
The Availability-Accountability Dilemma
and its Resolution via Accountability Gadgets

Joachim Neu, Ertem Nusret Tas, and David Tse

Stanford University
{jneu,nusret,dntse}@stanford.edu

Abstract. For applications of Byzantine fault tolerant (BFT) consen-
sus protocols where the participants are economic agents, recent works
highlighted the importance of accountability : the ability to identify par-
ticipants who provably violate the protocol. At the same time, being
able to reach consensus under dynamic levels of participation is desir-
able for censorship resistance. We identify an availability-accountability
dilemma: in an environment with dynamic participation, no protocol can
simultaneously be accountably-safe and live. We provide a resolution to
this dilemma by constructing a provably secure optimally-resilient ac-
countability gadget to checkpoint a longest chain protocol, such that
the full ledger is live under dynamic participation and the checkpointed
prefix ledger is accountable. Our accountability gadget construction is
black-box and can use any BFT protocol which is accountable under
static participation. Using HotStuff as the black box, we implemented
our construction as a protocol for the Ethereum 2.0 beacon chain, and
our Internet-scale experiments with more than 4,000 nodes show that the
protocol achieves the required scalability and has better latency than the
current solution Gasper, which was shown insecure by recent attacks.

1 Introduction

1.1 Accountability and Dynamic Participation

Safety and liveness are the two fundamental security properties of consensus
protocols. A protocol run by a distributed set of nodes is safe if the ledgers
generated by the protocol are consistent across nodes and across time. It is live if
all honest transactions eventually enter into the ledger. Traditionally, consensus
protocols are developed for fault-tolerant distributed computing, where a set of
distributed computing devices aims to emulate a reliable centralized computer.
In modern decentralized applications such as cryptocurrencies, consensus nodes
are no longer just disinterested computing devices but are agents acting based
on economic and other rationales. To provide the proper incentives to encourage
nodes to follow the protocol, it is important that they can be held accountable
for their protocol-violating behavior. This point of view is advocated by Buterin
and Griffith [5] in the context of their effort to add accountability (among other

Extended version: [31]. The authors contributed equally and are listed alphabetically.

2 Joachim Neu, Ertem Nusret Tas, and David Tse

things) to Ethereum’s Proof-of-Work (PoW) longest chain protocol, and is also
central to the design of Gasper [6], the protocol running Ethereum 2.0’s Proof-of-
Stake (PoS) beacon chain. In these protocols, accountability is used to incentivize
proper behavior by slashing the stake of protocol-violating agents.

PoW protocols like Bitcoin [26] or Ethereum 1.0 do not assign identities to
miners, and hence cannot be expected to provide accountability. Even Nakamoto-
style PoS protocols such as Cardano’s Ouroboros family [22,13,2] lack accounta-
bility. On the other hand, protocols that are designed to provide accountability
include Polygraph [11] and Tendermint [4], and a recent comprehensive work
[39] shows that accountability can be added on top of many (but not all) ‘tradi-
tional’ propose-and-vote-style Byzantine fault tolerant (BFT) protocols, such as
HotStuff [42], PBFT [7], or Streamlet [8,29]. There is, however, another crucial
difference between Nakamoto-style and propose-and-vote-style protocols. While
protocols from the first group do not provide accountability, they tolerate dy-
namic participation, a sought after feature of public permissionless blockchains
not only for censorship resistance. In Bitcoin, e.g., the total hash rate varies over
many orders of magnitude over the years. Yet, the blockchains remain continu-
ously available, i.e., live. Protocols from the second group, oppositely, provide
accountability but do not tolerate dynamic participation.1 Why is there no pro-
tocol that both supports accountability and tolerates dynamic participation?

1.2 Availability-Accountability Dilemma and Resolution via
Accountability Gadgets

Our first result says that it is impossible to support accountability for dynami-
cally available protocols, i.e., protocols that are live under dynamic participation
(cf. Theorem 1). We call this the availability-accountability dilemma.

Our second contribution is to provide a resolution to the dilemma. As no
single ledger protocol can simultaneously be available and accountable, we design
and implement an accountability gadget which, when applied to a longest chain
protocol, generates a dynamically available ledger LOGda and a checkpointed
prefix ledger LOGacc with provably optimal security properties.

Consider a network with a total of n permissioned nodes, and an environment
where the network may partition and the nodes may go online and offline.

1. (P1: Accountability) The accountable ledger LOGacc can provide an ac-
countable safety resilience of n/3 at all times (i.e., identify that many pro-
tocol violators in case of a safety violation), and it is live after a possible
partition heals and greater than 2n/3 honest nodes come online.

2. (P2: Dynamic Availability) The available ledger LOGda is guaranteed to
be safe after a possible network partition and live at all times, provided that
fewer than 1/2 of the online nodes are adversarial.

1 For completeness, there are also protocols which neither provide accountability nor
tolerate dynamic participation, e.g., Algorand [10].

Availability-Accountability Dilemma and Accountability Gadgets 3

Accountability gadget

Πlc
Πbft

LOGacc

LOGda

Checkpoint-
respecting

longest
chain

V
ot

e
ge

ne
ra

to
r

A
cc

ou
nt

ab
le

co
ns

en
su

s

V
ot

e
in

te
rp

re
te

r

txs V
ot

es

V
ot

es

LOGbft

Checkpoint decisions

Checkpoint decisions

C
on

fi
rm

ed
bl

oc
ks

Πacc

Fig. 1. We construct an accountability gadget Πacc from any accountable BFT protocol
Πbft and apply it to a longest-chain-type protocol Πlc as follows: The fork choice
rule of Πlc is modified to respect the latest checkpoint decision. Blocks confirmed by
Πlc are output as available ledger LOGda. They are also the basis on which nodes
generate a proposal and vote for the next checkpoint. To ensure that all nodes reach
the same checkpoint decision, consensus is reached on which votes to count using Πbft.
Checkpoint decisions are output as accountable ledger LOGacc and fed back into the
protocol to ensure consistency of future block production in Πlc and future checkpoints
with previous checkpoints.

Note that while the checkpointed ledger is by definition always a prefix of
the full available ledger, the above result says that the checkpointed ledger will
catch up with the available ledger when the network heals and a sufficient number
of honest nodes come online. Users can choose individually whether to resolve
the dilemma in favor of availability or accountability. For example, under ex-
ceptional circumstances, a coffee shop might rather tolerate payments reverting
than stalling, while a car dealer might prefer stalling over reverting payments.

The achieved resiliences are optimal, which can be seen by comparing this
result with [39, Theorem B.1] (for P1) and [34, Theorem 3] (for P2). The check-
pointed ledger LOGacc cannot achieve better accountable safety resilience than
n/3; it in fact achieves exactly that. The dynamically available ledger LOGda

cannot achieve a better resilience than 1/2; the ledger in fact achieves it. More-
over, even if the network was synchronous at all times, no protocol could have
generated an accountable ledger with better resilience (Theorem 1). So we are
getting partition-tolerance for free, even though accountability is the goal.

The accountability gadget construction is shown in Figure 1. It is built on
top of any existing longest chain protocol modified to respect the checkpoints.
That is, new blocks are proposed and the ledger of confirmed transactions is
determined based on the longest chain among all the chains containing the latest
checkpointed block. This gives the available full ledger LOGda. Periodically, nodes
vote on the next checkpoint (following a randomly selected leader’s proposal).
To ensure that when tallying votes all nodes base their decision for the next
checkpoint on the same set of votes, any accountable BFT protocol designed
for a fixed level of participation can be used (entirely as a black box) to reach
consensus on the votes. The chain up to the latest checkpoint constitutes the

4 Joachim Neu, Ertem Nusret Tas, and David Tse

0 1,000 2,000
0

100

200

Time [s]L
ed

ge
r

le
ng

th
[b

lo
ck

s]

0 1,000 2,000

Time [s]

Accountable prefix ledger
Available full ledger

Fig. 2. Left: Ledger dynamics of a longest chain protocol outfitted with our account-
ability gadget based on HotStuff, measured with 4,100 nodes distributed around the
world. No attack. The available full ledger grows steadily. The accountable prefix peri-
odically catches up whenever a new block is checkpointed. Right: Even in the presence
of a β = 25% adversary who mines selfishly in Πlc and boycotts leader duty in Πbft

and Πacc, LOGda grows steadily and LOGacc periodically catches up with LOGda. Under
attack, the growth rate of LOGda is reduced (due to selfish mining) and LOGacc’s catch-
ing up is occasionally slightly delayed due to leader timeouts. (Parameters n = 4100,
Tcp = 5min, Tto = 1min, Ths = 20 s, kcp = k = 6, all nodes online; cf. Sections 4.1, 5)

accountable prefix ledger LOGacc. The gadget ensures that block production and
confirmation in Πlc and future checkpoints honor established checkpoints. When
instantiated with an accountable BFT protocol that is secure under network
partitions, LOGacc inherits its partition-tolerance.

Since there are many accountable BFT protocols [39], we have a lot of im-
plementation choices. Due to its maturity and the availability of a high quality
open-source implementation which we could employ practically as a black box,
we decided to implement a prototype of our accountability gadget using the Hot-
Stuff protocol [42]. Taking the Ethereum 2.0’s beacon chain as a target applica-
tion and matching its key performance characteristics such as latency and block
size, we performed Internet-scale experiments to demonstrate that our solution
can meet the target specification with over 4,000 participants (see Figure 2(l)).
In particular, for the chosen parameterization and even before taking reduction
measures, the peak bandwidth required for a node to participate does not ex-
ceed 1.5MB/s (with a long-term average of 78KB/s) and hence is feasible even
for many consumer-grade Internet connections. At the same time, our prototype
provides 5× better average latency of LOGacc compared to the instantiation of
Gasper currently used for Ethereum 2’s beacon chain.

1.3 Related Work

Accountability Accountability in distributed protocols has been studied in
earlier works. [20] designed a system, PeerReview, which detects faults. [21]
classifies faults into different types and studies their detectability. Casper [5]
focuses on accountability and fault detection when there is violation of safety, and
led to the notion of accountable safety resilience we use in this work. Polygraph
[11] is a partially synchronous BFT protocol which is secure when there are less
than n/3 adversarial nodes, and when there is a safety violation, at least n/3

Availability-Accountability Dilemma and Accountability Gadgets 5

Table 1. Accountability gadgets provide security, accountability, and predictable va-
lidity, which are not found conjoint in any one of the previous works [6,29,32,37].

Gasper
[6]

Checkp. LC
[37]

Snap&Chat
[32,29]

Acc. gadgets
(This work)

Provable security ✘ ✔ ✔ ✔

Accountability ✔ ✘ ✔ ✔

Predictable validity ✔ ✔ ✘ ✔

nodes can be held accountable. [36] builds upon [11] to create a blockchain which
can exclude Byzantine nodes that were found to have violated the protocol.

Many of these previous works focus on studying the accountability of spe-
cific protocols and think of accountability as an add-on feature in addition to
the basic security properties of the protocol. [39] follows this spirit but broad-
ens the investigation to formulate a framework to study the accountability of
many existing BFT protocols. More specifically, their framework augments the
traditional resilience metric with accountable safety resilience (which they call
forensic support). The present work is more in the spirit of [5] where account-
ability is a central design goal, not just an add-on feature. To formalize this
spirit, we split traditional resilience into safety and liveness resiliences, upgrade
safety resilience to accountable safety resilience, and formulate accountable se-
curity as a tradeoff between liveness resilience and accountable safety resilience.
Further, we broaden the study to the important dynamic participation environ-
ment, where we discovered the availability-accountability dilemma (Theorem 1).
While at its heart the impossibility result Theorem B.1 of [39] is really about the
tradeoff between liveness and accountable safety resiliences, although not stated
as such, and it is indeed applicable very generally, when applied to the dynamic
participation setting it would give a loose result and would not have been able
to demonstrate the availability-accountability dilemma.

Availability-Finality Dilemma and Finality Gadgets The availability-
finality dilemma [19,23,32] states that no protocol can provide both finality,
i.e., safety under network partitions, and availability, i.e., liveness under dy-
namic participation. The availability-accountability dilemma states that no pro-
tocol can provide both accountable safety and liveness under dynamic partic-
ipation. Although they are different, it turns out that some, but not all, pro-
tocols that resolve the availability-finality dilemma can be used to resolve the
availability-accountability dilemma. Casper [5] and Gasper [6] pioneered resolu-
tion of the dilemmata but lacked a specification of the desired security proper-
ties and suffered from attacks [27,28,30,32,38,33]. Specifically, Gasper is insecure
[28,30,32,38] (Table 1). The first provably secure resolution of the availability-
finality dilemma is the class of snap-and-chat protocols [32], which combines a
longest chain protocol with a partially synchronous BFT protocol in a black
box manner to provide finality. If the partially synchronous BFT protocol is

6 Joachim Neu, Ertem Nusret Tas, and David Tse

accountable, it is not too difficult to show [29] that the resulting snap-and-
chat protocol would also provide a resolution to the availability-accountability
dilemma. On the other hand, checkpointed longest chain [37], another resolution
of the availability-finality dilemma, is not accountable (Table 1), as shown in
Appendix G.

A strength of snap-and-chat protocols is its black box nature which gives it
flexibility to provide additional features. A drawback is that the protocol may
reorder the blocks from the longest chain protocol to form the final ledger [29].
This means that when a proposer proposes a block on the longest chain, it cannot
predict the ledger state and check the validity of transactions by just looking at
the earlier blocks in the longest chain. This lack of predictable validity (Table 1)
opens the protocol up to spamming and prohibits the use of standard techniques
for sharding and light client support. Checkpointed longest chain builds upon
a line of work called finality gadgets [5,15,40,6] and overcomes this limitation
of snap-and-chat protocols because the longest chain protocol is modified to
respect the checkpoints so that the order of blocks can be preserved. However,
checkpointed longest chain’s finality gadget is not black box, but specifically uses
Algorand BA [9], which is not accountable [39]. It is not readily apparent if and
how Algorand BA could be replaced with any accountable BFT protocol.

The accountability gadget we design combines structural elements from snap-
and-chat protocols and from the checkpointed longest chain to uniquely achieve
the best of both worlds. It builds on the checkpointed longest chain and earlier
(not provably secure) finality gadgets in that it complements a longest chain
protocol with a checkpointing mechanism and thus achieves predictable validity.
Like snap-and-chat protocols, it allows the use of any BFT protocol as a black
box for checkpointing, retaining simplicity and flexibility and, when an account-
able BFT protocol like HotStuff is used, the checkpointed ledger is accountable.
Our accountability gadget provides security, accountability, and predictable va-
lidity (Table 1), which are not found conjoint in any one of the prior works.

1.4 Outline

We introduce in Section 2 the notation and model for the proof of the availability-
accountability dilemma in Section 3 and the construction and security proof of
accountability gadgets in Section 4. Finally, we discuss details of a prototype
implementation and experimental performance results in Section 5.

2 Model

In the client-server model of state machine replication (SMR), nodes take inputs
called transactions and enable clients to agree on a single sequence of transac-
tions, called the ledger and denoted by LOG, that produced the state evolution.
For this purpose, nodes exchange messages, e.g., blocks or votes, and each node
i records its view of the protocol by time t in an execution transcript Tt

i. To
obtain the ledger at time t, clients query the nodes running the protocol. When

Availability-Accountability Dilemma and Accountability Gadgets 7

a node i is queried at time t, it produces evidence wt
i by applying an evidence

generation function W to its current transcript: wt
i ≜ W(Tt

i). Upon collecting
evidences from some subset S of the nodes, each client applies the confirmation
rule C to this set of evidences to obtain the ledger: LOG ≜ C({wt

i}i∈S). Protocols
typically require to query a subset S containing at least one honest node.

Environment and Adversary: We assume that transactions are input to nodes
by the environment Z. There exists a public-key infrastructure and each of the
n nodes is equipped with a unique cryptographic identity. A random oracle
serves as a common source of randomness. Time is slotted and the nodes have
synchronized local clocks. Corruption: Adversary A is a probabilistic poly-time
algorithm. Before the protocol execution starts, A gets to corrupt (up to) f
nodes, then called adversarial nodes. Adversarial nodes surrender their internal
state to the adversary and can deviate from the protocol arbitrarily (Byzantine
faults) under the adversary’s control. The remaining (n − f) nodes are called
honest and follow the protocol as specified. Networking: Nodes can send each
other messages. Before a global stabilization time GST, A can delay network
messages arbitrarily. After GST, A is required to deliver all messages sent be-
tween honest nodes within a known upper bound of ∆ slots. GST is chosen by A,
unknown to the honest nodes, and can be a causal function of the randomness in
the protocol. Sleeping: To model dynamic participation, we adopt the concept of
sleepiness [35]. Before a global awake time2 GAT, A chooses, for every time slot
and honest node, whether it is awake (i.e., online) or asleep (i.e., offline). After
GAT, all honest nodes are awake. An awake honest node executes the protocol
faithfully. An asleep honest node does not execute the protocol, and messages
that would have arrived in that slot are queued and delivered in the first slot in
which the node is awake again. Adversarial nodes are always awake. We define
β as the maximum fraction of adversarial nodes among awake nodes throughout
the execution of the protocol. GAT, just like GST, is chosen by the adversary,
unknown to the honest nodes and can be a causal function of the randomness.
But, while GST needs to happen eventually (GST < ∞), GAT may be infinite.

Given above definition of a partially synchronous network with dynamic par-
ticipation (Apda,Zpda), we model a synchronous network (As,Zs), a partially
synchronous network (Ap,Zp), and a synchronous network with dynamic partic-
ipation (Ada,Zda) as special cases with GST = GAT = 0, GAT = 0, and GST = 0,
respectively. Subsequently, we specify for every theorem under which of the above
four (A...,Z...) it holds. Examples of Nakamoto-style and propose-and-vote-style
BFT protocols framed in the above model are given in Appendix H.

Safety and Liveness Resiliences: Safety and liveness are defined as the traditional
security properties of SMR protocols:

2 Node operators are rewarded and incur little expenses for protocol participation.
Thus, one naturally expects frequent periods of (near) full participation. GAT models
the time when participation stabilizes, analogous to the GST of network delays.

8 Joachim Neu, Ertem Nusret Tas, and David Tse

Definition 1. Let Tconfirm be a polynomial function of the security parameter σ
of an SMR protocol Π. We say that Π with a confirmation rule C is secure and
has transaction confirmation time Tconfirm if ledgers output by C satisfy:

– Safety: For any time slots t, t′ and sets of nodes S, S′ satisfying the re-
quirements stipulated by the protocol, either LOG ≜ C({wt

i}i∈S) is a prefix of
LOG′ ≜ C({wt′

i }i∈S′) or vice versa.
– Liveness: If Z inputs a transaction to an awake honest node at some time t,

then, for any time slot t′ ≥ max(t,GST,GAT)+Tconfirm and any set of nodes
S satisfying the requirements stipulated by the protocol, the transaction is
included in LOG ≜ C({wt′

i }i∈S).

Definition 2. For static (dynamic) participation, safety resilience of a protocol
is the maximum number f of adversarial nodes (maximum fraction β of adver-
sarial nodes among awake nodes) such that the protocol satisfies safety. Such a
protocol provides f -safety (β-safety).

Definition 3. For static (dynamic) participation, liveness resilience of a pro-
tocol is the maximum number f of adversarial nodes (maximum fraction β of
adversarial nodes among awake nodes) such that the protocol satisfies liveness.
Such a protocol provides f -liveness (β-liveness).

Accountable Safety Resilience: To formalize the concept of accountable safety
resilience, we define an adjudication function J , similar to the forensic protocol
defined in [39], as follows:

Definition 4. An adjudication function J takes as input two sets of evidences
W and W ′ with conflicting ledgers LOG ≜ C(W) and LOG′ ≜ C(W ′), and outputs
a set of nodes that have provably violated the protocol rules.

So, J never outputs an honest node. When the clients observe a safety vio-
lation, i.e., at least two sets of evidences W and W ′ such that LOG ≜ C(W) and
LOG′ ≜ C(W ′) conflict with each other, they call J on these evidences to identify
nodes that have violated the protocol. Note that LOG ≜ C({wt

i}i∈S) may satisfy
safety/liveness only if the evidences come from a set S of nodes that satisfies
some assumptions stipulated by the protocol, e.g., that S contains one honest
node. On the other hand, J should only output nodes that have undoubtedly
violated protocol, without the verdict being conditional on any presumption.

Accountable safety resilience builds on the concept of α-accountable-safety
first introduced in [5]:

Definition 5. For static (dynamic) participation, accountable safety resilience
of a protocol is the minimum number f of nodes (minimum fraction β of nodes
among awake nodes) output by J in the event of a safety violation. Such a
protocol provides f -accountable-safety (β-accountable-safety).

Note that β-accountable-safety implies β-safety of the protocol (and the same
for f) since J outputs only adversarial nodes.

Availability-Accountability Dilemma and Accountability Gadgets 9

3 The Availability-Accountability Dilemma

We observe that the strictest tradeoff between the liveness and accountable safety
resilience occurs for dynamically available protocols under (Ada,Zda), a result
which was named the availability-accountability dilemma in Section 1.2:

Theorem 1. No SMR protocol provides both βa-accountable-safety and βl-liveness
for any βa, βl > 0 under (Ada,Zda).

Theorem 1 states that under dynamic participation it is impossible for an
SMR protocol to provide both positive accountable safety resilience and positive
liveness resilience. In light of this result, protocol designers are compelled to
choose between protocols that maintain liveness under fluctuating participation,
and protocols that can enforce the desired incentive mechanisms highlighted in
Section 1.1 via accountability. Since both of the above features are desirable
properties for Internet-scale consensus protocols, the availability-accountability
dilemma presents a serious obstacle in the effort to obtain an incentive-compatible
and robustly live protocol for applications such as cryptocurrencies.

To build intuition for the proof of Theorem 1, let us consider a permissioned
longest chain protocol under (Ada,Zda) where half of nodes are adversarial. Ad-
versarial nodes avoid all communication with honest nodes and build a private
chain that conflicts with the chain built collectively by the honest nodes. Such
diverging chains mean the possibility of an (ostensible) safety violation. Think of
an honest client towards whom adversarial nodes pretend to be asleep and who
confirms a ledger based solely on the longest chain provided by the honest evi-
dences; and a co-conspirator of the adversary who pretends to not have received
any evidences from honest nodes and to have confirmed a ledger based solely
on the longest chain provided by the adversarial evidences. Indeed, both would
obtain non-empty ledgers, because the longest chain is dynamically available,
but these two ledgers would conflict. Yet, based on the two sets of evidences, the
judge J can neither distinguish who is honest client and who is co-conspirator,
nor tell which nodes are honest or adversarial. So none of the adversarial nodes
can be held accountable (without risking to falsely convict an honest node).

Formal proof of Theorem 1 (Appendix A) relies on the fact that in a dy-
namically available protocol, adversarial nodes, by private execution, can always
create a set of evidences that yields a conflicting ledger through the confirmation
rule C. This is because dynamically available protocols cannot set a lower bound
on the number of evidences eligible to generate a non-empty ledger through C,
and thus are forced to output ledgers for evidences from any number of nodes.

Theorem 1 is also related to a contemporaneous result [24] which shows
that dynamically available protocols cannot produce certificates of confirmation,
where such a certificate guarantees that there cannot be a conflicting confirma-
tion so long as stipulated constraints on the adversary hold.

10 Joachim Neu, Ertem Nusret Tas, and David Tse

Algorithm 1 Checkpoint vote generator (helper functions: see Appendix E)
1: lastCp, props← ⊥, {c : ⊥ | c = 0, 1, ...} ▷ Last checkpoint, proposals
2: for currIter← 0, 1, ... ▷ Loop over checkpoint iterations
3: if lastCp ̸= ⊥
4: while waiting Tcp time ▷ Wait Tcp time after new checkpoint decision
5: PerformBookkeeping
6: if CpLeaderOfIter(currIter) = myself ▷ Broadcast proposal if leader of current iteration
7: Broadcast(⟨propose, currIter,GetCurrProposalTip()⟩myself)

8: while waiting Tto time ▷ Wait Tto for timeout of checkpoint iteration
9: PerformBookkeeping

10: on props[currIter] ̸= ⊥, but at most once ▷ Act on the first proposal received from
authorized leader before end of Tcp-wait and Tto-timeout

11: if IsValidProposal(props[currIter]) ▷ Valid proposal is consistent with current
checkpoint-respecting LC

12: SubmitVote(⟨accept, currIter, props[currIter]⟩myself)
13: else
14: SubmitVote(⟨reject, currIter⟩myself) ▷ Reject invalid proposal
15: SubmitVote(⟨reject, currIter⟩myself) ▷ Reject due to timeout
16: wait on Checkpoint(c, b) from checkpoint vote interpreter (Alg. 2) with c = currIter
17: lastCp← b ▷ Keep track of checkpoint decision
18: macro PerformBookkeeping
19: on receiving Checkpoint(c, b) from checkpoint vote interpreter (Alg. 2) with c = currIter
20: goto 17 ▷ Jump to conclusion of current iteration
21: on receiving Proposal(c, b) from checkpoint leader of iteration c with props[c] = ⊥
22: props[c]← b ▷ Keep track of first proposal from authorized leader per iteration c

4 Accountability Gadgets

In this section, we give a detailed description of the accountability gadget intro-
duced in Section 1.2. For ease of exposition, we construct it from an accountable
BFT protocol Πbft with accountable safety and liveness resilience of ⌊n/3⌋.

Like the checkpointed longest chain [37], accountability gadgets output a
prefix ledger safe under partial synchrony along with a full ledger live under
dynamic participation. For this purpose, both protocols are deployed as over-
lays on top of a dynamically available longest chain protocol and periodically
checkpoint its output to protect against reversals under network partition. Ac-
countability gadgets can be instantiated from any partially synchronous BFT
SMR protocol, which is used as a black box for checkpointing. If the selected
protocol provides accountability, then adversarial nodes can be held to account
should there ever be a reversal of a checkpoint. In contrast, the checkpointed
longest chain is interwoven with a variant of a particular protocol, Algorand
BA [9], which does not provide accountability [39] (cf. Appendix G). Further-
more, it is not readily apparent how to use another protocol instead. As a result,
the checkpointed longest chain cannot provide a resolution to the availability-
accountability dilemma, whereas accountability gadgets can.

4.1 Protocol Description

Accountability gadgets, denoted by Πacc, can be used in conjunction with any
dynamically available longest chain (LC) protocol Πlc such as Nakamoto’s PoW
LC protocol [26], Sleepy [35], Ouroboros [22,13,2] and Chia [12] (Fig. 1). Subse-
quently, we focus on permissioned/PoS LC protocols. PoW and Proof-of-Space

Availability-Accountability Dilemma and Accountability Gadgets 11

Algorithm 2 Checkpoint vote interpreter (helper functions: see Appendix E)
1: for currIter← 0, 1, ...
2: currVotes← {(pk,⊥) | pk ∈ committee} ▷ Latest vote of each node
3: while true ▷ Go through votes as ordered by Πbft

4: vote← GetNextVerifiedVoteFromBft() ▷ Verify signature
5: if vote = ⟨accept, c, b⟩pk with c = currIter
6: currVotes[pk]← Accept(b) ▷ Count accept vote for block b
7: else if vote = ⟨reject, c⟩pk with c = currIter
8: currVotes[pk]← Reject ▷ Count reject vote
9: if ∃b : |{pk | currVotes[pk] = Accept(b)}| ≥ 2n/3

10: OutputCp(Checkpoint(currIter, b)) ▷ New checkpoint decision
11: break
12: else if |{pk | currVotes[pk] = Reject}| ≥ n/3
13: OutputCp(Checkpoint(currIter,⊥)) ▷ Abort current iteration
14: break

are discussed in Appendix F. The protocol Πlc then follows a modified chain
selection rule where honest nodes build on the tip of the LC that contains all of
the checkpoints they have observed.3 We call such chains checkpoint-respecting
LCs. At each time slot t, each honest node i outputs the k-deep prefix of the
checkpoint-respecting LC (or the prefix of the latest checkpoint, whichever is
longer) in its view as LOGt

da,i.
The accountability gadget Πacc has three main components as shown on

Fig. 1: a checkpoint vote generator (Alg. 1) issues checkpoint proposals and votes,
an accountable SMR protocol Πbft is used to reach consensus on which votes to
count for the checkpoint decision, and a checkpoint vote interpreter (Alg. 2) out-
puts checkpoint decisions computed deterministically from the checkpoint votes
sequenced by Πbft. The protocol Πbft can be instantiated with any accountable
BFT protocol, e.g., Streamlet [8], LibraBFT [25], or HotStuff [42]. It is used as
a black box ordering service within Πacc and is assumed to have confirmation
time Tconfirm. We denote the ledger output by Πbft as LOGbft, and emphasize
that it is internal to Πacc. Checkpoint vote generator and interpreter are run
locally by each node and interact with Πbft and LOGbft. Hence, when we refer
to LOGbft in the following, we mean the ledger in the view of a specific node.

The accountability gadget Πacc proceeds in checkpoint iterations denoted
by c, each of which attempts to checkpoint a block in Πlc. The checkpoint vote
generator produces requests which can be of three forms: ⟨propose, c, b⟩i proposes
block b for checkpointing in iteration c, ⟨accept, c, b⟩i votes in favor of block b in
iteration c, ⟨reject, c⟩i votes to reject iteration c. Here, ⟨...⟩i denotes a message
signed by node i. Each iteration c has a publicly verifiable and unique random
leader L(c). The leader obtains the kcp-deep block b on its checkpoint-respecting
LC and broadcasts it to all other nodes as the checkpoint proposal for c (Alg. 1,
l. 7). Nodes receive checkpoint proposals (signed by the legitimate leader L(c))
from the network, and order them with respect to their checkpoint iteration
3 There are no conflicting checkpoints unless a safety violation has already occurred.

Upon detecting a safety violation, honest nodes stop participating in the protocol.
Punishment of parties identified by the accountability mechanism as malicious and
system recovery are handled by mechanisms external to the protocol.

12 Joachim Neu, Ertem Nusret Tas, and David Tse

(Alg. 1, l. 21). A proposal is valid in view of node i if the proposed block is within
i’s checkpoint-respecting LC and extends all previous checkpoints observed by
i. During an iteration c, each node i checks if the proposal received for c is
valid (Alg. 1, l. 11). If it has received a valid proposal with block b, it votes
⟨accept, c, b⟩i (Alg. 1, l. 12). Otherwise, if i does not receive any valid proposal
for a timeout period Tto, i votes ⟨reject, c⟩i (Alg. 1, l. 14, 15). Votes are input
as payload to Πbft, which sequences them into ledger LOGbft. Thus, nodes reach
consensus on which votes to count for checkpoint decision of the given iteration.

The checkpoint vote interpreter (Alg. 2) processes the sequence of votes in
LOGbft to produce checkpoint decisions. Each node processes verified votes (i.e.,
with valid signature) in the order they appear on LOGbft (Alg. 2, l. 4). Upon
observing 2n/3 unique ⟨accept, c, b⟩i votes for a block b and the current itera-
tion c, each node outputs b as the checkpoint for c (Alg. 2, l. 10). The check-
pointed blocks output over time, together with their respective prefixes, con-
stitute LOGt

acc,i. Furthermore, checkpoint decisions are fed back to Πlc and the
checkpoint vote generator to ensure consistency of future block production in Πlc

and of checkpoint proposals with prior checkpoints. Oppositely, upon observing
n/3 unique ⟨reject, c⟩i votes for the current iteration c, each node outputs ⊥ as
the checkpoint decision for c (Alg. 2, l. 13) to signal that c was aborted with
no new checkpointed block. This happens if honest nodes reject because they
have not seen progress for too long. Once a node outputs a decision for current
iteration c, the checkpoint vote interpreter proceeds to c+1; thus, only a single
decision is output per iteration.

Upon receiving a new checkpoint for the current iteration c, nodes leave c of
the checkpoint vote generator and enter c + 1 (Alg. 1, l. 20). If the checkpoint
decision was for b ̸= ⊥, nodes wait for Tcp time (checkpoint interval) before
considering checkpoint proposals for c+ 1. As will become clear in the analysis,
the checkpoint interval is crucial to ensure that Πlc’s chain dynamics are ‘not
disturbed too much’ by accommodating and respecting checkpoints. Note that
throughout the execution there is only a single instantiation Πbft, since the votes
for different checkpoint iterations can still be ordered into a single sequence.

4.2 Security Properties

In this section, we formalize and prove the security properties P1 and P2
of Section 1.2 for accountability gadgets based on permissioned LC protocols
[35,13,22,2]. (For an extension of the security analysis to Proof-of-Work and
Proof-of-Space LC protocols, see Appendix F.)

For the worst case, we first fix f = ⌈n/3⌉ − 1 and consider an accountability
gadget Πacc instantiated with a partially synchronous BFT protocol Πbft that
provides (n − 2f)-accountable-safety at all times, and f -liveness under partial
synchrony after the network partition heals and sufficiently many honest nodes
are awake. (An example Πbft is HotStuff [42] with a quorum size (n− f).)

Let λ and σ denote the security parameters associated with the employed
cryptographic primitives and the LC protocol Πlc, respectively. Then, the secu-

Availability-Accountability Dilemma and Accountability Gadgets 13

1 Consistency of check-
pointed blocks in Πlc

2 Accountability
of LOGbft

3 Accountability
of LOGacc (App. B.2)

4 Gap and recency properties
of Πacc (App. B.4)

5 Recurrence of checkpoint-strong
pivots (App. C.3)

6 Security of Πlc after
max(GST, GAT) (App. C)

7 Liveness of Πbft after
max(GST, GAT)

8 Liveness of LOGacc after
max(GST, GAT) (App. B.3)

9 Checkpointing
kcp-deep blocks

10 Security of Πlc
under synchrony

11 Security of LOGda

Fig. 3. Dependency of the security properties of LOGacc and LOGda on the properties
of Πacc, Πlc and Πbft.

rity properties of LOGacc and LOGda output by the accountability gadget Πacc

and the LC protocol Πlc (modified to be checkpoint-respecting) are:

Theorem 2. For any λ, σ, and Tconfirm, k, kcp linear in σ:

1. (P1: Accountability) Under (Apda,Zpda), the accountable ledger LOGacc

provides (n−2f)-accountable-safety at all times (except with probability negl(λ)),
and there exists a constant C such that LOGacc provides f -liveness with
confirmation time Tconfirm after Cmax(GST,GAT) (except with probability
negl(σ)).

2. (P2: Dynamic Availability) Under (Ada,Zda), the available ledger LOGda

provides 1/2-safety and 1/2-liveness at all times (except with probability
negl(σ) + negl(λ)).

3. (Prefix) LOGacc is always a prefix of LOGda.

Here, negl(.) denotes a negligible function that decays faster than all poly-
nomials. To prove Theorem 2, we first focus on the security of LOGda under
(Ada,Zda), synchronous network with dynamic availability (11 of Fig. 3). We
know from [35,13,22,2] that Πlc is safe and live with some security parameter σ
under the original LC rule when β < 1/2 (10). Hence, if kcp is selected as an
appropriate linear function of σ, once a block becomes kcp-deep at time s in the
LC held by an honest node, it stays on the LCs held by all honest nodes forever.
Since there are at least n − f > f accept votes for any block checkpointed by
an honest node at time s, there is at least one honest node that voted accept for
any such block. As honest nodes accept only proposals that are at least kcp-deep
in their LCs, (9), checkpointed blocks are already part of the LCs held by every
other honest node at time s under (Ada,Zda). Thus, new checkpoints can only
appear in the common prefix of the honest nodes’ LCs and do not affect the
security of the LC protocol.

Next accountability and liveness of LOGacc under (Apda,Zpda) (3 , 8). The
pseudocode of Πacc stipulates that honest nodes accept only proposals that are
consistent with previous checkpoints (1), and a new checkpoint requires (n− f)
accept votes (l. 9 of Alg. 2). Thus, in the event of a safety violation, either
there are two inconsistent ledgers LOGbft held by honest nodes, or (n − 2f)
nodes have voted for inconsistent checkpoints. In both cases, (n−2f) adversarial

14 Joachim Neu, Ertem Nusret Tas, and David Tse

nodes are identified as violators by invoking either (n−2f)-accountable-safety of
LOGbft (2) or the consistency requirement for checkpoints (1), implying (n−2f)-
accountable-safety of LOGacc. Detailed proof in App. B.2.

Liveness of LOGacc (8) requires the existence of iterations after max(GST,GAT)
where all honest nodes accept honest proposals. This, in turn, depends on whether
the proposals by honest leaders are consistent with the checkpoint-respecting
LCs at honest nodes after max(GST,GAT). To show this, we prove that Πlc

recovers its security after max(GST,GAT) (6). We first observe that with check-
points, honest nodes abandon their LC if a new checkpoint appears on another
(possibly shorter) chain. Then, some honest blocks produced meanwhile may not
contribute to chain growth. This feature of checkpoint-respecting LCs violates a
core assumption of the standard proof techniques [17,35,22] for LC protocols. To
bound the number of abandoned honest blocks and demonstrate the self-healing
property of checkpoint respecting LCs, we follow an approach introduced in [37].
We first observe the gap and recency properties for Πacc (App. B.4) which are
necessary conditions for any checkpointing mechanism to ensure self-healing of
Πlc (4). The gap property states that Tcp has to be sufficiently longer than the
time it takes for a proposal to get checkpointed. The recency property requires
that newly checkpointed blocks were held in the checkpoint-respecting LC of at
least one honest node within a short time interval before the checkpoint decision.

Using the gap and recency properties, we next extend the analysis of [37] to
permissioned protocols by introducing the concept of checkpoint-strong pivots,
a generalization of strong pivots [35]. Whereas strong pivots count honest and
adversarial blocks to claim convergence of the LC in the view of different honest
nodes, checkpoint-strong pivots consider only honest blocks that are guaran-
teed to extend the checkpoint-respecting LC, thus resolving non-monotonicity
for these chains. Recurrence of checkpoint-strong pivots after max(GST,GAT)
(5) along with the gap and recency properties lead to security of Πlc after
max(GST,GAT). Details in App. C. Given self-healing of Πlc, liveness of LOGacc

follows from liveness of Πbft after max(GST,GAT) (7). Full proof in App. B.3.
Finally, the prefix property follows readily from the way in which both LOGda

and LOGacc are derived from the checkpoint-respecting LC.

5 Experimental Evaluation

To evaluate whether the protocol of Section 4.1 can be a drop-in replacement for
the Ethereum 2 beacon chain, we have implemented a prototype4. Our protocol
incurs average required bandwidth comparable to Gasper at reduced latency of
LOGacc. Gasper’s resilience decreases as the number of nodes increases, for fixed
latency of LOGacc, due to a new attack [30], whereas our protocol is provably
secure. Supplemental material of experimental evaluation is given in Appendix D.

A diagram of the different components of our prototype and their interactions
is provided in Figure 4. We use a longest chain protocol modified to respect latest
4 Source code: https://github.com/tse-group/accountability-gadget-prototype

https://github.com/tse-group/accountability-gadget-prototype

Availability-Accountability Dilemma and Accountability Gadgets 15

L
C

bl
oc

k
pr

o-
du

ct
io

n
lo

tt
er

y

L
C

bl
oc

k
tr

ee
m

an
ag

er

C
he

ck
p
oi

nt
vo

te
ge

ne
ra

to
r

H
ot

St
uff

C
he

ck
p
oi

nt
vo

te
in

te
rp

re
te

r

libp2p Gossipsub network Network

T
ip

to
gr

ow

New
blocks

New
blocks

G
et

/v
al

id
at

e
pr

op
os

al
s

V
ot

es

V
ot

es

Proposals HotStuff
messages LOGda

LOGacc

Checkpoints

Checkpoints

Fig. 4. Components and their interactions in implementation of Fig. 1. Gray: off the
shelf components used as black boxes. Blue: taken from Πlc without modification.
Green: taken from Πlc, modified to respect checkpoints.

checkpoints as Πlc, with a permissioned block production lottery; and a variant
of HotStuff5 as Πbft. All communication (including HotStuff’s) takes place in
a broadcast fashion via libp2p’s Gossipsub protocol6, mimicking Ethereum 2
[1]. The parameters of our protocol match the number of validators (n = 4096),
average block inter-arrival time (12 s) and block payload size (22KBytes) of the
Ethereum 2 beacon chain. We chose kcp = 6 so that an honest checkpoint pro-
posal is likely accepted by honest nodes, and k = 6 for swift 72 s average latency
of LOGda. Setting Ths = 20 s and Tto = 1min avoids HotStuff timeouts escalat-
ing into checkpoint timeouts unnecessarily. Finally, to target 5× improvement
in average LOGacc latency over Gasper (cf. Figure 7), we set Tcp = 5min.

Adversarial nodes in the experiment boycott leader duty in Πbft and mine
selfishly [16] in Πlc. We ran our prototype (a) with no adversary (Fig. 2(l)),
and (b) with β = 25% adversary (Fig. 2(r)), each for 2500 s on five AWS EC2
c5a.8xlarge instances in each of ten AWS regions with 82 nodes per machine,
for a total of 4100 nodes. Each honest (adversarial) node connected to 15 (15
honest, 15 adversarial) randomly selected peers for the peer-to-peer network.
Both without (Fig. 2(l)) and under attack (Fig. 2(r)) LOGda () grows steadily,
albeit under attack slower due to selfish mining. In both cases, LOGacc ()
periodically catches up with LOGda. Timeouts cause minor delayed catch-up.

Network traffic (Figs. 6, 5 for an exemplary AWS instance, i.e., for 82 nodes)
shows frequent small spikes for Πlc blocks and infrequent wide spikes for Πacc

votes and Πbft blocks and votes. Traffic increases slightly under attack (per
node: avg. 78KB/s vs. 56KB/s, peak 1.5MB/s vs. 1.34MB/s) because inac-
tive adversarial leaders cause more iterations in Πacc and Πbft. The bandwidth
requirement does not limit participation using consumer-grade Internet access.
Note that our prototype does not employ bandwidth reduction techniques that
5 We used this Rust implementation: https://github.com/asonnino/hotstuff [18]
6 We used this Rust implementation: https://github.com/libp2p/rust-libp2p [41]

https://github.com/asonnino/hotstuff
https://github.com/libp2p/rust-libp2p

16 Joachim Neu, Ertem Nusret Tas, and David Tse

900 1,000 1,100 1,200 1,300 1,400 1,500

102

104

106
Time [s] →

R
x

ba
nd

w
id

th
[K

B
/s

]

Fig. 5. Setting of Fig. 2(l): The network traffic for each AWS instance (i.e., 82 nodes)
shows four marked spikes (red) for every new checkpoint (Tcp = 5min interval) and
smaller spikes (orange) for every new Πlc block (Tslot = 7.5 s interval).

1,000 1,200 1,400

102

104

106
Time [s] →

R
x

ba
nd

w
id

th
[K

B
/s

]

1,000 1,200 1,400

Time [s] →

Fig. 6. Setting of Fig. 2(r): Leader timeouts in Πbft and Πacc can delay new checkpoints
(red). E.g., after the end of a checkpoint interval (t ≈ 870 s), and subsequent Πacc leader
timeout (t ≈ 930 s), honest nodes vote to reject the current checkpoint iteration, but the
decision is delayed by another Πbft leader timeout. The next checkpoint iteration has
an honest leader, but a decision is again delayed by a Πbft leader timeout, until a new
checkpoint is finally reached (t ≈ 1070 s). Traffic at honest nodes (right) lacks some
of the small spikes (orange) of traffic at adversarial nodes (left), since the adversary
temporarily withholds some of its blocks from honest nodes due to selfish mining.

are orthogonal to the consensus problem, such as aggregate and short signatures
or spreading the vote out over time. Figure 7 corroborates that even if voting was
artificially rate-limited and thus spread out over time (as is the case in Gasper),
bandwidth and latency comparable to Gasper could be achieved.

Figure 7 compares bandwidth and latency of LOGacc for varying parameters
and β = 0, ∆ = 0. Gasper transmits 2 · n

C votes per 12 s, with C the number of
slots per epoch, our protocol transmits 5 · n votes per Tcp time. A transaction
takes on average 1

2+2 epochs to enter into LOGacc for Gasper, and kcp·12 s+ 1
2 ·Tcp

time to enter LOGacc for our protocol. Our protocol offers slightly improved
latency at comparable bandwidth, or comparable bandwidth and latency but
for a larger number of nodes.

Acknowledgment

JN, ENT, and DT are supported by the Reed-Hodgson Stanford Graduate Fel-
lowship, the Stanford Center for Blockchain Research, and the Center for Sci-
ence of Information (CSoI), an NSF Science and Technology Center under grant
agreement CCF-0939370, respectively.

Availability-Accountability Dilemma and Accountability Gadgets 17

400 600 900 1350 2025

101

102

16

32

64

16

32

64

10min

20min

30min

40min
50min

60min

10min

20min

30min

40min
50min

60min

Avg. LOGacc latency [s] →

A
vg

.
ba

nd
w

id
th

re
qu

ir
em

en
t

[v
ot

e/
s]

Gasper
n = 4096, vary C

Gasper
n = 8192, vary C

Our protocol
n = 4096, vary Tcp

Our protocol
n = 8192, vary Tcp

Fig. 7. For fixed n, the average latency of LOGacc for Gasper and our protocol (here
for kcp = 6) increases with the number C of slots per epoch and with Tcp, respectively,
while the bandwidth required for votes reduces proportionally. Our protocol offers a
better tradeoff and can tolerate twice the n at comparable latency and bandwidth (our
protocol for n = 8192, Tcp = 30min vs. Gasper for n = 4096, C = 32).

References

1. Ethereum 2.0 networking specification (2021), https://github.com/ethereum/eth2.
0-specs/blob/dev/specs/phase0/p2p-interface.md

2. Badertscher, C., Gaži, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros Genesis:
Composable proof-of-stake blockchains with dynamic availability. In: Conference
on Computer and Communications Security. pp. 913–930. CCS ’18, ACM (2018)

3. Badertscher, C., Gaži, P., Kiayias, A., Russell, A., Zikas, V.: Consensus Redux:
Distributed ledgers in the face of adversarial supremacy. IACR Cryptology ePrint
Archive, Report 2020/1021 (2020)

4. Buchman, E., Kwon, J., Milosevic, Z.: The latest gossip on BFT consensus.
arXiv:1807.04938 (2018), https://arxiv.org/abs/1807.04938

5. Buterin, V., Griffith, V.: Casper the friendly finality gadget. arXiv:1710.09437
(2019), https://arxiv.org/abs/1710.09437

6. Buterin, V., Hernandez, D., Kamphefner, T., Pham, K., Qiao, Z., Ryan, D., Sin, J.,
Wang, Y., Zhang, Y.X.: Combining GHOST and Casper. arXiv:2003.03052 (2020),
https://arxiv.org/abs/2003.03052

7. Castro, M., Liskov, B.: Practical Byzantine fault tolerance. In: Symposium on
Operating Systems Design and Implementation. p. 173–186. OSDI ’99, USENIX
Association (1999)

8. Chan, B.Y., Shi, E.: Streamlet: Textbook streamlined blockchains. In: Advances in
Financial Technologies. p. 1–11. AFT ’20, ACM (2020)

9. Chen, J., Gorbunov, S., Micali, S., Vlachos, G.: ALGORAND AGREEMENT:
Super fast and partition resilient Byzantine agreement. IACR Cryptology ePrint
Archive, Report 2018/377 (2018)

10. Chen, J., Micali, S.: Algorand: A secure and efficient distributed ledger. Theoretical
Computer Science 777, 155–183 (2019)

11. Civit, P., Gilbert, S., Gramoli, V.: Polygraph: Accountable Byzantine agreement.
In: ICDCS. pp. 403–413. IEEE (2021)

12. Cohen, B., Pietrzak, K.: The Chia network blockchain. https://www.chia.net/
assets/ChiaGreenPaper.pdf (2019)

https://github.com/ethereum/eth2.0-specs/blob/dev/specs/phase0/p2p-interface.md
https://github.com/ethereum/eth2.0-specs/blob/dev/specs/phase0/p2p-interface.md
https://arxiv.org/abs/1807.04938
https://arxiv.org/abs/1710.09437
https://arxiv.org/abs/2003.03052
https://www.chia.net/assets/ChiaGreenPaper.pdf
https://www.chia.net/assets/ChiaGreenPaper.pdf

18 Joachim Neu, Ertem Nusret Tas, and David Tse

13. David, B., Gazi, P., Kiayias, A., Russell, A.: Ouroboros Praos: An adaptively-
secure, semi-synchronous proof-of-stake blockchain. In: EUROCRYPT 2018. pp.
66–98. Springer (2018)

14. Dembo, A., Kannan, S., Tas, E.N., Tse, D., Viswanath, P., Wang, X., Zeitouni, O.:
Everything is a race and Nakamoto always wins. In: Conference on Computer and
Communications Security. p. 859–878. CCS ’20, ACM (2020)

15. Dinsdale-Young, T., Magri, B., Matt, C., Nielsen, J., Tschudi, D.: Afgjort: A par-
tially synchronous finality layer for blockchains. In: Conference on Security and
Cryptography for Networks. pp. 24–44. SCN ’20 (2020)

16. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. Com-
munications of the ACM 61(7), 95–102 (2018)

17. Garay, J., Kiayias, A., Leonardos, N.: The Bitcoin backbone protocol: Analysis
and applications. In: EUROCRYPT 2015. pp. 281–310. Springer (2015)

18. Gelashvili, R., Kokoris-Kogias, L., Sonnino, A., Spiegelman, A., Xiang, Z.: Jolteon
and Ditto: Network-adaptive efficient consensus with asynchronous fallback.
arXiv:2106.10362 (2021), https://arxiv.org/abs/2106.10362, Forthcoming in Fi-
nancial Cryptography 2022

19. Guo, Y., Pass, R., Shi, E.: Synchronous, with a chance of partition tolerance. In:
CRYPTO 2019. pp. 499–529. Springer (2019)

20. Haeberlen, A., Kouznetsov, P., Druschel, P.: PeerReview: Practical accountability
for distributed systems. SIGOPS Oper. Syst. Rev. 41(6), 175–188 (Oct 2007)

21. Haeberlen, A., Kuznetsov, P.: The Fault Detection Problem. In: International Con-
ference on Principles of Distributed Systems. OPODIS ’09 (2009)

22. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: A provably se-
cure proof-of-stake blockchain protocol. In: CRYPTO 2017. pp. 357–388. Springer
(2017)

23. Lewis-Pye, A., Roughgarden, T.: Resource pools and the CAP theorem.
arXiv:2006.10698 (2020), https://arxiv.org/abs/2006.10698

24. Lewis-Pye, A., Roughgarden, T.: How does blockchain security dictate blockchain
implementation? In: CCS. pp. 1006–1019. ACM (2021)

25. Libra Association: Libra white paper. https://libra.org/en-US/white-paper/
(2020)

26. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/
bitcoin.pdf (2008)

27. Nakamura, R.: Analysis of bouncing attack on FFG (2019), https://ethresear.ch/
t/analysis-of-bouncing-attack-on-ffg/6113

28. Neu, J., Tas, E.N., Tse, D.: A balancing attack on Gasper, the current candidate for
Eth2’s beacon chain (2020), https://ethresear.ch/t/a-balancing-attack-on-gasper-
the-current-candidate-for-eth2s-beacon-chain/8079

29. Neu, J., Tas, E.N., Tse, D.: Snap-and-Chat protocols: System aspects.
arXiv:2010.10447 (2020), https://arxiv.org/abs/2010.10447

30. Neu, J., Tas, E.N., Tse, D.: Attacking Gasper without adversarial network de-
lay (2021), https://ethresear.ch/t/attacking-gasper-without-adversarial-network-
delay/10187

31. Neu, J., Tas, E.N., Tse, D.: The availability-accountability dilemma and its reso-
lution via accountability gadgets. arXiv:2105.06075 (2021), https://arxiv.org/abs/
2105.06075

32. Neu, J., Tas, E.N., Tse, D.: Ebb-and-flow protocols: A resolution of the availability-
finality dilemma. In: Symposium on Security and Privacy. S&P ’21, IEEE (2021)

33. Neu, J., Tas, E.N., Tse, D.: Two attacks on proof-of-stake GHOST/Ethereum.
arXiv:2203.01315 (2022), https://arxiv.org/abs/2203.01315

https://arxiv.org/abs/2106.10362
https://arxiv.org/abs/2006.10698
https://libra.org/en-US/white-paper/
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://ethresear.ch/t/analysis-of-bouncing-attack-on-ffg/6113
https://ethresear.ch/t/analysis-of-bouncing-attack-on-ffg/6113
https://ethresear.ch/t/a-balancing-attack-on-gasper-the-current-candidate-for-eth2s-beacon-chain/8079
https://ethresear.ch/t/a-balancing-attack-on-gasper-the-current-candidate-for-eth2s-beacon-chain/8079
https://arxiv.org/abs/2010.10447
https://ethresear.ch/t/attacking-gasper-without-adversarial-network-delay/10187
https://ethresear.ch/t/attacking-gasper-without-adversarial-network-delay/10187
https://arxiv.org/abs/2105.06075
https://arxiv.org/abs/2105.06075
https://arxiv.org/abs/2203.01315

Availability-Accountability Dilemma and Accountability Gadgets 19

34. Pass, R., Shi, E.: Rethinking large-scale consensus. In: Computer Security Foun-
dations Symposium. pp. 115–129. CSF ’17, IEEE (2017)

35. Pass, R., Shi, E.: The sleepy model of consensus. In: ASIACRYPT 2017. pp. 380–
409. Springer (2017)

36. Ranchal-Pedrosa, A., Gramoli, V.: Blockchain is dead, long live blockchain! Ac-
countable state machine replication for longlasting blockchain. arXiv:2007.10541
(2020), https://arxiv.org/abs/2007.10541

37. Sankagiri, S., Wang, X., Kannan, S., Viswanath, P.: Blockchain CAP theorem
allows user-dependent adaptivity and finality. In: Financial Cryptography and Data
Security. FC ’21 (2021)

38. Schwarz-Schilling, C., Neu, J., Monnot, B., Asgaonkar, A., Tas, E.N., Tse, D.:
Three attacks on proof-of-stake Ethereum. arXiv:2110.10086 (2021), https://arxiv.
org/abs/2110.10086, Forthcoming in Financial Cryptography 2022

39. Sheng, P., Wang, G., Nayak, K., Kannan, S., Viswanath, P.: BFT protocol foren-
sics. In: CCS. pp. 1722–1743. ACM (2021)

40. Stewart, A., Kokoris-Kogia, E.: GRANDPA: A Byzantine finality gadget.
arXiv:2007.01560 (2020), https://arxiv.org/abs/2007.01560

41. Vyzovitis, D., Napora, Y., McCormick, D., Dias, D., Psaras, Y.: GossipSub:
Attack-resilient message propagation in the Filecoin and ETH2.0 networks.
arXiv:2007.02754 (2020), http://arxiv.org/abs/2007.02754

42. Yin, M., Malkhi, D., Reiter, M.K., Gueta, G.G., Abraham, I.: HotStuff: BFT
consensus with linearity and responsiveness. In: Symposium on Principles of Dis-
tributed Computing. p. 347–356. PODC ’19, ACM (2019)

A Proof of Availability-Accountability Dilemma

A formal proof of Theorem 1 building on the observations discussed in Section 3
is as follows:

Proof. For the sake of contradiction, suppose there exists an SMR protocol Π
that provides βl-liveness and βa-accountable-safety for some βl, βa > 0 under
(Ada,Zda). Then, there exists an adjudication function J , which given two sets of
evidences attesting to conflicting ledgers, outputs a non-empty set of adversarial
nodes.

Suppose there are n nodes in Z. Without loss of generality, we may assume
that n is even; otherwise, Z puts one node to sleep throughout the execution.
Let P and Q partition the n nodes into two disjoint equal groups with |P | =
|Q| = n/2. We denote by [tx] a ledger consisting of a single transaction tx at its
first index.

Next consider the following worlds:
World 1: Nodes in P are honest and awake throughout the execution. Z

inputs tx1 to them. Nodes in Q are asleep. Since Π satisfies liveness for some
βl > 0 under (Ada,Zda), nodes in P eventually generate a set of evidences W1

such that C(W1) = [tx1].
World 2: Nodes in Q are honest and awake throughout the execution. Z

inputs tx2 to them. Nodes in P are asleep. Since Π satisfies liveness for some
βl > 0 under (Ada,Zda), nodes in Q eventually generate a set of evidences W2

such that C(W2) = [tx2].

https://arxiv.org/abs/2007.10541
https://arxiv.org/abs/2110.10086
https://arxiv.org/abs/2110.10086
https://arxiv.org/abs/2007.01560
http://arxiv.org/abs/2007.02754

20 Joachim Neu, Ertem Nusret Tas, and David Tse

World 3: Z wakes up all n nodes, and inputs tx1 to the nodes in P and
tx2 to the nodes in Q. Nodes in P are honest. Nodes in Q are adversarial and
do not communicate with the nodes in P . All nodes stay awake throughout the
execution. Since the worlds 1 and 3 are indistinguishable for the nodes in P ,
they eventually generate a set of evidences W1 such that C(W1) = [tx1]. Nodes
in Q simulate the execution in world 2 without any communication with the
nodes in P . Hence, they eventually generate a set of evidences W2 such that
C(W2) = [tx2]. Thus, there is a safety violation. So, J takes W1 and W2, and
outputs a non-empty set S3 ⊆ Q of adversarial nodes.

World 4: Z wakes up all n nodes, and inputs tx1 to the nodes in P and
tx2 to the nodes in Q. Nodes in Q are honest. Nodes in P are adversarial and
do not communicate with the nodes in Q. All nodes stay awake throughout the
execution. Since the worlds 2 and 4 are indistinguishable for the nodes in Q,
they eventually generate a set of evidences W2 such that C(W2) = [tx2]. Nodes
in P simulate the execution in world 1 without any communication with the
nodes in Q. Hence, they eventually generate a set of evidences W1 such that
C(W1) = [tx1]. Thus, there is a safety violation. So, J takes W1 and W2, and
outputs a non-empty set S4 ⊆ P of adversarial nodes.

Note however that worlds 3 and 4 are indistinguishable from the perspective
of the adjudication function J . Thus, it is not possible that J reliably outputs
a non-empty set which in the case of world 3 contains only elements of Q and
in the case of world 4 contains only elements of P , as would be required by
Definition 4.

B Security Proof for Accountability Gadgets

B.1 Theorem Statement and Notation

In this section, we consider an accountability gadget Πacc instantiated with a
BFT protocol Πbft that provides (n − 2f)-accountable-safety at all times, and
f -liveness after max(GST,GAT) under (Apda,Zpda). To match the accountable
safety resilience of Πbft on Πacc, we tune the thresholds for the number of accept
and reject votes required to output a new checkpoint as (n − f) and f + 1
respectively on lines 9 and 12 of Algorithm 2.

Recall that Πacc is used on top of a Nakamoto-style permissioned longest
chain (LC) protocol Πlc. For concreteness and notational purposes, we assume
that Πacc is the Sleepy consensus protocol [35] although we could have used any
other permissioned LC protocol in its place.

Given the accountability gadget Πacc and the LC protocol Πlc, goal of this
section is to prove that the ledgers LOGacc and LOGda outputted by Πacc and
Πlc satisfy Theorem 2 repeated below:

Given any security parameter σ and f ≤ ⌈n/2⌉,

1. (P1:Accountability) Under (Apda,Zpda), the accountable ledger LOGacc

provides n−2f -accountable safety at all times, and there exists a constant C
such that LOGacc provides f -liveness (with confirmation time polynomial in

Availability-Accountability Dilemma and Accountability Gadgets 21

σ) after
Cmax(GST,GAT) except with probability negl(σ).

2. (P2:Dynamic Availability) Under (Ada,Zda), the available ledger LOGda

is guaranteed to be safe and live at all times, provided that β < 1/2.
3. (Prefix) LOGacc is always a prefix of LOGda.

Before proceeding with the proofs, we formalize the concept of security after
a certain time (We write LOG ⪯ LOG′ if LOG is a prefix of LOG′.):

Definition 6. Let Tconfirm be a polynomial function of the security parameter σ.
We say that a ledger LOG is secure after time T and has transaction confirmation
time Tconfirm if LOG satisfies:

– Safety: For any two times t ≥ t′ ≥ T , and any two honest nodes i and j

awake at times t and t′ respectively, either LOGt
i ⪯ LOGt′

j or LOGt′

j ⪯ LOGt
i.

– Liveness: If a transaction is received by an awake honest node at some time
t ≥ T , then, for any time t′ ≥ t + Tconfirm and honest node j that is awake
at time t′, the transaction will be included in LOGt′

j .

Definition 6 formalizes the meaning of ‘safety, liveness and security after a
certain time T ’. In general, there might be two different times after which a
protocol is safe or live. A protocol that is safe (live) at all times (i.e, after T = 0)
is simply called safe (live) without further qualification.

B.2 Accountable Safety Resilience

We first show that LOGacc provides n−2f -accountable safety under (Apda,Zpda).

Proposition 1. Suppose the number of adversarial nodes is less than n − 2f .
Then, if a block b is checkpointed for iteration c in the view of an honest node i
at slot t, for any honest node j and slot s, either b is checkpointed for iteration
c at slot s or no block has been checkpointed for iteration c yet.

Proposition 1 follows from the safety of LOGbft when the number of adver-
sarial nodes is less than n− 2f .

Theorem 3 (Accountable Safety of LOGacc). LOGacc provides n−2f -accountable-
safety.

Proof. To show that LOGacc provides n − 2f -accountable-safety, we construct
an adjudication protocol J , which in the case of a safety violation on LOGacc,
outputs at least n− 2f nodes as adversarial and never outputs an honest node.
For this purpose, suppose there is a safety violation on LOGacc. Then, there exist
honest nodes i and j, iterations c and c′ (without loss of generality c′ ≤ c) and
slots s and t such that (i) a block b1 ̸= ⊥ is checkpointed for iteration c′ in the
view of node i at slot s, (ii) a block b2 ̸= ⊥ is checkpointed for iteration c in
the view of node j at slot t, (iii) b1, b2 conflict with each other. Then, within
LOGi

bft,s, there are accept votes ⟨accept, c′, b1⟩k from at least n− f nodes for the

22 Joachim Neu, Ertem Nusret Tas, and David Tse

proposal b1 and iteration c′. Similarly, within LOGj
bft,t, there are accept votes

⟨accept, c, b2⟩k from at least n − f nodes for the proposal b2 and iteration c.
Thus, more than 2(n − f) − n = n − 2f nodes voted both ⟨accept, c′, b1⟩k and
⟨accept, c, b1⟩k. Let S denote the set of these nodes.

Next, consider the following two cases:
(i) There is a safety violation on LOGbft. (Recall that LOGbft provides n −

2f -accountable safety.) In this case, since the adjudication protocol for LOGbft

identifies at least n − 2f nodes as adversarial, J simply returns the output of
the adjudication protocol for LOGbft.

(ii) Suppose there is no safety violation on LOGbft and c′ < c. Then, via
Proposition 1, every node k in S have either seen b1 become checkpointed for
iteration c′ before voting accept ⟨accept, c, b2⟩k or voted for iteration c before
seeing any checkpoint for iteration c′. However, an honest node votes accept for
the proposal b2 of iteration c only if it has already seen a block checkpointed for
all past iterations including c′, and if b2 is consistent with all of the checkpoints
from the past iterations, including b1. (This is because an honest node votes
accept for a proposal only if it is part of the node’s checkpoint-respecting LC.)
Then, no honest node could have voted both ⟨accept, c′, b1⟩k and ⟨accept, c, b2⟩k,
implying that all of the nodes in S have violated the protocol. If c′ = c, then all
of the nodes in S voted accept twice for two different proposals for iteration c,
which is again a protocol violation.

Finally, when there is no safety violation on LOGbft, LOG
s
bft,i ⪯ LOGt

bft,j or
LOGt

bft,j ⪯ LOGs
bft,i. In either case, all of the accept votes ⟨accept, c′, b1⟩k and

⟨accept, c, b2⟩k are within the longer of LOGs
bft,i and LOGt

bft,j , which can be used
to prove that the nodes in S violated the protocol. Hence, in this case, J returns
S, which contains at least n− 2f nodes as the set of nodes that have irrefutably
violated the protocol.

B.3 Liveness Resilience

We next focus on the liveness of LOGacc.

Proposition 2. Πbft satisfies f -liveness after max(GST,GAT) with transaction
confirmation time Tconfirm.

Proposition 3. Suppose a block from iteration c was checkpointed in the view
of an honest node at time t. Then, every honest node enters iteration c + 1 by
time max(GST,GAT, t) +∆.

Proof. Suppose a block from iteration c was checkpointed in the view of an
honest node i at time t. Then, there are at least n − f accept votes for the
block from iteration c on LOGt

bft,i. Note that all checkpointing votes and BFT
protocol messages observed by node i by time t are delivered to all other honest
nodes by time max(GST,GAT, t) + ∆. Hence, via Theorem 3, for any honest
node j, LOGi

bft,t ⪯ LOGj
bft,max(GST,GAT,t)+∆. Thus, for any honest node j, there

are at least n − f accept votes on LOGj
bft,max(GST,GAT,t)+∆ for the same block

Availability-Accountability Dilemma and Accountability Gadgets 23

from iteration c. This implies that every honest node enters iteration c + 1 by
time max(GST,GAT, t) +∆.

Theorem 4 (Liveness of LOGacc). Suppose Πlc is secure (safe and live) after
some slot T ≥ max(GST,GAT)+∆+Tcp. Then, LOGacc satisfies f -liveness after
slot T with transaction confirmation time σ except with probability e−Ω(σ).

Proof. If there are f or more adversarial nodes, we know via Proposition 2 that
LOGbft, and by implication LOGacc will not be live. Thus, to show f -liveness
of LOGacc, we assume that there are less than f adversarial nodes and prove
that LOGacc satisfies liveness. In this case, again via Proposition 2, we know
that LOGbft satisfies liveness with transaction confirmation time Tconfirm after
max(GST,GAT), a property which we will use subsequently.

Let c′ be the largest iteration such that a block was checkpointed in the
view of some honest node before max(GAT,GST). (Let c′ = 0 if there does not
exist such an iteration.) By Proposition 3, all honest nodes would have entered
iteration c′+1 by slot max(GAT,GST)+∆. Then, all honest nodes observe a block
proposed for iteration c′ + 1 by slot max(GAT,GST) +∆+ Tcp. Thus, entrance
times of the honest nodes to subsequent iterations have become synchronized by
slot max(GAT,GST) +∆ + Tcp: If an honest node enters an iteration c > c′ at
slot t ≥ max(GAT,GST) +∆+ Tcp, every honest node enters iteration c′ by slot
t+∆.

Suppose iteration c > c′ has an honest leader L(c), which sends a proposal b̂c
at slot t > T + Tcp. Note that b̂c is received by every honest node by slot t+∆.
Since the entrance times of nodes are synchronized by T ≤ max(GST,GAT) +
∆+Tcp, every honest node votes by slot t+∆. Now, as Πlc is secure after slot T ,
b̂c is on all of the checkpoint-respecting LCs held by the honest nodes. Moreover,
as we will argue in the paragraph below, b̂c extends all of the checkpoints seen
by the honest nodes by slot t+∆. (Honest nodes see the same checkpoints from
iterations preceding c due to synchrony.) Consequently, every honest node votes
⟨accept, c, b̂c⟩k for b̂c by slot t+∆, all of which appear within LOGbft in the view
of every honest node by slot t+∆+ Tconfirm. Thus, b̂c becomes checkpointed in
the view of every honest node by slot t + ∆ + Tconfirm. (Here, we assume that
Tto was chosen large enough for Tto > ∆+ Tconfirm to hold.)

Note that L(c) waits for Tcp slots before broadcasting b̂c after observing the
last checkpoint block before iteration c. Since t − Tcp > T , during the period
[t−Tcp, t], Πlc satisfies the chain growth and quality properties (see Appendix C).
Thus, for a large enough Tcp, the checkpoint-respecting LC of L(c) at time t con-
tains at least one honest block between b̂c and the last checkpointed block on it
from before iteration c. (As a corollary, L(c) extends all of the previous check-
points seen by itself and all other honest nodes.) This implies that b̂c contains
at least one fresh honest block that enters LOGacc by slot t+∆+ Tconfirm.

Next, we show that an adversarial leader cannot make an iteration last longer
than ∆+Tto+Tconfirm for any honest node. Indeed, if an honest node i enters an
iteration c at slot t, by slot t+∆+Tto, either it sees a block become checkpointed
for iteration c, or every honest node votes reject. In the first case, every honest

24 Joachim Neu, Ertem Nusret Tas, and David Tse

node sees a block checkpointed for iteration c by slot at most t+2∆+Tto. In the
second case, reject votes ⟨reject, c⟩k from at least n− f > f of the nodes appear
in LOGbft in the view of every honest node by slot at most t+∆+Tto+Tconfirm.
Hence, a new checkpoint, potentially ⊥, is outputted in the view of every honest
node by slot t+∆+ Tto + Tconfirm.

Finally, we observe that except with probability (f/n)m, there exist an iter-
ation with an honest leader within m consecutive iterations. Since an iteration
lasts at most max(∆+Tto+Tconfirm, ∆+Tconfirm+Tcp) ≤ ∆+Tto+Tconfirm+Tcp

slots and a new checkpoint containing a fresh honest block in its prefix appears
when an iteration has an honest leader, any transaction received by an awake
honest node at slot t appears within LOGacc in the view of every honest node
by slot at most max(t, T) +m(∆+ Tto + Tconfirm + Tcp) except with probability
(f/n)m. Hence, via a union bound over the total number of iterations (which is a
polynomial in σ), we observe that if Πlc is secure after some slot T , then LOGacc

satisfies liveness after T with a transaction confirmation time polynomial in σ
except with probability e−Ω(σ).

Observe that Theorem 4 requires Πlc to eventually regain its security under
(Apda,Zpda) when there are less than f adversarial nodes. Although it is not
possible to guarantee any security property for Πlc before GST, the following
theorem states that Πlc recovers its security after max(GST,GAT). Note that
Πlc is initialized with a parameter p which denotes the probability that a given
node is elected as a block producer in a given slot.

Theorem 5 (Security of Πlc). If p < (n− 2f)/(2∆n(n− f)) and there are f
(or less) adversarial nodes, for each sufficiently large Tcp, there exists a constant
C > 0 such that for any GST and GAT specified by (Apda,Zpda), Πlc(p) is secure
after C(max(GST,GAT)+σ), with transaction confirmation time σ, except with
probability e−Ω(

√
σ).

Proof of the theorem is given in Section C and relies on a combination of
the method outlined in [37, Appendix C] with the concept of strong pivots from
[35].

Finally, since f < n/2, we can always find a p such that p < (n−2f)/(2∆n(n−
f)). Then, given Theorems 5 and 4 and a sufficiently small p, we can assert that
LOGacc satisfies f -liveness with a transaction confirmation time polynomial in σ
after time C(max(GST,GAT) + σ) except with probability e−Ω(

√
σ).

B.4 Recency and Gap Properties

Proof of Theorem 5 requires the accountability gadget Πacc to satisfy two main
properties first introduced in [37]: recency and gap properties.

Gap property states that blocks are checkpointed sufficiently apart in time,
controlled by the parameter Tcp:

Proposition 4 (Gap Property). Given any time interval [t1, t2], no more
than (1 + (t2 − t1))/Tcp blocks can be checkpointed in the interval.

Availability-Accountability Dilemma and Accountability Gadgets 25

Proof of Proposition 4 follows from the fact that upon observing a new check-
point that is not ⊥ for an iteration, honest nodes wait for Tcp slots before voting
for the proposal of the next iteration.

Following the notation in [37], we say that a block checkpointed for iteration
c at slot t > max(GST,GAT) in the view of an honest node i is Trec-recent if it
has been part of the checkpoint-respecting LC of some honest node j at some
slot within [t− Trec, t]. Then, we can express the recency property as follows:

Lemma 1 (Recency Property). Every checkpointed block proposed after
max(GST,GAT) is Trec-recent for Trec = ∆+ Tto + Tconfirm.

Proof. We have seen in the proof of Theorem 4 that if a block b proposed after
max(GST,GAT) is checkpointed in the view of an honest node at slot t, it should
have been proposed after slot t− (∆+Tto+Tconfirm). Thus, at least n− f nodes
must have voted ⟨accept, c, b⟩k by time t. Let j denote an honest nodes which
voted ⟨accept, c, b⟩j . Note that j would vote only after it sees the proposal for
iteration c, i.e after slot t − Trec = t − (∆ + Tto + Tconfirm). Hence, b should
have been on the checkpoint-respecting LC of node j at some slot within [t −
Trec, t]. This concludes the proof that every checkpoint block proposed after
max(GST,GAT) is Trec-recent.

C Security Proof for Checkpoint-Respecting LC

In this section, we prove Theorem 5, which states that the security of Πlc is
restored after max(GST,GAT) under (Apda,Zpda) provided that the election
probability p of each node is sufficiently small. Via [32, Appendix C], we know
that the Sleepy consensus protocol [35] regains its safety and liveness within
O(max(GST,GAT)) slots under (Apda,Zpda). On a similar note, [3] has shown
the same self-healing property for Nakamoto’s PoW LC protocol and other LC
based PoS protocols. However, all of these works analyze the LC protocols in
their original form without considering checkpoints in the chain selection rule. In
this context, [37] is the first work to show the recovery of security for checkpoint-
respecting LC protocols. As argued in [37], length of a checkpoint-respecting
LC held by an honest node can decrease when a new checkpoint appears at a
conflicting chain, thus, requiring a careful analysis to bound how many honest
blocks are lost due to such instances. However, it is not immediately obvious if
the analysis of [37] that relies on [17] carries over to the case of PoS protocols,
where an adversary can generate multiple blocks when it is elected. Hence, our
goal is to show that the PoS protocols such as [35,13,2] recover their safety and
liveness after O(max(GST,GAT)) time under (Apda,Zpda). In this endeavor, we
enhance the proof technique of [37] by using the concept of strong pivots from
[35].

In the proof below, we follow the same notation as [35]. Each node is elected
as the leader of a time slot with probability p. Total number of slots Tmax is
fixed and is a polynomial in the security parameter σ. There are n nodes in

26 Joachim Neu, Ertem Nusret Tas, and David Tse

total, among which f nodes are controlled by the adversary. We denote the
checkpoint-respecting longest chain held by an honest node i at slot t by chti.

Define β = pf as an upper bound on the expected number of adversary
nodes elected leader in a single slot. Similarly, define α as a lower bound on the
expected number of awake honest nodes elected leader in a single slot. After
GAT, every honest node wakes up and α = p(n − f) > β as f < n/2. For the
convergence opportunities, we adopt the definition given in [35, Section 5.2] and
denote the number of convergence opportunities within a time interval [t1, t2] by
C([t1, t2]).

We say that a block b is checkpointed at slot t if t is the first slot an honest
node sees b as checkpointed. Note that after GST, if b is checkpointed at slot t,
then every honest node sees b as checkpointed by slot t+∆. Let max(GST,GAT)+
Trec < t∗1 ≤ t∗2 ≤ ... ≤ be the slots at which new blocks b∗1, b∗2, ... are checkpointed
after max(GST,GAT). To show that checkpointing a new block does not forfeit
too many convergence opportunities, we follow the approach of [37] and divide
time into two sets of intervals. Let Il := [t∗l + ∆, t∗l+1 − Trec − ∆] and define
I := ∪l≥0Il as the union of the inter-checkpoint intervals Il. (Recall the definition
of Trec from Lemma 1.) Using the definition of I, we can now proceed to prove
the chain growth, quality and the common prefix properties.

C.1 Chain Growth

Definition 7 ([35, Section 3.2.1]). Predicate growth(τ, k) is satisfied if and
only if for every slot t ≤ Tmax − τ , mini,j(|cht+τ

j | − |chti|) ≥ k.

We use the same results given in [37] to lower bound the chain growth in terms
of convergence opportunities that lie within the inter-checkpoint intervals.

Lemma 2 ([37, Lemma 5]). Let s, t be two slots such that s ∈ I and and
t ≥ s + ∆. Let chsi be a chain held by some honest node i at slot s. Then all
honest nodes will hold a chain of length at least |chsi | in slot t.

Proof is (almost) the same as [37, Lemma 5] and uses Lemma 1.

Proof. Let i and j (potentially i = j) be honest nodes awake at slots s and
t ≥ s + ∆ respectively. Since s ∈ I, there exists an l such that s ∈ Il. Let
b denote the last checkpoint block within chsi . Since s ≥ max(GST,GAT), all
honest nodes accept b as a checkpoint by slot t. Next, consider the following two
cases: (i) b is the last checkpoint block in j’s view by slot t. Then, |chtj | ≥ |chsi |,
as chsi contains all of the checkpoints observed by j by slot t. (ii) j observes at
least one new block become checkpointed by slot t. In this case, let b′ denote the
first block that becomes checkpointed in j’s view after b within slot t∗l′ . l

′ > l.
(In this case, t ≥ t∗l′ by definition.) Via Lemma 1 (recency property), b′ must
be on the checkpoint-respecting LC cht

′

k held by an honest node k at some slot
t′ ∈ [t∗l′ − Trec, t

∗
l′], during which b′ was not checkpointed yet in the view of any

honest node. Thus, via case (i), |cht
′

k | ≥ |chsi | since t′ ≥ t∗l′−Trec ≥ s+∆ for l′ > l.

Availability-Accountability Dilemma and Accountability Gadgets 27

Note that the length of the checkpoint-respecting LC held by any honest node
at the time it observes b′ become checkpointed must be at least |cht

′

k | ≥ |chsi |.
Hence, by induction, we can state that all honest nodes that observe at least one
new checkpoint (after b) by slot t hold chains of length at least |chsi | at slot t,
implying that |chtj | ≥ |chsi |.

A useful corollary of Lemma 2 is given below:

Corollary 1. All honest blocks produced at convergence opportunities within I
have distinct heights.

Proof. Suppose an honest block b is produced at height ℓ at a convergence op-
portunity t within I. Then, the honest producer of b holds a chain of length ℓ at
slot t ∈ S. Via Lemma 2, all honest nodes will hold a chain of length at least ℓ
at all slots ≥ t+∆. Since the next convergence opportunity after t happens at
some slot ≥ t+∆, the next honest block will be at a height larger than ℓ.

Lemma 3 ([37, Lemma 6]). Consider a slot s ∈ I and an honest node i awake
at s such that |chsi | = ℓ. (Alternatively, consider a slot t and an honest node i
awake at t such that chti contains an honest block at height ℓ produced in some
slot s < t.) Then, for any slot t ≥ s + 2∆ and honest node j awake at slot t,
|chtj | ≥ ℓ+C(I ∩ [s+∆, t−∆]).

Proof is similar to [37, Lemma 6] and uses Lemma 2. A direct consequence
of Lemma 3 is that growth(τ, k) is satisfied if for any interval [t1, t2] of length
t2 − t1 = τ ≥ 2∆, C(I ∩ [t1 +∆, t2 −∆]) ≥ k.

C.2 Chain Quality

Definition 8 ([35, Section 3.2.2]). Predicate quality(µ, k) is satisfied if and
only if for every slot t and every honest node i awake at t, among any consecutive
sequence of k blocks within chti, the fraction of blocks produced by honest nodes
is at least µ.

Lemma 4. If quality(µ, 1/µ) = 0, then there exist slots s, t such that A([s, t]) ≥
1/µ and A([s, t]) ≥ C(I ∩ [s+∆, t−∆])− 1.

Proof. If quality(µ, 1/µ) = 0, then there exists a slot t′ and an honest node i

awake at t′ such that cht
′

i contains a consecutive sequence of 1/µ blocks b1, ..., b1/µ
produced by the adversary. Let b∗s denote the last honest block before b1 within
cht

′

i and let ℓs and s respectively denote its height and the slot it was produced
in. Similarly, let b∗t denote the first honest block after b1/µ within cht

′

i and let
ℓt and t respectively denote its height and the slot it was produced in. (Note
that the genesis block can be taken as an honest block.) If there is no honest
block following b1/µ within cht

′

i , let b∗t = cht
′

i [−1], ℓt = |cht
′

i | and t = t′. In
either case, there exists an honest node which holds a chain of length ℓt − 1 at
slot t and this chain contains an honest block at height ℓs produced in slot s.

28 Joachim Neu, Ertem Nusret Tas, and David Tse

Thus, via Lemma 3, we know that ℓt ≥ ℓs + C(I ∩ [s + ∆, t − ∆]). Note that
every block within cht

′

i with height in (ℓs, ℓt) was produced by the adversary
within the interval [s, t], and lie on the same chain. Hence, A([s, t]) ≥ ℓt− ℓs−1,
where ℓt − ℓs − 1 ≥ C(I ∩ [s + ∆, t − ∆]) − 1. Moreover, the blocks b1, ..., b1/µ
were produced within the interval [s, t] and lie on the same chain, implying that
A([s, t]) ≥ 1/µ. Hence, we can conclude that if quality(µ, 1/µ) = 0, A([s, t]) ≥
1/µ and A([s, t]) ≥ C(I ∩ [s+∆, t−∆])− 1.

C.3 Common Prefix

Definition 9 ([35, Section 3.2.3]). Predicate prefix(τ) is satisfied if and only
if for all slots s ≤ t and honest nodes i, j such that i and j are awake at slots s
and t respectively, prefix of chjt consisting of blocks produced at slots ≤ t − τ is
a prefix of chis.

To show the common prefix property in the context of checkpointed PoS
protocols, we extend the definition of strong pivots in [35, Section 5.6.1] as
shown below:

Definition 10. A slot t is said to be a checkpoint-strong pivot, if for any t0 ≤
t ≤ t1, it holds that either A([t0, t1]) < C(I ∩ [t0 +∆, t1 −∆]) or A([t0, t1]) = 0.

Observe that when we count the number of convergence opportunities for a
checkpoint-strong pivot, we only take those that lie within the inter-checkpoint
intervals. Intuitively, this is because the convergence opportunities that arrive
during checkpoint intervals do not offer any guarantee of growth for the chains
held by honest nodes. Conversely, as Corollary 1 states, all of the honest blocks
that arrive at convergence opportunities within I have a unique height. Hence,
by counting only the convergence opportunities in I, we can inherit all of the
qualitative results presented in [35] about the prefix property. In this context,
following proposition and lemma extend [35, Fact 4, Lemma 5]:

Proposition 5 (Unique Honest Blocks at Convergence Opportunities
in I). Let i and j be two honest nodes awake at slots r1 and r2 ≥ r1 respectively.
If chr1i [ℓ] and chr2j [ℓ] are both honest blocks and there exists a convergence op-
portunity t∗, t∗ ∈ I, such that an honest block b∗ was produced at height ℓ, then,
chr1i [ℓ] = chr2j [ℓ] = b∗.

Proof. For the sake of contradiction, suppose chr1i [ℓ] and chr2j [ℓ] are both honest
blocks at least one of which is different from b∗. Let k denote the honest producer
of b∗ such that cht

∗

k [ℓ] = b∗. Without loss of generality, suppose chr1i [ℓ] = b ̸= b∗,
and let m and t denote the honest block producer and the production slot of b.
As b ̸= b∗, either t < t∗ −∆ or t > t∗ +∆. Now, if t < t∗ −∆, either at least
one honest node holds a checkpoint-respecting LC of length ℓ at time t∗ − ∆,
or b conflicts with one of the blocks checkpointed before slot t∗ −∆. In the first
case, |cht

∗−

k | ≥ ℓ, which implies b∗ could not have been produced at height ℓ,
leading to a contradiction. In the latter case, no checkpoint-respecting LC of an

Availability-Accountability Dilemma and Accountability Gadgets 29

honest node will contain b after slot t∗, which is a contradiction as b ∈ chr1i .
Conversely, if t > t∗+∆, via Lemma 2, |cht

−

m | ≥ |cht
∗

k | ≥ ℓ, which implies b could
not have been produced at height ℓ, leading to a contradiction. Thus b = b∗ and
chr1i [ℓ] = chr2j [ℓ] = b∗.

Lemma 5. Let i and j be two honest nodes awake at slots r1 and r2 ≥ r1
respectively. Let t be a checkpoint-strong pivot such that there is a convergence
opportunity in [t, r1]∩I. Then, the last common block within chr1i and chr2j should
have been produced in a slot ≥ t.

Proof. Since t is a checkpoint-strong pivot, there exist convergence opportunities
t′′ ≤ t ≤ t′ such that t′′, t′ ∈ I and no adversary block is produced in the interval
[t′′, t′]. (Note that if t is a convergence opportunity in I, t′′ = t′ = t.) In any
case, t′ is also a checkpoint-strong pivot. By the assumption that there is a
convergence opportunity in [t, r1] ∩ I, we know that t′ ≤ r1.

As t′ ∈ I is a convergence opportunity, there exists an honest block b∗ pro-
duced at some height ℓ∗ at slot t′. Next, we claim that since t′ is a checkpoint-
strong pivot, there cannot be an adversarial block within chr1i and chr2j at height
ℓ∗. For the sake of contradiction, suppose there exists an adversary block b at
height ℓ∗ in a chain chsm held by some honest node m at some slot s ≥ t′ +∆.
Let b1, produced at slot t1 and height ℓ1 < ℓ∗, denote the last honest block in
the prefix of b within chsm. If there is no such block, we take the genesis block
as b1. Similarly, let b2, produced at slot t2 and height ℓ2 > ℓ∗, denote the first
honest block in the suffix of b within chsm. If there is no such block, we take the
last block on chsm as b2. If b2 is an honest block, by definition, all of the blocks
on chsm at heights (ℓ1, ℓ2) are adversarial (there is at least one such block b) and
have been mined at distinct times within the interval (t1, t2). On the other hand,
if b2 is adversarial, all of the blocks on chsm at heights (ℓ1, ℓ2] are adversarial and
have been mined at distinct times within the interval (t1, t2]. In this context, we
first consider the case that b2 is honest.

Observe that as t′ is a convergence opportunity, either t′ ≤ t1 − ∆, t′ ∈
[t1+∆, t2−∆] or t′ ≥ t2+∆. First, if t′ ≤ t1−∆, via Lemma 2, all honest nodes
will hold a chain of length at least ℓ∗ by time t1, implying that b1 could not have
been mined at height ℓ1 < ℓ∗, which is a contradiction. Second, if t′ ≥ t2 +∆,
then the honest producer of b∗ has already seen b2; yet decided to produce a
block at height ℓ∗ < ℓ2. However, this is only possible if b2 conflicts with a
checkpoint observed by the producer of b∗ by time t′. However, this checkpoint
would also be seen by node m by time t′+∆ ≤ s, implying that b2 cannot be on
chsm at time s, which again is a contradiction. Consequently, the only possible
scenario for t′ is t′ ∈ [t1 +∆, t2 −∆].

Finally, suppose b2 was produced by some honest node m′. As cht2m′ contains
an honest block, b1, at height ℓ1 produced at slot t1 < t2 − ∆, via Lemma 3,
ℓ2 = |cht2m′ | > ℓ1 +C(I ∩ [t1 +∆, t2 −∆]). Moreover, all of the blocks between b1
and b2 (perhaps including b2) are adversarial and has been mined in the interval
(t1, t2] at distinct times, implying that A([t1, t2]) ≥ C(I ∩ [t1 + ∆, t2 − ∆]).
However, this is a contradiction with the fact that t′ ∈ [t1 + ∆, t2 − ∆] is a
checkpoint-strong pivot.

30 Joachim Neu, Ertem Nusret Tas, and David Tse

Next, we consider the case that b2 is an adversarial. From the analysis
above, we know that t′ > t1 + ∆. Moreover, every block on chsm following b1
are adversarial blocks. As the honestly-held chain chsm, s > t′ + ∆, contains
an honest block, b1, at height ℓ1 produced at slot t1 < s − ∆, via Lemma 3,
ℓ2 = |chsm| > ℓ1 +C(I ∩ [t1 +∆, s−∆]). Moreover, all of the blocks between b1
and b2 (including b2) are adversarial and have been mined in the interval (t1, s]
at distinct times, implying that A([t1, s]) ≥ C(I ∩ [t1+∆, s−∆]). However, this
is a contradiction with the fact that t′ ∈ [t1 +∆, s −∆] is a checkpoint-strong
pivot.

Consequently, there cannot exist an adversary block b at height ℓ in any
chain held by honest nodes after slot t′ + ∆, an assertion that includes the
chains chr1i and chr2j . Then, as chr1i [ℓ∗] and chr2j [ℓ∗] are both honest blocks and
t′ is a convergence opportunity, via Proposition 5,

chr1i [ℓ∗] = chr2j [ℓ∗] = b∗. (1)

Hence, the last common block within chr1i and chr2j must have been produced in
a slot ≥ t′ ≥ t.

C.4 Probabilistic Analysis

To lower bound the number of convergence opportunities within I, we can use
the following observation from [37, Proposition 4] which relies on Proposition 4
(gap property): If t ≥ s ≥ max(GST,GAT),

C([t1 +∆, t2 −∆] ∩ I) ≥ C([t1 +∆, t2 −∆])− (1 + (t2 − t1))(Trec + 2∆+ 1)/Tcp(2)

Combining this expression with [35, Lemma 2, Corollary 2, Fact 2] yields the
following proposition:

Proposition 6. For any ϵ > 0, there exists an ϵ′ such that given t2 ≥ t1 ≥
max(GST,GAT), t ≜ t2 − t1 ≥ 2∆,

P
[
C([t1 +∆, t2 −∆] ∩ I) ≤

(
(1− ϵ)(1− 2pn∆)α− Trec + 2∆+ 1

Tcp

)
t

]
< exp (−ϵ′αt)

P[A([t1, t2]) > (1 + ϵ)βt] < exp (−ϵ2βt/3).

We also note that for any given p < (n− 2f)/(2∆n(n− f)) and sufficiently
large Tcp, there exists a constant ϵ > 0 such that

(1 + ϵ)β < (1− ϵ)(1− 2pn∆)α− Trec + 2∆+ 1

Tcp
(3)

Next, we define T as the minimum slot t ≥ max(GST,GAT) such that C([0, t−
∆] ∩ I) = A([0, t]). In other words, T is an upper bound on the slot by which
checkpoint-respecting LCs held by honest nodes would have caught up with the

Availability-Accountability Dilemma and Accountability Gadgets 31

checkpoint-respecting LCs held by the adversary nodes. Thus, we can view T
as the time Πlc resets itself such that after T , it behaves like a checkpoint-
respecting LC protocol that has just started running in a synchronous network.
As long as Tcp is selected sufficiently large for equation 3 to hold, combining [32,
Propositions 2,3,4] with Proposition 6, we can assert the following proposition
bounding T :

Proposition 7. There exists a constant C such that for any given security pa-
rameter σ, and GST,GAT specified by (Apda,Zpda), T ≤ C(max(GST,GAT)+σ)
except with probability e−Ω(σ).

Using Proposition 7, we can complete the proof of Theorem 5:

Proof. Using Proposition 6 and Lemma 3, we can assert that for any given ϵ > 0,
growth(σ, k) is satisfied after max(GST,GAT) except with probability e−Ω(σ),
where k = g0σ for

g0 = (1− ϵ)(1− 2pn∆)α− Trec + 2∆+ 1

Tcp
. (4)

Similarly, using Lemma 4, Proposition 6 and Proposition 7, we can assert that
for any given ϵ > 0, quality(µ, 1/µ) is satisfied after slot C(max(GST,GAT)+σ),
except with probability e−Ω(σ), where

µ =
(1− ϵ)(1− 2pn∆)α− (1 + ϵ)β − (Trec + 2∆+ 1)/Tcp

(1− 2pn∆)α− (Trec + 2∆+ 1)/Tcp
. (5)

Finally, we know via Lemma 5 that checkpoint-strong pivots force convergence
of the checkpoint-respecting LCs seen by all honest nodes. Hence, we can use [35,
Theorem 7] to show that prefix(σ) is satisfied after slot C(max(GST,GAT) + σ)
except with probability e−Ω(

√
σ). Then, using [35, Lemma 1], we conclude that

Πlc is secure with confirmation time O(σ/g0) after slot C(max(GST,GAT) + σ)
except with probability e−Ω(

√
σ).

Via Lemma 1, Trec = ∆ + Tto + Tconfirm. On the other hand, Tcp should
be chosen large enough for the inequality (3) to be satisfied. Thus, placing the
definitions of α and β, setting f = n/4, Tto = 60 seconds as in Section 5, and
choosing ϵ = 0.1 and p = 0.8(n− 2f)/(2∆n(n− f)) = 0.8/(3n∆), we can obtain
inequality (3) from the following expression:

2Tto + 3∆

(1 + ϵ)pf − (1− ϵ)(1− 2pn∆)p(n− f)2Tto
= 100(120 + 3∆)∆ < Tcp (6)

Thus, for any given value of ∆, there exists a Tcp that satisfies inequality (3)
for these set of parameters. Experimentation in Section 5 shows that for ∆
approximately a few seconds, Tcp of 300 seconds is sufficiently large to ensure
security under real network conditions.

32 Joachim Neu, Ertem Nusret Tas, and David Tse

C.5 Security Argument for Chia

While the sections above prove Theorem 2 for PoS, and by implication PoW
protocols, security of Chia [12] does not immediately follow from the analysis of
checkpoint-strong-pivots due to nothing-at-stake attacks [14], which enable the
adversary to mine blocks on top of each existing block via independent Poisson
processes. The first paper to show security for such protocols given the possi-
bility of nothing-at-stake attacks is [14] which introduced a novel method called
blocktree-partitioning. This method splits the overall blocktree into adversar-
ial trees that build on a fictitious honest tree with a chain growth property
analogous to the one in Appendix C.1. Thus, as in the case of convergence op-
portunities, we can once again count only the honest blocks that arrive within
inter-checkpoint intervals Il to provide a non-trivial lower bound on the growth
of the fictitious honest tree in the context of checkpoint-respecting LCs. This
lower bound follows from the fact that each honest block produced during such
an interval Il has the potential to contribute to the growth of honest chains just
like in the case of original LC protocols. Using the modified definition for the
fictitious honest tree, we can then prove [14, Theorem 3.2] that ties protocol
security to the evolution of the fictitious honest tree for checkpoint-respecting
LC protocols. Finally, the probabilistic analysis of [14, Section 4.2] goes through
provided that β < 1/e and the parameters p and 1/Tcp are sufficiently small.
Details of this analysis is left as future work.

D Experimental Evaluation Details

Implementation: Our prototype is implemented in the programming language
Rust. A diagram of the different components and their interactions is provided in
Figure 4. We use a longest chain protocol modified to respect latest checkpoints
as Πlc, with a permissioned block production lottery with winning probability
p per node and per time slot of duration Tslot; and HotStuff7 as Πbft. Hon-
est nodes pause HotStuff (including its timeouts) while waiting for the next
checkpoint proposal. All communication (including HotStuff’s) takes place in a
broadcast fashion via libp2p’s Gossipsub protocol8, mimicking Ethereum 2’s
network layer [1], to be able to scale to thousands of nodes. Thus, we assume
that under normal conditions every message received by one honest node will be
received by all honest nodes within some bounded delay. Since responsiveness
is not so important for our checkpointing application and to avoid broadcasting
quorum certificates, we use a variant of HotStuff where to ensure liveness the
leader waits for the network delay bound before proposing a block. Our pro-
totype does not implement the application logic of the beacon chain (such as
validators joining and leaving, integration with shard chains and Ethereum 1,
etc.) which can be realized on top of consensus in the same way as currently
done in Ethereum 2, and our prototype does not use any orthogonal techniques
7 We used this Rust implementation: https://github.com/asonnino/hotstuff
8 We used this Rust implementation: https://github.com/libp2p/rust-libp2p

https://github.com/asonnino/hotstuff
https://github.com/libp2p/rust-libp2p

Availability-Accountability Dilemma and Accountability Gadgets 33

to reduce bandwidth by constant factors (such as signature aggregation, short
signature schemes, compression of network communication, etc.) which are not
fundamental to the consensus problem.

Choice of parameters: We chose the parameters of our protocol in the experi-
ments to match the parameters of Ethereum 2’s beacon chain. The beacon chain
has C = 32 slots per epoch and m = 128 validators per slot, for a total of
n = 4096 validators (per epoch), which is the approximate number of nodes that
we run our experiments with. To match the block inter-arrival time (i.e., the
duration of one slot) of 12 s in the beacon chain, we set p = 1/n and account
for the probability of no node winning the block production lottery and choose
Tslot = 7.5 s. We also match the block payload size of 22KBytes. In terms of
Πlc, we chose kcp = 6 so that a checkpoint proposal by an honest leader is rea-
sonably likely (although not ‘guaranteed’) to be accepted by other honest nodes,
and k = 6 for a swift 72 s average confirmation delay of LOGda. Note that kcp
should be the same for all nodes, while each client can choose an individual k to
trade off latency and confirmation error probability of LOGda. To leave enough
time for message propagation, we set the HotStuff timeout Ths = 20 s. To avoid
HotStuff timeouts escalating into checkpoint timeouts for honest leaders, we set
Tto = 1min. Finally, to target 5× improvement in average LOGacc latency over
Gasper (cf. Figure 7), we set Tcp = 5min.

Experiment setup: Adversarial nodes in the experiment aim to stall consensus as
much as possible. Thus, they do not share a proposal when elected leader in Πbft

or Πacc, so that honest nodes have to wait for a timeout before they can move
on, and they mine selfishly [16] in Πlc to reduce honest chain growth. We ran our
prototype (a) with no adversary (Figure 2(l)), and (b) with β = 25% adversary
(Figure 2(r)), each for 2500 s on five AWS EC2 c5a.8xlarge instances in each
of ten AWS regions9, with 82 nodes per machine, for a total of 4100 nodes.
Each honest (adversarial) node connected to 15 (15 honest and 15 adversarial)
randomly selected peers for the peer-to-peer gossip network.

Observations: We observe that both without faults (Figure 2(l)) as well as under
the 25%-attack (Figure 2(r)) the available full ledger () shows steady growth,
albeit under attack at a reduced rate due to selfish mining. In both cases, the
accountable prefix ledger () periodically catches up with the available ledger.
Timeouts cause occasional but overall minor delays of the catch-up.

In terms of bandwidth (reported in Figures 6 and 5 for an exemplary AWS
instance, i.e., for 82 nodes), we observe a distinct spiky pattern with frequent
small spikes corresponding to the propagation of Πlc blocks and infrequent wide
spikes corresponding to the propagation of checkpoint votes and Πbft blocks
and votes as part of checkpointing. There is more traffic under attack than
without attack (per node: avg. 78KB/s peak 1.5MB/s vs avg. 56KB/s peak
9 eu-north-1, eu-west-3, ap-south-1, ap-northeast-1, ap-southeast-2,
sa-east-1, ca-central-1, us-west-1, us-east-2, us-east-1

34 Joachim Neu, Ertem Nusret Tas, and David Tse

1.34MB/s), since timeouts due to adversarial non-action lead to additional iter-
ations of checkpointing and HotStuff. In either case, the bandwidth requirement
does not pose a severe limitation to participation even using consumer-grade
Internet connectivity.

Bandwidth requirement and accountable ledger latency: We examine the tradeoff
between the average number of votes communicated per time (as a surrogate for
average required bandwidth, to avoid confounding factors such as compression
or signature aggregation) and the average latency of the accountable ledger (see
Figure 7), for varying number n of nodes and varying parameters C and Tcp for
Gasper and our protocol, respectively, under ideal operation, i.e., β = 0, ∆ = 0.
In this case, Gasper transmits 2 · n

C votes per 12 s (per slot, each committee
member issues an LMD GHOST and a Casper FFG vote), while our protocol
transmits 5 · n votes per Tcp time (broadcast checkpoint votes, checkpoint votes
in HotStuff proposal, three rounds of HotStuff voting for confirmation). A trans-
action takes on average 1

2 + 2 epochs to enter into the accountable ledger for
Gasper (wait until end of ongoing epoch, then two epochs to reach finality), and
kcp · 12 s+ 1

2 ·Tcp time to enter into the accountable ledger for our protocol (kcp-
deep to enter checkpoint proposal, then wait until next checkpoint iteration). As
evident from Figure 7, our protocol offers slightly improved latency at compara-
ble bandwidth, or comparable bandwidth and latency but for a larger number
of nodes. Let us point out that, as currently implemented, nodes in our protocol
broadcast votes at the highest throughput feasible once Tcp has expired, so that
the resulting traffic pattern is more bursty than that produced by Gasper, where
voting is taking place throughout each epoch. However, Figure 7 also corrobo-
rates that even if voting after Tcp was artificially rate-limited, bandwidth and
latency comparable to Gasper can be achieved.

Note that the gross bandwidth measured in Figures 5 and 6 is roughly 6× the
bandwidth estimate based on the number of votes per time. This is largely due
to two factors: 1) We have not optimized HotStuff in our prototype to remove
quorum certificates from blocks (although we may do so due to the broadcast
nature of the gossip network, as discussed in the earlier ‘Implementation’ para-
graph), 2) the amplification factor that comes with nodes flooding every new
message to all their peers in the gossip network.

Scaling the number of nodes for fixed accountable ledger latency: To scale the
number of nodes for a fixed accountable ledger latency (and hence fixed C and
Tcp, respectively), both Gasper and our protocol need to increase their vote
bandwidth proportionally. However, the attack described in [30] suggests that
even without adversarial but with merely random network delay, Gasper is sus-
ceptible to balancing by an adversary controlling O(

√
C/n) of nodes. Thus, for

fixed C, the relative adversarial resilience decreases (to 0) as n increases (to ∞).

Improvements: Obvious improvements would be to customize the block proposal
generation of HotStuff to account for the semantics of votes and the state of the

Availability-Accountability Dilemma and Accountability Gadgets 35

checkpointing protocol, e.g., do not propose votes from past checkpoint itera-
tions, delay proposals when there are no pending votes, propose blocks with the
minimum set of votes to reach a new checkpoint decision, etc.

E Helper Functions for Algorithms 1 and 2

– PerformBookkeeping: Macro for bookkeeping in Alg. 1 of checkpoint
decisions and checkpoint proposals from checkpoint leaders in charge

– CpLeaderOfIter(c): Returns randomly selected publicly verifiable unique leader
L(c) of checkpoint iteration c

– Broadcast(...): Broadcasts checkpoint proposal to other nodes
– GetCurrProposalTip(): Returns kcp-deep block on node’s checkpoint-

respecting LC from Πlc

– IsValidProposal(b): Checks whether block b is consistent with kcp-deep
block on node’s checkpoint-respecting LC as obtained from Πlc

– SubmitVote(v): Inputs vote v as payload to Πbft for ordering
– GetNextVerifiedVoteFromBft(): Retrieves next vote with valid signa-

ture from the output ledger LOGbft as ordered by Πbft

– OutputCp(...): Alg. 1 outputs a new checkpoint decision (used as input in
Alg. 2 and to determine checkpoint-respecting LC in Πlc)

F Proof-of-Work and Proof-of-Space

We have so far focused on accountability gadgets built for permissioned LC pro-
tocols. We conclude with an outlook on accountability gadgets for permissionless
LC protocols such as those based on Proof-of-Work (PoW), e.g., Bitcoin [26], or
those based on Proof-of-Space (PoSpace), e.g., Chia [12]. In such constructions,
nodes fulfill two different roles: miners control a unit of a rate-limiting resource,
e.g., compute power or storage space, and are responsible for extending the per-
missionless checkpoint-respecting LC; and validators with unique cryptographic
identities are responsible for providing accountability. Security of Πlc is primar-
ily maintained by miners, security of Πacc and the associated protocol Πbft are
primarily maintained by validators. While miners are free to participate dynam-
ically, validators are expected to be always present to provide accountability.

In the following, let β be the fraction of online rate-limiting resource con-
trolled by adversarial miners, and β∗ be a quantity depending on the underlying
Πlc protocol: β∗ = 1/2 for Bitcoin and β∗ = 1/e for Chia, our two examples.
Then, the accountable ledger LOGacc and the available ledger LOGda satisfy:

Consider a network with validators (with n unique cryptographic identities)
and miners (at least one of which is honest and awake), with the properties
discussed above. The network may partition, and the miners may come online
and go offline subject to the constraints below. Then, for any f ≤ ⌈n/2⌉:

1. (P1: Accountability) The accountable ledger LOGacc provides accountable
safety resilience (n−2f+2) at all times, and is live after network partition, if
β < β∗ holds, and if the number of honest validators is greater than (n− f).

36 Joachim Neu, Ertem Nusret Tas, and David Tse

2. (P2: Dynamic Availability) The available ledger LOGda is guaranteed to
be safe after network partition and live at all times, if β < β∗ holds, and if
the number of adversarial validators is at most (n− f).

Again, LOGacc is always a prefix of LOGda by construction.
Observe that the requirements of having greater than (n − f) honest nodes

under P1 and having β < β∗ under P2 are analogous to the permissioned case
formulated in Theorem 2. However, accountability gadgets for permissionless
LC protocols have further requirements. First, under P1, liveness of LOGacc

requires β < β∗. Otherwise, the adversarial miners might stall Πlc and hence
LOGda might not become live after network partition, which was argued to be
a necessary condition for liveness of LOGacc in Section 4.2. Second, under P2,
security of LOGda requires the number of adversarial validators to be bounded
by (n− f). Otherwise, if the number of adversarial validators was greater than
(n − f), it would be possible for a block that is not on a checkpoint-respecting
LC held by any honest nodes to become checkpointed solely by adversarial votes
(l. 9 of Alg. 2), thus causing safety violations on LOGda.

For Bitcoin, the security proof of Appendices B and C applies. For Chia, se-
curity can be proven via an extension of blocktree partitioning [14] to checkpoint-
respecting LCs. Details in Appendix C.5. Finally, note that the reduced threshold
β∗ = 1/e for Chia as the permissionless LC protocol is due to nothing-at-stake
attacks [14], since randomness is updated per block in Chia. Other embodiments
of PoSpace may provide different β∗.

G Proof of Non-Accountability of Checkpointed LC

In this section, we show that the checkpointed longest chain protocol presented
in [37] does not provide accountable safety. The checkpointing protocol used by
[37] is a slight modification of the Algorand BA protocol from [9]. Thus, the
attack below on the accountability of the Algorand BA in [37] is very similar to
the one described for Algorand BBA* [10] in [39, Appendix C.3].

Theorem 6. Algorand BA [9] does not provide accountable safety.

Proof. For the sake of contradiction, suppose there exists an adjudication func-
tion J that can identify at least one adversary node when there is a safety
violation, and never identifies an honest node. Let n = 3f + 1 denote the total
number of nodes among which f nodes are controlled by a Byzantine adversary.
Note that Algorand BA requires each node i to hold a starting value stpi (that
is distinct from the input values) for each period p of the protocol. Starting val-
ues are set to st1i =⊥ for period p = 1. Each period consists of 4 steps and an
optional 5-th step.

Consider three disjoint sets of nodes P , Q and R, where |P | = f − 1 and
|Q| = |R| = f + 1. We next construct two worlds each with a different set of
Byzantine nodes.

World 1: Nodes in R are controlled by the adversary. Suppose that the
nodes in P and Q start with the input bits 0 and 1 respectively, and a node from

Availability-Accountability Dilemma and Accountability Gadgets 37

P is elected leader at period p = 1. Then, the following steps are executed by
Algorand BA.

– Period 1, Step 1: Leader proposes its input, 0.
– Period 1, Step 2: Every node soft-votes the value 0 proposed by the leader.

Adversary nodes also soft-vote 0 and share their votes with all honest nodes.
– Period 1, Step 3: Nodes in P and Q see more than 2f+1 soft-votes for 0, thus

they cert-vote for 0. Nodes in R also cert-vote for 0, but send their cert-votes
only to the nodes in P .

– Period 1, Step 4: Nodes in P receive 3f+1 > 2f+1 cert-votes, thus terminate
using the halting condition and output 0. Nodes in Q receive only |P |+ |Q| =
2f cert-votes, thus are not able to certify any value. Nodes in R pretend as
if they do not receive any cert-votes from the nodes in Q, thus are not able
to certify any value either. Hence, nodes in Q and R go to the period’s first
finishing step. They all next-vote their starting values st1i , which is set to ⊥
for period p = 1. Note that the nodes in R send their next-votes to the nodes
in Q.

– Period 2, Step 1: Since the nodes in Q and R observe a total of 2f+1 ⊥-next-
votes, they do not go to the second finishing step of period 1 and instead
jump to step 1 of period p = 2, with st2i = ⊥. Suppose a node from Q is
elected leader at period p = 2. It proposes its input 1.

– Period 2, Step 2: Nodes in Q and R soft-vote the value 1 proposed by the
leader.

– Period 2, Step 3: Nodes in Q and R see more than 2f + 1 soft-votes for 1,
thus they cert-vote for 1.

– Period 2 (Halting Condition): Nodes in Q and R terminate using the halting
condition and output 1.

Since the honest nodes in P and Q outputted different values, there is a safety
violation, upon which all of the nodes send their evidences to the adjudication
function J . Evidences sent by the nodes in Q and R state that they did not hear
from the nodes in R and Q respectively in step 3 of period 1. By assumption, J
identifies at least one node from the set R as an adversarial node.

World 2: This world is identical to World 1 except that

– Nodes in Q are adversarial and the nodes in R are honest.
– Nodes in the set Q behave exactly like the nodes in R behaved in World 1,

i.e. the nodes in Q do not send any cert-votes to the nodes in R in step 3 of
period 1 and ignore their votes at the beginning of step 4 of period 1.

Thus, again the honest nodes in P and Q output different values, upon which all
of the nodes send their evidences to J . As worlds 1 and 2 are indistinguishable
in the perspective of J , it again identifies at least one node from the set R as an
adversary node with non-negligible probability. However, this is a contradiction
with the definition of J as R consists of honest nodes in world 2.

38 Joachim Neu, Ertem Nusret Tas, and David Tse

H Example Protocols Framed in Model of Section 2

To illustrate the model in Section 2, consider a client that queries nodes running a
Nakamoto-style longest chain protocol under (Ada,Zda) at some time t. Suppose
β < 1/2. The transcript Tt

i held by node i at time t consists of the blocks received
by node i by time t. Given the transcript Tt

i, W outputs as evidence the longest
chain implied by Tt

i. Upon collecting evidences from a subset S of awake nodes
with at least one honest node, a client calls C which selects the longest chain in
the set {wt

i}i∈S and outputs the k-deep prefix of that longest chain as the ledger.
We can also consider propose-and-vote-style BFT protocols such as Hot-

Stuff, LibraBFT, Streamlet and PBFT [42,25,8,7] with n = 3f + 1 nodes under
(Ap,Zp). In this case, the transcript Tt

i held by a node i at time t consists of all
received messages such as proposals and votes. Given Tt

i, W outputs as evidence
a sequence of proposals with votes attesting to them. Upon collecting evidences
from a subset S of nodes containing at least one honest node, a client calls C,
which outputs the largest possible sequence of proposals that can be confirmed
given the votes attesting to them. The confirmation rule typically requires votes
from n − f + 1 nodes on consecutive proposals to guarantee safety which fol-
lows from a quorum intersection argument. Liveness ensues from the fact that
the honest evidence within S includes all of the confirmed proposals submitted
by honest nodes. Existence of an honest evidence in S is typically enforced by
collecting evidences from at least f + 1 nodes.

	The Availability-Accountability Dilemma and its Resolution via Accountability Gadgets

