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Abstract: Typically, unconditionally secure computation using a (𝑘, 𝑛) threshold secret sharing scheme is considered 

impossible when 𝑛 < 2𝑘 − 1. Therefore, in our previous work, we first took the approach of finding the 

conditions required for secure computation under the setting of 𝑛 < 2𝑘 − 1  and showed that secure 

computation using a secret sharing scheme can be realized with a semi-honest adversary under the following 

three preconditions: (1) the result of secure computation does not include 0; (2) random numbers reconstructed 

by each server are fixed; and (3) each server holds random numbers unknown to the adversary and holds 

shares of random numbers that make up the random numbers unknown to the adversary. In this paper, we 

show that by leaving condition (3), secure computation with information-theoretic security against a semi-

honest adversary is possible with 𝑘 ≤ 𝑛 < 2𝑘 − 1. In addition, we clarify the advantage of using secret 

information that has been encrypted with a random number as input to secure computation. One of the 

advantages is the acceleration of the computation time. Namely, we divide the computation process into a 

preprocessing phase and an online phase and shift the cost of communication to the preprocessing phase. Thus, 

for computations such as inner product operations, we realize a faster online phase, compared with 

conventional methods. 

1. INTRODUCTION 

Recently, with advancements in big data and the 

Internet of Things (IoT), there has been a high 

anticipation regarding technology that could make 

use of an individual’s information. However, there is 

still concern among individuals about the privacy, 

security, and confidentiality of their information. 

Therefore, to solve this problem, there is a need for a 

technology that allows their information to be used 

without infringing their privacy. One of the available 

technologies that could permit this is called secure 

computation, wherein a set of parties with private 

inputs wish to compute a joint function of their inputs, 

without revealing anything but the output. 
There are two main approaches for constructing 

secure computation protocols: 

─ Secret sharing (Araki et al, 2016; Ben-Or et al, 

1988; Chaum et al., 1988; Cramer et al., 2000; 

Gennaro et al., 1998; Ikarashi et al., 2010; 

Kamal and Iwamura, 2017; Shingu et al., 2016; 

Tokita et al., 2018) 

─ Homomorphic encryption (Bendlin et al., 2011; 

Brakerski et al., 2012; Brakerski et al., 2011; 

Damgård et al., 2012; Damgård et al., 2013; 

Smart et al., 2010; van Dijk et al., 2010) 

However, homomorphic encryption is known to be 

expensive in terms of computational cost, and 

therefore it requires a much longer computation time. 

Therefore, approaches with lower computational cost 

are preferable to homomorphic encryption, when 

considering the utilization of big data and IoT data. 
The secret sharing scheme is a method in the field 

of cryptography for data encryption, in which a single 
secret/input is divided into multiple shares, which are 
then distributed to multiple users. A known example 
of a secret sharing scheme is the (𝑘, 𝑛)  threshold 
secret sharing scheme. In this scheme, a secret 𝑠 is 
divided into 𝑛 number of shares. The original secret 
𝑠  can only be reconstructed or retrieved from a 
threshold 𝑘  number of shares, but any 𝑘 −  1  or 
smaller number of shares reveals nothing about the 
original secret. Therefore, when 𝑛 > 𝑘 , a (𝑘, 𝑛) 
threshold secret sharing scheme can realize resistance 
toward loss of at most 𝑛 − 𝑘 servers. 



However, secure computation using a secret 
sharing can perform secrecy addition and subtraction 
easily, but this is not so in the case of secrecy 
multiplication. For example, in the (𝑘, 𝑛) threshold 
secret sharing proposed by Shamir (Shamir, 1979), 
the degree of a polynomial changes from 𝑘 − 1 to 
2𝑘 − 2  for each multiplication of polynomials. To 
restore the multiplication result, the number of shares 
required increases from 𝑘  to 2𝑘 − 1 . Typically, 
unconditionally secure computation is considered 
impossible when 𝑛 < 2𝑘 − 1 . Therefore, for most 
information-theoretically secure computations using 
a secret sharing scheme, it is assumed that 𝑛 ≥ 2𝑘 −
1. 

Conversely, there is little research on secure 
computation using a secret sharing with 𝑘 ≤ 𝑛 <
2𝑘 − 1 . Methods such as the SPDZ method 
(Damgård et al., 2012; Damgård et al., 2013) have 
been proposed to combine secret sharing with 
homomorphic encryption to solve this problem. 
However, this approach only realizes computational 
security, not information-theoretic security. Our 
research focuses on realizing secure computation of 
secret sharing with 𝑘 ≤ 𝑛 < 2𝑘 − 1 ; however, we 
took an approach of first finding the conditions 
required to realize information-theoretic security 
against semi-honest adversaries, and then find 
another method for easing the conditions required. 
The result is that we proposed a secure computation 
known as the TUS 3 (Tokyo University of Science) 
method (Tokita et al., 2018) that realizes secure 
computation under the following three conditions.  

 Condition 1: The computation result does not 

include 0. 

 Condition 2: Random numbers reconstructed by 

each server are fixed.  

 Condition 3: Each server holds random numbers 

unknown to the adversary, and the shares of 

random numbers that make up the random 

numbers unknown to the adversary. 

In the TUS 3 method, a product-sum operation was 

proposed, and it was also proved that the combination 

of this product-sum operation is also secure. Thus, 

any computation is possible, even when 𝑘 ≤ 𝑛 <
2𝑘 − 1. In addition, the characteristics of all TUS 

methods, including the TUS 3 method, are that the 

input of secure computation is first encrypted with a 

random number before being used for secure 

computation, and the aforementioned computation 

when 𝑘 ≤ 𝑛 < 2𝑘 − 1  makes use of this particular 

property. However, TUS methods incur high 

computational costs and cannot realize fast 

computation. 

Therefore, in this study, by using the property that 
secret information is encrypted with a random 
number, we propose a secure computation with a 
faster computation speed. Namely, we divide the 
computation process into preprocessing and online 
phases and shift all computations related to random 
numbers to the preprocessing phase. Thus, we 
propose a method in which the communication cost 
can be totally eliminated from the online phase, 
realizing a faster online phase (known as the TUS 4 
method).  

Next, we reduce the conditions in the TUS 
methods. Depending on the application, there are 
cases where the three aforementioned conditions can 
be realized easily; however, there are also cases 
where it cannot be handled easily. Therefore, we 
reduce the condition required and show that by 
leaving Condition (3), the TUS methods can be 
realized securely. In addition, we also discuss the 
merits and demerits of the properties of the TUS 
methods. 

System Model 
In this study, our proposed secure computation 

model is based on a client/server model where any 
number of clients can send shares of their inputs to 𝑛 
servers that perform the computation for the clients 
and return the results to them without learning 
anything. This model is widely used currently and is 
the business model used in Sharemind. 

The remainder of this paper is organized as 

follows: in Chapter 2, we present related works; in 

Chapter 3, we explain the TUS 4 method, in Chapter 

4 we the discussion on the merits and demerits of 

encrypting secret information with random numbers 

and discuss each condition of the TUS methods. 

Finally, in Chapter 5, we perform an experimental 

evaluation and show that the TUS 4 method can 

realize an overwhelmingly fast computation speed. 

2. RELATED WORKS 

2.1 SPDZ method 

Damgård et al. proposed a secure multiparty 
computation called SPDZ methods (Damgård et al., 
2012; Damgård et al., 2013) that utilizes a somewhat 
homomorphic encryption and is secure against a 
dishonest majority under the setting 𝑛 = 𝑘. In SPDZ, 
the owner of the secret is one of the 𝑛  players 
involved in multiparty computation. Moreover, in 
SPDZ, even when 𝑛 − 1  players form a coalition, 
provided that the owner keeps his/her share of the 



secret secure, the original secret cannot be 
reconstructed from 𝑛 − 1 shares. 

SPDZ consists of preprocessing and an online 
phase. This ensures the confidentiality of the inputted 
secrets by using an additive secret-sharing scheme. 
Through the SPDZ method, secrecy addition can be 
easily achieved. Secrecy multiplication in SPDZ is 
based on Beaver’s circuit randomization (Beaver, 
1991). To perform secrecy multiplication, shares of 
random numbers 〈𝑎〉, 〈𝑏〉, 〈𝑐〉, called a multiplicative 
triple, that satisfy 𝑎 ∙ 𝑏 = 𝑐 are used. 

In SPDZ, for example, the secret information of 𝑥 
is reconstructed from its shares 〈𝑥〉, denoted as 𝑥 =
𝑜𝑝𝑒𝑛(〈𝑥〉). The protocol for multiplication of 𝑥 ∙ 𝑦 
proposed by SPDZ is shown below. However, the 
construction of a multiplication triple requires a fully 
homomorphic encryption (Gentry, 2010) where the 
computation cost is high, thus significantly increasing 
the overall process time. 

1. Prepare the multiplication triple 〈𝑎〉, 〈𝑏〉, 〈𝑐〉 
(Offline Phase). 

2. Compute shares 〈𝑥〉, 〈𝑦〉  on secret 𝑥, 𝑦 

(Distribution Phase). 

3. Each server reconstructs 𝑑 = 𝑜𝑝𝑒𝑛(〈𝑥〉 −
〈𝑎〉), 𝑒 = 𝑜𝑝𝑒𝑛(〈𝑦〉 − 〈𝑏〉)  and computes 〈𝑥 ∙
𝑦〉 = 𝑑 ∙ 𝑒 + 𝑒 ∙ 〈𝑎〉 + 𝑑 ∙ 〈𝑏〉 + 〈𝑐〉 
(Online Phase). 

2.2 Araki et al.’s method 

Typically, in a secure secrecy computation, the cost 
of communication between servers can affect the 
overall processing speed more than the actual cost of 
computation. Therefore, Araki et al. proposed a 
method for rapid secrecy computation under the 
parameters 𝑛 = 3, 𝑘 = 2 , which requires only one 
communication per multiplication (Araki et al., 2016). 
The detailed protocol is described below. Note that it 
is usually not considered a problem, even if 
communication is required in the preprocessing 
phase. In addition, secrecy computation of addition is 
performed locally, where the shares are added 
together. 

Preprocessing Phase: 

1. Players 𝑃1, 𝑃2, 𝑃3  generate and hold 𝛽1, 𝛽2, 𝛽3 ∈
𝑍2𝑛, where 𝛽1 + 𝛽2 + 𝛽3 = 0. 

Computation Phase: 

Distribution 

1. Dealer D chooses a random number 𝑥1, 𝑥2, 𝑥3 ∈
𝑍2𝑛, where 𝑥1 + 𝑥2 + 𝑥3 = 0. 

2. Dealer D sends a share (𝑥𝑖 , 𝑎𝑖)  of secret 𝑣1  to 

player 𝑃𝑖 . 𝑎𝑖  is computed as 𝑎𝑖 = 𝑥𝑖−1 − 𝑣1 (𝑖 =
1,2,3). 

3. Dealer D performs the same process on secret 𝑣2, 

producing share (𝑦𝑖 , 𝑏𝑖)  for player 𝑃𝑖 . Note that 

𝑏𝑖 = 𝑦𝑖−1 − 𝑣2, 𝑦1 + 𝑦2 + 𝑦3 = 0. 

Multiplication 

1. Player 𝑃𝑖  computes 𝑟𝑖 = (𝑎𝑖𝑏𝑖 − 𝑥𝑖𝑦𝑖 + 𝛽𝑖) 3⁄  

and sends to player 𝑃𝑖+1. 

2. Player 𝑃𝑖  computes 𝑧𝑖 = 𝑟𝑖−1 − 𝑟𝑖 ,  𝑐𝑖 = −2𝑟𝑖−1 −
𝑟𝑖 , and holds (𝑧𝑖 , 𝑐𝑖)  as a share on the result of 

multiplication of 𝑣1𝑣2. 

Reconstruction 

1. From information 𝑧𝑖 , 𝑐𝑖 , 𝑧𝑗 , 𝑐𝑗  of player 𝑃𝑖  and 

player 𝑃𝑗 , the result of multiplying 𝑣1𝑣2  can be 

computed using the equation shown below. Note 

that 𝑐𝑖 = −2𝑟𝑖−1 − 𝑟𝑖 = 𝑧𝑖−1 − 𝑣1𝑣2. 

𝑧𝑗 − 𝑐𝑖 = 𝑣1𝑣2 

2.3 (𝒌, 𝒏) threshold secret sharing 

A secret sharing scheme that satisfies both the 

conditions stated below is known as the (𝑘, 𝑛) 

threshold secret-sharing scheme. 

• Any 𝑘 − 1, or less, number of shares will reveal 

nothing about the original secret information 𝑠. 

• Any 𝑘 and above number of shares will allow for 

the reconstruction of the original secret 

information 𝑠. 

The classic methods of the (𝑘, 𝑛)  threshold secret 

sharing scheme are Shamir’s (𝑘, 𝑛) threshold secret 

sharing scheme (Shamir, 1979) (Shamir’s method) 

and the XOR-based method for sharing and 

reconstruction of secret information proposed by 

Kurihara et al. (Kurihara et al., 2008) (XOR method). 

In our protocol, unless stated otherwise, Shamir’s 

method was used, and all computations were 

performed in modulus 𝑝. In addition, the shares of the 

secret information 𝑠, are represented by [𝑠]̅̅̅̅
𝑖. 

2.4 The TUS Methods 

First, Shingu et al. proposed a 2-inputs-1-output 
computation called the TUS 1 method (Shingu et al., 
2016), where the secret is first encrypted with a 
random number. When performing secrecy 
multiplication, the encrypted secret is momentarily 
restored as a scalar value, and multiplication is 



realized using the scalar value ×  polynomial 
approach to prevent an increase in the polynomial 
degree. However, the TUS1 method introduces 
another problem: when computation involving a 
combination of operations, such as that of 𝑎𝑏 + 𝑐, is 
performed, if the adversary has information about one 
of the inputs and outputs, he/she can specify the value 
of the remaining two inputs. Therefore, the condition 
where computation involving a combination of 
addition/subtraction and multiplication/division is not 
performed is needed in addition to the existing 
condition where the input of the secret does not 
include the value 0. Therefore, the TUS 1 method can 
realize a very effective specific computation, such as 
computation of Rivest–Shamir–Adleman (RSA) 
encryption. However, it is not capable of coping with 
computations that require a combination of 
addition/subtraction and multiplication/division. 

Next, Kamal et al. introduced an improved 
method called the TUS 2 method, where the 
computation involving a combination of 
addition/subtraction and multiplication/division can 
also be performed securely (Kamal and Iwamura, 
2017). This method was proven to be secure under the 
three aforementioned conditions. However, the first 
condition in this method is extended to the following: 
the value of the inputs and output of the computation 
does not include 0. In addition, it was shown that this 
method is secure against computation that involves a 
combination of product-sum operations. Therefore, 
this method can realize any arithmetic computation 
under the setting 𝑘 ≤ 𝑛 < 2𝑘 − 1 . However, the 
TUS 2 method incurs significantly more 
computational cost compared with the conventional 
method in 𝑛 ≥ 2𝑘 − 1; therefore, it is not the most 
efficient method. 

Therefore, Tokita et al. proposed an improved 
version of the TUS 2 method, known as the TUS 3 
method, where XOR method (Kurihara et al., 2008) 
is introduced and realizes a more efficient method for 
secrecy computation (Tokita et al., 2018). Out of the 
three aforementioned conditions, the TUS 3 method 
proposed a way to ease one of the conditions (known 
as the TUS3’ method), wherein there are no longer 
limitation for the inputs of computation; however, the 
three conditions still remain. 

Note that all TUS methods share a common point 

wherein the secret information is first encrypted with 

a random number and is then used in the secrecy 

computation using secret sharing. Moreover, 

Condition (3) where each server 𝑆𝑗  holds random 

numbers unknown to the adversary, and the shares of 

random numbers that make up the random numbers 

unknown to the adversary is defined as follow. 

[𝜀]𝑗 = ([𝜀]̅̅̅̅
𝑗 , [𝜀0]̅̅ ̅̅ ̅

𝑗, … , [𝜀𝑘−1]̅̅ ̅̅ ̅̅ ̅̅
𝑗) 

Here, 𝜀 = ∏ 𝜀𝑗
𝑘−1
𝑗=0  is defined as a random number 

unknown to the adversary. 

3. THE TUS 4 METHOD  

By dividing the computation process into the 

preprocessing phase and online phase, it allows us 

to shift parts of the computation that require 

communication to the preprocessing phase in which 

information that does not depend on any of the private 

values can be generated in advance. This can be used 

to significantly reduce the cost of communication in 

the online phase and speed up the entire process. 
Below, we explain the protocol for the TUS 4 

method. 

3.1 The Protocol 

Here, instead of the simple product-sum operation of 

𝑎𝑏 + 𝑐 , we present a solution for computing the 

extended product-sum operation of 

∑ (𝑎1,𝑖𝑎2,𝑖 … 𝑎𝑚𝑖,𝑖)
𝑙
𝑖=1 . This allows multiple 

computations to be performed at once instead of only 

one computation of 𝑎𝑏 + 𝑐  each time. However, a 

single product-sum operation can also be realized by 

setting the parameters 𝑙 = 2, 𝑚1 = 2, 𝑚2 = 1. 
Typically, because Equations (1) and (2) hold, 

any computation of (𝑎1𝑎2 … 𝑎𝑚)  can be computed 
from (𝑎1 + 1), (𝑎2 + 1), … , (𝑎𝑚 + 1). 

𝑎1𝑎2 = (𝑎1 + 1)(𝑎2 + 1) − (𝑎1 + 1) − (𝑎2 + 1) + 1  (1) 

𝑎1𝑎2 … 𝑎𝑚 = (𝑎1 … 𝑎𝑚−1)(𝑎𝑚 + 1) − (𝑎1 … 𝑎𝑚−1)     (2) 

In addition, extending Equation (2) will result in the 

following. 

𝑎1𝑎2 … 𝑎𝑚 = ∑ (−1)𝑖 ∏ (𝑎
𝑗′ + 1)

𝑚−𝑖

𝑗′=1

𝑚𝐶𝑚−𝑖

𝑖=0
 

However, 𝑗′  is an element of the combination of 

choosing the 𝑚 − 𝑖 number from 𝑚 number of (𝑎𝑗 +

1). For example, the following holds when 𝑚 = 3,4. 

𝑎1𝑎2𝑎3 = (𝑎1 + 1)(𝑎2 + 1)(𝑎3 + 1)

− {(𝑎1 + 1)(𝑎2 + 1)

+ (𝑎1 + 1)(𝑎3 + 1)

+ (𝑎2 + 1)(𝑎3 + 1)}

+ {(𝑎1 + 1) + (𝑎2 + 1) + (𝑎3 + 1)}

− 1 



𝑎1𝑎2𝑎3𝑎4 = (𝑎1 + 1)(𝑎2 + 1)(𝑎3 + 1)(𝑎4 + 1)

− {(𝑎1 + 1)(𝑎2 + 1)(𝑎4 + 1)

+ (𝑎1 + 1)(𝑎3 + 1)(𝑎4 + 1)

+ (𝑎2 + 1)(𝑎3 + 1)(𝑎4 + 1)

+ (𝑎1 + 1)(𝑎2 + 1)(𝑎3 + 1)}

+ {(𝑎1 + 1)(𝑎2 + 1)

+ (𝑎1 + 1)(𝑎3 + 1)

+ (𝑎1 + 1)(𝑎4 + 1)

+ (𝑎2 + 1)(𝑎3 + 1)

+ (𝑎2 + 1)(𝑎4 + 1)

+ (𝑎3 + 1)(𝑎4 + 1)} − {(𝑎1 + 1)

+ (𝑎2 + 1) + (𝑎3 + 1) + (𝑎4 + 1)}
+ 1 

Therefore, when 𝑙 = 2, 𝑚1 = 3, 𝑚2 = 4 , 𝑎1𝑎2𝑎3 

will be 𝑎1,1𝑎2,1𝑎3,1 , and 𝑎1𝑎2𝑎3𝑎4  will be 

𝑎1,2𝑎2,2𝑎3,2𝑎4,2 , thus allowing the following to be 

computed. 

𝑎1,1𝑎2,1𝑎3,1 + 𝑎1,2𝑎2,2𝑎3,2𝑎4,2 

In the protocol of the TUS 4 method, inputs 

𝑎1,𝑖 , 𝑎2,𝑖 , … . 𝑎𝑚𝑖,𝑖  must be within the modulus 𝑝 and 

be a number under 𝑝 − 2 . In addition, all random 

numbers used were uniformly distributed and did not 

include the value 0. Moreover, all other values belong 

to 𝐺𝐹(𝑝), and all computations are performed with 

the modulus 𝑝 . In addition, we assume that 

communication between players and servers is 

secure. In addition, random numbers not known to the 

adversary shown in Condition (3) are assumed to be 

𝜀𝑖
(ℎ)

(ℎ = 1, … 8), and shares of all random numbers 

𝜀𝑖,𝑗
(ℎ)

 used to construct 𝜀𝑖
(ℎ)

 are prepared and stored in 

the servers in advance. Moreover, 𝑘  number of 

servers in Steps 4 and 5 shown in the preprocessing 

phase are chosen in advance from 𝑛  number of 

servers. Below, for ease of understanding, we show 

our protocol for 𝑚𝑖 = 3; however, it is clear that it 

can also be extended to any 𝑚𝑖. 

Preprocessing Phase 

1. Dealer 𝐷  generates 𝑘  random numbers 

𝑏(1,𝑖),0, 𝑏(1,𝑖),1, … , 𝑏(1,𝑖),𝑘−1  with respect to secrets 

𝑎1,𝑖(𝑖 = 1, … , 𝑙) , computes 𝑏1,𝑖 = ∏ 𝑏(1,𝑖),𝑗
𝑘−1
𝑗=0 , 

and sends 𝑏(1,𝑖),𝑗 to server 𝑆𝑗. 

2. Dealer 𝐷 performs Step 1. On 𝑎2,𝑖 , 𝑎3,𝑖. 

3. Dealer 𝐷 sends 𝑏𝑔,𝑖 to User 𝑈𝑔,𝑖  (𝑔 = 1,2,3). 

4. Server 𝑆𝑗  (𝑗 = 0, … , 𝑘 − 1)  collects each 

[𝜀𝑖,𝑗
(ℎ)

]
̅̅ ̅̅ ̅̅ ̅

𝑢
(𝑢 = 0, … , 𝑘 − 1, ℎ = 1, … ,8)  and 

reconstructs 𝜀𝑖,𝑗
(ℎ)

. 

5. Server 𝑆𝑗  generates 𝑑𝑗 , computes the following, 

and sends it to one of the servers (Here, we assume 

the server to be server 𝑆0). 

𝑑𝑗

𝑏(1,𝑖),𝑗𝑏(2,𝑖),𝑗𝑏(3,𝑖),𝑗𝜀𝑖,𝑗
(1)

,
𝑑𝑗

𝑏(1,𝑖),𝑗𝑏(2,𝑖),𝑗𝜀𝑖,𝑗
(2)

,
𝑑𝑗

𝑏(1,𝑖),𝑗𝑏(3,𝑖),𝑗𝜀𝑖,𝑗
(3)

, 

𝑑𝑗

𝑏(2,𝑖),𝑗𝑏(3,𝑖),𝑗𝜀𝑖,𝑗

(4)
,

𝑑𝑗

𝑏(1,𝑖),𝑗𝜀𝑖,𝑗

(5)
,

𝑑𝑗

𝑏(2,𝑖),𝑗𝜀𝑖,𝑗

(6)
,

𝑑𝑗

𝑏(3,𝑖),𝑗𝜀𝑖,𝑗

(7)
,

𝑑𝑗

𝜀𝑖,𝑗

(8)
 

6. Server 𝑆0 computes the following and sends to all 

servers. (𝑖 = 1, … , 𝑙). 

𝑑

𝑏1,𝑖𝑏2,𝑖𝑏3,𝑖𝜀𝑖
(1)

= ∏
𝑑𝑗

𝑏(1,𝑖),𝑗𝑏(2,𝑖),𝑗𝑏(3,𝑖),𝑗𝜀𝑖,𝑗
(1)

𝑘−1

𝑗=0
  , 

𝑑

𝑏1,𝑖𝑏2,𝑖𝜀𝑖
(2)

= ∏
𝑑𝑗

𝑏(1,𝑖),𝑗𝑏(2,𝑖),𝑗𝜀𝑖,𝑗
(2)

𝑘−1

𝑗=0
  , 

𝑑

𝑏1,𝑖𝑏3,𝑖𝜀𝑖
(3)

= ∏
𝑑𝑗

𝑏(1,𝑖),𝑗𝑏(3,𝑖),𝑗𝜀𝑖,𝑗
(3)

𝑘−1

𝑗=0
  , 

𝑑

𝑏2,𝑖𝑏3,𝑖𝜀𝑖
(4)

= ∏
𝑑𝑗

𝑏(2,𝑖),𝑗𝑏(3,𝑖),𝑗𝜀𝑖,𝑗
(4)

𝑘−1

𝑗=0
  ,  

𝑑

𝑏1,𝑖𝜀𝑖
(5)

= ∏
𝑑𝑗

𝑏(1,𝑖),𝑗𝜀𝑖,𝑗
(5)

𝑘−1

𝑗=0
  , 

𝑑

𝑏2,𝑖𝜀𝑖
(6)

= ∏
𝑑𝑗

𝑏(2,𝑖),𝑗𝜀𝑖,𝑗
(6)

𝑘−1

𝑗=0
  , 

𝑑

𝑏3,𝑖𝜀𝑖
(7)

= ∏
𝑑𝑗

𝑏(3,𝑖),𝑗𝜀𝑖,𝑗
(7)

𝑘−1

𝑗=0
  ,  

𝑑

𝜀𝑖

(8)
= ∏

𝑑𝑗

𝜀𝑖,𝑗

(8)

𝑘−1

𝑗=0
  

7. All servers 𝑆𝑗 compute and hold the following. 

[
𝑑

𝑏1,𝑖𝑏2,𝑖𝑏3,𝑖

]
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑗

=
𝑑

𝑏1,𝑖𝑏2,𝑖𝑏3,𝑖𝜀𝑖
(1)

× [𝜀𝑖
(1)

]
̅̅ ̅̅ ̅̅ ̅

𝑗
  , 

[
𝑑

𝑏1,𝑖𝑏2,𝑖

]
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑗

=
𝑑

𝑏1,𝑖𝑏2,𝑖𝜀𝑖
(2)

× [𝜀𝑖
(2)

]
̅̅ ̅̅ ̅̅ ̅

𝑗
  , 

[
𝑑

𝑏1,𝑖𝑏3,𝑖

]
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑗

=
𝑑

𝑏1,𝑖𝑏3,𝑖𝜀𝑖
(3)

× [𝜀𝑖
(3)

]
̅̅ ̅̅ ̅̅ ̅

𝑗
  , 

[
𝑑

𝑏2,𝑖𝑏3,𝑖

]
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑗

=
𝑑

𝑏2,𝑖𝑏3,𝑖𝜀𝑖
(4)

× [𝜀𝑖
(4)

]
̅̅ ̅̅ ̅̅ ̅

𝑗
  , 

[
𝑑

𝑏1,𝑖

]
̅̅ ̅̅ ̅̅

𝑗

=
𝑑

𝑏1,𝑖𝜀𝑖
(5)

× [𝜀𝑖
(5)

]
̅̅ ̅̅ ̅̅ ̅

𝑗
  , 



[
𝑑

𝑏2,𝑖

]
̅̅ ̅̅ ̅̅ ̅

𝑗

=
𝑑

𝑏2,𝑖𝜀𝑖
(6)

× [𝜀𝑖
(6)

]
̅̅ ̅̅ ̅̅ ̅

𝑗
  , 

[
𝑑

𝑏3,𝑖

]
̅̅ ̅̅ ̅̅ ̅

𝑗

=
𝑑

𝑏3,𝑖𝜀𝑖
(7)

× [𝜀𝑖
(7)

]
̅̅ ̅̅ ̅̅ ̅

𝑗
  , 

 [𝑑]̅̅ ̅̅
𝑗 =

𝑑

𝜀𝑖

(8)
× [𝜀𝑖

(8)
]

̅̅ ̅̅ ̅̅ ̅
𝑗
 

Encryption Phase 

1. User 𝑈𝑔,𝑖  compute 𝑏𝑔,𝑖(𝑎𝑔,𝑖 + 1)＝𝑏𝑔,𝑖 × (𝑎𝑔,𝑖 +

1)  in regard to its input 𝑎𝑔,𝑖  and send to all 

servers. (𝑔 = 1,2,3)． 

Online Phase  

1. All servers 𝑆𝑗 compute the following. 

[𝑑 ∑ (𝑎1,𝑖𝑎2,𝑖𝑎3,𝑖)
𝑙

𝑖=1
]

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑗

= ∑ {𝑏1,𝑖(𝑎1,𝑖 + 1)
𝑙

𝑖=1

× 𝑏2,𝑖(𝑎2,𝑖 + 1) × 𝑏3,𝑖(𝑎3,𝑖 + 1)

× [
𝑑

𝑏1,𝑖𝑏2,𝑖𝑏3,𝑖

]
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑗

− 𝑏1,𝑖(𝑎1,𝑖 + 1) × 𝑏2,𝑖(𝑎2,𝑖 + 1)

× [
𝑑

𝑏1,𝑖𝑏2,𝑖

]
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑗

− 𝑏1,𝑖(𝑎1,𝑖 + 1) × 𝑏3,𝑖(𝑎3,𝑖 + 1)

× [
𝑑

𝑏1,𝑖𝑏3,𝑖

]
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑗

− 𝑏2,𝑖(𝑎2,𝑖 + 1) × 𝑏3,𝑖(𝑎3,𝑖 + 1)

× [
𝑑

𝑏2,𝑖𝑏3,𝑖

]
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑗

+ 𝑏1,𝑖(𝑎1,𝑖 + 1) × [
𝑑

𝑏1,𝑖

]
̅̅ ̅̅ ̅̅

𝑗

+ 𝑏2,𝑖(𝑎2,𝑖 + 1) × [
𝑑

𝑏2,𝑖

]
̅̅ ̅̅ ̅̅ ̅

𝑗

+ 𝑏3,𝑖(𝑎3,𝑖 + 1) × [
𝑑

𝑏3,𝑖

]
̅̅ ̅̅ ̅̅ ̅

𝑗

− [𝑑]̅̅ ̅̅
𝑗} 

Reconstruction Phase 

1. The player who wishes to reconstruct the result 

collects [𝑑 ∑ (𝑎1,𝑖𝑎2,𝑖𝑎3,𝑖)
𝑙
𝑖=1 ]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑗
 and 𝑑𝑗  from 𝑘 

number of servers 𝑆𝑗 , reconstructs 

𝑑 ∑ (𝑎1,𝑖𝑎2,𝑖𝑎3,𝑖)
𝑙
𝑖=1 , 𝑑, and computes the result of 

∑ (𝑎1,𝑖𝑎2,𝑖𝑎3,𝑖)
𝑙
𝑖=1  as follows: 

𝑑 ∑ (𝑎1,𝑖𝑎2,𝑖𝑎3,𝑖)
𝑙
𝑖=1

𝑑
= ∑ (𝑎1,𝑖𝑎2,𝑖𝑎3,𝑖)

𝑙

𝑖=1
 

3.2 Security Analysis of the TUS 4 

method 

In the proposed method of extended product-sum 

operation with 𝑡(= ∑ 𝑚𝑖
𝑙
𝑖=1 ) inputs and  one output, 

regardless of the security level of the method used, if 

𝑡 − 1  inputs and the output are leaked to the 

adversary, the remaining input can also be leaked. 

Similarly, when all 𝑡  inputs are known to the 

adversary, the output can also be leaked to the 

adversary. Therefore, we consider only the following 

two types of adversaries: We can state that our 

proposed TUS 4 method is secure if it is secure 

against Adversaries 1 and 2 defined below. 

Adversary 1： 
The adversary has information on 𝑡 − 2  inputs 

and one output of the extended product-sum operation. 
Adversary 1 has information on the entered inputs 
(and the random number used to encrypt them) and 
the information needed to reconstruct the output. In 
addition, the adversary also has knowledge of 
information from 𝑘 − 1  servers. According to this 
information, the adversary attempts to learn the 
remaining two inputs. 

Adversary 2: 
The adversary has information on the 𝑡 − 1 

inputs of the extended product-sum operation. 
Adversary 2 has information on the input secrets (and 
the random numbers used to encrypt them). In 
addition, the adversary also has knowledge of 
information from 𝑘 − 1  servers. According to this 
information, the adversary attempts to learn the 
remaining one input or output of the computation. 

The security proof for the TUS 4 method is shown 
below. 

Proof of security of the Preprocessing Phase 

Because our proposed method assumes a semi-

honest adversary, Dealer 𝐷  performs Steps 1–3 

correctly and privately, and sends it to each server and 

user. Server 𝑆𝑗  (𝑗 = 0, … , 𝑘 − 1) reconstruct random 

numbers 𝜀𝑖,𝑗
(ℎ)

  (which is used to construct random 

numbers 𝜀𝑖
(ℎ)

) in Step 4; however, random numbers 

𝜀𝑖
(ℎ)

 will not leak from 𝑘 − 1 servers. In addition, in 

Step 5, server 𝑆𝑗 sends its computed values to server 



𝑆0; however, Adversaries 1 and 2 cannot decompose 

each individual random number from this information. 

Therefore, Adversaries 1 and 2 will not be able to 

learn 𝑑, 𝑏1,𝑖 , 𝑏2,𝑖 , 𝑏3,𝑖 , 𝜀𝑖
(1)

, … , 𝜀𝑖
(8)

. In addition, in Step 

6, Server 𝑆0  multiplied all values and broadcast the 

result; however, Adversaries 1 and 2 cannot 

decompose the information to learn each individual 

random number. Moreover, because the random 

number unknown to the adversary shown in 

Condition (3) is used to compute shares in Step 7, the 

shares held by each server can be computed securely. 
Therefore, for example, the following statement 

is true: The same is true for the remaining shares. 
𝐻(𝑥) represents the entropy of 𝑥. 

𝐻 ([
𝑑

𝑏1,𝑖𝑏2,𝑖𝑏3,𝑖

]
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑗

)

= 𝐻 ([
𝑑

𝑏1,𝑖𝑏2,𝑖𝑏3,𝑖
]

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑗

|
𝑑

𝑏1,𝑖𝑏2,𝑖𝑏3,𝑖𝜀𝑖
(1)) 

Proof of security of the Encryption Phase 

Because the secret information is smaller than 
𝑝 − 2, even if one is added to the secret information, 
it will not become 0. In addition, a random number 
generated by the dealer is secure. Therefore, the 
following statement is true and remains true for the 
remainder of the secret information. 

𝐻(𝑎𝑔,𝑖) = 𝐻(𝑎𝑔,𝑖|𝑏𝑔,𝑖(𝑎𝑔,𝑖 + 1)) 

Proof of security of the Online Phase 

Security against Adversary 1 

Assume that the adversary has information on all 

inputs except 𝑎1,1, 𝑎2,1. He/she also has information 

from 𝑘 − 1  servers, in addition to the result of the 

computation. Furthermore, Adversary 1 has 

information from Step 5 of the preprocessing phase, 

and also learns 𝑏𝑔,𝑖(𝑎𝑔,𝑖 + 1) from the online phase. 

In addition, Adversary 1 learns 

𝑑 ∑ (𝑎1,𝑖𝑎2,𝑖𝑎3,𝑖)
𝑙
𝑖=1 , 𝑑 , and ∑ (𝑎1,𝑖𝑎2,𝑖𝑎3,𝑖)

𝑙
𝑖=1   from 

the reconstruction phase. By using this information, 

Adversary 1 tries to learn about secret inputs 𝑎1,1, 𝑎2,1. 

However, if fewer than 𝑘  number of shares and 

random numbers are collected, information regarding 

the random numbers and secret information will not 

be leaked. 

To simplify the problem, we redefined the 

parameters above to avoid any parameter duplication. 

Consequently, Adversary 1 has the following 

information (however, 𝑔′, 𝑖′  excludes 1,1 and 2,1;  

𝜀1
(𝑖,𝑗)

 means that it relates to the same value; 𝜀∗
(ℎ)

 is 

used when 𝑖 > 1 ). 

𝐵 = {𝑑, 𝑎𝑔′,𝑖′, 𝑏𝑔′,𝑖′, 𝑏1,1(𝑎1,1 + 1), 𝑏2,1(𝑎2,1

+ 1),
1

𝑏1,1𝑏2,1𝜀1
(1,2)

,
1

𝑏1,1𝜀1
(3,5)

,

1

𝑏2,1𝜀1
(4,6)

, 𝜀1
(7,8)

, 𝜀∗
(ℎ)

} 

However, because each 𝜀𝑖
(ℎ)

 is independent, 𝑏1,1, 𝑏2,1 

will not leak. In addition, because 𝜀𝑖
(ℎ)

 is not used in 

the computation, it does not affect the computation. 

Therefore, Adversary 1 will not be able to learn 

𝑎1,1, 𝑎2,1. Therefore, the following are true: 

𝐻(𝑎1,1)  =  𝐻(𝑎1,1|𝐵) 

𝐻(𝑎2,1)  =  𝐻(𝑎2,1|𝐵) 

The same argument remains valid even for 

combination of inputs other than 𝑎1,1, 𝑎2,1, 

In addition, in the aforementioned protocol, we 
assumed 𝑚𝑖 = 3 for ease of understanding. However, 
even in the case other than 𝑚𝑖 = 3, values that are not 
leaked are not included in B; therefore, the same is 
true for any 𝑚𝑖. Therefore, we can state that the TUS 
4 method is information-theoretical secure against 
Adversary 1. 

Security against Adversary 2 

Assume that the adversary has information on all 

inputs except 𝑎1,1  and information from 𝑘 − 1 

servers. Furthermore, Adversary 2 has information 

from Step 5 of the preprocessing phase, and also 

learns 𝑏𝑔,𝑖(𝑎𝑔,𝑖 + 1)  from the online phase. In 

addition, Adversary 2 learns 𝑘 − 1  number of 

[𝑑 ∑ (𝑎1,𝑖𝑎2,𝑖𝑎3,𝑖)
𝑙
𝑖=1 ]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑗
, 𝑑𝑗  from the reconstruction 

phase. By using this information, Adversary 2 tries to 

learn about secret input 𝑎1,1  and output 

∑ (𝑎1,𝑖𝑎2,𝑖𝑎3,𝑖)
𝑙
𝑖=1 . However, if fewer than 𝑘 number 

of shares and random numbers are collected, 

information regarding the random numbers and secret 

information will not be leaked. 

To simplify the problem, we redefined the 

parameters above to avoid any duplication of a 

parameter. As a result, Adversary 2 has the following 

information (however, 𝑔′, 𝑖′  exclude 1,1;  𝜀1
(𝑖,𝑗)

  is 

used to show that it relates to the same value, and  𝜀∗
(ℎ)

 

is used when 𝑖 > 1 ). However, 𝑗′ is less than 𝑘 − 1. 



𝐶

= {𝑎𝑔′,𝑖′, 𝑏𝑔′,𝑖′, 𝑏1,1(𝑎1,1 + 1),
𝑑

𝑏1,1𝜀1
(1,2,3,5)

,

𝑑

𝜀1
(4,6,7,8)

, 𝜀∗
(ℎ)

, [𝑑 ∑ (𝑎1,𝑖𝑎2,𝑖𝑎3,𝑖)
𝑙

𝑖=1
]

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑗′

, 𝑑𝑗′} 

In addition, Adversary 2 learns 𝑘 − 1  number of 

[𝑑 ∑ (𝑎1,𝑖𝑎2,𝑖𝑎3,𝑖)
𝑙
𝑖=1 ]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑗
, 𝑑𝑗 ; however, because 

reconstruction is impossible with 𝑘 − 1  shares, 

Adversary 2 will not be able to learn the result of the 

computation. 

The same is true even for inputs other than 𝑏1,1. In 

addition, even in the case other than 𝑚𝑖 = 3, values 

that are not leaked are not included in C; therefore, 

the same can be said for any 𝑚𝑖. 
Therefore, the following statements are true, and 

the TUS 4 method is information-theoretically secure 
against Adversary 2. 

𝐻(𝑎1,1)  =  𝐻(𝑎1,1|𝐶) 

𝐻 (∑ (𝑎1,𝑖𝑎2,𝑖𝑎3,𝑖)
𝑙

𝑖=1
)  =  𝐻(∑ (𝑎1,𝑖𝑎2,𝑖𝑎3,𝑖)

𝑙
𝑖=1 |𝐶) 

Proof of security of the Reconstruction Phase 

Even if ∑ (𝑎1,𝑖𝑎2,𝑖𝑎3,𝑖)
𝑙
𝑖=1   is equal to 0, because 

nothing is leaked from 𝑘 or fewer number of shares 

on [𝑑 ∑ (𝑎1,𝑖𝑎2,𝑖𝑎3,𝑖)
𝑙
𝑖=1 ]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑗
, 𝑑𝑗 , we can say that 

Adversary 2 is not able to learn about the result of the 

computation. 

From the above, because the preprocessing phase 

only processes information that does not depend on 

any of the secret information, it can be performed in 

advance before inputting the secret information. 

However, communication is required during the 

preprocessing phase. Secret information is 

introduced in the encryption phase, and the result is 

sent to all the servers. All processes up to this stage 

are considered the preprocessing of information. The 

online phase uses all the computed values to perform 

computations, and no communication between 

servers is required. Finally, in the reconstruction 

phase, the player who wants to receive the final 

computation result collects [𝑑 ∑ (𝑎1,𝑖𝑎2,𝑖𝑎3,𝑖)
𝑙
𝑖=1 ]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑗
, 𝑑𝑗 

from 𝑘 servers 𝑆𝑗  and obtains the computation result. 

From this, we learn that communication only occurs 

in the preprocessing, encryption, and reconstruction 

phases, and no communication occurs in the online 

phase. 

In addition, when 𝑛 > 𝑘 , Steps 4 and 5 of the 

preprocessing phase can be performed by 𝑘 servers, 

but Step 7 and onwards must be performed by all 

servers. Therefore, the TUS 4 method is also 

realizable when 𝑛 ≥ 𝑘 . However, when the player 

who wishes to reconstruct the result wants to collect 

information from any 𝑘 servers in the reconstruction 

phase, each server must distribute the values 𝑑𝑗 in the 

preprocessing phase so that the player can reconstruct 

them from any 𝑘 servers. 

4. DISCUSSION AND 

CONSIDERATION 

4.1 Features of Our Proposed 

Method 

The TUS methods realize secure computation of 

secret sharing by using secret information that has 

been encrypted with random numbers. This is a 

combination of an encryption with a random number 

and computation using secret sharing, and the merits 

of this approach are discussed below. However, 

Features I and II are realized in all the TUS methods, 

but Feature III is the feature realized in this study. 

Therefore, we can state that the TUS 4 method 

realized all the merits discussed below. 

Feature I ： Secret information encrypted with 
random number can be made public  

In the TUS methods, the encrypted secret can be 

made public because the secret information is 

encrypted with a random number. However, 𝑘 

random numbers that make up the random number 

need to be concealed. For example, by making the IoT 

device to hold 𝑏𝑔,𝑖 of the TUS 4 method and compute 

𝑏𝑔,𝑖(𝑎𝑔,𝑖 + 1)  on the collected information 𝑎𝑔,𝑖 , if 𝑛 

servers that received it know each 𝑏(1,𝑖),𝑗 (and shares 

that satisfy Condition (3)), secure computation can be 

performed by using the output of the IoT device as it 

is. In contrast, in conventional methods where secret 

information is distributed directly, the IoT device will 

require a separate encryption method to conceal the 

secret information, and servers that receive it will 

have to momentarily reconstruct the encrypted 

information and distribute it using a secret sharing 

scheme. In this case, there is a risk of information 

leakage, and an additional process of reconstruction 

will be required.  

Feature II ：Secure computation with 𝑛 < 2𝑘 − 1 
is possible 



Because the secret information is not distributed, 
but is encrypted by multiplying with random numbers, 
direct multiplication of these encrypted secrets will 
not cause any increase in the polynomial degree.  
However, if it is left as it is, it will cause a difference 
in random number later, making addition impossible. 
Therefore, when adding this secret information, a 
process to unify the random number is needed, and by 
integrating this process, a combination of addition 
and multiplication of the encrypted input will be 
possible. Using this approach, we could realize secure 
computation of secret sharing with minimal server 
resources (minimum 𝑛 = 𝑘 = 2). 

Feature III: Processes involving random numbers 
can be computed in advance.  

Secret information is encrypted with a random 
number; however, because the processes in the 
encryption phase can be separated into multiple 
processes such as multiplication with random 
numbers, it is possible to realize an additional 
preprocessing phase, where only processes related to 
random numbers are performed in advance. However, 
we need to predefine in advance the computation that 
needs to be performed in the preprocessing phase. 
Typically, it is difficult to consider a case where a 
predefined type of computation is not set in advance. 
Usually, the type of computation required is set in 
advance, and then the user that is needed for that 
computation is assembled (or gathered).  At that time, 
each user can perform the required preprocessing 
process that involves a random number when 
confirming the type and flow of the process or 
computation to be performed. Thus, a faster secure 
computation using the user’s input can be realized. 

Demerit: 
The disadvantage of encrypting secret 

information with a random number is that when the 
secret information or the result of the computation is 
equal to 0, information of the secret or output will be 
leaked. To prevent this, Condition (1) is required. In 
contrast, when secret information is distributed 
directly, even if the value of the secret information is 
0, it can be concealed as is.  

4.2 Discussion About the 

Preconditions 

Condition (1) is solved using the TUS 4 method. 

Namely, in the TUS 4 method, the reconstruction of 

the multiplication result is only performed by the 

player that is allowed to know the result. 
Condition (2) is typically required in the 

following situation. In the preprocessing phase of the 
TUS 4 method, 𝑘 servers each hold random numbers 

that had been specified beforehand. However, if one 
of the servers is broken and can no longer be used, the 
random number that had been specified to that server 
will be lost; therefore, secure computation will no 
longer be possible. Therefore, when 𝑛 > 𝑘 , if the 
server or the dealer distributes the random number 
using secret sharing to all 𝑛  servers, even if 𝑛 − 𝑘 
servers are broken or lost, a substitute server can 
reconstruct the random number that is handled by the 
broken server and continue the computation. Thus, 
when 𝑛 > 𝑘, the server loss resistance of the secret 
sharing scheme can be maintained. However, even if 
the honest server is replaced with a dishonest server, 
because it is assumed that only 𝑘 − 1 out of 𝑛 servers 
are dishonest, it will not pose any problem. Therefore, 
when substituting the broken server with a new server, 
it is important to handle the same random number as 
the server that it is substituting. However, when 
considering a semi-honest adversary, this condition 
can be realized by implementing it in the algorithm. 
However, extra precautions are required when a 
malicious adversary is assumed. 

Finally, Condition (3) can be solved depending on 
the application considered. For example, when 
considering implementation in searchable encryption 
(Kamal et al., 2017; Kamal et al., 2019), because the 
owner of secret information will not be the adversary, 
Condition (3) can be realized by requesting the owner 
to generate random numbers that satisfy Condition (3). 
In addition, when considering implementation into 
outsourcing computation (Iwamura et al., 2020), 
because the client who requested the service will not 
be the adversary, the client can generate random 
numbers that satisfy Condition (3). However, the 
realization of Condition (3) can be difficult for 
applications other than the one mentioned above. 
Typically, in this case, we assume the use of a trusted 
third party (TTP), and the TTP will generate random 
numbers to satisfy Condition (3). However, the 
installation of a TTP is a significant problem. 
However, the use of a trusted execution environment 
(TEE), which has attracted significant attention 
recently, can also help with the realization of 
Condition (3). TEE is a technology that increases the 
security of the execution environment by creating an 
isolated execution environment in the processor. A 
representative method was proposed by Intel, known 
as the Software Guard Extensions (SGX) (Intel 
Corporation, 2015). Intel SGX is available in almost 
all CPUs after Intel Core i7 and can be used easily. 
However, Intel SGX is not the only option for 
realizing Condition (3). Therefore, in future studies, 
we will consider the most suitable method for this. 

From the above, in the TUS 4 method of secure 
computation against a semi-honest adversary, only 
Condition (3) is remaining. 



4.3 Qualitative Comparison 

The SPDZ method is limited to the setting 𝑛 = 𝑘 , 
and Araki et al.’s method is limited to the setting 𝑛 =
3, 𝑘 = 2. Only the TUS methods allow for parameters 
𝑛, 𝑘  to be set at any value and are able to realize 
resistance toward server-loss. Araki et al.’s method 
uses the setting of 𝑛 = 3, 𝑘 = 2 ; however, the 
computation cannot be performed even if one server 
is lost; therefore, it is not robust against server loss. 
However, SPDZ method can accommodate malicious 
adversaries. Moreover, Araki et al. proposed two 
protocol versions: a protocol with information-
theoretic security and a protocol with computational 
security. We present a qualitative comparison 
between our proposed methods and conventional 
methods in Table 1. 

5. PERFORMANCE EVALUATION 

AND EXPERIMENTAL RESULTS 

The evaluation is performed by computing the 𝑙 -
times of inner-product computation with 𝑙 =
1, 100, 10000,and parameters 𝑛, 𝑘 set at 𝑛 = 𝑘 = 2 
for the TUS 4 method. The results are then compared 
with the implementation results of the SPDZ and 
Araki et al. methods. Currently, the method by Araki 
et al. shows the fastest computation time. 

Inner-product computation is often used in 
statistical calculations such as distribution and sum of 
squared deviation, meaning that it can be applied to 
areas such as searching for gene sequences. In 
addition, in the computation of the inner product, no 
communication is required in the online phase of the 
TUS 4 method. The detailed algorithm used was the 
same as that of the TUS 4 method when 𝑚𝑖 = 2. 

Tables 2–4 show the results of the implementation 
of the online phase using Amazon Web Service with 
a maximum number of three servers. Because the 
preprocessing and encryption phases can be 
computed in advance, we did not include a 
comparison of the processing time in our evaluation. 
Because the SPDZ method requires two, whereas the 
method proposed in Araki et al. requires one data 
point to be sent for each multiplication, a total of 2𝑙 
and 𝑙 data are required to be sent in the SPDZ method 
and Araki et al.’s method, respectively. However, 
because a significant amount of time is required to 
establish a connection, all the data are sent at once 
after the connection has been established. In addition, 
the size of one dataset is 127 bits. 

From Tables 2–4, the TUS 4 method with no 
communication in the online phase shows an 
overwhelming increase in the computation speed. In 
addition, even if all the required data are sent at once 
after the connection has been established, the 
communication time increases when 𝑙 = 10000 for 
both the SPDZ and Araki et al.’s methods. 

 
Table 1. Qualitative comparison of our proposed method with conventional methods 

(I.T.: Information-theoretic Security; Comp.: Computational Security) 

 𝑛 and 𝑘 Adversary Security Server-loss Resistance 

TUS Methods 𝑛 ≥ 𝑘 Semi-honest I.T. Yes 

SPDZ Method 𝑛 = 𝑘 Malicious Comp. No 

Araki et al’s Method 𝑛 = 3, 𝑘 = 2 Semi-honest I.T. or Comp. No 

Table 2. Comparison with conventional methods (for 𝑙 = 1) 

 TUS 4 Method SPDZ Method Araki et al.’s Method 

Computation time [s] 3.80 × 10−5 3.41 × 10−5 1.92 × 10−5 

Communication establishment [s] 0 0.100482542 0.099988509 

Communication time [s] 0 0.100984535 3.80 × 10−5 

Total time [s] 3.80 × 10−5 0.201693428 0.100248701 

Table 3. Comparison with conventional methods (for 𝑙 = 100) 

 TUS 4 Method SPDZ Method Araki et al.’s Method 

Computation time [s] 2.41 × 10−3 3.36 × 10−4 2.40 × 10−4 

Communication establishment 0 0.10020276 0.100412364 

Communication time [s] 0 0.10052742 1.70 × 10−4 

Total time [s] 2.14 × 10−3 0.201361759 0.101024941 

 



Table 4. Comparison with conventional methods (for 𝑙 = 10000) 

 TUS 4 Method SPDZ 2 Method Araki et al.’s Method 

Computation time [s] 2.43 × 10−1 2.91 × 10−2 2.11 × 10−2 

Communication Establishment [s] 0 0.102026318 0.100967475 

Communication time [s] 0 1.018629671 8.34 × 10−1 

Total time [s] 2.43 × 10−1 1.158342564 0.964274707 

6. CONCLUSION 

In this paper, we provide a method for easing the 
conditions of the TUS methods that realize 
information-theoretic security against a semi-honest 
adversary when 𝑘 ≤ 𝑛 < 2𝑘 − 1 , and show that it 
can be realized by using only one condition. In 
addition, we showed that computational acceleration 
is possible using the property that processes related to 
random numbers can be separated. In addition, we 
discuss the properties in detail and show that our 
proposed method is also suitable for use in IoT. We 
also showed that our proposed method is the only 
method that allows for any 𝑛, 𝑘 to be chosen for  𝑛 ≥
𝑘. 

In a future study, we will consider the most 
suitable methods to solve Condition (3) and consider 
a secure computation with security against malicious 
adversaries. 
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