
Secure Computation by Secret Sharing Using Input

Encrypted with Random Number (Full Paper)

Keiichi Iwamura1 and Ahmad Akmal Aminuddin Mohd Kamal1
1Department of Electrical Engineering, Tokyo University of Science, Tokyo, Japan.

iwamura@ee.kagu.tus.ac.jp, ahmad@sec.ee.kagu.tus.ac.jp

Keywords: Secure computation, multiparty computation, secret sharing, n<2k-1, information-theoretical security, fast

computation

Abstract: Typically, unconditionally secure computation using a (𝑘, 𝑛) threshold secret sharing scheme is considered

impossible when 𝑛 < 2𝑘 − 1. Therefore, in our previous work, we first took the approach of finding the

conditions required for secure computation under the setting of 𝑛 < 2𝑘 − 1 and showed that secure

computation using a secret sharing scheme can be realized with a semi-honest adversary under the following

three preconditions: (1) the result of secure computation does not include 0; (2) random numbers reconstructed

by each server are fixed; and (3) each server holds random numbers unknown to the adversary and holds

shares of random numbers that make up the random numbers unknown to the adversary. In this paper, we

show that by leaving condition (3), secure computation with information-theoretic security against a semi-

honest adversary is possible with 𝑘 ≤ 𝑛 < 2𝑘 − 1. In addition, we clarify the advantage of using secret

information that has been encrypted with a random number as input to secure computation. One of the

advantages is the acceleration of the computation time. Namely, we divide the computation process into a

preprocessing phase and an online phase and shift the cost of communication to the preprocessing phase. Thus,

for computations such as inner product operations, we realize a faster online phase, compared with

conventional methods.

1. INTRODUCTION

Recently, with advancements in big data and the

Internet of Things (IoT), there has been a high

anticipation regarding technology that could make

use of an individual’s information. However, there is

still concern among individuals about the privacy,

security, and confidentiality of their information.

Therefore, to solve this problem, there is a need for a

technology that allows their information to be used

without infringing their privacy. One of the available

technologies that could permit this is called secure

computation, wherein a set of parties with private

inputs wish to compute a joint function of their inputs,

without revealing anything but the output.
There are two main approaches for constructing

secure computation protocols:

─ Secret sharing (Araki et al, 2016; Ben-Or et al,

1988; Chaum et al., 1988; Cramer et al., 2000;

Gennaro et al., 1998; Ikarashi et al., 2010;

Kamal and Iwamura, 2017; Shingu et al., 2016;

Tokita et al., 2018)

─ Homomorphic encryption (Bendlin et al., 2011;

Brakerski et al., 2012; Brakerski et al., 2011;

Damgård et al., 2012; Damgård et al., 2013;

Smart et al., 2010; van Dijk et al., 2010)

However, homomorphic encryption is known to be

expensive in terms of computational cost, and

therefore it requires a much longer computation time.

Therefore, approaches with lower computational cost

are preferable to homomorphic encryption, when

considering the utilization of big data and IoT data.
The secret sharing scheme is a method in the field

of cryptography for data encryption, in which a single
secret/input is divided into multiple shares, which are
then distributed to multiple users. A known example
of a secret sharing scheme is the (𝑘, 𝑛) threshold
secret sharing scheme. In this scheme, a secret 𝑠 is
divided into 𝑛 number of shares. The original secret
𝑠 can only be reconstructed or retrieved from a
threshold 𝑘 number of shares, but any 𝑘 − 1 or
smaller number of shares reveals nothing about the
original secret. Therefore, when 𝑛 > 𝑘 , a (𝑘, 𝑛)
threshold secret sharing scheme can realize resistance
toward loss of at most 𝑛 − 𝑘 servers.

However, secure computation using a secret
sharing can perform secrecy addition and subtraction
easily, but this is not so in the case of secrecy
multiplication. For example, in the (𝑘, 𝑛) threshold
secret sharing proposed by Shamir (Shamir, 1979),
the degree of a polynomial changes from 𝑘 − 1 to
2𝑘 − 2 for each multiplication of polynomials. To
restore the multiplication result, the number of shares
required increases from 𝑘 to 2𝑘 − 1 . Typically,
unconditionally secure computation is considered
impossible when 𝑛 < 2𝑘 − 1 . Therefore, for most
information-theoretically secure computations using
a secret sharing scheme, it is assumed that 𝑛 ≥ 2𝑘 −
1.

Conversely, there is little research on secure
computation using a secret sharing with 𝑘 ≤ 𝑛 <
2𝑘 − 1 . Methods such as the SPDZ method
(Damgård et al., 2012; Damgård et al., 2013) have
been proposed to combine secret sharing with
homomorphic encryption to solve this problem.
However, this approach only realizes computational
security, not information-theoretic security. Our
research focuses on realizing secure computation of
secret sharing with 𝑘 ≤ 𝑛 < 2𝑘 − 1 ; however, we
took an approach of first finding the conditions
required to realize information-theoretic security
against semi-honest adversaries, and then find
another method for easing the conditions required.
The result is that we proposed a secure computation
known as the TUS 3 (Tokyo University of Science)
method (Tokita et al., 2018) that realizes secure
computation under the following three conditions.

 Condition 1: The computation result does not

include 0.

 Condition 2: Random numbers reconstructed by

each server are fixed.

 Condition 3: Each server holds random numbers

unknown to the adversary, and the shares of

random numbers that make up the random

numbers unknown to the adversary.

In the TUS 3 method, a product-sum operation was

proposed, and it was also proved that the combination

of this product-sum operation is also secure. Thus,

any computation is possible, even when 𝑘 ≤ 𝑛 <
2𝑘 − 1. In addition, the characteristics of all TUS

methods, including the TUS 3 method, are that the

input of secure computation is first encrypted with a

random number before being used for secure

computation, and the aforementioned computation

when 𝑘 ≤ 𝑛 < 2𝑘 − 1 makes use of this particular

property. However, TUS methods incur high

computational costs and cannot realize fast

computation.

Therefore, in this study, by using the property that
secret information is encrypted with a random
number, we propose a secure computation with a
faster computation speed. Namely, we divide the
computation process into preprocessing and online
phases and shift all computations related to random
numbers to the preprocessing phase. Thus, we
propose a method in which the communication cost
can be totally eliminated from the online phase,
realizing a faster online phase (known as the TUS 4
method).

Next, we reduce the conditions in the TUS
methods. Depending on the application, there are
cases where the three aforementioned conditions can
be realized easily; however, there are also cases
where it cannot be handled easily. Therefore, we
reduce the condition required and show that by
leaving Condition (3), the TUS methods can be
realized securely. In addition, we also discuss the
merits and demerits of the properties of the TUS
methods.

System Model
In this study, our proposed secure computation

model is based on a client/server model where any
number of clients can send shares of their inputs to 𝑛
servers that perform the computation for the clients
and return the results to them without learning
anything. This model is widely used currently and is
the business model used in Sharemind.

The remainder of this paper is organized as

follows: in Chapter 2, we present related works; in

Chapter 3, we explain the TUS 4 method, in Chapter

4 we the discussion on the merits and demerits of

encrypting secret information with random numbers

and discuss each condition of the TUS methods.

Finally, in Chapter 5, we perform an experimental

evaluation and show that the TUS 4 method can

realize an overwhelmingly fast computation speed.

2. RELATED WORKS

2.1 SPDZ method

Damgård et al. proposed a secure multiparty
computation called SPDZ methods (Damgård et al.,
2012; Damgård et al., 2013) that utilizes a somewhat
homomorphic encryption and is secure against a
dishonest majority under the setting 𝑛 = 𝑘. In SPDZ,
the owner of the secret is one of the 𝑛 players
involved in multiparty computation. Moreover, in
SPDZ, even when 𝑛 − 1 players form a coalition,
provided that the owner keeps his/her share of the

secret secure, the original secret cannot be
reconstructed from 𝑛 − 1 shares.

SPDZ consists of preprocessing and an online
phase. This ensures the confidentiality of the inputted
secrets by using an additive secret-sharing scheme.
Through the SPDZ method, secrecy addition can be
easily achieved. Secrecy multiplication in SPDZ is
based on Beaver’s circuit randomization (Beaver,
1991). To perform secrecy multiplication, shares of
random numbers 〈𝑎〉, 〈𝑏〉, 〈𝑐〉, called a multiplicative
triple, that satisfy 𝑎 ∙ 𝑏 = 𝑐 are used.

In SPDZ, for example, the secret information of 𝑥
is reconstructed from its shares 〈𝑥〉, denoted as 𝑥 =
𝑜𝑝𝑒𝑛(〈𝑥〉). The protocol for multiplication of 𝑥 ∙ 𝑦
proposed by SPDZ is shown below. However, the
construction of a multiplication triple requires a fully
homomorphic encryption (Gentry, 2010) where the
computation cost is high, thus significantly increasing
the overall process time.

1. Prepare the multiplication triple 〈𝑎〉, 〈𝑏〉, 〈𝑐〉
(Offline Phase).

2. Compute shares 〈𝑥〉, 〈𝑦〉 on secret 𝑥, 𝑦

(Distribution Phase).

3. Each server reconstructs 𝑑 = 𝑜𝑝𝑒𝑛(〈𝑥〉 −
〈𝑎〉), 𝑒 = 𝑜𝑝𝑒𝑛(〈𝑦〉 − 〈𝑏〉) and computes 〈𝑥 ∙
𝑦〉 = 𝑑 ∙ 𝑒 + 𝑒 ∙ 〈𝑎〉 + 𝑑 ∙ 〈𝑏〉 + 〈𝑐〉
(Online Phase).

2.2 Araki et al.’s method

Typically, in a secure secrecy computation, the cost
of communication between servers can affect the
overall processing speed more than the actual cost of
computation. Therefore, Araki et al. proposed a
method for rapid secrecy computation under the
parameters 𝑛 = 3, 𝑘 = 2 , which requires only one
communication per multiplication (Araki et al., 2016).
The detailed protocol is described below. Note that it
is usually not considered a problem, even if
communication is required in the preprocessing
phase. In addition, secrecy computation of addition is
performed locally, where the shares are added
together.

Preprocessing Phase:

1. Players 𝑃1, 𝑃2, 𝑃3 generate and hold 𝛽1, 𝛽2, 𝛽3 ∈
𝑍2𝑛, where 𝛽1 + 𝛽2 + 𝛽3 = 0.

Computation Phase:

Distribution

1. Dealer D chooses a random number 𝑥1, 𝑥2, 𝑥3 ∈
𝑍2𝑛, where 𝑥1 + 𝑥2 + 𝑥3 = 0.

2. Dealer D sends a share (𝑥𝑖 , 𝑎𝑖) of secret 𝑣1 to

player 𝑃𝑖 . 𝑎𝑖 is computed as 𝑎𝑖 = 𝑥𝑖−1 − 𝑣1 (𝑖 =
1,2,3).

3. Dealer D performs the same process on secret 𝑣2,

producing share (𝑦𝑖 , 𝑏𝑖) for player 𝑃𝑖 . Note that

𝑏𝑖 = 𝑦𝑖−1 − 𝑣2, 𝑦1 + 𝑦2 + 𝑦3 = 0.

Multiplication

1. Player 𝑃𝑖 computes 𝑟𝑖 = (𝑎𝑖𝑏𝑖 − 𝑥𝑖𝑦𝑖 + 𝛽𝑖) 3⁄

and sends to player 𝑃𝑖+1.

2. Player 𝑃𝑖 computes 𝑧𝑖 = 𝑟𝑖−1 − 𝑟𝑖 , 𝑐𝑖 = −2𝑟𝑖−1 −
𝑟𝑖 , and holds (𝑧𝑖 , 𝑐𝑖) as a share on the result of

multiplication of 𝑣1𝑣2.

Reconstruction

1. From information 𝑧𝑖 , 𝑐𝑖 , 𝑧𝑗 , 𝑐𝑗 of player 𝑃𝑖 and

player 𝑃𝑗 , the result of multiplying 𝑣1𝑣2 can be

computed using the equation shown below. Note

that 𝑐𝑖 = −2𝑟𝑖−1 − 𝑟𝑖 = 𝑧𝑖−1 − 𝑣1𝑣2.

𝑧𝑗 − 𝑐𝑖 = 𝑣1𝑣2

2.3 (𝒌, 𝒏) threshold secret sharing

A secret sharing scheme that satisfies both the

conditions stated below is known as the (𝑘, 𝑛)

threshold secret-sharing scheme.

• Any 𝑘 − 1, or less, number of shares will reveal

nothing about the original secret information 𝑠.

• Any 𝑘 and above number of shares will allow for

the reconstruction of the original secret

information 𝑠.

The classic methods of the (𝑘, 𝑛) threshold secret

sharing scheme are Shamir’s (𝑘, 𝑛) threshold secret

sharing scheme (Shamir, 1979) (Shamir’s method)

and the XOR-based method for sharing and

reconstruction of secret information proposed by

Kurihara et al. (Kurihara et al., 2008) (XOR method).

In our protocol, unless stated otherwise, Shamir’s

method was used, and all computations were

performed in modulus 𝑝. In addition, the shares of the

secret information 𝑠, are represented by [𝑠]̅̅̅̅
𝑖.

2.4 The TUS Methods

First, Shingu et al. proposed a 2-inputs-1-output
computation called the TUS 1 method (Shingu et al.,
2016), where the secret is first encrypted with a
random number. When performing secrecy
multiplication, the encrypted secret is momentarily
restored as a scalar value, and multiplication is

realized using the scalar value × polynomial
approach to prevent an increase in the polynomial
degree. However, the TUS1 method introduces
another problem: when computation involving a
combination of operations, such as that of 𝑎𝑏 + 𝑐, is
performed, if the adversary has information about one
of the inputs and outputs, he/she can specify the value
of the remaining two inputs. Therefore, the condition
where computation involving a combination of
addition/subtraction and multiplication/division is not
performed is needed in addition to the existing
condition where the input of the secret does not
include the value 0. Therefore, the TUS 1 method can
realize a very effective specific computation, such as
computation of Rivest–Shamir–Adleman (RSA)
encryption. However, it is not capable of coping with
computations that require a combination of
addition/subtraction and multiplication/division.

Next, Kamal et al. introduced an improved
method called the TUS 2 method, where the
computation involving a combination of
addition/subtraction and multiplication/division can
also be performed securely (Kamal and Iwamura,
2017). This method was proven to be secure under the
three aforementioned conditions. However, the first
condition in this method is extended to the following:
the value of the inputs and output of the computation
does not include 0. In addition, it was shown that this
method is secure against computation that involves a
combination of product-sum operations. Therefore,
this method can realize any arithmetic computation
under the setting 𝑘 ≤ 𝑛 < 2𝑘 − 1 . However, the
TUS 2 method incurs significantly more
computational cost compared with the conventional
method in 𝑛 ≥ 2𝑘 − 1; therefore, it is not the most
efficient method.

Therefore, Tokita et al. proposed an improved
version of the TUS 2 method, known as the TUS 3
method, where XOR method (Kurihara et al., 2008)
is introduced and realizes a more efficient method for
secrecy computation (Tokita et al., 2018). Out of the
three aforementioned conditions, the TUS 3 method
proposed a way to ease one of the conditions (known
as the TUS3’ method), wherein there are no longer
limitation for the inputs of computation; however, the
three conditions still remain.

Note that all TUS methods share a common point

wherein the secret information is first encrypted with

a random number and is then used in the secrecy

computation using secret sharing. Moreover,

Condition (3) where each server 𝑆𝑗 holds random

numbers unknown to the adversary, and the shares of

random numbers that make up the random numbers

unknown to the adversary is defined as follow.

[𝜀]𝑗 = ([𝜀]̅̅̅̅
𝑗 , [𝜀0]̅̅ ̅̅ ̅

𝑗, … , [𝜀𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑗)

Here, 𝜀 = ∏ 𝜀𝑗
𝑘−1
𝑗=0 is defined as a random number

unknown to the adversary.

3. THE TUS 4 METHOD

By dividing the computation process into the

preprocessing phase and online phase, it allows us

to shift parts of the computation that require

communication to the preprocessing phase in which

information that does not depend on any of the private

values can be generated in advance. This can be used

to significantly reduce the cost of communication in

the online phase and speed up the entire process.
Below, we explain the protocol for the TUS 4

method.

3.1 The Protocol

Here, instead of the simple product-sum operation of

𝑎𝑏 + 𝑐 , we present a solution for computing the

extended product-sum operation of

∑ (𝑎1,𝑖𝑎2,𝑖 … 𝑎𝑚𝑖,𝑖)
𝑙
𝑖=1 . This allows multiple

computations to be performed at once instead of only

one computation of 𝑎𝑏 + 𝑐 each time. However, a

single product-sum operation can also be realized by

setting the parameters 𝑙 = 2, 𝑚1 = 2, 𝑚2 = 1.
Typically, because Equations (1) and (2) hold,

any computation of (𝑎1𝑎2 … 𝑎𝑚) can be computed
from (𝑎1 + 1), (𝑎2 + 1), … , (𝑎𝑚 + 1).

𝑎1𝑎2 = (𝑎1 + 1)(𝑎2 + 1) − (𝑎1 + 1) − (𝑎2 + 1) + 1 (1)

𝑎1𝑎2 … 𝑎𝑚 = (𝑎1 … 𝑎𝑚−1)(𝑎𝑚 + 1) − (𝑎1 … 𝑎𝑚−1) (2)

In addition, extending Equation (2) will result in the

following.

𝑎1𝑎2 … 𝑎𝑚 = ∑ (−1)𝑖 ∏ (𝑎
𝑗′ + 1)

𝑚−𝑖

𝑗′=1

𝑚𝐶𝑚−𝑖

𝑖=0

However, 𝑗′ is an element of the combination of

choosing the 𝑚 − 𝑖 number from 𝑚 number of (𝑎𝑗 +

1). For example, the following holds when 𝑚 = 3,4.

𝑎1𝑎2𝑎3 = (𝑎1 + 1)(𝑎2 + 1)(𝑎3 + 1)

− {(𝑎1 + 1)(𝑎2 + 1)

+ (𝑎1 + 1)(𝑎3 + 1)

+ (𝑎2 + 1)(𝑎3 + 1)}

+ {(𝑎1 + 1) + (𝑎2 + 1) + (𝑎3 + 1)}

− 1

𝑎1𝑎2𝑎3𝑎4 = (𝑎1 + 1)(𝑎2 + 1)(𝑎3 + 1)(𝑎4 + 1)

− {(𝑎1 + 1)(𝑎2 + 1)(𝑎4 + 1)

+ (𝑎1 + 1)(𝑎3 + 1)(𝑎4 + 1)

+ (𝑎2 + 1)(𝑎3 + 1)(𝑎4 + 1)

+ (𝑎1 + 1)(𝑎2 + 1)(𝑎3 + 1)}

+ {(𝑎1 + 1)(𝑎2 + 1)

+ (𝑎1 + 1)(𝑎3 + 1)

+ (𝑎1 + 1)(𝑎4 + 1)

+ (𝑎2 + 1)(𝑎3 + 1)

+ (𝑎2 + 1)(𝑎4 + 1)

+ (𝑎3 + 1)(𝑎4 + 1)} − {(𝑎1 + 1)

+ (𝑎2 + 1) + (𝑎3 + 1) + (𝑎4 + 1)}
+ 1

Therefore, when 𝑙 = 2, 𝑚1 = 3, 𝑚2 = 4 , 𝑎1𝑎2𝑎3

will be 𝑎1,1𝑎2,1𝑎3,1 , and 𝑎1𝑎2𝑎3𝑎4 will be

𝑎1,2𝑎2,2𝑎3,2𝑎4,2 , thus allowing the following to be

computed.

𝑎1,1𝑎2,1𝑎3,1 + 𝑎1,2𝑎2,2𝑎3,2𝑎4,2

In the protocol of the TUS 4 method, inputs

𝑎1,𝑖 , 𝑎2,𝑖 , … . 𝑎𝑚𝑖,𝑖 must be within the modulus 𝑝 and

be a number under 𝑝 − 2 . In addition, all random

numbers used were uniformly distributed and did not

include the value 0. Moreover, all other values belong

to 𝐺𝐹(𝑝), and all computations are performed with

the modulus 𝑝 . In addition, we assume that

communication between players and servers is

secure. In addition, random numbers not known to the

adversary shown in Condition (3) are assumed to be

𝜀𝑖
(ℎ)

(ℎ = 1, … 8), and shares of all random numbers

𝜀𝑖,𝑗
(ℎ)

 used to construct 𝜀𝑖
(ℎ)

 are prepared and stored in

the servers in advance. Moreover, 𝑘 number of

servers in Steps 4 and 5 shown in the preprocessing

phase are chosen in advance from 𝑛 number of

servers. Below, for ease of understanding, we show

our protocol for 𝑚𝑖 = 3; however, it is clear that it

can also be extended to any 𝑚𝑖.

Preprocessing Phase

1. Dealer 𝐷 generates 𝑘 random numbers

𝑏(1,𝑖),0, 𝑏(1,𝑖),1, … , 𝑏(1,𝑖),𝑘−1 with respect to secrets

𝑎1,𝑖(𝑖 = 1, … , 𝑙) , computes 𝑏1,𝑖 = ∏ 𝑏(1,𝑖),𝑗
𝑘−1
𝑗=0 ,

and sends 𝑏(1,𝑖),𝑗 to server 𝑆𝑗.

2. Dealer 𝐷 performs Step 1. On 𝑎2,𝑖 , 𝑎3,𝑖.

3. Dealer 𝐷 sends 𝑏𝑔,𝑖 to User 𝑈𝑔,𝑖 (𝑔 = 1,2,3).

4. Server 𝑆𝑗 (𝑗 = 0, … , 𝑘 − 1) collects each

[𝜀𝑖,𝑗
(ℎ)

]
̅̅ ̅̅ ̅̅ ̅

𝑢
(𝑢 = 0, … , 𝑘 − 1, ℎ = 1, … ,8) and

reconstructs 𝜀𝑖,𝑗
(ℎ)

.

5. Server 𝑆𝑗 generates 𝑑𝑗 , computes the following,

and sends it to one of the servers (Here, we assume

the server to be server 𝑆0).

𝑑𝑗

𝑏(1,𝑖),𝑗𝑏(2,𝑖),𝑗𝑏(3,𝑖),𝑗𝜀𝑖,𝑗
(1)

,
𝑑𝑗

𝑏(1,𝑖),𝑗𝑏(2,𝑖),𝑗𝜀𝑖,𝑗
(2)

,
𝑑𝑗

𝑏(1,𝑖),𝑗𝑏(3,𝑖),𝑗𝜀𝑖,𝑗
(3)

,

𝑑𝑗

𝑏(2,𝑖),𝑗𝑏(3,𝑖),𝑗𝜀𝑖,𝑗

(4)
,

𝑑𝑗

𝑏(1,𝑖),𝑗𝜀𝑖,𝑗

(5)
,

𝑑𝑗

𝑏(2,𝑖),𝑗𝜀𝑖,𝑗

(6)
,

𝑑𝑗

𝑏(3,𝑖),𝑗𝜀𝑖,𝑗

(7)
,

𝑑𝑗

𝜀𝑖,𝑗

(8)

6. Server 𝑆0 computes the following and sends to all

servers. (𝑖 = 1, … , 𝑙).

𝑑

𝑏1,𝑖𝑏2,𝑖𝑏3,𝑖𝜀𝑖
(1)

= ∏
𝑑𝑗

𝑏(1,𝑖),𝑗𝑏(2,𝑖),𝑗𝑏(3,𝑖),𝑗𝜀𝑖,𝑗
(1)

𝑘−1

𝑗=0
 ,

𝑑

𝑏1,𝑖𝑏2,𝑖𝜀𝑖
(2)

= ∏
𝑑𝑗

𝑏(1,𝑖),𝑗𝑏(2,𝑖),𝑗𝜀𝑖,𝑗
(2)

𝑘−1

𝑗=0
 ,

𝑑

𝑏1,𝑖𝑏3,𝑖𝜀𝑖
(3)

= ∏
𝑑𝑗

𝑏(1,𝑖),𝑗𝑏(3,𝑖),𝑗𝜀𝑖,𝑗
(3)

𝑘−1

𝑗=0
 ,

𝑑

𝑏2,𝑖𝑏3,𝑖𝜀𝑖
(4)

= ∏
𝑑𝑗

𝑏(2,𝑖),𝑗𝑏(3,𝑖),𝑗𝜀𝑖,𝑗
(4)

𝑘−1

𝑗=0
 ,

𝑑

𝑏1,𝑖𝜀𝑖
(5)

= ∏
𝑑𝑗

𝑏(1,𝑖),𝑗𝜀𝑖,𝑗
(5)

𝑘−1

𝑗=0
 ,

𝑑

𝑏2,𝑖𝜀𝑖
(6)

= ∏
𝑑𝑗

𝑏(2,𝑖),𝑗𝜀𝑖,𝑗
(6)

𝑘−1

𝑗=0
 ,

𝑑

𝑏3,𝑖𝜀𝑖
(7)

= ∏
𝑑𝑗

𝑏(3,𝑖),𝑗𝜀𝑖,𝑗
(7)

𝑘−1

𝑗=0
 ,

𝑑

𝜀𝑖

(8)
= ∏

𝑑𝑗

𝜀𝑖,𝑗

(8)

𝑘−1

𝑗=0

7. All servers 𝑆𝑗 compute and hold the following.

[
𝑑

𝑏1,𝑖𝑏2,𝑖𝑏3,𝑖

]
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑗

=
𝑑

𝑏1,𝑖𝑏2,𝑖𝑏3,𝑖𝜀𝑖
(1)

× [𝜀𝑖
(1)

]
̅̅ ̅̅ ̅̅ ̅

𝑗
 ,

[
𝑑

𝑏1,𝑖𝑏2,𝑖

]
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑗

=
𝑑

𝑏1,𝑖𝑏2,𝑖𝜀𝑖
(2)

× [𝜀𝑖
(2)

]
̅̅ ̅̅ ̅̅ ̅

𝑗
 ,

[
𝑑

𝑏1,𝑖𝑏3,𝑖

]
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑗

=
𝑑

𝑏1,𝑖𝑏3,𝑖𝜀𝑖
(3)

× [𝜀𝑖
(3)

]
̅̅ ̅̅ ̅̅ ̅

𝑗
 ,

[
𝑑

𝑏2,𝑖𝑏3,𝑖

]
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑗

=
𝑑

𝑏2,𝑖𝑏3,𝑖𝜀𝑖
(4)

× [𝜀𝑖
(4)

]
̅̅ ̅̅ ̅̅ ̅

𝑗
 ,

[
𝑑

𝑏1,𝑖

]
̅̅ ̅̅ ̅̅

𝑗

=
𝑑

𝑏1,𝑖𝜀𝑖
(5)

× [𝜀𝑖
(5)

]
̅̅ ̅̅ ̅̅ ̅

𝑗
 ,

[
𝑑

𝑏2,𝑖

]
̅̅ ̅̅ ̅̅ ̅

𝑗

=
𝑑

𝑏2,𝑖𝜀𝑖
(6)

× [𝜀𝑖
(6)

]
̅̅ ̅̅ ̅̅ ̅

𝑗
 ,

[
𝑑

𝑏3,𝑖

]
̅̅ ̅̅ ̅̅ ̅

𝑗

=
𝑑

𝑏3,𝑖𝜀𝑖
(7)

× [𝜀𝑖
(7)

]
̅̅ ̅̅ ̅̅ ̅

𝑗
 ,

 [𝑑]̅̅ ̅̅
𝑗 =

𝑑

𝜀𝑖

(8)
× [𝜀𝑖

(8)
]

̅̅ ̅̅ ̅̅ ̅
𝑗

Encryption Phase

1. User 𝑈𝑔,𝑖 compute 𝑏𝑔,𝑖(𝑎𝑔,𝑖 + 1)＝𝑏𝑔,𝑖 × (𝑎𝑔,𝑖 +

1) in regard to its input 𝑎𝑔,𝑖 and send to all

servers. (𝑔 = 1,2,3)．

Online Phase

1. All servers 𝑆𝑗 compute the following.

[𝑑 ∑ (𝑎1,𝑖𝑎2,𝑖𝑎3,𝑖)
𝑙

𝑖=1
]

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑗

= ∑ {𝑏1,𝑖(𝑎1,𝑖 + 1)
𝑙

𝑖=1

× 𝑏2,𝑖(𝑎2,𝑖 + 1) × 𝑏3,𝑖(𝑎3,𝑖 + 1)

× [
𝑑

𝑏1,𝑖𝑏2,𝑖𝑏3,𝑖

]
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑗

− 𝑏1,𝑖(𝑎1,𝑖 + 1) × 𝑏2,𝑖(𝑎2,𝑖 + 1)

× [
𝑑

𝑏1,𝑖𝑏2,𝑖

]
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑗

− 𝑏1,𝑖(𝑎1,𝑖 + 1) × 𝑏3,𝑖(𝑎3,𝑖 + 1)

× [
𝑑

𝑏1,𝑖𝑏3,𝑖

]
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑗

− 𝑏2,𝑖(𝑎2,𝑖 + 1) × 𝑏3,𝑖(𝑎3,𝑖 + 1)

× [
𝑑

𝑏2,𝑖𝑏3,𝑖

]
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑗

+ 𝑏1,𝑖(𝑎1,𝑖 + 1) × [
𝑑

𝑏1,𝑖

]
̅̅ ̅̅ ̅̅

𝑗

+ 𝑏2,𝑖(𝑎2,𝑖 + 1) × [
𝑑

𝑏2,𝑖

]
̅̅ ̅̅ ̅̅ ̅

𝑗

+ 𝑏3,𝑖(𝑎3,𝑖 + 1) × [
𝑑

𝑏3,𝑖

]
̅̅ ̅̅ ̅̅ ̅

𝑗

− [𝑑]̅̅ ̅̅
𝑗}

Reconstruction Phase

1. The player who wishes to reconstruct the result

collects [𝑑 ∑ (𝑎1,𝑖𝑎2,𝑖𝑎3,𝑖)
𝑙
𝑖=1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑗
 and 𝑑𝑗 from 𝑘

number of servers 𝑆𝑗 , reconstructs

𝑑 ∑ (𝑎1,𝑖𝑎2,𝑖𝑎3,𝑖)
𝑙
𝑖=1 , 𝑑, and computes the result of

∑ (𝑎1,𝑖𝑎2,𝑖𝑎3,𝑖)
𝑙
𝑖=1 as follows:

𝑑 ∑ (𝑎1,𝑖𝑎2,𝑖𝑎3,𝑖)
𝑙
𝑖=1

𝑑
= ∑ (𝑎1,𝑖𝑎2,𝑖𝑎3,𝑖)

𝑙

𝑖=1

3.2 Security Analysis of the TUS 4

method

In the proposed method of extended product-sum

operation with 𝑡(= ∑ 𝑚𝑖
𝑙
𝑖=1) inputs and one output,

regardless of the security level of the method used, if

𝑡 − 1 inputs and the output are leaked to the

adversary, the remaining input can also be leaked.

Similarly, when all 𝑡 inputs are known to the

adversary, the output can also be leaked to the

adversary. Therefore, we consider only the following

two types of adversaries: We can state that our

proposed TUS 4 method is secure if it is secure

against Adversaries 1 and 2 defined below.

Adversary 1：
The adversary has information on 𝑡 − 2 inputs

and one output of the extended product-sum operation.
Adversary 1 has information on the entered inputs
(and the random number used to encrypt them) and
the information needed to reconstruct the output. In
addition, the adversary also has knowledge of
information from 𝑘 − 1 servers. According to this
information, the adversary attempts to learn the
remaining two inputs.

Adversary 2:
The adversary has information on the 𝑡 − 1

inputs of the extended product-sum operation.
Adversary 2 has information on the input secrets (and
the random numbers used to encrypt them). In
addition, the adversary also has knowledge of
information from 𝑘 − 1 servers. According to this
information, the adversary attempts to learn the
remaining one input or output of the computation.

The security proof for the TUS 4 method is shown
below.

Proof of security of the Preprocessing Phase

Because our proposed method assumes a semi-

honest adversary, Dealer 𝐷 performs Steps 1–3

correctly and privately, and sends it to each server and

user. Server 𝑆𝑗 (𝑗 = 0, … , 𝑘 − 1) reconstruct random

numbers 𝜀𝑖,𝑗
(ℎ)

 (which is used to construct random

numbers 𝜀𝑖
(ℎ)

) in Step 4; however, random numbers

𝜀𝑖
(ℎ)

 will not leak from 𝑘 − 1 servers. In addition, in

Step 5, server 𝑆𝑗 sends its computed values to server

𝑆0; however, Adversaries 1 and 2 cannot decompose

each individual random number from this information.

Therefore, Adversaries 1 and 2 will not be able to

learn 𝑑, 𝑏1,𝑖 , 𝑏2,𝑖 , 𝑏3,𝑖 , 𝜀𝑖
(1)

, … , 𝜀𝑖
(8)

. In addition, in Step

6, Server 𝑆0 multiplied all values and broadcast the

result; however, Adversaries 1 and 2 cannot

decompose the information to learn each individual

random number. Moreover, because the random

number unknown to the adversary shown in

Condition (3) is used to compute shares in Step 7, the

shares held by each server can be computed securely.
Therefore, for example, the following statement

is true: The same is true for the remaining shares.
𝐻(𝑥) represents the entropy of 𝑥.

𝐻 ([
𝑑

𝑏1,𝑖𝑏2,𝑖𝑏3,𝑖

]
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑗

)

= 𝐻 ([
𝑑

𝑏1,𝑖𝑏2,𝑖𝑏3,𝑖
]

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑗

|
𝑑

𝑏1,𝑖𝑏2,𝑖𝑏3,𝑖𝜀𝑖
(1))

Proof of security of the Encryption Phase

Because the secret information is smaller than
𝑝 − 2, even if one is added to the secret information,
it will not become 0. In addition, a random number
generated by the dealer is secure. Therefore, the
following statement is true and remains true for the
remainder of the secret information.

𝐻(𝑎𝑔,𝑖) = 𝐻(𝑎𝑔,𝑖|𝑏𝑔,𝑖(𝑎𝑔,𝑖 + 1))

Proof of security of the Online Phase

Security against Adversary 1

Assume that the adversary has information on all

inputs except 𝑎1,1, 𝑎2,1. He/she also has information

from 𝑘 − 1 servers, in addition to the result of the

computation. Furthermore, Adversary 1 has

information from Step 5 of the preprocessing phase,

and also learns 𝑏𝑔,𝑖(𝑎𝑔,𝑖 + 1) from the online phase.

In addition, Adversary 1 learns

𝑑 ∑ (𝑎1,𝑖𝑎2,𝑖𝑎3,𝑖)
𝑙
𝑖=1 , 𝑑 , and ∑ (𝑎1,𝑖𝑎2,𝑖𝑎3,𝑖)

𝑙
𝑖=1 from

the reconstruction phase. By using this information,

Adversary 1 tries to learn about secret inputs 𝑎1,1, 𝑎2,1.

However, if fewer than 𝑘 number of shares and

random numbers are collected, information regarding

the random numbers and secret information will not

be leaked.

To simplify the problem, we redefined the

parameters above to avoid any parameter duplication.

Consequently, Adversary 1 has the following

information (however, 𝑔′, 𝑖′ excludes 1,1 and 2,1;

𝜀1
(𝑖,𝑗)

 means that it relates to the same value; 𝜀∗
(ℎ)

 is

used when 𝑖 > 1).

𝐵 = {𝑑, 𝑎𝑔′,𝑖′, 𝑏𝑔′,𝑖′, 𝑏1,1(𝑎1,1 + 1), 𝑏2,1(𝑎2,1

+ 1),
1

𝑏1,1𝑏2,1𝜀1
(1,2)

,
1

𝑏1,1𝜀1
(3,5)

,

1

𝑏2,1𝜀1
(4,6)

, 𝜀1
(7,8)

, 𝜀∗
(ℎ)

}

However, because each 𝜀𝑖
(ℎ)

 is independent, 𝑏1,1, 𝑏2,1

will not leak. In addition, because 𝜀𝑖
(ℎ)

 is not used in

the computation, it does not affect the computation.

Therefore, Adversary 1 will not be able to learn

𝑎1,1, 𝑎2,1. Therefore, the following are true:

𝐻(𝑎1,1) = 𝐻(𝑎1,1|𝐵)

𝐻(𝑎2,1) = 𝐻(𝑎2,1|𝐵)

The same argument remains valid even for

combination of inputs other than 𝑎1,1, 𝑎2,1,

In addition, in the aforementioned protocol, we
assumed 𝑚𝑖 = 3 for ease of understanding. However,
even in the case other than 𝑚𝑖 = 3, values that are not
leaked are not included in B; therefore, the same is
true for any 𝑚𝑖. Therefore, we can state that the TUS
4 method is information-theoretical secure against
Adversary 1.

Security against Adversary 2

Assume that the adversary has information on all

inputs except 𝑎1,1 and information from 𝑘 − 1

servers. Furthermore, Adversary 2 has information

from Step 5 of the preprocessing phase, and also

learns 𝑏𝑔,𝑖(𝑎𝑔,𝑖 + 1) from the online phase. In

addition, Adversary 2 learns 𝑘 − 1 number of

[𝑑 ∑ (𝑎1,𝑖𝑎2,𝑖𝑎3,𝑖)
𝑙
𝑖=1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑗
, 𝑑𝑗 from the reconstruction

phase. By using this information, Adversary 2 tries to

learn about secret input 𝑎1,1 and output

∑ (𝑎1,𝑖𝑎2,𝑖𝑎3,𝑖)
𝑙
𝑖=1 . However, if fewer than 𝑘 number

of shares and random numbers are collected,

information regarding the random numbers and secret

information will not be leaked.

To simplify the problem, we redefined the

parameters above to avoid any duplication of a

parameter. As a result, Adversary 2 has the following

information (however, 𝑔′, 𝑖′ exclude 1,1; 𝜀1
(𝑖,𝑗)

 is

used to show that it relates to the same value, and 𝜀∗
(ℎ)

is used when 𝑖 > 1). However, 𝑗′ is less than 𝑘 − 1.

𝐶

= {𝑎𝑔′,𝑖′, 𝑏𝑔′,𝑖′, 𝑏1,1(𝑎1,1 + 1),
𝑑

𝑏1,1𝜀1
(1,2,3,5)

,

𝑑

𝜀1
(4,6,7,8)

, 𝜀∗
(ℎ)

, [𝑑 ∑ (𝑎1,𝑖𝑎2,𝑖𝑎3,𝑖)
𝑙

𝑖=1
]

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑗′

, 𝑑𝑗′}

In addition, Adversary 2 learns 𝑘 − 1 number of

[𝑑 ∑ (𝑎1,𝑖𝑎2,𝑖𝑎3,𝑖)
𝑙
𝑖=1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑗
, 𝑑𝑗 ; however, because

reconstruction is impossible with 𝑘 − 1 shares,

Adversary 2 will not be able to learn the result of the

computation.

The same is true even for inputs other than 𝑏1,1. In

addition, even in the case other than 𝑚𝑖 = 3, values

that are not leaked are not included in C; therefore,

the same can be said for any 𝑚𝑖.
Therefore, the following statements are true, and

the TUS 4 method is information-theoretically secure
against Adversary 2.

𝐻(𝑎1,1) = 𝐻(𝑎1,1|𝐶)

𝐻 (∑ (𝑎1,𝑖𝑎2,𝑖𝑎3,𝑖)
𝑙

𝑖=1
) = 𝐻(∑ (𝑎1,𝑖𝑎2,𝑖𝑎3,𝑖)

𝑙
𝑖=1 |𝐶)

Proof of security of the Reconstruction Phase

Even if ∑ (𝑎1,𝑖𝑎2,𝑖𝑎3,𝑖)
𝑙
𝑖=1 is equal to 0, because

nothing is leaked from 𝑘 or fewer number of shares

on [𝑑 ∑ (𝑎1,𝑖𝑎2,𝑖𝑎3,𝑖)
𝑙
𝑖=1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑗
, 𝑑𝑗 , we can say that

Adversary 2 is not able to learn about the result of the

computation.

From the above, because the preprocessing phase

only processes information that does not depend on

any of the secret information, it can be performed in

advance before inputting the secret information.

However, communication is required during the

preprocessing phase. Secret information is

introduced in the encryption phase, and the result is

sent to all the servers. All processes up to this stage

are considered the preprocessing of information. The

online phase uses all the computed values to perform

computations, and no communication between

servers is required. Finally, in the reconstruction

phase, the player who wants to receive the final

computation result collects [𝑑 ∑ (𝑎1,𝑖𝑎2,𝑖𝑎3,𝑖)
𝑙
𝑖=1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑗
, 𝑑𝑗

from 𝑘 servers 𝑆𝑗 and obtains the computation result.

From this, we learn that communication only occurs

in the preprocessing, encryption, and reconstruction

phases, and no communication occurs in the online

phase.

In addition, when 𝑛 > 𝑘 , Steps 4 and 5 of the

preprocessing phase can be performed by 𝑘 servers,

but Step 7 and onwards must be performed by all

servers. Therefore, the TUS 4 method is also

realizable when 𝑛 ≥ 𝑘 . However, when the player

who wishes to reconstruct the result wants to collect

information from any 𝑘 servers in the reconstruction

phase, each server must distribute the values 𝑑𝑗 in the

preprocessing phase so that the player can reconstruct

them from any 𝑘 servers.

4. DISCUSSION AND

CONSIDERATION

4.1 Features of Our Proposed

Method

The TUS methods realize secure computation of

secret sharing by using secret information that has

been encrypted with random numbers. This is a

combination of an encryption with a random number

and computation using secret sharing, and the merits

of this approach are discussed below. However,

Features I and II are realized in all the TUS methods,

but Feature III is the feature realized in this study.

Therefore, we can state that the TUS 4 method

realized all the merits discussed below.

Feature I ： Secret information encrypted with
random number can be made public

In the TUS methods, the encrypted secret can be

made public because the secret information is

encrypted with a random number. However, 𝑘

random numbers that make up the random number

need to be concealed. For example, by making the IoT

device to hold 𝑏𝑔,𝑖 of the TUS 4 method and compute

𝑏𝑔,𝑖(𝑎𝑔,𝑖 + 1) on the collected information 𝑎𝑔,𝑖 , if 𝑛

servers that received it know each 𝑏(1,𝑖),𝑗 (and shares

that satisfy Condition (3)), secure computation can be

performed by using the output of the IoT device as it

is. In contrast, in conventional methods where secret

information is distributed directly, the IoT device will

require a separate encryption method to conceal the

secret information, and servers that receive it will

have to momentarily reconstruct the encrypted

information and distribute it using a secret sharing

scheme. In this case, there is a risk of information

leakage, and an additional process of reconstruction

will be required.

Feature II ：Secure computation with 𝑛 < 2𝑘 − 1
is possible

Because the secret information is not distributed,
but is encrypted by multiplying with random numbers,
direct multiplication of these encrypted secrets will
not cause any increase in the polynomial degree.
However, if it is left as it is, it will cause a difference
in random number later, making addition impossible.
Therefore, when adding this secret information, a
process to unify the random number is needed, and by
integrating this process, a combination of addition
and multiplication of the encrypted input will be
possible. Using this approach, we could realize secure
computation of secret sharing with minimal server
resources (minimum 𝑛 = 𝑘 = 2).

Feature III: Processes involving random numbers
can be computed in advance.

Secret information is encrypted with a random
number; however, because the processes in the
encryption phase can be separated into multiple
processes such as multiplication with random
numbers, it is possible to realize an additional
preprocessing phase, where only processes related to
random numbers are performed in advance. However,
we need to predefine in advance the computation that
needs to be performed in the preprocessing phase.
Typically, it is difficult to consider a case where a
predefined type of computation is not set in advance.
Usually, the type of computation required is set in
advance, and then the user that is needed for that
computation is assembled (or gathered). At that time,
each user can perform the required preprocessing
process that involves a random number when
confirming the type and flow of the process or
computation to be performed. Thus, a faster secure
computation using the user’s input can be realized.

Demerit:
The disadvantage of encrypting secret

information with a random number is that when the
secret information or the result of the computation is
equal to 0, information of the secret or output will be
leaked. To prevent this, Condition (1) is required. In
contrast, when secret information is distributed
directly, even if the value of the secret information is
0, it can be concealed as is.

4.2 Discussion About the

Preconditions

Condition (1) is solved using the TUS 4 method.

Namely, in the TUS 4 method, the reconstruction of

the multiplication result is only performed by the

player that is allowed to know the result.
Condition (2) is typically required in the

following situation. In the preprocessing phase of the
TUS 4 method, 𝑘 servers each hold random numbers

that had been specified beforehand. However, if one
of the servers is broken and can no longer be used, the
random number that had been specified to that server
will be lost; therefore, secure computation will no
longer be possible. Therefore, when 𝑛 > 𝑘 , if the
server or the dealer distributes the random number
using secret sharing to all 𝑛 servers, even if 𝑛 − 𝑘
servers are broken or lost, a substitute server can
reconstruct the random number that is handled by the
broken server and continue the computation. Thus,
when 𝑛 > 𝑘, the server loss resistance of the secret
sharing scheme can be maintained. However, even if
the honest server is replaced with a dishonest server,
because it is assumed that only 𝑘 − 1 out of 𝑛 servers
are dishonest, it will not pose any problem. Therefore,
when substituting the broken server with a new server,
it is important to handle the same random number as
the server that it is substituting. However, when
considering a semi-honest adversary, this condition
can be realized by implementing it in the algorithm.
However, extra precautions are required when a
malicious adversary is assumed.

Finally, Condition (3) can be solved depending on
the application considered. For example, when
considering implementation in searchable encryption
(Kamal et al., 2017; Kamal et al., 2019), because the
owner of secret information will not be the adversary,
Condition (3) can be realized by requesting the owner
to generate random numbers that satisfy Condition (3).
In addition, when considering implementation into
outsourcing computation (Iwamura et al., 2020),
because the client who requested the service will not
be the adversary, the client can generate random
numbers that satisfy Condition (3). However, the
realization of Condition (3) can be difficult for
applications other than the one mentioned above.
Typically, in this case, we assume the use of a trusted
third party (TTP), and the TTP will generate random
numbers to satisfy Condition (3). However, the
installation of a TTP is a significant problem.
However, the use of a trusted execution environment
(TEE), which has attracted significant attention
recently, can also help with the realization of
Condition (3). TEE is a technology that increases the
security of the execution environment by creating an
isolated execution environment in the processor. A
representative method was proposed by Intel, known
as the Software Guard Extensions (SGX) (Intel
Corporation, 2015). Intel SGX is available in almost
all CPUs after Intel Core i7 and can be used easily.
However, Intel SGX is not the only option for
realizing Condition (3). Therefore, in future studies,
we will consider the most suitable method for this.

From the above, in the TUS 4 method of secure
computation against a semi-honest adversary, only
Condition (3) is remaining.

4.3 Qualitative Comparison

The SPDZ method is limited to the setting 𝑛 = 𝑘 ,
and Araki et al.’s method is limited to the setting 𝑛 =
3, 𝑘 = 2. Only the TUS methods allow for parameters
𝑛, 𝑘 to be set at any value and are able to realize
resistance toward server-loss. Araki et al.’s method
uses the setting of 𝑛 = 3, 𝑘 = 2 ; however, the
computation cannot be performed even if one server
is lost; therefore, it is not robust against server loss.
However, SPDZ method can accommodate malicious
adversaries. Moreover, Araki et al. proposed two
protocol versions: a protocol with information-
theoretic security and a protocol with computational
security. We present a qualitative comparison
between our proposed methods and conventional
methods in Table 1.

5. PERFORMANCE EVALUATION

AND EXPERIMENTAL RESULTS

The evaluation is performed by computing the 𝑙 -
times of inner-product computation with 𝑙 =
1, 100, 10000,and parameters 𝑛, 𝑘 set at 𝑛 = 𝑘 = 2
for the TUS 4 method. The results are then compared
with the implementation results of the SPDZ and
Araki et al. methods. Currently, the method by Araki
et al. shows the fastest computation time.

Inner-product computation is often used in
statistical calculations such as distribution and sum of
squared deviation, meaning that it can be applied to
areas such as searching for gene sequences. In
addition, in the computation of the inner product, no
communication is required in the online phase of the
TUS 4 method. The detailed algorithm used was the
same as that of the TUS 4 method when 𝑚𝑖 = 2.

Tables 2–4 show the results of the implementation
of the online phase using Amazon Web Service with
a maximum number of three servers. Because the
preprocessing and encryption phases can be
computed in advance, we did not include a
comparison of the processing time in our evaluation.
Because the SPDZ method requires two, whereas the
method proposed in Araki et al. requires one data
point to be sent for each multiplication, a total of 2𝑙
and 𝑙 data are required to be sent in the SPDZ method
and Araki et al.’s method, respectively. However,
because a significant amount of time is required to
establish a connection, all the data are sent at once
after the connection has been established. In addition,
the size of one dataset is 127 bits.

From Tables 2–4, the TUS 4 method with no
communication in the online phase shows an
overwhelming increase in the computation speed. In
addition, even if all the required data are sent at once
after the connection has been established, the
communication time increases when 𝑙 = 10000 for
both the SPDZ and Araki et al.’s methods.

Table 1. Qualitative comparison of our proposed method with conventional methods

(I.T.: Information-theoretic Security; Comp.: Computational Security)

 𝑛 and 𝑘 Adversary Security Server-loss Resistance

TUS Methods 𝑛 ≥ 𝑘 Semi-honest I.T. Yes

SPDZ Method 𝑛 = 𝑘 Malicious Comp. No

Araki et al’s Method 𝑛 = 3, 𝑘 = 2 Semi-honest I.T. or Comp. No

Table 2. Comparison with conventional methods (for 𝑙 = 1)

 TUS 4 Method SPDZ Method Araki et al.’s Method

Computation time [s] 3.80 × 10−5 3.41 × 10−5 1.92 × 10−5

Communication establishment [s] 0 0.100482542 0.099988509

Communication time [s] 0 0.100984535 3.80 × 10−5

Total time [s] 3.80 × 10−5 0.201693428 0.100248701

Table 3. Comparison with conventional methods (for 𝑙 = 100)

 TUS 4 Method SPDZ Method Araki et al.’s Method

Computation time [s] 2.41 × 10−3 3.36 × 10−4 2.40 × 10−4

Communication establishment 0 0.10020276 0.100412364

Communication time [s] 0 0.10052742 1.70 × 10−4

Total time [s] 2.14 × 10−3 0.201361759 0.101024941

Table 4. Comparison with conventional methods (for 𝑙 = 10000)

 TUS 4 Method SPDZ 2 Method Araki et al.’s Method

Computation time [s] 2.43 × 10−1 2.91 × 10−2 2.11 × 10−2

Communication Establishment [s] 0 0.102026318 0.100967475

Communication time [s] 0 1.018629671 8.34 × 10−1

Total time [s] 2.43 × 10−1 1.158342564 0.964274707

6. CONCLUSION

In this paper, we provide a method for easing the
conditions of the TUS methods that realize
information-theoretic security against a semi-honest
adversary when 𝑘 ≤ 𝑛 < 2𝑘 − 1 , and show that it
can be realized by using only one condition. In
addition, we showed that computational acceleration
is possible using the property that processes related to
random numbers can be separated. In addition, we
discuss the properties in detail and show that our
proposed method is also suitable for use in IoT. We
also showed that our proposed method is the only
method that allows for any 𝑛, 𝑘 to be chosen for 𝑛 ≥
𝑘.

In a future study, we will consider the most
suitable methods to solve Condition (3) and consider
a secure computation with security against malicious
adversaries.

REFERENCES

Araki T., Furukawa J., Lindell Y., Nof A., Ohara K., 2016.

High throughput semi-honest secure three-party

computation with an honest majority. In CCS 2016, pp.

805-817. ACM, New York, NY, USA.

Beaver D., 1991. Efficient multiparty protocols using

circuit randomization. In CRYPTO 1991. LNCS, vol

576, pp. 420-432. Springer, Berlin, Heidelberg.

 Ben-Or M., Goldwasser S., Wigderson A., 1988.

Completeness theorems for non-cryptographic fault-

tolerant distributed computation.” In STOC 1988, pp.

1-10. ACM, New York, NY, USA.

Bendlin R., Damgård I., Orlandi C., Zakarias S., 2011.

Semi-homomorphic encryption and multiparty

computation.” In EUROCRYPT 2011. LNCS, vol.

6632, pp. 169-188. Springer, Berlin, Heidelberg.

Brakerski Z., Gentry C., Vaikuntanathan V., 2009.

(Leveled) fully homomorphic encryption without

bootstrapping. In ITCS 2012, pp. 309-325. ACM, New

York, NY, USA.

Brakerski Z., Vaikuntanathan V., 2011. Fully

homomorphic encryption from ring-LWE and security

for key dependent messages. In CRYPTO 2011. LNCS,

vol 6841, pp. 505-524. Springer, Berlin, Heidelberg.

Chaum D., Crépeau C., Damgård I., 1988. Multiparty

unconditionally secure protocols.” In STOC 1988, pp.

11-19. ACM, New York, NY, USA.

Cramer R., Damgård I., Maurer U., 2000. General secure

multi-party computation from any linear secret-sharing

scheme. In EUROCRYPT 2000. LNCS, vol 1807, pp.

316-334. Springer, Berlin, Heidelberg.

Damgård I., Pastro V., Smart N., Zakarias S., 2012.

Multiparty computation from somewhat homomorphic

encryption. In CRYPTO 2012. LNCS, vol 7417, pp.

643-662. Springer, Berlin, Heidelberg.

Damgård I., Keller M., Larraia E., Pastro V., Scholl P.,

Smart N.P., 2013. Practical covertly secure MPC for

dishonest majority – Or: Breaking the SPDZ Limits. In

ESORICS 2013. LNCS, vol. 8134, pp. 1-18. Springer,

Berlin, Heidelberg.

Gennaro R., Rabin M. O., Rabin T., 1998. Simplified VSS

and fast-track multiparty computations with

applications to threshold cryptography.” In PODC 1998,

pp. 101-111. ACM, New York, NY, USA.

Gentry C., 2010. A fully homomorphic encryption scheme.”

Ph.D Thesis, Stanford University, Stanford, CA, USA.

Ikarashi D., Chida K., Takahashi K., 2010. Information-

theoretic Security Analysis of the Efficient 3-Party

Secure Function Evaluation. In SIG Technical Reports,

vol. 2010-CSEC-50, no. 46, pp. 1-8. (In Japanese)

Intel Corporation. Intel SGX Evaluation SDK, User’s

Guide for Windows* OS, 2015.
https://software.intel.com/sites/products/sgx-sdk-

usersguide-windows/Default.htm.

Iwamura K, Yamane M., 2020. Secure Outsourcing

Computation for Matrix Multiplication based on Secret

Sharing Scheme using Only One Server. In Journal of

Information Processing, vol. 61, no. 5, pp. 1073-1079.

(In Japanese)

Kurihara J., Kiyomoto S., Fukushima K., Tanaka T., 2008.

A new (k,n)-threshold secret sharing scheme and its

extension. In ISC 2008, pp. 455-470, Springer, Berlin,

Heidelberg.

Mohd Kamal A.A.A, Iwamura K., 2017. Conditionally

Secure Multiparty Computation using secret sharing

scheme for n<2k-1. In PST 2017, pp. 225-230. IEEE,

Calgary, AB, Canada.

Mohd Kamal A.A.A, Iwamura K., Kang H., 2017.

Searchable encryption of image based on secret sharing

scheme. In APSIPA ASC 2017. IEEE, pp. 1495-1503,

Kuala Lumpur, Malaysia.

Mohd Kamal A.A.A., Iwamura K., 2019. Searchable

Encryption Using Secret-Sharing Scheme for Multiple

Keyword Search Using Conjunctive and Disjunctive

Searching, In CyberSciTech 2019, pp. 149-156.

Fukuoka, Japan.

Shamir A., 1979. How to share a secret. Communications

of the ACM, Vol. 22, Issue 11, pp. 612-613. ACM, New

York, NY, USA.

Shingu T., Iwamura K., 2015. Secure Multiplication Using

Ramp Secret Sharing Scheme. In CSS 2015, vol. 2015,

no. 3, pp.987-994. (In Japanese)

Shingu T., Iwamura K., Kaneda K., 2016. Secrecy

computation without changing polynomial degree in

Shamir’s (k, n) secret sharing scheme. In ICETE 2016,

pp.89-94. Lisbon, Portugal.

Sharemind, Cybernetica. https://sharemind.cyber.ee.

Smart N.P., Vercauteren F., 2010. Fully homomorphic

encryption with relatively small key and ciphertext

sizes. In PKC 2010. LNCS, vol. 6056, pp. 420-443.

Springer, Berlin, Heidelberg.

Tokita K., Iwamura K., 2018. Fast Secure Computation

based on Secret Sharing Scheme for n<2k-1. In

MobiSecServ 2018, pp. 1-5. IEEE, Miami Beach, FL.

 van Dijk M., Gentry C., Halevi S., Vaikuntanathan V.,

2010. Fully homomorphic encryption over the integers.”

In EUROCRYPT 2010. LNCS, vol. 6110, pp. 24-43.

Springer, Berlin, Heidelberg.

Watanabe T., Iwamura K., Kaneda K., 2015. Secrecy

multiplication based on a (𝑘, 𝑛) -threshold secret-

sharing scheme using only 𝑘 servers.” In Computer

Science and Its Applications. LNEE, vol. 330, pp. 107-

112. Springer, Berlin, Heidelberg.

