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Abstract. Zero-knowledge SNARKs (zk-SNARKs) are non-interactive proof systems with short
and efficiently verifiable proofs. zk-SNARKs are widely used in decentralised systems to address
privacy and scalability concerns. One of the main applications is the blockchain, were SNARKs
are used to prove computations with private inputs and reduce on-chain footprint verification
and transaction sizes.
We design and implement SnarkPack, a new argument that further reduces the size of SNARK
proofs by means of aggregation. Our goal is to provide an off-the-shelf solution that is practical
in the following sense: (1) it is compatible with existing deployed systems, (2) it does not require
any extra setup.
SnarkPack is designed to work with Groth16 scheme and has logarithmic size proofs and a
verifier that runs in logarithmic time in the number of proofs to be aggregated. Most importantly,
SnarkPack reuses the public parameters from Groth16 system, so it does not require a separate
trusted setup ceremony.
The key tool for our construction is a new commitment scheme that uses as public parameters
two existing ”powers of tau” ceremony transcripts. The commitment scheme allows us to in-
stantiate the inner product pairing arguments (IPP) of Bünz et al. without additional trusted
setup.
SnarkPack can aggregate 8192 proofs in 8.7s and verify them in 33ms, including un-serialization
time, yielding a verification mechanism that is exponentially faster than batching and previous
solutions in the field.
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1 Introduction

Arguments of Knowledge. In decentralised systems, there is need for protocols that
enable a prover to post a statement together with a short proof, such that any verifier can
publicly check that the statement (e.g., correctness of a computation, claims of storage etc.)
is true while expending fewer resources, e.g. less time than would be required to re-execute
the function. The two key properties in these practical settings are the size of the proof and
the verification time. A popular application is a blockchain, in which nodes need to verify all
proofs posted in each (periodic) block. A low verification time is, therefore, critical.

A proof system with succinct verification allows a verifier to check a nondeterministic
polynomial-time computation in time that is much shorter than the time required to run the
computation given the NP witness. SNARKs are proof systems that fulfill these requirements
and they are increasingly popular in real-world applications. There has been a series of works
on constructing SNARKs [BCI+13, GGPR13, PHGR13, BCTV14, Gro16] with constant-size
proofs.
Trusted Setup Ceremony. All these constant-size zkSNARK protocol have a common major
disadvantage in practice: they rely on some public parameters crs that are generated by a
trusted setup. In theory, this setup is run by a trusted-third party, while in practice, such a
bit string can be generated by a so called ”ceremony”, a multi-party computation between
participants who are believed not to collude. These ceremonies are expensive in terms of
resources, they must follow specific rules and are generally hard to organise.
Groth16. Due to its shortest proof size, Groth16 SNARK [Gro16] have become a de facto
standard in blockchain projects. This results in a great number of available implementations,
code auditing and multiple trusted setup ceremonies run by independent institutions.

Motivation. Importantly, the trusted setup in SNARK schemes sets an upper bound on the
size of computations (number of constrains in the circuit description) that can be proven.
Because modern applications have an increased demand for the size of circuits, Groth16 proofs
start to face scalability problems. A simple solution is to split the computation in different
pieces, and prove them independently, but this increases the number of proofs to be added
to a single statement.

We address this problem by showing a method to reduce the overhead in communication
and verification time for multiple proofs without the need of further trusted setup ceremonies
and allowing to take full advantage of existing building blocks for further optimisations.
Filecoin System. One extreme example is the Filecoin [Lab18] proof-of-space blockchain.
Filecoin miners must post a Groth16 proof that they correctly computed a Proof-of-Space
[Fis19] to onboard storage in the network. Each proof guarantees that the miner correctly
“reserves” 32GB of space to store specific files. The chain currently processes a large number
of proofs each day: approximately 500,000 Groth16 proofs, representing 15 PiB of storage.
This work presents a way to aggregate these proofs, leading to a reduction in gas spent in
those transactions and in verification time. Combined, these effects lead to Filecoin having a
larger onboarding rate.

Therefore, SnarkPack is a practical system that reduces the on-chain work to simply veri-
fying a succinct aggregated proof for multiple statements by employing verifiable outsourcing
to process a large number of proofs off-chain. This applies broadly to any system that needs
to delegate batches of state updates to an untrusted server.
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Contribution. This work looks into reducing proof size and verifier time for SNARKs even
further by exploring techniques to aggregate proofs without the requirement for additional
trusted setups.

We design SnarkPack, an argument that allows to aggregate n Groth16 zkSNARKs with
a O(log n) proof size and verifier time. Our scheme is based on a trusted setup that can be
constructed from two different powers of tau ceremonies (for example those of Zcash [zca18]
and Filecoin [Fil20]).

Our techniques are generic and can apply to other pairing-based SNARKs. However, we
chose to focus on Groth16 proofs and tailor optimisations for this case, since it is the most
popular scheme among practitioners.

SnarkPack is exponentially more efficient than aggregating these SNARKs via batching:
it takes 33ms to verify an aggregated proof for 8192 proofs (including unserialization) versus
621ms when doing batch verification. The former is of 40kB in size. The aggregator can
aggregate 8192 proofs in 8.7s.

Related Work. Bünz et al. [BMM+19] present a scheme for aggregating Groth16 proofs that
requires a specific trusted setup to construct the structured reference string (SRS) necessary
to verify such aggregated proofs. Our result is conceptually similar with the Bünz et al.
construction. However, because we avoid the need of a new trusted setup ceremony, we
believe that our approach is preferable to [BMM+19] in practical use cases.

Our scheme benefits from many further optimizations and has the advantage of avoid-
ing additional trust assumptions for existing systems, such as an extra ceremony for public
parameters generation.

We focus specifically on aggregating proofs generated using the same Groth16 SRS which
is the common use case, as opposed to the generic result in [BMM+19] that allow aggregation
of proofs from different SRSes. Our result can be extended to support this later case as well.

Other approach to aggregation rely on recursive composition. In more detail, [BCG+20]
propose a new SNARK for the circuit that contains n copies of the Groth16 verifier’s circuit.
However, constructing arithmetic circuits for pairings is expensive (e.g., computing a pairing
on the BLS12-377 curve requires ≈ 15000 constraints as shown in [BCG+20]). The advantage
of using such expensive schemes for aggregation is their transparent setup.

However, the costs are significant compared with our scheme: they compute FFTs, which
require time O(n log n), the veryfier performs O(n) cryptographic operations as opposed to
O(n) field operations in our scheme and they require special cycles of curves.

SnarkPack has the advantages of both words: it benefits from the power of structured
public parameters to avoid expensive computations, while it does not have to run a new
setup since it relies on already available trusted setup transcripts for the underlying Groth16
scheme.

Organisation. Our main contributions are presented as follows:

Framework for Aggregation: In Section 3 we describe the general framework for aggre-
gating Groth16 proofs for the same verification key crs. The framework is based on inner
pairing products arguments from Bünz et al. [BMM+19] for two specialised computations:
multi-exponentiation inner product (MIPP) and an target inner pairing product (TIPP).
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New Commitment Schemes: In Section 5.1 we introduce our new commitment scheme
with doubly-homomorphic property that rely on existing public setups for Groth16 to gen-
erate their structured commitment keys. Both schemes have constant size commitments and
are proved to be binding based on assumptions that hold in the generic group model. We
think these schemes can be of independent interest in protocols that need to commit to source
group elements. Our second scheme has the advantage that allows to commit to two vectors
from two different groups with no size overhead.

MIPP and TIPP from Existing Trusted Setup: In Sections 5.3 and 5.4 we show two
variations of the MIPP and TIPP arguments from [BMM+19]. The main differences from
[BMM+19] are technical adaptations needed to make these schemes compatible with existing
Groth16 setup ceremonies and optimisations related to the commitment schemes we are using.

Optimised MT-Inner Product Scheme: In Section 5.6 we design a more efficient protocol
that merge together MIPP and TIPP schemes with minimal overhead.

SnarkPack Scheme: In Section 6 we introduce SnarkPack, our optimized aggregation ar-
gument.

Implementation: In Section 7 we provide benchmarks, optimisation details for our imple-
mentation in Rust, and evaluate its efficiency against batching.

2 Preliminaries

2.1 Notations and General Background

Bilinear Groups. A bilinear group is given by a description gk = (p,G1,G2,GT ) such that

– p is prime, so Z∗p = F is a field.

– G1 = 〈g〉,G2 = 〈h〉 are cyclic groups of prime order p.

– e : G1 ×G2 → GT is a bilinear asymmetric map (pairing), which means that ∀a, b ∈ Zp :
e(ga, hb) = e(g, h)ab.

– Then we implicitly have that e(g, h) generates GT .

– Membership in G1,G2,GT can be efficiently decided, group operations and the pairing
e(·, ·) are efficiently computable, generators can be sampled efficiently, and the descrip-
tions of the groups and group elements each have linear size.

Vectors. For n-dimensional vectors a ∈ Znp ,A ∈ Gn
1 ,B ∈ Gn

2 , we denote their i-th entry by
ai ∈ Zp, Ai ∈ G1, Bi ∈ G2 respectively.

Let A‖A′ = (A0, . . . , An−1, A
′
0, . . . , A

′
n−1) be the concatenation of 2 vectors A,A′ ∈ Gn

1 .

We write A[:`] = (A0, . . . , A`−1) ∈ G`
1 and A[`:] = (A`, . . . , An−1) ∈ Gn−`

1 to denote slices
of vectors A ∈ Gn

1 for 0 ≤ ` < n− 1.

Inner pairing product. We write group operations as multiplications. We define:

– Ax = (Ax0 , . . . , A
x
n−1) ∈ Gn

1 for x ∈ Zp and a vector A ∈ Gn
1 .

– Ax = (Ax00 , . . . , A
xn−1

n−1 ) ∈ Gn
1 for vectors x ∈ Znp ,A ∈ Gn

1 .

– A ∗ x =
∏n−1
i=0 A

xi
i for vectors x ∈ Znp ,A ∈ Gn

1 .

– A ∗B :=
∏n−1
i=0 e(Ai, Bi) for group vectors A ∈ Gn

1 ,B ∈ Gn
2 .

– A ◦A′ := (A0A
′
0, . . . , An−1A

′
n−1) for vectors A,A′ ∈ Gn

1 .
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Relations. We use the notation R to denote an efficiently decidable binary relation. For pairs
(u,w) ∈ R we call u the statement and w the witness. We write R = {(u;w) : p(u,w)} to
describe a NP relation. Let LR be the language consisting of statements u for which there
exist matching witnesses in R.

Polynomial-Time Algorithms. Unless otherwise specified, all the algorithms defined through-
out this work are assumed to be probabilistic Turing machines with running time bounded
by a polynomial in his input size, where the expectation is taken over the random coins of
the algorithm - i.e., PPT.

If A is a randomized algorithm, we use y←$A(x) to denote that y is the output of A on
x. We write x←$X to mean sampling a value x uniformly from the set X.

By writing A‖χA(σ) we denote the execution of A followed by the execution of χA on
the same input σ and with the same random coins. The output of the two are separated by
a semicolon.

Security Parameter. We denote the computational security parameter with λ ∈ N: A cryp-
tosystem provides λ bits of security if it requires 2λ elementary operations to be broken.

We say that a function is negligible in λ, and we denote it by negl(λ), if it is a f(λ) =
O(λ−c) for any fixed constant c.

Adversaries. Adversaries are PPT algorithms denoted with calligraphic letters (e.g.A,B).
They will be usually be modeled as efficient algorithms taking 1λ as input.

We define the adversary’s advantage as a function of parameters to be Pr[A wins]. For a
system to be secure, we require that for any efficient adversary A, the advantage of A is
negligible in the security parameter.

Common and Structured Reference String. The common reference string (CRS) model, in-
troduced by Damg̊ard [Dam00], captures the assumption that a trusted setup in which all
involved parties get access to the same string crs taken from some distribution D exists.
Schemes proven secure in the CRS model are secure given that the setup was performed
correctly. We will use the recommended terminology “Structured Reference String” (SRS)
since all our crs are structured.

Generic Group Model. The generic group model [Sho97, Mau05] is an idealised cryptographic
model, where algorithms do not exploit any special structure of the representation of the group
elements and can thus be applied in any cyclic group.

In this model, the adversary is only given access to a randomly chosen encoding of a
group, instead of efficient encodings, such as those used by the finite field or elliptic curve
groups used in practice.

One of the primary uses of the generic group model is to analyse computational hardness
assumptions. An analysis in the generic group model can answer the question: “What is
the fastest generic algorithm for breaking a cryptographic hardness assumption”. A generic
algorithm is an algorithm that only makes use of the group operation, and does not consider
the encoding of the group.
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2.2 Cryptographic Primitives

SNARKs Let R be an efficiently computable binary relation which consists of pairs of the
form (u,w) and let LR be the language associated with R.

A Proof or Argument System forR consists in a triple of PPT algorithmsΠ = (Setup,Prove,
Verify) defined as follows:

Setup(1λ,R)→ crs: takes a security parameter λ and a binary relation R and outputs a
common (structured) reference string crs.

Prove(crs, u, w)→ π: on input crs, a statement u and the witness w, outputs an argument π.
Verify(crs, u, π)→ 1/0: on input crs, a statement u, and a proof π, it outputs either 1 indi-

cating accepting the argument or 0 for rejecting it.

We call Π a Succinct Non-interactive ARgument of Knowledge (SNARK) if further it is
complete, succinct and satisfies Knowledge Soundness (also called Proof of Knowledge).

Non-black-box Extraction. The notion of Knowledge Soundness requires the existence of an
extractor that can compute a witness whenever the prover A produces a valid argument.
The extractor we defined bellow is non-black-box and gets full access to the prover’s state,
including any random coins. More formally, a SNARK satisfies the following definition:

Definition 1 (SNARK). Π = (Setup,Prove,Verify) is a SNARK for an NP language LR
with corresponding relation R, if the following properties are satisfied.

Completeness. For all (x,w) ∈ R, the following holds:

Pr

(
Verify(crs, u, π) = 1

crs← Setup(1λ,R)
π ← Prove(crs, u, w)

)
= 1

Knowledge Soundness. For any PPT adversary A, there exists a PPT extractor ExtA such
that the following probability is negligible in λ:

Pr

(
Verify(crs, u, π) = 1
∧R(u,w) = 0

crs← Setup(1λ,R)
((u, π);w)← A‖χA(crs)

)
= negl(λ).

Succinctness. For any u and w, the length of the proof π is given by |π| = poly(λ) ·
polylog(|u|+ |w|).

Zero-Knowledge. A SNARK is zero-knowledge if it does not leak any information besides
the truth of the statement. More formally:

Definition 2 (zk-SNARK). A SNARK for a relation R is a zk-SNARK if there exists
a PPT simulator (S1,S2) such that S1 outputs a simulated common reference string crs and
trapdoor td; S2 takes as input crs, a statement u and td, and outputs a simulated proof π;
and, for all PPT (stateful) adversaries (A1,A2), for a state st, the following is negligible in
λ: ∣∣∣∣∣∣Pr

(u,w) ∈ R ∧
A2(π, st) = 1

crs← Setup(1λ)
(u,w, st)← A1(1

λ, crs)
π ← Prove(crs, u, w)

 −
Pr

(u,w) ∈ R ∧
A2(π, st) = 1

(crs, td)← S1(1λ)
(u,w, st)← A1(1

λ, crs)
π ← S2(crs, td, u)

∣∣∣∣∣∣ = negl(λ).
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Commitment Schemes A non-interactive commitment scheme allows a sender to create
a commitment to a secret value. It may later open the commitment and reveal the value or
some information about the value in a verifiable manner. More formally:

Definition 3 (Non-Interactive Commitment). A non-interactive commitment scheme
is a pair of algorithms Com = (KG,CM):

KG(1λ)→ ck: given a security parameter λ, it generates a commitment public key ck. This
ck implicitly specifies a message space Mck, a commitment space Cck and (optionally) a
randomness space Rck,. This algorithm is run by a trusted or distributed authority.

CM(ck;m)→ C: given ck and a message m, outputs a commitment C. This algorithm speci-
fies a function Comck : Mck×Rck → Cck. Given a message m ∈Mck, the sender (option-
ally) picks a randomness ρ ∈ Rck and computes the commitment C = Comck(m, ρ)

For deterministic commitments we simply use the notation C = CM(ck;m) := Comck(m, 0),
while for randomised ones we write C←$CM(ck;m) := Comck(m, ρ).

A commitment scheme is asked to satisfy one or more of the following properties:

Binding Definition. It is computationally hard, for any PPT adversary A, to come up with
two different openings m 6= m∗ ∈Mck for the same commitment C. More formally:

Definition 4 (Computationally Binding Commitment). A commitment scheme Com =
(KG,CM) is computationally binding if for any PPT adversary A, the following probability is
negligible:

Pr

[
m 6= m∗ ck← KG(1λ)

∧ CM(ck;m) = CM(ck;m∗) = C (C;m,m∗)← A(ck)

]
Hiding Definition. A commitment can be hiding in the sense that it does not reveal the secret
value that was committed.

Definition 5 (Statistically Hiding Commitment). A commitment scheme Com =
(KG,CM) is statistically hiding if it is statistically hard, for any PPT adversary A = (A0,A1),
to first generate two messages A0(ck)→ m0,m1 ∈Mck such that A1 can distinguish between
their corresponding commitments C0 and C1 where C0←$CM(ck;m0) and C1←$CM(ck;m1).

Pr

b = b′

ck← KG(1λ)
(m0,m1)← A0(ck)

b← {0, 1}, Cb←$CM(ck;mb)
b′ ← A1(ck, Cb)

 = negl(λ).

Homomorphic Commitment Scheme. A commitment scheme can also be homomorphic, ei-
ther in the space of messages or in the space of keys or in both. We call the later doubly-
homomorphic commitments.

– Message Homomorphism. For a group law + on the message space Mck and ⊕ on the
commitment space Cck, we have that from C0 = CM(ck;m0) and C1 = CM(ck;m1), one
can efficiently generate C = CM(ck;m0 +m1) by computing C = C0⊕C1 = CM(ck;m0 +
m1).

– Key Homomorphism. For a group law ? on the key space Kck, and ⊕ on the commitment
space Cck, we have that from C0 = CM(ck0;m) and C1 = CM(ck1;m), one can efficiently
generate C so that C = C0 ⊕ C1 = CM(ck0 ? ck1;m).
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Polynomial Commitments Polynomial commitments (PCs) first introduced by [KZG10]
are commitments for the message space F≤d[X], the ring of polynomials in X with maximum
degree d ∈ N and coefficients in the field F = Zp, that support an interactive argument of
knowledge (KG,Open,Check) for proving the correct evaluation of a committed polynomial
at a given point without revealing any other information about the committed polynomial.

A polynomial commitment scheme over a field family F consists in 4 algorithms PC =
(KG,CM,Open,Check) defined as follows:

KG(1λ, d)→ (ck, vk): given a security parameter λ fixing a field Fλ family and a maximal
degree d samples a group description gk containing a description of a field F ∈ Fλ, and
commitment and verification keys (ck, vk). We implicitly assume ck and vk each contain
gk.

CM(ck; f(X))→ C: given ck and a polynomial f(X) ∈ F≤d[X] outputs a commitment C.

Open(ck;C, x, y; f(X))→ π: given a commitment C, an evaluation point x, a value y and
the polynomial f(X) ∈ F[X], it output a prove π for the relation:

Rkzg :=

(ck, C, x, y; f(X)) :
C = CM (ck; f(X))
∧ deg(f(X)) ≤ d

∧ y = f(x)


Check(vk, C, x, y, π) → 1/0: Outputs 1 if the proof π verifies and 0 if π is not a valid proof

for the opening (C, x, y).

A polynomial commitment satisfy an extractable version of binding stated as follows:

Definition 6 (Computational Knowledge Binding). For every PPT adversary A that
produces a valid proof π for statement C, x, y, i.e. such that Check(vk, C, x, y, π) = 1, there
is an extractor ExtA that is able to output a pre-image polynomial f(X) with overwhelming
probability:

Pr

[
Check(vk, C, x, y, π) = 1 ck← KG(1λ, d)
∧ C = CM(ck; f(X)) (C, x, y, π; f(X))← (A‖ExtA)(ck)

]
= 1− negl(λ).

2.3 Assumptions

ASSGP - Auxiliary Structured Single Group Pairing Informally, we assume that a
PPT adversary cannot find a vector of group elements A0, . . . , Aq−1 ∈ Gq

1 such as:

1. ∃Ai 6= 1G1

2. e(A0, h)e(A1, h
a) . . . e(Aq−1, h

aq−1
) = 1GT

3. e(A0, h)e(A1, h
b) . . . e(Aq−1, h

bq−1
) = 1GT

Formally, q-Auxiliary Structured Single Group Pairing (q-ASSGP) assumption can be
stated as:
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Assumption 1 (ASSGP) The q-Auxiliary Structured Single Group Pairing (q-ASSGP) as-
sumption holds for the bilinear group generator G if for all PPT adversaries A we have, on
the probability space gk = (p,G1,G2,GT ) ← G(1λ), g←$G1, h←$G2 and a, b←$Zp the
following holds:

Pr

 (A0, . . . , Aq−1) 6= 1G1 g←$G1, h←$G2, a, b←$Zp
∧
∏q−1
i=0 e(Ai, h

ai) = 1GT σ ← ([ga
i
, gb

i
, ha

i
, hb

i
]2q−1i=0 )

∧
∏q−1
i=0 e(Ai, h

bi) = 1GT (A1, . . . , Aq)← A(gk, σ)

 = negl(λ)

We can similarly define the dual assumption, by swapping G1 and G2 in the definition above.

Lemma 1. The q-ASSGP assumption holds in the generic group model.

The proof of the lemma can be find in Appendix A.1.

ASDGP - Auxiliary Structured Double Group Pairing Formally, q-Auxiliary Struc-
tured Double Group Pairing (q-ASDGP) assumption can be stated as:

Assumption 2 (ASDGP) The q-ASDGP assumption holds for the bilinear group generator
G if for all PPT adversaries A we have, on the probability space gk = (p,G1,G2,GT ) ←
G(1λ), g←$G1, h←$G2 and a, b←$Zp the following holds:

Pr

 (A 6= 1G1 ∨ B 6= 1G2) g←$G1, h←$G2, a, b←$Zp
∧
∏q−1
i=0 e(Ai, h

ai)
∏2q−1
i=q e(ga

i
, Bi) = 1GT σ ← ([ga

i
, gb

i
, ha

i
, hb

i
]2q−1i=0 )

∧
∏q−1
i=0 e(Ai, h

bi)
∏2q−1
i=q e(gb

i
, Bi) = 1GT (A,B)← A(gk, σ)

 = negl(λ)

Lemma 2. The q-ASDGP assumption holds in the generic group model.

The proof of the lemma can be found in Appendix A.2.

3 Overview of our Techniques

In this section we present the necessary background and building blocks for aggregating
multiple Groth16 proofs for the same SRS (same verification key).

3.1 Background on Groth16

Before presenting the aggregation argument scheme, we recall here [Gro16] SNARK scheme
construction.

Let C be an arithmetic circuit over Zp, with m wires and d multiplication gates. Let
Q = (t(x), {vk(x), wk(x), yk(x)}mk=0) be a QAP which computes C.

We denote by Iio = {1, 2, . . . `} the indices corresponding to the public input and public
output values of the circuit wires and by Imid = {`+1, . . .m}, the wire indices corresponding
to the private input and non-input, non-output intermediate values (for the witness).

We describe SNARK= (Setup,Prove,Verify) scheme in [Gro16] that consists in 3 algo-
rithms as per Figure 1.

10



Groth.Setup(1λ,R)

α, β, γ, δ←$Z∗p, s←$Z∗p,

crs =
(
QAP, gα, gβ , gδ, {gs

i

}d−1
i=0 ,

{
g
βvk(s)+αwk(s)+yk(s)

γ

}`
k=0

,
{
g
βvk(s)+αwk(s)+yk(s)

δ

}
k>`

,
{
g
sit(s)
δ

}d−2

i=0
,

hβ , hγ , hδ, {hs
i

}d−1
i=0

)
vk :=

(
P = gα, Q = hβ ,

{
Sk = g

βvk(s)+αwk(s)+yk(s)
γ

}`
k=0

, H = hγ , D = hδ
)

td = (s, α, β, γ, δ)

return (crs, td)

Groth.Prove(crs, u, w)

u = (a1, . . . , a`), a0 = 1

w = (a`+1, . . . , am)

v(x) =
∑m
k=0 akvk(x)

vmid(x) =
∑
k∈Imid

akvk(x)

w(x) =
∑m
k=0 akwk(x)

wmid(x) =
∑
k∈Imid

akwk(x)

y(x) =
∑m
k=0 akyk(x)

ymid(x) =
∑
k∈Imid

akyk(x)

h(x) = (v(x)w(x)−y(x))
t(x)

fmid =
βvmid(s) + αwmid(s) + ymid(s)

δ
r, u←$Z∗p
a = α+ v(s) + rδ, b = β + w(s) + uδ

c = fmid + t(s)h(s)
δ

+ ua+ rb− urδ

return (π = (A = ga, B = hb, C = gc))

Groth.Verify(vk, u, π)

π = (A,B,C)

vio(x) =
∑`
i=0 aivi(x)

wio(x) =
∑`
i=0 aiwi(x)

yio(x) =
∑`
i=0 aiyi(x)

fio =
βvio(s) + αwio(s) + yio(s)

γ

Check

e(A,B) = e(gα, hβ) · e(gfio , hγ) · e(C, hδ)

Groth.Sim(td, u)

a, b←$Z∗p

c =
ab− αβ − βvio(s) + αwio(s) + yio(s)

δ

return (π = (A = ga, B = hb, C = gc))

Fig. 1. Groth16 Construction from QAP.

Note that the Groth16 SRS consist in consecutive powers of some random evaluation
point s in both groups G1 and G2 :

{gsi}d−1i=0 ∈ Gd
1, {hsi}d−1i=0 ∈ Gd

2.

and some additional polynomials evaluated in this random point s.

Remark that for the verification algorithm, we do not use the entire structured reference
string crs, but just part of it. For the sake of presentation, we will call the verifier key vk and
set it using the necessary elements from the crs:

vk :=
(
P = gα, Q = hβ,

{
Sj = g

βvj(s)+αwj(s)+yj(s)
γ

}`
j=0

, H = hγ , D = hδ
)
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3.2 Building Blocks

SRS. We need elements from two independent compatible Groth16 SRS:

– Common Bilinear group description for both SRS:

gk = (p,G1,G2,GT )

– Common group generators for both SRS: g ∈ G1, h ∈ G2

– First SRS with random evaluation point a ∈ Zp for:

v1 = (h, ha, . . . , ha
n−1

) and w1 = (ga
n
, . . . , ga

2n−1
)

– Second SRS with random evaluation point b ∈ Zp for:

v2 = (h, hb, . . . , hb
n−1

) and w2 = (gb
n
, . . . , gb

2n−1
)

Inner Product Commitments. To instantiate our aggregated scheme, we use two new
pairing commitment schemes. These schemes need to satisfy special properties (as discussed
in Section 5.1) and they require structured commitment keys cks, ckd of the form cks =
(v1,v2), ckd = (v1,w1,v2,w2). We then commit to vectors A ∈ Gn

1 ,B ∈ Gn
2 as follows:

1. Single group version CMs(A) := CMs(cks; A) = (TA, UA) where

TA = A ∗ v1 = e(A0, h)e(A1, h
a) . . . .e(An−1, h

an)

UA = A ∗ v2 = e(A0, h)e(A1, h
b) . . . .e(An−1, h

bn)

2. Double group version CMd(A,B) := CMd(ckd; A,B) = (TAB, UAB) where

TAB = (A ∗ v1)(w1 ∗B), UAB = (A ∗ v2)(w2 ∗B)

GIPA Protocols. One of the key building blocks for our aggregation protocol are generalized
inner product arguments, called GIPA protocols.

These protocols, as designed in [BMM+19], enable proving the correctness a large class
of inner products between vectors and/or field elements committed using (possibly distinct)
doubly-homomorphic commitment schemes.

While GIPA schemes from [BMM+19] achieve logarithmic communication, they only have
linear verifier time. For our aggregation protocol, we instantiate two specialised cases of GIPA
– MIPP and TIPP protocols – using our new commitment schemes under structured references
string, and thus, we obtain logarithmic verifier time.

We restate the relations for the two specialized GIPA constructions from [BMM+19]
below:
Multiexponentiation Inner Product Proof (MIPP). The relation for MIPP for a known
vector r ∈ Znp and a commitment (TA, UA) to a vector A ∈ Gn

1 is defined by:

Rmipp := {((TA, UA), Z, r; A) : Z = A ∗ r ∧ (TA, UA) = CMs(A)}.

Target Inner Pairing Product Proof (TIPP). A TIPP allows a prover to demonstrate
that certain pairing relations hold between committed group elements.

More precisely, the relation for the TIPP we need in Groth16 aggregation is defined by:

Rtipp :=
{

((TAB, UAB), Z, r; A,B) : Z = A∗Br ∧ (TAB, UAB) = CMd(A,B) ∧ r = (ri)n−1i=0

}
.
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4 Framework for Aggregation

An Argument for Aggregation is a proof system that takes as input multiple proofs and
computes a new smaller proof, in this case for n initial proofs we end up with a final aggregated
proof of size O(log n).

Overview of the protocol. The high-level idea of Groth16 aggregation is quite simple:
since Groth16 verification consists in checking a pairing equation between the proof elements
π = (A,B,C), instead of checking that n pairing equations are simultaneously satisfied it
is sufficient to prove that only one inner pairing product of a random linear combination of
these initial equations defined by a verifier’s random challenge r ∈ Zp holds. In a bit more
detail, Groth16 verification asks to check an equation of the type e(Ai, Bi) = Yi · e(Ci, D)
for Yi ∈ GT , D ∈ G2 where Yi is a value computed from each statement ui = ai and πi =
(Ai, Bi, Ci)

n−1
i=0 are proof triples.

The aggregation will instead check a single randomized equation:

n−1∏
i=0

e(Ai, Bi)
ri =

n−1∏
i=0

Y ri

i · e
( n−1∏
i=0

Cr
i

i , D
)
.

This can be rewritten using an inner product notation as :

ZAB = Y ′prod · e(ZC , D), and ZAB := A ∗Br and ZC := C ∗ r

where we denoted by Y ′prod :=
∏n−1
i=0 Y

ri
i .

What is left after checking that this unified equation holds is to verify that the elements
ZAB, ZC are consistent with the initial proof triples in the sense that they compute the
required inner product. This is done by combining pairing commitments schemes with TIPP
and MIPP arguments: the TIPP argument shows that ZAB = A ∗Br for some initial vectors
A ∈ G1,B ∈ G2 committed using CMd; the MIPP argument shows that ZC = C ∗ r for some
vector C ∈ G1 committed under CMs.

Relation for Aggregation. More formally, we introduce the relation for aggregating n
Groth16 proof vectors A,C ∈ Gn

1 ,B ∈ Gn
2 :

RAGG :=
{

(vk, crsagg,u = {ai}n−1i=0 ;π = {(A,B,C)}) : Groth.Verify(vk, ui, πi) = 1, ∀i
}

where ui = ai = {ai,j}`j=0, πi = (Ai, Bi, Ci) ∈ G1 ×G2 ×G1 for i = 0, . . . n− 1.

Algorithms for Aggregation. The aggregation protocol is non-interactive and uses a hash
function Hash0 modeled as a random oracle. We will consider the description of this hash
function publicly available for prover and verifier and part of their keys. The three algorithms
for the scheme are described in the following:

Setup Algorithm

Inputs: (1λ,RAGG)

1. Set commitment keys for both single and double commitment schemes using Groth16 crs:

cks = (v1,v2), ckd = (v1,v2,w1,w2).
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2. Construct MIPP and TIPP CRS from these keys: crsmipp, crstipp
3. Choose a hash function Hash0 : G4

T → Zp given by its description hk0.
Output: Keys: crsagg = (vk, crsmipp, crstipp, hk0)

Prove Algorithm

Inputs: crsagg,u = {ai,j}i=0,...n−1;j=0,...`, π = {πi}n−1i=0 = (A,B,C)

1. Parse proving key crsagg := (vk, crsmipp, crstipp, hk0)
2. Commit to A and B : CMd(ckd; A,B) = (TAB, UAB)

3. Commit to C : CMs((v1,v2); C) = (TC , UC)

4. Derive random challenge r = Hash0(TAB, UAB, TC , UC) ∈ Zp and set r = {ri}n−1i=0

5. Compute ZAB = Ar ∗B

6. Compute ZC = C ∗ r =
∏n−1
i=0 C

ri
i .

7. Run TIPP proof:

πtipp = TIPP.Prove(crstipp, (TAB, UAB), ZAB, r; A,B) (1)

8. Run MIPP proof:

πmipp = MIPP.Prove(crsmipp, (TC , UC), ZC , r; C) (2)

Output: Aggregated proof

πagg = ((TAB, UAB), (TC , UC), ZAB, ZC , πtipp, πmipp)

Verification Algorithm

Inputs: vkagg,u = {ai,j}i=0,...n−1;j=0,...`, πagg

1. Parse verification key vkagg := (vk, crsmipp, crstipp, hk0)

2. Parse vk :=
(
P = gα, Q = hβ, {Sj}`j=0, H = hγ , D = hδ

)
3. Derive random challenge r = Hash0(TAB, UAB, TC , UC)

4. Compute ZSj = S
∑n−1
i=0 aijr

i

j for all j = 0 . . . `.

5. Check TIPP proof πtipp

b1 ← TIPP.Verify(crstipp, (TAB, UAB), ZAB, r, πtipp) (3)

6. Check MIPP proof

b2 ← MIPP.Verify(crsmipp, (TC , UC), ZC , r, πmipp) (4)

7. Check Groth16 aggregated equations to the decision bit b3:

ZAB
?
= e(P

∑n−1
i=0 r

i
, Q)e(

∏̀
j=0

ZSj , H)e(ZC , D)

Output: Decision bit b = b1 ∧ b2 ∧ b3
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5 Building Blocks Instantiation

5.1 Pair Group Commitment Schemes

In this section we are looking for a commitment scheme to group elements in a bilinear group
that can be compatible with the GIPA protocol described in [BMM+19]. Our goal is to find
such a commitment scheme that uses a structured reference string similar to the one used in
Groth16.

Inner Product Commitments. In order to use them in specialized GIPA protocols, we require
the following properties from our commitment schemes:

– Computationally Binding Commitment: as per Definition 4

– Constant Size Commitment: the commitment value is independent of the length of the
committed vector

– Doubly-Homomorphic: homomorphic both in the message space and in the key space

CM(ck1 + ck2;M1 +M2) = CM(ck1;M1) + CM(ck1;M2) + CM(ck2;M1) + CM(ck2;M2).

– Collapsing Property: double-homomorphism implies a distributive property between keys
and messages that allow to collapse multiple messages via a Collapse function:

Collapse

CM

ck1‖ck′1
ck2‖ck′2
ck3

M1‖M1

M2‖M2

M3

 = CM

ck1 · ck′1
ck2 · ck′2

ck3

M1

M2

M3


The Collapse function is used to reduce the size of commitments with repeated entries. As

the commitment scheme has constant sized commitments, we can simply add commitments
of different length and the identity is already a Collapse function defined Collapseid(C) = C.

There are a few candidates for such schemes, but none of them are adapted for fulfilling
our goals.

The commitment scheme proposed by [BMM+19] works under some new assumption
that asks for the commitment keys to be structured in a specific way. In order to use this
commitment, we need to be careful to not give out certain elements which are present in most
SRS from available SNARK setup ceremonies (that we would like to reuse).

The commitment scheme proposed by Lai, Malavolta and Ronge [LMR19] is likely to
satisfy the properties, but it is shown to be binding only for unstructured random public
parameters, while in order to obtain a log-time verification GIPA scheme, we would need
some structure for the commitment keys.

We adapt these commitments from [LMR19] to work with structured keys and we intro-
duce a new assumption that holds in the generic group model and prove the commitments
binding for an adversary that has access to these structured public parameters.

To better adapt to the application in the two specialized GIPA protocols, we define two
different variants of the commitment scheme, one that takes a vector of elements of a single
group G1, and one that takes two vectors of points in G1 and G2 respectively.

We describe our two schemes and the SRS generation ceremonies required for the gener-
ation of the public commitment keys in the following:
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Structured Reference String. The two commitment schemes have the advantage that
they can reuse two compatible (independent) SNARK setup ceremonies for their structured
keys generation and therefore can be easily deployed without requiring a new trusted setup.

We ask from the two ceremonies to be using the same basis in the same bilinear group,
but two different randomnesses:

1. Generators g ∈ G1, h ∈ G2

2. Elements related to a random a ∈ Zp:

v1 = (h, ha, . . . , ha
n−1

), w1 = (ga
n
, . . . , ga

2n−1
)

3. Elements related to a random b ∈ Zp:

v2 = (h, hb, . . . , hb
n−1

) w2 = (gb
n
, . . . , gb

2n−1
)

Construction from 2 powers of tau. The construction comes naturally from 2 power of tau
that used the same generators g and h, they will both have different powers a = τ1 and
b = τ2:

5.2 Generalized Inner Product Arguments

Generalized Inner Product Arguments (GIPA) are designed to prove generalizations of the in-
ner product argument. In this section we show two different types of inner product arguments:
MIPP and TIPP.

Both MIPP and TIPP protocols are described with respect to doubly-homomorphic com-
mitment schemes such that the inner product map is well-defined over their message space. For
our instantiation, we will use the inner product commitment schemes introduced in Section
5.1 which satisfy the desired properties for usage in the two inner pairing product protocols.

We recall here the two generalized inner product maps for bilinear group gk = (p,G1,G2,GT , e)
that we consider:

1. Multiexponentiation inner product map Gm
1 × Fm → G1:

A ∗ b =
∏

Abii

2. Inner pairing product map Gm
1 ×Gm

2 → GT :

A ∗B :=
∏

e(Ai, Bi) =
∏

e(gai , gbi) = e(g, g)
∑
aibi

KZG Polynomial Commitment. We will need a polynomial commitment scheme (Definition
2.2) that allows for openings of evaluations on a point and proving correctness of these open-
ings. Specifically we need the polynomial commitments to prove succinctly the correctness of
the final commitment keys v1, v2 and w1, w2 at the end of the protocol. We can use a poly-
nomial commitment scheme here because these final commitment keys have a well defined
structure as shown in [BMM+19]. The candidate for the PC is KZG scheme in [KZG10] which
allows us to have a constant time verifier for this check.

KZG.PC = (KZG.KG,KZG.CM,KZG.Open,KZG.Check) defined over bilinear groups gk =
(p,G1,G2,GT ) with G1 = 〈g〉,G2 = 〈h〉 as follows:
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KZG.KG(1λ, n)→ (ckkzg, vkkzg): Set keys ckkzg = {gαi}n−1i=0 , vkkzg = hα.

KZG.CM(ckkzg; f(X))→ Cf : For f(X) =
∑n−1

i=0 fiX
i, computes Cf =

∏n−1
i=0 g

fiα
i

= gf(α).
KZG.Open(ckkzg;Cf , x, y; f(X))→ π: For an evaluation point x, a value y, compute the quo-

tient polynomial

q(X) =
f(X)− y
X − x

and output prove π = Cq = KZG.CM(ckkzg; q(X)).
KZG.Check(vkkzg = hα, Cf , x, y, π)→ 1/0: Check if

e(Cf · g−y, h) = e(Cq · g−x, hα).

The KZG.PC scheme works in a similar fashion for a pair of keys of the form ckkzg =

{hαi}n−1i=0 , vkkzg = gα, by just swapping the values in the final pairing equation check to
match the correct basis.

5.3 MIPP with Pair Group Commitment

This is a multiexponentiation product argument for the relation

Rmipp := {((TA, UA), A, r; A) : Z = A ∗ r ∧ (TA, UA) = CMs(cks; A)}.

The following protocol is a variation of the original MIPP argument presented in [BMM+19].
The main difference is the pairing commitment scheme used, in our version we employ CMs

which relies on a Groth16-friendly setup ceremony as discussed in the introduction.
For the proving strategy, the idea is the same as in the MIPP from [BMM+19]: In a

nutshell, the prover runs a loop and in each iteration it is first splitting the initial vector A
in half and then using collapsing property of the commitment to recommit to both halves
together (identity as Collapse function is sufficient here as shown in Section 5.1).

After reducing the size of the commitment keys to 1, the prover has to show well-
formedness of the such-obtained final structured commitment keys. The final keys v1, v2
are interpreted as a KZG polynomial commitment that the prover must open at a random
point z. For a more detailed discussion see Section 5.5.

Construction. Our MIPP argument consists in 3 algorithms MIPP = (MIPP.Setup,MIPP.Prove,
MIPP.Verify) that work as follows:

MIPP.Setup(1λ,Rmipp)→ crsmipp:
1. Set commitment keys for KZG scheme from cks (CMs is specified in Rmipp):

ck1v := {hai}n−1i=0 , vk1v := ga

ck2v := {hbi}n−1i=0 , vk2v := gb

ckkzg := (ck1v, ck2v), vkkzg := (vk1v, vk2v)

2. Fix a hash function Hash1 : Zp ×G6
T → Zp and its description hk1.

3. Fix a hash function Hash2 : Zp ×G2
2 → Zp and its description hk2.

4. Set crsmipp := (hk1, hk2, cks, ckkzg, vkkzg)

MIPP.Prove(crsmipp, (TA, UA), Z, r; A, r)→ πmipp:
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– Loop ”split & collapse” for step i
1. ni = ni−1/2 where n0 = n
2. If ni == 1: break
3. Compute left and right inner products

ZL = A
r[:n′]
[n′:] =

n′∏
i=0

Arii+n′

ZR = A
r[n′:]
[:n′] =

n′∏
i=0

A
ri+n′
i

4. Compute right cross commitments:

TL, UL = CMs((v1,v2),A[n′:]||0)

= ((A[n′:] ∗ v1[:n′]), (A[n′:] ∗ v2[:n′]))

5. Compute left cross commitments:

TR, UR = CMs((v1,v2),0||A[:n′])

= ((A[:n′] ∗ v1[n′:]), (A[:n′] ∗ v2[n′:]))

6. Compute challenge (with x0 = 0)

xi = Hash1(xi−1, ZL, ZR, TR, TL, UR, UL), x0 = 0

7. Compute rescaled vectors

A := A[:n′] ◦Axi
[n′:]

r := r[:n′] + x−1i r[n′:]

8. Set new rescaled key

(v1,v2) := (v1[:n′] ◦ v1
x−1
i

[n′:],v2[:n′] ◦ v2
x−1
i

[n′:]) (5)

– Prove correctness of final commitment key (v1, v2) ∈ G2
2:

1. Define fv(X) =
∏`−1
i=0(1 + x−1`−jX

2j ) for n = 2`

2. Draw challenge z = Hash2(x`, v1, v2)
3. Prove that v1 = hfv(a) and v2 = hfv(b) are KZG commitments of fv(X) by evalua-

tion in z

πv1 ← KZG.Open(ck1v; v1, z, fv(z); fv(X))

πv2 ← KZG.Open(ck2v; v2, z, fv(z); fv(X))

4. Set πv = (πv1 , πv2)
– For A and r′ (elements from the last step of the loop with respect A and to r) set

πmipp = (A, r′,ZL,ZR,TL,TR,UL,UR, (v1, v2), πv)
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MIPP.Verify(crsmipp, (TA, UA), Z, r;πmipp)→ b:

– Loop iterator i : 1→ `:

1. Reconstruct challenges x0 = 0, {xi}`i=1:

xi = H(xi−1,ZL[i],ZR[i],TL[i],TR[i],UL[i],UR[i])

2. Construct final commitment values:

• Zi = ZL[i]xi · Zi−1 · ZR[i]x
−1
i (representing CMid(1G2 ; Ar))

• Ti = TL[i]xi · Ti−1 ·TR[i]x
−1
,

• Ui = UL[i]xi · Ui−1 ·UR[i]x
−1

(representing CMs(cks; A))

where Z0 = Z, T0 = TA, U0 = UA
– Verify commitments into decision bit b0:

1. Z`
?
= Ar

′

2. Check if T`
?
= e(A, v1), U`

?
= e(A, v2)

– Verify final commitment keys v1, v2 via KZG

1. Reconstruct KZG challenge point: z = H(x`, v1, v2)
2. Reconstruct commitment polynomial fv(X) =

∏l−1
i=0(1 + x−1`−iX

2i)
3. Run verification for openings of evaluations in z

b1 ← KZG.Check(vk1v; v1, z, fv(z);πv1)

b2 ← KZG.Check(vk2v; v2, z, fv(z);πv2)

4. Set b = b0 ∧ b1 ∧ b2

The security result for the MIPP protocol is following the same arguments as the one in
[BMM+19]:

Theorem 3. If CMs is a binding inner product commitment, KZG.PC is a polynomial com-
mitment with Computational Knowledge Binding as per Definition 6, then the protocol MIPP
has computational knowledge soundness (Definition 1).

Remark that both CMs and KZG.PC schemes are secure in the Generic Group Model (or
under specific assumptions such as q-ASSGP and q-SDH).

5.4 TIPP with Pair Group Commitment

This is a target inner pairing argument for the relation:

Rtipp := {((TAB, UAB), Z, r; A,B) : Z = A ∗Br ∧
(TAB, UAB) = CMd(ckd; A,B) ∧ r = (ri)n−1i=0 },

where (TAB, UAB) ∈ GT ×GT , Z = A ∗Br ∈ GT , A ∈ Gn
1 , B ∈ Gn

2 , r ∈ Zp.
It works similarly to MIPP argument, with the difference that vectors of group elements

A,B are committed together using the double version of the pairing commitment scheme
CMd.
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Construction. Our TIPP argument consists in 3 algorithms TIPP = (TIPP.Setup,TIPP.Prove,
TIPP.Verify) that work as follows:

TIPP.Setup(1λ,Rtipp)→ crstipp:
1. Set commitment keys for KZG scheme:

ck1v := {hai}n−1i=0 , vk1v := ga ck1w := {gai}2n−1i=0 , vk1w := ha

ck2v := {hbi}n−1i=0 , vk2v := gb ck2w := {gbi}2n−1i=0 , vk2w := hb

2. Define ckkzg := (ckjσ), vkkzg := (vkjσ) for j = 1, 2; σ = v, w.
3. Fix a hash function Hash1 : Zp ×G6

T → Zp and its description hk1.
4. Fix a hash function Hash2 : Zp ×G2

2 ×G2
1 → Zp and its description hk2.

5. Set crstipp := (hk1, hk2, ckd, ckkzg, vkkzg).

TIPP.Prove(crstipp, (TAB, UAB), Z, r; A,B, r)→ πtipp:

For ease of exposition, set B′ := Br and w′1 := wr−1

1 and w′2 := wr−1

2 .
– Loop ”split & collapse” for step i

1. ni = ni−1/2 where n0 = n
2. If ni == 1: break
3. Compute left and right inner products

ZL = A[n′:] ∗B′[:n′] and ZR = A[:n′] ∗B′[n′:]

4. Compute right cross commitments:

TL, UL = CMd((v1,w
′
1; v2,w

′
2); A[n′:]||0,0||B′[:n′]))

= ((A[n′:] ∗ v1[:n′])(w1′[n:′]
∗B′[:n′]), (A[n′:] ∗ v2[:n′])(w2′[n′:] ∗B′[:n′]))

5. Compute left cross commitments:

TR, UR = CMd((v1,w
′
1; v2,w

′
2); 0||A[:n′],B

′
[n′:]||0)

= ((A[:n′] ∗ v1[n′:])(w
′
1[:n′]
∗B′[n′:]), (A[:n′] ∗ v2[n′:])(w

′
2[:n′]
∗B′[n′:])

6. Compute challenge xi = Hash1(xi−1, ZL, ZR, TR, TL, UR, UL) (for x0 = 0)
7. Compute Hadamard products on vectors

A := A[:n′] ◦Axi
[n′:] = (A0A

xi
n′ , . . . , An′−1A

xi
n−1) and B′ := B′[:n′] ◦B′

x−1
i

[n′:]

8. Compute Hadamard products on keys

(v1,v2) := (v1[:n′] ◦ v1
x−1
i

[n′:],v2[:n′] ◦ v2
x−1
i

[n′:]) (6)

(w′1,w
′
2) := (w′1[:n′] ◦w

′xi
1[n′:]

,w′2[:n′] ◦w
′xi
2′[n′:]

) (7)

9. Set n = n′

– Prove correctness of final commitment keys (v1, v2) ∈ G2
2; (w′1, w

′
2) ∈ G2

1 after ` rounds
(n = 2`) using KZG:
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1. Define fv(X) =
∏`−1
j=0(1 + x−1`−jX

2j ) and fw(X) = Xn
∏`−1
j=0

(
1 + x`−jr

−2jX2j
)

2. Draw challenge z = Hash2(x`, v1, v2, w1, w2) for n = 2`

3. Prove that v1 = gfv(a), v2 = hfv(a) and w1 = gfw(a), w2 = hfw(b) are KZG com-
mitments of fv(X) by opening evaluations in z

πvj ← KZG.Open(ckjv; vj , z, fv(z); fv(X)) for j=1,2

πwj ← KZG.Open(ckjw;wj , z, fw(z); fw(X)) for j=1,2

– Set

πtipp = (A,B′,ZL,ZR,TL,TR,UL,UR, (v1, v2), (w
′
1, w

′
2), (πvj , πwj )j=1,2)

where A and B′ are the final elements from the loop after collapsing A and B′.

TIPP.Verify(crstipp, (TAB, UAB), Z, r;πtipp)→ b:
– Loop iterator i : 1→ ` = log(n):

1. Reconstruct challenges x0 = 0, {xi}`i=1, recursively:

xi = Hash1(xi−1,ZL[i],ZR[i],TL[i],TR[i],UL[i],UR[i])}`i=1

2. Construct final commitment values recursively, i = 1→ `:
• Zi = ZL[i]xi · Zi−1 · ZR[i]x

−1
i

• Ti = TL[i]xi · Ti−1 ·TR[i]x
−1

• Ui = UL[i]xi · Ui−1 ·UR[i]x
−1

where Z0 = Z, T0 = TAB, U0 = UAB
– Verify commitments into decisional bit b0:

1. Z`
?
= e(A,B′)

2. Check if e(A, v1)e(w
′
1, B

′)
?
= T` and e(A, v2)e(w

′
2, B

′)
?
= U`

– Verify final commitment keys vj , w
′
j , for j = 1, 2 via KZG

1. Reconstruct KZG challenge point: z = Hash2(x`, v1, v2, w
′
1, w

′
2) for n = 2`

2. Reconstruct commitment polynomials:

fv(X) =

`−1∏
j=0

(
1 + x−1`−jX

2j
)

(8)

fw(X) = Xn
`−1∏
j=0

(
1 + x`−jr

−2jX2j
)

(9)

3. Run verification for openings of evaluations in z for j = 1, 2:

b11 ← KZG.Check(vk1v; v1, z, fv(z);πv1), b12 ← KZG.Check(vk2v; v2, z, fv(z);πv2)

b21 ← KZG.Check(vk1w;w1, z, fw(z);πw1), b22 ← KZG.Check(vk2w;w2, z, fw(z);πw2)

– Set b = b0 ∧ b11 ∧ b12 ∧ b21 ∧ b22

The security result for the TIPP protocol is following the same proving strategy as the
one in [BMM+19]:
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Theorem 4. If CMd is a binding inner product commitment, KZG.PC is a polynomial com-
mitment with Computational Knowledge Binding as per Definition 6, then the protocol TIPP
has computational knowledge soundness (Definition 1).

Remark that both CMd and KZG.PC schemes are secure in the Generic Group Model (or
under specific assumptions such as q-ASDGP for the CMd commitment scheme and q-SDH
for the validity of the final commitment keys done using KZG.PC scheme).

Proof. The proof follows the same ideas as [BMM+19] proof for their TIPP scheme.

5.5 Formula for Final Commitment Keys

There is one step in showing that such protocol satisfies computational knowledge soundness
that is slightly different in our case: Defining the correct polynomials to be committed under
kzg.PC scheme in order to show that the structure of the honestly generated final commitment
keys is correct.

Recall that the two schemes MIPP and TIPP achieve log-time verification using a specially
structured commitment scheme that allows the prover to use one new challenge xj in each
round of recursion to transform the commitments homomorphically. Because of this, the
verifier must also perform a linear amount of work in rescaling the commitment keys (cks/ckd
for MIPP/TIPP). To avoid having the verifier rescale the commitment keys, our schemes
apply the same trick as [BMM+19]: we do this by outsourcing the work of rescaling the
commitment keys to the prover.

Then what is left is to convince a verifier that this rescaling was done correctly just by
checking the final commitment keys and a succinct proof (a KZG polynomial opening). This is
verified via a log-time evaluation of the polynomial and two/four (for MIPP/TIPP) pairings.

Recall the structure of the 4 vectors v1,v2 ∈ G2 and w1,w2 ∈ G1 used for the commitment
keys cks, ckd:

v1 = (h, ha, . . . , ha
n−1

), w1 = (ga
n
, . . . , ga

2n−1
), w′1 := wr−1

1

v2 = (h, hb, . . . , hb
n−1

), w2 = (gb
n
, . . . , gb

2n−1
), w′2 := wr−1

2

We will show the formulae for the final commitment keys v1, v2, w
′
1, w

′
2 (the result of many

rounds of rescaling v1,v2,w
′
1,w

′
2 until the end of the loop) used in our schemes MIPP and

TIPP are correct. (The way we define the two polynomials fv(X) for v1, v2 and fw(X) for
w′1, w

′
2.)

For ease of presentation, we state and prove the formula for a generic vector v =

(v1, v2, . . . , v2`) = (g, gα, gα
2
, . . . gα

2`−1
) of length n = 2` to which we apply the same rescal-

ing as for the commitment keys cks, ckd. The specific formulae for v1,v2,w
′
1,w

′
2 are easy to

deduce once we have a formula for v.
Consider a challenge xj for round j, where the total number of rounds is ` and x0 = 0.
Note that at each round j we split the sequence v1, v2, . . . , vn in half and we use xj to

rescale first half and the second half of the vector recursively until we end up with a single
value v.

We claim that the formula for some initial key v = (v1 = g, v2 = gα, . . . , vn = gα
n−1

) is:

v = g
∏`−1
j=0(1+x`−jα

2j )
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for a vector of challenges x0 := 0, x1 . . . x`−1, x`. We will prove the general formula by induc-
tion:

First step, check the formula for ` = 1 (initial commitment key v has two elements v1, v2):

v = v1v
x1
2 = g1+x1α = g

∏0
j=0(1+x`−jα

2j ).

Secondly, suppose the statement is true for `− 1. We prove it for `.
On the first round, we have a challenge x1 and we rescale the commitment key v which

has length n = 2` as follows:
v′ = v[:2`−1] ◦ vx1

[2`−1:]
,

v′ = (g · gx1α2`−1

, gα · gx1α2`−1+1
, gα

2 · gx1α2`−1+2
, . . . ).

We can write this differently as v′=(v1v
x1α2`−1

1 , . . . v2`−1vx1α
2`−1

2`−1 ).
This gives us a nicely written commitment key after first round

v′ = (v1+x1α
2`−1

1 , v1+x1α
2`−1

2 , . . . v1+x1α
2`−1

2`−1 ) = v1+x1α2`−1

[:2`−1]
.

We can apply the induction assumption for step `− 1 to v[:2`−1] which is a commitment

key of length 2`−1. This means the final key for v is:

v =

(
g
∏`−2
j=0

(
1+x`−jα

2j
))(1+x1α2`−1

)

= g
∏`−1
j=0(1+x`−jα

2j ).

Remark than in more generality, this can be written as:

v = v
∏`−1
j=0(1+x`−jα

2j )

1

Therefore, if we start with an initial key w = (w1 = gα
n
, wα

n+1

2 . . . , wn = gα
2n−1

), the
final key w can be written as:

w = w
∏`−1
j=0(1+x`−jα

2j )

1 = gα
n
∏`−1
j=0(1+x`−jα

2j )

5.6 MT-IPP Scheme for Optimized Aggregation

In order to optimize the aggregation contruction based on MIPP and TIPP schemes pre-
sented in Section 4, we will “fuse” together the two schemes MIPP and TIPP. More precisely
MIPP and TIPP are at the origin interactive protocols, that are turned into non-interactive
arguments using Fiat-Shamir transformation. This means that at each round the challenges
are generated by a hash function that is modeled by a random oracle (see Item 6 in MIPP,
Item 6 in TIPP). We will define the fusion protocol MT-IPP that simultaneously generate
the challenges for both MIPP and TIPP, by running a common hash function on both MIPP
and TIPP inputs for each round.

This new protocol will be used to replace the steps Equation (2), Equation (1) in the
proving algorithm Section 4 of the Groth16 Aggregation argument and Equation (4), Equa-
tion (3) in the verification algorithm Section 4 by a unique prove and verification for the
fusioned MT-IPP scheme.
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Relation. First we define the relation proven using the merged MT-IPP argument:

Rmt :=


(
(TAB, UAB), (TC , UC),

ZAB, ZC , r; A,B,C
) :

(CMd(A,B), ZAB, r; A,B) ∈ Rmipp

∧
(CMs(C), ZC , r; C) ∈ Rtipp


for vectors A,C ∈ G1 and B ∈ G2.

Construction. MT-IPP argument works similarly to TIPP and MIPP arguments, by merging
together the operations related to the vectors A,C by using the same commitment keys and
challenges for them. It consists of 3 algorithms MT-IPP = (MT.Setup,MT.Prove,MT.Verify)
described in the following, where we highlighted in grey the main changes needed to merge
MIPP and TIPP and for further optimisations.

MT.Setup(1λ,Rmipp,Rtipp)→ crsmt: 1. Define ckkzg, vkkzg as in Item 2 from TIPP.

2. Fix Hash : Zp ×G12
T → Zp and its description hk.

3. Fix a hash function Hash2 : Zp ×G2
2 ×G2

1 → Zp and its description hk2.

4. Set crsmt := (hk, hk2, ckd, ckkzg, vkkzg).

MT.Prove(crsmt, (TAB, UAB), (TC , UC), ZAB, ZC , r; A,B,C)→ πmt: Loop “split & collapse”

for step i
1. ni = ni−1/2 where n0 = n

2. If ni
?
= 1: break

3. Compute L/R inner products as for MIPP & TIPP: (ZL, ZR)AB, (ZL, ZR)C
4. Compute L/R cross commitments: (TL, UL;TR, UR)AB, (TL, UL;TR, UR)C
5. Compute challenge

xi = Hash (xi−1; (ZL, ZR)AB, (ZL, ZR)C , (TL, UL;TR, UR)AB, (TL, UL;TR, UR)C)

6. Compute Hadamard products on vectors

A := A[:n′] ◦Axi
[n′:], B′ := B′[:n′] ◦B′

x−1
i

[n′:], C := C[:n′] ◦Cxi
[n′:]

7. Compute Hadamard products on keys v1,v2 and w′1 := wr−1

1 ,w′2 := wr−1

2

(v1,v2) := (v1[:n′] ◦ v1
x−1

[n′:],v2[:n′] ◦ v2
x−1

[n′:]) (10)

(w′1,w
′
2) := (w′1[:n′] ◦w

′x
1[n′:]

,w′2[:n′] ◦w
′x
2[n′:]

)

8. Set n = n′

Compute proofs (πvj , πwj )j=1,2 of correctness of final commitment keys exactly as in
Section 5.4 in TIPP.
Set

πmt =
(
A,B,C, (ZL,ZR)AB, (ZL,ZR)C , (TL,UL)AB, (TR,UR)AB,

(TL,UL)C , (TR,UR)C , (v1, v2), (w
′
1, w

′
2), (πvj , πwj )j=1,2

)
where A,B′, C and (v1, v2), (w

′
1, w

′
2) are the final elements from the loop after collapsing

A,B′ = Br,C and v1,v2,w
′
1,w

′
2.
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MT.Verify(crsmt, statement;πmt)→ b:

1. Parse statement = ((TAB, UAB), (TC , UC), ZAB, ZC , r)

2. Reconstruct challenges xi for i = 1, . . . ` = log(n) common to MIPP and TIPP:

xi = Hash
(
xi−1, (ZL[i],ZR[i])AB, (ZL[i],ZR[i])C ,

(TL[i],TR[i],UL[i],UR[i])AB, (TL[i],TR[i],UL[i],UR[i])C
)

3. Construct final commitments recursively as in TIPP for A,B and as in MIPP for C:

(ZAB, TAB, UAB), (ZC , TC , UC)

4. Verify final commitment keys v1, v2, w
′
1, w

′
2 via KZG as for TIPP.

All KZG.Checks are batched into a single pairing check.

Keys v1, v2 are checked once , since they are common to MIPP and TIPP.

The security of the MT-IPP protocol follows from the security of MIPP and TIPP as-
suming the random oracle model and the commitment algebraic model (see [BMM+19] for
details). This is a standard AND-composition technique for proofs of two relations (in our
case Rtipp ∧Rmipp).

6 SnarkPack Scheme

In this section we show how to use the framework presented in Section 3 together with all
the pieces described previously in order to build the most efficient scheme for aggregation:
SnarkPack. The resulting argument for aggregation is described by 3 algorithms SnarkPack =
(SP.Setup, SP.Prove,SP.Verify) as follows:

SP.Setup(1λ,RAGG)→ (crsagg, vkagg)

1. Generate commitment key for CMd:

ckd = (v1,v2,w1,w2)← CMd.KG(1λ)

2. Set commitment key for CMs : cks = (v1,v2)
3. Call crsmt ← MT.Setup(1λ,Rtipp)
4. Choose a hash function Hash0 : G4

T → Zp given by its description hk0.
5. Set aggregation public parameters

crsagg = (vk, crsmt, hk0)

SP.Prove(crsagg,u, π = (A,B,C))→ πagg

1. Parse proving key crsagg := (vk, crsmt, cks, ckd, hk)
2. Parse cks = (v1,v2), ckd = (v1,v2,w1,w2)
3. Commit to A and B:

CMd((v1,v2,w1,w2); A,B) = (TAB, UAB)

4. Commit to C : CMs((v1,v2); C) = (TC , UC)
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5. Derive random challenge r = Hash0(TAB, UAB, TC , UC) ∈ Zp and set r = {ri}n−1i=0

6. Compute ZAB = Ar ∗B

7. Compute ZC = Cr =
∏n−1
i=0 C

ri
i .

8. Run MT proof:

πmt = MT.Prove(crsmt, (TAB, UAB), (TC , UC), ZAB, r; A,B,C, r)

9. Set πagg = ((TAB, UAB), (TC , UC), ZAB, ZC , r, πmt)

SP.Verify(vkagg,u, πagg)→ b

1. Parse SNARK instances u = {ai,j}i=1,...n;j=0,...`

2. Parse verification key vkagg := (vk, crsmt, hk)

3. Parse vk :=
(
P = gα, Q = hβ, {Sj}`j=0, H = hγ , D = hδ

)
4. Derive random challenge r = Hash0(TAB, UAB, TC , UC)

5. Compute ZSj = S
∑n
i=1 aijr

i

j for all j = 0 . . . `

6. Check MT proof b1 ← MT.Verify(crsmt, statement, πmt)

7. Check Groth16 final equation to the decision bit b2:

ZAB
?
= e(P

∑n
i=1 r

i
, Q)e(

∏̀
j=0

ZSj , H)e(ZC , D)

8. Set decision bit b = b1 ∧ b2

7 Implementation

7.1 Setup

We have implemented the scheme in Rust, using the paired [Fil18b] library on the BLS12-
381 curve. The code can be found on the feat-ipp2 branch [Fil21] of the bellperson repository
[Fil18a]. We have taken the original code of the arkwork library [ark19] and modified it both
for fitting the scheme presented in this paper and for performance. All proofs are Groth16
proofs with 350 public inputs, which is similar to the proofs posted by Filecoin miners. All
benchmarks are done on a 32 cores / 64 threads machine with AMD Raizen Threadripper
CPUs.

Parallelism: It is important to note that the protocol allows for some parallel operations
and our implementation makes use of that. Therefore, all benchmarks presented here can
change depending on the degree of parallelism of the machine.

7.2 Trusted Setup

We created a condensed version of the SRS required for our protocol from the powers of tau
transcript of both Zcash [zca18] and Filecoin [Lab18]. The code to assemble the SRS from
two powers of tau can be found at [nik21]. The SRS created allows to aggregate up to 219

proofs.
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7.3 Optimizations

Merging TIPP and MIPP: We have implemented the optimized version of the scheme
SnarkPack that enabled us to achieve a 20-30% improvement in verification time as well as
a slighter reduction in proof size compared with the generic framework in Section 3. The
optimization leads to twice less calls to the random oracle and it saves one KZG proof to
verify, more precisely 4 pairings and a logarithmic number of group multiplications.

Field elements compression: The proof requires many pairing operations and multiplica-
tions in the target group which employ arithmetic over the finite field Fp12 . We implemented
compression of these field elements that still allow some computations without decompression
using algorithms derived from Diego F. Aranha’s RELIC library [AGM+]. You can find the
specific implementation in this branch [dig21]. This led to a 40% reduction in proof size.

Fig. 2. Proof size: Aggregation vs Batching.

Compressing pairing checks: A further performance gain in our SnarkPack with respect
to the initial framework in Section 3 is given by the verification batch which applies to the
pairing checks from MT-IPP verification: We randomize each pairing checks of the form

e(A,B)e(C,D)... = T

with a random exponent when verifying so we can compress multiple such checks into one.
This randomized checking technique is borrowed from the Zcash specs [HBHW21]. Specifi-
cally, we have a list P of length n of pairing checks of the form e(A,B)e(C,D)... = T . The
verifier performs the following step to verify all checks in a compressed manner:

1. Choose n randoms scalars ri with r0 = 1

2. Randomize each pairing check Pi for i > 1:

e(riAi, Bi)e(riCi, Di) · · · = T ri

3. Compute the miller loop on the left side of each pairing check:mi = Miller((riAi, Bi), (riCi, Di), . . . )

4. Multiply all results together and apply the final exponentiation (FE) at the end:

FE(
∏
i

mi) ==
∏
i

T rii
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The final verification equation looks like this:

FE(
∏
i

Miller((riAi, Bi), (rCi, Di) . . . )) ==
∏
i

T rii

Note that doing the random linear combination using the G1 component of the check is much
faster than simply doing the exponentiation on the result (i.e. e(Ai, Bi)

r
i ) as the exponentia-

tion is then in GT.

Fig. 3. Aggregation Time

7.4 Proof size

The proof size in Fig. 2 compares the size of n proofs versus the size of one aggregated
proof. The figure shows the break even point around 150 proofs where aggregation takes less
space than batching. At 128 proofs, the size of aggregated proof is of 23kB versus 24kB for
individual proofs.

7.5 Aggregation time

Figure 3 shows the time taken by the aggregator to create an aggregated proof. We can see
for example that it can aggregate 1024 proofs in 1.4s. The prover is required to compute a
logarithmic number of multi-exponentiations and expensive pairing products. Our implemen-
tation perform these in parallel and in batches (batching miller loop operations).

7.6 Verification time

The major point of interest in our application to Filecoin is the verification time of Groth16
proofs. Figure 4 shows the comparison between the verification of an aggregated proof and
using batching techniques as described in the zcash protocol [HBHW21]. Verifying Groth16
proofs in batches is what is commonly used in zcash as well as Filecoin to get a sublinear
verification time. The graph shows that batching is more efficient when verifying less 32
Groth16 proofs but aggregation becomes exponentially faster after that point. Our protocol
can verify a 8192 proof in 33ms, including unserialization and it scales logarithmically. Note
the verification algorithm is linear in terms of the public inputs. In our case, 350 public inputs
is small enough to barely count for the total verification time.
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Fig. 4. Verifcation time: Aggregation vs Batching.
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A Assumptions in Generic Group Model

A.1 ASSGP Assumption in GGM

Assumption 5 (ASSGP) The q-ASSGP assumption holds for the bilinear group generator
G if for all PPT adversaries A we have, on the probability space gk = (p,G1,G2,GT ) ←
G(1λ), g←$G1, h←$G2 and a, b←$Zp the following holds:

Pr

 (A0, . . . , Aq−1) 6= 1G1 g←$G1, h←$G2, a, b←$Zp
∧
∏q−1
i=0 e(Ai, h

ai) = 1GT σ ← ([gb
i
]2q−1i=0 , [ga

i
]2q−1i=0 , [hb

i
]2q−1i=0 , [ha

i
]2q−1i=0 )

∧
∏q−1
i=0 e(Ai, h

bi) = 1GT (A1, . . . , Aq)← A(gk, σ)

 = negl(λ)

Lemma 3. The q-ASSGP assumption holds in the generic group model.

Proof. Suppose A is an adversary that on input (gk, σ), outputs (A0, . . . , Aq−1) ∈ Gn
1 such

that
∏q−1
i=0 e(Ai, h

ai) = 1GT and
∏q−1
i=0 e(Ai, h

bi) = 1GT . Then its GGM extractor outputs

αi(X,Y ) =
∑2q−1

j=0 (xjX
j + yjY

j + cj) then we have:

α0(X,Y ) +Xα1(X,Y ) +X2α2(X,Y ) + · · ·+Xq−1αq−1(X,Y ) = 0 (11)

α0(X,Y ) + Y α1(X,Y ) + Y 2α2(X,Y ) + · · ·+ Y q−1αq−1(X,Y ) = 0 (12)

Then we have:

α0(X,Y ) = −Xα1(X,Y )−X2α2(X,Y )− · · · −Xq−1αq−1(X,Y ) (13)

α0(X,Y ) = −Y α1(X,Y )− Y 2α2(X,Y )− · · · − Y q−1αq−1(X,Y ) (14)

If we substract (14) and (13) we got

0 =(X − Y )α1(X,Y ) + · · ·+ (Xq−1 − Y q−1)αq−1(X,Y ) (15)

−(X − Y )α1(X,Y ) =(X2 − Y 2)α2(X,Y ) + · · ·+ (Xq−1 − Y q−1)αq−1(X,Y ) (16)

Now we can divide by (X − Y ) and obtain:

−α1(X,Y ) =(X + Y )α2(X,Y ) + (X2 +XY + Y 2)α3(X,Y ) + · · ·+
+ (Xq−2 + Y Xq−3 + · · ·+ Y q−3X + Y q−2)αq−1(X,Y ) (17)

Substitute the expression of −α1(X,Y ) in equation (13) and remark that all Xiαi(X,Y )
terms are vanishing:

α0(X,Y ) = X[(X + Y )α2(X,Y ) + (X2 +XY + Y 2)α3(X,Y ) + · · ·+ (Xq−2 +Xq−3Y + · · ·+
+XY q−3 + Y q−2)αq−1(X,Y )]−X2α2(X,Y )− · · · −Xq−1αq−1(X,Y )

α0(X,Y ) = XY α2(X,Y ) + (X2Y +XY 2)α3(X,Y ) + · · ·+ (Xq−2Y + · · ·+XY q−2)αq−1(X,Y )

α0(X,Y ) = XY [α2(X,Y ) + (X + Y )α3(X,Y ) + · · ·+ (Xq−3 +Xq−4Y + · · ·+ Y q−3)αq−1(X,Y )]
(18)
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This implies that either α0(X,Y ) is a multiple of XY or α0(X,Y ) = 0.
By the GGM assumption, we have that α0(X,Y ) = 0.
We continue by replacing α0(X,Y ) = 0 in equation (18):

0 = α2(X,Y ) + (X + Y )α3(X,Y ) + · · ·+ (Xq−3 +Xq−4Y + · · ·+ Y q−3)αq−1(X,Y )
(19)

−α2(X,Y ) = (X + Y )α3(X,Y ) + · · ·+ (Xq−3 +Xq−4Y + · · ·+ Y q−3)αq−1(X,Y ) (20)

Substitute the expression of −α2(X,Y ) in equation (14) and remark that all Y iαi(X,Y )
terms are vanishing:

0 = −Y α1(X,Y )− Y 2[(X + Y )α3(X,Y ) + · · ·+ (Xq−3 +Xq−4Y + . . .

+ Y q−3)αq−1(X,Y )]− Y 3α3(X,Y )− · · · − Y q−1αq−1(X,Y )

Y α1(X,Y ) = Y 2Xα3(X,Y ) + · · ·+ (Xq−3Y 2 +Xq−4Y 3 + · · ·+XY q−2)αq−1(X,Y )

Y α1(X,Y ) = Y 2X[α3(X,Y ) + · · ·+ (Xq−4 +Xq−5Y + · · ·+ Y q−4)αq−1(X,Y )] (21)

This implies that either α1(X,Y ) is a multiple of XY or α1(X,Y ) = 0.
By the GGM assumption, we have that α1(X,Y ) = 0.
We continue by replacing α1(X,Y ) = 0 in equation (21):

0 =α3(X,Y ) + · · ·+ (Xq−4 +Xq−5Y + · · ·+ Y q−4)αq−1(X,Y )

−α3(X,Y ) = (X2 +XY + Y 2)α4(X,Y ) + · · ·+ (Xq−4 +Xq−5Y + · · ·+ Y q−4)αq−1(X,Y )
(22)

And so on... till we show that αi(X,Y ) = 0 ∀i = 0 . . . q − 1.

A.2 ASDGP Assumption in GGM

Assumption 6 (ASDGP) The q-ASDGP assumption holds for the bilinear group generator
G if for all PPT adversaries A we have, on the probability space gk = (p,G1,G2,GT ) ←
G(1λ), g←$G1, h←$G2 and a, b←$Zp the following holds:

Pr

 (A 6= 1G1 ∨ B 6= 1G2) g←$G1, h←$G2, a, b←$Zp
∧
∏q−1
i=0 e(Ai, h

ai)
∏2q−1
i=q e(ga

i
, Bi) = 1GT σ ← ([ga

i
, gb

i
, ha

i
, hb

i
]2q−1i=0 )

∧
∏q−1
i=0 e(Ai, h

bi)
∏2q−1
i=q e(gb

i
, Bi) = 1GT (A,B)← A(gk, σ)

 = negl(λ)

Lemma 4. The q-ASDGP assumption holds in the generic group model.

Proof. SupposeA is an adversary that on input (gk, σ), outputs (A0, . . . , Aq−1), (B0, . . . , Bq−1)

such that
∏q−1
i=0 e(Ai, h

ai)
∏2q−1
i=q e(ga

i
, Bi) = 1GT and

∏q−1
i=0 e(Ai, h

bi)
∏2q−1
i=q e(gb

i
, Bi) = 1GT .

Then its GGM extractor outputs αi(X,Y ) =
∑2q−1

j=0 (xjX
j + yjY

j + cj) and βi(X,Y ) =∑2q−1
j=0 (xjX

j + yjY
j + cj) such that:

α0(X,Y ) +Xα1(X,Y ) + · · ·+Xq−1αq−1(X,Y ) +Xqβ0(X,Y ) + · · ·+X2q−1βq−1(X,Y ) = 0
(23)

α0(X,Y ) + Y α1(X,Y ) + Y 2α2(X,Y ) + Y qβ0(X,Y ) + · · ·+ Y 2q−1βq−1(X,Y ) = 0 (24)
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By substracting (24) and (23) we got

0 = (X − Y )α1(X,Y ) + · · ·+ (Xq−1 − Y q−1)αq−1(X,Y ) + (Xq − Y q)βq(X,Y ) + . . . (25)

Now we can factor (X − Y ) and then divide by it and obtain:

−α1(X,Y ) =(X + Y )α2(X,Y ) + (X2 +XY + Y 2)α3(X,Y ) + · · ·+
+ (X2q−2 + Y X2q−3 + · · ·+ Y 2q−3X + Y 2q−2)β2q−1(X,Y ) (26)

Substitute −α1(X,Y ) in equation (23) and remark that all Xiαi(X,Y ), Xq+iβq+i(X,Y )
terms are vanishing:

α0(X,Y ) = X

q−1∑
i=2

 i−1∑
j=0

Xi−j−1Y j

αi(X,Y ) +

2q−1∑
i=q

 i−1∑
j=0

Xi−j−1Y j

βi(X,Y )

−
−

q−1∑
i=2

Xiαi(X,Y )−
2q−1∑
i=q

Xiβi(X,Y )

α0(X,Y ) = X

q−1∑
i=2

 i−1∑
j=1

Xi−j−1Y j

αi(X,Y ) +

2q−1∑
i=q

 i−1∑
j=1

Xi−j−1Y j

βi(X,Y )


α0(X,Y ) = XY

q−1∑
i=2

 i−1∑
j=1

Xi−j−1Y j−1

αi(X,Y ) +

2q−1∑
i=q

 i−1∑
j=1

Xi−j−1Y j−1

βi(X,Y )


(27)

This implies that either α0(X,Y ) is a multiple of XY or α0(X,Y ) = 0.
By the GGM assumption, we have that α0(X,Y ) = 0.
We continue by replacing α0(X,Y ) = 0 in equation (27):

−α2(X,Y ) =

q−1∑
i=3

 i−1∑
j=1

Xi−j−1Y j−1

αi(X,Y ) +

2q−1∑
i=q

 i−1∑
j=1

Xi−j−1Y j−1

βi(X,Y ) (28)

Substitute the expression of −α2(X,Y ) in equation (23) or (24) and remark that all terms
Xiαi(X,Y ), Xiβi(X,Y ) (respectively Y iαi(X,Y ), Y iβi(X,Y )) terms are vanishing

And so on... till we show that αi(X,Y ) = 0 ∀i = 0 . . . q − 1 and βi(X,Y ) = 0 ∀i =
q . . . 2q − 1.

33


	SnarkPack: Practical SNARK Aggregation 
	Introduction
	Preliminaries
	Notations and General Background
	Cryptographic Primitives
	Assumptions

	Overview of our Techniques
	Background on Groth16
	Building Blocks

	Framework for Aggregation
	Building Blocks Instantiation
	Pair Group Commitment Schemes
	Generalized Inner Product Arguments
	MIPP with Pair Group Commitment
	TIPP with Pair Group Commitment
	Formula for Final Commitment Keys
	MT-IPP Scheme for Optimized Aggregation

	SnarkPack Scheme
	Implementation
	Setup
	Trusted Setup
	Optimizations
	Proof size
	Aggregation time
	Verification time

	Assumptions in Generic Group Model
	ASSGP Assumption in GGM
	ASDGP Assumption in GGM



