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Abstract. Newly designed block ciphers are required to show resistance
against known attacks, e.g., linear and differential cryptanalysis. Two
widely used methods to do this are to employ an automated search tool
(e.g., MILP, SAT/SMT, etc.) and/or provide a wide-trail argument. In
both cases, the core of the argument consists of bounding the transition
probability of the statistical property over an isolated non-linear operation,
then multiply it by the number of such operations (e.g., number of active
S-boxes).
In this paper we show that in the case of linear cryptanalysis such
strategies can sometimes lead to a gap between the claimed security and
the actual one, and that this gap can be exploited by a malicious designer.
We introduce DooR , a block cipher with a carefully crafted backdoor.
By using the means of the wide-trail strategy, we argue the resistance
of the cipher against linear and differential cryptanalysis. However, the
cipher has a key-dependent iterative linear approximation over 12 rounds,
holding with probability 1. This property is based on the linear hull effect
although any linear trail underlying the linear hull has probability smaller
than 1.

Keywords: Block cipher Design, 0-correlation linear hulls, linear hull
effect, Kleptography, backdoorgraphy

1 Introduction

The field of cryptography can roughly be split into two paradigms: symmetric-
key cryptography and asymmetric-key cryptography. Although they can roughly
achieve the same functionality in different ways, the work done in these two fields
is fundamentally different. When designing a new asymmetric-key mechanism
the work usually takes a more rigorous approach. The designer reduces the
security of the mechanism to a problem believed to be computationally hard
and shows that breaking the proposed system cannot be easier than solving this
problem. In symmetric-key cryptography the field of provable security uses a
similar approach, usually for building modes of operation. The difference is that
instead of reducing the mode to a computationally hard problem, the security
of the mode is reduced to the security of the underlying primitive.

However, as far as symmetric primitive design is concerned, a much less
rigorous approach is taken. While some general-purpose approaches do exist



(e.g., the wide-trail strategy and other forms of counting probabilistic events),
they are mostly used as a threshold (and sometimes not at all) for consideration.
Real confidence in new primitives is built over time and through the attempts of
cryptanalysts to break them. If significant weaknesses are not found after enough
time has passed, the cipher is believed to be secure.

In this paper we present DooR 3, a block cipher containing a backdoor. We
show that previously published methods for arguing the security of a symmetric-
key primitives, for example the wide-trail strategy and automatic search tools
such as MILP and SAT/SMT solvers, are insufficient against a malicious designer.

Our backdoor is based on the linear hull effect [Nyb94]. The idea behind this
backdoor is to carefully construct the cipher such that after a certain number
of rounds, 12 in our case, a certain linear hull occurs with probability 1, despite
the fact that any subset of trails in this hull, for a smaller number of rounds,
occurs with probability 0 ≤ p < 1. Once that the backdoor is instigated, the
rest of the algorithm can further be strengthened to make sure that it is secure,
but in a way that does not invalidate the backdoor property. If done properly, it
would be nearly impossible for a cryptanalyst to detect this unique deterministic
linear property among all 22n possible linear approximations using current trail
based techniques (e.g., automatic tools such as SAT/SMT-solvers). Furthermore,
making the propagation of this property key dependent, the designer can improve
the hiding of the property by giving it a plausible distribution and transform
the attack from distinguishing to key-recovery.

1.1 Our contributions

In this paper we discuss the confidence afforded by wide trail arguments (e.g., the
wide-trail strategy and/or automated search tools such as MILP or SAT/SMT
solvers) when applied by a kleptographic designer. We introduce the block cipher

DooR and show that although we can argue its security against linear and
differential cryptanalysis using standard methods, it contains a carefully crafted
backdoor in the form of a key-dependent iterative linear approximation over 12
rounds with probability 1. Since the backdoor is key-dependent, it can be used
as a subliminal channel to provide information about the key.

1.2 Organization of the paper

The rest of the paper is organized as follows: in Section 2 we mention some
related work and present the notations used in the paper, together with some
terminology regarding linear cryptanalysis. Our new cipher is presented in Section 3,
together with a motivation regarding our design decisions. In Section 4 we argue
the cipher’s security using a wide-trail-like approach, while in Section 5 we
expose the backdoor we baked into the cipher and show how it can be used

3 The name of the cipher, DooR (pronounced [ru:d]), is a visual encoding of the word
backDooR

2



for distinguishing and key-recovery attacks. Finally, Section 6 concludes this
paper.

2 Preliminaries

In this section we present related work, we introduce notation used in the paper,
and recall some terminology regarding linear cryptanalysis.

2.1 Related Work

The first approach for finding optimal statistical properties (e.g., differential
characteristics and linear trails) is due to Matsui [Mat94]. Later, the wide trail
strategy was introduced in [Dae95] as a means to guarantee that no such property
has a sufficiently high probability to be exploited by an adversary. More recently,
constraint solvers became common in arguing the absence of strong properties
in the target cipher.

The wide-trail strategy was used in the design of Rijndael [DR02], after
which it become a common strategy to argue the security of newly designed
SPN’s (e.g., [AAB+20]). For ARX constructions, the long trail strategy is used
in a similar manner [DPU+16]. Matsui’s search algorithm was used directly by
the NSA to argue the security of their ciphers Simon and Speck [BSS+17, Sec. 4].
Examples for the use of automatic search tools are numerous, e.g., [MWGP11].

All the methods above are explicit about dealing only with characteristics
and trails. The leap of faith often made by algorithm designers is that the
best differential characteristic provides a good estimate for the corresponding
differential, and that the best linear trail does the same for the corresponding
linear hull.

However, the above is not always the case. Recently, Dunkelman et al. showed
in [DKLS20] that counting S-boxes is not enough in the case of differential
cryptanalysis. They presented an example where the probability of the strongest
differential characteristic is below what is required for a successful attack but
the probability of the resulting differential is not.

The case for linear cryptanalysis is even more involved. Whereas the conclusion
from [DKLS20] is that the number of differential characteristics contained in the
differential is sufficient—at least in theory—for bounding the probability of the
resulting differential, even this is not enough in the case of a linear hull. Since
the linear trails in the same hull may have positive or negative contributions,
the correlation of this hull may be higher or lower than that of the best linear
trail. Hence, the number of trails is not enough and knowledge of the trails
themselves is required to argue something meaningful. In the sequel, we use this
exact property of linear hulls to build a backdoored block cipher.

2.2 Linear cryptanalysis

Linear cryptanalysis is one of the most important techniques used nowadays
in the security evaluation of block ciphers. It was introduced in 1993 as a novel
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attack against the DES cipher [Mat93]. The basic idea of this technique is to find
probabilistic linear relations between bits of the plaintext and the ciphertext.
In order to exploit such linear relations in practice, it is necessary that its
probability be different from 0.5. The quality of a linear relation (also called
linear approximation) is measured by its correlation or bias; in this paper we
use the correlations.

2.3 Masks and Approximations

In order to describe a linear approximation, it is common in the literature to use
masks associated to the plaintext and ciphertext. Applying a mask to a bit-string
is akin to, in essence, a selection of bits of the latter.

Let x and a be binary strings of length n and let ai and xi be the ith bit of
a and x, respectively. Then,

atx =

n−1⊕
i=0

aixi,

and we say that a is the mask of x.
The positions in which the mask a has the value 1 determine the active bits

of x, while the remaining bits are said to be inactive.
Let Rk(x) = y denote the round function of a block cipher, where x, y and k

are the plaintext, the ciphertext and the key, respectively. A linear approximation
for Rk is a tuple (α, β, κ), where α, β and κ are the input mask, the output
mask and the key mask, respectively. Let p be the probability that the equation
αtx ⊕ βty ⊕ κtk = 0 holds for a fixed k. Then the correlation of the linear
approximation (α, β, κ) is defined as corr(α, β, κ) = 2p − 1. In general, both p
and corr(α, β, κ) are key-dependent (see, e.g., [AÅBL12]).

In practice, in order to analyse the correlation of any combination of input
and output masks for a particular (non-linear) operation, the most common
approach is to compute its LAT (linear approximation table). The LAT is a
matrix in which the value in position (i, j) stands for the correlation associated
to the input mask i and the output mask j.

Per [AP18], a pair of masks (α, β) is said to be connectable if and only if
β can be obtained from α using the rules of propagation introduced in [Mat93,
Bih94]. Otherwise, the pair (α, β) is said to be non-connectable. Note that a non-
connectable pair is always associated with correlation zero; however the converse
is not true and connectable pairs may also be associated with correlation zero.

2.4 Linear Hulls and Trails

An iterated block cipher with r rounds can be described as the following composition
of round functions: EncK = Rkr−1

◦ . . . ◦Rk0 , where K is the master key and ki
the round key at round i. A linear trail covering r rounds of a block cipher is a
sequence of r linear approximations such that the output mask of the ith linear
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approximation is equal to the input mask of the (i+ 1)th round. Hence, a linear
trail can be viewed as an (r + 1)-dimension vector (λ1, λ2, . . . , λr+1), where the
pair (λi, λi+1) denotes the input and output masks at round i, respectively. The
correlation of the linear trail is obtained by multiplying the correlation of all
single-round linear approximations:

corr(λ1, . . . , λr+1) =

r∏
i=1

corr(λi, λi+1)

In [Nyb94] it was first observed that in some cases there could be more
than a single linear trail involving the same plaintext and ciphertext bits. This
phenomenon is called the linear hull effect. A linear hull is defined as the set of
all linear trails with the same input and output bits (i.e., the input and output
masks are fixed, but intermediate round masks may vary). The correlation of a
linear hull is obtained by summing the correlations of all linear trails in the set:

corr(α, β) =
∑

λ1=α,λr+1=β

corr(λ1, . . . , λr+1)

The round function of a block cipher can also be viewed as a composition of
its component operations. Therefore, the methods described above for computing
the correlation of a linear trail can also be applied on a smaller scale to these
atomic operations. In [AR16] and [AP18] the authors observed that the linear
hull effect can manifest within a single round of a cipher, this being specifically
true for the SIMON [BSS+15] and DES [DES] ciphers. In [APSD20], the authors
used this property to design a new key-recovery attack against the full DES.

3 Cipher Description

We now describe our new design – the cipher DooR -κ where κ ∈ {64, 128} stands
for the key length. DooR is an SP-network based block cipher with a 64-bit state.
The state is split into a 4x4 matrix of nibbles. In each round, the S-box layer
described below operates on each column independently. Inside each column, four
different 16-to-4 S-boxes are applied to the four nibbles such that their outputs
form the new column. After the S-box layer is applied to all four columns, three
permutations, namely P1, P2, and P3, are applied to the full state. P1 is used
to permute nibbles between rows, P2 is used to permute bits inside each nibble,
and P3 is used to permute nibbles between columns. Following the permutation
layer, a round-dependant constant is injected into the state, followed by a key
injection. For DooR -128, two more keys are XORed before and after the first
and last rounds, respectively.

3.1 The State

DooR has a 64-bit state. Similar to AES and other recent SP-network based
ciphers, the state is viewed as a 4x4 matrix. Unlike AES, each cell of the matrix
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is a 4-bit nibble rather than a byte. The nibbles are indexed 1–16 as depicted in
Figure 1.

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

Fig. 1. Internal state indices

3.2 The Substitution Layer

The substitution layer is composed of four different 16-bit to 4-bit S-boxes
operating on each column independently. Each S-box consists of a mix of modular
addition and XORs, operating on three or four nibbles. The description of the
four S-boxes is:

S1[a, b, c, d] = (b� a)⊕ c (1)

S2[a, b, c, d] = (b⊕ d)� c (2)

S3[a, b, c, d] = (b� a)⊕ c⊕ d (3)

S4[a, b, c, d] = (b� a)⊕ d (4)

The S-boxes are applied in cyclic order as depicted in Figure 2.

S1 S2 S3 S4

S2 S3 S4 S1

S3 S4 S1 S2

S4 S1 S2 S3

Fig. 2. The order in which the S-boxes are applied to the state

3.3 The Permutation Layer

The permutation layer is composed of 3 permutations namely P1, P2, and P3.
The stated goal of this layer is to ensure proper mixing of all bits.
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The column-permutation P1. The goal of P1 is to permute nibbles between
rows inside the same column. It is similar to AES’s ShiftRows, but rather than
shifting the nibbles inside each row, it shifts them inside each column. This
ensures that when P2 and P3 are applied, they would operate on different nibbles
in each round. Figure 4 describes the column-permutation P1.

Fig. 3. The column-permutation P1

The bit-permutation P2. The first permutation, P2, permutes bits within
the same nibble. The purpose of this permutation is twofold: (i) it ensures that
no difference propagates with probability 1 over more than 3 rounds; and (ii)
it ensures that P3, which only operates on the two most significant bits of the
nibble, always gets different bits as input.

The bit-permutation P2 consists of two operations: (i) a swap between the
2 least significant bits, denoted ↔, and (ii) a cyclic left shift by 1, denoted ≪.
The two operations used in this permutation are applied in a cyclic order on
each row, and the bit-permutation P2 is depicted in Figure 4.

↔ ↔ ≪≪
≪ ↔ ↔ ≪
≪≪ ↔ ↔
↔ ≪≪ ↔

Fig. 4. The bit-permutation P2

The row-permutation P3. The last permutation, P3, permutes bits between
nibbles within the same row. The permutation is applied cyclically, inside each
row. But instead of shifting the entire nibble, it only moves the two most
significant. The row-permutation P3 is depicted in Figure 5.

Composition. The permutation layer is obtained by composing the three
permutations together, i.e., P3 ◦ P2 ◦ P1(S) where S is the state. Note that we
did not seek to optimize diffusion using these permutations and instead argue
the security of the cipher based on its large number of rounds.
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Fig. 5. The row-permutation P3

3.4 The round constants injection

Following the permutation layer is the round constant injection. The round
constant is an 8-bit value c representing the round number. It is viewed as
two 4-bit values c = c1||c2 that are XORed to the third and fourth columns as
depicted in Figure 6.

⊕c1 ⊕c2
⊕c1 ⊕c2
⊕c1 ⊕c2
⊕c1 ⊕c2

Fig. 6. The round constant injection

3.5 The Key Injection Layer

Finally, at the end of each round, a round key k is injected into the state.
DooR comes in two versions offering 64-bit and 128-bit security. In the 64-bit

version the master key K is used directly as the round key in all rounds, i.e.,
k = K. In the 128-bit version, the master key K is viewed as K = k1||k2. In order
to avoid trivial related-key attacks, we use the PRINCE key schedule [BCG+12].
The 128-bit key K = k1||k2 is extended into 192 bits by the mapping (k1||k2)→
(k1||k||k2) := (k1||(k1 � 1) ⊕ (k1 � 63)||k2). The keys k1 and k2 are used for
the initial and the final whitening, while k is used as a round key.

3.6 The Round Function and the Overall Structure

So far, we presented the components used to construct DooR ’s round function.
Let us now denote by X the state, α the S-box layer, β the permutation layer
and k the round key; then, DooR ’s round function is obtained by a composition
of these components:

Ri(X) = β(α(X))⊕ i⊕ k .
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The full cipher is then a composition of round functions

C = (k1 × d)⊕ (Rn−1 ◦Rn−2 ◦ . . . R0(P ⊕ (k2 × d))),

with d = 0 for DooR -64 and d = 1 for DooR -128.
Part of the art of designing a new primitive is in choosing the right number

of rounds. In the design of DooR we decided to take a conservative approach
and set very high security margins. As the reader can see in Section 4, it can
be shown that the probability of any differential characteristic (resp., squared
correlation of any linear trail) dips below 2−64 after at most 97 rounds. We add
a 100% security margin for DooR -64 and 200% security margin for DooR -128,
resulting in 194 rounds for DooR -64 and 291 rounds for DooR -128.

4 The Security of DooR

In this section we discuss the security of DooR against linear cryptanalysis.
We stress that the approach we take here is in line with common practices in
symmetric-key design (see also Section 2.1). More precisely, we upper bound the
probability of a linear trail over four rounds, and use this bound to establish the
total number of rounds that should ensure the security of DooR against linear
cryptanalysis. Since our cipher exhibits linear approximations with probability
1 over at most three rounds, we will consider four to be the reference number of
rounds in our analysis.

Resistance Against Linear Cryptanalysis Let CS` be the full Linear Approximation
Table (LAT) for the substitution layer S` and CS`

i,j the correlation of a linear

approximation with input mask i and output mask j over S`. Observing CS` we
see that each CS`

i,j can take one of 3 types of values:

– CS`
i,j = 0 - this is the trivial case normally attributed to non-connectable

masks.
– CS`

i,j = 1 - this is a deterministic approximation with probability 1. In Table 1
we present all pairs of input and output masks with correlation 1. Note that
this transition is only possible when the active nibbles of the first two S-
boxes have input mask 1x. The permutation P2 was designed to guarantee
that, while a linear approximation with correlation 1 is possible for a single
round, the combination of the substitution and linear layers guarantees that
it is not possible for 4 rounds or more.

– 0 < |CS`
i,j | < 1 - this is the normal case. The standard approach when using

wide-trail arguments to show the resistance of an algorithm against linear
cryptanalysis is to find an upper bound for the absolute correlation of a
single transition and multiply it by the minimal number of active S-boxes in
a trail of length q as we will do in the sequel.
For automated search tools the standard approach is to model the algorithm
as a set of constraints (e.g., MILP or SAT/SMT) and use the model to
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Table 1. Linear approximations with probability 1 for the S-box layer. Note that n1

and n2 are two 2-bit values, therefore they can have any value between 0 and 3.

Input mask Output mask

(0, 0, n1, n2) (0, n1 ⊕ n2, n1, n2)

(1, 0, n1, n2) (1, n1 ⊕ n2 ⊕ 1, n1, n2)

(0, 1, n1, n2) (1, n1 ⊕ n2, n1 ⊕ 1, n2 ⊕ 1)

(1, 1, n1, n2) (0, n1 ⊕ n2 ⊕ 1, n1 ⊕ 1, n2 ⊕ 1)

count the number of active S-boxes and their transition probabilities. Setting
the objective function appropriately allows to retrieve an optimal statistical
property (e.g., a linear trail) and bounding this optimal property is commonly
used to argue the resistance of the algorithm.

The above case distinction shows that any 3-round linear approximation has
absolute correlation smaller than 1. Looking at the non-zero entries in the LAT,
we can see that the largest absolute correlation is 2−1. Taking this value as
an upper bound for all 3-round linear approximations, and noting that a linear
attack with correlation c requires at least c−2 data, we can find the number of
rounds r after which a linear attack is no longer possible, by setting q = r/4 and
solving (2−1)−2q = 264 for q. We see that setting q = 32 −→ r = 128 ensures
that the correlation of all linear trails dip below 2−32 for 129 rounds or more. We
stress that this is a highly conservative estimate and that the number of rounds
after which the correlation of any linear trail is smaller than 2−32 is likely to
be much smaller than 129 rounds. Nevertheless, for our purpose, this analysis is
sufficient.

Unlike the correlation of a single trail, the correlation of the full hull is harder
to estimate and overcoming this hurdle is usually an educated guess. Continuing
with our conservative approach, we set a safety margin of 100% for DooR -64
and double the number of rounds from 129 to 258. For DooR -128, we triple the
number of rounds and set it to 387. As we will see in the sequel, our backdoor is
designed to cover a number of rounds that is a multiple of 12, hence we set the
number of rounds for DooR -64 to 264, and the number of rounds for DooR -128
to 396.

Resistance Against Differential Cryptanalysis By following a similar approach
it can be shown that the number of rounds resulting from the previous analysis
is sufficient also for arguing the resistance of the cipher against differential
cryptanalysis.

5 The Backdoor

In the previous sections we presented DooR and argued its security against
common attacks. Yet, despite this “proof”, DooR contains a carefully crafted
backdoor exploiting the linear hull effect.
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5.1 The rationale behind the design decisions

This sections is meant to guide the reader through the reasoning and techniques
that lead to the design of DooR . Our strategy starts from an observation on the
behaviour of linear trails with respect to modular addition, this being the basis
for the design of our S-box layer. The permutation layer has two goals: on the
one hand, it plausibly provides enough diffusion to appear benign, while on the
other hand it preserves the backdoor property over subsequent S-box layers.

Linear behaviour of the modular addition. Modular addition is one of the main
functions used in the design of various symmetric ciphers. As presented in
[Wal03], the Algebraic Normal Form of the addition modulo 2n is obtained using
the following recurrence relation:

Lemma 1 Let z = x+ y (mod 2n). Then,

zi = xi ⊕ yi ⊕ ci, where

c0 = 0 and ci = xi−1yi−1 ⊕ ci−1(xi−1 ⊕ yi−1)

By analysing the behaviour of modular addition with respect to linear cryptanalysis,
the following observation arises.

Let us define the maximal non-zero index of a mask α by the value

indexα = max
0≤i≤n−1

{αi = 1}

where αi represents the ith bit of the binary decomposition of the mask α.

Observation 1 Let z = x+y mod 2n. Let αx, αy, and αz be the masks for x, y,
and z respectively. Then the tuple (αx, αy, αz) is a connectable tuple of masks
only if

indexαx
= indexαy

= indexαz
.

For example, if αx = 1, then the only connectable tuple is (1,1,1), yet if
αx ∈ {2, 3}, then the connectable tuples are the ones for which αy, αz ∈ {2, 3}.

Therefore, the tuple masks (αx, αy, αz) define independent classes of connectable
masks, depending on the value of the maximal non-zero index.

Linear behaviour of XOR. Let a = b ⊕ c and let αa, αb, and αc the masks for
a, b, and c, respectively. The rule of propagation of linear trails through the XOR
operation implies the following constraint:

αa = αb = αc.
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The S-box Layer. In the design of the S-box layer we used modular addition
and XORs, with the goal of designing an invertible function that preserves
the modular addition property, possibly with deterministic modifications. More
precisely, the S-box layer satisfies the following observation:

Observation 2 Let (m0,m1,m2,m3) be the input mask of the S-box layer.
Then, if the input mask satisfies the constraint that mi ∈ {0, 1, 2, 3},∀i ∈ {0, 1, 2, 3},
then so will any connectable output mask.

Therefore, if the active bits of the input mask are restricted to the two least
significant bits of each nibble, then the active bits of any connectable output
mask will also be restricted to these two least significant bits.

For example, the input mask (1, 2, 3, 0) has only the following connectable
output masks: (2, 2, 1, 2), (2, 3, 0, 2), (3, 2, 1, 2) and (3, 3, 0, 2) over the S-box layer.

The permutations P1 and P3. Since the permutation P1 permutes the nibbles
between rows inside the same column, the property presented in Observation 2
is preserved by this permutation.

The permutation P3 permutes the two most significant bits of each nibble
within the same row. Therefore, the two least significant bits of each nibble are
not affected by this permutation, thus the property is preserved.

The permutation P2. The bit-permutation P2 consists of two operations: (i) a
swap between the 2 least significant bits, and (ii) a cyclic left shift by 1. The
former is visibly designed to preserve the backdoor property. In the latter, the
property is preserved if besides the constraints described above, the input masks
of the nibbles undergoing through the rotation are either 0 or 1.

From the previous observations we can see that by choosing input masks
that satisfy Observation 2, all the connectable output masks, for any number of
rounds, will satisfy the same constraints.

5.2 The description of the backdoor

Our backdoor is based on the existence of the linear hull effect, more precisely
on the presence of an iterative key-dependent linear hull with probability 1 for
input mask (0, 0, 2, 2)t in the second column, and zero for all other columns.

In the remaining of this section we will only refer to the linear approximations
of the second column, denoting it by (α1, α2, α3, α4)t its corresponding input
mask.

The linear hull effect As stated in Section 2, the linear hull effect occurs if there
are several linear trails that have fixed input and output masks. In order to
fully describe a linear hull, the intuitive approach is to perform an exhaustive
evaluation of all the connectable input and output masks for each round. For
most of the ciphers in the literature, this evaluation is heavy, both memory and
time-wise. But the backdoor crafted in DooR allows for a light evaluation of the
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connectable linear masks over 12 rounds of the cipher, provided that the input
mask is well chosen.

Figure 7 presents the exhaustive evaluation of the key-less linear approximations
generated using the input mask (0, 0, 2, 2)t, over 12 rounds of DooR . We underline
that the input masks of round i are equal to the output masks of round i − 1,
therefore these are omitted from the table. Note that the table also overlooks
the linear hulls that have correlation 0. The convergence of the linear hull is
most visible in the transition from round 9 to round 10, where the number of
connectable output masks decreases from 10 to only 4. But in fact, the linear
hull effect first appears already in the transition from round 4 to round 5, since,
for example, the input masks (2, 3, 0, 2)t and (3, 2, 0, 2)t are connected to the
same set of output masks, more precisely (1, 0, 0, 0)t, (3, 2, 0, 2)t, (3, 2, 2, 0)t, and
(1, 0, 2, 2)t.

In addition, the alert reader will notice that the masks (1, 0, 0, 0)t and (3, 2, 0, 2)t

do not appear as possible output masks for round 5. The reason for this is that
the 5-round linear hull with input mask (0, 0, 2, 2)t and either of these output
masks, has correlation 0.

Round Number Output masks Cumulative correlation

Round 1 (1, 1, 0, 0)t corr = 1

Round 2 (2, 2, 0, 2)t corr = 1

Round 3

(1, 0, 0, 0)t corr = 0.5
(1, 0, 2, 2)t corr = 0.5
(3, 2, 0, 2)t corr = −0.5
(3, 2, 2, 0)t corr = 0.5

Round 4

(0, 0, 2, 2)t corr = 0.5
(0, 1, 0, 0)t corr = 0.25
(0, 1, 2, 2)t corr = 0.25
(1, 0, 0, 0)t corr = −0.25
(1, 0, 2, 2)t corr = −0.25
(1, 1, 2, 2)t corr = 0.5
(2, 3, 0, 2)t corr = 0.25
(2, 3, 2, 0)t corr = −0.25
(3, 2, 0, 2)t corr = −0.25
(3, 2, 2, 0)t corr = 0.25

Round 5

(0, 0, 2, 2)t corr = −0.25
(0, 1, 2, 2)t corr = 0.25
(1, 0, 2, 2)t corr = −0.25
(1, 1, 0, 0)t corr = 0.5
(1, 1, 2, 2)t corr = −0.25
(2, 2, 2, 0)t corr = 0.25
(2, 3, 2, 0)t corr = −0.25
(3, 2, 2, 0)t corr = 0.25
(3, 3, 0, 2)t corr = 0.5
(3, 3, 2, 0)t corr = 0.25

Round 6

(0, 1, 2, 2)t corr = 0.5
(1, 0, 0, 0)t corr = −0.25
(1, 0, 2, 2)t corr = 0.25
(1, 1, 0, 0)t corr = −0.25
(1, 1, 2, 2)t corr = −0.25
(2, 2, 0, 2)t corr = 0.5
(3, 2, 0, 2)t corr = 0.25
(3, 2, 2, 0)t corr = 0.25
(3, 3, 0, 2)t corr = −0.25
(3, 3, 2, 0)t corr = 0.25

Round Number Output masks Cumulative correlation

Round 13 (1, 1, 0, 0)t corr = 1

Round 12 (0, 0, 2, 2)t corr = 1

Round 11 (1, 0, 0, 0)t corr = 1

Round 10

(2, 2, 0, 2)t corr = 0.5
(2, 3, 0, 2)t corr = 0.5
(3, 2, 0, 2)t corr = 0.5
(3, 3, 0, 2)t corr = −0.5

Round 9

(1, 1, 0, 0)t corr = 0.5
(1, 1, 2, 2)t corr = −0.5
(2, 2, 0, 2)t corr = −0.25
(2, 2, 2, 0)t corr = −0.25
(2, 3, 0, 2)t corr = 0.25
(2, 3, 2, 0)t corr = 0.25
(3, 2, 0, 2)t corr = 0.25
(3, 2, 2, 0)t corr = 0.25
(3, 3, 0, 2)t corr = 0.25
(3, 3, 2, 0)t corr = 0.25

Round 8

(0, 0, 2, 2)t corr = 0.5
(0, 1, 0, 0)t corr = −0.25
(0, 1, 2, 2)t corr = 0.25
(1, 0, 2, 2)t corr = −0.5
(1, 1, 0, 0)t corr = −0.25
(1, 1, 2, 2)t corr = 0.25
(2, 3, 0, 2)t corr = 0.25
(2, 3, 2, 0)t corr = 0.25
(3, 3, 0, 2)t corr = 0.25
(3, 3, 2, 0)t corr = 0.25

Round 7

(0, 0, 2, 2)t corr = −0.25
(0, 1, 2, 2)t corr = 0.25
(1, 0, 0, 0)t corr = 0.5
(1, 0, 2, 2)t corr = 0.25
(1, 1, 2, 2)t corr = 0.25
(2, 2, 0, 2)t corr = −0.25
(2, 3, 0, 2)t corr = 0.25
(3, 2, 0, 2)t corr = −0.25
(3, 3, 0, 2)t corr = −0.25
(3, 3, 2, 0)t corr = 0.5

Fig. 7. Correlations of the linear hull with input mask (0, 0, 2, 2)t for any possible
output mask with non-zero correlation.
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5.3 Key-dependence

As mentioned above, Figure 7 lists all linear approximations spanning from the
input mask (0, 0, 2, 2)t over 12 rounds or less. In this section we discuss the
consistency of the linear hull effect in conjunction with different choices for the
round key.

As presented in Section 2, the correlation of a linear hull is computed by
summing the correlations of all the linear trails in the set. To compute the
correlation of a linear trail over one round of the cipher, two steps are in
order. The absolute value of the correlation is solely determined by the Boolean
functions describing the round’s operations, while the sign of the correlation
depends on the round key. Therefore, depending on the value of the round key,
the sign of a trail’s correlation is a random variable, while the absolute value is
a constant.

For simplicity, we assume a linear hull consisting of only two linear trails
with the same correlation over ρ rounds. For some choices of the round key, the
signs of the correlations will be different, therefore the two trails will cancel each
other, leading to a linear hull with correlation 0. Otherwise, if the signs are the
same, the correlation will be non-zero.

As an instructive example, we recall the transition from round 4 to round 5
mentioned above. The intermediate masks (2, 3, 0, 2)t and (3, 2, 0, 2)t are connected
to the same set of output masks after a single round, more precisely (1, 0, 0, 0)t,
(3, 2, 0, 2)t, (3, 2, 2, 0)t, and (1, 0, 2, 2)t. For the zero key, the correlation of the
5-round linear hull with input mask (0, 0, 2, 2)t and either of the output masks
(1, 0, 0, 0)t, or (3, 2, 0, 2)t is zero due to the cancellation effect. For the other two
output masks of this linear hull, the correlation is non-zero. On the other hand,
there exist certain key values for which it is the correlation of the output masks
(1, 0, 0, 0)t and (3, 2, 0, 2)t that is non-zero, while the correlation for the other
two output masks is zero.

The round key is added to the internal state using the XOR operation, hence,
due to the rules of propagation for linear trails, the key masks are equal to the
output masks of each round. Since all the round keys are equal, there are at
most 6 key bits involved in the computation of one linear hull’s correlation.
More precisely,

– the two least significant bits of the first two nibbles;
– the second least significant bit of the last two nibbles.

For 16 of the 64 values the above 6 bits can take, the backdoor property asserts
that the 12-round iterative linear hull holds with probability 1. Table 2 presents
these key values.

5.4 Key-recovery

For a 2−2 portion of the key space (the 16 cases presented in Table 2) the 12-
round iterative linear hull (0, 0, 2, 2)t → (0, 0, 2, 2)t has correlation 1. Observing
this correlation, the adversary learns that the key was chosen from this smaller
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Table 2. The key bits that ensure the existence of an iterative 12-round linear hull
with probaility 1 when using the input mask (0, 0, 2, 2)t

Key bits

(0, 0, 0, 0) (3, 1, 0, 0) (2, 2, 0, 0) (1, 3, 0, 0)

(3, 0, 2, 0) (0, 1, 2, 0) (1, 2, 2, 0) (2, 3, 2, 0)

(1, 0, 0, 2) (2, 1, 0, 2) (3, 2, 0, 2) (0, 3, 0, 2)

(2, 0, 2, 2) (1, 1, 2, 2) (0, 2, 2, 2) (3, 3, 2, 2)

space, and the exhaustive search complexity is reduced by a factor of 22. Observing
that the correlation is different than 1, the adversary learns that the key was
chosen from the complement space, and the exhaustive search complexity is
reduced accordingly. Overall, the adversary learns 0.25·2+0.75·log2(264−262) =
0.8113 key bits.

6 Conclusion

In this paper we showed how widely used methods for arguing the resistance of
symmetric-key primitives are insufficient to prevent a carefully crafted vulnerability.
To that effect, we presented DooR , a backdoored block cipher whose resistance
can be argued using wide-trail arguments, but which contains a vulnerability in
the form of a 12-round linear hull with correlation 1. Since the building blocks
of the cipher are chosen to preserve this vulnerability, we consider it to be a
subliminal channel, i.e., a backdoor. This is a troubling outlook for symmetric-
key design as the methods we employed in this paper are highly common, and
we hope that future work can address this caveat in arguing resistance against
linear attacks.
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Knezevic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof
Paar, Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and
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