
Let’s Take it Offline:
Boosting Brute-Force Attacks on iPhone’s User

Authentication through SCA

Oleksiy Lisovets , David Knichel , Thorben Moos and Amir Moradi

Ruhr University Bochum, Horst Görtz Institute for IT Security, Bochum, Germany,
{firstname.lastname}@rub.de

Abstract. In recent years, smartphones have become an increasingly important
storage facility for personal sensitive data ranging from photos and credentials up
to financial and medical records like credit cards and person’s diseases. Trivially,
it is critical to secure this information and only provide access to the genuine and
authenticated user. Smartphone vendors have already taken exceptional care to
protect user data by the means of various software and hardware security features
like code signing, authenticated boot chain, dedicated co-processor and integrated
cryptographic engines with hardware fused keys. Despite these obstacles, adversaries
have successfully broken through various software protections in the past, leaving
only the hardware as the last standing barrier between the attacker and user data.
In this work, we build upon existing software vulnerabilities and break through
the final barrier by performing the first publicly reported physical Side-Channel
Analysis (SCA) attack on an iPhone in order to extract the hardware-fused device-
specific User Identifier (UID) key. This key – once at hand – allows the adversary to
perform an offline brute-force attack on the user passcode employing an optimized
and scalable implementation of the Key Derivation Function (KDF) on a Graphics
Processing Unit (GPU) cluster. Once the passcode is revealed, the adversary has full
access to all user data stored on the device and possibly in the cloud.
As the software exploit enables acquisition and processing of hundreds of millions of
traces, this work further shows that an attacker being able to query arbitrary many
chosen-data encryption/decryption requests is a realistic model, even for compact
systems with advanced software protections, and emphasizes the need for assessing
resilience against SCA for a very high number of traces.
Keywords: iPhone · SCA · Passcode Recovery

1 Introduction
Over the last decade, smartphones entirely reshaped the way we communicate while
drastically increasing the amount of user-related data collected and stored on device or
uploaded into the cloud. With the advancement of the Internet of Things and increased
interconnection of everyday-life devices, this trend is reinforced even further. Smartphones
became a replacement for various smart cards including credit cards; they process health-
related data, and serve as an access key in various applications. As a result, compromising
the security and data protection mechanisms of smartphones dramatically impacts user
privacy. Here, the user authentication plays a key role as its bypass would lead to full
control over the device. While biometric-based authentication methods like fingerprint
matching or face recognition were introduced over the years, using a (numeric) passcode is
still commonly the fall-back option if these methods fail. Next to Samsung and Huawei

https://orcid.org/0000-0001-8479-4386
https://orcid.org/0000-0002-2510-8881
https://orcid.org/0000-0003-3809-9803
https://orcid.org/0000-0002-4032-7433
mailto:oleksiy.lisovets@rub.de, david.knichel@rub.de, thorben.moos@rub.de, amir.moradi@rub.de

2 Let’s Take it Offline

devices, Apple’s iPhone is the most sold smartphone in the world showing a market share
of 14% in the first quarter of 2020 [Goa20]. With the introduction of Touch ID in iPhone 5s
and later with Face ID for the iPhone X, Apple has started integrating biometric-based
user authentication methods in their devices while setting a passcode still remains as a
prerequisite to enable Touch ID or Face ID. Whereas a 4-digit numeric passcode was the
default option for older system versions, its length has been extended to contain 6 numeric
digits with the launch of iOS 9. Nevertheless, iOS always offers an option for manually
setting an arbitrary-length (≥ 4) numeric/alphanumeric passcode. We should highlight
that it is always possible – and in case of a cold boot even required – to unlock the iPhone
using the passcode instead of the configured biometric authentication methods. Therefore,
the passcode is still the default fall-back solution for user authentication, enabling an
adversary to alternatively target this method in order to maliciously gain access to the
device’s system and user data.

When the user enters the passcode, it is entangled with a device-specific key called
User Identifier (UID). The UID is an encryption key unique for each device and is fused
into hardware during manufacturing. The result of running the aforementioned function is
then used to decrypt/encrypt user data stored on the device. The entanglement between
passcode and the UID key restricts brute-force attempts to be performed on the (same)
device. In addition, a single execution of the aforesaid cryptographic function is designed to
take about 80 milliseconds, resulting in an expected time of over 22 hours for an on-device
brute force search of a 6-digit numeric passcode.

Current methods, like the one presented by Markert et al. in [MBG+20], try to optimize
the on-device search of a user’s passcode through an ordered list of common PINs, as PIN
verification is tied to a specific phone. By utilizing Side-Channel Analysis (SCA) attacks,
we show that the coupling of the brute-force search to a specific iPhone can be levered out
completely, enabling a significantly faster passcode recovery.

Since the first introduction of SCA attacks as a threat to cryptographic implementa-
tions [Koc96, KJJ99], researchers and practitioners have reported successful key-recovery
attempts mainly on their-own-designed devices. This picture has changed when they have
been shown highly effective by targeting real world devices, even in a blackbox scenario,
where no details about the implementation are known to the adversary. For example,
in [EKM+08, KKMP09] SCA attacks were used to completely break the remote keyless
entry system based on KeeLoq technology employed by several car manufacturers at that
time. In [ORP13], by means of SCA, the authors reported the recovery of the Yubikey 2’s
secret key – a One-Time Passwords (OTPs) token used for two factor authentication –
enabling the malicious generation of valid OTPs, even after returning the token to the
owner. In 2011, the result of a power analysis attack on the contactless smartcard DESFire
MF3ICD40 was reported [OP11], resulting in a complete recovery of its 112-bit key. As
this smartcard was employed in several large payment and public transport systems around
the world at that time (e.g., Czech railway, Australian myki card, Clippercard in San
Francisco) it evidently emphasizes the relevance of SCA attacks in real-world scenarios.
Further, in [SRH16], Saab et al. show two ways of recovering AES keys in the context of
Intel’s AES-NI cryptographic instruction set extension by placing a magnetic field probe
in close proximity of two capacitors on a motherboard hosting an Intel Core i7 Ivy Bridge
microprocessor.

An example for a successful SCA attack performed on a smartphone is presented
in [BFMT16], where Belgarric et al. successfully recovered the key used in the imple-
mentation of the ECDSA signature scheme in Android’s standard cryptographic library.
In their work, they leverage the electromagnetic emanation of the CPU to distinguish
between different elliptic curve operations in the context of Weierstrass and Koblitz Curves.
Another EM-based SCA attack on a smartphone is reported in [VMC19], where the authors
successfully extract the secret AES key of the CPU’s hardware coprocessor. The work

O. Lisovets, D. Knichel, T. Moos and A. Moradi 3

especially focuses on issues arising when performing such an attack on a modern system and
involves desoldering the DRAM placed on top of the main SoC. However, the manufacturer
and model of the device under test are not disclosed.

Academic publications dealing particularly with physical attacks on iPhones are hard
to find. To the best of our knowledge only a 2016 work by Sergei Skorobogatov [Sko16]
describes a real-world implementation attack on an iPhone. In more detail, the author
describes how to perform a real-world mirroring attack on an iPhone 5c, enabling to bypass
the limit of passcode retry attempts by restoring a previous state of the NAND flash
memory. Beyond that, only informal reports of successful hardware exploitation of iPhone
devices exist. For instance, an article from The Intercept, published in 2015 in course of
the Snowden Leaks, mentions that already in 2011, EM-based SCA attacks were performed
by the CIA in order to extract the Group Identifier (GID) key from iPhone 4 devices in
order to decrypt and analyze the boot firmware for vulnerabilities [SB15]. More details
can be found in [int15].

In previous works by Sogeti [sog11b] and Elcomsoft [elc11], the software implementation
of iPhone data protection has been reverse engineered. Furthermore, they utilized a
BootROM vulnerability to perform on-device passcode cracking by booting a custom
Secure Shell (SSH) ramdisk with a patched kernel, allowing them to instruct the Advanced
Encryption Standard (AES) engine to use the UID key from userspace.

In this work, we utilize a BootROM vulnerability to deploy a custom payload in
bootloader context, which allows us to communicate with the AES engine and perform a
successful SCA attack on an iPhone 4 recovering the complete 256-bit UID key fused into
the hardware design of an individual device’s processor. Despite the fact that no detailed
information about the attack procedure is included in the leaked documents [SB15, int15],
it is likely that the attacks supposedly performed by the CIA to extract the GID key from
an Apple A4 processor, are very similar to our attack presented in this work. The hardware
AES engine can be configured to use either of the two keys, GID or UID, so that the attack
procedure for extracting them is identical. In our attack, having the UID key in hand, the
authentication process becomes decoupled from the device, enabling a significantly faster
and scalable brute-force search of the passcode utilizing highly parallelized computation on
Graphics Processing Units (GPUs). Since we show that existing software vulnerabilities
enable the collection and processing of a high number of measurement traces, our work
underlines the practical relevance of assessing the resilience of a device against SCA,
even for several hundreds of millions of traces, which is often questioned by the research
community.

For the collection of the SCA measurements, the device evidently needs to be physically
accessed by the adversary. Afterwards, however, the adversary does not have to be in the
possession of the iPhone anymore, as the storage can be dumped and the passcode search
is performed completely offline. In order to give an overview on the performance of our
attack, we refer to the required time for a trivial on-device brute-force search of an 8-digit
numeric passcode which is reduced from 92 days to less than 3 hours by performing the
search on 2 NVIDIA RTX 2080 TI GPUs [NVI18].

The rest of the paper is structured as follows. First, we give an overview of the attack
scenario and our approach in Section 2, before all necessary background is clarified in
Section 3. In Section 4, we describe how we recovered the UID key by performing SCA
attacks on an iPhone 4. Once recovered, we use this key to perform a parallel brute-force
search of the passcode, as detailed in Section 5. A discussion on the applicability of this
attack to newer iPhone series is given in Section 6. Finally, we conclude the paper in
Section 7.

4 Let’s Take it Offline

2 Attack at a Glance

The attack procedure described in the following is based on the assumption that code
execution by means of a software exploit, i.e., a BootROM exploit, is achieved. The
adversary then has oracle access to the AES engine realized as a dedicated hardware
co-processor on the CPU and can query arbitrary data to be encrypted in a chosen-
plaintext SCA attack. For our device under test, the necessary BootROM exploit is
publicly available.

2.1 Attack Scenario

First, the adversary maliciously gains physical access to the victim’s device. Without any
persistent modification of the system, she then boots a custom ramdisk providing SSH
access and downloads the System Keybag from device (further described in Section 3.2).
Furthermore, she performs an SCA attack in order to extract the device-specific UID key.
For user authentication, the UID key is entangled with the user’s passcode in order to
derive the so-called passcode key which is in turn used to unwrap further keys from the
System Keybag. This can then be used to unlock individual files stored encrypted on the
filesystem. Using existing vulnerabilities, we show that the attacker can easily extract
this file from the device – again without any permanent changes on the system – which,
together with the UID key, enables the recovery of the user’s passcode by means of an
offline brute-force search. After successful recovery of the passcode, the system can be
normally booted and the adversary can simply log into the device, allowing complete
access to all data, e.g. by running an iTunes backup. As the necessary modifications of
the mainboard only consist of removing the metal shielding of the CPU (which can be
simply unclipped and clipped back), they can easily be reversed and the phone can still be
operated normally after the attack, leaving the victim with no direct chance to recognize
any malicious activity. The power analysis attacks which we performed in addition to the
EM-based attacks, require the disassembly of inductors and capacitors from the board,
but even in that case it is possible to reverse the modifications, although greater care and
effort is required. Admittedly, the attack procedure requires not only physical access and
minor modifications of the hardware, but also a considerable amount of time to acquire
the necessary amount of measurements (in our case, it took three weeks in total to recover
the UID). Nonetheless, we can think of highly relevant attack scenarios where an attacker
is able to invest the time for this attack and where it is worthwhile to do so. Apart from
finding or stealing a device and extracting all the sensitive user data, an attacker could also
run a malicious phone shop where she extracts the UID keys in advance before handing
out the phone to the customer and might sell them to malicious third parties. In fact the
break-even point, where the time spent to perform the physical attack is less than the time
saved when doing offline instead of on-device brute-force search is reached for passcodes of
8 digits and more.

In this work we present the aforementioned attack on an iPhone 4; however the same
setup (with minor changes) can be used to collect SCA measurements and extract the
keys from an iPhone 4s and iPhone 5/5c. We further believe that similar research can
be done on devices up to the iPhone X/iPhone 8. In fact, due to a couple of publicly-
known vulnerabilities [@ax, Xu] of such newer devices (explained in detail in Section 6), it
might be possible to obtain oracle access to the relevant AES engine and collect the SCA
measurements necessary for an attack. However, since we have not practically attempted
such experiments yet, we cannot make any claims about the success/difficulty of the
attacks on newer devices, especially considering that newer iPhones reportedly contain
DPA countermeasures.

O. Lisovets, D. Knichel, T. Moos and A. Moradi 5

2.2 High-Level Description
At first, we execute the SHA-1 Image Segment Overflow (SHAtter) exploit to disable
signature checks in the initial Secure Boot process, enabling the execution of custom codes.
Afterwards, we deploy a payload integrated into the second-stage bootloader, enabling us
to query an arbitrary amount of chosen data to the AES hardware engine for encryption
and decryption, and to re-configure one of the General Purpose Input/Output (GPIO)-pins
(e.g. volume-down button) as output for triggering the SCA measurements. By performing
a Correlation Power Analysis (CPA), we exploit correlation between the recorded SCA
traces and secret intermediate values of the AES encryption, allowing us to recover the
complete 256-bit UID key. We show that being in possession of this key allows an offline
recovery of the user passcode by running a parallelized brute-force search on several GPUs.
Having recovered the passcode in turn enables a decryption of all user files previously
stored on the device and potentially (if the user is signed in to iCloud on the device) data
stored on the user’s iCloud.

3 Background
3.1 Secure Boot
As described in [App12], the Apple iPhone 4 implements a secure boot mechanism to
establish a boot-chain-of-trust which starts at the BootROM and works its way up to the
operating system kernel and even further to application level. Here we focus only on the
first boot components relevant to our attack.

On power up, the BootROM, which is an immutable piece of software fused into the
System on Chip (SoC), is executed. This is the root of the trust chain. The BootROM
functionality is kept minimal as it is the most trusted code and a vulnerability in the
BootROM cannot be fixed with a software update. Its task is to load, validate and execute
the first stage bootloader either from Non-Volatile Random Access Memory (NVRAM) or
over Universal Serial Bus (USB). The latter is used in cases where the former fails or the
user enters the Device Firmware Upgrade (DFU) mode using a special button combination.

The first stage bootloader runs in the Static Random Access Memory (SRAM) with
its main responsibility being the initialization of low-level hardware components such as
Dynamic Random Access Memory (DRAM) and to load, validate and execute the next
stage of the bootloader. As it is executed in DRAM, the second stage is provided with
much more memory capacities. It is responsible for initializing higher-level hardware
components (such as the screen) and further for loading – amongst other parts – the boot
logo, the devicetree and a ramdisk (in case of a recovery/update boot). Finally, the second
stage bootloader loads, validates, initializes and executes the kernel.

Every component, which is loaded before the kernel is executed (including the kernel
itself), is shipped as an img3 image, which is cryptographically signed and encrypted
with Cipher Block Chaining (CBC)-AES-256. Each img3 image contains an Initialization
Vector (IV) and key, which are encrypted using a device model specific hardware fused
Key Encryption Key (KEK) also called Group Identifier (GID) key. After the signature
of the img3 image is verified, the GID key is used to decrypt the corresponding image
specific IV and key, which are then in turn used to decrypt the image itself.

The GID key (as well as the UID key) is never exposed to the Central Processing
Unit (CPU) directly. Instead, decryption oracle queries are made to a dedicated hardware
AES engine, which uses the GID/UID key internally. More precisely, there is a software-
based selection of the key slot the Advanced Encryption Standard (AES) engine uses for
encryption.

On newer iPhones (starting from the iPhone 4s), the second stage bootloader even
disables selection of the GID as key to the AES engine before executing the kernel (enforced

6 Let’s Take it Offline

through hardware registers), ruling out any usage by the operating system. Other key
slots, such as the one containing the UID key or user supplied keys, can still be selected
by the operating system.

3.2 iPhone Data Protection and User Authentication Mechanisms
A detailed overview of the iPhone’s Data Protection and User Authentication Mechanisms
can be found in [App12]. All necessary concepts for this work are described in the following.

Before written to the flash memory, every file is – per default – encrypted with a 256-bit
per-file-unique key utilizing the AES engine running in CBC mode. Note that, disabling
encryption of the filesystem by the user is not possible. A per-file key itself is wrapped
with a key corresponding to a certain protection class and stored in the file’s metadata.

The system contains different file classes with various access rights, shortly explained
below.

• Files of the Complete Protection class can only be accessed while the iPhone is
unlocked. Their in-memory keys are discarded after the device has been locked for
10 seconds.

• The Protected Unless Open class allows creating new files while the device is locked,
but once the file is closed, it cannot be reopened until the user unlocks his device.

• The Protected Until First User Authentication class prevents the files from being
accessed on a fresh boot until the user unlocks the iPhone for the first time by the
passcode.

• Finally, No Protection is the default class for all files not assigned to a specific other
class. Note that, even in this case, the corresponding files are stored in encrypted
form. This prevents attackers from accessing the files by desoldering and dumping
the flash memory.

The class keys in turn are wrapped by a key derived by combining the device-specific
UID key and the user passcode (if set, except for the No Protection class) and stored in a
file referred to as the System Keybag.

According to Apple’s whitepaper the System Keybag is unlocked, i.e., the class keys are
unwrapped, by means of Password-Based Key Derivation Function 2 (PBKDF2) processing
the user passcode by a Pseudo Random Function (PRF) being AES making use of the
UID key [App12]. The PBKDF2 internally iterates the PRF for a high number of times.
The iteration count is chosen to lengthen a single unlock attempt to approximately 80
milliseconds, resulting in the iteration count being set to 50, 000 in case of the iPhone 4.

By default, iOS limits users to perform only a total of 10 attempts (to unlock the iPhone
with passcode) with increasing time delays in between, after which – if enabled– the device
wipes the system, rendering all data inaccessible. Note that this is a software-induced
restriction which can be bypassed by utilizing known BootROM exploits.

On first setup, the user is prompted to choose a 4-digit numeric passcode (or 6-digit
starting from iOS 9) as the default user authentication method. Although iOS offers
options to use longer numeric or even alphanumeric passcodes, to the best of our knowledge
and based on our personal survey asking 3,864 iPhone users, the majority of users just
stays with the default option.

3.3 Side-Channel Analysis
Instead of targeting the cryptographic algorithms as in classic cryptanalysis, physical attacks
aim at recovering the secrets stored in or processed by the so-called cryptographic device
as a particular realization of cryptographic algorithm(s). Side-Channel Analysis (SCA)
attacks, as a passive and non-invasive class of physical attacks, have absorbed the lion’s
share of attention in the scientific community due to their high efficiency. Further, such

O. Lisovets, D. Knichel, T. Moos and A. Moradi 7

attacks leave no sign on their back indicating the device has been compromised. SCA
attacks exploit dependencies between physical properties of the implementation and the
processed secret data. Next to the execution time [Koc96], other exploitable side channels
have been introduced over time, including but not limited to power consumption [KJJ99]
and Electro-Magnetic (EM) radiations [GMO01]. In short, nowadays it is well known that a
cryptographic device would be vulnerable to various SCA attacks unless the implementation
is equipped with countermeasures dedicated to each attack vector.

Correlation Power Analysis. In this work, we mainly use CPA, where the measured
power/EM traces are correlated to the result of a hypothetical power/EM model over
the key-dependent intermediate values of the underlying cryptographic algorithm. This
process is conducted in a divide-and-conquer fashion allowing the attacker to recover
the secret key in small portions, e.g., byte by byte in case of the AES. As a side note,
since Pearson’s correlation coefficient estimates the linear dependency of two random
variables, the feasibility of a CPA attack depends on the linear dependency (similarity) of
the hypothetical power/EM model to the actual leakage of the attacked cryptographic
device. In such a case, the correlation associated to the correct key guess should show
a distinguishable distance to that of the other key candidates. Apart from collecting
low-noise SCA measurements, the difficultly of CPA attacks indeed lies on choosing an
appropriate intermediate value and finding a fitting hypothetical power/EM model [MS16].

Leakage Assessment. In this work, we apply the fixed-versus-random t-test [SM15],
making use of a statistical test based on the student’s t-distribution. In short, two groups
of SCA measurements are collected: 1) when the cryptographic device (with a secret key)
is supplied by a fixed input (plaintext in case of encryption) and 2) when random input is
given to the device (with the same secret key). The first-order fixed-versus-random t-test
examines whether these two groups of SCA measurements are distinguishable from each
other through their sample mean (average). If so, it is said that very likely there is an
attack which can exploit such a distinguishability to recover the secret. Since the result
of a t-test is a confidence level (probability) of the aforementioned distinguishability, the
higher the t-statistics is, the higher leakage (stronger distinguishability) is predicted.

4 SCA Attacks on iPhone
4.1 iPhone Preparation
For the collection of SCA measurements we applied a set of non-permanent soft- and
hardware modifications to the iPhone. These modifications are described in the following.

4.1.1 Hardware Preparation

First, we disassembled the iPhone, removed its mainboard from the case, and disconnected
all peripherals in order to gain access to the CPU. Afterwards, we removed the metal shield
protecting the CPU which enables placing an EM probe directly at the top of the chip. Next,
we built a Universal Asynchronous Receiver Transmitter (UART) connector [Ess] utilizing
a PodBreakout [pod] connector and an FT232RL USB-to-Serial Breakout Board [FT2].
This yields a connector with two USB cables, one for communicating with the iPhone and
one for UART to be connected to a Personal Computer (PC).

Additionally, we removed the volume buttons from the case and connected wires to
the volume-down button for easy access. This is done for the purpose of providing a fast
and low latency interface to the CPU as these buttons are directly connected to the SoCs
GPIO pins.

8 Let’s Take it Offline

Afterwards, we dismounted the battery connector, enabling to operate the mainboard
with an external DC Power Supply set to 4.0V (which is slightly above the normal supply
voltage of 3.7V) draining on average about 100mA during the measurements. Note that
this was an ad-hoc choice which is not expected to influence the results of the attack, as
the relevant ICs are powered via further voltage regulators.

Figure 1: iPhone 4 mainboard mounted on a stage

4.1.2 Payload Execution

As we need arbitrary code execution to perform our measurement, we make use of public
exploits. The crucial steps required to enable execution of a custom payload in the
second-stage bootloader are described in the following.

As an initial step, the iPhone is forced to boot in DFU mode. Therefore, it has to
be first connected to a PC using a USB cable. In order to enter DFU mode, the power
button and the home button are pressed simultaneously for 10 seconds. After the power
button is released, the home button should still be held pressed for another 15 seconds.
The screen stays black when DFU mode is entered successfully.

After the iPhone entered DFU mode, we used the SHAtter exploit to disable signature
checks in BootROM. To this end, we utilized ipwndfu [@ax], which is a python tool
providing BootROM exploits for several iOS devices. Subsequently, we used irecovery [lib],
an open source tool for communicating with iOS bootloaders over USB, to transfer a
patched first- and second-stage bootloader.

The applied patch disables signature checks in the first-stage bootloader allowing us
to execute a modified second-stage bootloader. In the second-stage bootloader – which
provides a proprietary recovery console – one of the commands (namely go) is redirected
in order to force the program flow to jump to the loadaddress which is the location in
memory where data uploaded over USB is stored. As a result, applying this patch allows
uploading and executing custom payloads on the device.

Finally, we again used irecovery to transfer a custom payload binary and to interact
with the second-stage bootloader recovery console. By executing the previously patched
go command, we ran the uploaded payload.

4.1.3 Measurement Payload

The custom payload executed in the second-stage bootloader enables querying encryp-
tion/decryption of chosen plaintexts/ciphertexts by the on-chip AES engine. Furthermore,
it enables us to choose which key slot (GID, UID, or custom) is used by the AES engine.
In the following, the structure and functionality of the inserted code is described.

First, the GPIO interface for the volume-down button is reconfigured to act as an
output port. This allows driving the corresponding exposed pins high/low by utilizing

O. Lisovets, D. Knichel, T. Moos and A. Moradi 9

Memory Mapped Input/Output (MMIO), i.e., by simply writing a value to a specific
address in memory.

Next, the bootloader’s builtin AES routine, responsible for communicating with the
hardware AES engine, is patched to set the GPIO pin on high at the start of the en-
cryption/decryption, and on low right after its termination. This configuration enables
tabbing the exposed pin and detecting the time instances associated to the activity of the
AES engine. Therefore, we could easily use the tabbed signal to trigger the oscilloscope
collecting SCA measurements.

Finally, we replaced a recovery console command to enter a custom measurement
mode. The measurement mode is a custom function which first disables the bootloader’s
cooperative scheduler by patching the yield-function to return immediately. Subsequently,
it enters an infinite loop which waits to receive a command over UART and executes
its functionality accordingly. We developed the custom measurement mode to ease the
operations necessary for SCA measurements. Due to the slow communication via UART
we configured the measurement mode to limit the UART communications while allowing
to collect several SCA measurements. To this end, we followed the concept introduced
in [SM15], meaning that the PC sends a few custom commands to the iPhone via UART,
the measurement mode configures the AES engine accordingly, generates random input
(plaintext/ciphertext) and runs the AES encryption for a certain number of times, and
finally sends back a checksum to the PC. During this time the oscilloscope is repeatedly
triggered and collects SCA traces. Since the PC and iPhone are synchronized (via the
initial commands), the PC calculates the randomly-generated plaintexts/ciphertexts as
well and associates them to the traces collected by the oscilloscope. This process greatly
accelerates the SCA measurement process.

4.2 The Apple A4
Our target device – the iPhone 4 – uses the Apple A4 SoC, which is also used in the iPod
Touch fourth generation, the iPad first-generation and the Apple TV second-generation.
The Apple A4 provides a 32-bit ARMv7-A CPU manufactured on Samsung’s 45 nm
fabrication process [chi10], clocked at 800MHz (or 1GHz in case of iPad) with Package on
Package (PoP) used to provide 256MB Random Access Memory (RAM) (or 512MB for
the iPhone 4).

Due to the PoP, the RAM is located on top of the CPU as can be seen in Figure 2. It is
indeed impossible to put an EM probe very close to the CPU surface to monitor its direct
emanations. Instead, we are only able to put the probe either on top of the packaging or on
the Printed Circuit Board (PCB) next to the chip, measuring the emanations associated
to the power distribution network around the die.

Figure 2: Cross-section of the A4 processor + RAM Package on Package (PoP) (taken from
iFixit A4 teardown [ifi10])

4.3 Measurement Setup
We use a Langer EMV-Technik RF-B 0,3-3 EM probe, which has a flat head with a
diameter of 2mm allowing to capture frequencies in the range of 30MHz to 3GHz. The

10 Let’s Take it Offline

probe is connected to a Langer EMV-Technik PA 303 SMA amplifier (with similar
bandwidth), which amplifies the EM signal by 30 dB, before the signal is monitored by the
oscilloscope.

We employed a Teledyne LeCroy WaveRunner 8254M with 2.5GHz bandwidth
for monitoring the signals and recording the SCA traces. The traces have been sampled at
a sampling rate of 40GS/s, which is the machine’s maximum capacity.

4.4 Preprocessing of the Traces
Figure 3a shows a part of the superimposition of 500 collected EM traces, where we detect
a heavy misalignment, complicating any straightforward statistical analysis. Although we
configured the measurement mode to run on a single-threaded core in bootloader context,
it can clearly be seen that the trigger signal, which we provided to indicate the start and
end of encryption/decryption is not fully synchronized to the activity of the AES engine.
It actually implies that the code running on the CPU core does not work synchronously
either with the co-processors or with the IO peripherals, which controls the GPIO pin we
used for triggering the oscilloscope.

As a consequence, one part of our preprocessing tries to align the traces. Here, we
realized that the misalignment often appears in groups, i.e, multiple traces are shifted by
a similar offset. Thus, our main approach is to find those clusters and coarsely align them
to one group by shifting them so that the strongest peaks overlap. Afterwards, for a more
fine grained alignment, we chose an arbitrary reference trace and align the other traces by
an appropriate temporal offset so that they match as closely as possible to the reference
trace. We used the minimum euclidean distance as the metric to find the best matching
offset between two traces.

(a) before preprocessing (b) after preprocessing

Figure 3: Superimposition of 500 EM traces before and after preprocessing

As after alignment, a significant amount of traces still showed some noisy peaks going
out of bounds, we additionally filtered out traces whenever these peaks occurred during
the time interval on which we performed our analysis, thereby discarding around 20% of
the collected traces. The result after applying our alignment and filtering process on those
500 traces can be seen in Figure 3b.

As a side note, we noticed that the jitter and misalignment is greatly reduced when
decrypting multiple blocks consecutively. Hence, in our attacks and analyses we always
collected the traces associated to decrypting 8 blocks in CBC mode.

4.5 Leakage Assessment
First, we performed the fixed-versus-random t-test (see Section 3.3) on the aligned traces
when the EM probe was placed arbitrarily on the SoC. We collected 10,000,000 traces

O. Lisovets, D. Knichel, T. Moos and A. Moradi 11

while the input (ciphertext for the decryption function) was randomly interleaved between
a fixed value and a random input.

(a) t-value

(b) t-value (zoomed)

Figure 4: Non-specific t-test

Figure 4a shows the corresponding t-value over the time covering the decryption
of 8 blocks of AES in CBC mode. Very large t-values can be seen in several portions
of the traces. Most notably, the period between 0.3µs and 0.6µs corresponds to the
communication between the CPU and the AES engine through the dedicated Input/Output
(I/O). The chunks around 1.2µs, 1.4µs and 1.6µs are predicted to be relevant to the similar
communication in the reverse direction, i.e., AES engine to the CPU. We assume that the
decryptions take place in between 0.8µs and 1.2µs, which still show a considerably-high
t-value (see Figure 4b). Hence, we concentrated on this period to conduct the attacks.

4.6 Power Model
The iPhone AES engine allows to specify a user key for its operation, thus we search for
an appropriate power model in a known-key scenario, i.e., we collected traces for which we
know the underlying key. This way we are able to easily examine different hypothetical
power models since all cipher’s intermediate values are known to us.

Based on the information from Apple’s whitepaper describing how the AES engine
is used, we made certain assumptions about how the AES hardware might have been
designed. We know that the AES engine needs to be fast since during the operation of the

12 Let’s Take it Offline

iPhone, key derivation as well as encryption/decryption of files are performed quite often.
A slow AES engine would lead to serious efficiency penalties. It should also support both
encryption and decryption of different variants of AES with 128-, 192- and 256-bit key.
Furthermore, due to the way data protection is designed for iPhones, we know that the
AES key is changed frequently (each file has a separate key).

Therefore, we assume a round-based implementation, as it is a good trade-off between
flexibility, performance and physical area on the SoC. More precisely, our assumption is
that the AES engine performs a cipher round in a clock cycle.

Based on these assumptions, we considered different design architectures for the
AES decryption, and examined various hypothetical models over different intermediates
values. Examples include Hamming Weight (HW) of the cipher state after each round
operation (e.g., SubBytes (SB), ShiftRows (SR), AddRoundKey, and MixColumns (MC))
and Hamming Distance (HD) between consecutive cipher states for each aforementioned
round operation.

C

Klast
SR−1 SB−1

Ki

MC−1

P

Figure 5: Guessed design architecture for the round-based AES decryption module

Figure 5 depicts the guessed round-based design architecture, for which we could
observe high correlation by the aforementioned power models. We determined the best
fitting power model as the HD of the consecutive 128-bit values stored in the state register
(see Figure 5), if we follow the operations inversely, i.e., from the last round of decryption.
The last value stored in the state register is the plaintext P , and the second-last one is
SR ◦ SB(P ⊕K1) since the MixColumns’ inverse (MC−1) is omitted in the last round in
this design architecture. Therefore, the HD of the state register in the last decryption
round can be written as

HW
(
SR ◦ SB(P ⊕K1) ⊕ P

)
, (1)

where the first round key is denoted by K1. The same model for the second-last round
yields

HW
(

SR ◦ SB
(
K2 ⊕ MC ◦ SR ◦ SB(P ⊕K1)

)
⊕ (2)

SR ◦ SB(P ⊕K1)
)
,

where K2 denotes the second round key. The same model can similarly be derived for
the other cipher rounds. Note that since we focus on the last rounds of decryption, we
write the equations over the plaintext and using the encryption operations instead of their
inverse.

The result of correlating 80,000,000 measured and aligned EM traces with the aforesaid
power model (when the AES engine’s inputs are selected randomly) are shown in Figure 6.
The cipher rounds can be easily detected as depicted in Figure 6b. We further repeated
this procedure for all encryption blocks within the trace. As shown in Figure 6c, we can
clearly distinguish the distinct time periods in which an AES operation is performed.

4.6.1 Full-Chip Scan

After we found a promising hypothetical power model, we tried to optimize the probe’s
position on the SoC. We divided the SoC surface (which is around 7.3mm square) into a

O. Lisovets, D. Knichel, T. Moos and A. Moradi 13

(a) 7th cipher round (b) Every round is plotted by a different color

(c) All rounds of a decryption block are plotted by
the same color

Figure 6: Multiple correlation traces associated to the selected HD power model, using 80,000,000
traces

grid of 25×25 spots, at each of which we collected 150,000 EM traces. After aligning the
traces at each spot individually, we estimated the correlation of the intermediate values
using the above-explained HD power model for all cipher rounds and for all decryption
blocks. Maximum resulting correlations for each spot are shown by a 3D heatmap on the
left-hand side of Figure 7. In case a strong signal stands out at a certain spot, neighboring
positions are expected to have a similar correlation value as well. As shown by the 3D
heatmap, maximum correlations belong to the cases where the probe is placed at the
border of the SoC. This is indeed in line with our expectation with respect to its PoP
technology, as explained in Section 4.2. Based on this experiment, we identified the
position (x, y)=(4.1mm, 1.1mm) as the most suitable spot. We have examined other
spots with high correlation as well, but the traces at those positions contained more noise
compared to those measured at the selected spot. For the key-recovery attacks, explained
in the following, we placed the EM probe at this position, shown on the right-hand side of
Figure 7, and collected 500,000,000 traces when the AES engine was supplied by random
inputs.

4.6.2 Key-Recovery Attacks

All above given results were based on the HD model over consecutive 128-bit cipher-
intermediate values. In order to perform an attack, we need to consider a smaller portion
to decrease the attack complexity, i.e., being able to search for a small part of the key e.g.,
a byte. This is trivially achieved by taking the HD of a byte of the same intermediate
value. More precisely, we refer to Equation (1), where by guessing an 8-bit portion of
K1, the HD of the corresponding 8-bit consecutive intermediate value can be estimated.
Following this process, we can recover the first 128-bit round key in a byte-by-byte fashion.

Since the underlying AES engine realizes the AES-256 function and the targeted UID

14 Let’s Take it Offline

0.0
1.2

2.4
3.6

4.8
6.0

7.2

1.2
2.4

3.6
4.8

6.0
7.2C

or
re

la
ti

on
 [

10
-3

]

y [mm]x [mm]

Figure 7: 3D heatmap of the SoC plotting highest correlation in time using the selected HD
power model and 150,000 traces at each spot (left) and probe position (right)

is a 256-bit key, we need to extend the attack to one more round, i.e., the round before
the last decryption round. As given in Equation (2), knowing the first round key K1, HD
of the consecutive 8-bit values can be estimated by only guessing an 8-bit portion of the
second round key K2. Therefore, the same attack, i.e., with complexity of 28 for each byte
of K2 can be conducted at the second to last round.

Figure 8 shows the result of a couple of attacks targeting different key bytes at either the
last or the second last decryption rounds. Notably, we required a large number of aligned
traces to reveal the correct key guesses. For some key bytes, we needed around 30,000,000
traces, and in some other cases this number reached 270,000,000. As the AES engine is
run in CBC mode, each recorded EM trace contains a series of single AES decryptions;
in case a block did not yield a distinguishable correlation, a different one was considered.
This helped us to limit the number of required traces since not all decryption blocks in a
noisy trace are affected.

In short, we have conducted three sets of attacks: one when the key was known
to us (user supplied key), one to recover the UID key and the last one to reveal the
GID key. For each of these cases, which led to successful key recovery, we required
not more than 300,000,000 traces. This is much more than what has been reported in
literature with respect to the SCA attacks on unprotected cryptographic implementations,
e.g., [MS16, EKM+08]. We predict that either the implementation contains a form of
Differential Power Analysis (DPA) countermeasure or this high number of required traces
is due to the high noise level and low signal amplitude. As stated, the EM probe could
not be placed close to the CPU die and we encountered different noise sources in our
measurements. Nevertheless, our results (despite a high number of required measurements)
in fact confirm that such SCA attacks can still be considered as serious threats even to
extremely compact embedded systems fabricated with nano-scale process technologies and
running at a high clock frequency1.

In summary, data acquisition of plaintexts, ciphertexts and traces for 500,000,000
EM measurements took about two weeks in total, while conducting all attacks to fully
recover a 256-bit AES key using a machine with 40 CPU cores, 64GB of memory and 2
NVIDIA RTX 2080 TI took around one additional week. Note that we expect the required
time to be shorter when performing the attack multiple times on further devices of the
same type due to the experience obtained during each device’s analysis and the natural
optimization of the measurement procedure. We are also confident that improvements of
the measurement setup are possible which may reduce the data and time complexity of
this attack.

1Assuming a round-based implementation, based on our SCA measurements and correlation peaks
identifying consecutive cipher rounds in Figure 6, we conclude that the AES engine is supplied by a clock
at a frequency of around 200MHz.

O. Lisovets, D. Knichel, T. Moos and A. Moradi 15

(a) (b)

(c) (d)

Figure 8: Exemplary CPA attack results

4.6.3 Power vs. EM

Given the large number of measurements required to recover the key of the AES engine
via EM measurements, it is fair to wonder whether the distance between the probe and
the active area of the die was simply too large to capture the radiated information in
maximum quality. Since the PoP packaging prevents us from placing the EM probe any
closer to the actual AES core, we decided to also investigate the power consumption of
the A4 processor. Conceptually, power measurements do not require such a close physical
proximity to the computing cells. Therefore, we placed a 1Ω shunt resistor in the VDD path
of the core power supply of the A4 processor. Of course, the core power supply of the
CPU is not directly accessible, e.g., via the battery connector. Instead, it is generated on
the PCB via a Buck converter circuit from the main power supply. Measuring the power
consumption in front of this converter (i.e., measuring in the main power supply at the
converter’s input) would yield no successful analysis as any small instantaneous voltage
drop on its output side (i.e., in the core power of the chip) gets quickly compensated by
the internally stored charges and only the charging cycle of the converter could be seen on
its input. Therefore, after we had identified the position of the Buck converter circuit on
the PCB, we removed its inductors, effectively cutting the core power supply open, see
Figure 9a. Afterwards, we removed one of the larger capacitors on the PCB which we
previously identified as a smoothing capacitor for the core voltage. Then, we soldered two
cables to the SMD pads of the (now missing) smoothing capacitor and powered the core
of the A4 processor through these pads via an external DC Power Supply at 1.35V, see
Figure 9b. Please note that the pictures in Figure 9 show two different devices and not
the same board before and after modification. Although we destroyed the inductors of
the Buck converter during the removal process, it is generally possible to perform both
adaptations of the PCB carefully enough to keep all pieces intact in order to revert the
changes later on. We also need to mention here that the iPhone struggled to boot after
altering the PCB in the described manner. However, after patching the bootloader to
operate in a reduced power mode we did not experience any bootloader crashes and could

16 Let’s Take it Offline

(a) removed inductors (left) and original PCB (right)

(b) artificial core power supply (left) and original PCB (right)

Figure 9: PCB adaptations required for measuring the CPU’s core power.

perform the desired measurements. The reduced power mode also leads to decreased
operating frequencies and therefore may be beneficial for physical adversaries anyway.

As mentioned before, a 1Ω shunt resistor needs to be placed in the VDD path of the
power supply. This was realized with an auxiliary board connected between the external
power supply and the iPhone, see Figure 10. We employed a DC Blocker (BLK-89-S+
from Mini-Circuits2) to remove the DC shift and an AC amplifier (ZFL-1000LN+ from
Mini-Circuits) to increase the amplitude of the measured signal. Then, we measured
the voltage drop across the CPU’s core via a coaxial cable connected to the amplifier’s
output. We have recorded the measurements using our digital oscilloscope configured
to a bandwidth limit of 1GHz and a sampling rate of 2.5 GS/s. Similar to the EM
measurements, we could not identify any AES-like sequence of power peaks in the traces.
Even more problematic was the absence of any communication or IO peaks in the traces
which could have been used to achieve the same re-alignment that was previously detailed
for the EM analysis. Hence, we had to perform the attacks on the raw traces without
any pre-processing. Nevertheless, Figure 11 shows two successful recoveries of different
key bytes via CPA using the same power model as for the EM analysis. Here, about

2https://www.minicircuits.com

https://www.minicircuits.com

O. Lisovets, D. Knichel, T. Moos and A. Moradi 17

Figure 10: Auxiliary board with AC amplifier (red), DC blocker (blue) and 1Ω shunt resistor
(yellow).

0 50 100 150

Number of traces (10
6
)

-0.5

0

0.5

1

C
o

rr
e

la
ti
o

n
 (

1
0

-3
)

0 50 100 150

Number of traces (10
6
)

-0.5

0

0.5

1

C
o

rr
e

la
ti
o

n
 (

1
0

-3
)

Figure 11: Exemplary CPA attack results exploiting the power consumption.

20 and 75 million traces were required to isolate the correct key candidates from the
incorrect ones. However, attacks on other key bytes required up to 200 million traces for
an unambiguous recovery. In that regard, we can conclude that the attacks exploiting the
power consumption are hardly any more effective than the EM attacks, especially when
considering the additional effort to modify the PCB. Yet, both side channels can be used
in practice to successfully recover the keys processed by the hardware AES engine.

4.7 Reversing the Modifications
As described in Section 4.1.1, for collecting the EM traces, the case of the iPhone has to
be opened in order to expose the battery, the mainboard, and the CPU. The battery is
dismounted and the volume buttons are removed from the case. Note that the necessary
modifications can be made on a separate set of hardware allowing the target device to
remain mostly unmodified. For example, wires can be soldered to a spare volume-button-
cable, which is then (in place of the original part) temporarily attached to the mainboard
using the available connector. Furthermore, the on-board battery connector does not need
to be modified, when instead a modified battery cable is used. In addition, the metal
shielding has to be removed. As long as its mount on the board is left in place, this
can also simply be clipped back on afterwards. For the power measurement described
in Section 4.6.3, some inductors and a large capacitor had to be removed from the PCB.
These elements can be soldered back onto the board after performing the attack. As a
result, the modifications necessary to perform the attacks are entirely reversible, enabling

18 Let’s Take it Offline

an attacker to completely hide the malicious key recovery from the victim.

4.8 Possible Countermeasures
In order to protect future devices from attacks similar to the one presented in this work,
several suitable options are available ranging from software protections over architecture-
level defenses to classical DPA countermeasures. For the newer iPhone series (from 5s
onward), Apple itself has already applied an additional architecture-level barrier to protect
the most sensitive hardware-fused keys from extraction, namely by introducing the Secure
Enclave, a dedicated processor unit, and prohibiting usage of the SEPUID (used for the
entanglement with the passcode) from the application processor [App21]. This way, a
software exploit on the application processor is not sufficient to get oracle access to the
relevant crypto engine and is hence not sufficient to perform a chosen-plaintext SCA attack.

Naturally, possible protection mechanisms of the crypto engine itself include classical
DPA countermeasures like masking and hiding which aim to either split the sensitive
information into a number of shares using randomly chosen masks which shifts leakages to
higher orders, or reduce the signal-to-noise ratio and make the measured traces hence less
informative [MOP07]. According to [App21] and beginning with Apple’s A9 processor, the
company has also started to integrate DPA countermeasures into their designs, although no
further details on the kind of countermeasures that were implemented are given. Further
possible countermeasures could include the introduction of tamper protection, making it
harder to physically modify the device without the victim’s notice [App21].

5 Offline PIN Recovery
Up to this point, we recovered the UID key by performing an SCA attack. We now show
that being in possession of this key, the brute-force attempts completely decouples from
the device, enabling a highly parallelized search for the user’s passcode by a GPU cluster.

5.1 Dumping the System Keybag
As discussed in Section 3.2, the System Keybag contains wrapped class keys protected by
the UID key tangled with the user passcode via a key derivation function. For each passcode
guess, the key derivation function should be executed to calculate the guessed derived
key. Afterwards, the correctness of the guessed derived key is examined by attempting to
unlock every class key from the keybag. If every class key could be successfully unlocked,
the correct passcode is found.

In order to extract the System Keybag from the device, we used msftguy’s ssh-rd
tool from [msf]. It is a tool written in Java, which automatically downloads the iPhone
firmware from Apple’s servers; extracts, decrypts and patches bootloaders as well as the
kernel, and creates a ramdisk providing an SSH server, which is then booted on the device.
As this is similar to one-time booting a live Linux distribution from USB on a computer,
no modifications are made to the filesystem. Note that it does not harm if the booted
ramdisk uses a possibly older version of iOS than the installed one.

Next, we established an SSH connection to the device in order to download the
System Keybag which is stored at /private/var/keybags/systembag.kb on normal boot or
/mnt/keybags/systembag.kb on a ramdisk boot (if we mount the user data partition to
/mnt).

5.2 Highly Parallelized Passcode Recovery utilizing GPUs
For the purpose of recovering the user’s passcode, we implemented a parallelizable program
in OpenCL whose speed scales with the number of GPUs of a single host, as well as with

O. Lisovets, D. Knichel, T. Moos and A. Moradi 19

the number of hosts. Utilizing OpenCL offers independence from the underlying hardware,
i.e., our implementation can be executed on several architectures including NVIDIA, AMD,
Intel, ARM Mail or any other hardware supporting OpenCL. Our implementation is split
into
(1) parsing the System Keybag,
(2) generating the passcode batch,
(3) pre-processing the passcode batch,
(4) deriving the key based on the passcode batch, and
(5) verifying the derived key batch.

Step (1) and (5) are performed on CPU, since parsing the keybag needs to be performed
only once and unwrapping class keys – following RFC 3394 – is not computationally
intensive and can be stopped once a single key failed to unwrap. Note that, in order to
verify the correctness of the derived key batch, we considered unlocking all 10 class keys
from the System Keybag.

The other steps are performed on GPU with the batch size being calculated as
GPU_workgroup_size × 64 × GPU_factor with the GPU_workgroup_size being 1024 for
our NVIDIA RTX 2080 TI GPUs and the GPU_factor being manually set to 64 in order to
balance performance and processing time per batch loaded onto the GPU. For our setup,
this results in a batch containing 222 = 4, 194, 304 passcode guesses which takes about 14
minutes to be processed. It is possible to further decrease the GPU_factor to process a
smaller number of passcode guesses, i.e., when only searching for a 4-digit passcode in
a single batch. However, these values are determined as optimal when searching for a
number of passcode guesses higher than those fitting into a single batch.

Step (2) generates a batch of passwords to be stored in memory. In our program,
we limited the generation of passcodes to numeric ones, while its extension to cover
alphanumeric passcodes is straightforward. However, we would like to note that finding
alphanumeric passcodes becomes more efficient when combined with dictionary attacks or
other password-search techniques as described in [AHW18], which are out of the scope of
this work.

Next, step (3) performs PBKDF2 to compress the arbitrarily length string (i.e., pass-
code) to a sequence of 32 bytes. Unlike described in [App12], the key derivation function is
not implemented as PBKDF2 with AES as the PRF. It rather consists of a single iteration
of the regular PBKDF2 algorithm with SHA1-HMAC as PRF followed by Apple’s custom
Key Derivation Function (KDF).

Step (4) performs Apple’s custom KDF which consists of the PBKDF2-derived 32-
byte user key, the UID key, an iteration count, and an internal 32-byte state (as reverse
engineered by Sogeti in ramdisk_tools/AppleKeyStore_kdf.c in [sog11a]). First, the internal
state is initialized with the user key. Afterwards, the following is executed in a loop: The
IV (which is initially set to zero) is salted with the current iteration count and XORed to
the user key, which is then encrypted utilizing AES-128 in CBC mode keyed by the UID
key. The output is then XORed to the state and the last block (of two blocks in total) is
used as the new IV. This is repeated as many times as specified by the iteration count,
before the state is returned as output (50,000 times in case of our target iPhone 4).

Since this is the computationally most intense operation, we implemented a bitsliced
version of AES which processes 64 blocks in parallel. This is even further parallelized
on multiple GPU threads, thus computing 64 work groups of size 1024, each of which
computes 64 blocks at a time, resulting in a total of 4,194,304 blocks being processed in
parallel.

Finally, step (5) is performed on multiple CPU threads and uses the previously computed
keys to unlock all class keys from the System Keybag. Only if all class keys are successfully
unlocked, the corresponding passcode is considered to be the correct one. As most of the

20 Let’s Take it Offline

time the unlocking of the first class key from the System Keybag fails, this step usually
terminates rapidly.

5.3 Results
Table 1 shows a comparison between the required time to find numeric passcodes in the
worst-case scenario for different passcode lengths when performing the brute-force search
on device and on a GPU cluster. Given the ability to execute arbitrary code, short numeric
passcodes can be reasonably searched on-device. Assuming the verification of a single
passcode guess takes 80ms as described in [App12], finding 6-digit passcodes requires
22 hours (in worst-case) if verification is performed on device. Our practical experiments
with Sogeti’s iphone-dataprotection toolkit from [sog11a] on an iPhone 4 show that verifying
2,000 passcodes takes 6 minutes (180ms per attempt). This means that the actual numbers
given in Table 1 for the on-device search are higher by a factor of 2.25. According to Sogeti,
the time to crack a passcode may vary depending on the device [sog11b]. It should be
noted that Elcomsoft reported 73.5ms per attempt on an iPhone 5 which is slightly faster
than the stated 80ms. Our work decouples passcode search from hardware limitations of
the target device and enables performing the corresponding search programs on arbitrary
platforms. Using a single NVIDIA RTX 2080 TI, we already achieved a speedup by a
factor of 380, making it possible to search for a 10-digit passcode in a reasonable time by
simply utilizing a 2-year-old gaming setup. Employing a GPU cluster with 8 instances
of NVIDIA RTX 2080 TI, accelerates the search even further. With this advanced setup,
searching for an 11-digit passcode would take around 30 days in the worst-case scenario
while renting these resources would cost around 2000 EUR. As this scales linearly, the
worst-case time to find longer passcodes using more GPU instances can be easily estimated.
Overall, taking into account the time required to perform the SCA attack in order to
extract the UID key (see Section 4.6.2), our attack outperforms the trivial on-device search
approach if the target numeric passcode is at least 8 digit long.

Table 1: Worst-case passcode search time

digits iPhone RTX 2080 TI 8×RTX 2080 TI
4 13 minutes 2 seconds < 1 second
6 22 hours 3 minutes 26 seconds
7 9 days 35 minutes 4 minutes
8 92 days 5 hours 43 minutes
9 925 days 58 hours 7 hours
10 25 years 24 days 3 days
11 253 years 243 days 30 days
12 2536 years 2439 days 304 days

6 Applicability to Newer iPhone Series
Generally, this attack is applicable to newer iPhone series as well. Without major
changes the same procedure can be performed on iPhone 4s and iPhone 5/5c, when
using checkm8 [@ax] instead of SHAtter.

Starting with the iPhone 5s, the iPhone features a Secure Enclave coprocessor (SEP),
which is responsible for data protection. Instead of using the Application Processor (AP)
UID key, the SEP has a separate UID key (SEPUID), which is entangled with the user
passcode for file encryption. Thus, to perform the same analysis, it is required not only to
get code execution on the AP, but also on the SEP.

O. Lisovets, D. Knichel, T. Moos and A. Moradi 21

For the iPhone 5s, iPhone 6, iPhone 6s, iPhone 7, iPhone 8 and iPhone X (and all other
devices with the same CPU), vulnerabilities in both, the AP BootROM and SEP BootROM
are publicly known (namely checkm8 and blackbird [Xu]) providing a way to execute
arbitrary code with the highest possible privileges on the AP and the SEP. Therefore, it is
generally possible to create payloads with similar capabilities as described in Section 4.1.3
to be executed on the SEP rather than the AP. The corresponding exploits for such
vulnerabilities are not publicly available for all listed iPhone generations yet. However, at
least for the iPhone 7 there exists a publicly available tool called checkra1n [aea], which
exploits the known vulnerabilities to gain code execution on the SEP. We would like to
mention that we have already initiated follow-up research to examine if a similar SCA
attack is possible on iPhone 7 and later. In our initial attempts, we were able to gain code
execution on the SEP using checkra1n and to query the SEP’s AES engine to encrypt
chosen data. Although this allows collecting SCA measurements from newer hardware, it
is hard to predict whether extracting the UID/SEPUID key using the SCA measurements
would be similar to (or harder/easier than) that on the iPhone 4, especially since Apple
claims to have introduced DPA countermeasures to protect the hardware AES engines
starting from the A9 processor generation, i.e., from the iPhone 6s series onward [App21].

7 Conclusions
Utilizing public software exploits for known vulnerabilities in order to enable oracle access
to the AES engine, we extracted both hardware fused 256-bit AES keys, namely the UID
and the GID of an iPhone 4 through Side-Channel Analysis (SCA) attacks processing the
Electro-Magnetic emanation and power consumption of the AES engine embedded on the
underlying A4 processor. Independent of the implications of our attacks, to the best of our
knowledge, no successful SCA attack on an iPhone has been reported in academic literature
so far. We, for the first time, presented the success of a corresponding key recovery process
despite a compact System on Chip with PoP packaging. Although we need a large amount
of traces to recover the complete AES keys, we showed that, if the software barriers are
overcome, i.e., there are exploits available to execute custom code on the device, the model
of a physical attacker being able to query arbitrary many chosen-plaintext encryptions (or
chosen-ciphertext decryptions) is absolutely realistic, emphasizing the need for sufficient
protection against SCA – even for hundreds of millions of traces.

Having the UID key in hand, it becomes possible to conduct offline brute-force attacks
recovering the user’s passcode. Using a highly parallelized GPU implementation, we
established a scalable method to highly increase the performance of the passcode search
procedure. As the performance linearly scales with the number of utilized GPUs, the
search time can be shortened depending on the value of the data versus the budget. We
showed that a 10-digit numeric passcode can be revealed in a reasonable time employing a
common gaming setup, while a large-scale adversary might even be able to cover 12-digit
numeric passcodes.

A possible remedy would be to choose stronger passcodes (either numeric or alphanu-
meric); however that may result in user inconvenience, as the passcode needs to be entered
once in a while despite biometric authentication. We stress that this vulnerability cannot
be mitigated on affected devices via a software update, since the leakage originates from
the integrated AES engine. In short, our attack emphasizes the need for implementing
sophisticated countermeasures against physical attacks, particularly against SCA attacks,
for mobile devices, even when the device is a highly compact embedded system and the
adversary’s knowledge is restricted to a blackbox model.

New software exploits may allow the adversary to interact with the AES engine on
the newer iPhone generations. This enables SCA measurements to be collected from such
devices and key-recovery attacks to be examined. Trivially, investigating the applicability

22 Let’s Take it Offline

of such attacks is among our future works.

Acknowledgments
We initiated a communication with Apple in a responsible disclosure about our findings
on 5 Oct 2020. We would like to thank Apple for their support and kind communication
during this process. The work described in this paper has been supported in part by the
German Research Foundation (DFG) under Germany’s Excellence Strategy - EXC 2092
CASA - 390781972.

References
[aea] @argp et al. checkra1n exploit. Link [Online; accessed on 16-March-2021].

[AHW18] Sudhir Aggarwal, Shiva Houshmand, and Matt Weir. New Technologies in
Password Cracking Techniques. In Cyber Security: Power and Technology,
pages 179–198. Springer, 2018.

[App12] Apple. iOS Security Guide, May 2012.

[App21] Apple. iOS Security Guide, February 2021.

[@ax] @axi0mX. Github: ipwndfu. Link [Online; accessed on 18-September-2020].

[BFMT16] Pierre Belgarric, Pierre-Alain Fouque, Gilles Macario-Rat, and Mehdi Tibouchi.
Side-Channel Analysis of Weierstrass and Koblitz Curve ECDSA on Android
Smartphones. In CT-RSA 2016, volume 9610 of Lecture Notes in Computer
Science, pages 236–252. Springer, 2016.

[chi10] Chipworks Confirms Apple A4 iPad chip is fabbed by Samsung in their 45-nm
process, 2010. Link [Online; accessed on 22-September-2020].

[EKM+08] Thomas Eisenbarth, Timo Kasper, Amir Moradi, Christof Paar, Mahmoud
Salmasizadeh, and Mohammad T. Manzuri Shalmani. On the Power of Power
Analysis in the Real World: A Complete Break of the KeeLoqCode Hopping
Scheme. In CRYPTO 2008, volume 5157 of Lecture Notes in Computer Science,
pages 203–220. Springer, 2008.

[elc11] Slides: Evolution of iOS Data Protection and iPhone Forensics: from iPhone
OS to iOS 5, August 2011. Link [Online; accessed on 22-September-2020].

[Ess] Stefan Esser. iPhone UART cable. Link [Online; accessed on 30-October-2020].

[FT2] FT232RL USB to Serial Breakout Board - robotshop. Link [Online; accessed
on 30-October-2020].

[GMO01] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic
Analysis: Concrete Results. In CHES 2001, volume 2162 of Lecture Notes in
Computer Science, pages 251–261. Springer, 2001.

[Goa20] Laurence Goasduff. Gartner Says Global Smartphone Sales Declined 20% in
First Quarter of 2020 Due to COVID-19 Impact, 2020. Link [Online; accessed
on 18-September-2020].

[ifi10] Apple A4 teardown, 2010. Link [Online; accessed on 22-September-2020].

[int15] Differential Power Analysis on the Apple A4 Processor. The Tntercept, 2015.
Link [Online; accessed on 23-March-2021].

https://checkra.in/
https://github.com/axi0mX/ipwndfu
https://web.archive.org/web/20100921083904/http://chipworks.com/A4_is_Samsung_45nm.aspx
http://media.blackhat.com/bh-ad-11/Belenko/bh-ad-11-Belenko-iOS_Data_Protection.pdf
https://media.blackhat.com/bh-us-11/Esser/BH_US_11_Esser_Exploiting_The_iOS_Kernel_Slides.pdf
https://www.robotshop.com/en/ft232rl-usb-serial-breakout-board.html
https://www.gartner.com/en/newsroom/press-releases/2020-06-01-gartner-says-global-smartphone-sales-declined-20--in-
https://de.ifixit.com/Teardown/Apple+A4+Teardown/2204
https://theintercept.com/document/2015/03/10/differential-power-analysis-apple-a4-processor/

O. Lisovets, D. Knichel, T. Moos and A. Moradi 23

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis.
In CRYPTO ’99, volume 1666 of Lecture Notes in Computer Science, pages
388–397. Springer, 1999.

[KKMP09] Markus Kasper, Timo Kasper, Amir Moradi, and Christof Paar. Break-
ing KeeLoq in a Flash: On Extracting Keys at Lightning Speed. In
AFRICACRYPT 2009, volume 5580 of Lecture Notes in Computer Science,
pages 403–420. Springer, 2009.

[Koc96] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. In CRYPTO ’96, volume 1109 of Lecture Notes in
Computer Science, pages 104–113. Springer, 1996.

[lib] libimobiledevice. GitHub: libirecovery. Link [Online; accessed on 18-September-
2020].

[MBG+20] Philipp Markert, Daniel V. Bailey, Maximilian Golla, Markus Dürmuth, and
Adam J. Aviv. This PIN Can Be Easily Guessed: Analyzing the Security of
Smartphone Unlock PINs. In Symposium on Security and Privacy, SP 2020,
pages 286–303. IEEE, 2020.

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks
- revealing the secrets of smart cards. Springer, 2007.

[MS16] Amir Moradi and Tobias Schneider. Improved Side-Channel Analysis Attacks
on Xilinx Bitstream Encryption of 5, 6, and 7 Series. In COSADE 2016, volume
9689 of Lecture Notes in Computer Science, pages 71–87. Springer, 2016.

[msf] msftguy. GitHub: ssh-rd. Link [Online; accessed on 18-September-2020].

[NVI18] NVIDIA. Geforce RTX 2080 Ti, 2018. Link [Online, access 21-March-2021].

[OP11] David Oswald and Christof Paar. Breaking Mifare DESFire MF3ICD40: Power
Analysis and Templates in the Real World. In CHES 2011, volume 6917 of
Lecture Notes in Computer Science, pages 207–222. Springer, 2011.

[ORP13] David Oswald, Bastian Richter, and Christof Paar. Side-Channel Attacks on
the Yubikey 2 One-Time Password Generator. In RAID 2013, volume 8145 of
Lecture Notes in Computer Science, pages 204–222. Springer, 2013.

[pod] PodBreakout - sparkfun. Link [Online; accessed on 30-October-2020].

[SB15] Jeremy Scahill and Josh Begley. The CIA Campaign to Steal Apple’s Secrets.
The Intercept, 2015. Link [Online; accessed on 21-March-2021].

[Sko16] Sergei Skorobogatov. The bumpy road towards iPhone 5c NAND mirroring.
CoRR, abs/1609.04327, 2016.

[SM15] Tobias Schneider and Amir Moradi. Leakage Assessment Methodology - A
Clear Roadmap for Side-Channel Evaluations. In CHES 2015, volume 9293 of
Lecture Notes in Computer Science, pages 495–513. Springer, 2015.

[sog11a] iPhone dataprotection toolkit, 2011. Link [Online; accessed on 22-September-
2020].

[sog11b] Slides: iPhone data protection - HackInTheBox Amsterdam, 2011. Link
[Online; accessed on 22-September-2020].

https://github.com/libimobiledevice/libirecovery
https://github.com/msftguy/ssh-rd
https://www.nvidia.com/en-us/geforce/graphics-cards/rtx-2080-ti/
https://www.sparkfun.com/products/retired/10645
https://theintercept.com/2015/03/10/ispy-cia-campaign-steal-apples-secrets/
https://code.google.com/archive/p/iphone-dataprotection/
http://conference.hackinthebox.org/hitbsecconf2011ams/materials/D2T2%20-%20Jean-Baptiste%20Be%cc%81drune%20&%20Jean%20Sigwald%20-%20iPhone%20Data%20Protection%20in%20Depth.pdf

24 Let’s Take it Offline

[SRH16] Sami Saab, Pankaj Rohatgi, and Craig Hampel. Side-Channel Protections
for Cryptographic Instruction Set Extensions. IACR Cryptol. ePrint Arch.,
2016:700, 2016.

[VMC19] Aurélien Vasselle, Philippe Maurine, and Maxime Cozzi. Breaking Mo-
bile Firmware Encryption through Near-Field Side-Channel Analysis. In
ASHES@CCS 2019, pages 23–32. ACM, 2019.

[Xu] Hao Xu. Attack Secure Boot of SEP. Mobile Security Conference (MOSEC)
2020. Link [Online; accessed on 28-September-2020].

https://raw.githubusercontent.com/windknown/presentations/master/Attack_Secure_Boot_of_SEP.pdf

	Introduction
	Attack at a Glance
	Attack Scenario
	High-Level Description

	Background
	Secure Boot
	iPhone Data Protection and User Authentication Mechanisms
	Side-Channel Analysis

	SCA Attacks on iPhone
	iPhone Preparation
	The Apple A4
	Measurement Setup
	Preprocessing of the Traces
	Leakage Assessment
	Power Model
	Reversing the Modifications
	Possible Countermeasures

	Offline PIN Recovery
	Dumping the System Keybag
	Highly Parallelized Passcode Recovery utilizing GPUs
	Results

	Applicability to Newer iPhone Series
	Conclusions

