the case, we can observe that at most
O(log(δ/τ)) ·2t elements are ever added to L. We have stipulated that δ ≥ exp(−n) and τ ≥ 1/poly(n),

30

so this quantity is polynomial in n as well. Therefore, Lτ,b(L) = Lτ,b(FOURIERT,b,n) with probability
1− δ.

Proposition 2.32. Under the (2ω(n
1
2), 2ω(n

1
2))−SLPNµ,n assumption, CLF satisfies the privacy guaran-

tee of Covert Learning for CFOURIER,b,n with respect to DFn, OFn, and Lτ,b, where b ≤ O(log n), τ ≥
1/poly(n), δ ≥ exp(−n).

Proof. We will construct a simulator Sim, which, for the algorithm CLF, it holds that{
real
ODFn
CLF

}
c
≈
{
idealSim

}
We point out that, since the chosen queries are not inherently adaptive, it is possible to run all the

iterations of CLF in parallel. We may compress all the messages into one large message that fits into a
poly(n)× n matrix, and decode the results from there. We prove security in this setting. Consider the
following p.p.t. simulation algorithm,

1 Algorithm: Sim(S, N)

2 Inputs:
3 N is the total number of queries requested by the real learner in CLF, and S is a set of N

uniformly random examples from the concept.

4 output S
Algorithm 5: Simulator for Covert Learning of low-degree heavy Fourier coefficients

We will show that an adversary A who can distinguish the above two distributions can solve the
decisional squared-log entropy LPN problem (from there, the proof concludes by Lemma 2.29).

Recall that {
real
ODFn
CLF

}
=
{(

FOURIERT,b,n, ε, δ, transcriptCLFODn (FOURIERT,b,n,ε,δ)

)}
where FOURIERT,b,n, ε, δ,Df are chosen ahead of time by the adversary. In a similar fashion,{

idealSim

}
=
{(

FOURIERT,b,n, ε, δ, Sim(S, `)
)}

Thus, suppose there is an adversary A who can distinguish between the distributions{
real
ODFn
CLF

}
c
≈
{
idealSim

}
with some non negligible distinguishing advantage. We claim that there exists an algorithm B that
solves the decisional squared-log entropy LPN problem problem as follows.

1. B obtains challenge samples (Ci, ci) ∈ Zn×n2 × Zn2 ∀i ∈ [N] from either the LPN distribution or
uniformly random. Note that, under the stated parameter regime, N = poly(n).

2. B computes the set of queries Q = {ci ⊕ gli | ∀i ∈ [N]}.

31

3. B obtains Of (Q). B runs A on (
FOURIERT,b,n, ε, δ, (Q,Of (Q))

)
where FOURIERT,b,n, ε, δ,Df are those that would be chosen by A in the distinguishing experiment.

4. B outputs “uniform” if A outputs “ideal” and “LPN” otherwise.

We analyze the behavior of the above algorithm. First, let Ej denote the event that CLF did not
output reject prior to making any membership queries in the jth iteration of CLF (in line 20). Second,
let L denote the event that the ` samples (Ci, ci) came from the LPN oracle and ¬L be the event that
the ` samples (Ci, ci) are uniformly random. Finally, we denote by X the distribution that A is executed
on above.

We observe that, {
real
ODFn
CLF

∣∣∣ ∧
j
Ej

}
=
{
X
∣∣ L}

and {
idealMSim

}
=
{
X
∣∣ ¬L}

At iteration j of CLF, a standard application of a Chernoff bound shows that Pr[Ej] ≤ negl(n).
Since we have that δ ≥ exp(−n) and τ ≥ 1/poly(n), the total number of iterations is bounded by a
polynomial of n. Invoking the union bound, it follows that

Pr
[
∧
j
Ej

]
≥ 1− negl(n)

and this gives that {
real
ODFn
CLF

}
c
≈
{
X
∣∣ L}

Therefore, the non-negligible distinguishing advantage of A is inhertied by B.

2.5 Covert Learning of Polynomial Size Decision Trees

In this section, we supply a natural application of Covert Learning for low-degree Fourier coefficients.
Specifically, we will show that the collection of hypothesis classes given by taking all subsets of poly-
nomial size decision trees is covertly learnable. Recall that we are focused on collections that contain
hypothesis classes which are not (or not known to be) efficiently agnostically PAC learnable from uni-
formly random examples. The problem of learning decision trees under the uniform distribution has
long been considered, and yet no polynomial time (in the size of the smallest decision tree) algorithms
exist for arbitrary functions, and some distributions over functions [BFKL93, IKOS19] (even in the real-
izable case). In fact, any such algorithm would be considered a massive breakthrough in computational
learning theory [Blu03, OS07]4.

4Not much formal work has been done on identifying “hard distributions” over DNF formulas (or other function classes)
[BFKL93, IKOS19], as it is not relevant in the usual learning models. However, even some relatively simple distributions
appear to defy all known techniques. For example, consider the distribution over polynomial size DNFs (also, decision
trees), constructed as follows. Select at random two disjoint subsets of [n] of size log n each. Let the first subset be denoted
S and the second T . The distribution over DNFs induced by defining f(x) = χS(x) ⊕ majorityT (x) seems hard to even
weakly predict over the uniform distribution [BFKL93]. Indeed, such a distribution over DNF formulas could be used to
instantiate our Covert Learning algorithms of this section.

32

Definition 2.33. Let DTn,s be the hypothesis class of all f : {0, 1}n → {−1, 1} computable by a size s
decision tree. Let CDTn,s = {Hn|Hn ⊆ DTn,s}.

This collection of hypothesis classes is motivated for the following simple reason. If an adversary
has no information about which subset of decision trees has been learned, then the adversary has no
information about the learned decision tree. This claim is easily seen to be true from the contrapositive.

The covert learning algorithm for CDTn,s is as follows. We apply standard techniques from compu-
tational learning theory. Note that, the returned hypothesis is not a decision tree, but rather the sign
of a multilinear polynomial.

1 Algorithm: CLDT(Hn, ε, δ)
2 γ =

√
ε/2

3 τ = γε/32s
4 L = CLF(FOURIER[n],log(32s/ε), 0, δ/2, τ,S)

5 if L = reject then
6 output reject
7 end

8 δ′ = δ
2|L|

9 for each χk ∈ L do

10 Using random examples from S, estimate f̃(k) = Ex[f(x)χk(x)] within an additive interval

of
√
ε/|L| with probability 1− δ′.

11 end

12 g(x) =
∑
χk∈L

f̃(k)χk(x)

13 output h = sign(g)

Algorithm 6: Covert Verifiable Learning of polynomial size decision trees

We state the theorem and then dedicate the rest of the section to assembling the proof.

Theorem 2.34. Under the (2ω(n
1
2), 2ω(n

1
2))−SLPNµ,n assumption, the collection CDTn,s for s = poly(n)

is (poly(n), 4)- covertly learnable, with respect to DFn, OFn, and LD, and where ε ≥ 1/poly(n), and
δ ≥ exp(−n).

Proposition 2.35. Under the (2ω(n
1
2), 2ω(n

1
2))−SLPNµ,n assumption, CLDT satisfies the completeness

guarantee of Covert Verifiable Learning for CDTn,s for s = poly(n), with respect to DFn, OFn, and LD,
and where ε ≥ 1/poly(n), and δ ≥ exp(−n).

Proof. We will show that CLDT satisfies completeness when the input hypothesis class is fixed to be
DTn,s. This suffices to prove completeness for all other Hn ∈ CDTn,s , as every Hn ∈ CDTn,s is a subset
of DTn,s. First, we will introduce the following three facts which are well known. In this work, we omit
the proofs and refer the interested reader to lemmas 14 and 15 of [BF02], as well as [KM93] for more
information.

33

Fact 2.36. Let f be any boolean function and let g be any real valued function. Then

Pr
x

[f(x) 6= sign(g)(x)] ≤ E
x
[(f(x)− g(x))2] =

∑
S⊆[n]

(f̂(S)− ĝ(S))2

Fact 2.37. Let T be a decision tree of d-depth. All the Fourier coefficients of T of degree larger than d
are 0 and all the non-zero Fourier coefficients of T are larger than 2−d.

Fact 2.38. Let T be a decision tree of size s. There exists a function h such that all the Fourier
coefficients of h with degree larger than log(4s/ε) are 0, and all non-zero Fourier coefficients of h are
larger than ε/4s. Lastly, Ex[(T (x)− h(x))2] ≤ ε. In particular, if T is boolean then h is boolean.

Fix any concept Df ∈ DFn . We will separate our proof into two parts:

1. There exists a boolean function g such that LDf (g) is close to the loss of the optimal decision tree
T for f , and all the zonzero Fourier coefficients of g are contained in L.

2. Knowing 1, the output h of CVLDT has a loss which is at most O(ε) greater than 4LDf (T).

For the first statement, let LDf (DTn,s) ≤ `. Then, there exists a T ∈ DTn,s such that LD(T) ≤ `. Now,

by Fact 2.38, there exists a boolean function h′ such that Ex[(T (x)−h′(x))2] ≤ ε/8, and where ĥ′(S) = 0

for |S| > log(32s/ε), and all nonzero ĥ′(S) > ε/32s. Now let V = ĥ′
>0 ∩ f̂>γε/32s

b for γ =
√
ε/2 and

b = log(32s/ε), and consider the function g(x) =
∑
S∈V

f̂(S)χS(x). We have,

LDf (g) =
1

4
E
x

[
(f(x)− g(x))2

]
=

1

4

∑
S⊆[n]

(
f̂(S)− ĝ(S)

)2

=
1

4

∑
S 6∈V

(
f̂(S)− ĝ(S)

)2

=
1

4

(∑
S 6∈ĥ′>0

f̂(S)2 +
∑

S∈ĥ′>0\f̂>γε/32sb

f̂(S)2

)

We can bound each term individually. The second term is less than or equal to |ĥ′>0| · (γε/32s)2 =
γ2 = ε/2 by Parseval’s theorem. For the first term, consider

∑
S 6∈ĥ′>0

f̂(S)2 =
∑

S 6∈ĥ′>0

(
f̂(S)− ĥ′(S)

)2

≤
∑
S⊆[n]

(
f̂(S)− ĥ′(S)

)2

34

and we may write this as an expectation to obtain∑
S⊆[n]

(
f̂(S)− ĥ′(S)

)2
≤ E

x

[(
f(x)− h′(x)

)2
]

≤ 4 Pr
x

[
f(x) 6= h′(x)

]
≤ 4
(

(1− ε/32)`+ ε/32(1− `)
)

and thus
LDf (g) ≤ `+ ε

For the second statement, observe that by Fact 2.36,

LDf (h) ≤ E
x
[(f(x)− g(x))2] =

∑
S∈L

(f̂(S)− ĝ(s))2 +
∑
S 6∈L

ˆf(S)2

where the first term is less than |L| · (
√
ε/|L|)2 = ε. For the second term, note that we know that there

exists a boolean function g such that

LDf (g) ≤ LDf (DTn,s) + ε

and all the nonzero Fourier coefficients of g are in L. Thus consider,

∑
S 6∈L

f̂(S)2 ≤
∑
S 6∈L

(
f̂(x)− ĝ(x)

)2

≤
∑
S⊆[n]

(
f̂(S)− ĝ(S)

)2

≤ E
x

[(
f(x)− g(x)

)2]
≤ 4
(
LDf (DTn,s) + ε

)
and therefore LDf (h) ≤ 4LDf (DTn,s) + 5ε.

Of course, the preceding arguments are only true when both the CLF algorithm outputs correctly
and all the estimates from CLDT are indeed within the correct interval. Each estimate is inside the
interval with probability 1− δ/2|L| and thus they will all be correct probability 1− δ/2 by applying the
union bound. Observing that the failure probability of CLF is also δ/2, we conclude that the probability
that all the estimates are correct and the CLF algorithm returns correctly is at least 1 − δ as desired
(again applying a union bound). Thus CLDT returns an hypothesis as desired. We note that, in order to
maintain efficiency, |L| must be bounded by a polynomial in n. Recall that at most O(log(δ/τ)) · τ−2n4

elements are ever added to L. This quantity is polynomial in n under the stipulated parameter regime.

Next, we consider the privacy of CLDT.

Proposition 2.39. Under the (2ω(n
1
2), 2ω(n

1
2))−SLPNµ,n assumption, CLDT satisfies the privacy guar-

antee of Covert Verifiable Learning for CDTn,s for s = poly(n), with respect to DFn, OFn, and LD, and
where ε ≥ 1/poly(n), and δ ≥ exp(−n).

35

Proof. Because the interactive aspect of CLDT is fully contained inside CLF, the proof of privacy of
CLDT is identical to Proposition 2.32.

3 Covert Verifiable Learning

In this section we define and construct the notion of Covert Verifiable Learning. The Covert Verifiable
Learning setting can be viewed as an interactive protocol between a learner and an adversarial inter-
mediary (AI). Here, the adversarial intermediary monitors access to the membership oracle. Figure 2
depicts this perspective. In this context, the learner must request queries from the oracle, but the
responses are intercepted by the AI who then either truthfully reports the oracle’s responses, or lies.

3.1 Definition of Covert Verifiable Learning

For Covert Verifiable Learning, we augment the desired properties of Covert Learning by allowing the
learner to abort, and requiring: If the AI corrupts any queries or results, the learner will not output an
incorrect hypothesis except with small probability. In addition, we will extend the privacy requirements
of Covert Learning to capture the active nature of the adversarial intermediary. Let us informally
describe the Covert Verifiable Learning setting in more detail.

The learner’s inputs: Similarly to the Covert Learning setting, the learner will receive as input a
specific target hypothesis class Hn (within a fixed collection Cn), in addition to accuracy parameters ε, δ.
The learner will also receive a set of auxiliary random examples from a concept Dn within a concept
class Dn which are private—the AI has no information on the identity of these random examples.

The interaction: The learner will interact with an oracle ODn that implements query access to the
concept. However, the responses have the potential to be corrupted by an AI who lives between the
learner and the oracle. The learner tries to learn Hn with respect to the concept Dn.

The security experiment: We define a real and ideal experiment.

Definition 3.1. Let Dn be a concept class, and let Cn be a collection of hypothesis classes. Let I be a
p.p.t adversarial intermediary algorithm, which takes as input ε, δ, and a set of queries and the oracle’s

responses on those queries. We define {VrealODnA,I } to be the distribution generated by the following
process.

1. An adversary (a distinguisher) chooses a target hypothesis class Hn ∈ Cn, a concept Dn ∈ Dn,
and accuracy parameters ε, δ > 0.

2. A set of random examples S is drawn from Dn. S is given to the learner, along with Hn, ε, δ,
while the adversarial intermediary I is given ε, δ.

3. The learner begins to interact with the concept oracle ODn by requesting membership queries in
order to agnostically learn Hn. I sees the learner’s queries and responses and is given the chance

to modify the responses. At the end of the interaction, I outputs a string denoted by real
ODn
A,I .

4. Output
(
Hn, ε, δ,S, real

ODn
A,I

)
36

Definition 3.2. Let Sim be a p.p.t. algorithm, which takes as input two sets of random examples from
the concept and a length parameter ` which signifies the number of queries requested by the learner in
the real interaction. Let I be a p.p.t adversarial intermediary algorithm, which takes as input ε, δ, and
a set of queries and oracle’s responses. We define {VidealSim,I} to be the distribution generated by the
following process.

1. An adversary (a distinguisher) chooses a target hypothesis class Hn ∈ Cn, a concept Dn ∈ Dn,
and accuracy parameters ε, δ > 0.

2. A set of random examples S ′ is drawn from Dn.

3. The simulator is given ε, δ,S,S ′ (where S is the set of examples given to the learner in the real
interaction), while an adversarial intermediary I is given ε, δ.

4. Sim begins to “interact” with the ODn by “requesting” membership queries. I “views” the queries
and responses, and is given the chance to change the responses. The simulator outputs a string,
which is denoted by idealSimI .

5. Output
(
Hn, ε, δ,S, idealSimI

)
Now the formal definition of Covert Verifiable Learning:

Definition 3.3. Covert Verifiable Learning. Let Cn be a collection of hypothesis classes, let Dn be
a class of concepts, let ODn be a class of oracles indexed by Dn ∈ Dn, and let L be a loss function. An
algorithm A is an (m(n), α)-covert verifiable learning algorithm for Cn, with respect to Dn, ODn and L,
if for every ε, δ > 0, the following are true.

• Completeness. If for any distribution Dn ∈ Dn, any hypothesis class Hn ∈ Cn, and where S is a
set of size m(n) of examples drawn i.i.d. from Dn, the randomized output of h = AODn (Hn, ε, δ,S)
satisfies

Pr
h

[
L(h) ≤ α · L(Hn) + ε

]
≥ 1− δ

• Soundness. If for any distribution Dn ∈ Dn, any hypothesis class Hn ∈ Cn, and where S is a
set of size m(n) of examples drawn i.i.d. from Dn, then for any adversarial intermediary I that
corrupts queries or responses from A to ODn, the random variable h = AODn (Hn, ε, δ,S) satisfies

Pr
h

[
L(h) > α · L(Hn) + ε

∣∣∣ h 6= reject
]
< δ

We say that soundness is computational if I is p.p.t..

• Privacy. For any adversarial intermediary I, there exists a p.p.t. simulation algorithm Sim that
satisfies: {

Vreal
ODn
A,I

}
c
≈
{
VidealSim,I

}
We stipulate that each of the sets of random examples given to the simulator are of size m(n).

In keeping with the terminology from the computational learning theory literature, we will often
say that a collection of hypothesis classes C is verifiably (m(n), α)-verifiably covertly learnable if there
exists a (m(n), α)-covert verifiable learning algorithm for C.

37

Figure 4: Privacy of Covert Verifiable Learning. The “real world,” where the AI interacts with the learner and
oracle, should be indistinguishable from the “ideal world,” where the AI interacts with a simulator that plays both
roles of learner and oracle. Importantly, the simulator works without knowledge of the underlying hypothesis
classes or the actual oracle, though it does have access to random examples from the concept.

3.1.1 Discussion

Variants. We would like to highlight some salient variants of the model that we have presented
above. The variants are on the nature of the random examples that are present in the interaction. For
example, we could also consider the case that the learner’s random examples are publicly known. We
call this setting the public Covert Verifiable learning variant. In this public variant, achieving soundness
and privacy is much more difficult, as the learner has no private examples to leverage against the AI.
However, this variant greatly increases the practicality of the model because it may be infeasible for
the learner to acquire private examples. In Section 3.4, we focus on this case. Another variant of
the formally stated model involves weakening the privacy requirement to require indistinguishability of
only the membership queries, and not for the joint distribution of the private random examples and
membership queries. This model (called the fully private examples variant), may be justified, as we
already consider private examples in order to achieve soundness. In Section 3.5, we show that this
model is quite powerful, even if we require perfect privacy and statistical soundness. We opt to focus
(in Section 2.4 and Section 2.5) on the case where privacy is with respect to the joint distribution since
it seems to be the “right” level of difficulty. Additionally, this model provides strong “zero-knowledge-
style” guarantees in a forward focused manner. That is, even if private examples used for verification
(a one time event) become known in the future, then the privacy guarantees remain intact.

3.2 Making CLF Verifiable

In this section, we show how to add the soundness guarantee of Covert Verifiable Learning to CLF. More
specifically, we want to provide the guarantee that if for any concept Df ∈ DFn , any hypothesis class
FOURIERT,b,n ∈ CFOURIER,b,n, and where S is a set of size m(n) of examples drawn i.i.d. from Df , then
for any adversarial intermediary I that corrupts oracle responses from the interaction between CLF and
Of , the random variable h = CLFOf (FOURIERT,b,n, ε, δ,S) satisfies

Pr
h

[
Lτ,b(h) > α · Lτ,b(FOURIERT,b,n) + ε

∣∣∣ h 6= reject
]
< δ

Our basic idea to achieve verifiability is to wrap the CLF algorithm with an outer loop, which
attempts to catch the adversarial intermediary cheating by randomly deciding to either execute CLF

38

(the “learning” case) or send queries which are part of the learner’s private example set S (the “test”
case). The crucial point is: the queries of the learning case can be shown to be computationally
indistinguishable from the test queries (which are simply uniformly random). This system gives an
easy proof idea for soundness: The (p.p.t.) adversarial intermediary must lie a similar amount on the
learning case and the test case, else it would contradict the pseudorandomness of the queries made by
CLF. Therefore, since the AI can always be detected if it lies in the test case, it cannot reliably lie on
the learning case, without being detected. The following is the described outer loop for CLF.

1 Algorithm: CVLF(FOURIERT,b,n, ε, δ, τ,S)

2 Initialize:
3 L = Ø
4 for i ∈ [O(log(1

δ))] do

5 v
$← {0, 1}

6 In this case, the algorithm sends meaningful queries via the subroutine CLF.
7 if v = 0 then
8 L = CLF(FOURIERT,b,n, ε, δ/2, τ)
9 L = L ∪ L

10 end

11 In this case, the algorithm sends “test” queries for verification against the AI.
12 if v = 1 then
13 Let Si be the ith block of N queries in S. Recall that N is the number of queries

requested by CLF.

14 Request Si from the oracle, and verify that the response is consistent.

15 end

16 end
17 output L

Algorithm 7: Covert Verifiable Learning of large low-degree Fourier coefficients

Theorem 3.4. Under the (2ω(n
1
2), 2ω(n

1
2))−SLPNµ,n assumption, CVLF is a (poly(n), 1)-covert verifiable

learning algorithm for CFOURIER,b,n with respect to DFn, OFn, and Lτ,b, and where the degree bound
b ≤ O(log n) and τ ≥ 1/poly(n).

We claim that CVLF satisfies the computational soundness guarantee of Covert Verifiable Learning.

Proposition 3.5. Under the (2ω(n
1
2), 2ω(n

1
2))−SLPNµ,n assumption, CVLF satisfies the computational

soundness guarantee of Covert Verifiable Learning for CFOURIER,b,n with respect to DFn, OFn, and Lτ,b,
and where the degree bound b ≤ O(log n) and τ ≥ 1/poly(n).

Proof. We will show that on a single iteration of CVLF, the probability the AI can corrupt even a single
oracle response and not be caught in CVLF is p < 0.3. From here, the statement follows using the
completeness guarantee (Proposition 2.30).

39

For purposes of contradiction, suppose there exists Df ∈ DFn such that the AI has a p.p.t. algorithm
B̃f that, on the input of a set of queries Q = {q1 · · · qm} from a single iteration of CVLF, outputs a list
of purported results f̃(Q) such that f(q) 6= f̃(q) for at least some q ∈ Q that is not in the learner’s
private random examples, with probability at least 0.3. We will call such queries that are not in the
learner’s private example set “valuable,” and call such a malicious strategy “successful” if the output is
as described above. Recall that in CVLF, each iteration contains only valuable queries in the “learning”
case, and otherwise no valuable queries in the “test” case. Thus, we have that when given queries from
the “learning” case, the malicious strategy is successful with probability at least 0.6, and when given
queries from the “test” case, is never successful.

We claim that if such a malicious strategy exists, then there also exists an efficient algorithm Bf
that solves the decisional squared-log entropy LPN problem as follows:

1. Bf obtains N challenge samples (Ci, ci) ∈ Zn×n2 × Zn2 ∀i ∈ [N] from either the LPN distribution
or uniformly random. Recall that N is the number of queries requested by one execution of CLF.

2. Bf constructs the set Q = {ci ⊕ gli | i ∈ [N]}.

3. Bf executes R = B̃f (Q), and then checks to see if the purported results R differ from f(Q) (i.e.
B̃f was successful).

4. Repeat step 3 O(1) times in order to estimate the success probability within an additive error of
0.01 with probability 0.9.

5. If the estimated success probability is at least 0.5, output “LPN,” else output “uniform.”

Let us analyze the behavior this algorithm. Observe that when the challenge samples come from
the uniform distribution, then B̃f operates on a distribution of queries which is identical to the “test”
case of CVLF. Thus, the estimated success probability in step 4 is at most 0.01, with probability 0.9.
On the other hand, when the challenge samples come from the LPN distribution, then B̃f operates on
a distribution of queries which is computationally indistinguishable from the “learning” case of CVLF.
Hence, the success probability estimated in step 4 is at least 0.5, with probability at least 0.9 (up to
negligible additive factors). As a result, B distinguishes correctly between the LPN distribution and the
uniform distribution with high probability.

Therefore, with probability at least 0.3, a single iteration of the protocol contains all correct labels
(and this is true independently for each independent round). By Proposition 2.30 (completeness),
we conclude that CVLF satisfies the computational soundness guarantee, since only one fully truthful
iteration is needed.

Now, we turn our attention to proving privacy of CVLF in the verifiable setting. We need to adapt
the proof of privacy for CLF by tweaking the simulator as well as the reduction slightly to account for
the new “test” query case, and the modified security experiments of the CVL definition.

Proposition 3.6. Under the (2ω(n
1
2), 2ω(n

1
2))−SLPNµ,n assumption, CVLF satisfies the privacy guaran-

tee of Covert Verifiable Learning for CFOURIER,b,n with respect to DFn, OFn, and Lτ,b, and where the
degree bound b ≤ O(log n) and τ ≥ 1/poly(n), and δ ≥ exp(−n).

40

Proof. For any adversarial intermediary I, we will construct a simulator Sim, which, for the algorithm
CVLF, it holds that {

Vreal
ODFn
CVLF,I

}
c
≈
{
VidealSim,I

}
Our simulator is going to be given access to the total number of queries that is requested by the

learner in the real interaction. This quantity is necessary and is therefore leaked. Also, recall that the
simulator gets access to the random examples (denoted by S) that are known to the real-world learner.
We point out that, since the chosen queries are not inherently adaptive, it is possible to run all the
iterations of CLF in parallel. We may compress all the messages into one large message that fits into a
poly(n)× n matrix, and decode the results from there. We prove security in this setting.

The following is the p.p.t. simulation algorithm with respect to an adversarial intermediary I:

1 Algorithm: Sim(ε, δ,N,S,S ′)

2 Inputs:
3 N is the total number of queries requested by the real learner in one iteration of CVLF.
4 S are the set of examples known to the real world learner, while S ′ are an independently

sampled set of examples to the concept.

5 W = Ø
6 for i ∈ [O(log(1

δ))] do

7 v
$← {0, 1}

8 if v = 0 then
9 Sim adds the ith block of N examples from S to W .

10 else
11 Sim adds the ith block of N examples from S ′ to W .
12 end

13 end

14 Sim executes the code of I on inputs (ε, δ,W). Let the output of I be z.

15 output z

Algorithm 8: Simulator for Covert Verifiable Learning of low-degree heavy Fourier coefficients

We will show that an adversary A who can distinguish {Vreal
ODFn
CVLF,I} and {VidealSim,I} can solve the

decisional squared-log entropy LPN problem (from there, the proof concludes by Lemma 2.29). Thus,
suppose there is an AI I∗ which allows A to distinguish between the distributions{

Vreal
ODFn
CVLF,I∗

}
c
≈
{
VidealSim,I∗

}
with some non negligible distinguishing advantage.

Recall that {
Vreal

ODFn
CVLF,I∗

}
=
{(

FOURIERT,b,n, ε, δ,S, real
ODFn
CVLF,I∗

)}
where FOURIERT,b,n, ε, δ and Df are chosen ahead of time by the adversary and S ∼ Df is the set of
examples given to CVLF. On the other hand,{

VidealSim,I∗
}

=
{(

FOURIERT,b,n, ε, δ,S, idealSimI∗
)}

41

where FOURIERT,b,n, ε, δ and Df are chosen ahead of time by the adversary and S ∼ Df is the first
set of examples given to the simulator. Then, there exists an algorithm B that solves the decisional
squared-log entropy LPN problem problem as follows.

1. Let r be the total number of rounds in CVLF. Let m be the size of the set of random examples
given privately to CVLF. Note that, under the stated parameter regime, m = poly(n).

2. B computes a set of queries and responses W as follows. Repeat r times:

(a) B obtains N challenge samples (Ci, ci) ∈ Zn×n2 ×Zn2 ∀i ∈ [N] from either the LPN distribution
or uniformly random.

(b) Let Df be the concept that would be chosen by the distinguisher A, and let S be the set of
(uniformly random) examples to Df that were obtained by the learner. B computes the set
of inputs Q = {ci ⊕ gli | ∀i ∈ [N]}.

(c) Choose a bit b at random. If b = 0, add a block of N examples from S to W . If b = 1, add
(Q,Of (Q)).

3. B executes z = I∗(ε, δ,W). B runs A on(
FOURIERT,b,n, ε, δ,S, z

)
where FOURIERT,b,n, ε, δ are those that would be chosen by A in the distinguishing experiment.

4. B outputs “uniform” if A outputs “ideal” and “LPN” otherwise.

We note that the challenges obtained in step (a) are of the same type over all iterations. Now, let us
analyze the behavior of the above algorithm. First, let Ej denote the event that CVLF did not output
reject prior to making any membership queries in the jth iteration of CLF (in line 20). Second, let L
denote the event that the N · r samples (Ci, ci) came from the LPN oracle and ¬L be the event that the
N · r samples (Ci, ci) are uniformly random. Finally, we denote by X the distribution that A is executed
on above.

We observe that, {
Vreal

ODFn
CVLF,I∗

∣∣∣ ∧
j
Ej

}
=
{
X
∣∣ L}

and {
VidealSim,I∗

}
=
{
X
∣∣ ¬L}

At iteration j of CLF, a standard application of a Chernoff bound shows that Pr[¬Ej] ≤ negl(n).
Since we have that δ ≥ exp(−n) and τ ≥ 1/poly(n), the total number of iterations is bounded by a
polynomial of n. Invoking the union bound, it follows that

Pr
[
∧
j
Ej

]
≥ 1− negl(n)

and this gives that {
Vreal

ODFn
CVLF,I∗

}
c
≈
{
X
∣∣ L}

Therefore, any noticeable distinguishing advantage of A is inherited by B.

42

Finally, we consider completeness. Intuitively, since the AI is assumed to be honest for completeness,
we can nearly immediately conclude that CVLF satisfies completeness: all the learning is done by the
CLF subroutine, and the “test” case of CVLF will never accidentally reject when interacting with an
honest AI.

Proposition 3.7. Under the (2ω(n
1
2), 2ω(n

1
2))−SLPNµ,n assumption, CVLF satisfies the completeness

guarantee of Covert Verifiable Learning for CFOURIER,b,n with respect to DFn, OFn, and Lτ,b, and where
b ≤ O(log n), τ ≥ 1/poly(n), δ ≥ exp(−n).

Proof. Let E be the event that at least one “learning case” is executed by CVLF. We need to prove
that Pr[E] ≥ 1 − δ/2 (then the statement follows immediately by Proposition 2.30). Observe that at
each iteration the probability of a learning case occurring is 1/2. Thus Pr[E] ≥ 1 − δ2, when taking
an appropriate constant on the number of iterations O(log(1/δ)). Thus, for δ < 1/2, the statement
holds.

Finally, the proof of Theorem 3.4 is done:

Proof of Theorem 3.4. Immediate, following from Proposition 3.5, Proposition 3.6, and Proposition 3.7.

3.3 Making CLDT Verifiable

To make CLDT verifiable, almost all of the work has already been done by constructing CVLF. We may
modify CLDT by replacing the execution of CLF in line 4 with CVLF, and this alone suffices. For clarity:

1 Algorithm: CVLDT(Hn, ε, δ,S)

2 γ =
√
ε/2

3 τ = γε/32s
4 L = CVLF(FOURIER[n],log(32s/ε), CFOURIER,b,n, 0, δ/2, τ,S)

5 if L = reject then
6 output reject
7 end

8 δ′ = δ
2|L|

9 for each χk ∈ L do

10 Using random examples from S, estimate f̃(k) = Ex[f(x)χk(x)] within an additive interval

of
√
ε/|L| with probability 1− δ′.

11 end

12 g(x) =
∑
χk∈L

f̃(k)χk(x)

13 output h = sign(g)

Algorithm 9: Covert Verifiable Learning of polynomial size decision trees

All three guarantees of Covert Verifiable Learning intuitively hold for CLDT, as all the communica-
tion of CVLDT is contained in CVLDT. We include all three statements and their proofs in Appendix E.

43

Theorem 3.8. Under the (2ω(n
1
2), 2ω(n

1
2))−SLPNµ,n assumption, the collection CDTn,s for s ≤ poly(n) is

(poly(n), 4)- covertly verifiably learnable, with respect to DFn, OFn, and LD, and where ε ≥ 1/poly(n),
and δ ≥ exp(−n).

Proof. Immediate, from Proposition E.1, Proposition E.2, and Proposition E.3. Note that, CVLDT will
be efficient for s ≤ poly(n) and ε ≥ 1/poly(n), and δ ≥ exp(−n).

3.4 Verifiability Without Secret Examples

In this section, we pose the question: can we achieve Covert Verifiable Learning in a setting where
the learner has no private examples to leverage against the adversarial intermediary? Indeed, we are
considering the public Covert Verifiable Learning model briefly discussed in Section 3.1.1.

We will demonstrate that our CVL protocol for low-degree Fourier coefficients of Section 2.4 can
be adapted to fit the Public Covert Verifiable Learning (PCVL) model (formally defined as Defini-
tion B.7). From there, we can conclude that an application to decision trees is suitable, similar to that
of Section 2.5.

Our algorithm CVLF (and soundness proof) falls short of the PCVL model—it makes crucial use
of secret examples. Specifically, the AI will always know when the learner is executing a “test” case,
because it has access to the test examples before hand, and as a result can distinguish them from the
learning case. Our idea to adapt is as follows. Instead of threatening to send private random examples at
each iteration (with probability 1/2), we threaten to send the public examples under the same masking
that we use on the Goldreich-Levin queries. In this way, we can show that the computationally bounded
AI will be caught lying with high probability; the AI will not be able to link the masked public examples
with the real public examples. We will require that the concept is computed by a polynomial size DNF
formula5, and this will be essential to letting the learner detect an AI. Why this is the case will become
clear shortly, but intuitively, we must assume some structure on the concept; otherwise the learner has
no hope in obtaining any correlation on the public examples save querying for them. Clearly, if the
learner cannot get any correlation on the public examples without querying them, then the AI will
always be able to deceive the learner.

Definition 3.9. Let s-DNFn be the class of all f : {0, 1}n → {−1, 1} such that f is computable by a
size s DNF formula. A DNF formula is said to have size s if it has s clauses.

We only modify CVLF as follows:

5Note that, this is still an agnostic setting, despite not being fully agnostic, as before.

44

1 Algorithm: PCVLF(FOURIERT,b,n, ε, δ, τ,S)

2 L = Ø, c = log(4/3) + 2
3 θ = 10τn−c

4 for i ∈ [O(log(1
δ))] do

5 v
$← {0, 1}

6 In this case, the algorithm sends meaningful queries via the subroutine CLF.
7 if v = 0 then
8 L = CLF(FOURIERT,b,n, ε, δ/2, θ)
9 L = L ∪ L

10 end

11 In this case, the algorithm sends “test” queries for verification against the AI.
12 if v = 1 then
13 N is the size of the set of Goldreich-Levin queries.

14 Let Si be the ith block of N queries in S.
15 for j ∈ [N] do
16 Rj = Un×λUλ×n where Uq×r is a uniformly random q × r binary matrix and

λ = Θ(log2n).

17 sj
$← β̃nµ∗ for µ∗ = log(n)/n

18 If β̃nµ∗ outputs ⊥, then stop and output reject.

19 ej
$← βnµ for µ = 1/8.

20 end
21 Select an example (xj , yj) ∈ S for j ∈ [N] uniformly at random.
22 x̂j = Rjsj ⊕ ej ⊕ xj
23 Q = {x̂j | ∀j ∈ [N]}

24 Request Q from the oracle. Let f̃(x) denote the purported result on query x.

25 φj(x̂j) = f̃(x̂j)χsj (r) where r ∼ βn1/2

26 Checking the correlation with public examples. Larger Z means larger (positive)
correlation. Note that Z is a real number.

27 Compute Z = 1
N

∑
j φj(x̂j)yj

28 if Z ≤ 2
9τn

−c then
29 output reject
30 end

31 end

32 end
33 output L

Algorithm 10: Public Covert Verifiable Learning of large low-degree Fourier coefficients

We state our theorem first, and spend the rest of the section assembling the proof.

Theorem 3.10. Under the (2ω(n
1
2), 2ω(n

1
2))−SLPNµ,n assumption, PCVLF is a proper (poly(n), 1)-

45

Public covert verifiable learning algorithm for CFOURIER,b,n with respect to Ds-DNFn, Os-DNFn, and Lτ,b,
and where δ ≥ exp(−n), b ≤ O(log n), 1/poly(n) ≤ τ ≤ 1/2(2s+ 1)2, and the DNF size s ≤ poly(n).

Proof Idea. We begin with a lemma that establishes a correlation between the “test case” queries of
the learner and the publicly available examples. Using this lemma, we can prove soundness by showing
that if the AI lies on a “significant” amount of queries then the learner will be able to detect this
using the correlation with the public examples. On the other hand, we observe that if the AI lies on
a “less than significant” amount of queries, completeness still holds from the properties of CVLF—thus
we conclude PCVLF is sound. For completeness, we need to prove that, essentially, the learner will not
accidentally abort the interaction too often. This is done by bounding the probability that an honest
AI is unlucky using standard probabilistic techniques. Finally, the proof of privacy is done by adapting
the simulator and reduction of Proposition 3.6 to appropriately reflect the changes we made in the test
case of the algorithm.

We start with the following lemma. Recall that f is the target function of the concept and it is
computable by a DNF formula of size s, and φi is the ith unmasking operation defined in line 26 of
PCVLF.

Lemma 3.11. For all i ∈ [N],

E[φi(x̂i)f(xi)] ≥
1

3(2s+ 1)2n2
− negl(n)

when the AI responds honestly to the query x̂i, and

E[φi(x̂i)f(xi)] ≤ −
1

3(2s+ 1)2n2
+ negl(n)

when the AI responds dishonestly to the query x̂i.

Proof. Here, as in lines 19-27 of PCVLF, xi is a uniformly random example and x̂i is xi with the masking
applied. Additionally, since there exists a size s DNF formula that computes f , it follows by a lemma of
Bshouty and Feldman (lemma 18 of [BF02]) that there must be a k ∈ {0, 1}n such that f̂(k) ≥ 1/(2s+1)
where χk is of degree O(log s).

Therefore, by invoking Lemma 2.31, we have that for all i,

E
[
φi(x̂i)χk(xi)

]
≥ 1

6(2s+ 1)n2

when the AI is honest on x̂i and

E
[
φi(x̂i)χk(xi)

]
≤ − 1

6(2s+ 1)n2

when the AI is dishonest on x̂i. Additionally, by Lemma 2.29 and using closure under polynomial
composition (note that N = poly(n) for our parameter regime),

(x̂i)i∈[N]
c
≈ (ui)i∈[N]

46

where ui
$← {0, 1}n. Because f is polynomial time computable, this entails that

E
[
φi(ui)χk(xi)

]
≥ 1

6(2s+ 1)n2
− negl(n)

when the AI is honest on ui and

E
[
φi(ui)χk(xi)

]
≤ − 1

6(2s+ 1)n2
+ negl(n)

when the AI is dishonest on ui.
By assumption, E[f(xi)χk(xi)] ≥ 1/(2s+1) for each xi (recall, each xi are independent and uniformly

random queries, while f is a poly(n) size DNF formula). Therefore we have that for all i,

E
[
φi(x̂i)f(xi)

]
= Pr

[
φi(x̂i)f(xi) = 1

]
− Pr

[
φi(x̂i)f(xi) = −1

]
≥ Pr

[
φi(ui)f(xi) = 1

]
− Pr

[
φi(ui)f(xi) = −1

]
− negl(n)

≥ Pr

[
φi(ui)f(xi) = 1

∣∣∣∣χk(xi) = 1

]
+ Pr

[
φi(ui)f(xi) = 1

∣∣∣∣χk(xi) = −1

]
− Pr

[
φi(ui)f(xi) = −1

]
− negl(n)

≥ 1 +
1

6(2s+ 1)2n2
− Pr

[
φi(ui)f(xi) = −1

∣∣∣∣χk(xi) = 1

]
− Pr

[
φi(ui)f(xi) = −1

∣∣∣∣χk(xi) = −1

]
− negl(n)

≥ 1

3(2s+ 1)2n2
− negl(n)

in the honest case. Likewise, the dishonest case gives

E
[
φi(x̂i)f(xi)

]
≤ − 1

3(2s+ 1)2n2
+ negl(n)

Proposition 3.12. Under the (2ω(n
1
2), 2ω(n

1
2))−SLPNµ,n assumption, PCVLF satisfies the completeness

guarantee of Public Covert Verifiable Learning for CFOURIER,b,n with respect to Ds-DNFn, Os-DNFn, and
Lτ,b, and where δ ≥ exp(−n), b ≤ O(log n), 1/poly(n) ≤ τ ≤ 1/2(2s+ 1)2, and DNF size s ≤ poly(n).

Proof. It suffices to show that the v = 1 “test” case will not cause PCVLF to reject if the AI is honest,
except with probability o(δ) (note that, in PCVLF we take the failure probability of CLF subroutine as
δ/2). From there, completeness follows from Proposition 2.30, because in the “learning” case PCVLF
is identical to CVLF. To prove this, we invoke Lemma 3.11, which shows that E[Z] ≥ 1/3(2s+ 1)2n2 −
negl(n). Let R be the event that PCVLF outputs reject in line 19 in a single iteration. Then,

Pr[R] ≤ Pr

[
Z ≤ 2

3
E[Z]

]
≤ exp(−Ω(Nτn−(log(4/3)+2)))

47

by a Chernoff bound, and where the probability is taken over all the randomness of the protocol.
Since N = Ω(n4/τ2), Pr[R] ≤ exp(−Ω(n2)). Therefore, over the O(log(1/δ)) iterations, the probability
of rejection when the AI is honest is at most O(log(1/δ) · exp(−Ω(n2))) by the union bound. Since
δ ≥ exp(−n), this quantity is o(δ).

We observe a stronger property of PCVLF which derives from CVLF.

Observation 3.13. If the AI is sufficiently honest in the “learning” case, in the sense that for every
z, for every j ∈ [n] ∪ {−}, the AI returns query results denoted by f̃(x) such that

Pr
S

[
f̃(ĝlS,j,z) 6= f(ĝlS,j,z)

]
≤ 1

4

then PCVLF either outputs an ε-good hypothesis or rejects the interaction.

Proof sketch. Let E be the event that for every z, for every j ∈ [n] ∪ {−}

Pr
S

[
f̃(ĝlS,j,z) 6= f(ĝlS,j,z)

]
≤ 1

4

It can be seen from the proof of completeness of CLF (Proposition 2.30) that given E, the completeness
guarantee still holds. However, it remains to consider that the changes of the test case of PCVLF may
cause the learner to unnecessarily reject the interaction. Indeed, with some probability, this occurs in
line 19, but this does not affect the statement.

We will use this observation to prove computational soundness.

Proposition 3.14. Under the (2ω(n
1
2), 2ω(n

1
2))−SLPNµ,n assumption, PCVLF satisfies the computational

soundness guarantee of Public Covert Verifiable Learning for CFOURIER,b,n with respect to Ds-DNFn,
Os-DNFn, and Lτ,b, and where b ≤ O(log n), 1/poly(n) ≤ τ ≤ 1/2(2s+ 1)2, and s ≤ poly(n).

Proof. Let Ei be the event that E occurs on iteration i of PCVLF. Note that proving that for every
i ∈ [O(log(1/δ))],

¬Ei =⇒ PCVLF = reject

(with probability 1/2, independently) suffices to prove the claim. Thus, (without loss of generality) pick
i ∈ [O(log1/δ)] and assume ¬Ei.

Fix any Df ∈ Ds-DNFn . Using the fact that for all k, ` ∈ [N] ĝl
k c
≈ ĝl

`
, we have that for any z, the

existence of a j ∈ [n] ∪ {−}, such that the AI returns query results f̃(x) with

Pr
S

[
f̃(ĝlS,j,z) 6= f(ĝlS,j,z)

]
>

1

4

implies the same is true for every z and every j ∈ [n] ∪ {−}, and replacing 1/4 with 1/5. If not true,
then the workings of the AI can be fashioned into a distinguishing algorithm for ĝlS,i,z and ĝlS,j,z (for a
fixed S, z and i 6= j), giving a contradiction. It follows, then, that the total fraction of dishonest query
results is at least 1/5.

48

Considering this as the case, let us analyze the behavior of the v = 1 case of PCVLF. Since the
distribution over the set of queries requested by the learner is computationally indistinguishable from
the “learning” case, we can conclude, using a similar argument to above, that the total fraction of
dishonest query results in the “test” case is at least 1/6.

Now, since the fraction of dishonest queries can be taken to be at least 1/6, we see that (in line 28,
PCVLF) E[Z] ≤ 2/3 ·2/6(2s+ 1)2n2 when τ ≤ 1/2(2s+ 1)2, and therefore PCVLF rejects in line 29 with
probability 1/2 in a single iteration (by the properties of the binomial distribution).

Proposition 3.15. Under the (2ω(n
1
2), 2ω(n

1
2))−SLPNµ,n assumption, PCVLF satisfies the privacy guar-

antee of Public Covert Verifiable Learning for CFOURIER,b,n with respect to Ds-DNFn, Os-DNFn, and Lτ,b,
and where b ≤ O(log n), 1/poly(n) ≤ τ ≤ 1/2(2s+ 1)2, and DNF size s ≤ poly(n).

Proof. For any adversarial intermediary I, we will construct a simulator Sim, which, for the algorithm
PCVLF, it holds that {

PVreal
ODs-DNFn
PCVLF,I

}
c
≈
{
PVidealSim,I

}
Our simulator is going to be given access to the total number of queries that is requested by the

learner in the real interaction. This quantity is necessary and is therefore leaked. Also, recall that the
simulator gets access to the random examples (denoted by S) that are known to the real-world learner.
We point out that, since the chosen queries are not inherently adaptive, it is possible to run all the
iterations of CLF in parallel. We may compress all the messages into one large message that fits into a
poly(n)× n matrix, and decode the results from there. We prove security in this setting.

The following is the p.p.t. simulation algorithm with respect to an adversarial intermediary I:

1 Algorithm: Sim(ε, δ,N,S,S ′)

2 Inputs:
3 N is the total number of queries requested by the real learner in one iteration of CVLF.
4 S are the set of examples known to the real world learner, while S ′ are an independently

sampled set of examples to the concept.

5 W = Ø
6 for i ∈ [O(log(1

δ))] do

7 v
$← {0, 1}

8 if v = 0 then
9 Sim adds the ith block of N examples from S to W .

10 else
11 Sim adds the ith block of N examples from S ′ to W .
12 end

13 end

14 Sim executes the code of I on inputs (ε, δ,W,S). Let the output of I be z.

15 output z

Algorithm 11: Simulator for Public Covert Verifiable Learning of low-degree heavy Fourier
coefficients

49

We will show that an adversary A who can distinguish {PVreal
ODs-DNFn
PCVLF,I } and {PVidealSim,I} can

solve the decisional squared-log entropy LPN problem (from there, the proof concludes by Lemma 2.29).
Thus, suppose there is an AI I∗ which allows A to distinguish between the distributions{

PVreal
ODs-DNFn
PCVLF,I∗

}
c
≈
{
PVidealSim,I∗

}
with some non negligible distinguishing advantage.

Recall that {
PVreal

ODs-DNFn
PCVLF,I∗

}
=
{(

FOURIERT,b,n, ε, δ,S, real
ODs-DNFn
CVLF,I∗

)}
where FOURIERT,b,n, ε, δ and Df are chosen ahead of time by the adversary and S ∼ Df is the set of
examples given to PCVLF. On the other hand,{

PVidealSim,I∗
}

=
{(

FOURIERT,b,n, ε, δ,S, idealSimI∗
)}

where FOURIERT,b,n, ε, δ and Df are chosen ahead of time by the adversary. Then, there exists an
algorithm B that solves the decisional squared-log entropy LPN problem problem as follows.

1. Let r be the total number of rounds in PCVLF. Let m be the size of the set of random examples
known publicly to PCVLF and I∗. Note that, under the stated parameter regime, m = poly(n).

2. B computes a set of queries and responses W as follows. Repeat r times:

(a) B obtains N challenge samples (Ci, ci) ∈ Zn×n2 ×Zn2 ∀i ∈ [N] from either the LPN distribution
or uniformly random.

(b) Let Df be the concept that would be chosen by the distinguisher A, and let S be the set of
size m of (uniformly random) examples that was given to the learner. B computes the set of
inputs Q = {ci ⊕ gli | ∀i ∈ [N]}.

(c) Choose a bit b at random. If b = 0, add a block of N examples from S to W . If b = 1, add
(Q,Of (Q)).

3. B executes z = I∗(ε, δ,W,S). B runs A on(
FOURIERT,b,n, ε, δ,S, z

)
where FOURIERT,b,n, ε, δ are those that would be chosen by A in the distinguishing experiment.

4. B outputs “uniform” if A outputs “ideal” and “LPN” otherwise.

We note that the challenges obtained in step (a) are of the same type over all iterations. Now, let us
analyze the behavior of the above algorithm. First, let Ej denote the event that PCVLF did not output
reject prior to making any membership queries6. Second, let L denote the event that the N · r samples
(Ci, ci) came from the LPN oracle and ¬L be the event that the N · r samples (Ci, ci) are uniformly
random. Finally, we denote by X the distribution that A is executed on above.

We observe that, {
PVreal

ODs-DNFn
PCVLF,I∗

∣∣∣ ∧
j
Ej

}
=
{
X
∣∣ L}

6This event could occur either in line 20 of CLF (during the “learning” case of PCVLF) or in line 18 of the “test case”
of PCVLF.

50

and {
PVidealSim,I∗

}
=
{
X
∣∣ ¬L}

A standard application of a Chernoff bound shows that Pr[¬Ej] ≤ negl(n). Since we have that
δ ≥ exp(−n) and τ ≥ 1/poly(n), the total number of iterations is bounded by a polynomial of n.
Invoking the union bound, it follows that

Pr
[
∧
j
Ej

]
≥ 1− negl(n)

and this gives that {
PVreal

ODs-DNFn
PCVLF,I∗

}
c
≈
{
X
∣∣ L}

Therefore, any noticeable distinguishing advantage of A is inherited by B.

The statement of Theorem 3.10 now easily follows from the above three propositions.

Proof of Theorem 3.10. Immediate, from Proposition 3.12, Proposition 3.14 and Proposition 3.15.

Remark 3.16. We omit statements and proofs, but it is not difficult to see that the above PCVL
construction suffices to imply a PCVL construction for polynomial size decision trees under analogous
conditions. Indeed, looking back to Section 2.5, the CVLDT algorithm uses CVLF as a black box, and
similarly the proofs of the completeness, privacy and soundness are black box in that they just rely on the
aforementioned properties of the CVLF algorithm. The proofs of Section 2.5 can be extended to capture
PCVL for decision trees using PCVLF.

3.5 Perfect Privacy and Statistical Soundness With Fully Private Examples

In this section, we operate in the fully private examples variant of Covert Verifiable Learning (CVLFP,
Definition B.4). We focus on the problem of learning juntas. Informally, a k-junta is an n-bit boolean
function that depends on at most k-out-of-n variables. Formally,

Definition 3.17. The influence of a coordinate i ∈ [n] of the function f : {0, 1}n → {0, 1} is defined as

Infi(f) = Pr
x∼{0,1}n

[
f(x) 6= f(x⊕i)

]
where x⊕i denotes the vector x with the ith coordinate flipped. When Infi(f) > 0, we say that the ith

coordinate is relevant.

Definition 3.18. We say that a function f : {0, 1}n → {0, 1} is k-junta if it has at most k relevant
variables.

Definition 3.19. Let k-JUNT An be the class of all f : {0, 1}n → {0, 1} such that f is a k-junta.

51

We will construct a CVLFP algorithm will output the exact truth table of a given concept inDk-JUNT An ,
so the hypothesis class we consider is also Dk-JUNT An (we operate in the realizable setting).

Consider the following algorithm, which is assumed to know the value of k (the size of the junta).
A very similar algorithm was described in [IKOS19], where it functions in the distributed variant of
Cryptographic Sensing. We incorporate soundness and cast the problem in the new CVLFP framework.
Note that the algorithm does not take any target hypothesis class because we focus only on concept-
hiding.

1 Algorithm: CVLJ(ε, δ,S, k, n)

2 L = Ø

3 Partition S into two blocks S0, S1 each of size poly(n, 1/δ, 2k).
4 Let Q be a set of examples constructed by taking one random hamming neighbor of each of δ/2

fraction of examples in S0, and leaving the rest unchanged (denote these unchanged as the set
O ⊆ Q).

5 Request Q from the concept oracle.

6 Let f̃(Q) be the response from the concept oracle.
7 for q 6∈ O do
8 Find the hamming neighbor of q, q̂ ∈ S0.
9 If f(q) 6= f(q̂), then add the index j for which qj 6= q̂j to L.

10 end
11 Using the examples in S1, find a set of examples T (if it exists) that covers every assignment of

the variables with indexes in L.
12 output the truth table that is formed by T (if it exists). Otherwise output ⊥.

Algorithm 12: Exact CVLFP protocol for k-juntas

We state the theorem and then compile the proof.

Theorem 3.20. CVLJ is a (poly(n), 1)-covert verifiable learning algorithm with fully private examples
and perfect privacy and statistical soundness, with respect to Dk-JUNT An, Ok-JUNT An, and LD. We
stipulate that k = O(log n), and δ ≥ 1/poly(n).

Proposition 3.21. CVLJ satisfies the completeness guarantee of CVLFP with respect to Dk-JUNT An,
Ok-JUNT An, and LD, when k = O(log n) and δ ≥ 1/poly(n) the algorithm runs in time poly(n).

Proof. For correctness we assume that the adversarial intermediary is honest, meaning that all responses
to queries from the learner are correct. We will show that, with probability 1−δ, the exact truth table of
any concept in Dk-JUNT An can be recovered, which suffices to prove the statement. Fix any concept in
Dk-JUNT An , and let f be the k-junta which is the target function. Consider that, in line 12 of CVLJ, the
index of a relevant variable of f is added to L with probability at least n−12−k, by randomly selecting q
to be sensitive at the random hamming neighbor q̂. Thus, one relevant variable is found using one pair
of neighbors with probability at least n−12−k. Since finding a relevant variable of f is an independent
event for each pair of neighbors, using poly(n, 2k) pairs suffices to find all k relevant variables with

52

constant probability. As a result, L contains all relevant variables with probability 1− δ/2 (as the size
of S0 is poly(n, 2k, 1/δ)).

Now, using poly(n, 2k, 1/δ) examples from S1, it can be seen that the probability that all 2k assign-
ments of the k relevant variables chosen to L are found in T is 1− δ/2 (note that an irrelevant variable
is never added to L, so |L| ≤ k). Therefore, the output of CVLJ is the exact truth table of the f , with
probability 1− δ as desired.

Clearly, when k = O(log n) and δ ≥ 1/poly(n), the algorithm runs in polynomial time and uses
polynomially many samples in n.

Proposition 3.22. CVLJ satisfies the perfect privacy guarantee of CVLFP with respect to Dk-JUNT An,
Ok-JUNT An, and LD, when k = O(log n). Specifically, There exists a p.p.t. simulation algorithm Sim,
such that for every adversarial intermediary I, Sim satisfies{

FPVreal
ODn
A,I

}
=
{
FPVidealSim,I

}
where the above distributions are as in Definition B.4.

Proof. Consider the following p.p.t. simulator that interacts with any adversarial intermediary I:

1 Algorithm: Sim(ε, δ,S, `)

2 Sim takes ` examples from S as a set Q. Sim executes the code of I on inputs (ε, δ,Q), letting
the result be z.

3 output z

Algorithm 13: Perfect simulator for CVLJ

Clearly, the set of queries Q that the simulator uses as input to the adversarial intermediary I is
distributed identically to that of the real protocol. It follows immediately that{

FPVreal
ODn
A,I

}
and

{
FPVidealSim,I

}
are also distributed identically.

Proposition 3.23. CVLJ satisfies the statistical soundness guarantee of CVLFP with respect to Dk-JUNT An,
Ok-JUNT An, and LD, when k = O(log n), δ ≥ 1/poly(n).

Proof. We will show that the probability the AI can corrupt even a single oracle response and not be
caught in CVLJ is p < δ. From here, we can conclude computational soundness using the completeness
guarantee of CVLJ.

Fix any Df ∈ Dk-JUNT An . Suppose that B̃f is a p.p.t. algorithm employed by the AI that takes
as input of a set of queries Q = {q1 · · · qm} from CVLJ, and outputs a list of purported results f̃(Q)
such that f(q) 6= f̃(q) for at least some q ∈ Q that is not in the learner’s private random examples,
with probability at least δ. We will call such queries that are not in the learner’s private example set
“valuable,” and call such an algorithm “successful” if the output is as described above.

We observe that the fraction of queries requested by the learner which are valuable is less than δ.
Hence, since the valuable queries are distributed identically to the non-valuable queries, a successful
p.p.t. algorithm B̃f cannot exist.

53

Proof of Theorem 3.20. Putting together the above three claims, the statement follows. Note that,
CVLJ runs in time poly(n) when k = O(log n) and δ ≥ 1/poly(n).

4 Key Exchange from Covert Learning

We switch gears and demonstrate how our Covert Learning algorithm for parity functions naturally
lends itself to key exchange from the (O(n), poly(n)) − DLPN 1√

n
,n assumption. This result showcases

the power of Covert Learning and suggests the possibility of investigating Covert Learning techniques
for traditional cryptographic tasks like key exchange.

We will use the standard real/ideal paradigm for define a secure protocol. Thus, we first define the
following ideal key exchange functionality.

Definition 4.1. Ideal Key Exchange. Let T be a trusted third party. We consider the following
process to be an Ideal Key Exchange for some keyspace κ.

1. Parties A and B interact for some finite number of rounds, sending each other a sequence of
messages.

2. After A and B are done interacting, T draws a key from κ, and delivers it to A and B.

Next, we define a Secure Key Exchange as a protocol that is indistinguishable from an Ideal Key
Exchange, in that no computationally bounded adversary who views the interaction between parties A
and B can decide if the interaction belonged to a real execution or ideal execution. More formally:

Definition 4.2. Secure Key Exchange. A protocol is a secure key exchange if{
transcriptrealA,B

}
c
≈
{
transcriptidealA,B

}
where {transcriptrealA,B} and {transcriptidealA,B } are the distributions over the strings containing all the mes-
sages sent between A and B, and the resulting agreed key from the real protocol and ideal key exchange
protocol respectively.

Consider the following key exchange algorithm. Recall that:

Definition 4.3. Let Xn = {0, 1}n. We define the concept class Dµ,nLPN to be the family of distributions
over Xn × {0, 1} indexed by a k ∈ {0, 1}n, that have the following properties,

• The input (marginal) distribution over X of any Dk ∈ Dµ,nLPN is uniform.

• For any Dk ∈ Dµ,nLPN, the label y ∈ {0, 1} of the input x is generated by taking 〈k, x〉 and flipping
the result with probability µ.

54

1 Algorithm: KeyExchange(1n)

2 Bob selects a random key by drawing k
$← βnn−0.5 . Then, Bob prepares ODk corresponding to

Dk ∈ DLow
LPN.

3 Alice begins running CLPODk (PARITY[n],
1
8 , δ,S), where all her calls to ODk are delegated to

Bob, by sending Bob those queries.
4 Bob sends back all the query results.
5 Bob outputs k, and Alice outputs the result of CLP.

Algorithm 14: Key Exchange protocol from Covert Learning

Theorem 4.4. If DLPN 1√
n
,n is (O(n), poly(n))-hard, KeyExchange is a secure key exchange protocol.

Proof. We begin by arguing that the scheme is correct, in that Alice and Bob both output the same key
with high probability. This follows directly from the completeness guarantee of CLP. With probability
1 − δ, Alice gets a hypothesis h ∈ PARITY[n] that is 1

8 -close to k. Now, since every linear function is
1
2 -far from every other linear function, it is easy to see that the output of CLP is k with probability
1−δ. Thus, Alice and Bob output the same k with probability 1−δ. For this cryptographic application,
Alice should set δ to be some negligible function of n.

For security, we need to show that {transcriptrealA,B}
c
≈ {transcriptidealA,B } as in Definition 4.2. Define the

ideal keyspace

κ = {k | k $← βnn−0.5}

We will prove something stronger:{
transcriptrealA,B

}
c
≈
{

(R, k)|R $← Zm×n+1
2 , k

$← κ
}

where m = O(nlog(nδ)) is the number of Alice’s calls to ODk in KeyExchange.
By Proposition 2.17, the distribution of messages between the parties is pseudorandom. Thus,

suppose to the contrary that there exists an adversary A such that Pr[A({transcriptrealA,B}) = 1] = δ and

Pr[A({transcriptidealA,B }) = 1] = γ such that |δ − γ| = ε ≥ 1/poly(n). Then, there is an algorithm B that
breaks the pseudorandomness of the messages as follows.

First, B obtains a challenge distribution chal (which is either real messages or uniformly random
messages, each with probability 1/2). Let E be the event that chal is uniformly random messages.
Second, draw k ← κ, and simulate an execution of KeyExchange by playing both the sender and receiver
roles, using k. Let M be the messages sent in the simulated execution. Let Bchal = A

(
{(chal, k)}

)
and

BM = A
(
{(M,k)}

)
. B outputs Bchal or BM each with probability 1/2. Note that, in the event E,{

(chal, k)
}

=
{

(R, k) | R $← Zm×n+1
2 , k

$← κ
}

On the other hand, in the event ¬E,{
(chal, k)

}
=
{

(M,k)
}

=
{
transcriptrealA,B

}

55

Thus,

Pr
[
B = 1

∣∣E] =
1

2

(
Pr
[
Bchal = 1

∣∣E]+ Pr
[
BM = 1

∣∣E])
=

1

2

(
δ + γ

)
while

Pr
[
B = 1

∣∣¬E] =
1

2

(
Pr
[
Bchal = 1

∣∣¬E]+ Pr
[
BM = 1

∣∣E])
=

1

2

(
δ + δ

)
= δ

and therefore ∣∣∣∣Pr
[
B = 1

∣∣E]− Pr
[
B = 1

∣∣¬E]∣∣∣∣ =
1

2

∣∣∣∣γ − δ∣∣∣∣
≥ ε

2

Thus, the nonegligible distinguishing advantage of A is inherited by B. We conclude that KeyEx-
change is a secure key exchange.

4.1 How Does Our Protocol Differ from Alekhnovich’s?

In [Ale03], Alekhnovich introduces the low-noise LPN assumption and introduces a public key encryption
scheme whose security hinges on the intractibility of the LPN assumption. As described in [BSBTD+16],
the scheme roughly works as follows.

Let n be a security parameter, m = 2n, and k = n1/2−ε for some small constant ε > 0. The
key generation works by selecting a random noise vector e ∈ Fm2 in which each component is set to 1
with probability k/m independently, selecting a uniformly random G ∈ Fm×n2 , and a uniformly random
w ∈ Image(G). The private key is the noise vector e and the public key is the m × (n + 1) matrix
G̃ = (G|b) obtained from G by appending the noisy codeword b = w + e to the right of the matrix G.
The encryption of σ = 0 is a random vector c ∈ Fm2 of the form c = w̃ + ẽ, where w̃ is a uniformly
random vector in the kernel of G̃T and ẽ ∈ Fm2 is a random noise vector distributed identically to but
independently of the private key e. The encryption of σ = 1 is a uniformly random vector in Fm2 .
Decryption for a ciphertext c proceeds taking the inner product c, e. This inner product is a nearly
uniform random bit when c is an encryption of 1, and is equal to the inner product e, ẽ when c is an
encryption of 0 with high probability.

Our key exchange scheme can be transformed into a public key encryption scheme using the KEM
(Key Encapsulation Mechanism) paradigm. Note that, in our protocol, the exchanged key k has slightly
less than

√
n bits of min-entropy. Thus, the sender can transmit the k using the key exchange scheme,

and a message encrypted using a symmetric scheme with a uniformly random key of nearly
√
n bits that

is be obtained by applying a key derivation function to k. When the receiver obtains k, she can apply
the derivation function and obtain the symmetric key used to encrypt the message, and then decyrpt it.
The Alekhnovich scheme, though superficially similar to ours (it works over the binary field and uses
low-noise LPN) possesses an important differences with ours. Namely, it directly encrypts only one bit
a time. In contrast, in our scheme we encrypt almost

√
n bits at a time.

56

Acknowledgements

We would like to thank Shafi Goldwasser and Ronitt Rubinfeld for very helpful discussions on the model
and its motivation.

References

[ABK+04] Noga Alon, Richard Beigel, Simon Kasif, Steven Rudich, and Benny Sudakov. Learning
a hidden matching. SIAM Journal on Computing, 33(2):487–501, 2004.

[ABW10] Benny Applebaum, Boaz Barak, and Avi Wigderson. Public-key cryptography from dif-
ferent assumptions. In Proceedings of the forty-second ACM symposium on Theory of
computing, pages 171–180, 2010.

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic
primitives and circular-secure encryption based on hard learning problems. In Annual
International Cryptology Conference, pages 595–618. Springer, 2009.

[AFK13] Pranjal Awasthi, Vitaly Feldman, and Varun Kanade. Learning using local membership
queries. In Conference on Learning Theory, pages 398–431, 2013.

[Ale03] Michael Alekhnovich. More on average case vs approximation complexity. In 44th Annual
IEEE Symposium on Foundations of Computer Science, 2003. Proceedings., pages 298–
307. IEEE, 2003.

[Ang88] Dana Angluin. Queries and concept learning. Machine learning, 2(4):319–342, 1988.

[BCK98] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. A modular approach to the design
and analysis of authentication and key exchange protocols. In Proceedings of the thirtieth
annual ACM symposium on Theory of computing, pages 419–428, 1998.

[BDCVY17] Nader H Bshouty, Dana Drachsler-Cohen, Martin Vechev, and Eran Yahav. Learning
disjunctions of predicates. In Conference on Learning Theory, pages 346–369. PMLR,
2017.

[BEHW87] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K Warmuth. Oc-
cam’s razor. Information processing letters, 24(6):377–380, 1987.

[BEK02] Nader H Bshouty, Nadav Eiron, and Eyal Kushilevitz. Pac learning with nasty noise.
Theoretical Computer Science, 288(2):255–275, 2002.

[BF02] Nader H Bshouty and Vitaly Feldman. On using extended statistical queries to avoid
membership queries. Journal of Machine Learning Research, 2(Feb):359–395, 2002.

[BFKL93] Avrim Blum, Merrick Furst, Michael Kearns, and Richard J Lipton. Cryptographic prim-
itives based on hard learning problems. In Annual International Cryptology Conference,
pages 278–291. Springer, 1993.

[BHZ19] Nader H Bshouty and Catherine A Haddad-Zaknoon. Adaptive exact learning of decision
trees from membership queries. In Algorithmic Learning Theory, pages 207–234. PMLR,
2019.

57

[Blu03] Avrim Blum. Open problems-learning a function of r relevant variables. Lecture Notes in
Computer Science, 2777:731–733, 2003.

[BMOS05] Nader H Bshouty, Elchanan Mossel, Ryan O’Donnell, and Rocco A Servedio. Learning
dnf from random walks. Journal of Computer and System Sciences, 71(3):250–265, 2005.

[BSBTD+16] Eli Ben-Sasson, Iddo Ben-Tov, Ivan Damg̊ard, Yuval Ishai, and Noga Ron-Zewi. On
public key encryption from noisy codewords. In Public-Key Cryptography–PKC 2016,
pages 417–446. Springer, 2016.

[BWDSS20] Galit Bary-Weisberg, Amit Daniely, and Shai Shalev-Shwartz. Distribution free learning
with local queries. In Algorithmic Learning Theory, pages 133–147. PMLR, 2020.

[CCG+20] Varun Chandrasekaran, Kamalika Chaudhuri, Irene Giacomelli, Somesh Jha, and Song-
bai Yan. Exploring connections between active learning and model extraction. In 29th
{USENIX} Security Symposium ({USENIX} Security 20), pages 1309–1326, 2020.

[Cla11] David E Clark. Outsourcing lead optimization: the eye of the storm. Drug discovery
today, 16(3-4):147–157, 2011.

[DAG06] Arkadiusz Z Dudek, Tomasz Arodz, and Jorge Gálvez. Computational methods in de-
veloping quantitative structure-activity relationships (qsar): a review. Combinatorial
chemistry & high throughput screening, 9(3):213–228, 2006.

[DGRDR08] Kurt De Grave, Jan Ramon, and Luc De Raedt. Active learning for high throughput
screening. In International Conference on Discovery Science, pages 185–196. Springer,
2008.

[DHH00] Dingzhu Du, Frank K Hwang, and Frank Hwang. Combinatorial group testing and its
applications, volume 12. World Scientific, 2000.

[DKL09] Yevgeniy Dodis, Yael Tauman Kalai, and Shachar Lovett. On cryptography with auxiliary
input. In Proceedings of the forty-first annual ACM symposium on Theory of computing,
pages 621–630, 2009.

[DKS18] Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. Learning geometric concepts
with nasty noise. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory
of Computing, pages 1061–1073, 2018.

[Döt15] Nico Döttling. Low noise lpn: Kdm secure public key encryption and sample amplification.
In IACR International Workshop on Public Key Cryptography, pages 604–626. Springer,
2015.

[Fel09] Vitaly Feldman. On the power of membership queries in agnostic learning. The Journal
of Machine Learning Research, 10:163–182, 2009.

[FGKP06] Vitaly Feldman, Parikshit Gopalan, Subhash Khot, and Ashok Kumar Ponnuswami. New
results for learning noisy parities and halfspaces. In 2006 47th Annual IEEE Symposium
on Foundations of Computer Science (FOCS’06), pages 563–574. IEEE, 2006.

58

[FGKP09] Vitaly Feldman, Parikshit Gopalan, Subhash Khot, and Ashok Kumar Ponnuswami. On
agnostic learning of parities, monomials, and halfspaces. SIAM Journal on Computing,
39(2):606–645, 2009.

[GL89] Oded Goldreich and Leonid A Levin. A hard-core predicate for all one-way functions. In
Proceedings of the twenty-first annual ACM symposium on Theory of computing, pages
25–32, 1989.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of inter-
active proof systems. SIAM Journal on computing, 18(1):186–208, 1989.

[Gol98] Oded Goldreich. Modern cryptography, probabilistic proofs and pseudorandomness, vol-
ume 17. Springer Science & Business Media, 1998.

[GRSY20] Shafi Goldwasser, Guy N. Rothblum, Jonathan Shafer, and Amir Yehudayoff. Interactive
proofs for verifying machine learning. Electronic Colloquium on Computational Complex-
ity (ECCC), 27:58, 2020.

[GRV11] Elena Grigorescu, Lev Reyzin, and Santosh Vempala. On noise-tolerant learning of sparse
parities and related problems. In International Conference on Algorithmic Learning The-
ory, pages 413–424. Springer, 2011.

[IKOS19] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptographic sens-
ing. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology –
CRYPTO 2019, pages 583–604, Cham, 2019. Springer International Publishing.

[Jac97] Jeffrey C Jackson. An efficient membership-query algorithm for learning dnf with respect
to the uniform distribution. Journal of Computer and System Sciences, 55(3):414–440,
1997.

[JSMA19] Mika Juuti, Sebastian Szyller, Samuel Marchal, and N Asokan. Prada: protecting against
dnn model stealing attacks. In 2019 IEEE European Symposium on Security and Privacy
(EuroS&P), pages 512–527. IEEE, 2019.

[KKMS08] Adam Tauman Kalai, Adam R Klivans, Yishay Mansour, and Rocco A Servedio. Agnos-
tically learning halfspaces. SIAM Journal on Computing, 37(6):1777–1805, 2008.

[KLN+11] Shiva Prasad Kasiviswanathan, Homin K Lee, Kobbi Nissim, Sofya Raskhodnikova, and
Adam Smith. What can we learn privately? SIAM Journal on Computing, 40(3):793–826,
2011.

[KM93] Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the fourier spectrum.
SIAM Journal on Computing, 22(6):1331–1348, 1993.

[KMAM18] Manish Kesarwani, Bhaskar Mukhoty, Vijay Arya, and Sameep Mehta. Model extrac-
tion warning in mlaas paradigm. In Proceedings of the 34th Annual Computer Security
Applications Conference, pages 371–380, 2018.

[KMV08] Adam Tauman Kalai, Yishay Mansour, and Elad Verbin. On agnostic boosting and parity
learning. In Proceedings of the fortieth annual ACM symposium on Theory of computing,
pages 629–638, 2008.

59

[KS06] Jonathan Katz and Ji Sun Shin. Parallel and concurrent security of the hb and hb+
protocols. In Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, pages 73–87. Springer, 2006.

[KSS94] Michael J Kearns, Robert E Schapire, and Linda M Sellie. Toward efficient agnostic
learning. Machine Learning, 17(2-3):115–141, 1994.

[KV94] Michael Kearns and Leslie Valiant. Cryptographic limitations on learning boolean formu-
lae and finite automata. Journal of the ACM (JACM), 41(1):67–95, 1994.

[KWJ+04] Ross D King, Kenneth E Whelan, Ffion M Jones, Philip GK Reiser, Christopher H
Bryant, Stephen H Muggleton, Douglas B Kell, and Stephen G Oliver. Functional genomic
hypothesis generation and experimentation by a robot scientist. Nature, 427(6971):247–
252, 2004.

[LMN93] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, fourier trans-
form, and learnability. Journal of the ACM (JACM), 40(3):607–620, 1993.

[LPP04] Gregory A Landrum, Julie E Penzotti, and Santosh Putta. Machine-learning models for
combinatorial catalyst discovery. Measurement Science and Technology, 16(1):270, 2004.

[O’D14] Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014.

[OS07] Ryan O’Donnell and Rocco A Servedio. Learning monotone decision trees in polynomial
time. SIAM Journal on Computing, 37(3):827–844, 2007.

[Pie12] Krzysztof Pietrzak. Cryptography from learning parity with noise. In International
Conference on Current Trends in Theory and Practice of Computer Science, pages 99–
114. Springer, 2012.

[PRR06] Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and distance
approximation. Journal of Computer and System Sciences, 72(6):1012–1042, 2006.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
Journal of the ACM (JACM), 56(6):1–40, 2009.

[Sch90] Robert E Schapire. The strength of weak learnability. Machine learning, 5(2):197–227,
1990.

[SKL17] Jacob Steinhardt, Pang Wei Koh, and Percy Liang. Certified defenses for data poisoning
attacks. In Proceedings of the 31st International Conference on Neural Information Pro-
cessing Systems, NIPS’17, page 3520–3532, Red Hook, NY, USA, 2017. Curran Associates
Inc.

[SSBD14] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory
to algorithms. Cambridge university press, 2014.

[TZJ+16] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. Stealing
machine learning models via prediction apis. In 25th {USENIX} Security Symposium
({USENIX} Security 16), pages 601–618, 2016.

60

[Val84] Leslie G Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–
1142, 1984.

[YS16] Yu Yu and John Steinberger. Pseudorandom functions in almost constant depth from low-
noise lpn. In Marc Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology –
EUROCRYPT 2016, pages 154–183, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[YZ16] Yu Yu and Jiang Zhang. Cryptography with auxiliary input and trapdoor from constant-
noise lpn. In Annual International Cryptology Conference, pages 214–243. Springer, 2016.

[ZFZS20] Jiaheng Zhang, Zhiyong Fang, Yupeng Zhang, and Dawn Song. Zero knowledge proofs
for decision tree predictions and accuracy. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, pages 2039–2053, 2020.

Appendices

A More on Related Work

A.1 Cryptographic Sensing

In [IKOS19], the study of Cryptographic Sensing is initiated. Informally, Cryptographic Sensing explores
the possibility of embedding cryptography into nature. This setting is modeled by an unknown object
x ∈ X , where X = {0, 1}n by default. Additionally, there is a probabilistic sensing algorithm Sen,
which applies a certain sequence of measurement functions fi ∈ F , for some class of functions F , to
the unknown object x. Upon getting the results of the measurements fi(x), Sen attempts to decode
x. Sen is required to work efficiently, and securely, in the sense that, without knowledge of the private
randomness used by Sen, it should be computationally infeasible for any passive adversary who views
the measurements to make sense of the measurements and decode x.

In [IKOS19], a duality between sensing and learning is noted. More specifically, the authors acknowl-
edge that rather than dealing with an unknown object, one could formulate the problem in the context
of computational learning theory by dealing with an unknown concept c ∈ C for some class of concepts
C. Here, there is a possibly active, randomized learning algorithm that is tasked with constructing a
training set S such that given the labels [S, c(S)], it can efficiently learn some representation of c. This
formulation is dual in the sense that before we were applying functions to an input, and now we are
evaluating inputs to a function. Yet, the goal and setting remain largely the same.

An important initial motivation of the authors of [IKOS19] was to explore the possibility of public
key cryptography “in the real world.” Thus following a construction that required modular arithmetic,
the authors set out to remove this hard-to-find-in-the-natural-world requirement. In this work, we
focus on developing the concept of Covert Learning without considering the “real world” aspirations of
Cryptographic Sensing. Instead, we explore the consequences of a dedicated Covert Learning definition.

A.2 PAC-verification

The work of [GRSY20] initiates the study of interactive proofs for machine learning, which directly
influences our work. Goldwasser et al. outline the setting of PAC-verification as follows. There is a
verifier and a prover who interact to run a verification protocol where the verifier outputs either “reject”
or a hypothesis meant to model some class of concepts D over {0, 1}n × {0, 1}. Let H be a class of

61

hypotheses and let OV and OP be oracles that the verifier and prover have access to, respectively.
Generally, one can think of D as the class of distributions that implements a data source of uniformly
random examples to some target function f : {0, 1}n → {0, 1}. The verifier’s oracle, OV , will operate
as a realization of some D ∈ D and OP will generally be an oracle that implements a data source
acting as membership query access to the target function f of D. PAC-verification aims to construct
interactive proofs with the property that, for any D ∈ D, ε, δ > 0, the verifier either outputs “reject”
or a hypothesis which is ε-close to the optimal hypothesis within H with respect to the loss function
LD(h) = Pr(x,y)∼D[h(x) 6= y], with probability 1− δ. We will refer to such a hypothesis as ε-good with
respect to D. More formally, the interactive proof system will output a hypothesis h such that

Pr

[
h 6= reject ∧ LD(h) ≤ inf

h∈H
LD(h) + ε

]
≥ 1− δ

where the probability is over the random coins of the interactive protocol. In [GRSY20], the focus is on
the agnostic formulation of PAC learning– PAC-verification under the realization assumption7 is trivial
in some cases. For example, the prover could simply send a claimed ε-good hypothesis h with respect to
D, and the verifier would draw a sufficiently large set of random examples, and reject if the fraction of
incorrectly predicted labels is larger than ε (more or less, depending on the desired failure probability
δ, and applying the Chernoff Bound). The difficulty in the agnostic case stems from the fact that it is
not trivial how to get the prover to convince the verifier that infh∈H LD(h) is, say, 0.3. Therefore, a
hypothesis h with LD(h) = 0.31 may be considered unacceptable in the realizable case, yet very good
in the in the agnostic case. As noted in [GRSY20], distinguishing between these two cases may be
extremely difficult if H is very large or complex.

B Variants of Definition 2.7 and Definition 3.3

B.1 Covert Learning Variants

The following definition implements the focus on concept-hiding. The concept-hiding version is specifi-
cally useful in cases where the concept is known to be from a fixed class, in which case the hypothesis-
hiding guarantees maybe unmotivated (and awkward to define). These two definitions can also trans-
formed to stricter forms of soundness, privacy (i.e. statistical, perfect).

Definition B.1. Concept-Hiding Learning. We define Concept-Hiding learner identically to Covert
Learning, except we modify {idealSim} to the following:

Let Sim be a p.p.t. algorithm, which takes as input ε, δ and a set of random examples from the
concept, and a length parameter which denotes the number of queries requested by the learner in the real
interaction. We define {idealSim} to be the distribution generated by the following process.

1. An adversary (a distinguisher) selects ε, δ > 0, a hypothesis class Hn ∈ Cn, and a concept Dn ∈ Dn.

2. A set of examples S is drawn from Dn.

3. A p.p.t. simulator Sim receives Hn,S, `, and “interacts” with the ODn and outputs the set queries
and responses denoted as transcriptSim(S,`). Here ` is the number of queries that the learner requests
in the real interaction.

7The realization assumption refers to the case that infh∈H LD(h) = 0.

62

4. Output (
Hn, ε, δ, transcriptSim(S,`)

)
We note that the focus on the concept-hiding guarantee can also be executed in the verifiable model.

B.2 Covert Verifiable Learning Variants

The next two definitions concern assumptions made on the nature of the random examples. In the first
definition, we consider the case where all random examples are private always. This means that the
learner has private examples available at execution time (to leverage for soundness), and also they are
never revealed to the distinguisher. Thus, the privacy requirement is modified to require simulatability
of only the membership queries. We begin by modifying the security experiments to the following (note
that the main difference is in the output of each process, i.e. what is observed by the distinguisher):

Definition B.2. Let Dn be a concept class, and let Cn be a collection of hypothesis classes. Let I be a
p.p.t adversarial intermediary algorithm, which takes as input ε, δ, and a set of queries and the oracle’s

responses on those queries. We define {FPVrealODnA,I } to be the distribution generated by the following
process.

1. An adversary (a distinguisher) chooses a target hypothesis class Hn ∈ Cn, a concept Dn ∈ Dn,
and accuracy parameters ε, δ > 0.

2. A set of random examples S is drawn from Dn. S is given to the learner, along with Hn, ε, δ,
while the adversarial intermediary I is given ε, δ.

3. The learner begins to interact with the concept oracle ODn by requesting membership queries in
order to agnostically learn Hn. I sees the learner’s queries and responses and is given the chance

to modify the responses. At the end of the interaction, I outputs a string denoted by real
ODn
A,I .

4. Output
(
Hn, ε, δ, real

ODn
A,I

)
Definition B.3. Let Sim be a p.p.t. algorithm, which takes as input two sets of random examples from
the concept and a length parameter ` which signifies the number of queries requested by the learner in
the real interaction. Let I be a p.p.t adversarial intermediary algorithm, which takes as input ε, δ, and
a set of queries and oracle’s responses. We define {FPVidealSim,I} to be the distribution generated by
the following process.

1. An adversary (a distinguisher) chooses a target hypothesis class Hn ∈ Cn, a concept Dn ∈ Dn,
and accuracy parameters ε, δ > 0.

2. A set of random examples S is drawn from Dn.

3. The simulator is given ε, δ,S, while an adversarial intermediary I is given ε, δ.

4. Sim begins to “interact” with the ODn by “requesting” membership queries. I “views” the queries
and responses, and is given the chance to change the responses. The simulator outputs a string,
which is denoted by idealSimI .

63

5. Output
(
Hn, ε, δ, idealSimI

)
Definition B.4. Covert Verifiable Learning with Fully Private Examples. Let Cn be a collection
of hypothesis classes, let Dn be a class of concepts, let ODn be a class of oracles indexed by Dn ∈ Dn,
and let L be a loss function. An algorithm A is an (m(n), α)-covert verifiable learning algorithm for Cn,
with respect to Dn, ODn and L, if for every ε, δ > 0, the following are true.

• Completeness. If for any distribution Dn ∈ Dn, any hypothesis class Hn ∈ Cn, and where S is a
set of size m(n) of examples drawn i.i.d. from Dn, the randomized output of h = AODn (Hn, ε, δ,S)
satisfies

Pr
h

[
L(h) ≤ α · L(Hn) + ε

]
≥ 1− δ

• Soundness. If for any distribution Dn ∈ Dn, any hypothesis class Hn ∈ Cn, and where S is a
set of size m(n) of examples drawn i.i.d. from Dn, then for any adversarial intermediary I that
corrupts queries or responses from A to ODn, the random variable h = AODn (Hn, ε, δ,S) satisfies

Pr
h

[
L(h) > α · L(Hn) + ε

∣∣∣ h 6= reject
]
< δ

We say that soundness is computational if I is p.p.t..

• Privacy. For any adversarial intermediary I, there exists a p.p.t. simulation algorithm Sim that
satisfies: {

FPVreal
ODn
A,I

}
c
≈
{
FPVidealSim,I

}
Finally, we give the definition for the Public Covert Verifiable Learning model (when the learner

has no private queries to use to achieve soundness). We start by modifying the security experiments.
The main difference is that here, the adversarial intermediary also gets a set of random examples on
the concept—which it did not before.

Definition B.5. Let Dn be a concept class, and let Cn be a collection of hypothesis classes. Let I be a
p.p.t adversarial intermediary algorithm, which takes as input ε, δ, a set of random examples from the

concept, and a set of queries and the oracle’s responses on those queries. We define {PVrealODnA,I } to be
the distribution generated by the following process.

1. An adversary (a distinguisher) chooses a target hypothesis class Hn ∈ Cn, a concept Dn ∈ Dn,
and accuracy parameters ε, δ > 0.

2. A set of random examples S is drawn from Dn. S is given to the learner, along with Hn, ε, δ,
while the adversarial intermediary I is given ε, δ,S.

3. The learner begins to interact with the concept oracle ODn by requesting membership queries in
order to agnostically learn Hn. I sees the learner’s queries and responses and is given the chance

to modify the responses. At the end of the interaction, I outputs a string denoted by real
ODn
A,I .

4. Output
(
Hn, ε, δ,S, real

ODn
A,I

)

64

Definition B.6. Let Sim be a p.p.t. algorithm, which takes as input two sets of random examples
from the concept and a length parameter ` which signifies the number of queries requested by the learner
in the real interaction. Let I be a p.p.t adversarial intermediary algorithm, which takes as input ε, δ,
a set of random examples from the concept, and a set of queries and oracle’s responses. We define
{PVidealSim,I} to be the distribution generated by the following process.

1. An adversary (a distinguisher) chooses a target hypothesis class Hn ∈ Cn, a concept Dn ∈ Dn,
and accuracy parameters ε, δ > 0.

2. A set of random examples S ′ is drawn from Dn.

3. The simulator is given ε, δ,S,S ′, while an adversarial intermediary I is given ε, δ,S. Here S is
the same set of examples that was held be the learner in the real interaction.

4. Sim begins to “interact” with the ODn by “requesting” membership queries. I “views” the queries
and responses, and is given the chance to change the responses. The simulator outputs a string,
which is denoted by idealSimI .

5. Output
(
Hn, ε, δ,S, idealSimI

)
Definition B.7. Public Covert Verifiable Learning. Let Cn be a collection of hypothesis classes,
let Dn be a class of concepts, let ODn be a class of oracles indexed by Dn ∈ Dn, and let L be a loss
function. An algorithm A is an (m(n), α)-covert verifiable learning algorithm for Cn, with respect to
Dn, ODn and L, if for every ε, δ > 0, the following are true.

• Completeness. If for any distribution Dn ∈ Dn, any hypothesis class Hn ∈ Cn, and where S is a
set of size m(n) of examples drawn i.i.d. from Dn, the randomized output of h = AODn (Hn, ε, δ,S)
satisfies

Pr
h

[
L(h) ≤ α · L(Hn) + ε

]
≥ 1− δ

• Soundness. If for any distribution Dn ∈ Dn, any hypothesis class Hn ∈ Cn, and where S is a
set of size m(n) of examples drawn i.i.d. from Dn, then for any adversarial intermediary I—
who has access to S—that corrupts queries or responses from A to ODn, the random variable
h = AODn (Hn, ε, δ,S) satisfies

Pr
h

[
L(h) > α · L(Hn) + ε

∣∣∣ h 6= reject
]
< δ

We say that soundness is computational if I is p.p.t..

• Privacy. For any adversarial intermediary I, there exists a p.p.t. simulation algorithm Sim that
satisfies: {

PVreal
ODn
A,I

}
c
≈
{
PVidealSim,I

}
We stipulate that each of the sets of random examples given to the simulator are of size m(n).

65

C Frequently Used Concepts and Lemmas

Definition C.1. Computational Indistinguishability. Let {Xn}, {Yn} be sequences of distributions
with Xn, Yn ranging over {0, 1}m(n) for some m(n) = nO(1). {Xn} and {Yn} are computationally
indistinguishable if for every polynomial time algorithm A and sufficiently large n,

|Pr[A(1n, Xn) = 1]− Pr[A(1n, Yn) = 1]| ≤ negl(n)

Often, n is clear from the context, so the subscript is omitted.

Definition C.2. Agnostic PAC Learning. We say that a hypothesis class H is agnostically PAC-
learnable with respect to a distribution class D over X ,Y if there exists and algorithm A and a function
m : [0, 1]2 → N such that for any ε, δ > 0, and any distribution D ∈ D, if A receives as an input a list
of m(ε, δ) samples from D, then A outputs a function h such that

Pr[LD(h) ≤ LD(H) + ε] ≥ 1− δ

Definition C.3. α-PAC Verifiability. [GRSY20] Let H be a class of hypotheses, let D be some
family of distributions over X ×{0, 1}. We say that H is PAC verifiable with respect to D using oracles
OV ,OP if there exists a pair of algorithms (P, V) that satisfy the following for every ε, δ > 0,

• Completeness: For any distribution D ∈ D, the random variable h = [V OV (ε, δ), POP (ε, δ)] satis-
fies

Pr[h 6= reject ∧ LD(h) ≤ α · LD(H) + ε] ≥ 1− δ

• Soundness: For any distribution D ∈ D, and any possibly unbounded prover P ′, the random
variable h = [V OV (ε, δ), P ′OP (ε, δ)] satisfies

Pr[h 6= reject ∧ LD(h) > α · LD(H) + ε] < δ

Definition C.4. Unpredictable Distributions. Let Fn be a class of n-bit boolean functions. Let D
be a distribution over F . Let P be a distribution over {0, 1}n. We say that Fn is ε-predictable with
respect to D and P if there exists a polynomial time algorithm M taking example set (S, f(S)) and a
test input x with |S| = poly(n), such that for infinitely many n,

Pr
f∼D,S∼Pn,x∼P

[
M(S, f(S), x) = f(x)

]
≥ 1− ε

If there exists some fixed polynomial q(n) such that Fn is (1
2 −

1
q(n))-predictable with respect to D,P,

then we say that Fn is weakly predictable with respect to D,P. If for any polynomial q(n), Fn is
(1
q(n))-predictable with respect to D,P, then we say that Fn is strongly predictable with respect to D,P.

Lemma C.5. Piling-up lemma. For µ ∈ [0, 1
2], and random variables E1 · · ·Em that are i.i.d. from

βµ,

Pr

[
m⊕
i=1

Ei = 0

]
=

1

2
+

1

2
(1− 2µ)m

66

Lemma C.6. Chernoff Bound. For any n ∈ N, let X1 · · ·Xn be i.i.d. from βµ, and let X̄ =
∑n

i=1Xi.
Then for any ε ≥ 0,

Pr[X̄ ≥ (1 + ε)µn] ≤ exp

(
− ε2µn

2 + ε

)
Pr[X̄ ≤ (1− ε)µn] ≤ exp

(
− ε2µn

2

)

Lemma C.7. Hoeffding Bound. Let Xi be independent random variables over the intervals [ai, bi],

and let X =
n∑
i
Xi. Then for δ ≥ 0,

Pr

[∣∣∣E[X]−X∣∣∣ ≥ δ] ≤ 2exp

(
−2δ2

n∑
i

(ai − bi)2

)

Lemma C.8. Chebyshev Inequality. Let X be a random variable and δ > 0. Then

Pr
[∣∣X − E

[
X
]∣∣ ≥ δ] ≤ V ar(X)

δ2

Lemma C.9. Pairwise Independent Sampling using Chebyshev. Let X1, X2, · · ·Xn be pairwise
independent random variables with same expectation µ and the same variance σ2. The for every ε > 0,

Pr

[∣∣∣∣∑n
i=1Xi

n
− µ

∣∣∣∣ ≥ ε
]
≤ σ2

ε2n

Lemma C.10. Union Bound. Let E1 · · ·En be any (not necessarily independent) events such that
Pr[Ei] ≥ 1− εi for every i ∈ [n]. Then,

Pr[E1 ∧ E2 · · · ∧ En] ≥ 1−
(n∑
i=1

εi

)

Lemma C.11. Sampling Bound. For any n ∈ N, let X1 · · ·Xn be i.i.d. from βµ, and let X̄n =
1
n

∑n
i=1Xi. Then for n ≥ 2+ε

ε2
ln(2

δ),

Pr

[∣∣∣X̄n − µ
∣∣∣ ≤ ε] ≥ 1− δ

Lemma C.12. Markov Inequality. Let X be a random variable with expectation µ. Then,

Pr[X ≥ a] ≤ µ/a

D Fourier Analysis

We work with f : Fn2 → R. In particular, we will care about functions f : Fn2 → {−1, 1}.

67

Definition D.1. For S ⊆ [n], we define χS : Fn2 → R by

χS(x) = (−1)

∑
i∈S

xi

Fact D.2. χS(x+ y) = χS(x)χS(y)

Definition D.3. The Fourier expansion of f : Fn2 → R is

f(x) =
∑
S⊆[n]

f̂(S)χS(x)

where f̂(S) is the Fourier coefficient on S.

Sometimes, it will make sense to correspond subsets S ⊆ [n] with vectors in Fn2 (we do this in the
proof of Theorem 2.26). The natural correspondence of a subset S to a vector x is that xi = 1 if i ∈ S
and 0 otherwise. When this is the case, we have:

Definition D.4. For k ⊆ Fn2 , we define χk : Fn2 → R by χk(x) = (−1)〈k,x〉

Fact D.5. χx+y = χxχy

Definition D.6. The Fourier expansion of f : Fn2 → R is

f(x) =
∑
k∈Fn2

f̂(k)χk(x)

Theorem D.7. Parseval’s Theorem. For any f : {−1, 1}n → R,

〈f, f〉 = E
x
[f(x)2] =

∑
S⊆[n]

f̂(S)2

and in the case of f : {−1, 1}n → {−1, 1}, ∑
S⊆[n]

f̂(S)2 = 1

Theorem D.8. Plancherel’s Theorem. for any f, g : {−1, 1}n → R,

〈f, g〉 = E
x
[f(x)g(x)] =

∑
S⊆[n]

f̂(S)ĝ(S)

E Proofs of CVLDT Guarantees

We prove completeness:

68

Proposition E.1. Under the (2ω(n
1
2), 2ω(n

1
2))−SLPNµ,n assumption, CVLDT satisfies the completeness

guarantee of Covert Verifiable Learning for CDTn,s for s ≤ poly(n), with respect to DFn, OFn, and LD,
and where ε ≥ 1/poly(n), and δ ≥ exp(−n)

Proof. The interactive aspect of CVLDT is fully contained inside CVLF. Completeness clearly follows
from the completeness of CVLF and identical arguments to that of the proof of completeness for CLDT.

Similarly, soundness:

Proposition E.2. Under the (2ω(n
1
2), 2ω(n

1
2))−SLPNµ,n assumption, CVLDT satisfies the computational

soundness guarantee of Covert Verifiable Learning for CDTn,s for s ≤ poly(n), with respect to DFn, OFn,
and LD.

Proof. The interactive aspect of CVLDT is fully contained inside CVLF. Therefore, soundness follows
from soundness of CVLF, and the completeness of CVLDT. Note that we choose the soundness parameter
of the CVLF subroutine to be δ/2, and select an appropriate constant on O(log(1/δ)) for the number of
iterations.

Finally, privacy:

Proposition E.3. Under the (2ω(n
1
2), 2ω(n

1
2))−SLPNµ,n assumption, CVLDT satisfies the privacy guar-

antee of Covert Verifiable Learning for CDTn,s for s ≤ poly(n), with respect to DFn, OFn, and LD.

Proof. As above, the interactive aspect of CVLDT is fully contained inside CVLF. Therefore, privacy
follows from privacy of CVLF, and the completeness of CVLDT. Note that we only need to change the
simulator and the reduction of Proposition 3.6 to handle the proper amount of queries.

69

	Introduction
	Our Contributions
	New Learning Models: Covert and Verifiable Learning
	Overview of Results
	Algorithmic Ideas

	Real World Applications
	Related Work
	Cryptographic Sensing
	PAC-verification
	Other Related Models

	Covert Learning
	Preliminaries
	Definition of Covert Learning
	Discussion

	A Warm-Up: Covert Learning of Noisy Parity Functions
	The Learning Problem
	The Construction

	Covert Learning of Low-degree Fourier Coefficients
	Our Task
	The Construction

	Covert Learning of Polynomial Size Decision Trees

	Covert Verifiable Learning
	Definition of Covert Verifiable Learning
	Discussion

	Making CLF Verifiable
	Making CLDT Verifiable
	Verifiability Without Secret Examples
	Perfect Privacy and Statistical Soundness With Fully Private Examples

	Key Exchange from Covert Learning
	How Does Our Protocol Differ from Alekhnovich's?

	Appendices
	More on Related Work
	Cryptographic Sensing
	PAC-verification

	Variants of Definition 2.7 and Definition 3.3
	Covert Learning Variants
	Covert Verifiable Learning Variants

	Frequently Used Concepts and Lemmas
	Fourier Analysis
	Proofs of CVLDT Guarantees

