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Abstract. Multivariate cryptography is dominated by schemes support-
ing various tweaks, or “modifiers,” designed to patch certain algebraic
weaknesses they would otherwise exhibit. Typically these modifiers are
linear in nature— either requiring an extra composition with an affine
map, or being evaluated by a legitimate user via an affine projection.
This description applies to the minus, plus, vinegar and internal per-
turbation modifiers, to name a few. Though it is well-known that com-
binations of various modifiers can offer security against certain classes
of attacks, cryptanalysts have produced ever more sophisticated attacks
against various combinations of these linear modifiers.
In this article, we introduce a more fundamentally nonlinear modifier,
called Q, that is inspired from relinearization. The effect of the Q mod-
ifier on multivariate digital signature schemes is to maintain inversion
efficiency at the cost of slightly slower verification and larger public keys,
while altering the algebraic properties of the public key. Thus the Q mod-
ifier is ideal for applications of digital signature schemes requiring very
fast signing and verification without key transport. As an application
of this modifier, we propose new multivariate digital signature schemes
with fast signing and verification that are resistant to all known attacks.
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1 Introduction

The National Institute of Standards and Technology (NIST) is currently engaged
in a process to establish new cryptographic standards [19] that offer security
against adversaries with access to large scale quantum computing technology.
This process aims to “Shor”-up NIST’s public key suite of algorithms as a re-
sponse to the exponential speed-ups offered by Shor’s quantum algorithms [32]
for solving the problems on which the current public key infrastructure is based.
NIST’s process is currently in the third round [26] and consists of 9 public key
encryption or key-establishment algorithms and 6 digital signature schemes, see
[20].

While the majority of the diverse array of key-establishment candidates tar-
get general use applications and offer good performance in many metrics, the
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situation for digital signatures is very different. First, applications of digital sig-
natures are extremely diverse and often different applications require dramati-
cally different performance characteristics; moreover, many “niche” applications
are actually quite pervasive. Secondly, there are very few candidates that are
general purpose or that offer acceptable performance for some applications. The
situation is of sufficient concern that NIST has asked for public feedback on the
issue of signature scheme diversity on the NIST Post-Quantum Cryptography
(PQC) Forum [11].

Part of this concern arises from the recent cryptanalyses [30, 4, 37] of two of
the non-lattice-based digital signature schemes that made it to the third round
of NIST’s post-quantum standardization process. These candidate algorithms,
Rainbow [21] and GeMSS [1], are both multivariate signature schemes with long
histories. If neither scheme can be repaired in such a way that public confidence
in the approach is restored, then there can be no Federal Information Process-
ing Standard-compliant (FIPS-compliant) alternative to the lattice signatures
CRYSTALS-Dilithium [42] and Falcon [39] for applications requiring signatures
significantly shorter than a kilobyte in length.

Not only are the above cryptanalyses concerning, also the recent advances
in generic techniques have contributed to apprehension about the security of
multivariate signature schemes in general. In particular, the most effective attack
[4] on the NIST round 3 finalist Rainbow is made efficient by the support minors
method of solving the MinRank problem, see [2]. This advance alone changes the
complexity of rank attacks on schemes like Rainbow and GeMSS by orders of
magnitude in the exponent.

In addition, the cryptanalysis of GeMSS in [37] bypasses the combination
of the vinegar and minus modifiers, one of the last remaining combinations of
modifiers for multivariate systems that was believed to offer security for the so-
called “big field” schemes— schemes requiring the multiplicative structure of an
extension field. This advance invites the question of whether big field schemes are
at all viable or whether secure multivariate digital signatures require a structure
like that of Unbalanced Oil-Vinegar (UOV), see [23].

In this article we suggest a very strange answer to the above question. We
propose that a big field scheme may be secure by turning it into an odd form
of a UOV scheme by way of a new nonlinear modifier. This modifier, called
Q, transforms any quadratic map into a UOV map in a way that preserves
the structure of the original map in the sense that with secret information, the
legitimate user can use the inversion procedure for the original central map to
find a preimage.

As an application of this modifier, we construct multivariate digital signatures
by applying the Q modifier to C∗ and show that the resulting scheme, QC∗, is
secure against all known attacks. We also select a “small field” cryptosystem,
the Step-wise Triangular System (STS) multivariate encryption scheme, and
use the Q modifier to create QSTS. Thus, we use the Q modifier to convert two
insecure encryption schemes into secure digital signature schemes, which is quite
humorous.
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This article is organized as follows. In the next section, we introduce some
of the multivariate cryptosystems we have discussed above and which we will
be modifying. In Section 3, we present and discuss the common modifiers of
multivariate schemes and their security properties. We then introduce the new
Q modifier in the subsequent section. Next, we present a few new schemes based
on the Q modifier, illustrating the breadth of possible schemes it can produce.
In Section 6, we present a thorough analysis of the security of these schemes. We
next propose parameters for the focus of future study and application of these
schemes in Section 7. Finally, we conclude, discussing the possible directions to
which this work leads.

2 Multivariate Signature Schemes

Multivariate cryptosystems can broadly be categorized as “big field” or “small
field” schemes. Big field schemes rely on the multiplicative structure of an ex-
tension field to provide a nonlinear efficiently invertible function. In contrast,
small field schemes accomplish this task directly by selecting nonlinear func-
tions with some special structure embedded. In both cases, the structure that
allows for efficient inversion is hidden with the application of some morphism of
polynomials.

2.1 Unbalanced Oil-Vinegar (UOV)

The unbalanced oil-vinegar (UOV) signature scheme [23] is the oldest small field
scheme still considered secure. Like most small field schemes, UOV relies on the
sequential derivation of preimage variables for the inversion of the private key.

Given the finite field Fq, one selects integers v ≈ 3o and constructs the vector
space O ⊕ V ≈ Fo+vq , where O ≈ Foq is called the oil subspace and V ≈ Fvq is
known as the vinegar subspace. The private key then consists of a random linear
map L : Fo+vq → Fo+vq , and a random quadratic function F that is affine on
cosets of O. Specifically, the map F is defined by

F (x1, x2, . . . , xo+v) =

o+v∑
i=o+1

o+v∑
j=1

aijxixj .

Each coordinate of F can be written as a quadratic form of the shape pre-
sented in Figure 1. Given any constant vector

[
co+1 . . . co+v

]
∈ V , we have that

F (·, . . . , ·, co+1, . . . , co+v) is an affine function on O. The public key is then the
composition P = F ◦ L.

A preimage for any element in the codomain of P can be efficiently found
by a legitimate user by randomly selecting an element c of V , inverting the
affine map F (·, c) and finally inverting L. Verification is accomplished by merely
evaluating the public key at a given signature.
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Fig. 1. The shape of the matrix representations of each central quadratic form of
unbalanced oil-vinegar (UOV). The shaded regions represent possibly nonzero values
while unshaded areas have coefficients of zero.

(a) Layer 1 (b) Layer 2

· · ·

(c) Layer k

Fig. 2. The shape of the matrix representations of quadratic forms from each layer
of the central map of a generic STS system. The shaded regions represent possibly
nonzero values while unshaded areas have coefficients of zero.

2.2 Step-wise Triangular System (STS)

The main line of what we would today call step-wise triangular schemes origi-
nated in Shamir’s birational permutation scheme over large rings in [31]. A very
similar idea emerged which was called the sequential solution method (SSM) in
[41]. These ideas were extended to construct the RSE system of [22] and were
further adapted in [18] where the authors made it clear that these schemes were
broken. This more general scheme was named triangle-plus-minus (TPM), which
was further generalized into what we now call step-wise triangular schemes (STS)
in [43]. There have since been numerous variations on the theme including [40,
36, 17]. They are all very similar and the simplest exposition to provide a good
understanding of all of them is to present the generic STS constructions of [43].

Unlike UOV, the STS-style schemes are designed for encryption. Also unlike
UOV, STS cryptosystems have a special differentiation in the structure of equa-
tions as well as the structure of the space of variables. As such, STS schemes
require affine maps mixing both the inputs and outputs of the secret central map
F . Thus a public key looks like P = T ◦F ◦U . The critical structure in the STS
family is the structure of the central map.

The central map of a generic STS instance is defined by selecting integers
0 = u0 < u1 < . . . < uk = n, and random quadratic maps yi = ψi(xi), where
xi = (x1, . . . , xui) and dim(yi) = ui − ui−1 for i = {1, . . . , k}. The central map

is then the direct sum
⊕k

i=1 ψi, see Figure 2 for a visualization.
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Fig. 3. The structure of a C∗ scheme. The map φ is a Fq-vector space isomorphism, F
is a vector-valued function on Fn

q , and f is an univariate function over E.

Again, the technique for inversion of the secret map F is sequential. One
first parses the output vector y into the component vectors yi for each of the k
layers. Then sequentially, the quadratic equations ψi(xi) = yi are solved using
the coordinates previously solved for xi−1 as a prefix of xi.

All of these constructions are vulnerable to generic combinatorial rank at-
tacks as shown in [43]. In fact, all such schemes are vulnerable to both the
MinRank attack— finding a low rank non-zero linear combination of the public
quadratic forms— and the dual rank attack— finding a small subspace that is
in the kernel of a large subspace of the quadratic forms.

2.3 C∗

The progenitor of all “big field” schemes is commonly known as C∗, or the
Matsumoto-Imai scheme, see [25]. This scheme exploits the fact that an extension
field E of Fq is an Fq-algebra to produce two versions of a function— a vector-
valued version which is quadratic over the base field, and a monomial function
whose input and output lie in the extension field. Specifically, the C∗ central
map is the univariate function f : E→ E defined by

f(X) = Xqθ+1,

where |E : Fq| = n and (qθ + 1, qn − 1) = 1. The final condition ensures that
the power map is invertible in E∗. To complete the construction, one composes
invertible affine maps to produce the public key P (x) = T ◦F ◦U , see Figure 3.
The C∗ scheme can be considered a sort of multivariate version of RSA; in fact,
the design of C∗ intends for the inversion of F to be accomplished in exactly
the same way as RSA, that is, by exponentiation by the multiplicative inverse
of the encryption exponent modulo the size of the unit group.

C∗ was broken by Patarin in [27] by way of linearization equations. Patarin
discovered that there is a bilinear relationship between the plaintext x and ci-
phertext y. In all but a few pathological cases, an adversary can interpolate this
bilinear function by generating many plaintext-ciphertext pairs. Once recovered,
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these linearization equations provide an even faster method of decryption than
using the private key. Indeed later derivatives of C∗ derive linearization equations
from the private key as a fast method of inversion, see [9, 7, 8].

3 Modifiers

The cryptanalysis of the C∗ scheme by Patarin in [27] inspired the creation of
modifiers to make certain attacks infeasible. There are two categories of such
alterations: one can modify the central map in some specific way preserving
efficient invertibility; or one can make one or both affine transformations non-
invertible. Of course, various modifications can be taken together as well. We
present here some prominent modifiers.

Shortly after the cryptanalysis of C∗, Patarin introduced in [29] three mod-
ifiers aiming to enhance the security of C∗. These three modifiers include the
minus (-) modifier (the removal of public equations), the plus (+) modifier (the
addition of random equations in the central map that can be ignored on in-
version) and the projection (p) modifier (the assignment of one or more input
variables to constant values before the publication of the key).

The purpose of the minus modifier is clear. The idea is to remove some
public equations and thereby change the algebraic structure of the central map.
This method is equivalent to making the output transformation T singular. An
immediate consequence in the case of C∗ is that the minus modified scheme,
C∗−, no longer has linearization equations. Still, C∗− was proven weak by an
attack [14] exploiting a symmetric relation satisfied by the public key.

The projection modifier is the analogous modification on the input space.
Instead of making the output transformation T singular, the input transforma-
tion U is made singular. Interestingly, this modification does not prevent the
linearization equations attack if applied to C∗. The only cryptosystem proposed
that is essentially of the pC∗ form is SQUARE, see [10], which was broken by
an attack analogous to that on C∗−, see [5].

The plus modifier is in some sense the opposite of the minus modifier. Addi-
tional random equations are added to the central map and then mixed via the
output transformation. In the case of C∗, the plus modifier does not enhance se-
curity. The MinRank attack of [3] with a target rank of 2 recovers an equivalent
C∗ key. Still, this modifier has found use in numerous schemes, most recently
including the, so named, PCBM scheme, see [35].

In [28], the vinegar (v) modifier (the addition of variables in the central map,
the values of which can be randomly assigned upon inversion) is introduced in
the QUARTZ scheme. QUARTZ is a parametrization of Hidden Field Equations
with the vinegar and minus modifiers (HFEv-), the same construction as used
in GeMSS, see [1]. Thus, the attack of [37] breaks the vinegar modification, even
in conjunction with the minus modifier, if the central map is of low rank.

In [13], the internal perturbation (ip) modifier (the addition of a random
summand with a small support) is used to produce the Perturbed Matsumoto-
Imai (PMI) cryptosystem. The random summand introduced by the internal
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perturbation modifier has such small support that its value can be guessed and
subtracted from the output of the central map before inversion. This modifier
applied to C∗ was also broken, see [16].

All of these modifiers share the property that they either constitute a linear
action on the public key or can be removed by a linear action on the public
key. More specifically, the projection and minus modifiers are obviously linear
projections and are dual to each other, while the vinegar and plus modifiers can
both be removed via the application of the appropriate linear projection on the
input or output space. Even the internal perturbation modifier can be removed
via a projection, though the resulting scheme is the same as the original with an
application of the projection modifier.

4 The Q Modifier

In this section we introduce a new generic modifier for multivariate schemes,
named Q, that is inspired by relinearization, see [24]. As we will see, the Q
modifier is not linear in the sense that each of the modifiers in the previous
section are. Q is not a linear function on a public key nor can it be removed by
a linear function on the public key.

First let us recall the relinearization technique first introduced in [24]. The
idea of the technique is to symbolically solve a system of nonlinear equations by
iteratively linearizing the system and recalling relations between the variables.
Specifically, given a multivariate system in the variables x1, . . . , xn, the relin-
earization technique assigns a new variable yij to each monomial of the form
xixj , attempts to solve the resulting linear system, and recalls the relations of
the form yijyk` = yikyj`, among others. While relinearization did not provide
the originally promised performance in solving overdefined systems, it did in-
spire the development of XL, see [12], and offers a new technique for modifying
quadratic systems.

We begin the description in as general a context as possible and then discuss
the specifications required to apply Q in special contexts. First, let F : Fmq → Fmq
be an arbitrary homogenous quadratic function in the variable x =

[
x1 . . . xm

]
.

We select a short vector of auxiliary variables w =
[
w1, . . . , w`

]
and form prod-

ucts between these variables and terms of F (at this point, in an arbitrary way)

to create a cubic map F̃ : Fm+`
q → Fmq . We then consider the general monomial

of the form xixjwk. Such a monomial must always contain exactly one variable
from w. We define a vector z of m` new variables zik = xiwk. Thus we have the
relations

xixjwk = xizjk = xjzik. (1)

We replace F̃ with a new function F̂ : F(`+1)m
q → Fmq in a two step process.

First, we use relations of the form of Equation (1) to replace every cubic mono-
mial in x with a monomial bilinear in x and z randomly. Second, we introduce
new quadratic summands of the form αxizjk − αxjzik and αzijzrs − αziszrj for
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randomly selected α ∈ Fq. These summands must equal zero by the definition

of the variables in z. The function F̂ is now a new quadratic function.

We illustrate with a small example. Suppose that
[
y1 y2

]
= F (x1, x2, x3) over

F7 is given by

y1 = 2x1x2 + 3x1x3 + x2x3

y2 = x21 + 5x1x3 + 2x2x3.

We multiply by the variables w1 and w2 in an arbitrary way producing F̃ defined
by

y1 = 2x1x2w2 + 3x1x3w1 + 3x1x3w2 + x2x3w1

y2 = x21w1 + x21w2 + 5x1x3w2 + 2x2x3w1.

Next we substitute for xiwj and add cancelling terms (in parentheses below) in

the new variables z11, z12, . . . , z32 to produce F̂ of the form

y1 = 2x2z12 + 3x1z31 + 3x1z32 + x3z21 + (4z12z31 + 3z11z32 + x1z22 + 6x2z12)

y2 = x1z11 + x1z12 + 5x3z12 + 2x2z31 + (x3z12 + 6x1z32 + 4z22z11 + 3z12z21) .

There are three things to notice. First, the resulting function F̂ is a UOV
map. The map is clearly linear in x and quadratic in z. Therefore, we can find a
preimage under F̂ by using the inversion procedure for UOV. Consequently, we
can see that the Q modifier embeds some distribution of quadratic maps into a
subspace of the space of UOV keys necessarily having less entropy.

Second— and this is a key point— if there is an assignment of the ` variables
w that makes F̃ (·,w) an efficient to invert quadratic system, then we have a

second way to invert F̂ . Specifically, the user assigns values to w, solves for x
such that F̃ (x,w) = y, and computes z = x ⊗w. We note here that quadratic
terms in z never need to be computed unlike in the case of inversion as a UOV
map. Thus, for functions F̃ (·,w) with sufficiently efficient inversion, the inversion
of the maps transformed by Q is more efficient than UOV inversion.

Finally, since the original monomials are gone, there exists no linear projec-
tion on the input nor the output that transforms F̂ into a linear function of F . In
fact, the Q transformation is a quadratic substitution, hence the name. There-
fore attacks exploiting projections away from a modifier are ineffective against
Q.

Thus, the Q modifier is particularly useful in cases in which we have families
of efficiently invertible quadratic maps that can be parametrized by an additional
auxiliary set of variables. In such a case for any fixed w, the function F̃ (·,w)

is efficiently invertible. Then we may use the inversion procedure for F̃ (·,w) to

find preimages of F̂ with greater efficiency than the UOV inversion procedure.
We present some explicit examples of constructing such parametrized families F̃
in Section 5.
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5 New Schemes

We can now explain the most complicated part of the Q modifier, the task of
creating the parametrized family of efficiently invertible functions F̃ (x,w) from
an efficiently invertible function F . The key is to use the structure that makes
F efficiently invertible.

5.1 QC∗

Let F (x) = φ−1 ◦ f ◦ φ(x) where f(X) = Xqθ+1 is a C∗ central map. We may
select a linear transformation B : F`q → Fnq and construct the function

F̃ (x,w) = φ−1 (φ(B(w))f(φ(x))) .

For any fixed nonzero w, the quantity aw = φ(B(w)) is just some constant
in E, therefore the family of functions is simply the small field representations

of the functions awX
qθ+1, a collection of C∗ maps with coefficients other than

1. Every such function has linearization equations which are trivial for the user
to derive and use for extremely efficient inversion.

In fact, when ` is very small, linearization equations can be derived for all
nonzero values of w and inversion is accomplished with a very small number of
multiplications. Specifically, let Lw

i be the ith linearization equation correspond-

ing to awX
qθ+1. Then we may invert P (x̃) = T ◦ F̂ (U x̃) = y by first computing

a left kernel element u of the block matrix[
Lw
1 T−>y> · · · Lw

mT−>y>
]
,

appending u ⊗ w, and multiplying on the right by U−1. Since Lw
i T−> are all

precomputed as part of the private key, inversion only involves computing m+ 1
matrix vector products, an m` dimensional Kronecker product and solving a
linear system.

Thus, the complexity of inversion is m3+mω+m2(`+1)2+m`, multiplications
in Fq where 2 ≤ ω ≤ 3 is the linear algebra constant. For comparison, the
complexity of inverting UOV(m,m`) using the structure of equivalent keys, see
[44], is 1

2m
3`2 +m3`+mω + 3

2m
2` multiplications in Fq.

5.2 QSTS

Let F (x) be a step-wise triangular function with m steps of size 1. For any vector

w we can construct the function F̃ (x,w) from F by randomly multiplying each
term by a linear form in w. For all constant nonzero assignments w = c the
resulting function of x, F̃ (x, c) is still a triangular map, so inversion can proceed
as normal.

Inversion of the public key is straightforward. Given y = P (x̃) = T ◦
F̂ (U ′x̃, U ′′x̃), the user simply inverts T , finds the preimage u under F̃ (·,w),
appends u⊗w and inverts the input transformation U .
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Since the inversion process for F̃ (·,w) is inversion of a triangular map, it
is very efficient. In total, inversion requires m3 + 2

(
m+2
3

)
+ m2(` + 1)2 + m`

multiplications in Fq.

6 Security Analysis

In this section we consider the security of the schemes introduced in the previous
section as well as some general considerations for the security of Q modified
schemes. Attacks on the UOV structure are well known and easy to avoid. Thus,
we consider four main attack avenues.

6.1 Q Kernel Attacks

In the case of using the Q modifier generically, there exists an injection M :

Fmq → Fm(`+1)
q such that MPiM

> = 0m×m for all 1 ≤ i ≤ m. Notice also,

though, since monomials of the form zikzjk do not occur in F̂ that there also

exist injections M ′ : F`q → Fm(`+1)
q such that M′PiM

′> = 0`×` for all 1 ≤ i ≤ m.
Thus, we either have a system of m3 homogeneous quadratic equations in the
m2(`+ 1) unknown coefficients of M or a system of m`2 homogeneous quadratic
equations in the m`(`+ 1) unknown coefficients of M′.

Such systems can be solved via Gröbner basis methods. Given a hybrid ap-
proach of guessing k variables and resolving the system, we either obtain a
system of m3 equations in m2(`+ 1)− k variables or a system of m`2 equations
in m`(` + 1) − k variables. Let dsr and d′sr represent the semi-regular degrees
of such systems. These values are given by the degree of the first nonpositive
coefficient in the series expansions of

S(t) =
(1− t2)m

3

(1− t)m2(`+1)−k , S′(t) =
(1− t2)m`

2

(1− t)m`(`+1)−k .

Assuming that such systems are semi-regular, we find a complexity

O
(
qk
(
m2(`+ 1)− k + dsr

dsr

)ω)
, or O

(
qk
(
m`(`+ 1)− k + d′sr

d′sr

)ω)
.

6.2 Direct Attacks

Direct attacks try to invert the public key directly as a quadratic function.
Typically this process involves using some polynomial system solver based on
either XL, see [12], or F4, see [15].

Since the public key of a Q modified scheme is underdetermined, we can
employ the reduction procedure from [38] to convert the public key into a system
of m − ` − 1 equations in m − ` − 1 variables. We can then take a hybrid
approach and guess the values of k variables. The semi-regular degree for systems
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of m − ` − 1 equations in m − ` − 1 − k variables is the degree dsr of the first
nonpositive coefficient in the series

S(t) =
(1− t2)m−`−1

(1− t)m−`−1−k
.

Under the assumption that the system derived from the public key is semi-
regular, the complexity of the direct attack is

O
(
qk
(
m− `− 1− k + dsr

dsr

)ω)
.

6.3 Rank Attacks

The STS cryptosystem is vulnerable to every type of rank attack, as shown in
[43]. The Q modification, because it introduces terms involving all variables, in
general makes all of the maps full rank when the field is large enough. Thus
QSTS has no rank defect.

The C∗ scheme does have a rank defect with respect to the extension field
E. We note, however, that due to the addition of the cancelling terms of the
form xizjk − xjzik and zijzrs − ziszrj that there is no longer an E combination
of the public quadratic forms with low rank. In particular, there exists no linear

injection M : Fmq → Fm(`+1)
q such that P ◦M is a C∗ public key; thus, QC∗ is

safe from rank attack.

6.4 Differential Attacks

The C∗ scheme and higher degree analogues are also vulnerable to differential
attacks directly as shown, for example, in [34]. Therefore, we need to verify that
the Q transformation prevents such an attack.

As outlined in [33], the only maps that satisfy a differential symmetry on an
E-algebra are componentwise multiples of C∗ monomial maps. Thus the attack is
only possible if there exists a linear injectionM such that P ◦M is componentwise
C∗. Due to the quadratic substitution, there exists no such injection.

7 Parameters and Performance

Selecting parameters to achieve security against the attacks from Section 6, we
find that the limiting attack is the direct attack. With the complexity estimate
then given in Section 6, we find that the optimal attack classically uses a hybrid
approach with k = 3 in the case of q = 28 for all realistic parameters.

Using a linear algebra exponent of ω = 2.8, we find that m = 44 and ` = 3
are sufficient to achieve 151-bit security, which is comfortably NIST Level I. For
a fair comparison, we implemented simple proof of concept implementations of
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QC∗, QSTS and UOV with the same parameters in the Magma Computer Alge-
bra System1 see [6]. We observed that at the precision of measurement we were
able to make that the performance of the Q modified schemes was extremely
consistent between the variants and was better than that of our implementation
of UOV. The results are presented in Table 1. Please note that these implemen-
tations are not at all optimized.

Table 1. The parameters and performance of QC∗ and QSTS in comparision to UOV.
The Q schemes performance data were essentially identical and are presented under
the row labelled Q-schemes.

q m ` # Eqs. # Vars. sig. (B) PK (B) sign (ms) ver. (ms)

Q-schemes 28 44 3 44 176 176 677600 0.6 2.9
UOV 28 N/A N/A 44 176 176 677600 3.7 2.9

8 Conclusion

Digital signature schemes based on systems of nonlinear multivariate equations
have been around for a long time. The break-and-patch evolution of the discipline
as well as the multitude of attack paths available has always made multivariate
cryptography a somewhat risky venture. The appeal of some of the performance
characteristics of these schemes (e.g., very short signatures, very fast verification)
has helped to keep alive the hope that multivariate schemes will find a permanent
home in our future standards.

Recent advances in cryptanalytic techniques, however, have further shaken
public confidence in certain multivariate approaches. Most multivariate schemes
rely on a low rank property at some point in the inversion process. The new
support minors method introduced in [2] is a dramatic improvement in generic
technique and led to a significant attack against Rainbow, see [4]. Another recent
advance, see [37], shows that the combination of vinegar and minus modifiers are
not sufficient alone to secure big field schemes. As a result, there are no remaining
multivariate candidates in NIST’s post-quantum standardization process that
have not suffered some significant attack.

In this work we present the Q modifier and show that it is qualitatively
different from the modifiers that have been studied for a couple of decades.
Q is inherently nonlinear and creates a new map divorced from the algebraic
properties of the original map. Still, the new map, which is of UOV form, is
related via a hidden quadratic relationship to the original map, so that inversion
can still be accomplished with the original structure.

The fact that the Q modifier is generic suggests that it may be a promising
direction requiring further study. In particular, it is possible to eliminate the

1 Any mention of commercial products does not indicate endorsement by NIST.
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UOV structure of the resulting scheme by appending a 1 at the end of the vector
w defined in Section 4. The consequence of this change is that one may include
terms quadratic in x in the central map. Thus, depending on the structure of
the map, there may exist a linear projection onto the prototype function for the
scheme. This alteration seems risky for systems with a rank defect, but is a topic
worthy of further research in the general case.
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A Toy Example

In this section we present a toy example of QSTS. We illustrate the selection
of F , F̃ and F̂ and then present a valid public key. Finally, we demonstrate
inversion of the public key.

We randomly select a function F of STS shape:

y1 = 5x21

y2 = 6x21 + 4x1x2

y3 = 6x21 + 3x1x2 + 5x22 + 3x1x3 + x23

y4 = 5x21 + 5x1x2 + 6x1x3 + x2x3 + x1x4 + 6x2x4 + 6x3x4 + x24

We then construct the parametric family of STS functions, F̃ , by randomly
multiplying monomials in F by random linear forms in the variables w1, w2:

y1 = 3x21w1 + 3x21w2

y1 = 2x21w1 + 4x1x2w1 + 5x21w2

y1 = 6x1x2w1 + 5x22w1 + 5x1x3w1 + 5x23w1 + x21w2 + 6x1x2w2 + 6x22w2 + 3x1x3w2

y1 = 2x21w1 + 6x1x3w1 + x2x3w1 + 6x1x4w1 + 5x2x4w1 + x3x4w1 + 2x21w2

+ 6x1x2w2 + 5x1x3w2 + x2x3w2 + 5x1x4w2 + 2x2x4w2 + 5x24w2

Next, we do the final step of performing random replacements xiwj = zij and
adding random summands of the forms axizjk − axjzik and azijzrs − aziszrj to
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obtain F̂ . In matrix form we have:

F̂1 =



0 0 0 0 5 5 3 0 3 6 2 4
0 0 0 0 4 0 0 0 1 0 1 1
0 0 0 0 4 1 6 0 0 0 6 1
0 0 0 0 5 3 6 6 1 6 0 0
5 4 4 5 0 0 0 6 0 2 0 4
5 0 1 3 0 0 1 0 5 0 3 0
3 0 6 6 0 1 0 0 0 4 0 3
0 0 0 6 6 0 0 0 3 0 4 0
3 1 0 1 0 5 0 3 0 0 0 6
6 0 0 6 2 0 4 0 0 0 1 0
2 1 6 0 0 3 0 4 0 1 0 0
4 1 1 0 4 0 3 0 6 0 0 0



, F̂2 =



0 0 0 0 1 6 3 0 5 6 5 6
0 0 0 0 6 0 0 0 5 3 3 0
0 0 0 0 2 1 2 4 0 0 2 4
0 0 0 0 2 1 4 0 5 3 0 0
1 6 2 2 0 0 0 2 0 0 0 6
6 0 1 1 0 0 5 0 0 0 1 0
3 0 2 4 0 5 0 0 0 0 0 1
0 0 4 0 2 0 0 0 0 0 6 0
5 5 0 5 0 0 0 0 0 0 0 2
6 3 0 3 0 0 0 0 0 0 5 0
5 3 2 0 0 1 0 6 0 5 0 0
6 0 4 0 6 0 1 0 2 0 0 0



,

F̂3 =



0 0 0 0 0 4 4 1 0 0 6 1
0 0 0 0 6 2 6 3 2 1 2 6
0 0 0 0 6 5 5 6 6 0 2 1
0 0 0 0 1 6 5 1 5 6 0 0
0 6 6 1 0 0 0 5 0 4 0 1
4 2 5 6 0 0 2 0 3 0 6 0
4 6 5 5 0 2 0 0 0 2 0 0
1 3 6 1 5 0 0 0 5 0 0 0
0 2 6 5 0 3 0 5 0 0 0 3
0 1 0 6 4 0 2 0 0 0 4 0
6 2 2 0 0 6 0 0 0 4 0 0
1 6 1 0 1 0 0 0 3 0 0 0



, F̂4 =



0 0 0 0 1 1 4 2 5 0 5 4
0 0 0 0 3 1 0 0 2 4 2 1
0 0 0 0 5 6 2 0 0 0 3 3
0 0 0 0 5 2 4 0 1 4 0 6
1 3 5 5 0 0 0 0 0 1 0 3
1 1 6 2 0 0 0 0 6 0 4 0
4 0 2 4 0 0 0 0 0 0 0 4
2 0 0 0 0 0 0 0 0 0 3 0
5 2 0 1 0 6 0 0 0 0 0 4
0 4 0 4 1 0 0 0 0 0 3 0
5 2 3 0 0 4 0 3 0 3 0 0
4 1 3 6 3 0 4 0 4 0 0 0
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U =



1 4 0 2 0 6 4 1 3 6 1 5
2 4 1 5 2 2 2 3 5 1 1 5
6 2 4 1 4 3 0 0 1 6 3 5
5 1 1 1 0 4 0 0 0 3 0 5
3 6 4 1 6 5 2 5 4 4 3 5
1 6 3 5 1 1 5 3 6 3 1 6
4 1 2 4 3 5 0 4 3 4 3 6
1 6 5 4 0 0 2 4 3 3 1 2
3 4 6 4 5 1 5 0 4 4 6 4
4 1 5 6 3 6 4 6 4 1 0 1
0 3 2 0 3 5 0 5 5 6 1 6
3 1 0 4 0 3 4 3 5 5 3 5



, and T =


3 5 6 4
3 0 2 1
1 5 0 0
5 3 1 6

 .

P1 =



4 5 3 3 6 2 3 2 4 4 3 0
5 2 0 1 5 5 4 1 0 1 2 6
3 0 6 3 6 1 3 2 4 5 0 4
3 1 3 3 2 3 0 1 5 1 2 6
6 5 6 2 4 0 4 3 0 6 6 6
2 5 1 3 0 3 1 2 4 5 3 4
3 4 3 0 4 1 1 5 6 2 6 3
2 1 2 1 3 2 5 4 1 2 0 1
4 0 4 5 0 4 6 1 3 4 2 0
4 1 5 1 6 5 2 2 4 5 3 0
3 2 0 2 6 3 6 0 2 3 0 5
0 6 4 6 6 4 3 1 0 0 5 6



, P2 =



3 3 1 6 3 6 5 2 2 0 1 6
3 3 3 6 1 2 4 0 0 0 6 3
1 3 4 6 1 4 5 1 1 4 3 0
6 6 6 0 1 2 1 3 2 6 6 3
3 1 1 1 3 0 0 3 3 4 2 5
6 2 4 2 0 2 1 1 0 1 0 4
5 4 5 1 0 1 0 0 4 4 0 6
2 0 1 3 3 1 0 3 1 4 1 5
2 0 1 2 3 0 4 1 0 0 0 0
0 0 4 6 4 1 4 4 0 5 5 2
1 6 3 6 2 0 0 1 0 5 4 1
6 3 0 3 5 4 6 5 0 2 1 3



,

P3 =



4 0 3 1 2 4 5 2 4 0 1 2
0 3 1 6 5 0 1 3 0 3 1 4
3 1 2 4 6 4 2 3 3 2 1 1
1 6 4 6 1 4 3 3 3 6 5 1
2 5 6 1 3 1 2 6 6 0 4 0
4 0 4 4 1 6 5 6 0 0 0 1
5 1 2 3 2 5 2 5 2 5 3 4
2 3 3 3 6 6 5 1 0 2 1 6
4 0 3 3 6 0 2 0 1 0 4 4
0 3 2 6 0 0 5 2 0 1 5 6
1 1 1 5 4 0 3 1 4 5 0 2
2 4 1 1 0 1 4 6 4 6 2 2



, P4 =



5 2 4 3 4 6 5 6 4 1 0 0
2 5 5 5 3 4 3 5 0 4 5 2
4 5 6 5 0 0 6 6 4 2 6 4
3 5 5 5 4 6 2 3 6 2 4 4
4 3 0 4 3 1 2 1 0 5 0 2
6 4 0 6 1 2 3 0 5 2 2 3
5 3 6 2 2 3 1 6 2 1 0 1
6 5 6 3 1 0 6 2 3 6 1 0
4 0 4 6 0 5 2 3 6 6 4 5
1 4 2 2 5 2 1 6 6 5 5 1
0 5 6 4 0 2 0 1 4 5 4 2
0 2 4 4 2 3 1 0 5 1 2 3



.

Finally, we choose input and output transformations U and T and derive the
above public key.

We now demonstrate the inversion process for the public key. Given the
ciphertext

y =
[
3 2 2 5

]
,

we first randomly select the nonzero vector of auxiliary variables

w =
[
6 3
]
.
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Then evaluating F̃ at w we obtain the STS central map F̃ (·,w):

y1 = 6x21,

y2 = 6x21 + 3x1x2,

y3 = 3x21 + 5x1x2 + 6x22 + 4x1x3 + 2x23,

y4 = 4x21 + 4x1x2 + 2x1x3 + 2x2x3 + 2x1x4 + x2x4 + 6x3x4 + x24.

We then compute yT−1 =
[
5 2 2 3

]
and find the preimage under the above

STS map:
u =

[
3 2 5 6

]
.

Next, we append
u⊗w =

[
4 2 5 6 2 1 1 4

]
to u. Finally we compute the plaintext

x = (u⊕ (u⊗w))U−1 =
[
1 5 4 2 0 3 2 1 5 6 1 4

]
.

We check that indeed P (x) = y.


