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Abstract. Blockchains maintain two types of data: Application data
and consensus data. Towards long-term blockchain scalability, both of
these must be pruned. While a large body of literature has explored the
pruning of application data (UTXOs, account balances, and contract
state), little has been said about the permanent pruning of consensus
data (block headers). We present a protocol which allows pruning the
blockchain by garbage collecting old blocks as they become unnecessary.
These blocks can simply be discarded and are no longer stored by any
miner. We show that all miners can be light miners with no harm to
security. Our protocol is based on the notion of superblocks, blocks that
have achieved an unusually high difficulty. We leverage them to represent
underlying proof-of-work without ever illustrating it, storing it, or trans-
mitting it. After our pruning is applied, the storage and communication
requirements for consensus data is reduced exponentially.
We develop new probabilistic mathematical methods to analyze our pro-
tocol in the random oracle model. We prove our protocol is both secure
and succinct under an uninterrupted honest majority assumption for
1/3 adversaries. Our protocol is the first to achieve always secure, al-
ways succinct, and online Non-Interactive Proofs of Proof-of-Work, all
necessary components for a logarithmic space mining scheme. Our work
has applications beyond mining and also constitutes an improvement in
state-of-the-art superlight clients and cross-chain bridges.

1 Introduction

Will blockchain [39] systems handle the whole world’s economic data for
the centuries to come? While such lofty visions are often ubiquitous in
the cryptocurrency space, it is a practical reality that today’s blockchain
technology simply does not scale [2]. One aspect of scalability difficulty
stems from the data required to be stored and sent over the network
when blockchain nodes synchronize with each other or bootstrap from
the network for the first time.

These data contains two pieces of information: First, the applica-
tion data. This includes transactions, account balances, and smart con-
tract [12, 45] state evolution, and everything else that is included in the



block data itself. Secondly, the consensus data. This includes consensus-
critical information such as proof-of-work [18] (or proof-of-stake) and
nonces required to discover the longest chain among a sea of shorter
forks — everything that is part of the block header. Nodes also need to
reach consensus on the application data and ensure it follows the protocol
rules for validity, but the application data is not what makes consensus
happen. While application data can grow (or shrink) depending on the
implementation, consensus data grows unboundedly at a constant linear
rate in time. For example, in Bitcoin, while items can be added or re-
moved from the UTXO [8], the number of block headers that need to be
stored and communicated to newly bootstrapping nodes grows at a con-
stant rate of 1 block header per 10 minutes in expectation [16]. Similarly,
in Ethereum, while smart contracts can be added or destroyed [24], and
smart contract state variables added or removed, block headers still grow
at a constant rate of 1 block header per 12.5 seconds in expectation.

In the present paper, we focus on proof-of-work chains and consen-
sus data (i.e., block headers) in particular. We put forth a mechanism to
permanently prune the consensus data in a way that maintains the block-
chain’s security, without introducing any additional assumptions beyond
honest computational majority. Our protocol compresses the amount of
consensus data that needs to be stored and exchanged by nodes from lin-
ear to polylogarithmic — an exponential improvement. These reductions
affect full nodes and miners alike, and, to our knowledge, are the first
of their kind. Our protocol is the first to suggest that nodes need not
hold onto chains at all; instead, full nodes and miners collectively only
hold a small sample of blocks. The rest of the blocks are lost for ever,
unless maintained by archival nodes, and are not necessary for achieving
consensus or bootstrapping new nodes. We note here that our proposed
scheme is not a sharding-based solution. All the miners of our protocol
will store the same data. Sharding solutions can be composed with our
solution in a per-shard basis to achieve even better scalability.

To achieve these reductions securely, we develop a mathematical frame-
work for the analysis of blockchain systems under suppression attacks in
which an adversary attempts to silence the generation of selected blocks.
For our system to work correctly, it is imperative that the adversary faces
difficulty in suppressing our high-value sample blocks, which we call su-
perblocks. These represent the compression of proof-of-work. We prove
that, in the random oracle model [6], these blocks cannot be silenced by
any minority mining adversary. Our framework is an extension built on
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top of the blockchain backbone model [20, 21] and can be independently
useful for analyzing other protocols.
Our contributions. In summary, our contributions in this paper are as
follows:

1. We put forth a mechanism which provides exponential improvements
in the consensus data stored and exchanged between full nodes and
miners in proof-of-work settings. Our protocol requires the storage
and exchange of only polylogarithmic data, even when a new miner is
bootstrapping from genesis.

2. We develop a mathematical framework for the analysis of suppression
attacks, and analyze the security of our protocol therein. Our protocol
is secure under honest majority assumptions (a 1/3 adversary) in the
random oracle model.

Related work. Our work focuses on compressing consensus data, i.e., the
proof-of-work headers exchanged and stored. There has been significant
work in compressing application data in a way that maintains consensus.
Such examples include moving transactions and smart contract execution
off-chain in Layer 2 constructions such as payment channels [3, 4, 30, 42]
and networks, rollups of the optimistic [44] or zero-knowledge [7] kind,
and sidechains [28, 33, 41, 41]. Other systems allow (quite successfully)
compressing multiple transactions into fewer or smaller, such as in the case
of EDRAX [14], bulletproofs [9], or Mimblewimble [40]. These systems do
not compress consensus state; all proof-of-work headers must still be sent
and stored, even though the actual application data is reduced. Any long-
term scalability solution must include a compression of both application
data and consensus data. Our protocol can be composed with any of these.

Similar techniques to our consensus compression techniques have been
previously used to create superlight clients, wallets that can quickly syn-
chronize with the rest of the network. Such techniques include superblock-
based [29, 38] NIPoPoWs [27, 31, 32, 48] and FlyClient NIPoPoWs [10].
However, these still require that miners maintain the whole blockchain
so that they can help light clients synchronize. They cannot be readily
adapted to logarithmic space mining scenarios. Specifically, superblock
NIPoPoWs in their previous form cannot be both always secure and al-
ways succinct, while FlyClient NIPoPoWs cannot be built on top of pre-
vious NIPoPoWs in an online fashion. All of these properties are required
for logarithmic space mining. Our protocol is heavily inspired by these
protocols and the core idea is based on superblock NIPoPoWs, albeit with
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critical changes that ensure security, succinctness, and the proofs being
online.

Lastly, CODA [36] has been suggested to compress both consensus and
application data together, but the mechanism requires a trusted setup,
has no treatment of security loss due to zero-knowledge recursivity, and
may prove impractical in terms of proof sizes or generation times.
Structure. We present our construction in stages. First, we discuss how
an existing miner can compress their full state. Next, we discuss how
a newly booting miner can bootstrap from genesis using only the com-
pressed state. Subsequently, we show how a miner with only the com-
pressed state can mine new blocks, giving rise to both light and full min-
ers. Finally, we assemble our complete protocol, in which all miners are
light miners. These constructions are accompanied by high-level security
arguments and building an intuitive understanding of why the protocol
works. After the full construction has been presented, the formal security
analysis in the random oracle and backbone model follows. This analysis
part is also where our mathematical framework for the treatment of sup-
pression attacks is put forth. We conclude by discussing the limitations
and shortcomings of our protocol.

2 Consensus and Application Data

Blockchain systems maintain certain application state. This state can be
used to, for example, determine who owns how much money. There are
two primary ways of representing ownership in today’s blockchains: A
UTXO-based system, in which the application state is comprised of the
unspent transaction outputs that remain available for spending; and an
accounts-based system, in which the application state is comprised of
accounts and their balances. The first one is used primarily by Bitcoin,
while the second one is used by Ethereum.

The application state evolves over time when transactions are applied
to it. A transaction is a state evolution operator applied on the applica-
tion state. Given a previous application state and a transaction, a new
application state can be computed. Each block in the chain contains mul-
tiple transactions in a particular order. As such, a block is itself a state
evolution operator which applies multiple transactions in order. By ap-
plying a block to a previous application state, a new application state can
be computed.

There are two schools of thought regarding what should be stored in a
block. In the first school of thought, only transactions (deltas) are stored.
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The application state at the end of the blockchain can be computed by
starting at the genesis application state (an empty application state) and
traversing the blockchain, applying the state evolution described by each
block, in order, and arriving at the final application state. This is what
Bitcoin does. The other school of thought stores both transactions and
the state after these transactions have been applied, a so-called snapshot.
In such systems, if one holds the longest chain, the application state at
the end of the chain does not need to be computed by applying any deltas.
Instead, a block near the end of the chain can simply be inspected and
the application state within it extracted.

It is possible to apply either school of thought to either application
state model. Bitcoin only keeps only deltas for a UTXO-based application
state. However, nothing prevents Bitcoin from committing to the newly
computed UTXO in every block [13, 17, 35], and in fact some Bitcoin
forks have already done so. On the other hand, Ethereum keeps both
deltas and snapshots in blocks. While the snapshots are not necessary,
they are helpful. For the rest of this paper, we assume a proof-of-work
blockchain in which each block commits to an application state snapshot.
The exact application state format (UTXO, accounts, or something else)
is irrelevant for our purposes.

In both schools of thought, it is imperative that the validity of the
application data (deltas or snapshots) is verified before a block can be
accepted as valid. For example, in a snapshotted system, miners must
check that the snapshot committed to a block was obtained by applying
the transactions to the previous snapshot.

Blocks in chains store the application data — transactions and snap-
shots — in their body. This data is organized into an authenticated data
structure, such as a Merkle Tree [37], and placed into a block header, which
contains the consensus data. The consensus data consist of the commit-
ment x to the application data; a proof-of-work nonce ctr; and a reference
s to the previous block. It may also contain additional metadata such as
timestamps. These data are hashed together using a hash function H to
obtain the blockid H(ctr ∥x ∥ s), which is used as the reference s′ in the
next block.

Let us now discuss how a bootstrapping node can synchronize with
the rest of the network. A bootstrapping node is a node holding only the
genesis block and booting for the first time. A wallet node is interested
in the current application state that concerns it. For example, it is inter-
ested to learn which UTXOs it owns, or how much money is in its own
accounts. The custodial history of how these assets came to belong to it
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is irrelevant [17], beyond archival purposes, as long as it can be sure that
the assets it holds correspond to the correct application state based on
the history that took place. Inspecting or having access to this history
itself is not important for consensus purposes. As such, this node can
synchronize with the rest of the network using the SPV method [39]: It
downloads only the block headers to determine which chain is the longest
one. It then inspects a block near the end of the chain and extracts the
balance from the Merkle tree leaf for its own accounts, or for its UTXOs.
This is sufficient to know the assets that it owns. In case some nodes are
interested in the history of the blockchain, this history can be maintained
by special archival nodes or block explorers, but are not necessary for the
maintenance of the security of the network.

A miner bootstrapping their node can function in a similar manner:
Download only the block headers to determine the longest chain, then
inspect a block near the end of the chain to obtain the application state
snapshot. Contrary to a wallet node, the miner must obtain the whole
application state so that it can validate new pending transactions as they
arrive. As such, the miner downloads the headers for the whole chain, and
the full blocks only for blocks near the end of the chain.

To be more precise, after the longest chain has been determined by
comparing block header chain lengths, the kth block from the end is in-
spected, its application state snapshot is extracted, and the deltas in next
k blocks are applied. This is necessary because an adversary can place in-
correct snapshots in the most recent k blocks of a blockchain (folklore
wisdom suggests k = 6 for Bitcoin). While that blockchain will look valid
and long to someone verifying only headers, it will have snapshots cor-
responding to an incorrect application of deltas. However, the adversary
cannot modify blocks prior to that, due to the Common Prefix [21] prop-
erty of blockchains.

Note here that the miner does not need to verify the veracity of all
historical transactions: If we assume that the majority of the computa-
tional power was honest for the duration of history, this ensures that, at
all times during the execution, the longest chain represented the correct
history of the world (with the exception of up to k blocks towards the
end). Under the honest majority assumption, this scheme is as secure as
full mining (but see the Discussion section at the end for a more nu-
anced take on this argument under temporary dishonest majority). This
is contrary to schemes such as SPV mining in which no snapshots are
available.

6



Application data can grow or shrink. UTXOs can be created or deleted,
accounts and smart contracts can be created, updated and destroyed.
State variables within smart contracts can also be constructed or destruc-
ted. How the application data grows is application-dependent. Typically,
the application data will increase as the execution continues. There are
several attempts to optimize the size of these data [3, 4, 7, 14, 30, 42, 44].
In this paper, we do not focus on these.

Instead, we focus on the size of the consensus data, that of block head-
ers H(ctr ∥x ∥ s). Contrary to the application data, these data increase
at a constant linear rate, as block headers are added to the chain. No
matter if channels or rollups are used, block headers must keep getting
added to the chain. Fortunately, the headers are small. Nevertheless, no
matter how much pruning is done on the application layer, the consensus
data will keep growing. A system designed to survive for the centuries to
come must provision for the scalability of this ever-growing part. Even
the solutions above that only download block headers do not tackle that
problem. The aim of this paper is to explore whether this part can be
pruned. As we will see, it is possible to reduce the consensus data and
neither store nor communicate all block headers.

A visualization of the comparison between application and consensus
data is shown in Figure 1. The consensus data (horizontal) grows at an
expected constant rate in time. The application data (vertical) may grow
(or shrink) depending on the application, and optimizations or pruning
methods can be applied on top of them.

time t

block headers

consensus data

application data 
snapshots

G

txs δ

Fig. 1. A comparison of consensus data (growing horizontally with time) and applica-
tion data (growing or shrinking vertically depending on the application).
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A comparison of our paper against previous works is illustrated in
Table 1. In all of these protocols, we have a node (the prover) that main-
tains all the necessary state to help a newly booting node (the verifier or
client) synchronize with the rest of the network. We compare the storage
requirements for the prover, as well as the communication complexity dur-
ing bootstrapping. We are also interested in whether, after synchronizing
with the rest of the network, the verifier can function as a fully-fledged
miner on its own.

In this table, n denotes the number of blocks in the chain, δ is the size
of the transactions in a single block (which may vary with time), a is the
size of the snapshot or application state (which may also very with time),
c is the size of a block header, and k is the common prefix parameter, the
number of blocks required for stability (c.f., [26]). BTC Full indicates the
full bitcoin miner that synchronizes by downloading all block headers and
transactions n(c + δ). BTC SPV is a wallet-only client that downloads
only block headers and a single transaction, but requires the prover (the
node that serves it this data) to store the full history, as there are no
snapshots available. Ethereum is a blockchain which uses block headers
to synchronize, but makes use of snapshots. Here, the prover can prune
block contents, but not block headers (the nc term remains). For the last
k blocks, the transaction data of total size kδ are also needed to ver-
ify the veracity of the tip of the chain; for the kth block from the end,
only a snapshot of size a is needed. The client can start mining on top
of these snapshots (after the kδ transaction data have been applied to
the snapshot of size a). Note that a ≤ nδ and k ≤ n, and so (asymp-
totically) n(c + δ) ≥ nc + kδ + a. Superblock and FlyClient NIPoPoWs
allow a full node to function as a prover, only sending consensus data
polylogarithmic in n, provided snapshots are available, but the receiving
verifier cannot function as a miner or a prover for others. In this work,
we present a protocol in which the verifier and prover are identical. The
prover is only required to store polylogarithmic consensus data, and com-
munication complexity is also polylogarithmic. This is indicated by the
term poly log(n)c. The term ka, the application data, remains unaffected
and its pruning is orthogonal to this work.

3 State Compression

How can a newly booting miner synchronize with the rest of the network
if block headers have been pruned? It seems impossible to do so securely.
At first glance, the newly booting miner will be lost in a sea of appli-
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Proposal Storage Communication Can mine?
BTC Full n(c+ δ) n(c+ δ) yes

BTC SPV nc nc no
Ethereum nc+ kδ + a nc+ kδ + a yes

Superblock NIPoPoWs nc+ kδ + a poly log(n)c+ kδ + a no
FlyClient NIPoPoWs nc+ kδ + a poly log(n)c+ kδ + a no

This work poly log(n)c+ kδ + a poly log(n)c+ kδ + a yes
Table 1. A comparison of our results and previous work. n: the number of blocks in
the chain; δ: size of transactions in a block; c: block header size; a: size of snapshot; k:
common prefix parameter

cation snapshots and blockchain tips, without any ability to discern the
application snapshot corresponding to the longest chain.

We approach this problem by compressing the consensus data. Among
all the block headers that would be maintained by a traditional block-
chain protocol, we only keep a small sample of block headers that are
of interest. Most of the block headers headers will be pruned. The small
sample of block headers that remains will be polylogarithmic in size and
used as evidence that work took place throughout history. These sam-
ple block headers will be stored by our miners, and will also be sent to
new bootstrapping miners when they boot. No other block headers will
be stored or communicated beyond these carefully chosen samples. The
samples will be chosen to be the same for all miners. As such, some block
headers will survive throughout the network, while others will be gone
for ever. Once we describe which block headers to keep and which ones to
throw away, the construction of our prover will be complete. The rest of
the work will be to construct a verifier that can distinguish between hon-
est and adversarial application state claims by examining these samples
and, of course, proving that this operation is secure.

Let us begin by discussing which samples among all block headers
will be maintained by first presenting our compression algorithm: The
code that can take in a full chain and perform the sampling. These block
header samples will be the only ones that survive in our final protocol
design. The compression algorithm takes in a full chain and produces the
desired samples, but will not form part of our final protocol. In the final
protocol, no full chain is to be found. However, the compression algorithm
will prove educational in understanding the final protocol (and can also
be used, once, to transition a full miner into a light miner). We will also
reuse our compression algorithm in the final light miner construction,
despite no full chains ever appearing.
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We sample block headers based on their achieved proof-of-work. Recall
that a block must satisfy the proof-of-work equation H(ctr ∥x ∥ s) ≤ T for
some constant3 mining target T . Some blocks satisfy this equation much
better than others and in particular may achieve H(ctr ∥x ∥ s) ≤ T

2µ for
some µ ∈ N. Following previous literature [27, 29, 31], we call these µ-
superblocks and µ the level of a block. We model our hash function H as
a random oracle with κ bits of output, and hence the distribution of µ
superblocks, although stochastic, will be quite controlled. In particular,
every block is a 0-superblock, about half the blocks in the chain will be
1-superblocks, about a quarter will be 2-superblocks, and in general, the
probability that a valid block is a µ-superblock will be 1

2µ . By definition,
every block of level µ > 0 is also a block of level µ− 1, and all the levels
below down to 0. The genesis block is, by convention, of infinite level. As
the number of blocks per level drops exponentially as the level increases,
the number of different levels will be approximately log |C|, where |C|
denotes the size of the underlying blockchain [29].

The intuition for our construction is as follows. Superblocks of in-
creasing level become rarer and rarer. As such, superblocks can be used
to illustrate that some work has occurred in a blockchain without actually
delivering every block header. Consider a client that sees 13 superblocks
of level 10. That client can readily deduce that approximately 210 blocks
must have appeared around each of these 13 superblocks. Otherwise, how
was it possible to mine these blocks at this very high difficulty? The client
can be sure that a total of about 13 · 210 blocks must have been mined,
even though the client cannot observe these blocks directly (and, to be
fair, if these blocks were mined by an adversary, they may have never
been broadcast to the network at all).

While the client may see a series of blocks at a certain level, it can-
not be sure that these were mined in the order they are presented. An
adversary presenting 13 superblocks of level 10 may reorder them arbi-
trarily. For this reason, the same way we maintain previd pointers between
blocks of level 0 in legacy blockchains, we need to maintain pointers be-
tween blocks at every level, and these pointers need to be placed within
the proof-of-work so as to become immutable (as such, our protocol is not
backwards-compatible with existing blockchains, but see the Discussion
section for a note on this). As we cannot predict the level of a block before
mining it, we will include log |C| pointers at every block: For each level µ,
a pointer to the most for recent preceding block of level at least µ. This

3 Throughout this paper we will assume the target T is constant; some notes around
a variable target T appear in the Discussion section towards the end.
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is not very different from a skiplist [43] and is akin to the construction
of KLS [29]. There are efficient ways of storing such pointers [27]. This
interlinked blockchain is illustrated in Figure 2.

Fig. 2. The interlinked blockchain. Each superblock is drawn taller according to its
level. A new block links to all previous blocks that have not been overshadowed by
higher levels in the meantime.
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22
1 1 1 1
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Our sampling will be performed by only keeping sufficiently high-level
superblocks and throwing away blocks of low levels. We will keep very high
levels (so, very few blocks) near genesis and far back in history. As we
get closer to the present, we will start including more and more samples,
and so the threshold in our superblock level will decrease. Near the tip
(the most recent block) of the blockchain, we will eventually get down to
level 0 and keep all blocks.

The samples that we keep will evolve as the blockchain grows. A sam-
ple that was once selected for inclusion may be thrown away later. How-
ever, any sample that is thrown away at some point will never again be
needed in the future. This property, of ensuring that the sampling is safe
and that no samples discarded will be needed again in the future, is the
online property of our protocol. It will eventually allow us to build a
protocol where no full chain is needed, anywhere.

Our algorithm is parametrized by a security (or, inversely, compres-
sion) parameter m and the common prefix parameter k (these can be
unified by conservatively setting m = 3k). Given a chain C that we wish
to compress, first, we keep the most recent k blocks aside, and let us call
them χ. These are unstable and will need to always be stored. Besides,
any miner that wishes to synchronize with us will need to look at them to
arrive at a valid snapshot. For the next part, we only consider the stable
part of the chain. For our sampling process, we begin by the highest level
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ℓ that has at least 2m blocks in it. We will include this level in earnest:
All ℓ-superblocks will be included in our sampling. For every level below
ℓ, we will include at least the 2m most recently generated blocks of that
level, but occassionally more. To consider whether to include more blocks
than 2m blocks in a level µ, we look at the mth most recent block b in
the level µ+ 1 immediately above. We include all µ-superblocks that are
more recent than block b. Let us make this description more precise by
writing it out in pseudocode.
Notation. We will need some notation to describe our chain compression
algorithm. Let C denote an interlinked chain of blocks and C[i] denote its
ith (zero-based) element. We denote by C[i:j] the blocks from the ith

(inclusive) to the jth block (exclusive). Skipping i means taking the chain
from the beginning, and skipping j means taking the chain to the end.
If i and j are replaced by blocks A and Z instead of block indices, we
write C{A:Z} to designate the blocks of C from block A (inclusive) to
block Z (exclusive), and again any end can be omitted. A negative i or
j means to take blocks from the end instead of from the beginning, so
C[−1] is the tip. We write A ∈ C to mean that the block A is in the chain
C, and C1 ⊆ C2 to mean that all of C1’s blocks are in C2. We write C↑µ
to mean the subsequence of C containing only its µ-superblocks (by the
above definition, the C↑ operator is absolute: (C↑µ)↑µ+i= C↑µ+i). Because
C is interlinked, C↑µ will be a chain, too. Given two chains C1 and C2 we
write C1 ∪ C2 to denote the chain consisting of all blocks in either, and
C1 ∩ C2 to mean the chain consisting of blocks only in both. Similarly we
denote C1\C2 the chain consisting of blocks in C1 but not in C2. The blocks
must be ordered chronologically and interlink pointers must be checked
to ensure that the union, intersection, and subtraction of chains is a chain
— they will not always be. The chain filtering operators ↑, [·], and {·}
have a higher precedence than ∪,∩, \.

Our chain compression algorithm Compressm,k(C) is illustrated in Al-
gorithm 1. It uses the helper function Dissolvem,k(C) to obtain the highest
level ℓ, the unstable suffix χ and a set D[µ] of blocks sampled from the sta-
ble part of the chain at each level µ ≤ ℓ. All of these levels are combined
into a big chain π, which is sparse at the beginning and dense towards
the end. The final compressed state consists of π, the stable part, and
χ, the unstable part. Together, these form a chain. Let us now examine
the inner workings of Dissolvem,k(C). This function separates the stable
part C∗ of the chain and the unstable part χ. In the trivial case that
our stable chain has no more than 2m blocks, all of them are included.
Otherwise, the highest level ℓ with at least 2m blocks is extracted and
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included in earnest. Then, the levels are traversed downwards. For every
level µ, the last 2m blocks are always included. This is captured by the
term C∗↑µ [−2m:]. Additionally, we look at the mth most recent block
b from the end at level µ + 1, that is C∗↑µ+1 [−m]. For level µ, we also
include all the blocks succeeding b, that is C∗↑µ {b:}.

Algorithm 1 Chain compression algorithm for transitioning a full miner
to a logspace miner. Given a full chain, it compresses it into logspace
state.
1: function Dissolvem,k(C)
2: C∗ ← C[:− k]
3: D ← ∅
4: if |C∗| ≥ 2m then
5: ℓ← max{µ : |C∗↑µ | ≥ 2m}
6: D[ℓ]← C∗↑ℓ
7: for µ← ℓ− 1 down to 0 do
8: b← C∗↑µ+1 [−m]
9: D[µ]← C∗↑µ [−2m:] ∪ C∗↑µ {b:}

10: end for
11: else
12: D[0]← C∗
13: end if
14: χ← C[−k:]
15: return (D, ℓ, χ)
16: end function
17: function Compressm,k(C)
18: (D, ℓ, χ)← Dissolvem,k(C)
19: π ←

∪ℓ
µ=0D[µ]

20: return πχ
21: end function

It may not yet be clear why this selection of block headers will lead to
a secure protocol, but let us argue that this sampling is polylogarithmic
in |C|, considering that m and k are constants that do not grow as the
execution progresses.

Theorem 1 (Succinctness). The construction of Algorithm 1 samples
a polylogarithmic number of blocks with respect to the length of the chain
C.

Proof (Sketch). Firstly, the number ℓ of levels of interest is Θ(log |C|).
Next, each level µ has either 2m blocks or more. 2m is a constant, so this
is irrelevant. But the more blocks cannot be many more either: We are
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counting the µ-superblocks following the mth block b at the level µ + 1
above. How many can these be? They are indeed about 2m. For, suppose
for contradiction that they were many more than 2m. But every block
of level µ has a 1

2 probability of also being a µ + 1 level block. If there
were, say, 4m instead of 2m superblocks of level µ following block b, then
b would not be the mth block from the end, but the 2mth one! With high
probability (with foresight, utilizing a Chernoff bound), 4m can be taken
as an upper bound. As such, there will be 2m log(|C|)+ k blocks sampled
in expectation, and, with high probability, not many more. ⊓⊔

We make this bound and argument more precise in the Analysis sec-
tion.

4 Fast Synchronization

We have seen how a full miner can compress their state into a polylog-
arithmic sample πχ of blocks. But what is the use of this? We will now
build the other side of the protocol: A node, and future miner, booting
to the network for the first time, but holding only genesis G. The node is
also parametrized by the security parameters m and k. This node wishes
to learn where to mine.

For now, let us assume that the rest of the network consists of full
miners, and only one node is a light node. The first step of the neophyte
is to determine what the current tip and snapshot are. The light miner
can then start mining on top of that tip, extending its application data
snapshot. It does not need to know the blocks preceding the tip! Of course,
this node will not be helpful towards bootstrapping yet more nodes, but
no matter — it can still mine as if it were a full miner, and just as securely,
as long as the tip can be correctly discerned.

The protocol works as follows. Initially, the newly booting node, which
we call a verifier in this context, connects to multiple full nodes, which
we call the provers. We assume at least one of the provers is honest (this
is a standard assumption in the analysis of all blockchain protocols [20–
23,46]). Each of these full nodes compresses their state using Algorithm 1
and sends the compressed state, or proof Π = πχ, to the verifier. More
concretely, the full node sends the block headers corresponding to the
blocks in π (of size c · poly log(n)). For the blocks in χ, the full node
sends the whole application snapshot (of size a) stored in χ[−k] and
the transactions (of size kδ) stored in χ. Naturally, the adversary can
send any string as a claimed proof. The verifier checks that Π forms a
chain, i.e., that all blocks are connected with interlinks and so they have
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been produced in the chronological order presented, and also that the
first block in Π is the genesis block G that it knows. It then extracts
the last k blocks as χ and the rest as π. It inspects the application data
snapshot from χ[−k] and ensures that the transactions in χ can be cleanly
applied. This allows it to obtain the application state at the end of πχ,
which, in honest cases, is the same as the application snapshot at the end
of the underlying blockchain. If any of these checks fail, the particular
connection is considered compromised and closed.

The verifier receives and verifies a series of such proofs, each consisting
of a stable part π and an unstable part χ, with |χ| = k. Given multiple
such proofs Π1,Π2, · · · ,Πv, the prover begins inspecting the proofs and
comparing one against the other in a pairwise fashion. First, Π1 is com-
pared against Π2, and one of them is deemed to be the best (using a
mechanism we will soon study). The process continues until only one of
them remains. As long as at least one proof was honestly generated, our
protocol will arrive at a suffix χ that is admissible. This means that our
light node will arrive at a snapshot which a full node miner booting for
the first time from genesis could also have arrived at. Upon taking this
decision, the light miner stores πχ in its state.

The light miner can then start mining on top of χ[−1] to produce fur-
ther blocks and to fully verify the validity of incoming network transac-
tions in its mempool. After all, it is holding onto an application snapshot.
These blocks can be broadcast to the network and will be accepted by the
rest of the miners, despite our light miner not holding the full chain lead-
ing from genesis up to the newly mined block. The light miner can also
understand and verify newly mined blocks of others. It can also deal with
chain reorganizations: In case a reorganization of up to k blocks occurs,
the light miner holds the whole of χ and can verify the state transitions
completely. As for reorganizations of more than k blocks long, these will
never occur (except with negligible probability) due to the Common Pre-
fix property [21].

As this miner is not interested in helping bootstrap others, it can even
throw away π once it has booted up. Furthermore, every time a new block
is mined (either by itself or by someone else), it can append it to χ and
then truncate χ to only keep the k most recent blocks. However, in the
full protocol, described in the next section, the miner will need to hold
on to (and update) π to allow others to bootstrap.

Let us now study the security-critical portion of our protocol, namely
how the verifier compares two different proofs Π and Π ′. Given two
proofs Π and Π ′, the algorithm must decide which one is best or cap-
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tures the most proof of work. In other words, it must conceptually corre-
spond to the longest underlying chain, or the underlying chain with the
most work. The comparison algorithm is illustrated in Algorithm 2. The
comparison is performed as follows. Initially, the two proofs Π and Π ′

are verified for syntactic validity: That Π begins with G, it is a chain,
and that χ contains valid transactions extending the application data
snapshot contained in χ[0]. The comparison continues by invoking the
Dissolvem,k(Π) function of Algorithm 1 on each of Π and Π ′. As be-
fore, this function extracts the maximum level ℓ containing at least 2m
blocks. Then it picks the required blocks from each level, with at least
2m blocks per level, but also a sufficient number of blocks per level to
span the last m blocks in the level above. Contrary to the invocation in
Algorithm 1, we are not passing the full chain to the function; instead, we
are passing a chain which has already undergone compression. As such,
if the compressed state was honestly generated, the triplet (χ, ℓ,D) on
the verifier end will be the same as the triplet on the prover end, because
compressm,k(C) = compressm,k(compressm,k(C)) (but may be something
else in case of adversarial proofs).

Algorithm 2 The state comparison algorithm.
1: function maxvalidm,k(Π,Π ′)
2: if Π is not valid then
3: return Π ′

4: end if
5: if Π ′ is not valid then
6: return Π
7: end if
8: (χ, ℓ,D)← Dissolvem,k(Π)
9: (χ′, ℓ′,D′)← Dissolvem,k(Π

′)
10: M ← {µ ∈ N : D[µ] ∩ D′[µ] ̸= ∅}
11: if M = ∅ then
12: if ℓ′ > ℓ then
13: return Π ′

14: end if
15: return Π
16: end if
17: µ← minM
18: b← (D[µ] ∩ D′[µ])[−1]
19: if |D′[µ]{b:}| > |D[µ]{b:}| then
20: return Π ′

21: end if
22: return Π
23: end function
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Only once the two proofs are stratified into levels D, the comparison
algorithm attempts to choose a level µ at which the comparison will be
performed. This level is the minimum level µ for which both provers
have provided blocks (note that it is not sufficient that both provers have
provided the same block at the same level; it must also have been selected
in the same index of D). In the edge case that no such level can be found,
the prover with the higher ℓ wins (if no such level is found and they share
the same level, it is irrelevant which prover will win). In the normal case
that a level is found, then the comparison takes place by taking account
only blocks of that level. The comparison begins by finding the most
recent block shared by the two parties at that level, (D[µ] ∩ D′[µ])[−1].
We call this the lowest common ancestor b. The blocks of the selected level
following block b (which must necessarily be disjoint by the definition of
b) are then counted, and the party with the most blocks wins.

Let us give a high-level intuition of why this protocol chooses the
longest chain. The key idea is that, in addition to the Common Pre-
fix property holding for regular blocks, this property also holds for µ-
superblocks at any level. More precisely, if there is a forking point b, the
adversary could not have produced more than m superblocks of level µ
faster than the honest parties can produce m superblocks of level µ. This
property stands at the heart of the following theorem.

Theorem 2 (Security). When the honest verifier of Algorithm 2 re-
ceives a proof Π constructed by an honest party using Algorithm 1 and a
proof Π ′ constructed by the adversary, it will decide in favour of the hon-
est proof, unless the adversary is playing honestly and Π ′ was generated
according to protocol.

Proof (Sketch). First, consider the case that M ̸= ∅. If the comparison
is performed at level µ = 0, this is akin to comparing traditional chains
and the theorem holds due to the Common Prefix property.

If the comparison is performed at a level µ > 0, then we apply the
extended Common Prefix property at level µ. By the minimality of µ,
there will be at least m blocks of the appropriate level following b and so
the honest parties will win.

Lastly, if M = ∅, then we can apply the extended Common Prefix
property at the highest level ℓ achieved by the honest party. By construc-
tion, the honest party holds at least 2m blocks at this level. Because the
adversary must have achieved a better ℓ′ > ℓ to win, she must also have
at least 2m blocks of a higher level, but these are also of level ℓ. But this
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contradicts the extended Common Prefix property, giving us the desired
result. ⊓⊔

While this gives some intuition about why the protocol is designed the
way it is, the core security argument pertains to arguing why the extended
Common Prefix property holds. We formally prove this statement in the
Analysis section for 1/3 adversaries, where we also make the security
theorem more precise.

5 Mining New Blocks

So far, we have used full nodes to help bootstrap newly booting miners.
Can light miners be used to bootstrap newly booting miners instead? If
we can achieve this, then we might as well get rid of full nodes altogether.

Our light miner already holds a valid proof Π = πχ corresponding
to an underlying honest full node chain C at the time it is bootstrapped
by others. Before further blocks are mined on the network (either by
itself, or by others), it can send this Π to newly booting miners, and
they, too, will be convinced of the current application data snapshot. The
question is how to update this Π when a new block is mined. Suppose
a new block b is mined on top of C, either by our light miner or by
someone else. The underlying honest chain then becomes C′ = Cb. Can
we produce a proof Π ′ corresponding to C′ by only utilizing Π? More
specifically, given Π = Compressm,k(C) and b, but not given C, can we
produce Π ′ = Compressm,k(Cb)? Indeed we can. In fact, it is as simple as
evaluating C′ = Compressm,k(Πb).

Theorem 3 (Online). Consider Π = Compressm,k(C) generated about
an underlying honest chain C, and a block b mined on top of C. Then
Compressm,k(Cb) = Compressm,k(Πb).

Proof. Consider which blocks are sampled and which blocks are pruned by
Compressm,k(Cb). Clearly the block b will be included in both the results
of Compressm,k(Cb) and Compressm,k(Πb). All the other blocks selected
by Compressm,k(Cb) will already exist in Π, and in the correct positions.
For, the blocks selected from a level are the last 2m of a level, or the
last m spanning the level above, and adding block b at the end can only
render a previously sampled block irrelevant, but not add further block
requirements from the past. ⊓⊔

Note also that, when mining a new block b, all the data required to
compute the interlink pointers of b is readily available in πχ, as π contains
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the most recent 2m blocks of every level, and only the most recent one is
needed for interlinking.

Algorithm 3 The final logspace miner.
1: Π ← ∅
2: function Initm,k(Π)
3: for Π ′ ∈ Π do
4: Π ← maxvalidm,k(Π

′, Π)
5: end for
6: end function
7: function Minem,k(x)
8: b← pow(Π[−1], x)
9: if b ̸= ϵ then

10: Π ← Compressm,k(Πb)
11: broadcast(Π)
12: end if
13: end function
14: upon BootstrapRequest do
15: return Π
16: end upon
17: upon NewBlockReceived(χ′) do
18: χ← Π[−k:]
19: π ← Π[:− k]
20: if χ′ is a chain ∧ χ′[0] ∈ χ then
21: b← (χ ∩ χ′)[−1]
22: if |χ′{b:}| > |χ{b:}| then
23: Validate χ′ state transitions starting from b
24: Π ← Compressm,k(πχ{:b}χ′{b:})
25: broadcast(Π)
26: end if
27: end if
28: end upon

Our final light miner therefore works as follows. It maintains a current
proof Π = πχ and mines using χ[−1] as the chain tip. If it is successful in
mining b on top of χ, it replaces Π by setting it to Π ′ = Compressm,k(Πb)
and broadcasts this to the network. As all of the other online miners, light
or full, will hold their own χ∗ not differing more than k blocks from χ,
it is, in fact, sufficient that it broadcasts the new χ′ = χ[1:]b portion of
Π ′. Now the newly computed Π corresponds to the chain Cb, which the
miner never sees, as it has been pruned. Regardless, Π can be used to
bootstrap new light miners from genesis.

Consider now the case that our light miner holds a Π = πχ and a
different miner mines a new block b. By the Common Prefix property,
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this block will not deviate more than k blocks from the χ that our light
miner already holds. Typically, it will be just a block on top of χ, but
occassionally it could correspond to a chain reorganization up to k blocks
long. In the case of a reorganization, the light miner requests the last k
blocks χ′ on top of which b was mined. These can be provided to us if the
block b was mined by a light or a full miner, as both hold and can send
χ′. The blocks in χ′ will intersect the previously known χ at some fork
point. The light miner checks that the transactions included in this χ′

can be applied to the application data snapshot that the light miner has
independently calculated for the fork point. This amounts to full block
validation. The light miner also checks that the newly mined block really
does correspond to a longer chain and that a reorganization is warranted
by ensuring that there are more blocks in χ′ after the fork point b than
there are in χ after the fork point (i.e., that |χ′{b:}| > |χ{b:}|). It then
replaces the stored proof by setting Π to be the proof corresponding to
πχ when the portion of χ after the most recent common block between
χ and χ′ is replaced by the blocks in χ′, i.e., it updates its stored proof
to be Π ′ = Compressm,k(πχ{:b}χ′{b:}).

The light miner is illustrated in Algorithm 3. At this point, full nodes
are no longer necessary. Light miners can bootstrap from genesis. They
have all the data needed to mine on their own, and to validate newly
mined blocks from the network. If a newly booting light miner wishes
to synchronize with the network, they have sufficient data to help them
do so. The blockchain protocol remains exactly the same as in traditional
blockchains, but all the instances of chains are replaced by proofs instead.
Light miners mine on top of their current proof instead of mining on top of
a chain. When they discover a new block, they send the newly computed
proof instead of a chain. This concludes our construction.

6 Block Suppression

We begin our analysis by developing a probabilistic framework to study
whether the adversary can suppress blocks of her choice. The central
definition here is the notion of a Q-block, a block that possesses a certain
property — such as being a µ-superblock for some µ ∈ N. The main
theorem we will eventually prove is a generalization of the Common Prefix
property: That the Common Prefix property holds for blocks filtered by
any attribute Q. This will allow us to prove our protocol is secure by
instantiating Q-blocks as µ-superblocks.
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For our analysis, we work in the Backbone model [21] and adopt an
environment where the network is synchronous and the protocol is exe-
cuted in distinct rounds. We give a short overview of the model. Let κ
denote the security parameter, and n denote the total number of parties,
t of which are adversarial. Block generation takes place, by honest and
adversarial parties alike, by invoking a shared Random Oracle H(·) whose
range is {0, 1}κ. We use q to denote the number of random oracle queries
available to each party per round. The honest parties search the space by
performing q queries for ctr← 1 to q. The adversary controlling t parties
gets qt total queries per round.

It has been proven [21, 22] that executions follow the properties of
Chain Growth, Common Prefix, and Chain Quality.

We define a Q-block as a block satisfying a predicate Q on its hash.
Note that this evaluation does not depend on any particular execution.

Definition 1 (Q-block). A block property is a predicate Q defined on
a hash output h ∈ {0, 1}κ. Given a block property Q, a valid block with
hash h is called a Q-block if Q(h) is true.

The block properties we are interested in will be evaluated in actual
executions as Q(H(⟨ctr, s, x⟩)) for particular blocks. As such, we will be
interested in properties which are polynomially computable given h as
the input.

Definitions of random variables. We will call a query of a party successful
if it submits a triple (ctr, s, x) such that H(ctr, s, x) ≤ T . Consider a block
property Q. Let ξQ = Pr[Q(h)|h ≤ T ], when h is uniformly distributed
over the range of the hash function. For each round i, query j ∈ [q], and
k ∈ [t] (the kth party controlled by the adversary), we define Boolean
random variables XQ(i), YQ(i) and ZQ(i, j, k) as follows. If at round i an
honest party obtains a Q-block, then XQ(i) = 1, otherwise XQ(i) = 0.
If at round i exactly one honest party obtains a Q-block, then YQ(i) =
1, otherwise YQ(i) = 0. Regarding the adversary, if at round i, the jth

query of the kth corrupted party obtains a Q-block, then ZQ(i, j, k) = 1,
otherwise ZQ(i, j, k) = 0. Define also ZQ(i) =

∑t
k=1

∑q
j=1 ZQ(i, j, k). For

a set of rounds S, let XQ(S) =
∑

r∈S XQ(r) and similarly define YQ(S)
and ZQ(S). We drop the subscript from all variables X,Y, Z, when the
Q-block is simply the property of being a valid block. Further, if X(i) = 1,
we call i a successful round and if Y (i) = 1, a uniquely successful round.

As in the backbone model [21], the probability f that at least one
honest party computes a solution at given round is an important param-
eter. Writing p = T/2κ for the probability of success of a single query, we
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have

(1− f)pq(n− t) ≤ f = E[X(i)] = 1− (1− p)q(n−t) ≤ pq(n− t).

The following bounds relate the expectations of the random variables
defined above to f , for all i and block properties Q.

ξQf ≤ E[XQ(i)] ≤
ξQf

1− f
, ξQf(1− f) < E[YQ(i)],

E[ZQ(i)] ≤
ξQf

1− f
· t

n− t
.

For the derivations of these inequalities see Garay et al. [20].

Typical executions. We now define our typical set of executions. This
follows the backbone model, but extended to include block properties.
Informally, this set consists of those executions with polynomially many
rounds and with the property that all the random variables of interest
over sufficiently many (at least λ = Ω(κ)) consecutive rounds do not
deviate too much from their expectation. To this end, recall the following
terms [20]. An insertion occurs when, given a chain C with two consecutive
blocks B and B′, a block B∗ created after B′ is such that B,B∗, B′ form
three consecutive blocks of a valid chain. A copy occurs if the same block
exists in two different positions. A prediction occurs when a block extends
one which was computed at a later round.

Definition 2 (Typical execution). For a real ϵ ∈ (f, 14), integer λ, and
a collection of polynomially many block properties Q, we say an execution
is Q-typical (or simply typical), if the following hold.

– For any Q ∈ Q and any set S of at least λ/ξQ consecutive rounds we
have

(1− ϵ)E[XQ(S)] < XQ(S) < (1 + ϵ)E[XQ(S)], (1)
(1− ϵ)E[YQ(S)] < YQ(S), (2)

ZQ(S) < E[ZQ(S)] + ϵE[YQ(S)]. (3)

– No insertions, no copies, and no predictions occurred.

Theorem 4. If t < (1−δ)(n−t) with δ > 3ϵ+3f , an execution is typical
with probability 1− e−Ω(ϵ2fλ).
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Proof. The proof uses standard Chernoff bounds, along the lines of [20].
We just note that the variables XQ(i) (and similarly YQ(i) and ZQ(i, j, k))
are independent Bernoulli trials for each Q and successful with probability
Θ(ξQf). In addition, a union bound is applied over all Q. ⊓⊔

Lemma 1. Assume t < (1− δ)(n− t) with δ > 3ϵ+ 3f and a Q-typical
execution. Then, the following hold for any Q ∈ Q and any set S of at
least λ/ξQ consecutive rounds.

(a) (1− ϵ)ξQf |S| < XQ(S) < (1 + ϵ) · ξQf
1−f · |S|.

(b) (1− δ
3)ξQf |S| < (1− ϵ)ξQf(1− f)|S| < YQ(S).

(c) ZQ(S) < ( t
n−t ·

1
1−f + ϵ) · ξQf |S| ≤ (1− 2δ

3 )ξQf |S|.
(e) ZQ(S) < YQ(S).

Proof. This follows with straightforward calculations from the properties
of a typical execution, the bounds on the expectations of the involved
random variables, and the assumed bounds on t/n, δ, ϵ and f . ⊓⊔

We now establish an upper bound in the number of Q-blocks an ad-
versary can suppress, regardless of what attack method she follows.

Uniquely successful rounds have the following important property [20].

Lemma 2 (Pairing). For any i and any pair of distinct blocks C[i] and
C′[i], if C[i] was computed by an honest party in a uniquely successful
round, then C′[i] was computed by the adversary.

Proof. Let r be the uniquely successful round that C[i] was computed.
No honest party would extend C′[i − 1] at a round later than r, since
every honest party would have a chain of length at least i. Similarly, if an
honest party computed C′[i] at some round earlier than r, then no honest
party would have extended C[i− 1] at round r. Finally, C′[i] cannot have
been computed by an honest party at round r, since r was a uniquely
successful round. ⊓⊔

Lemma 3 (Suppression). If r is a uniquely successful round and the
corresponding block does not belong to the chain of an honest party at a
later round, then there is a set of consecutive rounds S such that r ∈ S
and Y (S) ≤ Z(S).

Proof. Let C be the chain of the honest party that was successful at round
r and u the depth of the corresponding block. Let r′ be the first round
after r in which an honest party has a chain C′ which does not contain
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block C[u]. Let C′[u′] the last block of C′ at round r′. Let C[u∗] = C′[u∗]
be the last honest block on the common prefix of C and C′, and let r∗

be its timestamp. We claim that the set S = {i : r∗ < i < r′} satisfies
the requirements of the statement. Clearly, r ∈ S. Let us verify that
Y (S) ≤ Z(S). Indeed, if C∗[v] is any block computed during a uniquely
successful round i ∈ S, it must hold u∗ < v ≤ u′. The first inequality is
because the party computing C∗[v] knows of C[u∗] (it was announced at
round r∗ and received by round i > r∗) and would not mine on a shorter
chain. The second inequality holds because v > u′ contradicts an honest
party having a chain of length u′ at round r′ > i (since C∗[v] was received
by round r′). The inequality then follows by Lemma 2, since it is always
possible to find a block distinct from C∗[v] on C or C′ (we may use C′,
unless C∗[v] is on C′, in which case—due to the minimality of r′—we have
v < u and we can use C). ⊓⊔

An observation that follows from the above lemma is that if the ad-
versary manages to suppress a Q-block from the chain of an honest party
and this Q-block was computed in a uniquely successful round, then we
can associate with it an adversarial block. In particular, if r is a uniquely
successful round and the corresponding block does not belong to the chain
of an honest party at a later round, then there is an associated adversarial
block of the same height that was adopted by an honest party.

We now state and prove our Unsuppressibility Lemma. Informally, the
lemma says that if the number of blocks the adversary obtained in a set of
consecutive rounds is z and the number of the uniquely successful blocks
the honest parties obtained in the same set of rounds is y, then there exist
y − 2z blocks that will always belong to the chain of every honest party.
It follows that if the power of the adversary is bounded below 1/3 of the
total power, then with overwhelming probability there will be a nonzero
number of such blocks.

An important note with respect to the Unsuppressibility Lemma is
the following. Fix all the randomness the random oracle requires for a
given execution. This determines the successful queries of every party
and therefore determines the parameters y and z above. The observation
is that even if these random coins are revealed to the adversary at the
beginning of the execution, one can determine precisely which y − 2z
blocks —and no matter the adversary’s strategy— will always belong to
the chain of every honest party.
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Lemma 4 (Unsuppressibility). In a typical execution, every set of
consecutive rounds U has a subset S of uniquely successful rounds, such
that

– |S| ≥ Y (U)− 2Z(U)− 2λf( t
n−t ·

1
1−f + ϵ) and

– after the last round in S the blocks corresponding to S belong to the
chain of every honest party.

Proof. Let U ′ be the set of consecutive rounds that contains U and also
the λ rounds that come before and after U . By Lemma 3, we may take S
to contain all those uniquely successful rounds r ∈ U such that for any set
of consecutive rounds S′ ⊆ U ′ containing r, Y (S′) > Z(S′). Note that, in
a typical execution, no such S′ may contain elements outside U ′. Letting
y = Y (U) and z = Z(U), we need to show y − |S| ≤ 2z + 2(1− 2δ

3 )λf .
Let us focus on the uniquely successful rounds not in S. Consider a

collection T of sets of consecutive rounds with the following properties.

– For all T ∈ T , Y (T ) ≤ Z(T ).
– For each r ∈ U \ S, there is a T ∈ T that contains r.
– |T | is minimum among all collections with the above properties.

We now observe that the minimality condition on T implies that no round
r with Zr > 0 belongs to more than two sets of T . If that was the case,
then there would be three sets T1, T2, T3 in T with T1 ∩ T2 ∩ T3 ̸= ∅.
But then, we could keep the two sets with the leftmost and rightmost
endpoints, contradicting the minimality of T . Furthermore, no round in
U ′ \ U belongs to more than one set of T . Thus,

y − |S| =
∑

i∈U\S

Yi ≤
∑
T∈T

Y (T ) ≤
∑
T∈T

Z(T ) ≤ 2z + Z(U ′ \ U).

The third inequality holds because every round in which the adversary
was successful is counted at most twice inside U and at most once outside
U (by the discussion above the inequalities). Finally, using |U ′ \ U | ≤ 2λ
and Lemma 1(c) we obtain the stated bound. ⊓⊔

The proof of this lemma is quite generous to the adversary on two
accounts. First, it reveals to the adversary all coin flips in the beginning
of the execution. Second, it gives the adversary two choices for each one
of his blocks, and assumes that he will be able to choose among these as
he sees fit. Nevertheless, we conjecture that the bound y − 2z cannot be
substantially increased in the case the property is rare.
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We can now prove that an adversary with less than 1/3 of the total
mining power cannot create a chain with more Q-blocks than an honest
chain. Such a task would require the adversary to both suppress many
Q-blocks from the honest chain and to obtain many of them for the ad-
versarial chain.

Lemma 5 (Q-block Common-Prefix). Assume t < (13 − δ)n with δ >
3ϵ+3f and a Q-typical execution. Consider a round at which a chain C is
adopted by an honest party and suppose there exist another chain C′ such
that C′ \ (C′ ∩ C) has at least 22λξQf Q-blocks. Then, with overwhelming
probability, C has more Q-blocks than C′.

Proof. Assume an execution in which the assumptions of the lemma hold.
Let r∗ be the round on which the last honest block on C∗ = C ∩ C′ was
computed (if no such block exists let r∗ = 0) and define the set of rounds
S = {i : r∗ < i ≤ r}. We will study the execution during the rounds in
S. To that end, let W ′ denote the set of adversarial queries on C′ \ C∗
at some round at least λ greater from r∗. Denote by W the rest of the
adversarial queries in S.

We first observe that no query in W ′ could have suppressed a Q-block
on C. As in the proof of Lemma 3, in such a case there would exist a set of
consecutive rounds |S∗| ≥ λ such that Y (S∗) ≤ Z(S∗). This contradicts
the last item of Lemma 1.

From this observation and the Unsuppressibility Lemma, there are at
least Y (S)−2Z(W )−2λf( t

n−t ·
1

1−f +ϵ) blocks that the adversary cannot
suppress. Each of these is a Q-block independently with probability ξQ.
Under our assumptions, 2( t

n−t ·
1

1−f + ϵ) < 1−δ
1−ϵ . We conclude that, with

overwhelming probability, there are at least

(1− ϵ)ξQ ·
[
Y (S)− 2Z(W )

]
− (1− ϵ)λξQf

Q-blocks on C \ C∗.
On the other hand, the number of Q-blocks on C′\C∗ is at most the Q-

blocks from the W ′ queries plus the Q-blocks from the initial λ rounds.
The latter can be shown to be at most 3λξQf . For the former, using
Lemma 6 (with Fj = 1 when j ∈W ′ and Mj = 1 when it resulted in a Q-
block) and Lemma 1, in a typical execution, are at most (1+ ϵ)ξQZ(W ′).
Thus, there at most

(1 + ϵ)ξQp|W ′|+ 3λξQf.

Q-blocks on C′ \ C∗. Since these are at least 22λξQf , it can be shown
that the difference between the last two displayed expressions is at least
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(1− ϵ)ξQ · [Y (S)−2Z(S)]. This is positive in a typical execution in which
the power of the adversary is bounded below 1

3 − δ the total power. ⊓⊔

7 Analysis

We are now ready to prove the construction of Algorithms 1 and 2 secure
and succinct. For security, we denote Π the proof presented by the honest
party and Π ′ the proof presented by the adversary (but these can be
given to the verifier algorithm in any order). We can safely assume that
these proofs were both generated at round r (the adversary could have
generated the proof earlier, but not later, than the honest party). The
honest proof Π was generated based on some honest underlying chain
C using Algorithm 1. On the other hand, we have no guarantees about
how the adversarial proof Π ′ was generated. It may be based on some
underlying chain mined according to protocol, or not. In any case Π ′ does
form a chain and its blocks must have been mined in order, as the verifier
ensures this. However, there may not exist intermediate blocks covering
the whole proof-of-work as desired.

Security mandates that the verifier chooses the honest proof, Π. How-
ever, it is possible that the verifier also chooses the adversarial proof, Π ′,
without raising any issue, as long as it extends the honest proof at a fork
point no longer than k from the tip. To see why this is fine, note that
an adversary can already do this at the full blockchain: According to the
Common Prefix property, she can fork at a block at most k blocks deep
from the honest blockchain’s end and have up to k blocks following the
fork point. In this case, if it happens that the verifier has chosen Π ′, we
require that (Π ′∩C)[−1] ∈ C[−k:]. This means that the adversarial proof
extends the honest chain at some fork point in C[−k:]. But let us con-
template what this entails: It means that the portion Π ′{(Π ′ ∩ C)[−1]:}
is just a valid 0-level extension of the honest chain. As such, requiring
|Π ′{(Π ′ ∩ C)[−1]:}| ≥ |C{(Π ′ ∩ C)[−1]:}| would produce a competitive
adversarial chain that is longer than the honest chain and it would be
perfectly acceptable to a full node (and by the common prefix property,
this difference cannot be larger than k blocks long). We must clearly allow
for this possibility — but it is not a problem, as this situation can occur
in full node executions, too. This property also holds trivially in case the
honest proof is chosen.

Theorem 5 (Security). Consider an arbitrary 1
3 -bounded PPT adver-

sary A in a typical execution. Let Π be a proof generated by an hon-
est party at round r using Algorithm 1 by passing his underlying chain
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C. Let Π ′ be an arbitrary proof generated by the adversary at round r.
Let Π∗ be the proof accepted by the verifier using Algorithm 2. Then
|Π∗{(Π∗ ∩ C)[−1]:}| ≥ |C{(Π∗ ∩ C)[−1]:}| with overwhelming probability.

Proof. Let C′ = Π ′. We need to show that, either Π will be the proof
accepted by the verifier, or Π∗ is a proof extending the honest chain that
is longer at level 0, as mandated by the theorem statement.

Let us consider first the case that a µ of Algorithm 2 as above exists.
When µ = 0, the verifier determines the longer chain and always correctly
accepts the corresponding proof. That is, the verifier will either choose
Π∗ = Π, or, in case Π∗ = Π ′, the verifier will choose the adversarial
proof Π ′ which contains a χ′ that extends the honest chain’s χ at level
0 (up to k blocks long) with a longer alternative. This is the only case
in which Π ′ can win. For the other cases, we will now argue that the
adversary cannot win.

Let us now focus on the case 0 < µ ≤ ℓ. Note that, since D[µ − 1] ∩
D′[µ − 1] = ∅ (by the minimality of µ), both superchains must have at
least m blocks after their common block b. The Q-block Common-Prefix
Lemma implies that Π is accepted.

Next, consider the case that no such µ exists. Clearly, ℓ ̸= ℓ′ (otherwise
D[ℓ] ∩ D′[ℓ′] would contain the genesis block) and we need to argue that
ℓ > ℓ′. Assume —towards a contradiction— that ℓ < ℓ′ and consider
the statement of the Q-block Common-Prefix Lemma instantiated with
blocks of level ℓ+1 as the Q-blocks. Together with ℓ < ℓ′, it implies that
C′ has fewer than m Q-blocks after the common block with C (since C has
fewer Q-blocks than C′ in total, it must also have fewer on its fork; and
they must necessary share a common block, since both must begin with
genesis). But then, both C and C′ have fewer than m Q-blocks after their
common block. Since D[ℓ] ∩ D′[ℓ] = ∅ by assumption, this cannot be the
case. ⊓⊔

Theorem 6 (Succinctness). In a typical execution with t < (13 − δ)n
with 3ϵ + 3f < δ < 1

3 and letting m = λ, an honest miner’s state is in
O(m2 log(r)) at round r.

Proof. As t < (13−δ)n with 3ϵ+3f < δ < 1
3 , therefore c = E[Y ]−2E[Z]−

2λf( t
n−t

1
1−f + ϵ) will be a positive constant and for sets of consecutive

rounds U with |U | ≥ λ, we will have Y (U)− 2Z(U)− 2λf( t
n−t

1
1−f + ϵ) >

(1− ϵ)c|U |.
Consider a state Π generated by an honest prover and suppose for

contradiction that |Π| ∈ ω(m log(r)), where r indicates the current round
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number. From the security of the scheme, this state will correspond to
some underlying chain C such that Π is the compression of C. Consider
the variables (D, χ) = Dissolvem,k(C). As |χ| = k is constant, therefore
|
∪

d∈D d| ∈ ω(m log(r)). Let ℓ = |D|. It holds that ℓ ∈ O(log(|C|)). Conse-
quently,

∑
d∈D |d| ∈ ω(m log(r)). Therefore there must exist some µ such

that |D[µ]| ∈ Ω(λ2). Consider the maximum such µ.
We distinguish two cases.
Case 1: µ = ℓ. Then consider D[ℓ]. Let u0 denote the round dur-

ing which D[ℓ][0] was generated and u1 denote the round during which
D[ℓ][−1] was generated and consider the set U of consecutive rounds from
u0 to u1. As D[ℓ] forms a chain, we have that |U | ≥ |D[ℓ]| > λ. Apply-
ing the Unsuppressibility Lemma, we obtain that at least |S| ≥ c|U | =
c|D[ℓ]| ∈ Ω(λ) rounds of U must have been uniquely successful and be-
long to the chain of every honest party. Therefore |D[ℓ]↑ℓ+1 | ≥ (1− ϵ) |S|2 .
By the definition of ℓ this is impossible.

Case 2: 0 ≤ µ < ℓ. By maximality of µ, we have |D[µ+1]| ∈ O(λ), but
|D[µ]| ∈ Ω(λ2). By the definition of D[µ] = C[:− k]↑µ [−2m:]∪ C[:− k]↑µ
{C[: − k]↑µ+1 [−m]:}, clearly |C[: − k]↑µ [−2m:]| = 2m so necessarily
C[:−k]↑µ {D[µ+1][−m]:} ∈ Ω(λ2). Therefore there exist blocks A and B
in D[µ + 1] and D[µ] such that |D[µ + 1]{A:Z}| = 1, but |D[µ]{A:Z}| ∈
ω(λ). Similarly to case 1, consider the rounds u0 and u1 during which
blocks A and Z were generated respectively and the set of consecutive
rounds U from u0 to u1 with |U | ∈ ω(λ). Using the Unsuppressibility
Lemma, there must exist a set of uniquely successful rounds |S| ≥ c|U |
whose blocks have been adopted by all honest parties and of which at
least (1 − ϵ) |S|2 ≥ 0 will be of level µ + 1. Therefore there must exist a
block between A and Z in D[µ+ 1].

Both cases are contradictions. ⊓⊔

The previous theorem allows us to make miners reject incoming state
that is too large (more than polylogarithmic) without processing them
fully.

We note here that our analysis critically relies on the honest majority
assumption holding throughout the execution. The reason why our veri-
fiers can maintain a valid chain is that, once they receive a chain C which
is the longest, they inductively know that C[−k] must contain valid ap-
plication data snapshot. Then, since they have all the last k blocks, they
can validate the transactions δ on the snapshot obtained before further
mining on top of them.
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8 Discussion and Future Work

We have presented a scheme in which full miners are replaced with loga-
rithmic-space miners. Our new mining protocol allows miners to only keep
storage growing logarithmically in time. Furthermore, the data commu-
nicated to newly bootstrapped nodes is also logarithmic. We focused on
optimizing the consensus data portion of blockchains (i.e., block headers)
without concern for the application data portion. Our techniques can be
composed with application data optimization techniques.

We have proven our scheme succinct and secure against all 1/3 adver-
saries. Our treatment requires uninterrupted honest computational major-
ity throughout the execution, is in the static difficulty model, works only
for proof-of-work blockchains, and requires modifications to the block-
chain protocol for deployment. Let us discuss these aspects of our con-
struction.
Temporary dishonest majority. One important difference between
our scheme and the existing blockchain protocols is that traditional full
nodes are able to verify the whole state evolution of the system from
genesis. This allows them to recover in case of temporary dishonest ma-
jority [1, 5], while our system cannot do so. Let us consider what could
happen in case an adversary temporarily has the upper hand in a block-
chain where everybody is mining using our protocol. Let C denote the
chain of the honest parties that has converged. The adversary begins min-
ing on top of the honest tip. She eventually produces k+1 new blocks on
top of C[−1], generating an adversarial chain C∗, prior to the honest par-
ties advancing by k+1 blocks — a Common Prefix violation. In the block
C∗[−k − 1], the adversary places an invalid snapshot; say, a snapshot in
which she owns a lot of money. The rest of the blocks in C∗[−k:] are filled
with valid transactions. This adversary can then compress this consensus
state into a convincing proof, as state transitions buried k+ 1 blocks be-
yond the tip are never checked. As soon as the honest parties transition
to this adversarial chain, the attack concludes, and no more adversarial
supremacy is required. It is critical to understand what assumptions our
protocol mandates: An uninterrupted honest majority throughout the ex-
ecution. It remains an open question whether it is possible to construct
logarithmic space mining protocols that can withstand temporary adver-
sarial supremacy. We note that a similar uninterrupted honest majority
assumption (for a 1/2 adversary) is taken in the backbone model [21,22].
Despite the strength of this assumption, we remark that the honest parties
that are online during the time a long adversarial fork is first broadcast
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to the network can still detect it. This long fork, generated during a tem-
porary dishonest majority, will violate the k Common Prefix property:
A light miner will see a new winning proof arriving on the network with
a χ portion that shares no common blocks with its adopted χ, and the
second condition in Line 20 of Algorithm 3 will fail. However, miners that
are offline when such a proof is first broadcast, and in particular miners
who bootstrap after the attack, will never detect it.
The 1/3 adversary. Ideally, our protocol would work for a 1/2 adversary.
However, it is an inherent limitation of our construction, and not the
techniques of our proofs, that only a 1/3 adversary can be withstood.
This stems from the y − 2z term in Lemma 4. While generous for small
µ, we conjecture that this bound is tight for sufficiently high µ, and so
an adversary with power between 1/3 and 1/2 can choose to operate at
such levels. Therefore, a different construction is necessary to achieve a
1/2 adversarial bound. We leave such improvements for future work.
Variable difficulty. We have built and analyzed our logarithmic mining
protocol in the constant difficulty setting, i.e., requiring that the target
T is a constant. We strongly suspect, but have not provided proof, that
similar protocols to ours work in the variable difficulty setting. One im-
portant change in the protocol that is required before it can be adapted
to variable difficulty settings is that the χ portion of the proofs cannot be
a constant number of blocks long. Instead, it must be a suffix which cor-
responds to sufficient work having been performed, the difficulty of which
must correspond to the current target. Simply pruning k blocks long is
insufficient. As such, the verifier must first gauge the difficulty of the
network prior to taking conclusive decisions. An analysis in the variable
difficulty model is beyond the scope of this work. The model required
here would make use of the martingale arguments in the variable diffi-
culty backbone model [22]. The precise proofs would need to articulate
how the security parameter m is related to the epoch length. We leave
such analysis for future work.
Deployment. Our scheme requires the introduction of interlink pointers
to block headers. Some blockchains have already adopted such headers,
namely ZCash [34], ERGO [15], Nimiq, and WebDollar. Ethereum has
proposals to adopt such interlinking [11]. Notably, Bitcoin, while pos-
sible [25], does not plan to include such a scheme. However, it may be
possible to introduce these changes using a velvet fork [32,47]. While vel-
vet forking can enable (superblock and FlyClient) NIPoPoW clients, it
remains an open question whether it can also be used to transition to
light mining.
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Incentive compatibility. There is a known [10] bribing attack against
superblocks. This attack takes place in a rational setting and not in the
honest majority setting of the backbone model [21] where our Unsuppress-
ibility Lemma was developed. However, these game theoretic attacks are
possible only because superblocks give out rewards utilizing the same
schedule as regular blocks. A proposal to make unbribable superblocks
(using a soft fork) has been recently put forth [48] and can be readily
adopted for our purposes.

Comparison to other NIPoPoWs. Our protocol is a Non-Interactive
Proof of Proof-of-Work, akin to superblock NIPoPoWs [31] and Fly-
Client [10]. Our difference with FlyClient is the ability to generate online
proofs, proofs that can be updated as the blockchain grows. Contrary
to our construction, FlyClient requires the sampling of past blocks to
change as new blocks are added to the tip of the blockchain. This is due
to their use of the Fiat–Shamir heuristic [19]. More concretely, a block
that was not sampled in the past may need to be sampled in the future.
In our protocol, previously pruned blocks never need to be salvaged. As
any block has a potential for future samplability in FlyClient, no blocks
can be discarded, and mining cannot be logarithmic. This is an inherent
limitation of their construction. The construction of superblock NIPo-
PoWs [31] is similar to ours. However, their construction is not both suc-
cinct and secure against all adversaries. In particular, their certificates of
badness allow an adversary to pump the storage state required from log-
arithmic to linear with the appropriate attack, and their construction is
only optimistically succinct (i.e., succinct in honest settings). While both
constructions sample superblocks, our means of sampling and comparing
them are different. Critically, our comparison is unweighted and always
takes place across the same levels µ, while theirs must be weighted and
compared against potentially different levels µA and µB. The proofs we
have developed here are always succinct and always secure against any
1/3 adversary (with overwhelming probability). Our analysis is based
on our framework consisting of the novel Unsuppressibility Lemma and
the generalized Common Prefix theorem, a completely new approach to
proving security and succinctness. We are thus the first to propose a NI-
PoPoW which is online, succinct, and secure against all minority (1/3)
adversaries. All of these are necessary prerequisites to achieve the desired
goal of logarithmic-space mining. Our new probabilistic analysis tech-
niques can be leveraged to significantly simplify the previous analyses of
the above protocols.
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Proof of Stake. Our protocol only works for Proof-of-Work blockchains.
It seems that our techniques cannot be readily adapted to the Proof-
of-Stake setting. The probabilistic nature of Q-blocks and predictable
stochastic processes are a by-product of the mining process and the nature
of the random oracle model. Simple ideas do not work. If we allow the
block producers to annotate their blocks with an appropriate level and
sign it, the adversary can fake this. If instead we take a stochastic property
of blocks, the adversary can perform grinding attacks, putting in work
while honest parties are only putting in stake, leading to an adversarial
advantage, since this is a setting where only stake majority assumptions
are made. It remains an open question whether the consensus data of
stake blockchains can be compressed.
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Appendix

A Maintaining Interlinks

We wish to connect the blocks at each level with a previous block pointer
pointing to the most recent block of the same level. These pointers must
be included in the data of the block so that proof-of-work commits to
them. As the level of a block cannot be prediced before its proof-of-
work is calculated, we extend the previous block id structure of classical
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blockchains to be a set, the interlink set. The interlink set points to the
most recent preceding block of every level µ (ignoring duplicates [25]). A
pointer to G is included in every block. The number of pointers that need
to be included per block is in expectation O(log(|C|)) [27].

Fig. 3. The probabilistic hierarchical blockchain. Higher levels have achieved a higher
difficulty during mining. All blocks are connected to the genesis block G.
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The algorithm for this construction is shown in Algorithm 4 [27]. The
interlink set of the Genesis block is, by definition, empty. The algorithm
describes how the interlink can be updated once a block is found. The
new interlink is then included in the next block. This construction ensures
that every block contains a direct pointer to its most recent µ-superblock
ancestor, for every µ ∈ N.

Algorithm 4 The updateInterlinkSet algorithm which updates the in-
terlink set
1: function updateInterlinkSet(B′)
2: interlinkSet← {H(B′)}
3: for H(B) ∈ B′.interlink do
4: if level(B) > level(B′) then
5: interlinkSet← interlinkSet ∪ {H(B)}
6: end if
7: end for
8: return interlinkSet
9: end function

The updateInterlinkSet algorithm accepts a block B′, which already
has an interlink data structure defined on it. The function evaluates the
interlink data structure which needs to be included as part of the next
block. It copies the existing interlink data structure from level level(B′)
and adds the reference H(B′).
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B Mathematical Background

Theorem 7 (Chernoff bounds). Suppose {Xi : i ∈ [n]} are mutually
independent Boolean random variables, with Pr[Xi = 1] = p, for all
i ∈ [n]. Let X =

∑n
i=1Xi and µ = pn. Then, for any δ ∈ (0, 1],

Pr[X ≤ (1− δ)µ] ≤ e−δ2µ/2 and Pr[X ≥ (1 + δ)µ] ≤ e−δ2µ/3.

Lemma 6. For each j ∈ N, let Fj and Mj be Boolean random variables
such that E[Mj ] = ζ and Mj is independent of Fi for i ≤ j and independent
of Mi for i ̸= j. For any ϵ ∈ (0, 1),

Pr

[∑
FjMj > (1 + ϵ)ζ

∑
Fj

∧ ∑
FjMj ≥ k

]
≤ e−Ω(ϵ2k).

Proof. Since
∑

n≥k e
−Ω(ϵ2n) = e−Ω(ϵ2k), by the union bound it suffices to

show that

Pr

[
(1 + ϵ)ζ

∑
Fj < k

∧ ∑
FjMj = k

]
≤ e−Ω(ϵ2k). (4)

In the summations below, let α range over words in {0, 1}∗ and β be any
word in {0, 1}ℓ of weight k. For a fixed α, define Jα = {j ∈ N : Fj = 1} and
B = (Mj)j∈Jα . Also, for j ∈ N, let Ej denote the event {(∀i < j)(Fi = αi

and i ∈ J ⇒Mi = βi)}. Then,

Pr[B = β] =
∑
α

Pr[B = β,A = α]

=
∑
α

∏
j

Pr[Fj = αj |Ej ]
∏
j∈J

Pr[Bj = βj |Ej , Fj = αj ]

=
∑
α

∏
j

Pr[Fj = αj |Ej , B = β]
∏
j∈J

Pr[Mj = βj ]

=
∑
α

Pr[A = α|B = β] · ζk(1− ζ)ℓ−k ≤ ζk(1− ζ)ℓ−k.

Thus, letting β range over all words in {0, 1}∗ of length less than k
(1+ϵ)ζ

and weight k ending with 1, the left-hand side of (4) is equal to∑
β

Pr[B = β] ≤
∑

k≤ℓ< k
(1+ϵ)ζ

(
ℓ− 1

k − 1

)
ζk(1− ζ)ℓ−k.

That is, the probability is at most that of a random variable following
a negative binomial distribution with parameters k (the number of suc-
cesses) and ζ (the probability of success) is less than k

(1+ϵ)ζ . The bound
follows from standard Chernoff bounds.
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