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Abstract. Macroeconomic policy in a blockchain system concerns the
algorithm that decides the payment schedule for miners and thus its
money mint rate. It governs the amounts, distributions, beneficiaries and
conditions required for money supply payments to participants by the
system. While most chains today employ simple policies such as a con-
stant amount per block, several cryptocurrencies have sprung up that
put forth more interesting policies. As blockchains become a more popu-
lar form of money, these policies inevitably are becoming more complex.
A chain with a simple policy will often need to switch over to a differ-
ent policy. Until now, it was believed that such upgrades require a hard
fork – after all, they are changing the money supply, a central part of
the system, and unupgraded miners cannot validate blocks that deviate
from those hard-coded rules. In this paper, we present a mechanism that
allows a chain to upgrade from one policy to another through a soft fork.
Our proposed mechanism works in today’s Ethereum blockchain without
any changes and can support a very generic class of monetary policies
that satisfy a few basic bounds. Our construction is presented in the
form of a smart contract. We showcase the usefulness of our proposal by
describing several interesting applications of policy changes. Notably, we
put forth a mechanism that makes Non-Interactive Proofs of Proof-of-
Work unbribable, a previously open problem.

1 Introduction

At the heart of every blockchain [1] system lives a mechanism that dis-
tributes rewards to its validators. The mechanism incentivizes miners to
mine in proof-of-work [2] chains and minters to mint in proof-of-stake [3]
systems. Additionally, it is an ingenius mechanism to distribute new
money when no central bank is present.

Today’s blockchain systems employ various policies detailing how ex-
actly the proceeds from mining are distributed to miners. Most of these
policies are quite simple. For example, Bitcoin’s policy rewards the miner
of each block with a constant amount of bitcoin, currently 12.5 BTC. This
amount is halved every four years. Ethereum miners receive 2 ETH, but
the system also rewards uncle blocks [4, 5]. A more interesting system is
Monero’s [6], where a system of smooth emission is employed. Instead of
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halving the money supply in a stair function fashion, they slowly decrease
the supply block-by-block.

Regardless of what economic policy a chain employs, sooner or later
the policy might need to be updated. This becomes necessary as crypto-
currencies are adopted more widely and the community learns about what
works better economically. Ethereum’s Constantinople hard fork, in which
rewards were adjusted [7], constitutes one such example. In fact, as we
will showcase in the applications section, some macroeconomic mechanism
updates help with incentivizing correct execution of the core consensus
protocol.

It is clear that modifying policy is useful and sometimes necessary.
But how can policy changes be applied? As the above Ethereum example
illustrates, they are easy to do with a hark fork. Indeed, until now, folklore
wisdom suggested that any upgrades to the macroeconomics of a chain
required a hard fork and were impossible to implement through a soft fork.
After all, how can unupgraded miners accept blocks paying according to
different rules? One instance illustrating the severity of the problem is a
block paying out a higher reward in the new policy than what it used to
pay in the old policy. It seems inherently difficult to achieve backwards
compatibility when it comes to such drastic changes.

We put forth the first construction which allows policy changes through
soft forks. In our path to doing so, we give a definition of what the
macroeconomic policy is. Our construction is compatible with the cur-
rent Ethereum blockchain and is implemented through a smart contract.
The mechanism works for any changes in policy, as long as the new policy
is economically compatible with the old one. It mandates that, in the long
run, no more money can be generated by the new policy.

We illustrate the usefulness of our construction by presenting some
applications. One notable application is a construction which patches the
bribery attack on Non-Interactive Proofs of Proof-of-Work (NIPoPoWs).
As the patch requires correct incentivization embeded in the consensus
mechanism, it is impossible to apply without policy changes. Even though
we do it through a soft fork, we are the first to propose a bribery-resilient
variant of the NIPoPoWs protocol in general, as this attack remained an
open problem before this work. The correction of this outstanding issue
was an important motivation behind the present work.
Related work. Forking mechanisms in blockchains have been a topic
of contention. A complete overview of hard forks and soft forks is given
by Buterin [8] (who also presents some convincing arguments of why
hard forks can sometimes be preferable). In addition to soft forks, velvet
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forks [9, 10] present an interesting, and softer, alternative, although they
are not always possible and great care must be taken when adopting
them [11]. Even in the case of hard forks, core changes to consensus
mechanisms must be deployed with prudence [12].

Smart contracts [13] were first used to distribute mining proceeds in
the work of Luu et al. [14]. Our construction is inspired by their clever
approach. Non-Interactive Proofs of Proof-of-Work (NIPoPoWs) were in-
troduced by Kiayias et al. [9]. The bribing attack against them, which we
patch in this work, was discovered by Bünz et al. [15]. Karantias et al. [16]
perform convincing measurements that illustrate such attacks have not
happened in the wild (yet).
Contributions. In this paper, we make the following key contributions:

– We formally define what a chain macroeconomic policy is. Our defi-
nition is generic and can be any algorithm that satisfies certain basic
conditions.

– We define the notion of economic compatibility between policies, a
necessary and sufficient condition for soft fork upgradability between
policies.

– We put forth a generic mechanism for upgrading the macroeconomic
policy of a chain through a soft fork and present it in the form of a
smart contract.

– We present several applications of our scheme. Notably, we resolve the
open problem of Non-Interactive Proof of Proof-of-Work (NIPoPoW)
bribability.

2 Preliminaries

Blockchain systems maintain consensus through the dissemination of chains.
A chain C is a finite sequence of blocks, and each block B is a triplet
(x, s, ctr). A block id is the cryptographically secure hash of the triplet
H(x, s, ctr). Here, x denotes the set of confirmed messages (transactions),
s denotes the block id of the previous block in the chain, and ctr denotes
the leader election information, a nonce in the case of proof-of-work sys-
tems or a signature in the case of proof-of-stake systems. The first block
in the chain is the genesis block G in which s is taken to be the empty
string ε by convention. We write C 4 C′ if C is a (not necessarily strict)
prefix of C′. We denote by C[i] the ith block of the chain (zero-based). We
use the Python range notation C[i:j] to denote the subsequence of blocks,
or subchain, from i (inclusive) to j (exclusive). Omitting an index takes
the subchain from the beginning or to the end respectively.
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We denote E an execution of our blockchain protocol [17, 18]. The
execution captures the messages exchanged by all parties throughout, as
well as the random coins produced during the mining process. We use κ
to denote the security parameter.

The block language LB is the set of all syntactically valid blocks and
the chain language LC ⊆ L∗B is the set of all valid chains.

Recall that a blockchain can be upgraded with a soft fork or a hard
fork. In both cases, the code of the node is modified and the new software
is distributed to the users. Some of the users adopt the new code and those
are known as new or upgraded miners. The ones that do not upgrade are
the old or unupgraded miners who are running the old version of the node.
Once downloaded, the new code is activated after a designated activation
block height. The upgraded software contains new rules that govern the
generation and validation of blocks. In both cases, the old rules are not
forwards compatible with the new rules: If an old node generates an old-
style block, it will not be validated by upgraded miners. In the case of a
soft fork, the new rules are backwards compatible with the old rules: If a
new node generates a new-style block, it will be validated by old miners.
Provided the upgraded miners constitute a majority, unupgraded nodes
will still follow the longest chain, which will contain only upgraded blocks.
Their own blocks will be rejected, so they will be economically pushed
to upgrade their software. However, in a hard fork, the new rules are not
backwards compatible with the old rules: New nodes generate blocks that
do not validate according to old rules. As such, the two populations create
two distinct chains after the activation block height, which constitutes a
chain fork. This is sometimes viewed as dangerous. Nevertheless, even in
the case of hard forks, the old population typically eventually upgrades
to the new rules and their temporary fork is abandoned.

3 Macroeconomic Policies

A chain policy defines how payouts are given to miners (or minters).
While for simple policies it could be a constant, more complex policies
may depend on the whole state C of the system.

Definition 1 (Macroeconomic Policy). Let LC be the chain language.
We call a function £ : LC × N → R+ of the system a macroeconomic
policy if the function is efficiently computable and for every two chains
C, C′ such that C 4 C′, it holds that £(C, i) ≤ £(C′, i). The system pays
out an amount of £(C, i) to the validator of the ith block in C.
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The above definition captures, quite generically, what the rewards
of a miner can be. The requirement that the function is monotonic is
necessary, as it prescribes that money given out cannot be retroactively
taken back. While the rewards can depend just on i, the ability of the
function to inspect the whole chain C allows the system to employ complex
rules. Additionally, note that it is possible that |C| > i. In that case, the
policy may decide to pay out rewards to a miner later during the system’s
execution. We allow the function to output real positive amounts payable,
even though most systems employ integer outputs to avoid floating-point
errors.

Let us look at a couple of typical policies for illustration purposes.
Bitcoin’s policy is a step function which began at 50 BTC per block and
halves every 210,000 blocks. Additionally, rewards cannot be withdrawn
for another c = 100 blocks, a constraint known as the maturation time:

£BTC(C, i) =
{

0, if |C|+ c < i
50
2j , otherwise

, where j = b i

210000c

Monero’s policy emits money smoothly, which they argue [6] can help
prevent infrastructural problems due to dramatic increases in hashrate
when compared to Bitcoin’s. Instead, they give out one 218th of their
remaining money supply per block. Their maturation time is c = 60
blocks.

£XMR(C, i) =

0, if |C|+ c < i
264−1−

∑i−1
j=0 £XMR(C,j)
218 , otherwise

Note here that it so happens that an upgrade from Bitcoin’s policy
to Monero’s policy could take place with a soft fork without any special
mechanism, as long as Monero’s supply is scaled appropriately to be upper
bound by Bitcoin’s at every block (see Figure 1).

In both systems, the payouts are deterministic (and in the steady
state do not depend on C), and the total supply at every point in time
is

∑|C|
i=0 £(C, i). In fact, the total supply is bounded, and the bound is

lim|C|→∞
∑|C|
i=0 £(C, i). Some systems, such as DOGE do not have a max-

imum total supply and this limit diverges.
Ethereum’s policy is a little trickier. A block can receive a reward

even if it does not belong on the adopted chain. Instead, uncle blocks are
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Fig. 1. Bitcoin’s staircase rewards compared to Monero’s smooth emission with Bitcoin
upper bounding Monero.

rewarded, too [4,5]. In this system, the function £ is defined on blocktrees
instead of chains. The parameter i is generalized to denote any path in
the blocktree, and the prefix notation 4 must, of course, be amended
accordingly to mean subgraph. Any chain system whose consensus is based
on a DAG [19,20] instead of a tree can be thus augmented. As long as the
language LC is appropriately defined, our definition stands, albeit with a
more complex interpretation. In this case, as the total supply depends on
the execution (and in particular how many uncles it contains), it cannot
be calculated exactly.

Let us now determine whether two policies are backwards compatible.
We begin with a strict definition.

Definition 2 (Economic Compatibility). A new policy £′ is back-
wards compatible with an old policy £ with respect to chain C if

|C|−1∑
i=0

£(C, i) ≥
|C|−1∑
i=0

£′(C, i) .

The two policies are backwards compatible if they are compatible with
respect to every chain.

Compatibility mandates that the new policy does not pay out more
money than the old policy for a particular chain. Note how this require-
ment is not made for every block, but instead throughout history. This
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leniency opens the door for upgrading to quite a wide range of policies.
For example, for the same total supply, Bitcoin’s policy is backwards com-
patible with Monero’s: Bitcoin begins by paying a smaller amount per
block than Monero. This money is accumulated. After a while, Monero’s
supply has dropped and Bitcoin is paying more per block than Monero.
However, the accumulated money can make up for the difference at every
point in time (see Figure 2). Our construction in the next section will
make it clear how this accumulation can take place in chains with smart
contract support.

Fig. 2. Bitcoin’s staircase rewards compared to Monero’s smooth emission with the
same total reward.

Generally, our policies will not be required to be strictly compatible.
Instead, we will only mandate that they are compatible eventually.

Definition 3 (Eventual Compatibility). A new policy £′ is eventu-
ally backwards compatible with an old policy £ with delay d with respect
to an execution E if for every chain C adopted during the execution, for
any i, j ∈ N such that 0 ≤ i + d < j < |C|, there is a k ∈ N such that
i ≤ k < j and £′ is backwards compatible with £ with respect to chain
C[:k].

Eventual backwards compatibility does not require that the new policy
remains solvent all of the time. Instead, it promises that the miners will
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be paid out eventually, even though they may have to wait up to time d
until the policy becomes solvent and has the money to pay them.

For example, for the same given total supply, Monero’s policy is even-
tually backwards compatible with Bitcoin’s: While initially Monero will
require higher payments than Bitcoin, eventually Monero’s smooth emis-
sion will reduce the supply sufficiently to drop below Bitcoin’s reward
(see Figure 2). After this, and when a certain number of blocks have been
produced, a sufficient amount of money will have accumulated to be able
to pay back the miners who mined more worthy Monero coins in the past.
While the miners may have to wait for a delay d for the policy to achieve
solvency, they will eventually be paid the correct amount.

To account for unlikely events, we relax this requirement further and
require that eventual compatibility is only achieved with high probability
in the security parameter (over the randomness of the execution). This
relaxation enables us to build non-deterministic policies, as long as they
are well-behaved with high probability.

It is useful to point out that backwards economic compatibility is
a notion useful beyond soft and hard forks. It indicates that the new
policy does not generate, in total, more money than the old policy. This
implies that any previous assumption on upper bounds in supply is not
violated (one such example is any total supply firewall limitation in the
case of a sidechain [21]). Beyond a useful technical propertly, economic
compatibility is primarily an economic assumption.

4 Construction

Our construction is based on a simple premise: Instead of paying out the
miner directly, we can pay the proceeds of mining into a smart contract
beneficiary. Before the soft fork begins, the smart contract is deployed
on the old network. This deployment is verified by old and new miners
alike. The soft fork then mandates that, after a particular activation block
height, new blocks always pay into this smart contract’s address. Blocks
that do not pay into the designated address are rejected as invalid. Old
miners accept new blocks because they just have a new valid beneficiary,
and it so happens that it is the same for all the blocks they see, but
without any notion of its semantics.

Once the beneficiary contract is deployed, it is responsible for man-
aging the policy of the chain. It collects the proceeds of the old policy
into its reserves and pays out the miners accordingly. If the new policy is
backwards compatible with the old one with respect to every chain, the
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contract remains solvent. However, if the compatibility is only eventual,
the contract will be insolvent at certain points in time. To address this,
it gives out promises to pay miners, which are assembled in a balance
sheet, akin to an ERC-20 [22] smart contract. This money can then be
collected at a later time, when the contract becomes solvent again, which
is guaranteed to occur after d blocks.

We illustrate our generic construction, parametrized by the new policy
£ in Algorithm 1. The contract is initially instantiated to an address as
a regular contract. Anyone can do this, but it would typically be done
by the cryptocurrency developers. The contract deployment address is
noted and embeded into the code of the upgraded node software. The
contract has three methods. The default method is paid out when the
contract is designated as the beneficiary of any block. At this point, it
is unclear what the identity of the miner is. The miner who actually
produced the block places their identity in the form of their public key
into a designated location within the block. In the case of Bitcoin soft
forks, this is typically the coinbase transaction, but in a smart-contract-
enabled blockchain, which our construction requires, this can be done
more cleanly by the call to the identify method of our smart contract, in
which the miner creates a transaction calling it and passing their public
key pk as an argument to the call. The method call records the identity
of the miner. Naturally, the miner must take care to drop from their
block transactions of adversarial users calling the identify method, to avoid
enterprising usurpers.

After the miner has identified themselves, they can claim the payout
from the new policy by invoking the claim function. This function takes a
block index i and evaluates the policy £ on the current chain C. Therefore
it might need to be called at a later point by the miner to account for,
say, maturation constraints. Note here that typically the policy will only
depend on a small subset of the blocks in C and so not all of it needs
to be evaluated. While some blockchains allow for access to past blocks
liberally [23], the contract can replicate such behavior locally [24] if needed
to recreate any portion of the chain required by the policy.

The function records the payout as delivered to the miner so that it
cannot be doubly claimed. However, the payment is not actually deliv-
ered to the miner beyond a promise to pay, recorded in the balance sheet
balances of the contract. If and when the contract becomes solvent, the
miner can then call withdraw to get their money in the real native cur-
rency, such as Ether in our case. This behavior is similar to the balances
maintained by an ERC-20 contract. In fact, the beneficiary contract can
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be a fully fledged ERC-20 contract, in which case the miners will be able
to use their promise-to-pay tokens as if it were real ether.

Algorithm 1 The smart contract beneficiary which acts as a decentral-
ized macroeconomic policy manager for policy £.
1: contract Policy£
2: balances← ∅
3: claims← ∅
4: identities← ∅
5: payable function default()
6: . Collect proceeds from this block, but do not pay it out yet
7: end function
8: function identify(pk)
9: identities[block.id]← pk

10: end function
11: function claim(i)
12: C ← get chain()
13: miner← identities[i]
14: v ← £(C, i) . The particular policy is invoked at this point
15: D ← v − claims[i] . D will be positive due to monotonicity of £
16: claims[i]← v
17: balances[miner]← balances[miner] + D . Create a promise to pay later
18: end function
19: function withdraw(v) . An ERC-20-style withdrawal
20: require(balances[msg.sender] ≥ v)
21: require(address(this).balance ≥ v) . Ensure the contract is solvent
22: balances[msg.sender]← balances[msg.sender]− v
23: msg.sender.send(v)
24: end function
25: end contract

5 Blinded Mining

We have already seen that simple policies such as Bitcoin’s and Monero’s
can be upgraded between one another. It should also be clear that in-
creasing the reward maturation time is easily implementable.

One interesting and more complex policy involves requiring miners
to generate and commit to a value χ during their block generation. The
commitment h = H(χ) is placed in the block instead. The value χ is to
be kept secret until after k blocks have passed, at which point the value
should be revealed soon after, and certainly before 2k blocks have passed.
This blinded mining process can be a useful tool for constructing consen-
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sus protocols that can withstand an adaptive adversary or suppression
attacks [25].

A cryptoeconomic incentivization of the above protocol can be achieved
with the following policy:

£(C, i) =



c if C[i:i+ k] contain no χ
but C[i+ k:i+ 2k] contains χ

(1 + ε)c if the above holds, and C[i] is the first block
to reveal χ′ for block C[i− j] with j < k

0 otherwise
where h = H(χ), h′ = H(χ′) are the commitments in i, i− j respectively.

Here, the miner who mined the ith block is rewarded with c only once
they reveal the value χ. This revealing can be made in an appropriately
structured transaction, even if they do not mine any future blocks. This
requirements mandates a sort of availability by the miner: They are not
paid until they reveal their committed value, and they must ensure they
remain online to do so. Additionally, the miner must reveal it before
2k blocks, or else their rewards are gone. Lastly, if the value is leaked
sooner, i.e., before k blocks have passed, to a different miner, that miner
is rewarded with εc extra rewards, in addition to their c that they receive
for playing fairly. This 0 < ε < 1 slashes the miner who revealed the
value too soon. The value ε must be large enough (0 < ε) to incentivize
competing miners to find the value and reveal it sooner, but small enough
to incentivize the miner of i to keep the value secret (ε � 1 to account
for the time value of money).

6 Unbribability

A notable achievement possible with a policy upgrade is making NIPo-
PoWs unbribable. While the precise details of the NIPoPoW protocol are
beyond the scope of this work, let us review the essential parts here to
motivate the discussion.

In a proof-of-work chain, a block B satisfies the proof-of-work equation
H(B) ≤ T , where T denotes the mining target (this can be a constant
or a variable). Some blocks satisfy this equation better than others, and
specifically achieve H(B) ≤ T

2µ for some µ ∈ N. Such blocks are called
µ-superblocks (or superblocks of level µ).
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The NIPoPoW protocol posits that a superlight client, which func-
tions as an SPV node to the blockchain, can synchronize from a full node
by receiving only a small sample of superblocks. More concretely, if the
full node presents a subsequence of m ∈ N superblocks of level µ, then
the superlight client is convinced that approximately m2µ regular blocks
exist in the underlying chain, but these do not need to be sent over the
network. Leveraging this basic clever idea, the protocol achieves an ex-
ponential improvement in communication complexity compared to legacy
SPV clients [9]. The parameter m has a minimum value, but can be in-
creased as needed to ensure security (with a corresponding performance
penalty).

A block is a µ-superblock with probability 2−µ, so they are exceedingly
rare as µ increases. Unfortunately, they are rewarded only as much as
regular blocks. As such, an adversary can cheaply bribe miners to keep
such blocks secret [15]. In this attack, the adversary requests that the
miners never broadcast these blocks into the network, and pays the miners
behind-the-scenes in exchange for this commitment. In fact, such bribes
can even be written in the form of a smart contract, completely removing
the need for the adversary and the miners to maintain rogue offchain
communication channels. While honest miners will not succumb to such
behavior, rational miners might. A rational adversary is also incentivized
to give out such bribes if they wish to convince a superlight client that a
large amount of money has been transferred to them (the exact amount
can be calculated using the methods of Bonneau et al. [26]).

We now put forth a method for defending against this attack. The at-
tack becomes uneconomical if the reward schedule of the chain is modified
so that a µ-superblock’s worth is proportional to the amount of underly-
ing blocks it captures. More precisely, each µ-superblock must be worth
2µ more than a regular block, provided at least m superblocks of level
µ have appeared on the network. In this case, bribing to suppress su-
perblocks capturing a certain amount of proof-of-work requires the same
bribe as suppressing the whole underlying chain. As long as such bribes
are not economical (an assumption required for the blockchain to func-
tion), superblock bribes are not economical either.

To make this new policy backwards compatible with the old policy,
the value of regular blocks must be reduced. But how should we ascribe
value to these blocks? Suppose the old policy pays out 1 unit of currency
per block. If a regular block (which is not a superblock) pays out a value
of c and a µ-superblock (which is not a µ+ 1 level superblock) pays out
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a value of 2µc, then we are led to the following paradox: The expected
value of the reward diverges:

E[£(C, i)] =
∞∑
µ=0

c2µ+1Pr[H(B) ≤ T

2µ ] =
∞∑
µ=0

c2µ+12−µ =∞

However, the probability of such divergence is negligible. We will make
use of this fact to construct a policy that is eventually backwards com-
patible with the constant policy with overwhelming probability in the
security parameter κ. The policy progresses in epochs. In each epoch j,
a constant cj is adopted as the reward of a 0-level block. Within each
epoch, the invariant that each block of level µ is worth 2µ more than
each regular block is maintained, i.e., £(C, i1) = 2µ£(C, i2) where C[i1]
is a regular block and C[i2] is a µ-superblock (however, this invariant is
not maintained across epochs). We will now define the lengths of these
epochs and the value cj .

Consider a chain C with length |C|, a superblock level µ, and a constant
m. Observe that the number X of µ-superblocks appearing in C follows
a binomial distribution with a Bernoulli probability of success p = 2−µ
and |C| trials. As such, E[X] = 2−µ|C|. We can now examine whether
at least m superblocks of some level µ have appeared in this chain. Call
this event default. We want our system to avoid this event, as it will
imply that our policy will become insolvent. Let us consider the case when
E[X] < m, and so we do not expect the bad event to occur. Still, we wish
for the probability of the event occurring to be negligible. Let δ be the
value such that m = (1 + δ)2−µ|C|, i.e., δ = m

2−µ|C| − 1 > 0.
Since the trials are mutually independent Bernoulli trials, we can ap-

ply a Chernoff bound to obtain:

Pr[default] = Pr[X ≥ m] = Pr[X ≥ (1 + δ)E[X]] < e−δ
2 E[X]

3

When does this probability attain a value negligible in the security
parameter κ? We have:

e−δ
2 E[X]

3 ≤ 2κ ⇔ δ22−µ|C|
3 lg e ≥ κ

Replacing δ with its value, we obtain the following sufficient condition
for solvency:
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( m

2−µ|C| − 1)2 2−µ|C|
3 lg e ≥ κ

⇔m2

2−µ + 2−µ|C| ≥ 3κ
lg e + 2m

⇐ m2

2−µ|C| ≥
3κ
lg e + 2m

⇔2−µ|C| ≤ m2

3κ
lg e + 2m

.

Observe that the right-hand side is a constant, call it ζ. We can there-
fore be certain with overwhelming probability in κ that superblocks of
levels µ or higher will not appear in chains of length |C| or less. This imme-
diately leads to an algorithm for epoch evolution: Begin at epoch j = 1 in
which the reward is c1

2 . As long as our chain |C| has size below 2µζ, we treat
our system as if superblocks of level µ and above will never appear. Blocks
of levels 0, 1, · · · , µ−1 receive pay out rewards of cj , 2cj , · · · , 2µ−1cj . The
expected reward per block in this epoch is E[£j ] =

∑µ−1
i=0 cj2i/2i+1 = jcj

2 .
Whenever a chain size of 2µζ is reached, the epoch advances to j+ 1 and
the reward is updated so that E[£j+1] = E[£j ]. Solving for cj+1, the new
reward at level 0 then becomes cj+1 = j

j+1cj . As you can see, these do
not change the reward by much, and the update happens exponentially
more rarely as time goes by.

The above construction lets us state the following lemma:

Lemma 1 (Compatibility of NIPoPoW rewards). The policy £ de-
scribed above is eventually backwards compatible with a policy of constant
rewards of amount (1 + ε) c1

2 with overwhelming probability in κ.

Proof (Sketch). The proof is immediate from the above construction.
Each epoch j with maximum chain length |C| maintains an expected
payout per block which is E[£j ] = c1

2 . This is ensured with overwhelming
probability in κ, as it was argued through the above Chernoff bound
that superblocks of level µ ≥ ζ

|C| appear with only negligible probability.
Applying a union bound over all epochs ensures a negligible probability
of failure overall in the parameter κ − log(L) where L denotes the total
execution time (as the number of epochs grows logarithmically in L). Each
block reward is independent from the rest. The deposits available to the
policy are the sum of these rewards and are bounded by a Chernoff bound.
Thus, this sum will converge with high probability to its expectation after
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a sufficient number of blocks d. As (1 + ε) c1
2 > c1

2 this ensures eventual
compatibility. The delay d depends on the choice of the parameter ε. A
tradeoff exists between lowering the reward slightly to ensure eventual
compatibility more quickly. ut

7 More Complex Upgrades

Multiple Upgrades. One outstanding question is how to apply a policy
upgrade £′′ on top of a chain in which a policy upgrade £′ has already
been applied; that is, how to apply multiple policy upgrades in series. The
solution is to employ yet another smart contract as a second intermediate
step between the block reward and the miner.

The approach works by having £′ manage the first policy by receiving
the money of the legacy policy £ as before. When the time comes to call
the identify function, the second soft fork requires the pk provided to
be the second smart contract to which £′′ is deployed. As such, the first
smart contract always pays out into the second. The miner variable in any
valid execution of the first smart contract always takes on the address of
the second smart contract after the second soft fork. The second smart
contract can then have its own identify function, which uses a different
portion of the block to identify the final receipient. The technique can be
used repeatedly in series, as illustrated in Figure 3.

Fig. 3. A series of upgrades £1, · · · , £n. Each of the contracts maintains its own bal-
ance and pays into the next. Only the final contract distributes proceeds to the true
miners.
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More Complex Policies. For simplicity, our definition of the policy
£(C, i) returns the amount payable to the miner who mined the block
C[i]. It is possible to devise of more complex policies in which the pol-
icy pays out multiple people per block or in general does not have just
one receipient per block. One such example is a policy that distributes
payments to miners who are mining blocks often. It is easy to general-
ize the definition of policies to allow for such a scenario. The function
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is defined to be £(C) and returns a dictionary mapping from address to
amount payable. The monotonocity condition is then the obvious gener-
alization of our previous condition: Given two chains C 4 C′, the keys in
the dictionary £(C) must be a subset of the keys in the dictionary £(C′).
Additionally, for every key in both dictionaries, the value in £(C) must
be smaller than or equal to the value in £(C′).
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