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Abstract. Zero-knowledge SNARKs (zk-SNARKs) are non-interactive proof systems with
short and efficiently verifiable proofs that do not reveal anything more than the correctness
of the statement. zk-SNARKs are widely used in decentralised systems to address privacy
and scalability concerns.

A major drawback of such proof systems in practice is the requirement to run a trusted
setup for the public parameters. Moreover, these parameters set an upper bound to the size
of the computations or statements to be proven, which results in new scalability problems.

We design and implement SnarkPack, a new argument that further reduces the size of
SNARK proofs by means of aggregation. Our goal is to provide an off-the-shelf solution
that is practical in the following sense: (1) it is compatible with existing deployed SNARK
systems, (2) it does not require any extra trusted setup.

SnarkPack is designed to work with Groth16 scheme and has logarithmic size proofs and
a verifier that runs in logarithmic time in the number of proofs to be aggregated. Most
importantly, SnarkPack reuses the public parameters from Groth16 system.

SnarkPack can aggregate 8192 proofs in 8.7s and verify them in 163ms, yielding a verifica-
tion mechanism that is exponentially faster than other solutions. SnarkPack can be used in
blockchain applications that rely on many SNARK proofs such as Proof-of-Space or roll-up
solutions.
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1 Introduction

Arguments of Knowledge. Decentralised systems make extensive use of protocols that enable
a prover to post a statement together with a short proof, such that any verifier can publicly
check that the statement (e.g., correctness of a computation, claims of storage etc.) is true while
expending fewer resources, e.g. less time than would be required to re-execute the computation.

SNARKs are such proofs that allow to demonstrate knowledge of a satisfying witness to some
NP statement and have verification time and proof size independent of the size of this witness.
If these proofs also conceal anything else about the witness we refer to them as zk-SNARKs. In
the last decade, there has been a series of works on constructing SNARKs [BCI+13, GGPR13,
PHGR13, BCTV14, Gro16] with constant-size proofs that rely on trusted setups.

SNARKs are becoming very popular in real-world applications such as delegated computation
or blockchain systems: As examples of early practical use case, Zerocash [BCG+14] showed how
to use zk-SNARKs in distributed ledgers to achieve payment systems with strong privacy guar-
antees. The Zerocash protocol, with some modifications, is now commercially deployed in several
cryptocurrencies, e.g. Zcash.

More recent zk-SNARK use cases are Aztec and zkSync, two projects boosting the scalability
and privacy of Ethereum smart contracts3. Another example of SNARK application is the Filecoin
System4 that implements a decentralized storage solution for the internet.

Due to their rapid and massive adoption, the SNARKs schemes used today start facing new
challenges: the generation of trusted setups requires complicated ceremonies, proving large state-
ments has significant overhead, verifying multiple proofs is expensive even with batching, so many
blockchain systems have therefore scalability issues.

Trusted Setup Ceremony. All the constant-size zk-SNARK schemes have a common major disad-
vantage in practice: they rely on some public parameters, the structured reference string (SRS),
that are generated by a trusted setup. In theory, this setup is run by a trusted-third party, while
in practice, such a string can be generated by a so called ”ceremony”, a multi-party computation
between participants who are believed not to collude as shown in [ABL+19, BGM17, BCG+15].
Generating such trusted setup is a cumbersome task. These ceremonies are expensive in terms
of resources, they must follow specific rules and are generally hard to organise: hundreds of par-
ticipants with powerful machines need to join efforts to perform a multi-party computation over
multiple months.

Groth16. The construction by Groth [Gro16] is the state-of-the-art for pairing-based zk-SNARKs.
Groth16 requires to express the computation as an arithmetic circuit and relies on some trusted
setup to prove the circuit satisfiability. Due to its short proof size (3 group elements) and verifier’s
efficiency, Groth16 has become a de facto standard in blockchain projects. This results in a great
number of available implementations, code auditing and multiple trusted setup ceremonies run by
independent institutions.

Motivation. Importantly, the trusted setup in SNARK schemes sets an upper bound on the size
of computations that can be proven (number of constrains in the circuit description). Because
modern applications have an increased demand for the size of circuits, Groth16 starts to face
scalability problems. A simple solution would be to split the computation in different pieces, and
prove them independently in smaller circuits, but this increases the number of proofs to be added
to a single statement and the verification time.

We address this problem by showing a method to reduce the overhead in communication and
verification time for multiple proofs without the need of further larger trusted setup ceremonies.

3 Aztec, https://zk.money; zksync, https://zksync.io; https://ethereum.org
4 Filecoin, https://filecoin.io
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Filecoin System. One example is Filecoin [Lab18] proof-of-space blockchain. To onboard storage in
the network, Filecoin miners post a Groth16 proof that they correctly computed a Proof-of-Space
[Fis19]. Each proof guarantees that the miner correctly “reserves” 32GB of storage to the network
and consists in 10 different SNARKs. The chain currently processes a large number of proofs each
day: approximately 500,000 Groth16 proofs, representing 15 PiB of storage.

Contribution. We look into reducing proof size and verifier time for SNARKs even further by
exploring techniques to aggregate proofs without the requirement for additional trusted setups.

We design SnarkPack, an argument that allows to aggregate n Groth16 zkSNARKs with a
O(log n) proof size and verifier time. Our scheme is based on a trusted setup that can be constructed
from two different existing ceremonies (e.g. the ”powers of tau” for Zcash [zca18] and Filecoin
[Fil20]).

Being able to rely on the security of well-known trusted setups for which the ceremonies have
been largely publicly advertised is a great advantage in practice and makes SnarkPack immediately
useful in real-world applications.

Our techniques are generic and can also apply to other pairing-based SNARKs. However, we
chose to focus on Groth16 proofs and tailor optimisations for this case, since it is the most popular
scheme among practitioners. Therefore, SnarkPack is the first practical system that can be used
in blockchains applications to reduce the on-chain work by employing verifiable outsourcing to
process a large number of proofs off-chain. This applies broadly to any system that needs to
delegate batches of state updates to an untrusted server.

Related Work. Prior works have built similar schemes for recursion or aggregation of proofs, but
they all have critical shortcomings when it comes to implementing them in real-world systems.

Bünz et al. [BMM+19] presented a scheme for aggregating Groth16 proofs that requires a
specific trusted setup to construct the structured reference string (SRS) necessary to verify such
aggregated proofs. Our result is conceptually similar with the Bünz et al. while it benefits from
many optimizations. We focus specifically on aggregating proofs generated using the same Groth16
SRS which is the common use case, as opposed to the generic result in [BMM+19] that allow
aggregation of proofs from different SRSes. Our result can be extended to support this later case
as well.

While our techniques built on top of inner pairing arguments with logarithmic verifier already
introduced by [DRZ20], we build new such schemes that avoid the need of a different trusted setup
ceremony (other than the existing SNARK setup). Our approach for aggregation is preferable to
[BMM+19] in practical use cases.

Other approach to aggregation rely on recursive composition. In more detail, [BCG+20] propose
a new SNARK for the circuit that contains n copies of the Groth16 verifier’s circuit. However,
constructing arithmetic circuits for pairings is expensive (e.g., computing a pairing on the BLS12-
377 curve requires ≈ 15000 constraints as shown in [BCG+20]). The advantage of using such
expensive schemes for aggregation is their transparent setup.

However, the costs are significant compared with our scheme: they compute FFTs, which require
time O(n log n), the verifier performs O(n) cryptographic operations as opposed to O(n) field
operations in our scheme and they require special cycles of curves.

SnarkPack has the advantages of both worlds: it benefits from the power of structured public
parameters to avoid expensive computations, while it has the advantage of avoiding additional
trust assumptions as it relies on already available trusted setup transcripts for the underlying
Groth16 scheme.
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Our Techniques and Roadmap. To explain how SnarkPack works, we need to consider 3
multiplicative cyclic groups G1,G2,GT of order p equipped with the bilinear map, also called
”pairing” e : G1 ×G2 → GT such that ∀a, b ∈ Zp : e(ga, hb) = e(g, h)ab.

Groth16 proofs π for statements statement u = a consist in 3 group elements π = (A,B,C),
where A,C ∈ G1 and B ∈ G2. The high-level idea of Groth16 aggregation is quite simple:
Since Groth16 verification consists in checking a pairing equation between the proof elements
π = (A,B,C), instead of checking that n different pairing equations are simultaneously satisfied,
it is sufficient to prove that only one inner pairing product of a random linear combination of these
initial equations defined by a verifier’s random challenge r ∈ Zp holds. In a bit more detail, Groth16
verification asks to check an equation of the type e(Ai, Bi) = Yi · e(Ci, D) for Yi ∈ GT , D ∈ G2

where Yi is a value computed from each statement ui = ai and πi = (Ai, Bi, Ci)
n−1
i=0 are proof

triples.
The aggregation will instead check a single randomized equation:

n−1∏
i=0

e(Ai, Bi)
ri =

n−1∏
i=0

Y r
i

i · e
( n−1∏
i=0

Cr
i

i , D
)
.

We denote by Y ′prod :=
∏n−1
i=0 so this can be rewritten as:

ZAB = Y ′prod · e(ZC , D), where ZAB :=

n−1∏
i=0

e(Ai, Bi)
ri and ZC :=

n−1∏
i=0

Cr
i

i .

What is left after checking that this unified equation holds is to verify that the elements
ZAB , ZC are consistent with the initial proof triples in the sense that they compute the required
inner product. This is done by applying an argument that proves two different inner pairing product
relations:

– TIPP: the target inner pairing product takes some initial committed vectors A ∈ G1,B ∈ G2

and shows that ZAB =
∏n−1
i=0 e(Ai, Bi);

– MIPP: the multi-exponentiation inner product takes a committed vector C ∈ G1 and a vector
r ∈ Zp and shows that ZC =

∏n−1
i=0 C

ri

i .

New Commitment Schemes. The key ingredient for SnarkPack is the efficient realisation of the
two specialised inner pairing product arguments following the ideas initially proposed by [DRZ20]
and generalised to other inner products by [BMM+19]. These require a special commitment scheme
that allows to commit to vectors of group elements in both source groups G1 and G2 with further
homomorphic and collapsing properties. In order to obtain logarithmic size proof for inner product
relations of committed values, we apply the Bulletproofs strategy [BCC+16] to ”split and collapse”
the vectors in half-sized ones at each step. The same is applied to the commitments and the com-
mitments keys. The problem is that the verification cost for such inner pairing product arguments
is linear in the size of vectors. A way to improve the efficiency of the verification is to rely on
a structured trusted setup for the commitment keys and delegate the ”split and collapse” task
for the commitments to the prover, while enabling an efficient check that the task was performed
correctly. This allows for log-time verification costs.

We therefore introduce two new Pair Group Commitment schemes described in Section 4 that
allow to commit to vectors A,C ∈ G1,B ∈ G2. Our commitments are doubly-homomorphic with
respect to the message space and key space and they have a collapsing property. Both schemes have
constant size commitments and are proved to be binding based on assumptions that hold in the
generic group model. Our second scheme has the advantage that allows to commit to two vectors
from two different groups with no size overhead. We think these schemes can be of independent
interest in protocols that need to commit to source group elements.

5



Reusing Groth16 Trusted Setup. The advantage of our commitment schemes is that they can
reuse existing public setups for Groth16 to generate their structured commitment keys.

The public parameters required for the generation of the commitment keys can be extracted
from two compatible copies of Groth16 SRS.

For a given bilinear group (p,G1,G2,GT ), Groth16 SRS consist amoung others in consecutive

powers of some random evaluation point τ in both groups G1 and G2 : {gτ i}i ∈ Gd1, {hτ
i}i ∈ Gd2.

We will call these ”powers of tau”.
The generation of SnarkPack public parameters (the commitment keys) comes naturally from

two ceremonies for Groth16 setup (also known as ”powers of tau”) for the same generators g and
h and different powers a = τ1 and b = τ2: g, h, gτ1 , . . . , gτ

n
1 , hτ1 , . . . , hτ

n
1 , one up to n and the other

gτ2 . . . , gτ
m
2 , hτ2 , . . . , hτ

m
2 up to m ≥ n.

Our assumptions rely on the fact that cross powers (e.g. gτ1τ2) are not known to the prover.
Since the two SRS we use are the result of two independent ceremonies, it is unlikely that such
terms can be learned since τ1 and τ2 were destroyed after the SRS generation.

In practice, we fortunately have at least two ceremonies that satisfy the requirements for same
group generators and different powers: Such values can be obtained from the powers of tau tran-
script of Zcash [zca18] and Filecoin [Lab18]. The SRS created goes up to n = 219 for τ1 and
m = 2127 for τ2.

MT-Inner Pairing Product Argument: In Section 5 we design an efficient argument that
proves together a multi-exponentiation inner product (MIPP) and a target inner pairing product
(TIPP) with minimal overhead. The key ingredients in the MT-IPP scheme are our new pair group
commitments. Therefore, this makes our MT-IPP argument compatible with existing Groth16 setup
ceremonies. We further add some important optimisations that make our scheme more efficient than
the combination of the two different schemes proposed by [BMM+19].

Implementation. In Section 7 we provide benchmarks, optimisation details for our implementa-
tion in Rust, and evaluate its efficiency against batching. SnarkPack is exponentially more efficient
than aggregation via batching: it takes 163ms to verify an aggregated proof for 8192 proofs (in-
cluding unserialization) versus 621ms when doing batch verification. The former is of 40kB in size.
The aggregator can aggregate 8192 proofs in 8.7s.

2 Preliminaries

2.1 Notations and General Background

Bilinear Groups. A bilinear group is given by a description gk = (p,G1,G2,GT ) such that

– p is prime, so Zp = F is a field.
– G1 = 〈g〉,G2 = 〈h〉 are cyclic groups of prime order p.
– e : G1 × G2 → GT is a bilinear asymmetric map (pairing), which means that ∀a, b ∈ Zp :
e(ga, hb) = e(g, h)ab.

– Then we implicitly have that e(g, h) generates GT .
– Membership in G1,G2,GT can be efficiently decided, group operations and the pairing e(·, ·)

are efficiently computable, generators can be sampled efficiently, and the descriptions of the
groups and group elements each have linear size.

Vectors. For n-dimensional vectors a ∈ Znp ,A ∈ Gn1 ,B ∈ Gn2 , we denote the i-th entry by ai ∈ Zp,
Ai ∈ G1, Bi ∈ G2 respectively.

Let A‖A′ = (A0, . . . , An−1, A
′
0, . . . , A

′
n−1) be the concatenation of vectors A,A′ ∈ Gn1 .

We write A[:`] = (A0, . . . , A`−1) ∈ G`1 and A[`:] = (A`, . . . , An−1) ∈ Gn−`1 to denote slices of
vectors A ∈ Gn1 for 0 ≤ ` < n− 1.
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Inner pairing product. We write group operations as multiplications. We define:

– Ax = (Ax0 , . . . , A
x
n−1) ∈ Gn1 for x ∈ Zp and a vector A ∈ Gn1 .

– Ax = (Ax0
0 , . . . , A

xn−1

n−1 ) ∈ Gn1 for vectors x ∈ Znp ,A ∈ Gn1 .

– A ∗ x =
∏n−1
i=0 A

xi
i for vectors x ∈ Znp ,A ∈ Gn1 .

– A ∗B :=
∏n−1
i=0 e(Ai, Bi) for group vectors A ∈ Gn1 ,B ∈ Gn2 .

– A ◦A′ := (A0A
′
0, . . . , An−1A

′
n−1) for vectors A,A′ ∈ Gn1 .

Relations. We use the notation R to denote an efficiently decidable binary relation. For pairs
(u,w) ∈ R we call u the statement and w the witness. We write R = {(u;w) : p(u,w)} to describe
an NP relation. Let LR be the language consisting of statements u for which there exist matching
witnesses in R.

Polynomial-Time Algorithms. Unless otherwise specified, all the algorithms defined throughout this
work are assumed to be probabilistic Turing machines with running time bounded by a polynomial
in their input size, where the expectation is taken over the random coins of the algorithm - i.e.,
PPT.

If A is a randomized algorithm, we use y←$A(x) to denote that y is the output of A on x. We
write x←$X to mean sampling a value x uniformly from the set X.

By writing A‖χA(σ) we denote the execution of A followed by the execution of χA on the same
input σ and with the same random coins. The output of the two are separated by a semicolon.

Security Parameter. We denote the computational security parameter with λ ∈ N: A cryptosystem
provides λ bits of security if it requires 2λ elementary operations to be broken.

We say that a function is negligible in λ, and we denote it by negl(λ), if it is a f(λ) = O(λ−c)
for any fixed constant c.

Adversaries. Adversaries are PPT algorithms denoted with calligraphic letters (e.g.A,B). They
will be usually be modeled as efficient algorithms taking 1λ as input.

We define the adversary’s advantage as a function of parameters to be Pr[A wins]. For a system
to be secure, we require that for any efficient adversary A, the advantage of A is negligible in the
security parameter.

Common and Structured Reference String. The common reference string (CRS) model, introduced
by Damg̊ard [Dam00], captures the assumption that a trusted setup exists. Schemes proven se-
cure in the CRS model are secure given that the setup was performed correctly. We will use the
terminology “Structured Reference String” (SRS) since all our crs strings are structured.

Generic Group Model. The generic group model [Sho97, Mau05] is an idealised cryptographic
model, where algorithms do not exploit any special structure of the representation of the group
elements and can thus be applied in any cyclic group.

In this model, the adversary is only given access to a randomly chosen encoding of a group,
instead of efficient encodings, such as those used by the finite field or elliptic curve groups used in
practice.

One of the primary uses of the generic group model is to analyse computational hardness
assumptions. An analysis in the generic group model can answer the question: “What is the fastest
generic algorithm for breaking a cryptographic hardness assumption”. A generic algorithm is an
algorithm that only makes use of the group operation, and does not consider the encoding of the
group.
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2.2 Cryptographic Primitives

SNARKs. Let R be an efficiently computable binary relation which consists of pairs of the form
(u,w). A Proof or Argument System forR consists in a triple of PPT algorithms Π = (Setup,Prove,
Verify) defined as follows:

Setup(1λ,R)→ crs: takes a security parameter λ and a binary relation R and outputs a common
(structured) reference string crs.

Prove(crs, u, w)→ π: on input crs, a statement u and the witness w, outputs an argument π.
Verify(crs, u, π)→ 1/0: on input crs, a statement u, and a proof π, it outputs either 1 indicating

accepting the argument or 0 for rejecting it.

We call Π a Succinct Non-interactive ARgument of Knowledge (SNARK) if further it is com-
plete, succinct and satisfies Knowledge Soundness (also called Proof of Knowledge).

Non-black-box Extraction. The notion of Knowledge Soundness requires the existence of an extrac-
tor that can compute a witness whenever the prover A produces a valid argument. The extractor
we defined bellow is non-black-box and gets full access to the prover’s state, including any random
coins. More formally, a SNARK satisfies the following definition:

Definition 1 (SNARK). Π = (Setup,Prove,Verify) is a SNARK for an NP language LR with
corresponding relation R, if the following properties are satisfied.

Completeness. For all (x,w) ∈ R, the following holds:

Pr

(
Verify(crs, u, π) = 1

crs← Setup(1λ,R)
π ← Prove(crs, u, w)

)
= 1

Knowledge Soundness. For any PPT adversary A, there exists a PPT extractor ExtA such that
the following probability is negligible in λ:

Pr

(
Verify(crs, u, π) = 1
∧R(u,w) = 0

crs← Setup(1λ,R)
((u, π);w)← A‖χA(crs)

)
= negl(λ).

Succinctness. For any u and w, the length of the proof π is given by |π| = poly(λ) · polylog(|u|+
|w|).

Zero-Knowledge. A SNARK is zero-knowledge if it does not leak any information besides the
truth of the statement. More formally:

Definition 2 (zk-SNARK). A SNARK for a relation R is a zk-SNARK if there exists a PPT
simulator (S1,S2) such that S1 outputs a simulated common reference string crs and trapdoor td;
S2 takes as input crs, a statement u and td, and outputs a simulated proof π; and, for all PPT
(stateful) adversaries (A1,A2), for a state st, the following is negligible in λ:∣∣∣∣∣∣Pr

(u,w) ∈ R ∧
A2(π, st) = 1

crs← Setup(1λ)
(u,w, st)← A1(1λ, crs)
π ← Prove(crs, u, w)

 −
Pr

(u,w) ∈ R ∧
A2(π, st) = 1

(crs, td)← S1(1λ)
(u,w, st)← A1(1λ, crs)
π ← S2(crs, td, u)

∣∣∣∣∣∣ = negl(λ).
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Commitment Schemes. A non-interactive commitment scheme allows a sender to create a
commitment to a secret value. It may later open the commitment and reveal the value or some
information about the value in a verifiable manner. More formally:

Definition 3 (Non-Interactive Commitment). A non-interactive commitment scheme is a
pair of algorithms Com = (KG,CM):

KG(1λ)→ ck: given a security parameter λ, it generates a commitment public key ck. This ck im-
plicitly specifies a message space Mck, a commitment space Cck and (optionally) a randomness
space Rck,. This algorithm is run by a trusted or distributed authority.

CM(ck;m)→ C: given ck and a message m, outputs a commitment C. This algorithm specifies a
function Comck : Mck ×Rck → Cck. Given a message m ∈Mck, the sender (optionally) picks a
randomness ρ ∈ Rck and computes the commitment C = Comck(m, ρ)

For deterministic commitments we simply use the notation C = CM(ck;m) := Comck(m), while for
randomised ones we write C ←$CM(ck;m) := Comck(m, ρ).

A commitment scheme is asked to satisfy one or more of the following properties:

Binding Definition. It is computationally hard, for any PPT adversary A, to come up with two
different openings m 6= m∗ ∈Mck for the same commitment C. More formally:

Definition 4 (Computationally Binding Commitment). A commitment scheme Com =
(KG,CM) is computationally binding if for any PPT adversary A, the following probability is neg-
ligible:

Pr

[
m 6= m∗ ck← KG(1λ)

∧ CM(ck;m) = CM(ck;m∗) = C (C;m,m∗)← A(ck)

]
Hiding Definition. A commitment can be hiding in the sense that it does not reveal the secret
value that was committed.

Definition 5 (Statistically Hiding Commitment). A commitment scheme Com = (KG,CM)
is statistically hiding if it is statistically hard, for any PPT adversary A = (A0,A1), to first generate
two messages A0(ck) → m0,m1 ∈ Mck such that A1 can distinguish between their corresponding
commitments C0 and C1 where C0←$CM(ck;m0) and C1←$CM(ck;m1).

Pr

b = b′

ck← KG(1λ)
(m0,m1)← A0(ck)

b← {0, 1}, Cb←$CM(ck;mb)
b′ ← A1(ck, Cb)

 = negl(λ).

Homomorphic Commitment Scheme. A commitment scheme can also be homomorphic, either in
the space of messages or in the space of keys or in both. We call the later doubly-homomorphic
commitments.

– Message Homomorphism. For a group law + on the message space Mck and ⊕ on the commit-
ment space Cck, we have that from C0 = CM(ck;m0) and C1 = CM(ck;m1), one can efficiently
generate C = CM(ck;m0 +m1) by computing C = C0 ⊕ C1 = CM(ck;m0 +m1).

– Key Homomorphism. For a group law ? on the key space Kck, and ⊕ on the commitment space
Cck, we have that from C0 = CM(ck0;m) and C1 = CM(ck1;m), one can efficiently generate C
so that C = C0 ⊕ C1 = CM(ck0 ? ck1;m).
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Polynomial Commitments. Polynomial commitments (PCs) first introduced by [KZG10] are
commitments for the message space F≤d[X], the ring of polynomials in X with maximum degree
d ∈ N and coefficients in the field F = Zp, that support an interactive argument of knowledge
(KG,Open,Check) for proving the correct evaluation of a committed polynomial at a given point
without revealing any other information about the committed polynomial.

A polynomial commitment scheme over a field family F consists in 4 algorithms PC = (KG,CM,
Open,Check) defined as follows:

KG(1λ, d)→ (ck, vk): given a security parameter λ fixing a field Fλ family and a maximal degree
d samples a group description gk containing a description of a field F ∈ Fλ, and commitment
and verification keys (ck, vk). We implicitly assume ck and vk each contain gk.

CM(ck; f(X))→ C: given ck and a polynomial f(X) ∈ F≤d[X] outputs a commitment C.
Open(ck;C, x, y; f(X))→ π: given a commitment C, an evaluation point x, a value y and the

polynomial f(X) ∈ F[X], it output a prove π for the relation:

Rkzg :=

(ck, C, x, y; f(X)) :
C = CM (ck; f(X))
∧ deg(f(X)) ≤ d

∧ y = f(x)


Check(vk, C, x, y, π)→ 1/0: Outputs 1 if the proof π verifies and 0 if π is not a valid proof for the

opening (C, x, y).

A polynomial commitment satisfy an extractable version of binding stated as follows:

Definition 6 (Computational Knowledge Binding). For every PPT adversary A that pro-
duces a valid proof π for statement C, x, y, i.e. such that Check(vk, C, x, y, π) = 1, there is an
extractor ExtA that is able to output a pre-image polynomial f(X) with overwhelming probability:

Pr

[
Check(vk, C, x, y, π) = 1 ck← KG(1λ, d)
∧ C = CM(ck; f(X)) (C, x, y, π; f(X))← (A‖ExtA)(ck)

]
= 1− negl(λ).

2.3 KZG Polynomial Commitment

We describe the KZG Polynomial Commitment from [KZG10] which allows to check correctness
of evaluation openings.
We recall the scheme KZG.PC = (KZG.KG,KZG.CM,KZG.Open,KZG.Check) defined over bilinear
groups gk = (p,G1,G2,GT ) with G1 = 〈g〉,G2 = 〈h〉:

KZG.KG(1λ, n)→ (ck, vkh): Set keys ckg = {gαi}n−1i=0 , vkh = hα.

KZG.CM(ckg; f(X))→ Cf : For f(X) =
∑n−1
i=0 fiX

i, computes Cf =
∏n−1
i=0 g

fiα
i

= gf(α).
KZG.Open(ckg;Cf , x, y; f(X))→ π: For an evaluation point x, a value y, compute the quotient

polynomial

q(X) =
f(X)− y
X − x

and output prove π := Cq = KZG.CM(ckg; q(X)).
KZG.Check(vkh = hα, Cf , x, y, π)→ 1/0: Check if

e(Cf · g−y, h) = e(Cq, vkh · h−x).

The KZG.PC scheme works similarly for a pair of keys of the form ckh = {hαi}n−1i=0 , vkg = gα, by
just swapping the values in the final pairing equation check to match the correct basis.
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2.4 Assumptions

ASSGP - Auxiliary Structured Single Group Pairing Informally, we assume that a PPT
adversary cannot find a vector of group elements A ∈ Gq1 such that:

1. ∃Ai 6= 1G1

2. e(A0, h)e(A1, h
a) . . . e(Aq−1, h

aq−1

) = 1GT

3. e(A0, h)e(A1, h
b) . . . e(Aq−1, h

bq−1

) = 1GT

Formally, (q,m)-Auxiliary Structured Single Group Pairing ((q,m)-ASSGP) assumption can
be stated as:

Assumption 1 (ASSGP) The (q,m)-Auxiliary Structured Single Group Pairing assumption holds
for the bilinear group generator G if for all PPT adversaries A we have, on the probability space
gk = (p,G1,G2,GT )← G(1λ), g←$G1, h←$G2 and a, b←$Zp the following holds:

Pr

 A 6= 1G1

∧
∏q−1
i=0 e(Ai, h

ai) = 1GT

∧
∏q−1
i=0 e(Ai, h

bi) = 1GT

g←$G1, h←$G2, a, b←$Zp
σ ← [ga

i

, gb
i

, ha
i

, hb
i

]2q−1i=0

aux← [ga
i

, gb
i

, ha
i

, hb
i

]mi=2q

A← A(gk, σ, aux)

 = negl(λ)

Lemma 1. The (q,m)-ASSGP assumption holds in the generic group model.

The proof of the lemma can be find in Appendix A.1.

ASDGP - Auxiliary Structured Double Group Pairing Formally, (q,m)-Auxiliary Struc-
tured Double Group Pairing ((q,m)-ASDGP) assumption can be stated as:

Assumption 2 (ASDGP) The (q,m)-ASDGP assumption holds for the bilinear group generator
G if for all PPT adversaries A we have, on the probability space gk = (p,G1,G2,GT ) ← G(1λ),
g←$G1, h←$G2 and a, b←$Zp the following holds:

Pr

 (A 6= 1G1
∨ B 6= 1G2

)

∧
∏q−1
i=0 e(Ai, h

ai)
∏2q−1
i=q e(ga

i

, Bi) = 1GT

∧
∏q−1
i=0 e(Ai, h

bi)
∏2q−1
i=q e(gb

i

, Bi) = 1GT

g←$G1, h←$G2, a, b←$Zp
σ = [ga

i

, gb
i

, ha
i

, hb
i

]2q−1i=0

aux = [ga
i

, gb
i

, ha
i

, hb
i

]mi=2q

(A,B)← A(gk, σ, aux)

 = negl(λ)

Lemma 2. The (q,m)-ASDGP assumption holds in the generic group model.

The proof of the lemma can be found in Appendix A.2.

We can similarly define the dual assumptions, by swapping G1 and G2 in the definition above.

3 Overview of our Techniques

3.1 Background on Groth16

In this section we present the necessary background and building blocks for aggregating multiple
Groth16 proofs for the same SRS (same verification key). A detailed description of Groth16 SNARK
protocol can be found in Appendix B.

Setup. For a given bilinear group gk = (p,G1,G2,GT ), Groth16 SRS consist in consecutive powers
of some random evaluation point s in both groups G1 and G2 :

{gs
i

}d−1i=0 ∈ Gd1, {hs
i

}d−1i=0 ∈ Gd2.
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We will call these either monomials or ”powers of tau”.

The SRS for Groth16 also contains some additional elements computed from degree d − 1
polynomials evaluated in the random point s. These evaluations are encoded in the exponents of
the group generators g ∈ G1 and h ∈ G1 in the same way the monomials are.

Prove. A Groth16 proof π for a statement u := a = {aj}tj=0 where a0 = 1 and a witness
w := {aj}mj=t+1 consists in 3 group elements π = (A,B,C), where A,C ∈ G1 and B ∈ G2. These
elements are computed by group operations using the public inputs {aj}tj=0 and the secret witness
w = {aj}mj=t+1.

Verify. For the verification algorithm, Groth16 uses only a part of its structured reference string
which we will call verification key vk. This consists in the following elements:

vk :=
(
P = gα, Q = hβ ,

{
Sj = g

βvj(s)+αwj(s)+yj(s)
γ

}t
j=0

, H = hγ , D = hδ
)
.

Groth16 verification consists in checking a pairing equation between the proof elements π =
(A,B,C) using the verification key:

e(A,B) = e(gα, hβ) · e(
t∏

j=0

S
aj
j , h

γ) · e(C, hδ).

3.2 Building Blocks for Aggregation

SRS. The setup for our commitments and aggregation scheme needs elements from two indepen-
dent compatible Groth16 SRS:

– Common Bilinear group description for both SRS: gk = (p,G1,G2,GT )

– Common group generators for both SRS: g ∈ G1, h ∈ G2

– First SRS with random evaluation point a ∈ Zp for:

v1 = (h, ha, . . . , ha
n−1

) and w1 = (ga
n

, . . . , ga
2n−1

)

– Second SRS with random evaluation point b ∈ Zp for:

v2 = (h, hb, . . . , hb
n−1

) and w2 = (gb
n

, . . . , gb
2n−1

)

Pair Group Commitments. To instantiate our aggregated scheme, we use two new pairing com-
mitment schemes. These schemes need to satisfy special properties (as discussed in Section 4) and
they require structured commitment keys cks, ckd of the form cks = (v1,v2), ckd = (v1,w1,v2,w2).
We then commit to vectors A ∈ Gn1 ,B ∈ Gn2 as follows:

1. Single group version CMs(A) := CMs(cks; A) = (TA, UA) where

TA = A ∗ v1 = e(A0, h)e(A1, h
a) . . . .e(An−1, h

an−1

)

UA = A ∗ v2 = e(A0, h)e(A1, h
b) . . . .e(An−1, h

bn−1

)

2. Double group version CMd(A,B) := CMd(ckd; A,B) = (TAB , UAB) where

TAB = (A ∗ v1)(w1 ∗B), UAB = (A ∗ v2)(w2 ∗B)

12



3.3 Framework for Aggregation

The high-level idea of Groth16 aggregation is quite simple: since Groth16 verification consists in
checking a pairing equation between the proof elements π = (A,B,C), instead of checking that n
pairing equations are simultaneously satisfied it is sufficient to prove that only one inner pairing
product of a random linear combination of these initial equations defined by a verifier’s random
challenge r ∈ Zp holds. In a bit more detail, Groth16 verification asks to check an equation of
the type e(Ai, Bi) = Yi · e(Ci, D) for Yi ∈ GT , D ∈ G2 where Yi is a value computed from each
statement ui = ai and πi = (Ai, Bi, Ci)

n−1
i=0 are proof triples.

The aggregation will instead check a single randomized equation:

n−1∏
i=0

e(Ai, Bi)
ri =

n−1∏
i=0

Y r
i

i · e
( n−1∏
i=0

Cr
i

i , D
)
.

This can be rewritten using an inner product notation as:

ZAB = Y ′prod · e(ZC , D), and ZAB := A ∗Br and ZC := C ∗ r

where we denoted by Y ′prod :=
∏n−1
i=0 Y

ri

i .

What is left after checking that this unified equation holds is to verify that the elements
ZAB , ZC are consistent with the initial proof triples in the sense that they compute the required
inner product. This is done by combining pairing commitments schemes with TIPP and MIPP
arguments: the TIPP argument shows that ZAB = A∗Br for some initial vectors A ∈ G1,B ∈ G2

committed using CMd; the MIPP argument shows that ZC = C ∗ r for some vector C ∈ G1

committed under CMs.

4 Pair Group Commitment Schemes

In this section we are introducing a new commitment scheme to group elements in a bilinear
group. In order to use them in our aggregation protocol, we require the following properties from
the commitment schemes:

• Computationally Binding Commitment: as per Definition 4
• Constant Size Commitment: the commitment value is independent of the length of the com-

mitted vector
• Doubly-Homomorphic: homomorphic both in the message space and in the key space

CM(ck1 + ck2;M1 +M2) = CM(ck1;M1) + CM(ck1;M2) + CM(ck2;M1) + CM(ck2;M2).

• Collapsing Property: double-homomorphism implies a distributive property between keys and
messages that allow to collapse multiple messages via a deterministic function Collapse defined
as follows:

Collapse

CM

ck1‖ck′1
ck2‖ck′2
ck3

M1‖M1

M2‖M2

M3

 = CM

ck1 + ck′1
ck2 + ck′2

ck3

M1

M2

M3


There are a few candidates for such schemes, but none of them are adapted for fulfilling our

goals. The commitment schemes proposed by [DRZ20, BMM+19] works under some new assump-
tion that asks for the commitment keys to be structured in a specific way. In order to use this
commitment, we need to run a new trusted setup to generate a commitment key. It would be
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impossible to consider existing Groth16 setups, since those give away elements that break binding
of the commitment scheme.

Our main goal is to find a commitment scheme that uses a structured reference string similar
to the one from many popular SNARK implementations, e.g. Groth16.

The commitment scheme proposed by Lai et al. [LMR19] is likely to satisfy the properties, but
it is shown to be binding only for unstructured random public parameters, while in order to obtain
a log-time verification Inner Pairing Product Argument scheme, we would need some structure for
the commitment keys. We adapt these commitments from [LMR19] to work with structured keys
and prove the commitments binding for an adversary that has access to these structured public
parameters under our new assumptions ASSGP and ASDGP.

To optimise the commitment sizes we define two different variants of the commitment scheme,
one that takes a vector of elements of a single group G1, and one that takes two vectors of points
in G1 and G2 respectively.

4.1 Single group version CMs.

This version is useful for the MIPP relation. It takes one vector A ∈ Gn1 and outputs two target
group elements (TA, UA) ∈ G2

T as a commitment.

KGs(1
λ)→ cks = (v1,v2). Sample a, b←$Zp and set

v1 = (h, ha, . . . , ha
n−1

), v2 = (h, hb, . . . , hb
n−1

).
CMs(cks = (v1,v2),A = (A0, . . . , An−1))→ (TA, UA):

1. TA = A ∗ v1 = e(A0, h) · e(A1, h
a) . . . e(An−1, h

an−1

)

2. UA = A ∗ v2 = e(A0, h) · e(A1, h
b) . . . e(An−1, h

bn−1

)

Lemma 3. Under the hardness of (n,m)-ASSGP assumption for m > 2n, this commitment
scheme is computationally binding as per Definition 4.

Proof. Suppose there exists a PPT adversary A that breaks the binding property of the com-
mitment scheme. Then, given the output ((TA, UA); A,A∗) of the adversary A we have that
(TA, UA) = (TA∗ , UA∗):

e(A0, h)e(A1, h
a) . . . e(An−1, h

an−1

) = e(A∗0, h)e(A∗1, h
a) . . . e(A∗n−1, h

an−1

)

e(A0, h)e(A1, h
b) . . . e(An−1, h

bn−1

) = e(A∗0, h)e(A∗1, h
b) . . . e(A∗n−1, h

bn−1

)

By applying the homomorphic properties of the commitment scheme to these equations we get:

e(A0/A
∗
0, h)e(A1/A

∗
1, h

a) . . . e(An−1/A
∗
n−1, h

an−1

) = 1

e(A0/A
∗
0, h)e(A1/A

∗
1, h

b) . . . e(An−1/A
∗
n−1, h

bn−1

) = 1

where the vector (A0/A
∗
0, A1/A

∗
1, . . . An−1/A

∗
n−1) 6= 1G1 . This breaks the (n,m)-ASSGP assump-

tion.

4.2 Double group version CMd.

This version is useful for the TIPP relation. It takes two vectors A ∈ Gn1 ,B ∈ Gn2 and outputs two
target group elements (TAB , UAB) ∈ G2

T as a commitment.

KGd(1
λ)→ ckd = (v1,v2,w1,w2) : Sample a, b←$Zp and set

v1 = (h, ha, . . . , ha
n−1

), w1 = (ga
n

, . . . , ga
2n−1

),

v2 = (h, hb, . . . , hb
n−1

), w2 = (gb
n

, . . . , gb
2n−1

).
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CMd(ckd,A,B)→ (TAB , UAB):
1. TAB = (A ∗ v1)(w1 ∗B)
2. UAB = (A ∗ v2)(w2 ∗B)

Lemma 4. Under the hardness of (n,m)-ASDGP assumption for m > 2n, this commitment
scheme is computationally binding.

Proof. The proof is analogous to the one of Lemma 3. Since the commitment is homomorphic
breaking the binding is equivalent to finding a non-trivial opening to 1. Thus it breaks the as-
sumption.

Inner Pairing Product Commitments. It is straightforward to check that the two version of pairing
commitment schemes CMs and CMd are compatible with inner product arguments, in the sense
that they satisfy all the necessary properties: constant size, doubly-homomorphic and identity is
a collapse function defined Collapseid(C) = C.

Reusing Groth16 SRS. The two commitment schemes have the advantage that they can reuse
two compatible (independent) SNARK setup ceremonies for their structured keys generation and
therefore can be easily deployed without requiring a new trusted setup.

The SRSes required for the generation of the public commitment keys should satisfy some
properties: We ask from the two ceremonies to be using the same basis/generators in the same
bilinear group g ∈ G1, h ∈ G2, but two different randomnesses a, b,∈ Zp, a 6= b for the exponents.

The setups consists in consecutive powers {gai , hai}mi=0 and {gbi , hbi}ni=0.
Importantly, even if the two setups have different dimensions m 6= n, this is not impacting

the binding of the commitments. The extra elements available to the adversaries are taken into
account in the auxiliary input aux in the two assumptions, by setting accordingly the parameters.

5 MT-IPP Scheme

This new protocol will be used to prove two inner pairing product relations that are essential to
SNARK aggregation: the multiexponentiation inner product (MIPP) between vectors C and r and
the target inner pairing product (TIPP) between vectors A,B, for vectors A,C ∈ G1 and B ∈ G2.

In order to optimize the aggregation contruction, we design a new protocol MT-IPP that “fuses”
together proofs for MIPP and TIPP relations. More precisely MIPP and TIPP arguments are at
the origin interactive protocols, that are turned into non-interactive arguments using Fiat-Shamir
transformation. This means that at each round the challenges are generated by a hash function
that is modeled by a random oracle. We will design a new protocol MT-IPP that simultaneously
generate these challenges by running a common hash function on both MIPP and TIPP inputs for
each round.

Relation. First we define the relation proven using the merged MT-IPP argument. This is a con-
junction of two relations:

MIPP Relation. The multiexponentiation product relation:

Rmipp := {((TA, UA), Z, r; A, r) : Z = A ∗ r ∧ (TA, UA) = CMs(cks; A) ∧ r = (ri)n−1i=0 }.

TIPP Relation. The target inner pairing relation:

Rtipp := {((TAB , UAB), Z, r; A,B) : Z = A ∗Br ∧
(TAB , UAB) = CMd(ckd; A,B) ∧ r = (ri)n−1i=0 },

where (TAB , UAB) ∈ GT ×GT , Z = A ∗Br ∈ GT , A ∈ Gn1 , B ∈ Gn2 , r ∈ Zp.
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MT-IPP Relation. The merged MT-IPP relation:

Rmt :=


(
(TAB , UAB), (TC , UC),

ZAB , ZC , r; A,B,C
) :

(CMd(A,B), ZAB , r; A,B) ∈ Rtipp

∧
(CMs(C), ZC , r; C) ∈ Rmipp


for vectors A,C ∈ G1 and B ∈ G2.

Construction. MT-IPP argument is instantiated using the pair group commitment schemes CMs =
(KGs,CMs) and CMd = (KGd,CMd) introduced in Section 4 which satisfy the desired properties
for usage in inner pairing product protocols. It also makes black-box use of KZG Polynomial Com-
mitment scheme KZG.PC = (KZG.KG,KZG.CM,KZG.Open,KZG.Check) described in Section 2.3.

Our scheme consists of 3 algorithms MT-IPP = (MT.Setup,MT.Prove,MT.Verify) described in
the following:

MT.Setup(1λ,Rmt)→ crsmt:

1. Run: cks := (v1,v2)← CMs(1
λ), ckd := (v1,v2,w1,w2)← CMd(1

λ).
2. Set commitment keys for KZG.PC scheme:

ck1v := {ha
i

}n−1i=0 , vk1v := ga ck1w := {ga
i

}2n−1i=0 , vk1w := ha

ck2v := {hb
i

}n−1i=0 , vk2v := gb ck2w := {gb
i

}2n−1i=0 , vk2w := hb

3. Define ckkzg := (ckjσ), vkkzg := (vkjσ) for j = 1, 2; σ = v, w.
4. Fix Hashcom: G4

T → Zp and its description hkcom.
5. Fix Hashx0

: Z2
p ×GT ×G1 → Zp and its description hkx0

.
6. Fix Hash : Zp ×G12

T → Zp and its description hk.
7. Fix Hashz : Zp ×G2

2 ×G2
1 → Zp and its description hkz.

8. Set crsmt := (hkcom, hkx0
, hk, hkz, cks, ckd, ckkzg, vkkzg).

MT.Prove(crsmt, (TAB , UAB), (TC , UC), ZAB , ZC , r; A,B,C)→ πmt:

– Loop “split & collapse” for step i
1. n′ = ni−1/2 where n0 = n = 2`

2. If n′ < 1: break
3. Set B′ := Br,w′1 := wr−1

1 ,w′2 := wr−1

2 .
4. Compute L/R inner products:

(ZL)AB = A[n′:] ∗B′[:n′] and (ZR)AB = A[:n′] ∗B′[n′:]

(ZL)C = C
r[:n′]
[n′:] and (ZR)C = C

r[n′:]
[:n′]

5. Compute left cross commitments:

(TL, UL)AB = CMd((v1,w
′
1; v2,w

′
2); A[n′:]||0,0||B′[:n′]))

= ((A[n′:] ∗ v1[:n′])(w1′[n:′] ∗B′[:n′]), (A[n′:] ∗ v2[:n′])(w2′[n′:] ∗B′[:n′]))

(TL, UL)C = CMs((v1,v2),C[n′:]||0)

= ((C[n′:] ∗ v1[:n′]), (C[n′:] ∗ v2[:n′]))

6. Compute right cross commitments:

(TR, UR)AB = CMd((v1,w
′
1; v2,w

′
2); 0||A[:n′],B

′
[n′:]||0)

= ((A[:n′] ∗ v1[n′:])(w
′
1[:n′]

∗B′[n′:]), (A[:n′] ∗ v2[n′:])(w
′
2[:n′]

∗B′[n′:])

(TR, UR)C = CMs((v1,v2),0||C[:n′])

= ((C[:n′] ∗ v1[n′:]), (C[:n′] ∗ v2[n′:]))
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7. Compute hash to the vector commitments

hcom = Hashcom((TAB , UAB), (TC , UC)).

8. Compute challenge xi, where x0 = Hashx0
(r, hcom, ZAB , ZC):

xi = Hash (xi−1; (ZL, ZR)AB , (ZL, ZR)C , (TL, UL;TR, UR)AB , (TL, UL;TR, UR)C)

9. Compute Hadamard products on vectors

A := A[:n′] ◦Axi

[n′:], B′ := B′[:n′] ◦B′
x−1
i

[n′:], C := C[:n′] ◦Cxi

[n′:]

10. Compute Hadamard products on keys v1,v2 and w′1,w
′
2:

(v1,v2) := (v1[:n′] ◦ v1
x−1

[n′:],v2[:n′] ◦ v2
x−1

[n′:])

(w′1,w
′
2) := (w′1[:n′] ◦w′

x
1[n′:]

,w′2[:n′] ◦w′
x
2[n′:]

)

11. Set ni = n′

– Compute proofs (πvj , πwj
)j=1,2 of correctness of final commitment keys (v1, v2) ∈ G2

2; (w′1, w
′
2) ∈

G2
1 (This step is detailed in Section 5.1):

1. Define fv(X) =
∏`−1
j=0(1 + x−1`−jX

2j ) and fw(X) = Xn
∏`−1
j=0

(
1 + x`−jr

−2jX2j
)

2. Draw challenge z = Hashz(x`, v1, v2, w1, w2)
3. Prove that v1 = gfv(a), v2 = hfv(a), w1 = gfw(a), w2 = hfw(b) are KZG commitments

of fv(X) by opening evaluations in z

πvj ← KZG.Open(ckjv; vj , z, fv(z); fv(X)) for j=1,2

πwj
← KZG.Open(ckjw;wj , z, fw(z); fw(X)) for j=1,2

– Given the final elements A,B′, C and (v1, v2), (w′1, w
′
2) at the end of the loop after split &

collapsing A,B′ = Br,C and v1,v2,w
′
1,w

′
2, set

πmt =
(
A,B′, C, (ZL,ZR)AB , (ZL,ZR)C , (TL,UL)AB , (TR,UR)AB ,

(TL,UL)C , (TR,UR)C , (v1, v2), (w′1, w
′
2), (πvj , πwj )j=1,2

)
MT.Verify(crsmt, statement;πmt)→ b:

1. Parse statement = ((TAB , UAB), (TC , UC), ZAB , ZC , r)
2. Compute hash to the commitments hcom = Hashcom((TAB , UAB), (TC , UC))
3. Reconstruct challenges {xi}`i=1:

x0 = Hashx0
(r, hcom, ZAB , ZC)

xi = Hash
(
xi−1, (ZL[i],ZR[i])AB , (ZL[i],ZR[i])C ,

(TL[i],TR[i],UL[i],UR[i])AB , (TL[i],TR[i],UL[i],UR[i])C
)

4. Construct products and commitments recursively, i = 1→ `:

– (Zi)AB = ZL[i]xi

AB · (Zi−1)AB · ZR[i]
x−1
i

AB

– (Ti)AB = TL[i]xi

AB · (Ti−1)AB ·TR[i]
x−1
i

AB

– (Ui)AB = UL[i]xi

AB · (Ui−1)AB ·UR[i]
x−1
i

AB

where (Z0)AB = ZAB , (T0))AB = TAB , (U0))AB = UAB
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– (Zi)C = ZL[i]xi

C · (Zi−1)C · ZR[i]
x−1
i

C

– (Ti)C = TL[i]xi

C · (Ti−1)C ·TR[i]
x−1
i

C ,

– (Ui)C = UL[i]xi

C · (Ui−1)C ·UR[i]
x−1
i

C
where (Z0)C = ZC , (T0)C = TC , (U0)C = UC

5. Compute final vector value from r: r′ =
∏`−1
i=0(1 + x−1`−ir

2i)

6. Verify final values (T`, U`, Z`)AB , (T`, U`, Z`)C :

(a) (Z`)AB
?
= e(A,B′)

(b) (Z`)C
?
= Cr

′

(c) Check if (T`)AB
?
= e(A, v1)e(w′1, B

′) and (U`)AB
?
= e(A, v2)e(w′2, B

′)

(d) Check if (T`)C
?
= e(C, v1) and (U`)C

?
= e(C, v2)

7. Verify final commitment keys v1, v2, w
′
1, w

′
2 as detailed in Section 5.1

(a) Reconstruct KZG challenge point: z = Hashz(x`, v1, v2, w
′
1, w

′
2)

(b) Reconstruct commitment polynomials:

fv(X) =

`−1∏
j=0

(
1 + x−1`−jX

2j
)

(1)

fw(X) = Xn
`−1∏
j=0

(
1 + x`−jr

−2jX2j
)

(2)

(c) Run verification for openings of evaluations in z for j = 1, 2:

b11 ← KZG.Check(vk1v; v1, z, fv(z);πv1), b12 ← KZG.Check(vk2v; v2, z, fv(z);πv2)

b21 ← KZG.Check(vk1w;w1, z, fw(z);πw1
), b22 ← KZG.Check(vk2w;w2, z, fw(z);πw2

)

All KZG.Checks are batched into a single pairing check.

Theorem 3. If CMs,CMd are computational binding commitments as per Definition 4, the hash
functions are modelled as random oracles and KZG.PC has computational knowledge binding as per
Definition 6, then the protocol MT-IPP has completeness and computational knowledge soundness
(Definition 1) against algebraic adversaries in the random oracle model.

Proof. Our protocol follows a standard AND-composition technique for proofs of two relations (in
our case Rtipp ∧ Rmipp). The proof for each individual relation follows the same proving strategy
as [BMM+19] proof of MIPP and TIPP arguments.

An adversary breaking soundness of the MT-IPP scheme, either convinces the verifier of incor-
rect final keys v1, v2, w

′
1, w

′
2 or breaks computational binding of one of CMs,CMd.

Since both CMs,CMd are computational binding, what is left to show is the completeness
and soundness for the proof of correctness of the final commitment keys. The validity of the final
commitment keys is shown using KZG.PC scheme. The complete analysis for this step can be found
in Section 5.1.

5.1 Final Commitment Keys

In this section, we will detail one step of the MT-IPP protocol: Checking the correctness of the
final commitment key, obtained after all ”split & collapse” steps.

Recall that our scheme MT-IPP achieves log-time verification using a specially structured com-
mitment scheme that allows the prover to use one new challenge xj in each round of recursion
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to transform the commitments homomorphically. Because of this, the verifier must also perform
a linear amount of work in rescaling the commitment keys (cks, ckd). To avoid having the verifier
rescale the commitment keys, our schemes apply the same trick as [DRZ20, BMM+19]: we do this
by outsourcing the work of rescaling the commitment keys to the prover.

Then what is left is to convince a verifier that this rescaling was done correctly just by checking
a succinct proof on these final keys.

Proof for Final Key. In our MT-IPP scheme, the prover will compute the final commitment keys
v1, v2, w

′
1, w

′
2 (the result of many rounds of rescaling/collapsing v1,v2,w

′
1,w

′
2 until the end of the

loop) and then prove that they are well-formed.
This is possible due to the structure in the commitment keys. For ease of presentation, we will

show how this proof works for a generic vector v, where v = (v1, v2, . . . , v2`) = (g, gα, gα
2

, . . . gα
n−1

).
The other checks for the keys v1, v2 and w1, w2 work in an analogously fashion.

Let us first define the relation to be proven, i.e. the correctness of the final commitment key
v ∈ G1 given the initial key v:

Rck :=
{

(gk, v, f(X), ckg = ({gα
i

}2n−2i=0 , vkh = hα)) : v = gf(α)
}

The argument for the relation Rck allows the verifier to check well-formedness of the final
structured commitment key. The idea is simple: the final commitment key v is interpreted as
a KZG polynomial commitment that the prover must open at a random point z. The verifier
produces the challenge point z ∈ Zp and the prover provides a valid KZG opening proof of f(z)
for the commitment v. The interaction can be removed using Fiat-Shamir heuristic via a collision-
resitant hash to generate the challenge z. The proof of security of such a protocol is given in
[BMM+19] in the algebraic group model. In a nutshell, an algebraic adversary that convinces a
verifier of incorrect keys can extract a valid 2n-SDH instance by breaking knowledge-binding of
KZG.PC polynomial commitment scheme.

We will use a polynomial commitment scheme (Definition 2.2) that allows for openings of
evaluations on a point and proving correctness of these openings. The concrete scheme is called
KZG.PC and works for both groups G1 and G2 as described in Section 2.3. The verification requires
an evaluation of the corresponding polynomial and four pairing checks.

Polynomial Formula. We will show now, hot to define the correct polynomials to be committed
under KZG.PC scheme in order to show that the final commitment keys was honestly generated.

Recall the structure of the 4 vectors v1,v2 ∈ G2 and w1,w2 ∈ G1 used for the commitment
keys cks, ckd:

v1 = (h, ha, . . . , ha
n−1

), w1 = (ga
n

, . . . , ga
2n−1

), w′1 := wr−1

1

v2 = (h, hb, . . . , hb
n−1

), w2 = (gb
n

, . . . , gb
2n−1

), w′2 := wr−1

2

We will show the formulae for the polynomials the two polynomials fv(X) and fw(X) that we
used in our scheme MT-IPP for v1, v2 and for w′1, w

′
2 are correct.

For ease of presentation, we state and prove the formula for a generic vector v = (v1, v2, . . . , v2`)

= (g, gα, gα
2

, . . . gα
2`−1

) of length n = 2` to which we apply the same rescaling as for the com-
mitment keys cks, ckd. The specific formulae for v1,v2,w

′
1,w

′
2 are easy to deduce once we have a

formula for v.
Consider a challenge xj for round j, where the total number of rounds is `. Note that at each

round j we split the sequence v1, v2, . . . , vn in half and we use xj to rescale first half and the second
half of the vector recursively until we end up with a single value v.

We claim that the formula for some initial key v = (v1 = g, v2 = gα, . . . , vn = gα
n−1

) and for a
vector of challenges x1 . . . x`−1, x` is:
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v = g
∏`−1

j=0(1+x`−jα
2j ).

We will prove the general formula by induction:

Step 1. Check the formula for ` = 1 (initial commitment key v has two elements v1, v2):

v = v1v
x1
2 = g1+x1α = g

∏0
j=0(1+x`−jα

2j ).

Step 2. Suppose the statement is true for `− 1. We prove it for `.

On the first round, we have a challenge x1 and we rescale the commitment key v which has
length n = 2` as follows:

v′ = v[:2`−1] ◦ vx1

[2`−1:]
,

v′ = (g · gx1α
2`−1

, gα · gx1α
2`−1+1

, gα
2 · gx1α

2`−1+2

, . . . ).

We can write this differently as v′=(v1v
x1α

2`−1

1 , . . . v2`−1vx1α
2`−1

2`−1 ).
This gives us a nicely written commitment key after first round

v′ = (v1+x1α
2`−1

1 , v1+x1α
2`−1

2 , . . . v1+x1α
2`−1

2`−1 ) = v1+x1α
2`−1

[:2`−1]
.

We can apply the induction assumption for step `− 1 to v[:2`−1] which is a commitment key of

length 2`−1. This means the final key for v is:

v =

(
g
∏`−2

j=0

(
1+x`−jα

2j
))(1+x1α

2`−1
)

= g
∏`−1

j=0(1+x`−jα
2j ).

Remark than in more generality, this can be written as:

v = v
∏`−1

j=0(1+x`−jα
2j )

1

Therefore, if we start with an initial key w = (w1 = gα
n

, wα
n+1

2 . . . , wn = gα
2n−1

), the final key
w can be written as:

w = w
∏`−1

j=0(1+x`−jα
2j )

1 = gα
n ∏`−1

j=0(1+x`−jα
2j )

6 SnarkPack: Aggregation Scheme

In this section we describe SnarkPack, our new efficient protocol for Groth16 aggregation. The
relation proven by SnarkPack can be stated as follows:

Relation for Aggregation. More formally, we introduce the relation for aggregating n Groth16
proof vectors A,C ∈ Gn1 ,B ∈ Gn2 with respect to a fixed verification key vk:

RAGG :=
{

(u = {ai}n−1i=0 ;π = {(A,B,C)}) : Groth.Verify(vk, ui, πi) = 1, ∀i
}

where ui = ai = {ai,j}tj=0, πi = (Ai, Bi, Ci) ∈ G1 ×G2 ×G1 for i = 0, . . . n− 1.

The resulting argument for aggregation consists in 3 algorithms SnarkPack = (SP.Setup,SP.Prove,
SP.Verify) that work as follows:
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SP.Setup(1λ,RAGG)→ (crsagg, vkagg)

1. Generate commitment key for CMd:

ckd = (v1,v2,w1,w2)← CMd.KG(1λ)

2. Set commitment key for CMs : cks = (v1,v2)

3. Call crsmt ← MT.Setup(1λ,Rmt)

4. Fix hash function Hashr : Zt·np ×G4
T → Zp given by its description hkr

5. Set aggregation public parameters: crsagg = (vk, crsmt, hkr)

SP.Prove(crsagg,u, π = (A,B,C))→ πagg

1. Parse proving key crsagg := (vk, crsmt, cks, ckd, hk)

2. Parse cks = (v1,v2), ckd = (v1,v2,w1,w2)

3. Commit to A and B:

CMd((v1,v2,w1,w2); A,B) = (TAB , UAB)

4. Commit to C : CMs((v1,v2); C) = (TC , UC)

5. Hash these commitments hcom = Hashcom((TAB , UAB), (TC , UC))

6. Derive random challenge r = Hashr(u, hcom) and set r = {ri}n−1i=0

7. Compute ZAB = Ar ∗B

8. Compute ZC = Cr =
∏n−1
i=0 C

ri
i .

9. Run MT proof for inner products ZAB , ZC , r:

πmt = MT.Prove(crsmt, (TAB , UAB), (TC , UC), ZAB , ZC , r; A,B,C, r)

10. Set πagg = ((TAB , UAB), (TC , UC), ZAB , ZC , πmt)

SP.Verify(vkagg,u, πagg)→ b

1. Parse SNARK instances u = {ai,j}i=0,...n−1;j=0,...t

2. Parse verification key vkagg := (vk, crsmt, hk)

3. Hash the commitments hcom = Hashcom((TAB , UAB), (TC , UC))

4. Parse vk :=
(
P = gα, Q = hβ , {Sj}tj=0, H = hγ , D = hδ

)
5. Derive random challenge r = Hashr(u, hcom)

6. Set statement = (u, (TAB , UAB), (TC , UC), ZAB , ZC , r)

7. Check MT proof b1 ← MT.Verify(crsmt, statement, πmt)

8. Compute ZSj
= S

∑n−1
i=0 aijr

i

j for all j = 0 . . . t

9. Check Groth16 final equation to the decision bit b2:

ZAB
?
= e(P

∑n−1
i=0 ri , Q)e(

t∏
j=0

ZSj , H)e(ZC , D)

10. Set decision bit b = b1 ∧ b2
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7 Implementation

We have implemented the scheme in Rust, using the paired [Fil18b] library on the BLS12-381
curve. The code can be found on the feat-ipp2 branch [Fil21] of the bellperson repository [Fil18a].
We have taken the original code of the arkwork library [ark19] and modified it both for fitting the
scheme presented in this paper and for performance. All proofs are Groth16 proofs with 350 public
inputs, which is similar to the proofs posted by Filecoin miners. All benchmarks are done on a 32
cores / 64 threads machine with AMD Raizen Threadripper CPUs.
Parallelism: It is important to note that the protocol allows for some parallel operations and our
implementation makes use of that. Therefore, all benchmarks presented here can change depending
on the degree of parallelism of the machine.
Trusted Setup: We created a condensed version of the SRS required for our protocol from the
powers of tau transcript of both Zcash [zca18] and Filecoin [Lab18]. The code to assemble the SRS
from two powers of tau can be found at [nik21]. The SRS created allows to aggregate up to 219

proofs.
Field elements compression: The proof requires many pairing operations and multiplications in
the target group which employ arithmetic over the finite field Fp12 . We implemented compression of
these field elements that still allow some computations without decompression using algorithms de-
rived from RELIC library [AGM+]. You can find the specific implementation in this branch [dig21].
This led to a 40% reduction in proof size.

Fig. 1. Proof size: Aggregation vs Batching.

Compressing pairing checks: A further performance gain in our SnarkPack is given by the
verification batch which applies to the pairing checks from MT-IPP verification: We scale each
pairing checks of the form

e(A,B)e(C,D)... = T

with a random exponent when verifying so we can compress multiple such checks into one. This
randomized checking technique is borrowed from the Zcash specs [HBHW21]. Specifically, we have
a list P of length n of pairing checks of the form e(A,B)e(C,D)... = T . To compute a pairing we
need to apply two commutative operations: The Miller loop (ML) and the Final Exponentiation
(FE). We get advantage of the commutativity of these two steps to improve the verification time
by checking many pairing equations at once. The verifier performs the following steps to verify all
checks in a compressed manner:
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Fig. 2. Aggregation Time

1. Choose n randoms scalars ri with r0 = 1
2. Randomize each pairing check Pi for i > 1:

e(Arii , Bi)e(C
ri
i , Di) · · · = T ri

3. Compute the Miller Loop (ML) on the left side of each pairing check:

mi = ML((Arii , Bi), (C
ri
i , Di), . . . )

4. Multiply all results together and apply the final exponentiation (FE) at the end:

FE(
∏
i

mi) =
∏
i

T rii

Note that doing the random linear combination using the G1 components of the check (i.e. Arii )
is much faster than simply doing the exponentiation on the result of the pairings (i.e. e(Ai, Bi)

r
i )

as the exponentiation is then in GT.

Proof Size. The proof size in Fig. 2 compares the size of n proofs versus the size of one aggregated
proof. The figure shows the break even point around 150 proofs where aggregation takes less space
than batching. At 128 proofs, the size of aggregated proof is of 23kB versus 24kB for individual
proofs.

Aggregation time. Fig. 2 shows the time taken by the aggregator to create an aggregated
proof. We can see for example that it can aggregate 1024 proofs in 1.4s. The prover is required
to compute a logarithmic number of multi-exponentiations and expensive pairing products. Our
implementation perform these in parallel and in batches (batching miller loop operations).

Verification time. Fig. 3 shows the comparison between the verification of an aggregated proof
and other batching techniques described in the zcash protocol [HBHW21]. Verifying Groth16 proofs
in batches is what is commonly used in zcash as well as Filecoin to get a sublinear verification
time. The graph shows that batching is more efficient when verifying less 32 Groth16 proofs but
aggregation becomes exponentially faster after that point. SnarkPack scales logarithmically and
can verify 8192 proofs in 163ms, including unserialization. Note the verification algorithm is linear
in terms of the public inputs. In our case, 350 public inputs per proof is small enough to barely
count for the total verification time.
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Fig. 3. Verifcation time: Aggregation vs Batching.
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A Assumptions in GGM

A.1 ASSGP Assumption in GGM

Assumption 4 (ASSGP) The (q,m)-Auxiliary Structured Single Group Pairing assumption holds
for the bilinear group generator G if for all PPT adversaries A we have, on the probability space
gk = (p,G1,G2,GT )← G(1λ), g←$G1, h←$G2 and a, b←$Zp the following holds:

Pr

 A 6= 1G1

∧
∏q−1
i=0 e(Ai, h

ai) = 1GT

∧
∏q−1
i=0 e(Ai, h

bi) = 1GT

g←$G1, h←$G2, a, b←$Zp
σ ← [ga

i

, gb
i

, ha
i

, hb
i

]2q−1i=0

aux← [ga
i

, gb
i

, ha
i

, hb
i

]mi=2q

A← A(gk, σ, aux)

 = negl(λ)

We can similarly define the dual assumption, by swapping G1 and G2 in the definition above.

Lemma 5. The (q,m)-ASSGP assumption holds in the generic group model.

Proof. Suppose A is an adversary that on input (gk, σ, aux), outputs (A0, . . . , Aq−1) ∈ Gq1 such that∏q−1
i=0 e(Ai, h

ai) = 1GT
and

∏q−1
i=0 e(Ai, h

bi) = 1GT
. Then its GGM extractor outputs αi(X,Y ) =∑m

j=0(xjX
j + yjY

j + cj) for 0 ≤ i < q then we have:

α0(X,Y ) +Xα1(X,Y ) +X2α2(X,Y ) + · · ·+Xq−1αq−1(X,Y ) = 0 (3)

α0(X,Y ) + Y α1(X,Y ) + Y 2α2(X,Y ) + · · ·+ Y q−1αq−1(X,Y ) = 0 (4)

Then we have:

α0(X,Y ) = −Xα1(X,Y )−X2α2(X,Y )− · · · −Xq−1αq−1(X,Y ) (5)

α0(X,Y ) = −Y α1(X,Y )− Y 2α2(X,Y )− · · · − Y q−1αq−1(X,Y ) (6)

If we substract (6) and (5) we got

0 =(X − Y )α1(X,Y ) + · · ·+ (Xq−1 − Y q−1)αq−1(X,Y ) (7)

−(X − Y )α1(X,Y ) =(X2 − Y 2)α2(X,Y ) + · · ·+ (Xq−1 − Y q−1)αq−1(X,Y ) (8)

Now we can divide by (X − Y ) and obtain:

−α1(X,Y ) =(X + Y )α2(X,Y ) + (X2 +XY + Y 2)α3(X,Y ) + · · ·+
+ (Xq−2 + Y Xq−3 + · · ·+ Y q−3X + Y q−2)αq−1(X,Y ) (9)
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Substitute the expression of −α1(X,Y ) in equation (5) and remark that all Xiαi(X,Y ) terms are
vanishing:

α0(X,Y ) = X[(X + Y )α2(X,Y ) + (X2 +XY + Y 2)α3(X,Y ) + · · ·+ (Xq−2 +Xq−3Y + · · ·+
+XY q−3 + Y q−2)αq−1(X,Y )]−X2α2(X,Y )− · · · −Xq−1αq−1(X,Y )

α0(X,Y ) = XY α2(X,Y ) + (X2Y +XY 2)α3(X,Y ) + · · ·+ (Xq−2Y + · · ·+XY q−2)αq−1(X,Y )

α0(X,Y ) = XY [α2(X,Y ) + (X + Y )α3(X,Y ) + · · ·+ (Xq−3 +Xq−4Y + · · ·+ Y q−3)αq−1(X,Y )]
(10)

This implies that either α0(X,Y ) is a multiple of XY or α0(X,Y ) = 0.

By the GGM assumption, we have that α0(X,Y ) = 0.

We continue by replacing α0(X,Y ) = 0 in equation (10):

0 = α2(X,Y ) + (X + Y )α3(X,Y ) + · · ·+ (Xq−3 +Xq−4Y + · · ·+ Y q−3)αq−1(X,Y )
(11)

−α2(X,Y ) = (X + Y )α3(X,Y ) + · · ·+ (Xq−3 +Xq−4Y + · · ·+ Y q−3)αq−1(X,Y ) (12)

Substitute the expression of −α2(X,Y ) in equation (6) and remark that all Y iαi(X,Y ) terms are
vanishing:

0 = −Y α1(X,Y )− Y 2[(X + Y )α3(X,Y ) + · · ·+ (Xq−3 +Xq−4Y + . . .

+ Y q−3)αq−1(X,Y )]− Y 3α3(X,Y )− · · · − Y q−1αq−1(X,Y )

Y α1(X,Y ) = Y 2Xα3(X,Y ) + · · ·+ (Xq−3Y 2 +Xq−4Y 3 + · · ·+XY q−2)αq−1(X,Y )

Y α1(X,Y ) = Y 2X[α3(X,Y ) + · · ·+ (Xq−4 +Xq−5Y + · · ·+ Y q−4)αq−1(X,Y )] (13)

This implies that either α1(X,Y ) is a multiple of XY or α1(X,Y ) = 0.

By the GGM assumption, we have that α1(X,Y ) = 0.

We continue by replacing α1(X,Y ) = 0 in equation (13):

0 =α3(X,Y ) + · · ·+ (Xq−4 +Xq−5Y + · · ·+ Y q−4)αq−1(X,Y )

−α3(X,Y ) = (X2 +XY + Y 2)α4(X,Y ) + · · ·+ (Xq−4 +Xq−5Y + · · ·+ Y q−4)αq−1(X,Y ) (14)

And so on... till we show that αi(X,Y ) = 0 ∀i = 0 . . . q − 1. We conclude that the adversarly
produced vector (A0, . . . , Aq−1) = 1G1

.

A.2 ASDGP Assumption in GGM

Assumption 5 (ASDGP) The (q,m)-ASDGP assumption holds for the bilinear group generator
G if for all PPT adversaries A we have, on the probability space gk = (p,G1,G2,GT ) ← G(1λ),
g←$G1, h←$G2 and a, b←$Zp the following holds:

Pr

 (A 6= 1G1 ∨ B 6= 1G2)

∧
∏q−1
i=0 e(Ai, h

ai)
∏2q−1
i=q e(ga

i

, Bi) = 1GT

∧
∏q−1
i=0 e(Ai, h

bi)
∏2q−1
i=q e(gb

i

, Bi) = 1GT

g←$G1, h←$G2, a, b←$Zp
σ = [ga

i

, gb
i

, ha
i

, hb
i

]2q−1i=0

aux = [ga
i

, gb
i

, ha
i

, hb
i

]mi=2q

(A,B)← A(gk, σ, aux)

 = negl(λ)

Lemma 6. The (q,m)-ASDGP assumption holds in the generic group model.
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Proof. Suppose A is an adversary that on input (gk, σ, aux), outputs A = (A0, . . . , Aq−1) and
B = (B0, . . . , Bq−1) such that:

q−1∏
i=0

e(Ai, h
ai)

2q−1∏
i=q

e(ga
i

, Bi) = 1GT
and

q−1∏
i=0

e(Ai, h
bi)

2q−1∏
i=q

e(gb
i

, Bi) = 1GT
.

Then its GGM extractor outputs αi(X,Y ) =
∑m
j=0(xjX

j+yjY
j+cj) and βi(X,Y ) =

∑m
j=0(xjX

j+

yjY
j + cj) for 0 ≤ i < q such that:

α0(X,Y ) +Xα1(X,Y ) + · · ·+Xq−1αq−1(X,Y ) +Xqβ0(X,Y ) + · · ·+X2q−1βq−1(X,Y ) = 0
(15)

α0(X,Y ) + Y α1(X,Y ) + · · ·+ Y q−1αq−1(X,Y ) + Y qβ0(X,Y ) + · · ·+ Y 2q−1βq−1(X,Y ) = 0
(16)

By substracting (16) and (15) we got

0 = (X − Y )α1(X,Y ) + · · ·+ (Xq−1 − Y q−1)αq−1(X,Y ) + (Xq − Y q)βq(X,Y ) + . . . (17)

Now we can factor (X − Y ) and then divide by it and obtain:

−α1(X,Y ) =(X + Y )α2(X,Y ) + (X2 +XY + Y 2)α3(X,Y ) + · · ·+
+ (X2q−2 + Y X2q−3 + · · ·+ Y 2q−3X + Y 2q−2)β2q−1(X,Y ) (18)

Substitute −α1(X,Y ) in equation (15) and remark that all Xiαi(X,Y ), Xq+iβq+i(X,Y ) terms are
vanishing:

α0(X,Y ) = X

q−1∑
i=2

i−1∑
j=0

Xi−j−1Y j

αi(X,Y ) +

2q−1∑
i=q

i−1∑
j=0

Xi−j−1Y j

βi(X,Y )

−
−
q−1∑
i=2

Xiαi(X,Y )−
2q−1∑
i=q

Xiβi(X,Y )

α0(X,Y ) = X

q−1∑
i=2

i−1∑
j=1

Xi−j−1Y j

αi(X,Y ) +

2q−1∑
i=q

i−1∑
j=1

Xi−j−1Y j

βi(X,Y )


α0(X,Y ) = XY

q−1∑
i=2

i−1∑
j=1

Xi−j−1Y j−1

αi(X,Y ) +

2q−1∑
i=q

i−1∑
j=1

Xi−j−1Y j−1

βi(X,Y )

 (19)

This implies that either α0(X,Y ) is a multiple of XY or α0(X,Y ) = 0.
By the GGM assumption, we have that α0(X,Y ) = 0.
We continue by replacing α0(X,Y ) = 0 in equation (19):

−α2(X,Y ) =

q−1∑
i=3

i−1∑
j=1

Xi−j−1Y j−1

αi(X,Y ) +

2q−1∑
i=q

i−1∑
j=1

Xi−j−1Y j−1

βi(X,Y ) (20)

Substitute the expression of −α2(X,Y ) in equation (15) or (16) and remark that all terms
Xiαi(X,Y ), Xiβi(X,Y ) (respectively Y iαi(X,Y ), Y iβi(X,Y )) terms are vanishing.

And so on till we show that αi(X,Y ) = 0 ∀i = 0 . . . q − 1 and βi(X,Y ) = 0 ∀i = q . . . 2q − 1.
We conclude that the adversarly produced vectors (A0, . . . , Aq−1) = 1G1 , (B0, . . . , Bq−1) = 1G2 .
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Groth.Setup(1λ,R)

α, β, γ, δ←$Z∗p, s←$Z∗p,

crs =
(
QAP, gα, gβ , gδ, {gs

i

}d−1
i=0 ,

{
g
βvj(s)+αwj(s)+yj(s)

γ

}t
j=0

,
{
g
βvj(s)+αwj(s)+yj(s)

δ

}
j>t

,
{
g
sit(s)
δ

}d−2

i=0
,

hβ , hγ , hδ, {hs
i

}d−1
i=0

)
vk :=

(
P = gα, Q = hβ ,

{
Sj = g

βvj(s)+αwj(s)+yj(s)

γ

}t
j=0

, H = hγ , D = hδ
)

td = (s, α, β, γ, δ)

return (crs, td)

Groth.Prove(crs, u, w)

u = (a1, . . . , at), a0 = 1

w = (at+1, . . . , am)

v(x) =
∑m
j=0 ajvj(x)

vmid(x) =
∑
j∈Imid

ajvj(x)

w(x) =
∑m
j=0 ajwj(x)

wmid(x) =
∑
j∈Imid

ajwj(x)

y(x) =
∑m
j=0 ajyj(x)

ymid(x) =
∑
j∈Imid

ajyj(x)

h(x) = (v(x)w(x)−y(x))
t(x)

fmid =
βvmid(s) + αwmid(s) + ymid(s)

δ
r, u←$Z∗p
a = α+ v(s) + rδ, b = β + w(s) + uδ

c = fmid + t(s)h(s)
δ

+ ua+ rb− urδ

return (π = (A = ga, B = hb, C = gc))

Groth.Verify(vk, u, π)

π = (A,B,C)

vio(x) =
∑t
i=0 aivi(x)

wio(x) =
∑t
i=0 aiwi(x)

yio(x) =
∑t
i=0 aiyi(x)

fio =
βvio(s) + αwio(s) + yio(s)

γ

Check

e(A,B) = e(gα, hβ) · e(gfio , hγ) · e(C, hδ)

Groth.Sim(td, u)

a, b←$Z∗p

c =
ab− αβ − βvio(s) + αwio(s) + yio(s)

δ

return (π = (A = ga, B = hb, C = gc))

Fig. 4. Groth16 Construction from QAP.

B Groth16 Scheme

Let C be an arithmetic circuit over Zp, with m wires and d multiplication gates. Groth16 scheme
proves circuit satisfiability, using a Quadratic Arithmetic Program (QAP) characterisation. Briefly,
a QAP as introduced by [GGPR13] is translating a circuit into an equivalent arithmetic relation
that holds only if the circuit has a solution.

Let Q = (t(x), {vk(x), wk(x), yk(x)}mk=0) be a Quadratic Arithmetic Program (QAP) which
computes C. We denote by Iio = {1, 2, . . . t} the indices corresponding to the public input and
public output values of the circuit wires and by Imid = {t+1, . . .m}, the wire indices corresponding
to the private input and non-input, non-output intermediate values (for the witness).

We describe Groth = (Setup,Prove,Verify) scheme in [Gro16] that consists in 3 algorithms as
per Figure 4.
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