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Abstract. Delegating heavy computations to auxiliary servers, while
keeping the inputs secret, presents a practical solution for computa-
tionally limited devices to use resource-intense cryptographic protocols,
such as those based on isogenies, and thus allows the deployment of
post-quantum security on mobile devices and in the internet of things.
We propose two algorithms for the secure and verifiable delegation of
isogeny computations in the CSIDH setting. We then apply these algo-
rithms to different instances of CSIDH and to the signing algorithms
SeaSign and CSI-FiSh. Our algorithms present a communication-cost
trade-off. Asymptotically (for high communication), the cost for the del-
egator is reduced by a factor 9 for the original CSIDH-512 parameter
set and a factor 30 for SQALE’d CSIDH-4096, while the relative cost
of SeaSign vanishes. Even for much lower communication cost, we come
close to these asymptotic results. Using the knowledge of the class group,
the delegation of CSI-FiSh is basically free (up to element generation)
already at a very low communication cost.

Keywords: Post-quantum cryptography · Isogeny-based cryptography · CSIDH
· Secure computation outsourcing · Lightweight cryptography

1 Introduction

Delegation of Computations. The last decade has witnessed an immense surge
in mobile devices, including RFID-cards, tiny sensor nodes, smart phones and a
myriad of devices in the internet of things. Since such mobile devices are usually
computationally limited or have other constraints such as low battery life, the
delegation of their computations to external, more powerful devices, has become
an active area of research. While delegation allows to relieve these devices of
their most heavy computations, it comes at a certain risk, such as potentially
malicious servers trying to extract sensitive data or returning wrong results for
these computations. Mitigating these threats is especially important when dele-
gating cryptographic protocols, where such servers might try to extract private
keys. The necessary properties for secure and verifiable delegation were first for-
malized in a security model introduced by Hohenberger and Lysyanskaya [15]



in the context of group exponentiations. Their model lets the delegator shroud
sensitive data before sending it to the server and then verify and de-shroud
the server’s output. The operations performed by the delegator should still be
efficient enough for the delegation to be worthwhile.

Isogeny-based Cryptography. Isogeny-based cryptography goes back to the works
of Couveignes [12] and Rostovtsev and Stolbunov [25] and is based on the diffi-
culty of finding an explicit isogeny linking two given isogenous elliptic curves de-
fined over a finite field. While the original proposal uses ordinary elliptic curves,
recent quantum attacks [11, 18, 24], which use the commutativity of the endo-
morphism ring, push the secure parameter size to the realm of prohibitively
inefficient protocols. In response, two new approaches using supersingular ellip-
tic curves have been introduced. The first one, commonly referred to as SIDH
(supersingular isogeny Diffie-Hellman) was proposed by Jao and De Feo [16] and
uses the fact that supersingular elliptic curves over Fp2 have a non-commutative
endomorphism ring, so that the previously discussed attacks are not applicable.
The second one, called CSIDH [7] (commutative SIDH), uses the structure of
supersingular elliptic curves to immensely reduce the computational cost of the
originally proposed protocols back to the realm of usability. We note that while
CSIDH closely follows the line of the original Couveignes-Rostovtsev-Stolbunov
scheme, SIDH uses a different approach that is more closely related to the cryp-
tographic hash function proposed by Charles, Goren and Lauter [8].

Motivation and Related Work. While isogeny-based protocols profit from the
lowest key sizes of any of the current post-quantum standardization proposals [1,
7, 16, 27, 19], they are still among the slowest. This might be tolerable for specific
applications, but given the immense surge in low-power mobile devices in recent
years, there is a strong need for easily deployable and computationally cheap,
yet secure cryptographic protocols. It is of particular interest for these limited
devices to profit from post-quantum security in order to allow them to remain
secure in the long term. While there have been many proposals for the delegation
of group exponentiations and pairings [15, 30], the delegation of post-quantum
cryptographic protocols is a very new topic. In 2019, Pedersen and Uzunkol [21]
proposed the first delegation algorithms for isogeny computations and improved
upon their work with a follow-up paper in 2021 [22]. Their approach is applied to
SIDH-type protocols, i.e. supersingular isogeny protocols over Fp2 , and is based
on the outsource security model from [15]. The question of delegating isogenies in
the CSIDH setting has been proposed as a direction of future research by [22] and
will be the main focus of this work. While we will also use the outsource security
model from [15], we stress that we cannot simply use or translate the previously
proposed isogeny delegation schemes in the SIDH setting to the CSIDH setting.
The main reason is that cryptographic protocols in these two schemes use very
different descriptions and are not related to one another in an obvious way.

Our Contribution. The purpose of this work is to propose the first isogeny dele-
gation algorithms in the CSIDH setting, which are secure and provide high ver-
ifiability guarantees. This work is an extension of the results presented
at Indocrypt 2021 [20]. More precisely, after introducing our background in
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Section 2 and the used delegation model in Section 3, we present the following
four contributions. The last point is new with respect to [20].

1. We introduce and analyze ShrVec in Section 4, an algorithm that allows
transforming a uniform vector into three vectors, two of which are uniform,
and the third one being small. This allows to shroud ephemeral secret keys
in the CSIDH and SeaSign protocols [7, 13], when the underlying class group
is unknown.

2. In Section 5, we define two new algorithms based on the outsource-security
description of Hohenberger and Lysyanskaya [15]:
– The (commutative) isogeny computation algorithm CIso, which allows to

delegate the computation of an isogeny, while keeping the kernel hidden
from the auxiliary servers, and

– The hidden isogeny computation algorithm HIso, which allows to delegate
the computation of an isogeny, while keeping both the kernel and the
isogeny codomain hidden from the auxiliary servers.

We present both algorithms in the one-malicious two untrusted program
(OMTUP) assumption defined in [15] and in the newly introduced two
honest-but-curious (2HBC) assumption. These algorithms work in two rounds
of communication.

3. We apply these delegation algorithms to different protocols in the CSIDH
setting and compare the reduced cost of the delegator to the full, local com-
putation. Our algorithms allow a trade-off between computational and com-
munication cost. Asymptotically (for large communication cost), we reduce
the computational cost of CSIDH-512 [7] to below 12% of the local cost of
the full protocol, while the SQALE’d CSIDH-4096 [9] protocol can be re-
duced to about 3.5% of the local cost. Also for lower communication costs,
the gain of the delegator quickly approaches the asymptotic values. The rel-
ative cost of delegating SeaSign asymptotically vanishes and can be easily
reduced to a few percent at low communication cost. When the class group is
known, the computational costs are also reduced to the asymptotic values of
ShrVec, but at much lower communication costs. In particular, the signature
scheme CSI-FiSh can be made virtually free for the delegator at very low
communication cost.

4. As a new contribution with respect to [20], we show that ShrVec introduces
a small leakage to the servers, which can be statistically evaluated and can
therefore in practice only be used in the case of ephemeral keys. As a mit-
igation to this fact, we extend our previous work with a new approach for
cases where the class group is unknown, based on more standard rejection
sampling, which increases the communication cost, but reduces the compu-
tational cost with respect to the ShrVec approach. With the new approach,
we can safely delegate the same key multiple times. To retain the structure
of the original paper, this approach is presented in Appendix B. With this
new approach, the computational cost is reduced to the same values as with
ShrVec in the asymptotic case, yet the communication costs are much higher.
In the case where we want a high verifiability in the OMTUP case however,
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we introduce a trick that does not considerably increase the communication
cost with respect to using ShrVec.

Naming. Following the fishy name trend of commutative supersingular isogeny
protocols, we refer to their delegation as DeCSIDH (Delegated CSIDH) and
pronounce it deckside. The reader is free to imagine a fisherman with limited
resources being helped by a more powerful (yet potentially malicious) fishing
boat.

Acknowledgments. This work was supported in part by the European Re-
search Council (ERC) under the European Union’s Horizon 2020 research and in-
novation programme (Grant agreement No. 101020788 - Adv-ERC-ISOCRYPT),
the Research Council KU Leuven grant C14/18/067, and by CyberSecurity Re-
search Flanders with reference number VR20192203.

The author would like to thank Frederik Vercauteren and Osmanbey Uzunkol,
as well as the anonymous reviewers for valuable feedback regarding this work.

The author is indebted to Ward Beullens for pointing out the issues concern-
ing the leakage of Algorithm 1 and discussing alternative approaches for static
keys, which ultimately resulted in the new contribution in Appendix B.

2 Elliptic Curves and Isogenies

Isogeny-based cryptography is based on the good mixing properties of isogeny
graphs, i.e. graphs of isomorphism classes of elliptic curves over finite fields
connected by isogenies. Isogenies are surjective homomorphisms between elliptic
curves that are also algebraic maps. Separable isogenies are uniquely defined by
their kernel. While it is easy to compute an isogeny from a given kernel, it is in
general difficult to find the kernel, given two isogenous elliptic curves.

The original protocols by Couveignes [12] and Rostovtsev and Stolbunov [25,
28] used ordinary elliptic curves, defined over a prime field Fp, while the later
CSIDH protocol by Castryck, Lange, Martindale, Panny and Renes [6] uses
supersingular elliptic curves over Fp for efficiency reasons. These curves have
Frobenius trace t = 0 and their Fp-rational endomorphism rings are orders O in
a quadratic imaginary field Q(

√
−p). A key observation of these protocols is that

the ideals in the class group Cl(O) uniquely define subgroups via their kernel
and therefore uniquely define isogenies, i.e. for a given elliptic curve E/Fp and
ideal a ∈ Cl(O), we have a separable isogeny E → E/a with kernel

⋂
α∈a kerα.

As a result, the ideal-class group Cl(O) acts freely and transitively on the set of
Fp-isomorphism classes of these elliptic curves via isogenies [12] and this group
action is generally written as E → a ∗ E.

In the CSIDH protocol [7], the underlying prime field Fp is defined via
p = 4

∏n
i=1 ℓi − 1, where the ℓi are small primes. Since #E(Fp) = p + 1, the

chosen structure of p implies that ℓiO decomposes as the product of two prime
ideals li = (ℓi, π−1) and l−1

i = (ℓi, π+1), where π corresponds to the Frobenius
endomorphism. The action of these ideals on the set of (isomorphism classes
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of) elliptic curves over Fp can then be computed with the standard Vélu formu-
lae [31] and are efficient for small ℓi. Given the structure of p, ideals can generally
be expressed as a =

∏n
i=1 l

ai
i , where positive exponents ai correspond to the ac-

tion of li, while negative exponents correspond to the action of l−1
i . Ideals can

then be simply expressed by representative vectors, e.g. a = (a1, . . . , an) would
correspond to the action of a as defined above. The order of the application of
the prime ideals li of a does not matter and its dual is simply a−1 represented
by −a. Note that a1a2 corresponds to a1 + a2.

Isogenies can be computed using Algorithm 2 of [7]. We denote by I(a) the
generic cost of computing an isogeny defined by the ideal a.

The Class Group. While the class group has asymptotic size #Cl(O) ≈ 2
√
p [26],

computing its exact structure is a difficult task for large p [3, 17]. The original
proposal of CSIDH-512 [7] circumvented this problem by choosing n = 74 small
primes (the 73 smallest odd primes and ℓ74 = 587) and sampling the elements ai
of a from a range {−5, . . . , 5} of size 11. As such, 11n ≈ 2256, which should cover
most of the class group without knowing its exact structure. In 2019, Beullens,
Kleinjung and Vercauteren [3] computed the class group structure and the rela-
tion lattice for the CSIDH-512 parameter set and found a cyclic class group of
order #Cl(O) ≈ 2257. This knowledge allows to sample random elements from
Z#Cl(O) = Z/#Cl(O)Z and transform them into vectors a by solving easy in-
stances of the closest vector problem using the relation lattice. This guarantees
uniform coverage of the entire class group, while also allowing efficient computa-
tion via low-degree isogenies. Unfortunately, class group computations for larger
parameter sets than CSIDH-512 seem currently out of reach.

Notation. We use “←” as the assignment operator: If the right hand side is
an algorithm, the left hand side represents the variables to which its output
is assigned. If the right hand side is a set, we assume the left hand side to
represent a randomly sampled value from this set. We will write [start, end] as
a shorthand for the set of integers ranging from start ∈ Z to end ∈ Z. We define
as B(N) ⊂ Zn any set of the form B = B1× · · ·×Bn, where Bi ⊂ Z are intervals
of length di = #Bi, and such that #B(N) =

∏n
i=1 di ≈ N . As an example, for

CSIDH-512, we use B(2256) = [−5, 5]n. Ideals in Cl(O) can then be represented
by vectors a ∈ B(N), where typically N ≤ #Cl(O). Intervals Bi are of the types
[−Bi, Bi] or [0, Bi] for Bi ∈ N (see e.g. [5, 7, 9]). Throughout this work, we will
use the former case for simplicity, for which it holds di = 2Bi + 1. The case
[0, Bi] follows completely analogously.

We write ideals in Cl(O) in the fraktur font (e.g. a, b, s, . . . ) while the cor-
responding vectors in B(N) are written in bold font (e.g. a,b, s, . . . ). If the
class group is known, we write elements from Z#Cl(O) in the standard font (e.g.
a, b, s, . . . ). We assume Cl(O) to be cyclic with publicly known generator g.1

1 Throughout this work, we will only consider the known class group established in [3].
In any other case, where Cl(O) would not be cyclic, we can always assume to work
in a cyclic subgroup. For simplicity, we will still refer to it as the class group and
write Cl(O).
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We always see elements using the same letters as related, e.g. a ∈ Z#Cl(O) and
a ∈ B(N) will always represent a ∈ Cl(O), while the same holds for (b,b, b),
(s, s, s) etc. Let a = (a1, . . . , an), then we can express this relation as follows:

a =

n∏
i=1

lai
i = ga .

Note that vector entries are also written in the standard font. Their distinction
from elements in Z#Cl(O) will always be clear from context.

It is useful to note that multiplications between elements in Cl(O) natu-
rally translate to additions in Z#Cl(O) and B(N), while divisions translate to
subtractions. As an example, ab−1 can be represented by a− b or by a− b.

Security. Security of CSIDH and related protocols is generally based on the
following hard problem.

Definition 1 (Group action inverse problem (GAIP)). [7] Given two su-
persingular elliptic curves E,E′ over Fp with the same Fp-rational endomor-
phism ring O, find an ideal a ∈ Cl(O) such that E′ = a ∗ E.

Classical security is based on a meet-in-the-middle attack. The query complexity
of this attack is O(

√
#Cl(O)). Quantum security of CSIDH is still subject to

scrutiny. For current estimates of the quantum security, we refer the reader to [4,
7, 9] and [23]. We will use these estimates for later assessment of our schemes
and always refer to the source in question. We write λ(N) for a generic quantum
security parameter for a class group of size approximately N .

3 Secure and Verifiable Delegation

3.1 Security Model by Hohenberger and Lysyanskaya

The secure delegation model of Hohenberger and Lysyanskaya [15] is defined
around three central entities: a delegator T , a set of auxiliary servers U and the
environment E . The delegator interacts with the servers, denoted as T U , so that
they jointly implement an algorithm Alg at a lower computational cost for T ,
than if T would run Alg itself. The environment represents any third party, that
might observe the interaction or that might later (or previously) interact with
T itself. Most notably, E includes the manufacturer of the service provided by
U . A key assumption of the model is that after T starts using U , there is no
more direct channel between U and E or between the different servers in U . The
rationale behind this, is that T has access to U only through a firewall. Yet,
these entities can still try to communicate indirectly. Thus, this interaction has
multiple threats to mitigate: First, T has to make sure that neither E nor U
gain any sensitive information from T ’s interaction with U (and possibly later
with E). In general, this means that T has to find a way to shroud sensitive data
before passing it on to U and be able to recover its desired result (i.e. the output
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of Alg) from whatever U returns. Secondly, to be able to do so, T also needs a
way to verify that the output of U is indeed correct. This is generally achieved
by checking that the outputs fulfill some verification conditions that adversarily
produced outputs could only fulfill with a low probability.

The following definition summarizes the security assumptions used through-
out this work and includes the reduction in computational cost α that T profits
from, when compared to the local computation, as well as the degree of certainty
β that the outputs of the servers are correct.

Definition 2 ((α, β)-outsource-security). [15] Let Alg be an algorithm with
the following outsource input/output specification: We distinguish secret, pro-
tected and unprotected inputs and outputs, depending on whether only T has
access, only T and E have access, or all parties have access, respectively. The
non-secret inputs are further subdivided into honest and adversarial, depending
on whether they originate from a trusted source or not. Then, the pair (T ,U)
constitutes an (α, β)-outsource-secure implementation of Alg if:

– Correctness: T U is a correct implementation of Alg.
– Security: For all PPT adversaries A = (E ,U), there exist PPT simulators

(S1,S2) that can simulate the views of E and U indistinguishable from the real
process. If U consists of multiple servers Ui, then there is a PPT-simulator
S2,i for each of their views. We formalize this with the following pairs:
• Pair One: EV IEWreal ∼ EV IEWideal: E learns nothing about the secret
inputs and outputs.

• Pair Two: UV IEWreal ∼ UV IEWideal: U learns nothing about the
secret and (honest/adversarial) protected inputs and outputs.

For a more formal description of these experiments, we refer the reader to
Definition 2.2 of [15].

– for all inputs x, the running time of T is at most an α-multiplicative factor
of the running time of Alg(x) (i.e. Time(T ) ≤ αTime(Alg)),

– for all inputs x, if U deviates from its advertised functionality during the
execution of T U (x), then T will detect the error with probability ≥ β.

We call α the cost reduction function and β the verifiability of a delegation
algorithm. Many adversarial models for U have been proposed in the literature,
differing along the number of servers and their adversarial powers. In this work,
we will use the OMTUP and 2HBC assumptions, the latter being based on the
one-server honest-but-curious assumption from [10].

Definition 3 (OMTUP [15]). The one-malicious version of a two untrusted
program model defines the adversary as A = (E , (U1,U2)) and assumes that at
most one of the two servers U1 or U2 deviates from its advertised functionality
(for a non-negligible fraction of the inputs), while T does not know which one.

Definition 4 (2HBC). The two honest-but-curious program model defines
the adversary as A = (E , (U1,U2)), where U1 and U2 are servers that always
return correct results, but may try to extract sensitive data.
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3.2 Advertised Server Functionality

For our purposes throughout this work, we assume that as input, we give the
servers multiple pairs (a1, E1), . . . , (ak, Ek) consisting of ideals ai and associated
elliptic curves Ei. The servers then generate and return the codomain curves
ai ∗ Ei for each i = 1, . . . , k. We write

(a1 ∗ E1, . . . , ak ∗ Ek)← U((a1, E1), . . . , (ak, Ek)) .

We assume that the input elements are always given in a random order as to
avoid distinguishability of the elements. We define two ways for the delegator to
transmit ideals to the server:

– In the case where Cl(O) is known with generator g, we assume that we
can give an element a ∈ Z#Cl(O) to the server, which represents the ideal
a = ga. The server can efficiently compute a short representation of a using
the relation lattice by applying the procedure described in [3].

– Otherwise, the delegator can give a vector a ∈ B, representing a =
∏n

i=1 li
ai ,

to the servers.

4 Shrouding and Splitting

Before we present implementations for our delegation algorithms, we discuss how
to shroud ideals. The basic idea is to split the secret s into a pair of random-
looking ideals (a1, a2), so that a1 ∗ (a2 ∗ E) = s ∗ E. In the case where Cl(O) is
known, we can simply generate (a, s− a) for a← Z#Cl(O). If Cl(O) is unknown,
on the other hand, we cannot simply generate (a, s− a) for a random vector
a = (a1, . . . , an) ∈ B since s− a would no longer be in B and leak information
about the secret [29]. A similar problem was addressed in [13] using rejection
sampling: taking vector elements ai ← [−(δi + 1)Bi, (δi + 1)Bi] for integers
δi ≥ 1, so that si − ai ∈ [−δiBi, δiBi] for all i ∈ {1, . . . , n} makes s− a look
uniform. On the other hand, a is then no longer uniformly distributed in B(N),
since e.g. si = −B would exclude the values of ai > (δ − 1)B. This is not an
issue in [13], since a is never directly revealed. In our case, however, we also
want to delegate the computation of the isogeny defined by a, and currently
this would reveal information about the secret. We circumvent this problem in
Algorithm 1 by splitting up s into three vectors r0, r1, r

∗, so that the first two
are uniform, while the third one contains extra information about s that the
delegator computes itself. To make r0 and r1 uniform, r∗ is in general non-zero.
The goal of the algorithm is to minimize the Hamming weight of r∗. We define
by χ(k) the uniform distribution in [−k, k] and let δB(N) = [−δ1B1, δ1B1] ×
· · · × [−δnBn, δnBn]. We further present Algorithm 2, which allows to split a
vector s into two vectors s′ and s∗, so that s∗ has a given Hamming weight.

We write the invocation of these algorithms as (r0, r1, r
∗) ← ShrVecδ(s)

and (s∗, s′) ← Split(s, k), respectively. We generally omit δ in the index if it is
clear from the context or not explicitly needed. In Section A of the supporting
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Input : secret s = (s1, . . . , sn) ∈ B and parameters δ = (δ1, . . . , δn)
Output: r0, r1 ∈ δB uniform, r∗ ∈ B small, such that r0 + r1 + r∗ = s

1 for i = 1, . . . , n do
2 repeat
3 r0,i ← χ((δi + 1)Bi)
4 r1,i = si − r0,i
5 until |r0,i| ≤ δiBi or |r1,i| ≤ δiBi

6 b← {0, 1}
7 if |r0,i| > δiBi then
8 if b == 0 then r1,i ← χ(δiBi)
9 r0,i = −r1,i

10 r∗i = si
11 else if |r1,i| > δiBi then
12 if b == 0 then r0,i ← χ(δiBi)
13 r1,i = −r0,i
14 r∗i = si
15 else r∗i = 0

16 end
17 return r0 = (r0,1, . . . , r0,n), r1 = (r1,1, . . . , r1,n), r

∗ = (r∗1 , . . . , r
∗
n).

Algorithm 1: ShrVec: Shrouding a vector in B.

Input : secret s = (s1, . . . , sn) ∈ B, and parameter k
Output: s′, s∗ ∈ B, such that s∗ has Hamming weight ≤ k and s′ + s∗ = s.

1 Sample a uniform subset C∗ ← {1, . . . , n} of size k.
2 for i = 1, . . . , n do
3 if i ∈ C∗ then (s∗i , s

′
i) = (si, 0)

4 else (s∗i , s
′
i) = (0, si)

5 end
6 return s∗ = (s∗1, . . . , s

∗
n), s

′ = (s′1, . . . , s
′
n).

Algorithm 2: Split: Splitting a vector in B.

material, we prove correctness of our algorithms and the two Lemmas below. We
further show, that the expected value of r∗ vanishes for δ →∞.2 These lemmas
imply that r0 and r1 do not contain any information about s.

Lemma 1. If s is uniformly distributed in B(N), the outputs r0 and r1 of Al-
gorithm 1 are uniformly distributed in δB(N).

Lemma 2. Let (s∗, s′) ← Split(s, k) where s ← B(N) uniform and let
(r0, r1, r

∗) ← ShrVecδ(s
′). Then, the outputs r0 and r1 of Algorithm 1 are uni-

formly distributed in δB(N).

2 This also follows intuitively from the fact, that the interval [−(δ + 1)B,−δB − 1] ∪
[δB+1, (δ+1)B] is constant in size, while [−δB, δB] grows with increasing δ, making
it less and less probable for r0, r1 to be sampled from the former.
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Remark 1. It is important to note that ShrVec in its current form can only be
used in order to shroud ephemeral keys, as reusing the same key multiple times
allows for correlation attacks between the different query rounds. We analyze
these attacks in more detail in Appendix B and propose alternatives that also
work with reusing the same key multiple times.

5 Delegation Algorithms

In this section, we present two delegation algorithms and their implementation
under different assumptions. In both algorithms we want to delegate the com-
putation of s ∗ E from (s, E). The first algorithm, CIso keeps s hidden from
the servers, while the second algorithm HIso, keeps s and s ∗E hidden from the
servers. For the efficiency reasons discussed in [7], we assume that there is a short
representation s = (s1, . . . , sn) ∈ B(N) of s =

∏n
i=1 l

si . In the case where Cl(O)
is known, we further assume that s ∈ Z#Cl(O) is known by the delegator, such
that s = gs. We define the two algorithms below, using the formalism from [15].

Definition 5 (CIso and HIso). The isogeny computation algorithm CIso and
the hidden isogeny computation algorithm HIso take as inputs a supersingular
elliptic curve E/Fp and an ideal s, either as an element in Z#Cl(O) or a vector
in B(N), then return the elliptic curve s∗E. The input E is (honest/adversarial)
unprotected, while s is secret or (honest/adversarial) protected. The output s∗E
of CIso is unprotected, while it is protected in the case of HIso. We write

s ∗ E ← CIso(s, E) and s ∗ E ← HIso(s, E) .

Below, we present implementations for both CIso and HIso in the OMTUP and
2HBC assumptions (Definitions 3 and 4). Both work in two rounds of delegation.

5.1 CIso: Unprotected Codomain

Our general approach to hide s from the servers is to split it up into two ide-
als a1, a2, such that the consecutive application of both yields a1 ∗ (a2 ∗ E) =
a2∗(a1∗E) = s∗E, i.e. that we can compute the desired codomain in two rounds
of delegation. In the 2HBC case, this can be implemented more or less straight-
forwardly. If, however, one of the servers is malicious, it could simply return a
wrong codomain. Thus in the OMTUP case we want to be able to verify these
computations. Unfortunately, unlike in the DLOG setting (e.g. see [15]), we can
not compose elliptic curves in order to verify correctness, so we have to resort
to comparisons, i.e. let two servers compute the same curve and check if they
are the same. Note that simply going two different paths to s∗E and comparing
the results is also not possible, since the malicious server would take part in the
computation of both of them and could simply apply another isogeny defined by
an ideal x to its result in both rounds yielding the result x∗ (s∗E) in both cases.

The goal of the verification is that the servers do not return an incorrect
codomain without the delegator realizing (up to a certain probability). Note
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that we need to be able to verify intermediate results as well. We resort to
direct comparisons, i.e. giving both servers common queries whose output we can
directly compare. In the first round, we have the starting curve at our disposal,
which easily allows to make the same queries to both servers. The second round
becomes more tricky, however, since all the curves at our disposal are the starting
curve and the curves generated by the servers in the first round, potentially
maliciously. Reusing the starting curve in some queries while not in others makes
the queries distinguishable. One obvious possibility would be to generate curves
ourselves, which would however defeat the purpose of delegating in the first
place. An alternative would be to work with lookup-tables analogous to the
DLOG setting, but since we can not combine multiple elliptic curves, elements
of the form (a, a∗E) could only be used individually. Again, using such sets ends
up defeating the need for delegation. Therefore our algorithm in the OMTUP
case resorts to delegating sets of extra curves in order to increase verifiability.

To this end, we generate a set S of ideal tuples (c1, c2, d1, d2) that satisfy
c1c2 = d1d2. If we work over Z#Cl(O), this is straightforward. If we work with
elements in δB(N), we can implement this as follows: for i = 1, . . . , n, generate
c1,i, c2,i, d1,i ← χ(δiBi) and define d2,i = c1,i+c2,i−d1,i until d2,i ∈ [−δiBi, δiBi].
Note that this approach might yield some information about c1,i + c2,i (at most
that it is positive or negative) given c1,i only, but we do not really need to
care about that, since this is not enough information to be able to distinguish
d2,i from a random value (mainly because d1,i remains unknown), so this will
neither reduce the security nor the verifiability of the scheme. In the first round,
we further delegate the computation of a second set R of ideals applied to the
starting curve and directly compare between the servers to increase verifiability.

We present our approach for the 2HBC assumption in Figure 1 and our ap-
proach for the OMTUP assumption in Figure 2. We analyze these protocols and
discuss secure parameter sizes in Section 5.3. Note that the case (a) corresponds
to the delegation algorithm presented in [15] with unprotected base element.

CIso: 2HBC case.

Input : Ideal s, elliptic curve E
Output : Elliptic curve s ∗ E

1. Generate the ideals a1, a2 as follows:
(a) If Cl(O) is known, generate a1 ← Z#Cl(O) uniformly and compute a2 = s−a1.
(b) If Cl(O) is not known, generate (a1,a2,a

∗)← ShrVec(s).
2. Delegate the computation of E1 ← U1((a1, E)).
3. In the case where Cl(O) is not known, compute E1 ← a∗ ∗ E1 locally.
4. Delegate the computation of E2 ← U2((a2, E1)).
5. Return E2.

Fig. 1. Implementation of CIso in the 2HBC assumption.
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CIso: OMTUP case.

Input : Ideal s, elliptic curve E.
Output : Elliptic curve s ∗ E or ⊥.

1. Generate the ideals a1, a2, b1, b2 as follows.
(a) If Cl(O) is known, generate two random elements a1, b1 ← Z#Cl(O) and com-

pute a2 = s− a1 and b2 = s− b1.
(b) If Cl(O) is not known, generate (a1,a2,a

∗)← ShrVec(s) and
(b1,b2,b

∗)← ShrVec(s).
Further, generate a set of random ideals R = {e | e← Cl(O)} and a set of random
ideal tuples S = {(c1, c2, d1, d2) ← Cl(O)4 | c1c2 = d1d2}, where all the ideals are
generated using Z#Cl(O) or δB(N), respectively.

2. Delegate the computation of

Ea1 , {Ec1}, {Ee} ← U1
(
(a1, E), {(c1, E) | c1 ∈ S}, {(e, E) | e ∈ R}

)
,

Eb1 , {Ed1}, {E
′
e} ← U2

(
(b1, E), {(d1, E) | d1 ∈ S}, {(e, E) | e ∈ R}

)
.

3. Verify if Ee
?
= E′

e for e ∈ R. If not, return ⊥, otherwise continue.
4. In the case with Cl(O) unknown, locally compute

Ea1 ← a∗ ∗ Ea1 , Eb1 ← b∗ ∗ Eb1 .

5. Delegate the computation of

Es, {Ed} ← U1
(
(b2, Eb1), {(d2, Ed1) | d2 ∈ S}

)
,

E′
s, {Ec} ← U2

(
(a2, Ea1), {(c2, Ec1) | c2 ∈ S}

)
.

6. Verify if Es
?
= E′

s and if all Ed
?
= Ec. If not, return ⊥, otherwise return Es.

Fig. 2. Implementation of CIso in the OMTUP assumption.

5.2 HIso: Hidden Codomain

Next to keeping s hidden, HIso also does not disclose the codomain curve to the
auxiliary servers. The idea works similar to CIso, but rather than shrouding and
delegating the computation of the isogeny generated by some secret ideal s, we
do the same for an ideal s′ to yield a codomain s′ ∗ E that can be known to
the servers. The goal is to choose s′, so that s′ ∗ E is close enough to s ∗ E,
that the path can be efficiently computed by the delegator, while searching the
space of potential curves is too large to reasonably allow an attacker to find
s ∗ E by walking from s′ ∗ E. We call the remaining path s∗ = ss′−1, so that
s∗ ∗ (s′ ∗ E) = s ∗ E.

To be able to assess path lengths, we work with ideals only in their vector
representation in B(N). In the case where the class group Cl(O) is known, this is
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achieved by working modulo the relation lattice [3].3 We then call B̃(N) ⊆ B(N)
the subset from which s∗ is sampled. We can achieve this splitting of s using the
Split-procedure (Algorithm 2). The protocol then uses CIso as a subroutine with
s′ as the secret argument. It is summarized in Figure 3. Note that the protocol
has the same description in the 2HBC and OMTUP assumptions, and that CIso
is called with the appropriate assumption.

HIso: General case

Input : Ideal s, elliptic curve E, parameter k.
Output : Elliptic curve s ∗ E or ⊥.

1. Compute (s∗, s′)← Split(s, k).
2. Delegate E′ ← CIso(s′, E).
3. Compute Es = s∗ ∗ E′ locally.
4. Return Es.

Fig. 3. Implementation of HIso for both 2HBC and OMTUP assumptions.

5.3 Analysis

Size of k. Assume we work with a class group of size approximately N , which
has an associated quantum security level λ(N) with respect to GAIP (Definition
1). Let D = #B(N) denote the number of possible vectors in B(N). The basic

idea is to define a subset B̃(N) ⊆ B(N) of size D̃ = #B̃(N), that is big enough
that searching the entire space is at least as hard as breaking a GAIP instance.
Since the servers are only given s′∗E, they cannot resort to a meet-in-the-middle
attack to find information about s ∗ E, but rather have to resort to a database
search of size D̃ to find it. We assume that they would be able to identify the cor-
rect curve once found (e.g. by being able to decrypt a given ciphertext). The best
known quantum algorithm for this database search is Grover’s algorithm [14],

which runs in O
(
D̃1/2

)
. Thus in order to ensure a quantum security level of λ,

we choose D̃ = 22λ. We can therefore define B̃(N) analogously to B(N), i.e.

B̃(N) = B̃1 × · · · × B̃n , where B̃i ∈ {[0, 0],Bi} of size d̃i ∈ {1, di}, such that

D̃ =
∏n

i=1 d̃i ≈ 22λ.

The input parameter k of Split determines the number of non-zero B̃i. Thus,
we need to choose k large enough such that an adversary’s search space is approx-
imately 22λ. We note that due to Lemma 2, the adversary can not distinguish
in which entries s′ is zero and can therefore not know the subset C∗. Thus, the

3 Note that B(N) does not necessarily contain a representation for all elements in
Cl(O). We ignore this case and assume we can delegate such elements using simple
heuristics, such as computing the “overshoot” locally, or simply by resampling.
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size of the search space can be determined by searching through any k-out-of-n
subsets and running through all permutations in these subsets. Therefore, we
have to choose k, such that (

n

k

) ∏
i∈C∗

di ≈ 22λ . (1)

Verifiability in the OMTUP Case. In the OMTUP case, the servers success-
fully cheat if all of the verification conditions succeed but the output is wrong,
i.e. Es ̸= s∗E. Let us assume U1 is the malicious server. In order to be successful,
U1 needs to correctly identify the query (a1, E) in the first round and (b2, Eb1)
in the second round. Note that U1 can also change the elements in S, as long as
it does so consistently in both rounds. The elements in R have to be returned
correctly, since they are directly compared to U2’s results.

Let ms = #S and mr = #R. By choosing a random subset of size κ ∈
{1, . . . , 1+ms} among the queries of the first round, the probability of choosing a

set that includes a1 (or b1) and no elements ofR is given by
(

ms

κ−1

)/(
1+ms+mr

κ

)
.

Furthermore, in the second round, the malicious server has to identify the same

subset, which it achieves with probability 1
/(

1+ms

κ

)
, yielding the full success

probability for the adversary of

Pr[success] =

(
ms

κ− 1

)
(
1 +ms +mr

κ

)(
1 +ms

κ

) =
κ

1 +ms

κ!(ms +mr + 1− κ)!

(ms +mr + 1)!
.

(2)
If mr = 0, 1, 2, this probability is maximal for κ = 1 + ms, while for mr ≥ 3,
we find κ = 1 to be optimal. In the latter case, the upper probability simplifies
to Pr[success | mr ≥ 3] = [(1 + ms)(1 + ms + mr)]

−1 . Since this probability
decreases quadratically with bigger ms, we minimize the overall set sizes (and
thus communication cost) by fixing mr = 3 and choosing ms to yield the desired
verifiability. We thus find the verifiability

β(ms) = 1− Pr[success | mr = 3] =
m2

s + 5ms + 3

m2
s + 5ms + 4

. (3)

Security Proofs. We prove security of CIso and HIso.

Theorem 1. Figure 1 is an outsource-secure implementation of CIso in the
2HBC assumption.

Proof. Correctness follows immediately from a1+a2 = s or from the correctness
of ShrVec, respectively. We prove security by proposing the following simulators:

– Environment E : If s is not secret, both simulators behave as in the real
execution of the protocol. Otherwise, in each round, S1 generates random
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ideals u1, u2 either as elements in Z#Cl(O) (case (a)) or as vectors in δB(N)
(case (b)). In the second case, S1 further generates u∗ ← B(N). Then S1
makes the query E1 ← U1((u1, E)), computes E1 ← u∗ ∗ E1 if applicable,
then makes the query E2 ← U2((u2, E1)). S1 returns E2 and saves its own
state and those of the servers. In any round, the input values u1, u2 are
indistinguishable from a1, a2. In case (b), this is given by Lemma 1.

– Servers U1,U2: For any s, the simulator S2 proceeds exactly as the simulator
S1 for a secret s. UVIEWreal ∼ UVIEW ideal is guaranteed by the indistin-
guishability of u1, u2, u

∗ and a1, a2, a
∗. Note that applying a∗ ∗ E1 between

the two queries has the advantage that neither server will see both the do-
main and the codomain of this isogeny and therefore cannot recover a∗. ⊓⊔

Theorem 2. Figure 2 is an outsource-secure implementation of CIso in the
OMTUP assumption.

Proof. Correctness of the output follows again from the definition of s. Concern-

ing the verification conditions, correctness of Ec
?
= Ed follows from the definition

of S. The other verification conditions are simple comparison operations between
both servers. We prove security by proposing the following simulators:

– Environment E : If s is not secret, both simulators behave as in the real
execution of the protocol. Otherwise, in each round, S1 generates random
ideals u1, u2, v1, v2 and in case (b) further u∗, v∗ as vectors in B(N). S1
further generates two random sets of ideals M1,M2 of size mr and four
sets of ideals N1,N2,N3,N4 of size ms, such that for (n1, n2, n3, n4)i ∈ N1×
N2 × N3 × N4, it holds that n1n4 = n2n3, pairwise for i = 1, . . . ,ms. Then
S1 makes the queries

Eu1 , {En1}, {Em1} ← U1
(
(u1, E), {(n1, E) | n1 ∈ N1}, {(m1, E) | m1 ∈M1}

)
,

Ev1 , {En2}, {Em2} ← U2
(
(v1, E), {(n2, E) | n2 ∈ N2}, {(m2, E) | m2 ∈M2}

)
.

S1 verifies the results. If either of the elements in {Em1} or {Em2} are in-
correct, then S1 returns ⊥, otherwise it continues. In case (b), S1 computes
Eu1
← u∗ ∗ Eu1

and Ev1
← v∗ ∗ Ev1

. Then, in the second round, S1 makes
the queries

Ev2 , {En3},← U1
(
(v2, Ev1), {(n3, En2) | n3 ∈ N3}

)
,

Eu2 , {En4},← U2
(
(u2, Eu1), {(n4, En1) | n4 ∈ N4}

)
.

Again, S1 verifies the results. If ∄x : Eu2 = (xu1u2) ∗ E ∧ Ev2 = (xv1v2) ∗ E,
S1 returns ⊥. Otherwise, let κ be the number of pairs (En3

, En4
) for which

there doesn’t exist such an x. Then with probability 1 − Pr[success] (as
given in equation (2)), S1 returns Es, otherwise S1 returns ⊥. S1 saves
the appropriate states. In any round of the simulation, the input tuple
(u1, u2, u

∗, v1, v2, v
∗,M1,M2,N1,N2,N3,N4) is indistinguishable from the
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tuple (a1, a2, a
∗, b1, b2, b

∗,R,R, {c1 ∈ S}, {d1 ∈ S}, {d2 ∈ S}, {c2 ∈ S}), due
to uniform sampling or because of Lemma 1. If a server cheats, S1 outputs a
wrong result with probability Pr[success], otherwise it returns ⊥, as in the
real execution of the protocol. It follows EVIEWreal ∼ EVIEW ideal.

– Servers U1,U2: For any s, the simulator S2 proceeds exactly as the simula-
tor S1 for a secret s, except for the verification procedure after the second
round, which is not necessary. UVIEWreal ∼ UVIEW ideal is guaranteed by
the indistinguishability of the tuple described above. ⊓⊔

Theorem 3. Figure 3 is an outsource-secure implementation of HIso in both the
2HBC and OMTUP assumptions.

Proof. Correctness of the output follows from the correctness of Split and CIso.
Security follows from the outsource-security of CIso and the appropriate choice
of the parameter k as determined by equation (1).

Remark 2. Note that Definition 4 implies that U1 and U2 might try to collude.
Yet, since their outputs are honestly generated, their indirect communication
channel through T is in fact non-existent. For example, E1, output by U1 and
input to U2, is honestly generated and can therefore not contain any auxiliary
information that U2 could use to learn any information about a1. Definition 3
implies that at least one of the two servers is honest, so that collusion is not
possible in the OMTUP case.

Communication Cost. We want to express the communication cost between
the delegator and the server. We do this by looking at the information content
of the exchanged elements in bits. We establish the following maximal costs.

Element of Maximal cost in bits
Z#Cl(O) ⌈log2 #Cl(O)⌉
δB(N)

∑n
i=1 log2 (2δiBi + 1)

Fp ⌈log2 p⌉

Note that elliptic curves in Montgomery form are encoded by a single curve
parameter in Fp. The actual average communication cost of elements in B and
δB is smaller than the maximal cost if the individual vector entries are expressed
using the minimal amount of bits. This representation considerably lowers the
communication cost, especially for large δi. We can estimate the communication
costs by establishing the minimal number of bits of an element uniformly sampled
from δB as

ExI(δB) :=
n∑

i=1

1

2δiBi + 1

δiBi∑
y=−δiBi

⌈log2(2|y|+ 1)⌉ .

We can now establish the communication cost for the delegation of CIso
and HIso, which are the same. In the 2HBC case, the delegator uploads one
element from either Z#Cl(O) or δB(N) and downloads one elliptic curve from
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each server, defined by a parameter in Fp. In the OMTUP case, the delegator
uploads 2 + 2ms + mr elements from either Z#Cl(O) or δB(N) to each server
and downloads the same amount of elliptic curves. We define the upload and
download costs per server in the 2HBC (b = 0) and OMTUP (b = 1) case:

Up(x) =

{
(1 + (2ms +mr + 1)b)⌈log2 #Cl(O)⌉, x = Cl(O),
(1 + (2ms +mr + 1)b)ExI(δB), x = δB,

(4)

Down = (1 + (2ms +mr + 1)b)⌈log2 p⌉,

Cost Reduction Functions. Ignoring the costs of comparison operations,
element generation and ShrVec, as they are negligible in comparison to isogeny
computations, we get the following cost reduction functions for CIso and HIso

αCIso(δ,B, n, b) =
(1 + b)I(r∗)
I(s)

, αHIso(δ,B, n, k, b) =
(1 + b)I(r∗) + I(s∗)

I(s)
, (5)

where the parameter b ∈ {0, 1} distinguishes between the 2HBC and OMTUP
cases, respectively, and where s, r∗, s∗ and r relate to the outputs of Split and
ShrVec. Note that the isogeny cost functions all depend on B and n. Further,
the size of r∗ (thus I(r∗)) depends on δ and the size of s∗ (thus I(s∗)) on k.
Remember that in the case, where the class group and relation lattice are known,
we do not need to use ShrVec, so that, effectively, I(r∗) = 0. Similarly, since the
expected value of r∗ vanishes for δ →∞, we can identify

α
Cl(O)
CIso (B,n) = lim

δ→∞
αCIso(δ,B, n, b) = 0 ,

α
Cl(O)
HIso (B,n, k) = lim

δ→∞
αHIso(δ,B, n, k, b) =

I(s∗)
I(s)

. (6)

In this case the cost also becomes independent of b, i.e. of the underlying server
assumption. Each server, on the other hand, has to compute (2ms+mr+1)b+1
isogenies of cost given by I(r). We therefore find the relative cost per server of

αU (δ,B, n, b) =
((2ms +mr + 1)b+ 1)I(r)

I(s)
where the size of r also depends on δ. Note that we generally have αU (δ,B, n, b) ≥
1. We will still refer to this as the cost reduction function.

6 Applications

In this section we discuss how to apply our delegation algorithm to some of the
isogeny-based protocols in the CSIDH setting and benchmark our delegation
algorithms using the VeluSqrt implementation in MAGMA,4 introduced in [2].
All benchmarks were done in Magma v2.25-6 on an Intel(R) Xeon(R) CPU
E5-2630 v2 @ 2.60GHz with 128 GB memory.5 We note that our benchmarks

4 https://velusqrt.isogeny.org/software.html
5 Our implementation can be found at https://github.com/KULeuven-
COSIC/DeCSIDH
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support our assumption that ShrVec is negligible as its cost generally constitutes
less than 0.01% of the cost of the delegator in terms of CPU cycles.

6.1 Delegating the CSIDH Key Exchange Protocol

We briefly revisit the CSIDH key exchange protocol in this section and then
show how to delegate it. CSIDH uses a prime p = 4

∏n
i=1 ℓi − 1 of appropriate

size and defines the starting curve as E0 : y2 = x3 + x over Fp. Further, CSIDH
uses symmetric boxes around 0, all of equal size, i.e. B(N) = [−B,B]n.

– Key generation: Alice’s private key is a vector s ∈ B(N) representing s and
her public key is EA = s ∗ E0.

– Key exchange: Using Bob’s public key EB , Alice can compute the shared
secret s ∗ EB .

In terms of the input/output specifications from Definition 2, we consider s as a
secret input, s∗E0 as an unprotected output, and s∗EB as a secret or protected
output. Note that we have to consider EB as honestly generated, which can
always be achieved by authenticating the public key. We can then use CIso to
delegate the key generation step and HIso for the key exchange step as follows:

– Key generation: Delegate EA ← CIso(s, E0).

– Key exchange: Delegate s ∗ EB ← HIso(s, EB).

We can easily see that the cost reduction function for the delegation of CSIDH
can be expressed as αCSIDH(δ,B, n, k, b) = 1

2 (αCIso(δ,B, n, b)+αHIso(δ,B, n, k, b)) ,
while for the server, we have αU,CSIDH(δ,B, n, b) = αU (δ,B, n, b).

Instantiations. We look at specific instantiations of CSIDH. While the security
is still subject of scrutiny, we go on a limb and make certain assumptions in
this section, which the reader should take with caution. Our estimates for λ are
mainly based on the results in [4, Table 8], [9, Table 3] and [23, Figure 1].

CSIDH-512. The original proposal from [7] uses the following parameters:
n = 74, log2 p ≈ 512, B = 5, so that D = #B(N) = (2B + 1)74 ≈ 2256. For
the key exchange round, we have to define k such that equation (1) is fulfilled.
Looking at the different security assessments found in the literature, we take the
lower estimate of λ ≈ 58 from [23, Figure 1], which corresponds to k = 18. The
benchmark results are summarized in Table 1.

18



Table 1. Benchmarks for CSIDH-512: In the left table are the benchmarked cost
reduction functions for the delegator, while the right table shows the relative cost of
the server. For the latter, we chose mr = 3 and compare the cases ms = 0 (β = 75%)
and ms = 8 (β = 99%). Different mr and ms do not impact the delegator cost. Note
that the case for δ →∞ corresponds to the cost of delegating CSIDH if the class group
structure and relation lattice are known (cf. eq. (6)). For the CSIDH-512 parameter
set this is indeed the case as the class group has been computed in [3].

αCSIDH δ = 1 5 10 100 →∞
2HBC 0.462 0.253 0.213 0.134 0.113

OMTUP 0.877 0.391 0.322 0.159 0.113

αU,CSIDH δ = 1 5 10 100

2HBC 0.971 4.59 8.84 91.9
OMTUP (ms = 0) 4.83 20.5 42.1 395
OMTUP (ms = 8) 19.1 80.5 170 1376

Communication Cost. The communication cost of the full protocol is given by
four times the costs established in equation (4), since CIso is invoked twice with
two servers each time. The total costs are summarized in Table 2. The OMTUP
case is strongly dependent on mr, ms. But even if we want high verifiability
and low cost in the OMTUP case, the communication cost is manageable, e.g.
assuming mr = 3 and setting δ = 100 and ms = 100, we find 33kB of upload
and 13kB of download.

Table 2. Communication costs of CSIDH-512 in the 2HBC and OMTUP assumptions.
In the OMTUP case, we choose mr = 3 and compare the cases ms = 0 (β = 75%)
and ms = 8 (β = 99%). We compare different values of δ and the case where the class
group and relation lattice are known.

Upload Download
Cl(O) δ = 1 5 10 100

2HBC 129 B 108 B 180 B 215 B 333 B 256 B
OMTUP (ms = 0) 645 B 539 B 900 B 1074 B 1663 B 1280 B
OMTUP (ms = 8) 2.63 kB 2.21 kB 3.69 kB 4.40 kB 6.82 kB 5.25 kB

CSIDH-1792 and SQALE’d CSIDH-4096. As a comparison to CSIDH-512,
we also consider the larger parameter set for CSIDH-1792 proposed and analyzed
in [4] as well as the SQALE’d CSIDH-4096 proposal from [9]. The former has
log2 p ≈ 1792, n = 209, B = 10, and we find k = 24 taking the value λ = 104
from [4, Table 8]. CSIDH-4096 uses n = 417, log2 p ≈ 4096 and B = 1, such that
#B(N) ≈ 2661 ≪ #Cl(O). Using λ = 124 as an estimate (cf. [9, Table 3]) yields
k = 40. The results are summarized in Table 3. It is interesting to note that the
gains in CSIDH-4096 are not considerably larger than for CSIDH-1792. This is
mainly due to the fact, that the authors of [9] chose a key set that covers only
a subset of the class group, such that the relative cost of local computations is
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lower than if the full group would be covered, resulting in a lower overall gain
for the delegator.

Table 3. Benchmarked cost reduction functions for different δ, representing CSIDH-
1792 from [4] and SQALE’d CSIDH-4096 from [9], respectively, in the 2HBC and
OMTUP assumptions. The case δ → ∞ again represents the cost in case class group
structure and relation lattice are known.

α1792
CSIDH δ = 1 5 10 100 →∞
2HBC 0.331 0.123 0.103 0.067 0.042

OMTUP 0.614 0.209 0.165 0.085 0.043

α4096
CSIDH δ = 1 5 10 100 →∞
2HBC 0.312 0.101 0.076 0.055 0.033

OMTUP 0.577 0.179 0.132 0.079 0.036

6.2 Signature Protocols

SeaSign. SeaSign is a signature protocol based on Fiat-Shamir with aborts [13]
for cases where the class group is unknown. During the signature process, the
signer needs to compute t isogenies b1, . . . , bt as commitments, where t is a se-
curity parameter that depends amongst others on the public key size 2s. Secure
instantiations require st ≥ λ. The exponents bi that define these isogenies are
sampled from B(N) = [−(nt + 1)B, (nt + 1)B]n in order to guarantee a rea-
sonable success probability. Further steps are the typical hashing and response
computation, which we assume to have negligible cost. The verification has the
same average computational cost as the signing process, as the commitments are
verified using response vectors in B(N). Delegation can be achieved by using t
instances of CIso (possibly in parallel). The delegator is left with computing the
r∗-part of each of these delegations, we therefore find

αSeaSign(δ,B, n, t, b) =
(1 + b)I(r∗)
I(s)

,

choosing the same δ for each step. We note that while r∗ and s are sampled
from the larger set B(N) = [−(nt+1)B, (nt+1)B]n, the cost difference between
different t ∈ {1, . . . , 128} is negligible, so that we find αSeaSign(δ,B, n, t, b) ≈
αCIso(δ,B, n, b). The instantiation in [13] uses the parameter set from CSIDH-
512 [7]. We show the cost reduction for different values of δ in the top of Ta-
ble 4. Because of the size of the set B, the communication costs of delegating
SeaSign become more expensive. In the OMTUP case, since we repeat the proto-
col throughout many rounds, we choose mr = 3 and ms = 0 for our assessment
of the communication costs, which are summarized in the bottom of Table 4.

CSI-FiSh. One the main results of the CSI-FiSh paper [3] is the computation
of the class group structure and relation lattice for the CSIDH-512 parameter
set. Using the knowledge of Cl(O), the authors construct a signature scheme
in the random oracle model based on the original identification protocol from
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Rostovtsev and Stolbunov [25, 28]. The main computational effort of the signa-
ture process comes, analogous to SeaSign, from the fact that the signer needs to
compute t isogenies given by b1, . . . , bt, depending on the public key size 2s. In
contrast to SeaSign however, these elements can simply be sampled from Z#Cl(O)

and then translated into short vectors using the relation lattice. A verifier has
to compute the same amount of isogenies and therefore has the same computa-
tional cost as the signer. Both the prover and verifier can delegate these isogenies
using CIso, but knowing Cl(O) has now the advantage of not having to resort to
ShrVec, and therefore not needing to compute the r∗ part of the isogeny. This
means that from the point of view of the delegator, the signature and its veri-
fication are basically free, up to element generation in Z#Cl(O) and comparison
operations. The communication costs for CSI-FiSh, again assuming mr = 3 and
ms = 0 amount to 64.25t bytes upload and 128t bytes download in the 2HBC
case and 321.25t bytes upload and 640t bytes download in the OMTUP case.

Table 4. Top: Benchmarked cost reduction function for different δ. Bottom: Commu-
nication cost (assuming unknown Cl(O)) in the 2HBC and OMTUP assumptions. We
compare the cases t = 32 and t = 128.

αSeaSign δ = 1 5 10 100 →∞
2HBC 0.393 0.162 0.120 0.031 0.003

OMTUP 0.809 0.315 0.226 0.057 0.003

Upload Download
δ = 1 5 10 100

2HBC, t = 32 7.87 kB 9.19 kB 9.77 kB 11.7 kB 4.0 kB
2HBC, t = 128 36.1 kB 41.4 kB 43.7 kB 51.4 kB 16.0 kB
OMTUP, t = 32 39.4 kB 45.9 kB 48.8 kB 58.5 kB 20.0 kB
OMTUP, t = 128 181 kB 207 kB 218 kB 257 kB 80.0 kB

7 Conclusion

This work presents a first approach of securely and verifiably delegating isogeny
computations to potentially untrusted servers in the CSIDH setting. We pre-
sented two algorithms and showed their application to different instances of
CSIDH [7, 4, 9] and to the signature schemes SeaSign [13] and CSI-FiSh [3]. Our
algorithms present a communication-cost trade-off. In terms of the cost reduction
function, we reduced the delegator’s cost asymptotically (for large communica-
tion cost) down to 11.3% and about 3.5% of the cost of the local computation for
CSIDH-512 and SQALE’d CSIDH-4096, respectively, while the cost of SeaSign
reduces to a few percent and asymptotically vanishes. Using the known class
group of CSI-FiSh, its delegated cost reduces to element generation in Z#Cl(O).

Our protocols work in two rounds of delegation and use either the OMTUP
or the 2HBC server assumptions. It is of interest to try to reduce delegation to a
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single round. The tools developed in this work do not seem to allow delegation to
only malicious servers. We therefore leave it open to develop delegation schemes
that work in the two untrusted or one untrusted program model presented in [15].

We also leave it as an open question to apply delegation to other post-
quantum cryptographic paradigms, such as lattice-based and code-based cryp-
tography.

References

1. Azarderakhsh, R., Campagna, M., Costello, C., De Feo, L., Hess, B., Hutchinson,
A., Jalali, A., Jao, D., Karabina, K., Koziel, B., LaMacchia, B., Longa, P., Naehrig,
M., Pereira, G., Renes, J., Soukharev, V., Urbanik, D.: Supersingular isogeny key
encapsulation. Submission to the NIST Post-Quantum Standardization project
(2017)

2. Bernstein, D., De Feo, L., Leroux, A., Smith, B.: Faster computation of isogenies
of large prime degree. arXiv preprint arXiv:2003.10118 (2020)

3. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny based
signatures through class group computations. In: International Conference on the
Theory and Application of Cryptology and Information Security. pp. 227–247.
Springer (2019)

4. Bonnetain, X., Schrottenloher, A.: Quantum security analysis of CSIDH. In: An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques. pp. 493–522. Springer (2020)

5. Castryck, W., Decru, T.: CSIDH on the surface. In: International Conference on
Post-Quantum Cryptography. pp. 111–129. Springer (2020)

6. Castryck, W., Galbraith, S.D., Farashahi, R.R.: Efficient arithmetic on elliptic
curves using a mixed Edwards-Montgomery representation. IACR Cryptol. ePrint
Arch. 2008, 218 (2008)

7. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: International Conference on the The-
ory and Application of Cryptology and Information Security. pp. 395–427. Springer
(2018)

8. Charles, D.X., Lauter, K.E., Goren, E.Z.: Cryptographic hash functions from ex-
pander graphs. Journal of Cryptology 22(1), 93–113 (2009)
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SQALE of CSIDH: Square-root Vélu quantum-resistant isogeny action with low
exponents. Tech. rep., Cryptology ePrint Archive, Report 2020/1520 (2020)

10. Chevalier, C., Laguillaumie, F., Vergnaud, D.: Privately outsourcing exponenti-
ation to a single server: cryptanalysis and optimal constructions. In: European
Symposium on Research in Computer Security. pp. 261–278. Springer (2016)

11. Childs, A., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quantum
subexponential time. Journal of Mathematical Cryptology 8(1), 1–29 (2014)

12. Couveignes, J.M.: Hard homogeneous spaces. IACR Cryptol. ePrint Arch. 2006,
291 (2006)

13. De Feo, L., Galbraith, S.D.: SeaSign: Compact isogeny signatures from class group
actions. In: Annual International Conference on the Theory and Applications of
Cryptographic Techniques. pp. 759–789. Springer (2019)

14. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the twenty-eighth annual ACM symposium on Theory of computing.
pp. 212–219 (1996)

22



15. Hohenberger, S., Lysyanskaya, A.: How to securely outsource cryptographic com-
putations. In: Theory of Cryptography Conference. pp. 264–282. Springer (2005)

16. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: International Workshop on Post-Quantum Cryptogra-
phy. pp. 19–34. Springer (2011)

17. Kleinjung, T.: Quadratic sieving. Mathematics of Computation 85(300), 1861–1873
(2016)

18. Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden
subgroup problem. SIAM Journal on Computing 35(1), 170–188 (2005)

19. NIST: NIST post-quantum cryptography, round 3 submissions (2020),
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

20. Pedersen, R.: Decsidh: Delegating isogeny computations in the csidh setting. In:
International Conference on Cryptology in India. pp. 337–361. Springer (2021)

21. Pedersen, R., Uzunkol, O.: Secure delegation of isogeny computations and cryp-
tographic applications. In: Proceedings of the 2019 ACM SIGSAC Conference on
Cloud Computing Security Workshop. pp. 29–42 (2019)

22. Pedersen, R., Uzunkol, O.: Delegating supersingular isogenies over Fp2 with cryp-
tographic applications. IACR Cryptol. ePrint Arch. 2021, 506 (2021)

23. Peikert, C.: He gives C-sieves on the CSIDH. In: Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques. pp. 463–492.
Springer (2020)

24. Regev, O.: A subexponential time algorithm for the dihedral hidden subgroup
problem with polynomial space. arXiv preprint quant-ph/0406151 (2004)

25. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. IACR
Cryptol. ePrint Arch. 2006, 145 (2006)
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A Proving Lemmas 1 and 2

Distributions and Expected Values of ShrVec and Split. We first analyze
the properties of Algorithm 1. Since they hold for any i ∈ {1, . . . , n}, we will omit
the index. Correctness holds, since after the repeat loop, we have r0 + r1 = s
and r∗ = 0. If either of the following if-conditions succeed, then r0+r1 = 0 and
r∗ = s. In either case, r0 + r1 + r∗ = s holds.

Before proving Lemma 1, we first introduce some more notation. We define
the discrete rectangular functionΘx[xstart, xend] which is 1, if x ∈ {xstart, . . . , xend}
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and 0 otherwise. We also write f(x)
∣∣xend

xstart
= f(x)Θx[xstart, xend] as a shorthand.

For further conciseness in notation, we introduce

ck = (δ + k)B , ∆k = 2ck + 1 and d = 2B + 1 . (7)

In general, we denote the distribution of a value by the corresponding capital
letter, e.g. S(x) represents the distribution of s etc. Finally, we write convolutions
as f(x) ∗ g(x) =

∑∞
y=−∞ f(y)g(x− y). As an example for our notation, consider

the trapezoidal distribution

χ(c0) ⋆ χ(B) = (d∆0)
−1

(
(x+ c1 + 1)

∣∣−c−1−1

−c1
+ d

∣∣c−1

−c−1
+ (−x+ c1 + 1)

∣∣c1
c−1+1

)
.

We further denote by Hn =
∑n

i=1
1
i the n-th harmonic number. We establish

expected values for elements sampled from the distributions surrounding ShrVec.
Since all of these distributions will turn out be symmetric, we define the expected
values in terms of the absolute values of the elements. The expected absolute
value of an element from a distribution F (x) is thus

ExF :=

∞∑
y=−∞

|y|F (y) .

As an example, consider the uniform distribution χ(x) for which we find

Exχ(x) = x(x+1)
2x+1 . This allows us to determine the expected values of elements

from e.g. S(x) and R(x):

ExS(B) := Exχ(B) =
1

d
B(B + 1) and ExR(δ,B) := Exχ(c0) =

1

∆0
c0(c0 + 1)

(8)
In order to prove Lemma 1, we analyze how the distribution of s and of r0
and r1 change throughout the algorithm. We define different instances of the
distributions with different subscripts (i).

1. We first analyze what happens in the repeat-loop. In order to fulfill the
condition at the end of the loop, we distinguish two possible cases for r0:

– r0 ∈ [−c0, c0]: The until-condition always succeeds and we have

R
(0)
1 (x) =

Θx[−c0, c0]
∆1

∗χ(B) = (d∆1)
−1


x+ c1 + 1, x ∈ [−c1,−c−1],

d, x ∈ [−c−1, c−1],

−x+ c1 + 1, x ∈ [c−1, c1].

– r0 ∈ [−c1,−c0 − 1] ∪ [c0 + 1, c1]: In this case, we have

R
′(0)
1 (x) = (d∆1)

−1


−|x|+ c2 + 1 x ∈ [−c2,−c1 − 1] ∪ [c1 + 1, c2],

B x ∈ [−c1,−c0 − 1] ∪ [c0 + 1, c1],

|x| − c−1 x ∈ [−c0,−c−1] ∪ [c−1, c0].
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At the end of the repeat-loop, the distribution of r1 is simply the average
of these two cases, excluding |r0|, |r1| > c0 because of the until-condition
(and changing the normalization appropriately). We note that

(x+ c1 + 1)
∣∣−c−1

−c1
+ (−x− c−1)

∣∣−c−1

−c0
= (x+ c1 + 1)

∣∣−c0−1

−c1
+ d

∣∣−c−1

−c0
,

(−x+ c1 + 1)
∣∣c1
c−1

+ (x− c−1)
∣∣c0−1

c−1
= d

∣∣c0
c−1

+ (−x+ c1 + 1)
∣∣c1
c0+1

,

so that finally we find

R(1)(x) = K−1

{
−|x|+ c1 + 1, x ∈ [−c1,−c0 − 1] ∪ [c0 + 1, c1],

d, x ∈ [−c0, c0],

where K = B(B+1)+d∆0 is the normalization constant, guaranteeing that∑∞
y=−∞ R(1)(y) = 1. Note that exchanging the roles of r0 and r1 within the

repeat-clause yields the same distributions after fulfillment of the until-
condition. R(1)(x) thus describes the distribution of either after the repeat-
loop. We establish the probability of either r0 or r1 being outside [−c0, c0]:

P ∗ := Pr
[
|r| > c0

∣∣∣r ← R(1)(x)
]
=

B(B + 1)

B(B + 1) + d∆0
(9)

2. In the second part of the algorithm, whenever |r0| > c0 or |r1| > c0, these
values are reassigned to [−c0, c0]. For simplicity, we consider only the case
|r0| > c0. Note that if this is the case, then since r1 = s− r0, s ∈ χ(B) and
|r1| ≤ c0, the counterpart to |r0| > c0 is the “flipped”

r1 ∈ F (x) = K−1
(
(−x− c−1)

∣∣−c−1−1

−c0
+ (x− c−1)

∣∣c0
c−1+1

)
.

We distinguish two cases, depending on the random parameter b.
– If b = 1, we simply redefine r0 = −r1, which amounts to

R
(2)
1 (x) = R

(1)
0 (x)

∣∣c0
−c0

+ F (x) = dK−1Θx[−c0, c0] + F (x).

– If b = 0, r1 is first resampled from χ(c0), then we redefine r0 = −r1,
which means F (x) is subtracted from χ(c0), then resampled from χ(c0).

In terms of the distributions, this implies R
′(2)
1 (x) = (1+P ∗)χ(c0)−F (x).

Averaging over both cases, we get

R(3)(x) =
1

2

(
R(2)(x) +R′(2)(x)

)
= ∆−1

0 Θx[−c0, c0] ,

which is the uniform distribution in [−c0, c0]. Again, this distribution holds
for both r0 and r1, which proves the lemma.

Distribution and Expected Value of r∗. We analyze how r∗ is distributed
at the end of Algorithm 1. Since r∗ either takes the value of s or is zero, we
first establish the probability of non-zero r∗ for a given s. With the same con-
siderations as in the proof of Lemma 1, we find that after the repeat-loop, the
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probability of r0 or r1 being outside [−c0, c0] is P ∗
s = |s|

∆0+|s| , for fixed s. Since

either r0 or r1 can be outside [−c0, c0], r∗ has probability 2P ∗
s of taking the value

of s and probability 1− 2P ∗
s of being zero. Averaging over all possible s, we find

R∗(x) =
1

d

(
2|x|

∆0 + |x|
Θx[−B,B] +

(
4∆0(H∆0+B −H∆0

)− 2B + 1
)
Θx[0, 0]

)
.

The second term represents the case r∗ = 0, occurring when |r0|, |r1| ≤ c0

and can be computed as Θx[0,0]
d

∑B
y=−B

(
1− 2|y|

∆0+|y|

)
. We can now compute the

expected value of |r∗| as

ExR∗(δ,B) =
1

d

B∑
y=−B

2|y|2

∆0 + |y|
=

1

d

(
2B(B+1)+4∆0(−B+∆0(H∆0+B−H∆0

)
)
.

(10)
We analyze the asymptotic dependency of ExR∗(δ,B) on δ. The first term of
(10) is just an offset, while the second term T := 4∆0(−B + ∆0(H∆0+B −
H∆0) strongly depends on ∆0 = 2δB + 1. In fact, using ∆0(H∆0+B −H∆0) =∑B

y=1
1

1+y∆−1
0

, we find

lim
δ→∞

T = lim
δ→∞

−4
B∑

y=1

y

1 + y∆−1
0

= −4
B∑

y=1

y = −2B(B + 1) ,

which is exactly the offset, thus limδ→∞ ExR∗(δ,B)→ 0. For δ small, the behav-
ior is dominated by the difference of the harmonic numbers.

Finally, equation (9) also allows us to express the estimated Hamming weight
of the full vector r∗ simply as 2nP ∗, since we have 2n values r0,i, r1,i.

Split and Lemma 2. Correctness of Split is straightforward, since s∗i +s′i = si is
always guaranteed. We analyze how the outputs are distributed. We again drop
the indices i and indicate distributions by the corresponding capital letters. Since
#C∗ = k, we have Pr[i ∈ C∗] = k

n for i ∈ {1, . . . , n}. It immediately follows
that

S∗(x) =
k

dn
Θx[−B,B] +

n− k

n
Θx[0, 0] ,

S′(x) =
n− k

dn
Θx[−B,B] +

k

n
Θx[0, 0] .

We can determine the expected value of s∗ as

ExS∗(B,n, k) =
k

dn
B(B + 1) =

k

n
ExS(B) . (11)

From Algorithm 2, it immediately follows that an entry s′i is either uniform in
[−Bi, Bi] or zero. Following Lemma 1, the first case results in r0,i and r1,i being
uniform. If s′i = 0 this also immediately follows from the first repeat-loop in
Algorithm 1, thus proving Lemma 2.
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B Alternatives to ShrVec for static keys

Following Remark 1, this section shows how we can use correlation attacks to
yield information about the secret shrouded with ShrVec. We further propose an
alternative to ShrVec, for which the same key can be delegated multiple times.
Unfortunately, this results in higher communication cost, established at the end
of this section, but on the upside, the computational costs of the delegator will
be the asymptotic costs (for δ → ∞) established in Section 6. We leave it as
an open question to improve shrouding algorithms for static keys to have less
communication cost.

B.1 Correlation attack on ShrVec with static keys

The correlation attack on ShrVec can be understood by looking at the averages
of the input and output vectors of the algorithm. Since these vectors satisfy
s = r1 + r2 + r∗ and the average of r∗ is small, we find that the sum of the
averages r1 and r2 should be close to s. As a result, after either server gets enough
shroudings of the same s through r0 or r1, the averages of r0 and r1 will tend
towards s/2, and information about the secret can be recovered. Similarly, the
server could also look for correlations between the different vector components
of r0 or r1 to gain information about s, with their success increasing with the
number of queries.

Since this is a statistical attack, which improves with the amount of queries
using the same s, the amount of information leaked by delegating the computa-
tion of s only a few times is very low, albeit not zero. Looking at the application
scenarios from Section 6, there are two cases we want to distinguish: ephemeral-
key Diffie-Hellman and signatures. In the first case, we have to delegate the
secret twice, once as a shrouding of s and once as a shrouding of s’, which
is strongly correlated to s. If we do not reuse the same secret in subsequent
key exchanges, the information leaked is manageable. In the case of signatures,
we never delegate shroudings of s in the first place, but only of the randomly
sampled elements bi. We note however that the leakage of information on bi,
together with a response in the case the challenge is non-zero, would also yield
information about the secret.

A particularity in our setting, is that this information is leaked to the servers,
not to the environment in general. Note that the servers in the 2HBC case are
not able to leak any information to the environment, and in the OMTUP case,
it can be made very unlikely, depending on the targeted verifiability. In the
OMTUP case, the dummy queries will further add noise to the statistics about
s, making it harder for the server to extract useful information. The difficulty
of leaking useful information to the environment is particularly relevant in the
signature case, where any information about the secret can only be recovered if
the servers and the environment succesfully collaborate. In the Diffie-Hellman
case, one could even argue, that the server obtaining a little information about
s is not a problem, as long as this information is not leaked to the environment.
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With these informations in mind, we argue that delegation using ShrVec
with ephemeral keys can be made to be still practical in most applications, as
the probability of the environment gaining any information about the secret can
be made vanishingly small. Of course in some applications it might be a no-go to
leak a single bit of the secret to any entity, including the server. For these cases,
and for the static key cases, we introduce an alternative shrouding mechanism
below, that is completely leakage-free. On the downside, the communication cost
of the new approach is higher, especially in the 2HBC case, but the delegator
will no longer have to compute the r∗-part, making the computational gain the
same as in the asymptotic cases considered in Section 6.

B.2 How to delegate static keys multiple times

Throughout this section, we again use the notation from equation (7). If we want
to reuse the same key s multiple times, we have to resort to standard rejection
sampling, similar to [13], where all sampling attempts are delegated to the server,
even unsuccessful ones. The idea is that the delegator samples r0 ← χ(c1)

n and
computes r1 = s− r0, which is repeated until r1 ∈ δB. Finally all attempts are
delegated (in random order) in the first round of CIso. This is done, so that the
distribution of r0 remains truly uniform. If we would only pick out the successful
r0, their distribution would no longer be uniform and leak information about s.

In the second round, only one of the successful attempts are delegated to
the other server, i.e. a corresponding r1 ∈ δB. If no attempt was successful, the
protocol is restarted. It is imperative that the server computing the action of
r0 in the first round does not know if the protocol was aborted, or how many
attempts were successful, as this would also reveal information about s.

For a given r0, the probability of finding r1 ∈ χ(c0) is given by

P =

(
∆0

∆1

)n

.

If we want our success probability after multiple tries to lie above some threshold
t, we ideally choose δ such that P ≈ 1/2 and repeat this process q times, such
that the overall success probability 1 − (1 − P )q ≥ t. In this way, we minimize
the overall communication, which scales with q · δ. We note that it is important
to fix the number of queries we send to each server each round, since the number
of queries might otherwise yield some information about the general distribution

of s,6 so ideally we choose a threshold t and fix q = ⌈ log(1−t)
log(1−P )⌉ for P ≈ 1/2 as to

minimize q · δ.7 We delegate the first round. If none of the cases are valid, which
happens with probability below 1 − t, we simply repeat the entire delegation
protocol. If multiple cases are valid, we only need to choose one and discard
the rest, in order to minimize communication. The protocol is summarized in
Figure 4.

6 As an example, s = (0, . . . , 0) would never fail, while s = (±B, . . . ,±B) has the
highest probability of failing.

7 This can easily be done numerically for each parameter set. We provide the optimal
parameters for our cases in the next subsection.
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CIsostatic: 2HBC case.

Input : Vector s representing the ideal s, elliptic curve E.
Output : Elliptic curve s ∗ E or ⊥.

1. Fix a success threshold t and find optimal q and δ numerically.
2. For j = 1, . . . , q, generate a

(j)
0 ← χ(c1)

n and compute a
(j)
1 = s− a

(j)
0 .

3. Delegate the computation of E1, . . . , Eq ← U1((a(1)
0 , E), . . . , (a

(q)
0 , E))

4. If one or more a
(j)
1 ∈ δB, pick one, e.g. a

(z)
1 , and discard the rest. Otherwise restart

from point 2.
5. Delegate the computation of E′ ← U2((a(z)

1 , Ez)).
6. Return E′.

Fig. 4. Implementation of CIso for static keys in the 2HBC assumption.

This translates to the OMTUP case in exactly the same way as CIso trans-
lated from the 2HBC (Figure 1) to the OMTUP (Figure 2) case. Basically, this
means repeating the same process, but for both servers in parallel and adding
dummy isogeny computations in order to increase the verifiability. An interest-
ing advantage that we have in this setting is that we can use the q− 1 discarded
queries from the first round as counting towards the dummy variables. The dele-

gator can sample elements in the second round from δB, s.t. a(j)0 +a
(j)
1 = b

(j)
0 +b

(j)
1

and count these as elements of the set S. In particular, by choosing q ≈ ms +1,
the delegator does not considerably increase its communication cost in order to
acheive a targeted verifiability. A difference to the 2HBC case arises from the
fact that both servers are involved in both rounds of communication. In order
to prevent servers from learning when the protocol was aborted, the delegator
has to finish the protocol, even when unsuccessful. To this end, it can simply
resample all elements from δB and do a round of dummy delegations.8 The pro-
tocol is summarized in Figure 5. We will analyze the associated costs in the next
subsection.

Finally, we note that HIso with static keys can be implemented in exactly the
same way as in Figure 3, by simply using the static versions of CIso introduced
in this section.

B.3 Communication and computational costs in standard protocols

As we have already stated, the approach presented in this section increases the
communication cost between the delegator and the servers, when compared to
the ShrVec case, most notably in the 2HBC case. For the OMTUP case, we
introduce a trick, that only slightly increases the cost for specific parameter
sets. On the upside, however, we find a much lower computational cost for the
delegator, which coincides with the asymptotic case of ShrVec, or equivalently,

8 Alternatively, these elements could also be sampled as to verify correct executions of
the algorithm, similar to the dummy isogenies which increase verifiability, if needed.
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CIsostatic: OMTUP case.

Input : Vector s representing the ideal s, elliptic curve E.
Output : Elliptic curve s ∗ E or ⊥.

1. Fix a success threshold t and a targeted verifiability. Then, choose ms and mr in
order to yield the desired verifiability and choose optimal q and δ numerically. Let
q′ = max{q,ms + 1} and q′′ = ms + 1.

2. For j = 1, . . . , 2q′, generate r
(j)
0 ← χ(c1)

n and compute r
(j)
1 = s − r

(j)
0 . If possi-

ble, split the {r(1)1 , . . . , r
(2q′)
1 } into two sets {a(0)

1 , . . . ,a
(q′)
1 } and {b(0)

1 , . . . ,b
(q′)
1 },

so that each set has at least one element in δB. Further, sample mr elements
e1, . . . , emr ← (δ + 1)B.

3. Delegate the following computations, where j = 1, . . . , q′ and i = 1, . . . ,mr:

{Ea
j }, {Ee

i } ← U1
(
{(a(j)

0 , E)}, {(ej , E)}
)

{Eb
j }, {E

′e
i } ← U2

(
{(b(j)

0 , E)}, {(ej , E)}
)

4. Verify if Ee
i = E

′e
i for all i = 1, . . . ,mr. If not, return ⊥, otherwise continue.

5. If both sets {a(0)
1 , . . . ,a

(q′)
1 } and {b(0)

1 , . . . ,b
(q′)
1 } have at least one element in δB,

pick one, e.g. a
(z)
1 and b

(z)
1 , then, for each other element, resample a

(j)
1 ,b

(j)
1 ← δB,

s.t. a
(j)
0 + a

(j)
1 = b

(j)
0 + b

(j)
1 holds. If the sets do not fulfill the condition, sample

a
(0)
1 , . . . ,a

(q′)
1 ,b

(0)
1 , . . . ,b

(q′)
1 ← δB.

6. Delegate the following computations, where j = 1, . . . , q′:

{Eb
j } ← U1

(
{(b(j)

1 , Eb
j )}

)
{Ea

j } ← U2
(
{(a(j)

1 , Ea
j )}

)
7. For j = 1, . . . , q′, verify if all Ea

j
?
= Eb

j . If not, return ⊥, otherwise return Ea
z .

Fig. 5. Implementation of CIso for static keys in the OMTUP assumption.

with the case where the class group structure is known. We start by summarizing
the good news in Table 5, by transferring the results from Section 6.

Table 5. Benchmarked cost reduction function (in %) for different instantiations of
CSIDH and for SeaSign-512 in the 2HBC and OMTUP assumption.

α CSIDH-512 CSIDH-1792 CSIDH-4096 SeaSign-512

2HBC 11.3% 4.2% 3.3% 0.3%
OMTUP 11.3% 4.3% 3.6% 0.3%
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The communication costs depend on the choice of the threshold t, as this
determines the number of queries q. In the first round of the 2HBC case, we
delegate q vectors of size ExI((δ + 1)B) and download q elliptic curves, while in
the second round, we delegate one vector of size ExI(δB) plus one elliptic curve
and download one final elliptic curve. In the OMTUP case, we delegate q′ +mr

vectors of size ExI((δ + 1)B) and download the same amount of elliptic curves,
then we delegate another q′′ vectors from ExI(δB) and elliptic curves. This leads
to the totals

Up = (q′ +mr) · ExI((δ + 1)B) + q′′(ExI(δB) + ⌈log2 p⌉)
Down = (q′ +mr + q′′)⌈log2 p⌉ ,

where q′ = max{q,ms+1} and q′′ = ms+1 and where we assume mr = ms = 0
in the 2HBC-case. The communication costs of the standard protocols are sum-
marized in Table 6. Note that we have to count the upload and download costs
twice for CSIDH, while we have to repeat it ⌈s/λ⌉ times for SeaSign, where s is
the number of elements in the public key and λ the security parameter.

As a final note, we compare these results to the ephemeral shrouding intro-
duced in Section 5. The most interesting to note is that the communication cost
for OMTUP is actually not considerably higher than in the ephemeral case for
the choice δ = 1. This is because we could use the dummy delegations to in-
crease the probability of a correct instance in our rejection sampling approach.
This result holds until t ≈ 0.9985, for which δ = 9 = ms + 1 is still optimal.
We included the case t = 0.9999 for reference, but one could argue that such a
high threshold is in practice not necessary. We can therefore conclude that for
OMTUP with a verifiability of 99%, the communication cost via this approach
is actually not considerably higher than in the ephemeral case, while the com-
putational cost for the delegator is strongly reduced. For these parameters, the
static key case approach can therefore be seen as preferable, even with ephemeral
keys. These observations however do not hold as strongly for lower verifiability in
the OMTUP case or in the 2HBC case, where the communication cost increases
considerably. Choosing the right algorithm strongly depends on reusability of
the keys and the desired computational-communication cost trade-off.
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Table 6. Communication costs of our protocols in the 2HBC and OMTUP assumptions
for different thresholds t. For each case, we first give optimal choices for δ and q, then
show the upload and download costs for these parameters. As in the examples before,
we choose mr = 3 and ms = 8 for either CSIDH in the OMTUP case. For SeaSign-512,
we again choose mr = 3 and ms = 0 and take a public-key size of s = 24. We choose
q = ms + 1 and minimize δ accordingly.

t CSIDH-512 CSIDH-1792 CSIDH-4096 SeaSign-512

0.9000

2HBC − (δ, q) (89, 4) (335, 3) (668, 3) (119, 3)
up 949 B 2.84 kB 4.86 kB 25.7 kB
down 640 B 1.75 kB 4.00 kB 8.00 kB

OMTUP − (δ, q) (50, 9) (140, 9) (280, 9) (119, 3)
up 4.49 kB 16.6 kB 29.3 kB 43.5 kB
down 2.63 kB 9.2 kB 21.0 kB 14.0 kB

0.9999

2HBC − (δ, q) (101, 14) (308, 13) (571, 14) (101, 14)
up 2.57 kB 8.78 kB 15.1 kB 89.9 kB
down 1.88 kB 6.13 kB 15.0 kB 30.0 kB

OMTUP − (δ, q) (101, 14) (308, 13) (571, 14) (101, 14)
up 5.35 kB 18.8 kB 33.4 kB 107.4 kB
down 3.25 kB 10.9 kB 26.0 kB 36.0 kB
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