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Abstract

In this paper, we initiate a study of asymmetric all-or-nothing transforms
(or asymmetric AONTs). A (symmetric) t-all-or-nothing transform is a bijec-
tive mapping defined on the set of s-tuples over a specified finite alphabet. It
is required that knowledge of all but t outputs leaves any t inputs completely
undetermined. There have been numerous papers developing the theory of
AONTs as well as presenting various applications of AONTs in cryptography
and information security.

In this paper, we replace the parameter t by two parameters to and ti,
where ti ≤ to. The requirement is that knowledge of all but to outputs leaves
any ti inputs completely undetermined. When ti < to, we refer to the AONT
as asymmetric.

We give several constructions and bounds for various classes of asymmetric
AONTs, especially those with ti = 1 or ti = 2. We pay particular attention to
linear transforms, where the alphabet is a finite field Fq and the mapping is
linear.

1 Introduction

In this paper, we study asymmetric all-or-nothing transforms, which we define in-
formally as follows.

Definition 1.1. Suppose s is a positive integer and φ : Γs → Γs, where Γ is a finite
set of size v (called an alphabet). Thus φ is a function that maps an input s-tuple
x = (x1, . . . , xs) to output s-tuple y = (y1, . . . , ys). Suppose ti and to are integers
such that 1 ≤ ti ≤ to ≤ s.

The function φ is an (ti, to, s, v)-all-or-nothing transform (or (ti, to, s, v)-AONT)
provided that the following properties are satisfied:
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1. φ is a bijection.

2. If any s − to of the s outputs y1, . . . , ys are fixed, then the values of any ti
inputs xi (for 1 ≤ i ≤ s) are completely undetermined.

Remark 1.1. It is not difficult to see that ti ≤ to if a (ti, to, s, v)-AONT exists,
as follows. If only to are outputs are unknown, then the number of possible values
taken on by any subset of the inputs is at most vto . Since a subset of ti inputs must
be completely undetermined, we must have vti ≤ vto , or ti ≤ to.

All-or-nothing-transforms (AONTs) were invented in 1997 by Rivest [13]. Rivest’s
work concerned AONTs that are computationally secure. Some early papers on
various generalizations of AONTs include [1, 2, 5]. Stinson [14] introduced and
studied all-or-nothing transforms in the setting of unconditional security. Further
work focussing on the existence of unconditionally secure AONTs can be found
in [4, 7–9, 15, 16]. AONTs have had numerous applications in cryptography and
information security; see [6] for an overview.

Rivest’s original definition in [13] corresponded to the special case ti = to = 1.
Most research since then has involved AONTs where ti = to = t for some positive
integer t. (Such an AONT is often denoted as a (t, s, v)-AONT in the literature.) In
such an AONT, knowing all but t outputs leaves any t inputs undetermined. Here we
mainly consider AONTs where ti < to. Such an AONT can be thought of asymmetric
in the sense that the number of missing outputs is greater than the number of inputs
about which we are seeking information. In general, asymmetric AONTs are easier
to construct than AONTs in which ti = to because the requirements are weaker.

The first example of asymmetric AONTs in the literature is apparently found in
Stinson [14, §2.1]. We present this construction in Example 1.1.

Example 1.1. For s even, a (1, 2, s, 2)-AONT exists as follows. Given s inputs
x1, . . . , xs ∈ Z2, define

r =

s∑
i=1

xi

yi = r + xi, for 1 ≤ i ≤ s.
This yields the s outputs y1, . . . , ys. The inverse transformation is computed as

r′ =
s∑

i=1

yi

xi = r′ + yi, for 1 ≤ i ≤ s.

Suppose we are given s − 2 of the s outputs, so two outputs are missing. It is
clear that each input depends on s−1 outputs: xi is a function of all the yj ’s, except
for yi. Thus, if two outputs are missing, then no values can be ruled out for xi. �

We note that the construction given in Example 1.1 only works for even s (when
s is odd, the mapping is not invertible). A construction for odd values of s will be
given later (see Lemma 3.9).
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Karame et al. [10] introduced Bastion, which is a scheme for securely dispersing
a document over multiple cloud storage services. Bastion involves encrypting a
plaintext using counter mode and then applying a (1, 2, s, 2)-AONT to the resulting
ciphertext blocks. The paper [10] considered a threat model where the adversary
may have access to the key or use a backdoor to decrypt the ciphertext. To protect
against these threats, assuming the adversary cannot access at least two parts, they
suggest to divide the ciphertext into multiple parts and store each part on a different
server after applying the AONT.

1.1 Our Contributions

Our goal in this paper is to develop the basic mathematical theory of asymmetric
AONTs. In Section 2, we discuss a combinatorial approach to asymmetric AONTs,
and we examine how different combinatorial definitions impact the security of the
transforms. We also present some connections with other combinatorial structures
such as orthogonal arrays and split orthogonal arrays. Section 3 focusses on existence
and bounds for linear asymmetric AONTs. We complete the solution of the existence
problem for ti = 1, as well as when ti = 2 and to = s − 1. Then we turn to cases
where ti ≥ 2. We prove a general necessary condition for existence, and then we
consider the case ti = 2 in detail. New existence results are obtained from computer
searches. Finally, Section 4 is a brief summary.

We note that many of the results in this paper were first presented in the PhD
thesis of the first author [6].

2 Combinatorial Definitions and Security Properties

Definition 1.1 is phrased in terms of security properties, i.e., it specifies information
about a subset of inputs that can be deduced if only a certain subset of the outputs
is known. (As mentioned in the introduction, we are studying AONTs in the set-
ting of unconditional security.) It is useful to employ a combinatorial description
of AONTs in order to analyze them from a mathematical point of view. Combina-
torial definitions of AONTs have appeared in numerous papers, beginning in [14].
However, the connections between security definitions and combinatorial definitions
turn out to be a bit subtle, as was recently shown by Esfahani and Stinson [9].

First, as noted in [9], there are two possible ways to interpret the security re-
quirement. In the original definition of AONT due to Rivest [13], as well as in
Definition 1.1, we only require that the values of any ti inputs are completely unde-
termined, given the values of s − to outputs. In other words, assuming that every
possible input s-tuple occurs with positive probability, the probability that the ti
specified inputs take on any specified possible values (given all but to outputs) is
positive. This notion is termed weak security in [9].

An alternative notion that is discussed in detail in [9] is that of perfect security.
Here, we require that the a posteriori distribution on any ti inputs, given the values
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of s− to outputs, is identical to the a priori distribution on the same inputs. Thus,
no information about any ti inputs is revealed when s− to outputs are known.

The standard combinatorial definition for (t, t, s, v)-AONT (see, e.g., [4, 7]) in-
volves certain unbiased arrays. We review this definition now and discuss when
weak or perfect security can be attained (the security may depend on the probabil-
ity distribution defined on the input s-tuples). Then we generalize this approach to
handle the slightly more complicated case of asymmetric AONTs.

An (N, k, v)-array is an N by k array, say A, whose entries are elements chosen
from an alphabet Γ of order v. Suppose the k columns of A are labelled by the
elements in the set C. Let D ⊆ C, and define AD to be the array obtained from A
by deleting all the columns c /∈ D. We say that A is unbiased with respect to D if
the rows of AD contain every |D|-tuple of elements of Γ exactly N/v|D| times. Of
course, this requires that N is divisible by v|D|.

An AONT, say φ, is a bijection from Γ to Γ, where Γ is a v-set. The array
representation of φ is a (vs, 2s, v)-array, say A, that is constructed as follows: For
every input s-tuple (x1, . . . , xs) ∈ Γs, there is a row of A containing the entries
x1, . . . , xs, y1, . . . , ys, where φ(x1, . . . , xs) = (y1, . . . , ys).

Our combinatorial definition of an AONT, Definition 2.1, involves arrays that
are unbiased with respect to certain subsets of columns. This definition is an obvious
generalization of previous definitions for (t, t, s, v)-AONTs from [4,7].

Definition 2.1. A (ti, to, s, v)-all-or-nothing transform is a (vs, 2s, v)-array, say A,
with columns labelled 1, . . . , 2s, that is unbiased with respect to the following subsets
of columns:

1. {1, . . . , s},

2. {s+ 1, . . . , 2s}, and

3. I ∪ J , for all I ⊆ {1, . . . , s} with |I| = ti and all J ⊆ {s + 1, . . . , 2s} with
|J | = s− to.

We interpret the first s columns of A as indexing the s inputs and the last s
columns as indexing the s outputs. Then, as mentioned above, properties 1 and 2
ensure that the array A defines a bijection φ. Property 3 guarantees that knowledge
of any s− to outputs does not rule out any possible values for any ti inputs.

The following results concerning (t, t, s, v)-AONTs are from [9].

Theorem 2.1. Suppose φ : Γs → Γs is a bijection, where Γ is an alphabet of size
v, and suppose 1 ≤ t ≤ s.

1. Suppose any input s-tuple occurs with positive probability. Then the mapping φ
is a weakly secure AONT if and only if its array representation is a (t, t, s, v)-
AONT.

2. The mapping φ is a perfectly secure AONT if and only if its array repre-
sentation is a (t, t, s, v)-AONT and every input s-tuple occurs with the same
probability.

4



When we turn to asymmetric AONTs, there is an additional subtlety, namely
that we can obtain weak security for combinatorial structures that are weaker than
the arrays defined in Definition 2.1. We can characterize asymmetric AONTs achiev-
ing weak security in terms of arrays that satisfy covering properties with respect to
certain sets of columns. As before, suppose A is an (N, k, v)-array, whose entries are
elements chosen from an alphabet Γ of order v and whose columns are labelled by
the the set C. Also, for D ⊆ C, define AD as before. We say that A is covering with
respect to a subset of columns D ⊆ C if the rows of AD contain every |D|-tuple of
elements of Γ at least once.

Remark 2.1. An array that satisfies the covering property for all subsets of t
columns is called a t-covering array. Such arrays have many important applications,
including software testing. See [3, §VI.10] for a brief survey of covering arrays.

We state a few simple observations without proof.

Lemma 2.2. Suppose A is an (N, k, v)-array with columns labelled by C.

1. If A is unbiased or covering with respect to D ⊆ C, then N ≥ v|D|.

2. If A is unbiased with respect to D ⊆ C, then A is covering with respect to D.

3. If D ⊆ C and N = v|D|, then A is unbiased with respect to D if and only if A
is covering with respect to D.

4. If A is unbiased or covering with respect to D ⊆ C, then A is unbiased or
covering (resp.) with respect to all D′ ⊆ D.

Definition 2.2. A (ti, to, s, v)-weak-all-or-nothing transform is a (vs, 2s, v)-array,
say A, with columns labelled 1, . . . , 2s, that is covering with respect to the following
subsets of columns:

1. {1, . . . , s},

2. {s+ 1, . . . , 2s}, and

3. I ∪ J , for all I ⊆ {1, . . . , s} with |I| = ti and all J ⊆ {s + 1, . . . , 2s} with
|J | = s− to.

We note that a (t, t, s, v)-weak-AONT is equivalent to a (t, t, s, v)-AONT. This
follows immediately from Lemma 2.2. However, a (ti, to, s, v)-weak-AONT is not
necessarily a (ti, to, s, v)-AONT if ti < t0. Example 2.1 depicts a (1, 2, 3, 2)-weak-
AONT that is not a (1, 2, 3, 2)-AONT.

Example 2.1. We present a (1, 2, 3, 2)-weak AONT over the alphabet {a, b}. The
array representation of this AONT is as follows:
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x1 x2 x3 y1 y2 y3
a a a a a a
a a b b b a
a b a b a b
a b b b a a
b a a a b b
b a b a b a
b b a a a b
b b b b b b

This array is biased with respect to various pairs of columns (xi, yj). For exam-
ple, we verify that this array is biased with respect to columns x1 and y1. Specifically,
the ordered pairs (a, a) and (b, b) each occur once, but the ordered pairs (a, b) and
(b, a) each occur three times.

However, for all choices of xi and yj , it can be verified that A is covering with
respect to the pair of columns (xi, yj). �

The following theorem extends part of Theorem 2.1 to the asymmetric case.
Proofs are omitted, as they are essentially the same as the proofs in [9].

Theorem 2.3. Suppose φ : Γs → Γs is a bijection, where Γ is an alphabet of size
v, and suppose 1 ≤ ti ≤ to ≤ s.

1. Suppose any input s-tuple occurs with positive probability. Then the mapping
φ is weakly secure if and only if its array representation is a (ti, to, s, v)-weak-
AONT.

2. The mapping φ is perfectly secure if its array representation is a (ti, to, s, v)-
AONT and every input s-tuple occurs with the same probability.

Remark 2.2. The second part of Theorem 2.1 is “if and only if”. However, we do
not know if the converse of the second part of Theorem 2.3 is true when ti < to.

2.1 General Properties

In the rest of the paper, we focus on (ti, to, s, v)-AONTs that satisfy Definition 2.1.
These are the AONTs that are unbiased with respect to various subsets of columns.
First, we record various general properties about these AONTs. Some of these
results are generalizations of previous results pertaining to (t, t, s, v)-AONT, and
most of them follow easily from Lemma 2.2.

The following result was shown in [15] for the case ti = to. The generalization
to arbitrary ti ≤ to is obvious.

Theorem 2.4. A mapping φ : X s → X s is a (ti, to, s, v)-AONT if and only if φ−1

is an (s− to, s− ti, s, v)-AONT.

Proof. Interchange the first s columns and the last s columns in the array represen-
tation of the AONT φ.
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An orthogonal array OA(t, k, v) is a (vt, n, v) array, say A, that is unbiased with
respect to any t columns. The next theorem generalizes [7, Corollary 35].

Theorem 2.5. If there exists an OA(s, 2s, v), then there exists a (ti, t0, s, v)-AONT
for all ti and to such that 1 ≤ ti ≤ to ≤ s.

Proof. It suffices to show that an OA(s, 2s, v) satisfies the conditions of Definition
2.1. This follows immediately from Lemma 2.2 and the observation that

1 ≤ ti + s− to ≤ s

for all ti and to such that 1 ≤ ti ≤ to ≤ s.

Levenshtein [11] defined split orthogonal arrays (or SOAs) as follows. A split
orthogonal array SOA(t1, t2;n1, n2; v) is a (vt1+t2 , n1 + n2, v) array, say A, that
satisfies the following properties:

1. the columns of A are partitioned into two sets, of sizes n1 and n2, respectively,
and

2. A is unbiased with respect to any t1 + t2 columns in which t1 columns are
chosen from the first set of n1 columns and t2 columns are chosen from the
second set of n2 columns.

From the definition of split orthogonal arrays, we can immediately obtain the fol-
lowing theorem.

Theorem 2.6. Suppose there exists a (ti, to, s, v)-AONT. Then there exists an
SOA(ti, s− to, s, s, v).

Proof. Consider the array representation of a (ti, to, s, q)-AONT. Denote n1 = s, n2 =
s, t1 = ti and t2 = s − to. Fixing any t2 outputs does not yield any information
about any t1 inputs. Hence, the array is unbiased with respect to any s − to + ti
columns where ti columns are chosen from the first set of s columns and s − to
columns are chosen from the second set of s columns. Therefore the array is an
SOA(ti, s− to, s, s, v).

Theorems 2.5 and 2.6 show that, in a certain sense, AONTs (symmetric and
asymmetric) are “between” orthogonal arrays and split orthogonal arrays. More
precisely, an OA(s, 2s, v) implies the existence of a (ti, to, s, v)-AONT (for 1 ≤ ti ≤
to ≤ s), which in turn implies the existence of an SOA(ti, s− to, s, s, v).

3 Linear Asymmetric AONTs

Suppose q is a prime power. If every output of a (ti, to, s, v)-AONT is an Fq-linear
function of the inputs, the AONT is a linear (ti, to, s, q)-AONT. Note that we will
write a linear (ti, to, s, q)-AONT in the form y = xM−1, where M is an invertible s
by s matrix over Fq (as always, x is an input s-tuple and y is an output s-tuple).
Of course it holds also that x = yM .
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Remark 3.1. The (1, 2, s, 2)-AONT described in Example 1.1 (for even values of
s) is a linear AONT, where M is the s by s matrix with 0’s on the diagonal and 1’s
elsewhere. When s is even, M is invertible and M−1 = M .

The following lemma generalizes [4, Lemma 1].

Lemma 3.1. Suppose that q is a prime power and M is an invertible s by s matrix
with entries from Fq. Suppose 1 ≤ ti ≤ to ≤ s. Then the function y = xM−1 defines
a linear (ti, to, s, q)-AONT if and only if every to by ti submatrix of M has rank ti.

Proof. Suppose I, J ⊆ {1, . . . , s}, |I| = ti, |J | = to. Let x′ = (xi : i ∈ I). We have
x′ = yM ′, where M ′ is the s by ti matrix formed from M by deleting all columns
not in I. Now assume that yj is fixed for all j 6∈ J and denote y′ = (yj : j ∈ J).
Then we can write x′ = y′M ′′+ c, where M ′′ is the to by ti submatrix of M formed
from M by deleting all columns not in I and all rows not in J , and c is a vector
of constants. If M ′′ is of rank ti, then x′ is completely undetermined, in the sense
that x′ takes on all values in (Fq)

ti as y′ varies over (Fq)
to . On the other hand, if

t′ = rank(M ′′) < ti, then x′ can take on only (Fq)
t′ possible values.

The following corollaries pertain to the special case where ti = to = t.

Corollary 3.2. [4] Suppose M is an invertible s by s matrix with entries from
Fq. Then y = xM−1 defines a linear (t, t, s, q)-AONT if and only if every t by t
submatrix of M is invertible.

Corollary 3.3. Suppose that y = xM−1 defines a linear (t, t, s, q)-AONT. Then
y = xM defines a linear (s− t, s− t, s, q)-AONT.

Corollary 3.4. Suppose M is an invertible s by s matrix with entries from Fq.
Then y = xM−1 defines a linear (t, t, s, q)-AONT if and only if every s− t by s− t
submatrix of M−1 is invertible.

Another approach to construct asymmetric AONTs is to use t-AONTs or other
asymmetric AONTs. The following results will present various such constructions.
First, we generalize [7, Theorem 20].

Lemma 3.5. If 1 ≤ ti ≤ to < s, then the existence of a linear (ti, to, s, q)-AONT
implies the existence of a linear (ti, to, s− 1, q)-AONT.

Proof. Let M be a matrix for a linear (ti, to, s, q)-AONT. Since M is invertible, if
we calculate its determinant using the cofactor expansion of M with respect to its
first row, at least one of the (s − 1) × (s − 1) submatrices is invertible. Also, any
to × ti submatrix of M , including those in the invertible submatrix, are of rank ti.
Hence, the invertible submatrix is a (ti, to, s− 1, q)-AONT.

Lemma 3.6. If 1 ≤ ti ≤ to ≤ s, then the existence of a linear (ti, to, s, q)-AONT
implies the existence of a linear (ti, t

′
o, s, q)-AONT for all t′o such that to ≤ t′o ≤ s.
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Proof. Consider the matrix representation of the linear (ti, to, s, q)−AONT. Every
t′o by ti submatrix is rank ti, because all its to × ti submatrices are of rank ti.

Lemma 3.7. If 1 ≤ ti ≤ to ≤ s, then the existence of a linear (ti, to, s, q)-AONT
implies the existence of a linear (t′i, to, s, q)-AONT for any t′i such that 1 ≤ t′i ≤ ti ≤
s.

Example 3.1. We observe that existence of a linear (ti, to, s, q)-AONT does not
necessarily imply the existence of a linear (ti, ti, s, q)-AONT or a linear (to, to, s, q)-
AONT. Consider the linear (2, 3, 4, 2)-AONT presented by the following matrix

1 0 0 1
0 1 0 1
0 0 1 1
1 1 1 0

 .

While every 3 × 2 submatrix of the matrix above is of rank 2, a (2, 2, s, 2)-AONT
does not exist if s > 2, as was proven by D’Arco et al. [4].

Additionally, from Corollary 3.3, a linear (3, 3, 4, 2)-AONT would be equivalent
to a linear (1, 1, 4, 2)-AONT. Since it was shown in [14] that an (1, 1, 4, 2)-AONT
does not exist, we conclude that a linear (3, 3, 4, 2)-AONT does not exist. �

The main general construction for linear (t, t, s, q)-AONTs in [4] uses Cauchy
matrices. We provide a generalization that applies to asymmetric AONTs.

Theorem 3.8. Suppose q ≥ 2s is a prime power and 1 ≤ ti ≤ to ≤ s. Then there
exists a linear (ti, to, s, q)-AONT.

Proof. In [4, Theorem 2], it was shown that a linear (t, t, s, q)-AONT exists if q ≥ 2s
is a prime power and 1 ≤ t ≤ s. Let ti = to = t and then apply Lemma 3.7. This
shows that there is a a linear (t′i, to, s, q)-AONT provided that 1 ≤ t′i ≤ to ≤ s.

3.1 Linear (1, to, s, q)-AONT

We noted in Remark 3.1 that there exists a linear (1, 2, s, 2)-AONT for all even
values of s ≥ 2. In the next lemma, we show that linear (1, 2, s, 2)-AONTs exist for
odd values of s.

Lemma 3.9. There is a linear (1, 2, s, 2)-AONT for any odd value of s ≥ 3.

Proof. Suppose s ≥ 3 is odd. Let M be the s by s matrix whose first subdiagonal
consists of 0’s, but all other entries are 1’s. For example, when s = 5, we have

M =


1 1 1 1 1
0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1

 .
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The matrix M is invertible and its inverse is an s by s matrix with a right top
submatrix that is an identity matrix, and 1’s occur along the last row and first
column. For example, when s = 5, we have

M−1 =


1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1
1 1 1 1 1

 .

Further, any 2 by 1 submatrix of M has rank 1 because there is at most one occur-
rence of 0 in each column of M .

Recall that y = xM−1 and x = yM . Given s inputs x1, . . . , xs ∈ Z2, the
above-discussed transform can be computed as follows:

y1 =

s∑
i=1

xi.

yi = xi−1 + xs, for 2 ≤ i ≤ s.

This yields the s outputs y1, . . . , ys. The inverse transform is computed as

xs =
s∑

i=1

yi

xi = xs + yi+1, for 2 ≤ i ≤ s.

Thus, computation of the transform or its inverse requires 2s−2 addition operations
in Z2 (i.e., exclusive-ors).

Theorem 3.10. Suppose q is a prime power and 1 ≤ to ≤ s. Then there is a
linear (1, to, s, q)-AONT unless q = 2 and t0 = 1. Further, there does not exist any
(1, 1, s, 2)-AONT.

Proof. When q > 2, it was shown in [14, Corollary 2.3] that there exists a linear
(1, 1, s, q)-AONT for all s ≥ 1. Applying Lemma 3.6, there exists a linear (1, to, s, q)-
AONT for all prime powers q > 2 and all t0 and s such that 1 ≤ to ≤ s.

We have also noted in Remark 3.1 that there exists a linear (1, 2, s, 2)-AONT for
all even values of s ≥ 2. Applying Lemma 3.6, there exists a linear (1, to, s, 2)-AONT
for all t0 and s such that s is even and 2 ≤ to ≤ s. From Lemmas 3.6 and 3.9, there
exists a linear (1, to, s, 2)-AONT for all t0 and s such that s is odd and 2 ≤ to ≤ s.

Finally, it was shown in [14] that there does not exist any (1, 1, s, 2)-AONT.

3.2 Linear (2, s− 1, s, 2)-AONT

In this section, we consider linear (2, s− 1, s, 2)-AONTs.
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For even values of s ≥ 4, we use the (1, 2, s, 2)-AONT from Remark 3.1. This
AONT is based on the s by s matrix M with 0’s on the diagonal and 1’s elsewhere.
We have already noted that this matrix is invertible. To show that it gives rise to
a (2, s− 1, s, 2)-AONT, we need to show that any s− 1 by 2 submatrix has rank 2.
It can be observed that any choice of s − 1 rows and two columns will contain at
least s− 3 ≥ 1 occurrences of the row (1, 1) and at least one copy of the row (0, 1)
or (1, 0). Therefore, we have proven the following.

Lemma 3.11. For any even integer s ≥ 4, there exists a linear (2, s−1, s, 2)-AONT.

Now we turn to odd values of s.

Lemma 3.12. For any odd integer s ≥ 5, there is a linear (2, s− 1, s, 2)-AONT.

Proof. For an odd integer s ≥ 5, define the s by s matrix Bs to have 1’s in the
entries on the main diagonal, the last row and the last column, and 0’s elsewhere.

For example, the matrix B5 is as follows:
1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
1 1 1 1 1

 .

Suppose we subtract rows 1, . . . , s−1 of Bs from row s. Then we obtain an upper
triangular matrix with 1’s on the main diagonal. This proves that Bs is invertible.

Now we prove that any s − 1 by 2 submatrix has rank two. First, consider
columns i and s, where 1 ≤ i ≤ s − 1. The s rows of this submatrix contain two
copies of (1, 1) and s− 2 copies of (0, 1). Therefore, any s− 1 rows still contain at
least one copy of (1, 1) and at least one copy of (0, 1). This means that the s− 1 by
2 submatrix has rank 2.

Next, we consider columns i and j, where 1 ≤ i < j ≤ s− 1. The s rows of this
submatrix contain one copy of each of (0, 1), (1, 0) and (1, 1). Therefore, any s− 1
rows still contain at least two of the three pairs (0, 1), (1, 0) and (1, 1). This means
that the s− 1 by 2 submatrix has rank 2.

Theorem 3.13. There is a linear (2, s− 1, s, 2)-AONT if and only if s ≥ 4.

Proof. If a (ti, to, s, q)-AONT exsits, we must have ti ≤ to. Hence, s ≥ 3 if a
(2, s− 1, s, 2)-AONT exists. D’Arco et al. [4] proved that a linear (2, 2, 3, 2)-AONT
does not exist. For s ≥ 4, Lemmas 3.11 and 3.12 show that a linear (2, s− 1, s, 2)-
AONT exists.

3.3 Linear (ti, to, s, q)-AONT with ti ≥ 2

In this section, we study linear (ti, to, s, q)-AONTs with ti ≥ 2. We first prove a
general upper bound on s as a function of ti, to and q. Then we consider the case
ti = 2 in detail.
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Theorem 3.14. Suppose there exists a linear (ti, to, s, q)-AONT with 2 ≤ ti ≤ to.
Then the following bound holds:

s ≤ (to − 1)(qti − 1)

(ti − 1)(q − 1)
.

Proof. Fix any ti columns of the matrix M and consider the resulting submatrix
M ′. Recall that any to by ti submatrix of M must have rank ti.

There are qti possible ti-tuples for any given row of M ′. We can replace an
all-zero ti-tuple with any other ti-tuple, and it does not decrease the rank of any
to by ti submatrix in M ′. Hence, we can assume that there is no all-zero ti-tuple
among the rows of M ′. Therefore, there are qti − 1 possible rows in M ′.

For any two nonzero ti-tuples, say a and b, define a ∼ b if there is a nonzero
element α ∈ Fq such that a = αb. Clearly ∼ is an equivalence relation, and there
are (qti − 1)/(q − 1) equivalence classes, each of size q − 1.

Suppose the equivalence classes of rows are denoted by Ei. Further, suppose
there are ai rows from Ei in M ′, for 1 ≤ i ≤ (qti − 1)/(q − 1). The sum of the ai’s
is equal to s and hence the average value of an ai is

a =
s(q − 1)

qti − 1
.

Let L denote the sum of the ti − 1 largest ai’s. It is clear that

L ≥ (ti − 1)a =
s(ti − 1)(q − 1)

qti − 1
.

Also, because the to rows of M ′ cannot come from fewer than ti equivalence classes,
we have

L ≤ to − 1.

Hence, combining the two inequalities, we see that

s ≤ (to − 1)(qti − 1)

(ti − 1)(q − 1)
.

We now look at the case ti = 2 in more detail.

Theorem 3.15. Suppose there exists a linear (2, to, s, q)-AONT with 2 ≤ to. Then
the following bound holds:

s ≤ max{1 + (to − 2)(q + 1), 2 + (to − 1)(q − 1)}.

Proof. Consider an s by 2 submatrix M ′ and let a0 be the number of (0, 0) rows in
this submatrix. We divide the proof into two cases.

12



case (1)

Suppose a0 ≥ 1. We claim that M ′ contains at most to−a0−1 rows from any
one equivalence class Ei, where equivalence classes are as defined in the proof
of Theorem 3.14. This follows because to−a0 rows from one equivalence class,
together with the a0 rows of 0’s, would result in M ′ having rank 1. Excluding
the rows of 0’s, there are q + 1 possible equivalence classes of rows, so

s ≤ a0 + (to − a0 − 1)(q + 1) ≤ 1 + (to − 2)(q + 1).

case (2)

If we are not in case (1), then a0 = 0 for every s by 2 submatrix M ′. There
can be at most one 0 in each row of M , so there are at most s occurrences of
0 in M . Therefore, there must be two columns in M that contain a total of
at most two 0’s. We focus on this particular s by 2 submatrix M ′.

Let the number of 0’s in M ′ be denoted by a; we have noted that a ≤ 2. In
the s − a rows that do not contain a 0, there are at most to − 1 rows from
any equivalence class Ei. Note that we have excluded two Ei’s, i.e., (∗, 0) and
(0, ∗), so

s ≤ a+ (to − 1)(q − 1) ≤ 2 + (to − 1)(q − 1).

Since one of the above two cases must hold, we have

s ≤ max{1 + (to − 2)(q + 1), 2 + (to − 1)(q − 1)}.

We note that
1 + (to − 2)(q + 1) < (to − 1)(q + 1)

and
2 + (to − 1)(q − 1) < (to − 1)(q + 1),

so
max{1 + (to − 2)(q + 1), 2 + (to − 1)(q − 1)} < (to − 1)(q + 1).

Hence the bound from Theorem 3.15 improves Theorem 3.14 when ti = 2.
For positive integers ti and to, where 1 ≤ ti ≤ to, and a prime power q, define

S(ti, to, q) = max{s : a linear (ti, to, s, q)-AONT exists}.

Note that S(ti, to, q) ≥ to because the to by to identity matrix is a (ti, to, to, q)-AONT.

Theorem 3.16. Suppose 1 ≤ ti ≤ to and q is a prime power. Then there exists a
(ti, to, s, q)-AONT for to ≤ s ≤ S(ti, to, q).

Proof. This is an immediate consequence of Lemma 3.5.
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Table 1: Examples of bounds from Theorems 3.14 and 3.15.

ti q to Upper bound on S(ti, to, q) Justification

2 2 2 to + 1 Theorem 3.15
2 2 ≥ 3 3to − 5 Theorem 3.15

2 3 2, 3 2to Theorem 3.15
2 3 ≥ 4 4to − 7 Theorem 3.15

2 4 2, 3 3to − 1 Theorem 3.15
2 4 ≥ 4 5to − 9 Theorem 3.15

3 3 any 13(to−1)
2 Theorem 3.14

3 4 any 20(to − 1) Theorem 3.14

3 5 any 121(to−1)
2 Theorem 3.14

We mainly consider cases where 2 ≤ ti < to. However, before proceeding, we
recall some previous results concerning the special case ti = to = 2. Theorems
3.14 and 3.15 both assert that S(2, 2, q) ≤ q + 1. However, the stronger result that
S(2, 2, q) ≤ q was previously shown in [7, Theorem 14]. There are also some known
lower bounds on S(2, 2, q), which are recorded in the following theorem.

Theorem 3.17. Suppose q is a prime power. Then the following bounds hold.

1. bq/2c ≤ S(2, 2, q) ≤ q.

2. q − 1 ≤ S(2, 2, q) ≤ q if q = 2n − 1 is prime, for some integer n.

3. S(2, 2, q) = q if q is prime.

Proof. 1. and 2. are shown in [7], while 3. is proven in [15].

The cases when ti < to have not received previous study in the literature. Theo-
rems 3.14 and 3.15 provide upper bounds on S(ti, to, q). We evaluate some of these
upper bounds for specific families of parameters in Table 1.

We can also obtain lower bounds on S(2, to, q), for specific choices of to and q,
from computer searches. The results of our searches are presented in Examples A.1
to A.15. Table 2 lists upper and lower bounds on S(2, to, q), for some fixed values of
to, and q. There are four cases where we can report exact values of S(2, to, q). When
(t0, q) = (3, 2) and (3, 3), we have found examples that meet the upper bounds from
Theorem 3.15. For (t0, q) = (4, 2) and (5, 2), the searches were run to completion and
the exact values of S(2, to, q) turn out to be strictly less than the bounds obtained
from Theorem 3.15, which are S(2, 4, 2) ≤ 7 and S(2, 5, 2) ≤ 10.

4 Discussion

There are many open problems involving asymmetric AONTs. It would certainly
be of interest to find improved necessary conditions and general constructions. The
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Table 2: Upper and lower bounds on S(2, to, q)

to q lower bound reference upper bound reference

3 2 4 Example 3.1 4 Theorem 3.15
4 2 5 Example A.1 5 exhaustive search
5 2 8 Example A.2 8 exhaustive search
6 2 10 Example A.3 13 Theorem 3.15
7 2 12 Example A.4 16 Theorem 3.15
8 2 13 Example A.5 19 Theorem 3.15

3 3 6 Example A.6 6 Theorem 3.15
4 3 8 Example A.7 9 Theorem 3.15
5 3 9 Example A.8 13 Theorem 3.15
6 3 13 Example A.9 17 Theorem 3.15

3 4 6 Example A.10 8 Theorem 3.15
4 4 9 Example A.11 11 Theorem 3.15
5 4 11 Example A.12 16 Theorem 3.15

3 5 8 Example A.13 10 Theorem 3.15
4 5 10 Example A.14 14 Theorem 3.15

3 7 8 Example A.15 14 Theorem 3.15

first cases are when ti = 2. A starting point would be to close the gaps in the bounds
reported in Table 2.

As mentioned in Remark 2.2, it is unknown if the converse of part 2 of Theorem
2.3 is true when ti < to. We feel that this question is worthy of further study.
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A Appendix

Example A.1. A linear (2, 4, 5, 2)-AONT:
1 1 1 0 1
1 0 0 1 0
0 1 0 1 0
0 0 1 1 0
0 0 0 0 1

 .

Example A.2. A linear (2, 5, 8, 2)-AONT:

1 1 1 0 0 0 1 1
1 1 0 1 0 1 1 0
1 0 1 0 1 1 0 0
1 0 0 1 1 0 1 0
0 1 1 0 1 0 1 0
0 1 0 1 1 0 0 1
0 0 1 1 0 1 1 1
0 0 0 0 1 1 1 1


.

Example A.3. A linear (2, 6, 10, 2)-AONT:

1 1 0 1 0 0 0 1 1 1
1 1 0 0 1 1 0 0 1 0
1 0 1 1 0 1 0 1 0 0
1 0 1 0 1 0 1 1 1 0
1 0 0 1 1 1 1 0 0 1
0 1 1 1 0 1 1 0 1 0
0 1 1 0 1 1 0 1 0 1
0 1 0 1 1 0 1 1 0 0
0 0 1 1 1 0 0 0 1 1
0 0 0 0 0 1 1 1 1 1


.

Example A.4. A linear (2, 7, 12, 2)-AONT:

1 1 1 0 0 0 1 0 0 1 0 1
1 1 0 1 0 0 0 1 1 1 1 0
1 1 0 0 1 1 0 0 1 0 0 1
1 0 1 1 0 1 0 1 0 0 0 1
1 0 1 0 1 0 1 1 1 0 1 0
1 0 0 1 1 1 1 0 0 1 1 0
0 1 1 1 0 1 1 0 1 0 1 0
0 1 1 0 1 1 0 1 0 1 1 0
0 1 0 1 1 0 1 1 0 0 0 1
0 0 1 1 1 0 0 0 1 1 0 1
0 0 0 0 0 1 1 1 1 1 0 1
0 0 0 0 0 0 0 0 0 0 1 1



.
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Example A.5. A linear (2, 8, 13, 2)-AONT:

1 1 1 0 0 0 1 0 0 1 0 1 0
1 1 0 1 0 0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0 1 0 0 1 1
1 0 1 1 0 1 0 1 0 0 0 1 1
1 0 1 0 1 0 1 1 1 0 1 0 1
1 0 0 1 1 1 1 0 0 1 1 0 0
0 1 1 1 0 1 1 0 1 0 1 0 1
0 1 1 0 1 1 0 1 0 1 1 0 0
0 1 0 1 1 0 1 1 0 0 0 1 1
0 0 1 1 1 0 0 0 1 1 0 1 0
0 0 0 0 0 1 1 1 1 1 0 1 0
0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1



.

Example A.6. A linear (2, 3, 6, 3)-AONT:

0 1 1 1 1 1
1 0 1 1 2 2
1 1 0 2 1 2
1 1 2 0 2 1
1 2 1 2 0 1
1 2 2 1 1 0

 .

Example A.7. A linear (2, 4, 8, 3)-AONT:

0 0 0 1 1 1 1 2
0 1 1 0 1 2 2 0
0 1 1 1 0 0 1 1
1 0 1 0 1 0 1 2
1 0 1 1 0 1 2 0
1 1 0 2 2 0 1 0
1 1 2 0 1 1 2 1
1 2 0 1 0 2 1 1


.

Example A.8. A linear (2, 5, 9, 3)-AONT:

0 0 0 0 0 0 0 1 1
0 0 0 1 1 1 1 1 1
0 1 1 0 0 1 1 1 2
0 1 1 1 2 0 2 2 0
1 0 1 0 1 0 2 2 1
1 0 1 1 0 2 1 2 0
1 1 0 2 0 0 1 2 1
1 1 2 0 1 1 2 1 0
1 2 0 1 2 1 1 2 0


.
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Example A.9. A linear (2, 6, 13, 3)-AONT:

0 0 0 0 0 0 0 1 1 1 1 1 2
0 0 0 1 1 1 1 0 1 1 1 2 2
0 1 1 0 0 1 1 0 1 1 2 2 0
0 1 1 1 1 0 0 1 1 1 0 1 1
0 1 1 1 2 1 2 1 0 0 1 2 2
1 0 1 0 2 1 1 2 0 2 0 1 2
1 0 1 1 0 0 2 0 1 2 2 1 2
1 0 1 1 1 2 0 2 2 0 1 2 0
1 1 0 2 0 2 0 1 1 2 2 2 2
1 1 2 0 1 1 0 0 2 1 2 1 2
1 1 2 0 2 0 2 2 1 0 1 1 1
1 2 0 1 2 0 1 1 0 1 2 2 0
1 2 0 2 1 1 2 0 1 0 0 2 1



.

Example A.10. A linear (2, 3, 6, 4)-AONT:

0 0 1 1 1 1
0 1 0 1 1 2
1 0 0 1 2 1
1 1 1 0 1 3
1 2 3 0 1 2
1 3 2 1 0 2

 .

Example A.11. A linear (2, 4, 9, 4)-AONT:

0 0 0 0 1 1 1 1 1
0 1 1 1 0 1 1 1 2
0 1 1 1 1 0 1 2 1
1 0 1 2 0 1 2 3 1
1 0 1 2 1 0 3 1 2
1 1 0 3 0 2 1 1 1
1 1 2 0 3 3 2 1 3
1 2 0 3 1 0 1 3 2
1 2 3 0 2 1 1 3 3


.
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Example A.12. A linear (2, 5, 11, 4)-AONT:

0 0 0 0 0 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1
0 1 1 1 0 0 1 1 1 1 2
0 1 1 1 1 1 0 1 1 2 3
1 0 1 2 0 1 0 1 2 3 1
1 0 1 2 1 0 1 1 3 2 1
1 1 0 3 0 1 1 2 3 1 3
1 1 2 0 3 0 2 1 3 3 2
1 2 0 3 3 0 0 1 2 3 3
1 2 3 0 2 1 0 2 1 3 3
1 3 2 1 1 2 1 0 3 2 3



.

Example A.13. A linear (2, 3, 8, 5)-AONT:

0 1 1 1 1 1 1 1
0 1 1 1 1 2 2 4
1 0 1 2 3 2 4 1
1 0 1 2 4 3 1 2
1 1 0 3 2 1 3 4
1 1 0 3 4 4 2 2
1 2 3 0 1 3 2 1
1 2 3 0 1 4 1 4


.

Example A.14. A linear (2, 4, 10, 5)-AONT:

0 0 0 0 0 0 1 1 1 1
0 1 1 1 1 1 0 1 1 1
0 1 1 1 1 4 1 0 1 2
1 0 1 2 3 1 0 1 4 2
1 0 1 2 3 4 1 0 2 1
1 1 0 3 4 2 0 1 2 2
1 1 0 3 4 3 2 2 1 4
1 2 3 0 1 1 1 4 3 4
1 2 3 0 1 4 4 3 1 2
1 3 4 1 0 2 2 2 2 3


Example A.15. A linear (2, 3, 8, 7)-AONT:

0 0 0 0 1 1 1 1
0 1 1 1 0 1 1 1
1 0 1 2 0 1 2 3
1 1 0 3 1 1 2 4
1 2 3 5 3 0 1 3
1 3 4 6 6 0 1 2
1 4 5 0 5 2 5 1
1 5 6 4 2 3 0 1


.
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