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Abstract

We present advancements for interactive arguments with Hy-
dra, a novel verifiable computation system. Hydra introduces
two new disjoint interactive argument scheme protocols geared
towards the efficient pipelining of circuit verification. The first
is specific to subcircuits, where a deep circuit is broken up into
smaller parts and proven concurrently. The second is a more
general scheme where all layers of the circuit can be proven
in parallel, removing the dependency on the layer-wise syn-
chronous execution of the protocol. Compared to non-interactive
SNARKs which rely on knowledge type assumptions (or the
Random Oracle model) and theoretical non-interactive argu-
ments based on standard assumptions that are not useful in
practice, Hydra achieves a sweet spot with a practical approach.
From standard assumptions, Hydra collapses the round com-
plexity to polylogarithmic to the width of the circuit, but only
incurs polylogarithmic blowup in bandwidth and verifier time
complexity. We implement the full verification flow, including
both protocols and a logic parser used to convert traditional
logic circuit compilation outputs into provable layered arith-
metic representations. We perform experimental evaluations
of our proposals and demonstrate protocol time efficiency im-
provements of up to 34.8× and 4.3× respectively compared to
traditional approaches on parallel hardware.
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1 Introduction

With the rise of cloud based computing, blockchain technology, and other ap-
plications relating to offloaded computation, the demand for security and trust
in the accurate execution of a delegated task has grown prominent. This has
motivated the field of verifiable computation and the concept of an interactive
proof, where a computationally weak verifier (denoted as V) can be efficiently
convinced to a high degree of probability that a computationally unbounded
prover (denoted as P) has correctly computed a requested task. The key prop-
erty in this notion is that V is able to check the proof of correctness that P
provides in asymptotically less time than it would take to recompute said task
by itself, thus resulting in an advantageous benefit for V in outsourcing the
computation.

Interactive proofs were first introduced by [GMR85] in the 1980’s and have
been discussed in the literature for quite some time, leading to important ad-
vances in cryptography and complexity theory such as the celebrated proof of
IP=PSPACE [Sha92]. However, they were largely considered to be merely of
theoretical promise and not applicable for production or practical use in any
sense, mainly due to the incredibly high time and computation overhead re-
quired to generate such proofs. It only recently that work to refine and scale
these theoretical concepts for practical use became prevalent.

Particularly, a significant amount of such research has been based on the
seminal general purpose interactive proof due to Goldwasser, Kalai, and Roth-
blum [GKR08] (henceforth referred to as GKR or the GKR protocol). In this
environment, the prover convinces the verifer of the validity of an arithmetic
circuit evaluation composed of addition and multiplication gates of fan-in size
two over some finite field. A notable property of their powerful protocol is that
it is doubly efficient, meaning that the prover runs in polynomial time in the
circuit size and the verifier runs in time sublinear to the circuit size. Despite this
progress, the underlying GKR protocol runtime as well as the round complexity
still remain entirely dependent on the depth of the circuit, as the protocol is
fundamentally based on a layer-by-layer proof approach to ensuring the validity
of the output. This quickly becomes a major bottleneck for a variety of deep
circuits comprised of many layers, where the protocol efficiency begins to se-
riously degrade. Unfortunately, parallelism cannot be exploited naively across
the depth of the circuit to account for this problem because at a high level, it
would expose information about other layers while they are being proved, which
would destroy the security of the protocol. As a result, GKR-based proofs have
been generally considered to be impractical in such instances with deep circuits
and restricted only to circuits of shallow constant-bounded depth.

In this work, we contribute theoretical proposals and practical improvements
which come together to form a complete, robust framework that has wide appli-
cability. In summary, this paper introduces the following succinct1 interactive
argument protocols:

1“succinct” refers to polylogarithmic in the size of the circuit C
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• The subcircuit protocol. This argument scheme allows for a large, deep
circuit to be split up depthwise into multiple smaller data-dependent sub-
circuits. Each of these subcircuits are then proved in parallel and the
proofs are combined at the end. With this protocol, a streaming upload
system can be utilized where the proving process begins during the sub-
circuit uploading process.

• The Hydra protocol. This allows for the complete layer-wise independent
parallelization of the GKR protocol. This argument scheme removes the
need for a sequential layer-by-layer evaluation proof so that all layers can
be pipelined at once. Hydra achieves a sweet spot between non-interactive
SNARKs that rely on non-standard assumptions such as the Fiat-Shamir
heuristic and theoretical non-interactive proofs based on standard assump-
tions that are not applicable in practice. From standard assumptions, we
reduce round complexity of the GKR protocol to polylogarithmic to the
width of the circuit, but only incur polylogarithmic increase to the band-
width and verifier complexity.

In addition, we contribute

• A novel logic handler that can take DAG logic circuits [Moo+16] compiled
from C-style code and translate them on-the-fly into more efficient and
provable circuit representations to be used with the GKR protocol.

• A full implementation of both protocols proposed as well as the parser.
Through our experimental evaluations, we show efficiency improvements
of up to 34.8× for the subcircuit protocol and 4.3× for the Hydra protocol
on parallelized hardware.

2 Related Works

Significant advancements have been made to GKR protocol, taking it to near
practicality. The prover runtime was reduced to O(|C|log|C|) in [CMT12], close
to linear for specific circuit compositions in [Tha13], and eventually reduced to
where it is linear O(|C|) with respect to the size of the circuit in [Xie+19].
In a practical setting, the utilization of parallelism has additionally introduced
great speedups for the proving process within individual layers of the circuit
[Tha+12], across data-independent parallel circuits [Wah+17], and in different
sub-copies [Zha+18].

Also, cryptographic primitives have been used with the GKR protocol for
further improvements. The Fiat-Shamir hueristic [FS87] is commonly used to
convert interactive proofs such as GKR to non-interactive arguments that can
be achieved with a single round protocol. However, it is important to note that
these arguments are based on non-standard assumptions (either the Random Or-
acle model [BR93] or knowledge type assumptions) that are non-falsifiable, and
have been proven insecure by [GK03] in the absence of a random oracle. In ad-
dition, polynomial commitments and other primitives are also utilized alongside
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GKR as the base for efficient argument schemes [Ben+14] [Zha+17] [Bün+18]
[Wah+18] [Xie+19] [Set20], especially ones that guarantee zero-knowledge (zk-
SNARKs). These zero-knowledge schemes are applicable in authentication sys-
tems and blockchains where P wants to prove to V that it knows some value x
without revealing any information about x itself. One important aspect of these
schemes is that they all rely on similar Fiat-Shamir transformations to convert
them into non-interactive protocols. In fact, it is known due to [GW11] that
one cannot construct such SNARKs with constant O(1) round complexity from
standard assumptions.

On the theoretical side, the latest state of the art non-interactive proto-
col from standard assumptions is due to [KPY18], with a protocol runtime of
O(poly(|C|)).

Table 1 provides a comparison of the Hydra protocol and existing verifiable
computation systems. Compared to other state-of-the-art protocols, Hydra’s
main advantage is a near constant round complexity from standard assumptions,
while keeping reasonable prover and verifier time complexity.

3 Background

3.1 Interactive Proofs

We formally define an interactive proof below. Given a function g, prover P
and a verifier V, an interactive proof allows for P to convince V that g(x) = y
through a multi-round conversation, where x is an input given by V, and y is
the output claimed by P. An interactive proof must satisfy two conditions as
follows:

• Completeness. For every x such that g(x) = y, it holds that

Pr[〈P,V〉(x) = accept] = 1.

In other words, a prover who follows the protocol honestly will always
convince the verifier of the validity of the function evaluation.

• Soundness. For any x with g(x) 6= y and any malicious P∗, it holds that

Pr[〈P∗,V〉 = accept] ≤ ε.

In other words, the verifier will only accept a cheating prover with prob-
ability less than equal to some ε. Formally, ε = 1

3 , however, in practical
settings this can be made arbitrarily small.

2requires an O(C) per-statement trusted setup phase
3round complexity O(logn) is constant in the depth of C, logarithmic in the width of C

6



libSNARK2

[Ben+14]
Ligero

[Ame+17]
Bulletproofs

[Bün+18]

P O(C logC) O(C logC) O(C)

V O(1) O(C) O(C)

R O(1) O(
√
C) O(logC)

|π| O(1) O(
√
C) O(logC)

Hyrax
[Wah+18]

libSTARK
[Ben+18a]

Aurora
[Ben+18b]

P O(C logC) O(C log2 C) O(C logC)

V O(
√
n+ d logC) O(log2 C) O(C)

R O(d logC) O(log2 C) O(log2 C)

|π| O(
√
n+ d logC) O(log2 C) O(log2 C)

[KPY18] Libra
[Xie+19] Hydra3

P O(poly(C)) O(d · n) O(d · n log n)

V O((d+ n) · polylog(C)) O(d log n) O(d log2 n)

R O(1) O(d log n) Õ(1)

|π| O(d · polylog(C)) O(d log n) O(d log2 n)

Table 1: Comparison of the Hydra protocol to existing state of the art proof
systems, specifically the interactive versions of protocols that only rely on stan-
dard assumptions (e.g., discrete logarithm, bilinear maps, etc.). Notably, this
does not include knowledge type assumptions and Fiat-Shamir heuristic under
the Random Oracle model. P, V, R, and |π| are the prover time, verification
time, round complexity, and proof size, respectively. C is the size of a logspace
uniform circuit with depth d and width n.
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3.2 Sumcheck Protocol

The sumcheck protocol was introduced by [Lun+92], providing an interactive
proof for the problem of summing a multivariate polynomial f : F` → F over
the Boolean hypercube: ∑

b1,b2,··· ,b`∈{0,1}

f(b1, b2, · · · , b`)

The protocol proceeds in ` rounds as follows, where in each round V samples
a random field element r ∈ F, commonly referred to as a “coin toss”.

1. For the first round 1, P sends the claimed summation value H and a
univariate polynomial

f1(x1) :=
∑

b2,··· ,b`∈{0,1}

f(x1, b2, · · · , b`)

V checks if H = f1(0) + f1(1). Afterwards, V samples a random field
element r1 ∈ F and sends it to P.

2. For every round j where 2 ≤ j ≤ `− 1, P sends a univariate polynomial

fj(xj) :=
∑

bj+1,··· ,b`∈{0,1}

f(r1, · · · , rj−1, xj , bj+1, · · · , b`)

V checks if fj−1(rj−1) = fj(0) + fj(1) and sends another random field
element rj ∈ F to P.

3. For the last round `, P sends a univariate polynomial

f`(x`) := f(r1, r2, · · · , r`−1, x`)

which V then checks if f`−1(r`−1) = f`(0)+f`(1). Then, V samples another
random field element r` ∈ F that is not revealed to P, and evaluates
f(r1, r2, · · · , r`) on its own or with the help of an oracle. V accepts if
f`(r`) = f(r1, r2, · · · , r`). Otherwise, if any equality check does not hold
during the protocol, V rejects.

The sumcheck protocol is complete and has soundness ε = d`
|F| , where d is

the total degree of f . The proof size is O(d`) and the verifier time is also O(d`).

3.3 GKR Protocol

As stated before, the GKR protocol [GKR08] is a powerful interactive proof
terchnique that allows for the efficient verifiable evaluation of circuit computa-
tions. From a bird’s-eye view, the protocol proceeds layer by layer, starting from
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the output layer and ending at the input layer. For each layer, P gives a claim
about the values in that layer i and reduces it to a claim about the values in the
subsequent layer i+1 through an instance of the sumcheck protocol on a certain
polynomial. Since V does not have access to the values in intermediate layers
(computing those values would require evaluating the circuit, which is precisely
what V wants to avoid) V cannot check these claims directly. Therefore, this
cycle continues until P gives a claim about the values in the input layer, which
V can check itself and conclude the protocol.

3.3.1 Notation

Here, we describe the notations that we will be utilizing throughout the rest
of the paper. Formally, the GKR protocol environment is one where P and V
agree on a layered logspace uniform arithmetic circuit C over a finite field F, of
fan-in size 2 and composed of addition and multiplication gates. The objective
is for P to convince V that the circuit evaluation (the gate values at the output
layer) is correctly computed.

Let d be the depth of the circuit, with layer 1 as the output layer and layer
d as the input layer. We use Si to denote the number of gates in the i-th layer,
and si := log(Si). Then, we define a function Wi : {0, 1}si → F that takes in a
binary string b ∈ {0, 1}si , which is the label of a gate at layer i, and returns the
value of that gate. Thus, W1 is the function for the values of the output layer,
and Wd is the function for the values of the input layer.

We also define two more functions, addi and multi : {0, 1}si × {0, 1}si+1 ×
{0, 1}si+1 → {0, 1}, known as the wiring predicate functions. In essence, these
encode how the gates from level i are connected to the wires from level i + 1.
These functions take in a gate label a at level i and two gate labels b and c at
level i + 1. They will return 1 if the a gate takes in the values of the b and
c gates, and the gate type of a is of the corresponding type to the function
(addition for addi, multiplication for multi). Otherwise, they will return 0.

With this in mind, we provide the expression for Wi as

Wi(x) =∑
(a,b)∈{0,1}2si+1

[addi(x, a, b)(Wi+1(a) +Wi+1(b))

+multi(x, a, b)(Wi+1(a) ·Wi+1(b))] (1)

for x ∈ {0, 1}si . As Wi is expressed as a summation, P and V can engage in a
sumcheck protocol in order to verify the validity of a claimed evaluation. We
can rewrite the expression as a polynomial in the field F by use of multilinear
extensions. Namely, given a function f : {0, 1}` → F, the multilinear extension

of a function is the unique polynomial f̃ : F` → F where f̃(x) = f(x) ∀x ∈
{0, 1}` and the degree of the polynomial in each variable is at most 1. We
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represent this polynomial by the Lagrange interpolation as

f̃(x1, x2, · · · , x`) =
∑

b∈{0,1}`

∏̀
i=1

[(1− xi)(1− bi) + xibi] · f(b)

Applying this to Wi, we get

W̃i(x) =∑
(a,b)∈{0,1}2si+1

[
ãddi(x, a, b)(W̃i+1(a) + W̃i+1(b))

+m̃ulti(x, a, b)(W̃i+1(a) · W̃i+1(b))
]

(2)

where x ∈ Fsi .

3.3.2 Protocol

Let F be a prime field and C be a layered arithmetic circuit with depth d. The
protocol proceeds in d instances as described below.

1. P first sends the claimed output of the circuit to V. V samples a random
x(1) ∈ Fs1 and sends it to P. P and V both compute W̃1(x(1)). Note that

W̃1(x(1)) is based on the claimed output values sent by P. The following

steps reduces the truthfulness of W̃1(x(1)) all the way to the truthfulness
of the input layer, which is known by V.

2. For all layers 1 ≤ i ≤ d, P and V execute sumcheck over

W̃i(x
(i)) =∑

(a,b)∈{0,1}2si+1

[
ãddi(x

(i), a, b)(W̃i+1(a) + W̃i+1(b))

+m̃ulti(x
(i), a, b)(W̃i+1(a) · W̃i+1(b))

]
(3)

Note that at the end of the sumcheck (the last round), V cannot directly

check the evaluation of W̃i at a random point through an oracle. V per-

forms the ãddi and m̃ulti calculations by itself, however V receives claims
from P about W̃i+1(u(i+1)) and W̃i+1(v(i+1)) for the final check on that
layer. Therefore, V needs to be convinced that those values are correctly
provided with sumchecks on layer i + 1. Observe that a claim is reduced
to two more claims on the subsequent layer. Therefore, if this continues,
the number of claims would increase exponentially in terms of the circuit
depth d. In order to prevent an exponential blowup in the number of
sumchecks, we combine the two claims W̃i+1(u(i+1)) and W̃i+1(v(i+1)) at
each layer into one claim as follows.
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• V defines a canonical line z such that zi(0) = u(i+1) and zi(1) = v(i+1)

and sends zi(x) to P.

• P sends a degree si+1 univariate polynomial hi(x) = W̃i+1(zi(x)).

• V checks if hi(0) = W̃i+1(u(i+1)) and hi(1) = W̃i+1(v(i+1)). V then

samples r ∈ F and computes hi(r) = W̃i+1(zi(r)). In this sense, P
and V can now go to the next level on x(i+1) = zi(r).

3. At the input layer d, V will receive two claims W̃d(u(d)) and W̃d(v(d)). As
V has complete access to the input layer gates, it can simply calculate the
polynomials at those two random locations and see if they are equal to
the claimed values. If they are, V is sufficiently convinced and accepts.
Otherwise, if any check has failed, V rejects.

The GKR protocol is complete and has soundness O(d·log|C|
|F| ). For bounded-

depth circuits, it is composed of O(d · log|C|) interactive rounds. The verifier
time is O(log|C|), and with the advancements for computation in [Xie+19], the
prover time is O(|C|).

4 Insecure Layer-wise Independent Protocols

Our main area of study in this work is the concept of GKR-based protocols that
remove the requirement for a sequential layer-by-layer approach to proving the
circuit evaluation correct. In this section, we first present the case why a simple
natural parallelized-round protocol approach is not secure. Next, we show an
attempted fix of such a naive parallelized-round protocol, and show why it is
again insecure.

4.1 Natural Method

At a first glance, the GKR protocol seems trivially parallelizable. A naive
approach to achieve layer-wise parallelism would be simply to have V initially
choose r(i) ∈ Fsi for all i in the number of layers d. Then, d parallel instances
of sumcheck would be executed over

W̃i(x
(i) = r(i)) =∑

(a,b)∈{0,1}2si+1

[
ãddi(r

(i), a, b)(W̃i+1(a) + W̃i+1(b))

+m̃ulti(r
(i), a, b)(W̃i+1(a) · W̃i+1(b))

]
(4)

However, we establish that this is not secure.
The problem with this approach is that the random points are not necessarily

correlated such that V can conclude anything about the two claims W̃i+1(u(i+1))

and W̃i+1(v(i+1)) given at the last step of the sumcheck protocol for each layer
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i. Recall that in the original protocol u(i+1) and v(i+1) were correlated with the
help of a line z, and another degree si polynomial h to determine the expected
value of the evaluation at a random point on that line. Therefore, the next
sumcheck for layer i + 1 took place at Wi+1(z(r)), which was expected to be
equal to h(r). However, in this case the soundness of the protocol overall is com-
promised. Intuitively, P already knows the randomness that V provided about
the other layers before going further through each sumcheck.

4.2 Correlation Fix

In this protocol, we make a slight change to the naive parallelization in order
to establish a correlation of points. It is important to note that this “fix” is in
fact still insecure, and an attack will be present in the later section.

Recall that in the traditional protocol, two claims W̃i+1(u(i+1)) and W̃i+1(v(i+1))
are reduced to a single claim with the help of a line z(x) such that z(0) =
u(i+1) and z(1) = v(i+1). P sends a degree si+1 univariate polynomial h(x) =

W̃i+1(z(x)) which V checks if h(0) = W̃i+1(u(i+1)) and h(1) = W̃i+1(v(i+1)). V
then samples r ∈ F and computes h(r) = W̃i+1(z(r)). P and V finally go to the
next level on the point x(i+1) = z(r).

To maintain correlation of points, we propose a protocol in which we adopt

a similar policy with concurrent layer proving. In this case, u(i+1) and v(i+1)

are sampled by V before the online phase, along with the line z(x). During
the online phase of the protocol, V can designate the random point to evaluate
on by sampling r ∈ F and requesting the evaluation point at z(r) such that P
gives a claimed value for W̃i(z(r)) at each layer i, which is reduced to claims for

W̃i(u
(i+1)) and W̃i(v

(i+1)) via sumcheck. Hence, when the end of the sumcheck
is reached, V can request h(x) (the prover’s claimed polynomial) and evaluate

it at r to check for consistency in the W̃i+1(z(r)) claim for the subsequent layer.

4.3 Technical Description

Let F be a prime field and C be a layered arithmetic circuit with depth d, with
circuit layers labeled from the output layer 1 to the input layer d. Si denotes
the number of gates in the i-th layer, and si := log(Si). The protocol proceeds
as follows.

Protocol: Naive Parallelized GKR (Correlation Fix)

1. V randomly samples points u(i+1), v(i+1) ∈ Fsi+1 and line zi(x) such
that zi(0) = u(i+1) and zi(1) = v(i+1) for all 1 ≤ i < d.

2. For all 1 ≤ i < d, V randomly samples point r(i) ∈ F. P and V then
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execute sumcheck over

W̃i(x
(i) = zi(r

(i))) =∑
(a,b)∈{0,1}2si+1

[
ãddi(zi(r

(i)), a, b)(W̃i+1(a) + W̃i+1(b))

+m̃ulti(zi(r
(i)), a, b)(W̃i+1(a) · W̃i+1(b))

]
(5)

where x(i) is the input to the sumcheck. The first half of the sum-

check’s coin tosses will be set to u(i+1), and the second half of the
sumcheck’s coin tosses will be set to v(i+1).

3. For all 1 ≤ i < d, P sends V the si+1 degree univariate polynomial

hi(x) = W̃i+1(zi(x)). V checks that h(0) = W̃i+1(u(i+1)) and h(1) =

W̃i+1(v(i+1)).

4. V checks if the claim from the sumcheck in the subsequent layer
W̃i+1(zi(r

(i+1))) is equal to hi(zi(r
(i+1))). If it is equivalent across

all 1 ≤ i < d and the claims for the input layer d are independently
verified to be correct, V accepts. Otherwise, if any check has failed,
V rejects.

4.4 Attack

We demonstrate a simple attack method that shows the insecurity of a tradi-
tional layer-wise independent GKR protocol, even when the points are corre-
lated. Our attack stems from the fact that the unlike the traditional protocol,
in the current form the evaluation point r can be deduced by P before sending
h to V. Notice that after u(i+1) and v(i+1) are revealed to P, it can deduce
the line z(x), and subsequently determine at which r point V requested the

evaluation of W̃i+1(z(r)) because P knows z(r). Once a malicious P∗ knows r,
it can craft the degree si+1 polynomial h(x) such that it agrees with V’s checks

for h(0) = W̃i+1(u(i+1)) and h(1) = W̃i+1(v(i+1)), but pegging h(r) to equal an

incorrect W̃ ∗i+1(z(r)) 6= W̃i+1(z(r)). Thus, when V checks for consistency, h(r)
is already compromised.

5 Subcircuit Protocol

In this section, we propose a method to introduce some degree of depth-wise
parallelism while circumventing the security issues previously shown with a naive
parallelized GKR protocol.

Using pipelining, we propose splitting up a circuit C depth-wise by treating
C as k subcircuits (denoted as ci for all 1 ≤ i ≤ k), where the input of subcircuit
ci directly corresponds with the output of subcircuit ci−1. In other words, for all
i > 1, the input of a subcircuit ci is precisely the output of the subcircuit ci−1
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above it. Then, the original GKR protocol can be executed on each subcircuit
concurrently, maintaining the security guarantee of GKR with the scope of each
subcircuit. The only remaining need to guarantee full security of the protocol
in regards to the entire circuit C would be proving the relationship between the
output and input of adjacent subcircuits.

Recall in the GKR protocol the prover generates claims about the multilinear
polynomial W̃i(x). For any two adjacent subcircuits, Let W̃out(r) be the claim

regarding the gate values of the output level of the first circuit, and W̃in(r) be
the claim regarding the gate values of the input level of the second circuit. As
the claims should effectively be the same, P wants to convince V that W̃out(r) =

W̃in(r).

5.1 Naive Approach

Naively, P and V can simply iterate over the gate values at each input and
output level, explicitly providing the guarantee that they are in fact equal. In
this case, all of the gate values that comprise those specific levels would be
revealed, and V would perform a check for the W̃i(r) values claimed by P for
all random points sampled r ∈ Fsi .

However, by revealing the plain points of those layers, V incurs a huge over-
head in terms of computation and communication costs. Now, instead of re-
ceiving and sending only si points and evaluations, P has to give V all 2si gate
values, which is an exponential increase that we want to avoid.

5.2 Polynomial Commitment Scheme

A better approach would be to utilize cryptography, specifically polynomial com-
mitments, which are crucial in succinct arguments in that they force P to answer
the queries by V such that they must be in accordance with a specific bounded-
degree polynomial. In essence, these polynomial commitments start with P
sending a value s ∈ F which is the claimed value of an f(z) polynomial evalu-
ation where V knows z. Then, P sends a corresponding opening proof π that
the evaluation is indeed correct.

More specifically, we use the efficient constant-size polynomial commitment
scheme described in [Chi+20] and let P commit to the polynomials W̃in(x) and

W̃out(x) (which should be the exact same) on every subcircuit. This way, the
gap in security between the subcircuits is effectively bridged, and the verification
process can be efficiently pipelined across the subcircuits.

5.3 Technical Description

Let F be a prime field and C be a layered arithmetic circuit with depth d, with
circuit layers labeled from the output layer 1 to the input layer d. C is split
into k equal-depth subcircuits denoted as ci for all 1 ≤ i ≤ k. The input of
subcircuit ci directly corresponds with the output of subcircuit ci−1. For each
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subcircuit ci, let W̃ini
denote the multilinear extension of the input layer, and

W̃outi denote the multilinear extension of the output layer. Figure 1 depicts the
protocol, which proceeds as follows.

Protocol: Subcircuit (Figure 1)

1. For all 1 ≤ i ≤ k, P commits (polynomial commitment) to W̃ini and

W̃outi in subcircuit ci.

2. P and V engage in batched traditional GKR protocol for all k sub-
circuits.

3. For all 1 ≤ i ≤ k, P opens the proofs at all randomly sampled
locations for the evaluations of W̃ini and W̃outi during the batched
traditional GKR protocol and sends these proofs to V.

4. V checks the proofs to verify that W̃ini
(x) = W̃outi(x) at all randomly

sampled points for all adjacent subcircuits.

Subcircuit

Subcircuit

Subcircuit

Polynomial
Commitment

Polynomial
Commitment

Input

Output

Batched
GKR

Batched
GKR

Batched
GKR

Figure 1: Subcircuit Protocol

5.4 Trade-off

We recognize that the total number of layers in the representation of C increases
by an additive factor of k, as in each adjoining subcircuit the input and output
are repeated. However, in the perspective of the proposed subcircuits, we es-
sentially slash the depth and number of rounds by a multiplicative factor of k.
This has great appeal for P and V assuming they have access to multithreaded
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hardware and can concurrently run the protocol on the separate subcircuits.
In addition, assuming the subcircuits are all of the same depth and the layers
are logspace uniform (si is equivalent across all i), the number of rounds can
decrease by a factor of k as well. V can use the same random coin tosses for
sumchecks across all the subcircuits simultaneously.

5.5 Guarantees

Here, we provide the complete proof behind the validity of the subciruit protocol
as described.

5.5.1 Completeness

The completeness is straightforward from the completeness of sumcheck and
polynomial commitments, as well as the protocol description.

5.5.2 Soundness

In the scope of the individual subcircuits, the soundness is guaranteed by the
GKR protocol. With regards to connecting the input and output layers of
adjacent subcircuits, the extractability of polynomial commitments in [Chi+20]
for bounded polynomial-time P and V guarantees its soundness. A formal proof
follows.

Let F be a prime field. Let C be a layered arithmetic circuit, given an input
and a claimed output. C has depth d, with circuit layers labeled from the output
layer 1 to the input layer d. C is split into k equal-depth subcircuits denoted
as ci for all 1 ≤ i ≤ k. The subinputi of ci (input of subcircuit ci) directly
corresponds with the suboutputi−1 of ci−1 (output of subcircuit ci−1). For each

subcircuit ci, let W̃ini denote the multilinear extension of the input layer, and

W̃outi denote the multilinear extension of the output layer.
Suppose that C(input) 6= output. Assume there exists an adversarial P∗

such that
Pr[〈P∗,V〉 = accept] = p.

Let A be the event in which 〈P∗,V〉 = accept. For all 1 ≤ i ≤ k, let Gi

be the event where ci(subinputi) 6= suboutputi and let Pi be the event where

W̃ini
6= W̃outi . We observe that

p = Pr[A]

≤ Pr[∃i ∈ [k] s.t. A ∧ (Gi ∨ Pi)]

≤
k∑

i=1

Pr[A ∧ (Gi ∨ Pi)]

≤
k∑

i=1

(
Pr[A ∧Gi] + Pr[A ∧ Pi]

)
. (6)

16



The soundness of the GKR protocol implies that

k∑
i=1

(
Pr[A ∧Gi]

≤
k∑

i=1

si · dk
|F|

≤ O
(si · d
|F|

)
. (7)

From the the computational extractability of the polynomial commitment
scheme, we see that

k∑
i=1

(
Pr[A ∧ Pi]

≤
k∑

i=1

λ

≤ O
(
k(λ)

)
. (8)

where λ is the security parameter used in [Chi+20] of the commitment.
Finally, by the union bound we obtain

p = Pr[A]

≤ Pr[∃i ∈ [k] s.t. A ∧ (Gi ∨ Pi)]

≤
k∑

i=1

Pr[A ∧ (Gi ∨ Pi)]

≤
k∑

i=1

(
Pr[A ∧Gi] + Pr[A ∧ Pi]

)
≤ O

(si · d
|F|

+ k(λ)
)
. (9)

6 Hydra Protocol

In this section we present a GKR-based protocol with full layer-wise indepen-
dence. Although the subcircuit protocol presented previously does allow for
splitting a deep circuit up into multiple batched subcircuits, it does not allow
for us to completely parallelize the proof across all of the layers in the circuit.
Intuitively, this is because when we split the circuit up, the internal subcircuit
itself still has to engage in a traditional sequential GKR protocol. Here, we
propose an interactive protocol with a series of O(log n) rounds. Recall that
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n is the circuit width. We run d log n sumchecks concurrently. Despite the in-
crease in number of sumchecks, the advantage of this protocol is the reduction
in round complexity from the traditional O(d log n) rounds. Compared to the
subcircuit protocol, the Hydra protocol does not require the duplication of adja-
cent layers. More importantly, the round complexity is no longer dependent on
the depth, so it does not degrade based on the number of layers in the circuit.
Notably, Hydra does not depend on any non-standard assumptions (knowledge
type, Fiat-Shamir/Random Oracle). Instead, Hydra only relies on the standard
cryptographic assumptions presented in [Chi+20].

6.1 Context

For each layer of the traditional GKR protocol, the claim of W̃i(x
(i)) is reduced

into claims of W̃i+1(a(i)) and W̃i+1(b(i)), where x(i) ∈ Fsi and a(i), b(i) ∈ Fsi+1 .
More specifically, the polynomial evaluated

W̃i(x
(i)) =∑

(a,b)∈{0,1}2si+1

[
ãddi(x

(i), a, b)(W̃i+1(a) + W̃i+1(b))

+m̃ulti(x
(i), a, b)(W̃i+1(a) · W̃i+1(b))

]
(10)

over the sumcheck ultimately results in 2 claimed values for W̃i+1 at the lo-
cations a(i) and b(i) determined by the random points sampled by V during
the protocol. During the sumcheck, each coin toss for a and b determines an
additional dimension for a(i) and b(i), respectively.

At the beginning of each sumcheck, P claims the value for W̃i(x
(i)). Let x(i)

be known as a query point, and W̃i(x
(i)) be known as a query point evaluation.

At the end of each sumcheck, P claims the values for W̃i+1(a(i)) and W̃i+1(b(i)).

Let a(i), b(i) be known as challenge points, and W̃i+1(a(i)), W̃i+1(b(i)) be known
as challenge points evaluations.

The concept of layer-wise independence ultimately boils down to proving
that the claimed challenge point evaluations (W̃i+1(a(i)) and W̃i+1(b(i))) given
at the last step of the sumcheck at layer i is consistent with the claimed query
point evaluation (W̃i+1(x(i+1))) given at the beginning of the sumcheck run at
layer i + 1. Note that a(i), b(i), and x(i+1) should be uniformly random and
uncorrelated in the perspective of P. This is important because all of the query
points are revealed at once to P. If a(i), b(i) can be deduced given x(i+1), the
soundness of sumcheck will be compromised.

Thus, the core of our protocol lies in the power of polynomial interpolation.

If we let V sample m query points (x
(i+1)
1 , x

(i+1)
2 , . . . , x

(i+1)
m ) for layer i+ 1,

it is simple to see how the evaluation claims for these values could be obtained
through m instances of the sumcheck protocol at layer i + 1. Then, V can in-

terpolate using points in the form of
(
x
(i+1)
j , W̃i+1(x

(i+1)
j )

)
for 1 ≤ j ≤ m to

obtain the unique polynomial W̃i+1 assuming m is large enough. Once W̃i+1
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is established, V can use it to verify against the claimed challenge points eval-
uations W̃i+1(a(i)) and W̃i+1(b(i)) given at the last step of sumcheck at layer
i. Given a set of n + 1 points in the form of (xi, yi) where xi is unique across
all points, polynomial interpolation defines a linear bijection such that there
exists a unique polynomial p of total degree at most n that agrees with all of
the points.

If the query points are sampled from the full space of Fsi+1 , V would need
2si+1 + 1 claimed evaluation points in order to interpolate W̃i+1(x). Note that

W̃ is multilinear, therefore, the total degree is 2si+1 . Unfortunately, similar to
the plain gate reveal in the naive method for the subcircuit protocol, this is an
exponential increase in claims that we want to avoid.

6.2 Subspace Reduction

Here, we investigate reducing this evaluation W̃i+1(x(i+1)) by restricting the
query and challenge points over a subspace in terms of a polynomial f : F →
Fsi+1 (not to be confused with the f polynomial presented in the sumcheck
background) sampled by V, the coefficients of which are not revealed to P.

Evaluations and claims will all take place over W̃i+1(f(x)) at random points
x ∈ F. For example, given a multilinear function f and three randomly sampled
field elements µj , φj , θj ∈ F where 1 ≤ j ≤ m, P and V will run sumchecks of
the form

W̃i(x
(i) = f(µj)) =∑

(a,b)∈{0,1}2si+1

[
ãddi(f(µj), a, b)(W̃i+1(a) + W̃i+1(b))

+m̃ulti(f(µj), a, b)(W̃i+1(a) · W̃i+1(b))
]
. (11)

When the sumchecks are run, the first half of V’s si+1 random coin tosses will
be set equal to f(θj), and the second half of V’s si+1 random coin tosses will be
set equal to f(φj) for all j. Thus, at the end of a single sumcheck, one claimed

query point evaluation, namely W̃i(f(µj)), is reduced to two claimed challenge

points’ evaluations on W̃i+1, namely W̃i+1(f(φj)) and W̃i+1(f(θj)). We propose
deg(f) · si + 1 sumchecks to be executed per layer (m = deg(f) · si + 1), such
that for each layer i, at the end of all sumchecks V has deg(f) · si + 1 claimed
query point evaluations and receives 2(deg(f) · si + 1) claimed challenge point
evaluations. Then, V can interpolate the query point evaluations to obtain the

new polynomial gi(x) := W̃i(f(x)). V can check that gi(x) is in fact a degree
deg(f) ·si polynomial, and subsequently verify it on the claimed challenge point
evaluations. As no two distinct degree deg(h) polynomials can agree on more
than deg(h) points, this setup protects from a dishonest P by the Schwartz-
Zippel lemma [Sch80].
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6.3 Maintaining Sumcheck Soundness

In addition, care must be taken to ensure that P cannot predict any challenge
points. If P determines f or what value f(x) will equal before the entire vector is
revealed, it can bypass the soundness of sumcheck. Recall that for the sumcheck
protocol, f(µj) is revealed to P as it is the randomly sampled vector that W̃i

is to be evaluated at (the input of the sumcheck). We observe that the two

locations of claims (f(φj) and f(θj)) on W̃i+1 are the random coin tosses during
the interactive sumcheck and are also revealed. Thus, if f is known to P, after
the first random coin toss (the first field element of an f(x) evaluation) is sent,
P can determine the composition of the rest of the vector, which corresponds
to the following si − 1 coin tosses. As the soundness of sumcheck relies on the
fact that subsequent coin toss challenges are not known to P, the security is
compromised. We assert that for any polynomial f : F → Fsi , the number of
points for interpolation to determine gi(x) = W̃i(f(x)) is O(deg(f) · si + 1).
However, f and the points f is evaluated at must not be revealed to preserve
security. If f is revealed, the evaluation point x can be easily determined by
P. In addition, as V reveals more than deg(f) evaluations of f(x), x needs to
be hidden as well because f can be interpolated by P itself when given more
than deg(f) points. The full proof for this concept is presented in the soundness
proof later (see Section 6.8).

The benefit of the subspace reduction method is twofold. First, the number
of claims needed is no longer exponential. In this case, the number of rounds
(claims needed per layer) is a proportional to si, which is ideal for even wide
circuits. The degree of the polynomial f can subsequently be seen as a security
parameter, in which a higher degree will require more points of evaluation in
order for V to interpolate the function and be fully convinced. Second, as the
coefficients of f are not known to P and f and x are hidden, from the perspective
of P the evaluation points are completely random and not correlated. Thus, P
cannot predict ahead of time the random coin tosses of any sumcheck, nor the
challenge points for another layer before they are revealed by V.

6.4 Malicious Interpolation Points

Finally, we note that the query point evaluations for interpolation that come
from the W̃i+1(f(x)) polynomial need additional attention. As the initial claims
are exactly what V will be checking upon when V interpolates, a malicious P
could be able to choose an incorrect W̃ ∗i such that it interpolates to the correct
values only in the given subspace of the protocol. In other words, P can proceed
with an incorrect polynomial that in the scope of V is completely consistent, and
completely cooperate with V throughout all sumchecks. After the sumchecks
are completed, the values V interpolates will be correct only in the scope of
those claimed points. We present a formalized attack below.

1. Within any layer i in the circuit, P chooses an incorrect polynomial W̃ ∗i
constructed such that it agrees with the correct W̃i+1(f(x)) in the sub-
space provided. Namely, for each layer i the specific subspace the incorrect
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polynomial agrees upon is composed of the f(x) evaluations given to P
on W̃i+1(f(x)).

2. For each sumcheck, P engages in a completely honest interaction with V,
answering correctly according to the polynomial W̃ ∗i for all of V’s chal-
lenges.

3. V interpolates W̃ ∗i . The malicious polynomial bypasses this interpolation
check. In the scope of the given claims, the interpolation shows complete
consistency between adjacent layers.

Therefore, this attack will inductively lead to an incorrect claimed output that
will be verified as correct by V.

The reason why this is a significant vulnerability is because at the end of
each sumcheck for a layer, P cannot give V oracle access to W̃i+1(x) in order to
verify the claims presented. In the original GKR protocol, the entire protocol
on the subsequent layers ≥ i + 1 essentially serve as the oracle for the current
sumcheck on layer i.

In order to prevent this scenario, the protocol must guarantee that W̃i is not
malicious by having P engage in a polynomial commitment to the polynomial,
similar to the subcircuit protocol. In such an environment, an adversarial P will
not be able to cheat with an incorrect W̃i because the polynomial commitment
re-enables the oracle. P is forced to bind to the polynomial before it knows the
points that W̃i+1 will be evaluated on.

6.5 Technical Description

Let F be a prime field and C be a layered arithmetic circuit with depth d. Let
f : F → Fsi+1 be a random polynomial of degree deg(f) sampled by V for all
1 ≤ i ≤ d. Recall that we use Si to denote the number of gates in the i-th layer,
and si := log(Si). For the sake of simplicity, assume all of the layers obey the
same logspace and let all of the individual functions in the dimension of f be
linear. Figure 2 depicts the protocol, which proceeds as follows.

Protocol: Hydra (Figure 2)

1. For each 1 ≤ j ≤ si · deg(f) + 1, V samples random µj , φj , θj ∈ F.
Let 

ri,j = f(µj)

ai,j = f(φj)

bi,j = f(θj)

for all 1 ≤ i ≤ d.

2. For each 1 ≤ i ≤ d, P commits (polynomial commitment) to W̃i(x).

3. For 1 ≤ i ≤ d and 1 ≤ j ≤ si · deg(f) + 1, P and V concurrently
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execute sumchecks over

W̃i(x
(i) = ri,j) =∑

(a,b)∈{0,1}2si+1

[
ãddi(ri,j , a, b)(W̃i+1(a) + W̃i+1(b))

+m̃ulti(ri,j , a, b)(W̃i+1(a) · W̃i+1(b))
]

(12)

When the sumcheck is run, the first half of V’s si+1 random coin
tosses will be set to ai,j , and the second half of V’s si+1 random coin
tosses will be set to bi,j . At the beginning of sumcheck, P claims

the value for W̃i(ri,j) = W̃i(f(µj)). At the end of each sumcheck

at layer i, P provides claimed values for W̃i+1(ai,j) = W̃i+1(f(φj))

and W̃i+1(bi,j) = W̃i+1(f(θj)). Let the the beginning claims for

W̃i(ri,j) across si · deg(f) + 1 points be referred to as the query

point evaluations, and the ending claims for W̃i+1(bi,j) at a total
of 2(si+1 · deg(f) + 1) points be referred to as the challenge point
evaluations.

4. For each 1 ≤ i ≤ d and 1 ≤ j ≤ si · deg(f) + 1, P opens and sends

the polynomial commitment proofs of W̃i(x) for all points ri,j .

5. For all layers 1 < i < d, V uses the si · deg(f) + 1 query point eval-
uations from layer i to interpolate the unique polynomial gi(x) :=

W̃i(f(x)).V then checks to see if gi(x) is indeed a degree si · deg(f)
polynomial, and verifies consistency by evaluating gi(x) at the 2(si ·
deg(f) + 1) challenge point evaluations reduced from layer i− 1, ac-

cepting only if gi(φj) = W̃i(ai−1,j) and gi(θj) = W̃i(bi−1,j) for all
φj , θj points. As V already has access to the input layer d and the

output layer 1, it can check the W̃d and W̃1 claims on its own.

6.6 Guarantees

Here, we provide the complete proof behind the validity of the Hydra protocol
as described.

6.7 Completeness

The completeness is straightforward from the completeness of sumcheck and
polynomial commitments, and the protocol description.

6.8 Soundness

In order to guarantee the security of the Hydra protocol, we must first guarantee
the security of the sumcheck’s coin tosses. As stated earlier, if at any point f or
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its evaluation points are compromised, a malicious prover can completely bypass
the soundness of the sumcheck protocol as it knows the coin tosses ahead of time.
Thus, we first prove that in the perspective of P, all coin tosses are completely
random and probabilistically unpredictable.

Let n = si and m = si · deg(f) + 1. For the sake of simplicity, assume
deg(f) = 1 (f is linear in each of its dimensions). At each layer, P views a
system of polynomial equations as follows:

x1y1 + z1 = c1,1 ... x1ym + z1 = c1,m
... ... ...

xny1 + zn = cn,1 ... xnym + zn = cn,m.

where xi, zi are variables for 1 ≤ i ≤ n, yi is a variable for 1 ≤ i ≤ m, and
ci,j is a constant for 1 ≤ i ≤ n and 1 ≤ j ≤ m. At first glance, this seems like
an overdetermined system of polynomials, as the total number of variables is
2n+m and the total number of equations is n ·m. However, we establish that
because of the structure of such equations, this is not the case.

We can form a reduction by linear combination of such a system by sub-
tracting xiyj + zi = ci,j from xiy1 + zi = ci,1 so that we obtain

x1(y1 − y2) = c1,1 − c1,2 ... x1(y1 − ym) = c1,1 − c1,m
... ... ...

xn(y1 − y2) = cn,1 − cn,2 ... xn(y1 − ym) = cn,1 − cn,m.

Factoring out common xi will reduce this system to dependent ratios in the
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form of
y1−y2

y1−y3
=

c1,1−c1,2
c1,1−c1,3 = ... =

cn,1−cn,2

cn,1−cn,3

... ... ...
y1−y2

y1−ym
=

c1,1−c1,2
c1,1−c1,m ... =

cn,1−cn,2

cn,1−cn,m

Note that the chain of equalities must hold by construction: V generated
the system of polynomials such that it is valid. Therefore, in order for a cor-
rect solution to exist, the ratio of the constants shown must be equivalent and
consistent.

We now demonstrate how a solution of the reduced system yields a valid
solution to the original system. Given that the above reduction holds, we see
that there must exist an xi ∈ F for all 1 ≤ i ≤ n such that

x1(y1−y2)= c1,1−c1,2
x1(y1−y3)= c1,1−c1,3 ...

xn(y1−y2)= cn,1−cn,2

xn(y1−y3)= cn,1−cn,3

... ... ...
x1(y1−y2)= c1,1−c1,2
x1(y1−ym)= c1,1−c1,m ...

xn(y1−y2)= cn,1−cn,2

xn(y1−ym)= cn,1−cn,m
.

generalizing this for 1 ≤ i ≤ n and 1 ≤ j ≤ m we get

xi(y1 − yj) = ci,1 − ci,j
which expands to

xiy1 − xiyj = ci,1 − ci,j
Corresponding to the original system of equations, we want to find zi such

that

xiy1 + zi = ci,1

xiyj + zi = ci,j

Notice that

xiy1 − xiyj = ci,1 − ci,j =⇒ ci,1 − xiy1 = ci,j − xiyj .

Thus, if we set zi equal to xiy1 − ci,1 = xiyj − ci,j , we obtain

xiy1 + (ci,1 − xiy1) = ci,1

xiyj + (ci,j − xiyj) = ci,j .

We can now see by the transitive property of equality that this is indeed a
valid solution for xiyj + zi = ci,j across all 1 ≤ i ≤ n and 1 ≤ j ≤ m. It is clear
how y1 and y2 can be the two degrees of freedom in this system. Any y1 and y2
fixed in the space of F will result in a valid system. The remaining y3, ..., ym are
easily derivable, and once the yi values are known for all 1 ≤ i ≤ m, plugging
them back into the original system will quickly yield xi and zi for all 1 ≤ i ≤ m.

24



Thus, the probability of P bypassing soundness when f is linear in each of its
dimensions is 1

|F|2 . With this in mind, we now proceed with the remainder of

the proof.
Suppose that C(input) 6= output. Assume there exists an adversarial P∗

such that
Pr[〈P∗,V〉 = accept] = p.

Recall that the Hydra protocol takes si · deg(f) + 1 claims on W̃i for every

1 ≤ i ≤ d layers, which reduces to 2(si+1 · deg(f) + 1) claims on W̃i+1. Namely,

across all i ∈ [d], si · deg(f) + 1 claims that W̃i(ri,j) = Ri,j are reduced to

si+1·deg(f)+1 verifications of W̃i+1(ai,j) = Ai,j and si+1·deg(f)+1 verifications

of W̃i+1(bi,j) = Bi,j .
As we assume the layers in C obey the same logspace, si is the equivalent

across all 1 ≤ i ≤ d. Note that ri,j , ai,j , and bi,j are all points on f , however,
because neither f nor the locations where f is evaluated at are revealed, in the
perspective of P the random coin tosses of the sumchecks are in fact completely
random and probabilistically unpredictable.

Let A be the event in which 〈P∗,V〉 = accept. For all 1 ≤ i ≤ d, let Ti
be the event in which indeed all W̃i(ri,j) = Ri,j for layer i across all 1 ≤ j ≤
si · deg(f) + 1. We observe that

p = Pr[A]

= Pr[A ∧ ¬(T1) ∧ Td]

≤ Pr[∃i ∈ [d] s.t. A ∧ ¬(Ti−1) ∧ Ti]

≤
d∑

i=1

Pr[A ∧ ¬(Ti−1) ∧ Ti]. (13)

Let Ei be the event in which indeed all W̃i+1(ai,j) = Ai,j and W̃i+1(bi,j) =
Bi,j for i ∈ [d]. We can see that

d∑
i=1

Pr[A ∧ ¬(Ti−1) ∧ Ti]

=

d∑
i=1

(Pr[A ∧ ¬(Ti−1) ∧ Ti ∧ Ei]

+ Pr[A ∧ ¬(Ti−1) ∧ Ti ∧ ¬(Ei)]). (14)

First, the soundness property of the sumcheck protocol across si · deg(f) + 1
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instances for d layers implies that

d∑
i=1

Pr[A ∧ ¬(Ti−1) ∧ Ti ∧ Ei]

≤
d∑

i=1

Pr[A ∧ ¬(Ti−1) ∧ Ei]

≤
d∑

i=1

si(si · deg(f) + 1)

|F|
+

1

|F|2

≤ d(
si(si · deg(f) + 1)

|F|
+

1

|F|2
)

≤ O
(d · s2i · deg(f)

|F|
)
. (15)

Second, note that a ground truth Ti will result in the correct claims of the
query points where V interpolates on to obtain the polynomial hi(x), which

subsequently is indeed equal to W̃i(f(x)). If that is the case, there exists no
situation where V accepts a false Ei event where the claimed values for the
challenge points are not consistent. In regards to the soundness of the polyno-
mial commitment, [Chi+20] shows that the extractability of their construction
guarantees that it is computationally sound. Thus, given a correct hi(x), V will
always reject ¬(Ei) with probability negligibly close to 1 owing to the polyno-
mial commitment. Therefore,

d∑
i=1

Pr[A ∧ ¬(Ti−1) ∧ Ti ∧ ¬(Ei)]

≤
d∑

i=1

Pr[A ∧ Ti ∧ ¬(Ei)]

≤ O
(
d(λ)

)
(16)

where λ is the security parameter used in [Chi+20] of the commitment for
polynomial-time P. Finally, by the union bound we obtain
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p = Pr[A]

≤
d∑

i=1

Pr[A ∧ ¬(Ti−1) ∧ Ti]

≤
d∑

i=1(
Pr[A ∧ ¬(Ti−1) ∧ Ti ∧ Ei]

+ Pr[A ∧ ¬(Ti−1) ∧ Ti ∧ ¬(Ei)]
)

≤ O
(d · s2i · deg(f)

|F|
) +O(d(λ))

)
≤ O

(
d(
s2i · deg(f)

|F|
+ λ)

)
. (17)

7 Practical Considerations

Here we present proposals on the practical aspects of optimization we utilize in
our implementation of the verifiable computation system.

For context behind the practical usage of our protocols, note that the arith-
metic circuit structure used in the protocol is computationally complete. On a
high level, this means that any computation can be represented in such a way.
Hence, given code for a computation, we can translate this to an arithmetic
circuit representation and then delegate the computation with the use of our
protocols.

7.1 Circuit Representation

When dealing with practical usage of circuit evaluation proofs we cannot as-
sume that the circuit is sufficiently ”regular” to conform with the original GKR
protocol specifications. The notion that all gates can only connect values in
adjoining layers conflicts with the reality of the situation. The computations
are often compiled into arbitrary direct acyclic graphs, and here we discuss the
transformations needed in order to proceed with the proving process.

7.1.1 Pass-through Gates

The naive approach can be used where the value of a layer at level i + 1 is
relayed from layer i. Conforming to the original GKR arithmetic circuit with
only addition and multiplication gates, this would be accomplished first by
establishing an identity input of value 0 at the input level d. Then, for each
level i < d, an addition gate would be added with the inputs being the identity
value at the previous layer i+ 1.
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However, in many cases such gate is not possible in the set of operations
that is circuit is constrained to, specifically those that don’t contain identity
transformations. In this situation, we propose to use a specific “pass-through”
gate of fan-in size 1. The sole purpose of this gate would be to pass the value
of a gate at a level i to level i+ 1.

This new gate can be rather conveniently expressed as an additional term in
the polynomial being evaluated across the GKR protocol:

W̃i(x) =∑
(a,b)∈{0,1}2si+1

[
õpi(x, a, b)(op(W̃i+1(a), W̃i+1(b))

+ · · ·+ ˜passthrui(x)(W̃i+1(x))
]

(18)

where op is an arithmetic operation and õp can be viewed as the multilinear
extension of the boolean function relating to said operation.

7.1.2 Cross Layer Wiring

In [Zha+20], a naive extension of the GKR protocol for arbitrary DAG circuits is
presented. We have independently found a similar composition which is briefly
described below.

W̃i(x) =

d∑
j=i+1

∑
(a,b)∈{0,1}2si+1

[
ãddi,j(x, a, b)(W̃i+1(a) + W̃j(b))

+m̃ulti,j(x, a, b)(W̃i+1(a) · W̃j(b))
]

(19)

Note that here the multilinear extensions of add and mult have an additional
j property, which is the level at which the gate at b connects to the operation.
Thus, addi,j(x, a, b) and multi,j(x, a, b) evaluate to 1 if there exists an add or
mult, respectively, at level i, where the left input gate is a at level i + 1, and
the right input gate is b at level j.

The GKR protocol can proceed with the polynomial across all d layers. At
the end of the sumcheck protocol on layer i, V is given additional claims for W̃
across the d − i remaining layers. To prevent an exponential blowup in claim
verifications, we adopt a similar policy of executing the sumcheck on a random
linear combination of all previously given claims on each layer.

7.2 NAND Parser

Here, we note that the construction and complexity of the W̃i(x) depends solely
on the number of distinct gates in the arithmetic circuit. As more types of gates
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are added, V needs to undergo more work to perform its final sumcheck verifi-
cation, and P also is subject to a similar computation cost when calculating the
polynomial evaluations. While in the traditional GKR protocol, only addition
and multiplication gates are described, with practical circuit compilers, the re-
sulting circuits that code is translated into are logic circuits with a multitude
(24 = 16) of gates. This does not pose a theoretical problem in our situation, as
we easily can find mappings for such systems. For example, A ∧B =⇒ A ·B,
A ∧∼B =⇒ A+B, and so and and so forth for the rest of the gates (note that
the logical circuit representation is under a Galois field of size 2, so it is clear
how our arithmetic mapping holds). However, this does pose a practical issue
as the number of multilinear extensions (one for each type of gate) that have to
be computed by both P and V have now grown. To handle the increase in the
type of gates, we can exploit the functional completeness of the NAND gate. By
creating a parser to convert all types of logical gates into chains of NAND gates
represented as A + B, we can much more efficiently circumvent this problem.
This way, all computation can be represented in a much simplified structure
with less cost of verification for V, as it will now only have to check against one

ñand operation in the W̃i(x) polynomial. In addition, the parser also handles
the pass-through gate creation in the case of a DAG logic circuit given as input.

7.3 Engineering the Pipeline

Here, we briefly discuss the engineering process and benefits of our protocols,
specifically relating to the massive pipelining of the verification process.

7.3.1 Parallelization of Subcircuits and Layers

With regards to subcircuits in the subcircuit protocol and layers in the Hydra
protocol, the widespread parallelization of these components will lead to not only
reduced round complexity, but also faster protocols in general. This effectively
reduces the computational overhead for the circuit depth, with deeper circuits
subject to more benefit with our protocols.

7.3.2 Streaming Upload

Another scope of the pipeline is the use of a streaming upload. In other words,
the client can upload the circuit to the cloud in chunks such that we can take
advantage of our subcircuit protocol. When doing so, the proving process can
already begin during upload. As new chunks (subcircuits) are being uploaded,
previously uploaded chunks can initiate in the proving process. With the tradi-
tional GKR protocol, this could not have been accomplished because the entire
circuit needed to be uploaded in order for P to start the proving process. Intu-
itively, the VC protocol cannot begin until P has evaluated the circuit, and P
cannot evaluate the circuit if it has not finished uploading. However, by splitting
up a large circuit into multiple instances of subcircuits, our streaming upload
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method clearly works as the proving process can begin as soon as the first sub-
circuit is uploaded. The polynomial commitments prevent P from cheating in
connecting layers, and the soundness of the GKR protocol itself guarantees the
rest of the security. This way, as circuits get deeper, the gates higher up are
already in being proven or have already finished the proof, which can greatly
improve efficiency.

8 Experimental Evaluation

8.1 Environment

We used the Frigate [Moo+16] compiler to convert C-style code to logical cir-
cuits, and our parser to convert the circuits into provable representations for
both the subcircuit protocol and the Hydra protocol. We implemented our pro-
posals in around 1,500 lines total of C++ code with the polynomial and arith-
metic logic based on Thaler’s implementation of [CMT12]. Finally, we used the
PolyCommit Rust library [Ark] from Marlin [Chi+20] for the multilinear ex-
tension composition-based polynomial commitments. We anticipate to release
the source code for Hydra as fully open-source software. Our experiments were
executed on 40 physical Intel Xeon CPU E7-4850 cores with hyperthreading (80
virtual cores) and 128 GB of RAM.

8.2 Results and Discussion

In this section, we present the results of our experiments, along with discussion
and analysis. All experiments described in the following two subsections were
run on randomly generated layered circuit structure and random input values
which obeyed certain depth and width properties. The benchmark we compared
our protocols against was a traditional implementation of the GKR protocol. In
the case of the subcircuit protocol, we benchmark against a subcircuit composed
of the entire circuit itself such that it transposes into a traditional GKR protocol.
In the case of the Hydra protocol, we benchmark separately using the traditional
GKR protocol under the same conditions. Both the subcircuit protocol and the
Hydra protocol were also tested with the practical concept of a verifiable delay
function (VDF) [Bon+18]. In simple terms, a VDF is a sequential step-by-step
evaluation that produces a specific output. In particular, we choose to iterate
the SHA-256 cryptographic hash function using the efficient boolean SHA-256
logic circuit from [Cam+17].

8.2.1 Subcircuit Protocol

For the subcircuit protocol (Figure 3), we evaluated multiple different circuit
compositions, and tested various subcircuit depths and amounts. We mainly
focused on testing long, skinny circuits that are known to be inefficient to prove
with the traditional GKR approach. The tests were evaluated at two main
circuit depths, 216 = 65536 and 220 = 1048576, as well as two main circuit
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widths, 27 = 128 and 28 = 256, We split the circuit into evenly distributed
subcircuits ranging from 20 = 1 subcircuit (serving as the control, where the
entire circuit is treated as one large subcircuit) up to 28 = 256 subcircuits.

The results (Figure 4) of our tests were as expected, the protocol time de-
creased in proportion to the number of subcircuits the circuit was split up into.
We note that the protocol time in fact started to increase ever so slightly after
26 = 64 subcircuits. Intuitively, this is explained by the virtual core count of
the machine we ran the tests on. Because the virtual core count was exceeded,
more computational resources were wasted in scheduling/queue on the threads.
Thus, we assert that as soon as the number of subcircuits exceed the number of
virtual cores, increased parallelism is no longer profitable.

We see that the best increase in protocol time was when we tested with long
and deep circuits that were split up into as subcircuits as the thread count would
allow. In our case, the number of virtual cores was 80, and once the number
of subcircuits increased from 26 to 27, the protocol time began to increase. For
depth 216 and width 27 we see efficiency increase of 33.6×, and for depth 216

and width 28 we see efficiency increase of 32.8×. Furthermore, for depth 220

and width 27 we see efficiency increase of 33.8×, and for depth 220 and width
28 we see efficiency increase of 34.8×.

For an ideal verifiable computation setup, the circuit would be split exactly
in proportion with the number of virtual cores that are available. The case that
subcircuits are dynamically added to be proven does not pose a problem because
we take advantage of the streaming upload. Intuitively, the subcircuits earlier
on are already proven, which frees computational resources for the subcircuits
that are just being added.

With the SHA-256 VDF circuit evaluations (Figure 5), we also see favorable
results with the subcircuit protocol. With around ~80 subcircuits generated per
iteration, we see efficiency improvements of up to 26×, which is consistent with
our self-constructed randomly generated circuits.

8.2.2 Hydra Protocol

For the Hydra protocol (Figure 6), we tested circuits composed of depth 216 =
65536 and widths of 27 = 128 and 28 = 256 (Table 2) . Because Hydra requires
more overall computational power than a traditional approach as it consists of
d(si · deg(f) + 1) sumchecks instead of only d sumchecks, we demonstrate our
results with an artificial latency that highlights the benefit of Hydra’s reduced
round complexity. We argue that this latency is more representative of a real-
life scenario. For example, when ensuring the validity of a cloud computation,
there will clearly be a non-negligible amount of latency for conversation rounds
between the client and the server. We evaluate Hydra with a 0ms latency as the
ground truth, and from those results show the protocol times with 10ms and
20ms artificial latency period in between P and V interactions.

We see that with no latency, a traditional GKR protocol outperforms the
Hydra protocol, however, once any amount of latency is added the true power of
Hydra is revealed (Figure 7a and Figure 7b). With only a 10ms latency, Hydra
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comfortably approaches 2× protocol time efficiency for 216 depth and 27 width,
also improving by more than 1.3× for 216 depth and 28 width. With 20ms
of latency, these results are further compounded by efficiency improvements of
4.3× and 2.6×, respectively. We observe that these results play well with the
advantageous long and skinny circuit structure, where the longer/skinnier the
circuit is, the more the efficiency increases over the traditional GKR approach.

However, we do note that the Hydra protocol is not as flexible as the sub-
circuit protocol in that it does not fare nearly as well for circuits with rather
long widths and short depths, such as with the SHA-256 circuit we tested with
the VDF implementation (Figure 8). In this case, with 512ms latency per con-
versation round, Hydra is able to improve over the traditional GKR protocol
by a factor of 2.7×. These results show that Hydra is still certainly feasible in
select real-life scenarios where high latency is a driving factor and bandwidth is
available to spare.

Protocol Time (s)
Protocol n 0ms Latency 10ms Latency 20ms Latency

GKR 27 399.8s 9574.8s 18749.9s
Hydra 27 4384.4s 4384.5s 4384.7s
GKR 28 883.5s 11369.3s 21855.0s
Hydra 28 8459.9s 8460.1s 8460.2s

Table 2: GKR vs Hydra: 216 Depth, n Width
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Figure 7: GKR vs Hydra: 216 Depth, 27 Width and 28 Width (lower protocol
time is better)

9 Future Work

Both the subcircuit protocol and the Hydra protocol rely on the cryptographic
primitive of polynomial commitments to guarantee security. Therefore, they are
formally categorized as arguments of knowledge. We are very interested to see
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if this dependence is truly necessary for our protocols. If it is not, this would
result in near constant-round information theoretically secure interactive proofs,
which would be a truly significant advancement for the theory community.

However, more research is needed to see if this approach is viable. Without
the polynomial commitments, P can cheat in the subcircuit protocol by execut-
ing GKR on malicious circuit compositions where the input and output layers of
adjacent subcircuits do not match. Similarly, without polynomial commitments
in the Hydra protocol, P can cheat by providing incorrect values that only agree
in the certain subspace in which V interpolates.

10 Conclusion

In this paper, we have described two new verifiable computation protocols: the
subcircuit protocol for breaking a large circuit up into smaller circuits that can
be proven in batches/streaming upload, and the Hydra protocol for the gener-
alized parallel proving of all layers in the circuit. We implement the full veri-
fication system, compiling C-style code into logical circuits and passing it into
our novel parser to convert them into provable representations for our protocols.
Compared to non-interactive SNARKs which rely on knowledge type assump-
tions (or the Random Oracle model) and theoretical non-interactive arguments
based on standard assumptions that are not useful in practice, we achieve a
sweet spot with a practical approach. From standard assumptions, we collapse
the round complexity to polylogarithmic to the width of the circuit, but only
incur polylogarithmic blowup in bandwidth and verifier time complexity. Our
experimental results show that compared to traditional GKR implementations,
the subcircuit protocol improves efficiency by 33.3× and the Hydra protocol
improves efficiency by 4.3× in practical experimental conditions.
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