
Orthros: A Low-Latency PRF∗

Subhadeep Banik1 and Takanori Isobe2,3,4 and
Fukang Liu2,5 and Kazuhiko Minematsu6 and Kosei Sakamoto2

1 LASEC, École Polytechnique Fédérale de Lausanne, Switzerland.
subhadeep.banik@epfl.ch

2 University of Hyogo, Kobe, Japan. takanori.isobe@ai.u-hyogo.ac.jp,
liufukangs@gmail.com, k.sakamoto0728@gmail.com

3 NICT, Tokyo, Japan
4 PRESTO, Japan Science and Technology Agency, Tokyo, Japan

5 East China Normal University, Shanghai, China
6 NEC, Kawasaki, Japan k-minematsu@nec.com

Abstract. We present Orthros, a 128-bit block pseudorandom function. It
is designed with primary focus on latency of fully unrolled circuits. For this
purpose, we adopt a parallel structure comprising two keyed permutations.
The round function of each permutation is similar to Midori, a low-energy
block cipher, however we thoroughly revise it to reduce latency, and
introduce different rounds to significantly improve cryptographic strength
in a small number of rounds. We provide a comprehensive, dedicated
security analysis. For hardware implementation, Orthros achieves the
lowest latency among the state-of-the-art low-latency primitives. For
example, using the STM 90nm library, Orthros achieves a minimum
latency of around 2.4 ns, while other constructions like PRINCE, Midori-
128 and QARMA9-128-σ0 achieve 2.56 ns, 4.10 ns, 4.38 ns respectively.

Keywords: Pseudorandom Function, Low Latency, Lightweight Cryp-
tography, Sum of Permutations

1 Introduction

1.1 Low-Latency Encryption

Lightweight cryptography is a subfield of symmetric-key cryptography to study
cryptographic core functions usable under strong resource constraints. Hard-
ware circuit size is a typical metric, and there are numerous proposals such as
GIFT [BPP+17], KATAN [DDK09], LED [GPPR11], Piccolo [SIH+11], PRESENT [BKL+07],
and SIMON [BSS+13] particularly perform well on this metric. Some other met-
rics exist, and among them, latency has been increasingly receiving attention.
Latency affects the response time of encryption or authentication, and a small
latency is highly desirable for applications that require instant response, such

∗This is the revised version of the paper published from ToSC 2021 issue 1 [BIL+21].
We revised some typos in the formula of the S-box in Sect. 3.3. Other contents are the
same as the original version.

as encryption of memory bus, storage systems, automotive communication and
industrial control network. Gaining throughput is generally possible with common
signal processing techniques (pipelining and parallel processing), while achieving
a low latency remains a challenge [KNR12].

To our knowledge, the first lightweight block cipher with explicit focus on
latency is PRINCE proposed by Borghoff et al. [BCG+12]. PRINCE is a 64-bit
block cipher comprising multiple round functions to significantly reduce the
number of rounds while keeping a moderate complexity of each round. Another
proposal is QARMA proposed by Avanzi [Ava17], which is a family of low-latency
tweakable block ciphers (TBCs) [LRW02]. It adopts the design strategy of
PRINCE. Mantis [BJK+16] is another family of low-latency TBCs. Midori is a
family of block ciphers proposed by Banik et al. [BBI+15]. It primary aims to
reduce energy, however its latency is also quite small.

The current work on low-latency encryption focused on invertible primitives,
i.e., (tweakable) block ciphers. We started with a question whether this is an
exclusive approach – namely, whether we can do better by not requiring an
invertible primitive. Motivated by this question, we initiated a study on designing
low-latency (non-invertible) pseudorandom function (PRF) consisting of parallel
keyed permutations. We study a sum of two block ciphers denoted as C =
EK(M)⊕ E′K(M), where E,E′ : K ×M→M are different n-bit block ciphers
with a key space K and a message space M = {0, 1}n. Since E and E′ can
be computed in parallel, the critical path length of a fully unrolled circuit is a
maximum of them instead of the sum. The resulting function has n-bit block and
is not invertible in general.

The sum of permutations is indeed not new and it has been adopted in the
designs of RIPEMD-160 [DBP96] and Grøstl [GKM+09]. In addition, the sum
of permutations has also been extensively studied in the context of provable
security (see Section 3.1). In particular, the result of Dai et al. [DHT17] suggests
that it can ideally achieve n-bit PRF security, i.e., indistinguishable from a truly
random function with O(2n) complexity. However this requires that EK and E′K
behave as computationally-secure block ciphers, more formally, (computationally-
)independent pseudorandom permutations (PRPs). Instead of requiring this, we
explore the setting that E and E′ are rather weak as a stand-alone block cipher,
using a small number of very simple rounds. The point is that the outputs of
E and E′ are never given in clear, hence we can hope that both can cover each
weakness, and consequently the sum of them can tolerate dedicated attacks as a
PRF.

1.2 Our Design

Based on the aforementioned considerations, we present Orthros, which is a
128-bit block pseudorandom function (PRF) with a 128-bit key. The overall
structure of Orthros is a sum of two SPN-type keyed permutations called Branch1
and Branch2. The round functions of Orthros are based on Midori. It is already
suitable to low-latency ciphers, however we performed a thorough study on it

and showed that we can further improve latency by adopting new permutation
layers and S-boxes.

In particular, we propose a hybrid use of bit and nibble permutations i.e.,
a bit permutation is used for some rounds and a nibble permutation for the
rest, while Midori-128 [BBI+15] uses a single linear layer including both of a bit
permutation and a nibble permutation. Consequently, each branch of Orthros
achieves the 2.5-round full diffusion and attains 64 active S-boxes over 10 rounds,
while Midori-128 requires 3 rounds for the full diffusion and 13 rounds for 64
active S-boxes. In addition, the whole Orthros has more than 64 active S-boxes
over only 5 rounds. Importantly, this change of linear layers does not require any
additional hardware cost in an unrolled implementation.

For PRF, we do not need an involutory S-box unlike Midori and QARMA.
This allows us to develop a new 4-bit S-box that offers about twice smaller delay
than that of Midori-128 [BBI+15] (see Table 8 of Page 14).

Since we do not rely on provable security of Sum of Permutations, we carried
out an extensive security analysis on not only the components of Branch1 and
Branch2 but also the whole Orthros.

Motivation for using 128-bit PRF. The lack of invertibility limits applications.
For example the classical CBC and XTS (a storage encryption mode) [Dwo10]
require the decryption routine of a block cipher. However, many popular modes,
e.g., CTR, CMAC [Dwo05] and GCM [NIS07], do not require the decryption routine
(this property is also called inverse-freeness). For these modes Orthros can be used
as the cryptographic core. For examples of applications that require low latency,
ARM’s pointer authentication code (PAC) uses QARMA [Qua]. PAC is a MAC
for the pointer value and the memory context and it is derived by truncating the
output of QARMA in an ECB-like mode. The length of PAC ranges from 11 to 31
bits or 3 to 23 bits, depending on a processor feature [Qua]. The PAC is inserted
into a reserved space of the original 64-bit pointer containing the address. This
mode is inverse-free, even though QARMA is an invertible primitive.

As another example we consider memory protection schemes based on (a
MAC variant of) Merkle Tree. They often use a black-box PRF as a MAC
function (e.g., [HJ06]), and a concrete memory encryption scheme inside Intel’s
SGX [Gue16] adopts inverse-free modes, namely variants of GMAC and GCM. A
notable benefit of using a dedicated PRF instead of a PRP is that it can provide
a stronger, beyond-birthday-bound (BBB) security depending on the mode. As
observed by [MN17b], by changing the component of GCM or CTR from a PRP
to a PRF, the provable security immediately improves from n/2 to n bits. In such
a case, there is a strong incentive to use a PRF from the security perspective.

If we compare our proposal with PRINCE, the larger input and output extend
possible applications. In fact, the first example of PAC requires input larger
than 64 bits while not exceeding 128 bits. This excludes the application of
PRINCE [Qua, Page 6 (Cryptography)] and makes Orthros usable. In the latter
example of tree-based memory protection, a GCM-like authenticated encryption
mode with PRINCE will only have 32-bit security while Orthros ensures 128-bit
security as described above. We note that the output size is also crucial for

128-bit security in this case, since we need 128 bits of pseudorandom sequence to
mask 128-bit universal hash function output.

Implementations. We implemented Orthros in four different standard cell libraries
along with 2 other constructions Midori-128 and QARMA9-128-σ0 that have a
block size of 128 bits and offer at least 128 bits of security. Across all libraries,
Orthros performs around 40 % better than the above designs with respect to
a) the absolute delay between input/output ports and also b) the delay when
the circuits are restricted to a certain area/power budget. We even found that
Orthros performs marginally better than PRINCE (which has a blocksize of 64
bits and offers (127 - d) bits of security give 2d plaintext /ciphertext pairs) with
respect to the total circuit delay across all libraries. All our implementations are
publicly available7.

Related Work. Mennink and Neves [MN17b] proposed a generalized EDMD
mode [MN17a] and an instantiation of it by a pair of reduced-round block ciphers,
E and E′. The resulting scheme is a PRF of nearly n-bit security [MN17a] if E and
E′ are PRPs. In [MN17b] they proposed an instantiation based on reduced-round
AES, called AES-PRF. It has been analyzed by Derbez et al. [DIS+18]. Although
a conceptual similarity to us, the generalized EDMD is not suitable for low-
latency PRF because it is serial. Besides, they did not consider to use dedicated
round functions. In a broader context, reduced-round version of a standard block
cipher has been used to build a wide variety of cryptographic functions. Most
notably for AES, there are examples such as a MAC function [DR05b,DR05a],
a stream cipher [Bir07], a hash function [GM16], an authenticated encryption
scheme [HKR15], and a tweakable block cipher [BGGS20] to name a few.

From the provable security perspective, the n-bit security of sum of two PRPs
has been proved [DHT17] as described. Chen et al. [CLM19] studied the sum of
Even-Mansour ciphers and proved its tight security of 2n/3-bit.

2 Specification

Orthros is a 128-bit pseudorandom function (PRF) with a 128-bit key, the overview
of which is illustrated in Fig 1. On the whole, Orthros consists of two SPN-based
128-bit keyed permutations called Branch1 and Branch2, each composed of an
S-layer, P-layer, the round-key addition and the constant addition. The S-layer
is the parallel application of a 4-bit S-box and the P-layer is a linear transform
(bit or nibble permutation, followed by a matrix multiplication). Moreover,
two key scheduling functions called KSF1 and KSF2 based on two different bit
permutations are exploited in Branch1 and Branch2, respectively.

In Orthros, a 128-bit plaintext M8 is first copied to two 128-bit internal states
X1 and X2. Then X1 and X2 are respectively given to Branch1 and Branch2.

7https://github.com/subhadeep-banik/orthros
8For convenience, we may call an input (an output) of Orthros a plaintext (a

ciphertext), although it is not a block cipher.

https://github.com/subhadeep-banik/orthros

The 128-bit ciphertext C is an XOR of the outputs of Branch1 and Branch2. More
details will be given in the following.

Branch1 Branch2

Plaintext M

Ciphertext C

128 bit

128 bit

Key K

128 bit 128 bit

Key K

Fig. 1: Overview of Orthros.

2.1 Key Scheduling Function

Orthros adopts two bit-permutation-based key scheduling functions called KSF1
and KSF2, which are used to generate RK1

r and RK2
r (0 ≤ r ≤ 12) from the same

128-bit key K for Branch1 and Branch2, respectively. The whitening keys are
RK1

0 and RK2
0 , which will be first XORed with X1 and X2, respectively. RK1

r

and RK2
r (1 ≤ r ≤ 12) are the round keys used in the r-th round of Branch1 and

Branch2, respectively. The algorithms of KSF1 and KSF2 are shown in Fig 2. The
bit-permutation Pbk1 and Pbk2 used in KSF1 and KSF2 are shown in Table 3.

In Fig 2, when K and RKj
r are expressed in bit level, we have RKj

r =
(rkj

r,0, rk
j
r,1 · · · rk

j
r,127) and K = (k0, k1 · · · k127), where rkj

r,i, ki ∈ F2 (0 ≤ i ≤
127, j ∈ {1, 2}). In addition, rkj

r,0 and k0 are the most significant bit of RKj
r and

K, respectively.

2.2 Round Function of Branch1 and Branch2

In this section, we present the details of Branch1 and Branch2, each of which
is a 128-bit keyed permutation consisting of 12 rounds. The round keys (and

Algorithm KSF1(K)

1. (k0 ‖ k1 ‖ · · · ‖ k127)← K
2. for r = 0 to 12 do
3. (rk1

r,0 ‖ rk1
r,1 ‖ · · · ‖ rk1

r,127)← RK1
r

4. if r = 0 then
5. for i = 0 to 127 do
6. rk1

0,Pbk1(i) ← ki

7. end for
8. else
9. rk1

r,Pbk1(i) ← rk1
r−1,i

10. end if
11. end for
12. for r = 0 to 12 do
13. RK1

r ← (rk1
r,0 ‖ rk1

r,1 ‖ · · · ‖ rk1
r,127)

14. end for
15. return (RK1

0 , RK1
1 , · · ·RK1

12)

Algorithm KSF2(K)

1. (k0 ‖ k1 ‖ · · · ‖ k127)← K
2. for r = 0 to 12 do
3. (rk2

r,0 ‖ rk2
r,1 ‖ · · · ‖ rk2

r,127)← RK2
r

4. if r = 0 then
5. for i = 0 to 127 do
6. rk2

0,Pbk2(i) ← ki

7. end for
8. else
9. rk2

r,Pbk2(i) ← rk2
r−1,i

10. end if
11. end for
12. for r = 0 to 12 do
13. RK2

r ← (rk2
r,0 ‖ rk2

r,1 ‖ · · · ‖ rk2
r,127)

14. end for
15. return (RK2

0 , RK2
1 , · · ·RK2

12)

Fig. 2: Algorithms of KSF1 and KSF2.

whitening keys) (RK1
r , RK2

r) are first generated by KSF1 and KSF2. After adding
the whitening keys, the 128-bit input will be processed via Branch1 and Branch2
as follows.

For the first 4 rounds of Branch1 and Branch2, the round function R is
described as

R = AddConstant ◦ AddRoundKey ◦ matrixMul ◦ bit-permutation ◦ S-box,

where AddConstant and AddRoundKey represent the constant addition operation
and the round key addition operation, respectively.

For the following 7 rounds, the round function R′ is described as

R′ = AddConstant◦AddRoundKey◦matrixMul◦nibble-permutation◦S-box.

The sequence of operations in the last round is AddConstant ◦AddRoundKey ◦
S-box. As described, the 128-bit outputs of Branch1 and Branch2 are XORed
to generate the 128-bit ciphertext. Each component in the round function of
Branch1 and Branch2 is described as follows.

S-box (S-box). A 4-bit S-box will be applied to each nibbles in parallel for
Branch1 and Branch2. The specification of the 4-bit S-box is displayed in
Table 1.

Table 1: S-box in Branch1 and Branch2.
x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) 1 0 2 4 3 8 6 d 9 a b e f c 7 5

Permutation (bit-permutation, nibble-permutation). For the first 4 rounds
of Branch1 and Branch2, Pbr1 and Pbr2 will be used respectively. From the

5th round to the 11th round, the nibble permutations Pn1 and Pn2 will be
adopted in each branch respectively. The details of the permutation PbrN

and PnN , where N ∈ {1, 2}, are shown in Table 4 and Table 5, respectively.
Matrix Multiplication (matrixMul). Let Mb be 4 × 4 matrix over nibbles

defined as

Mb =

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 .

Four nibbles (a0, a1, a2, a3) will be updated as follows:

(a0, a1, a2, a3)T ←Mb · (a0, a1, a2, a3)T ,

where (a0, a1, a2, a3)T denotes a transposition. Specifically,

a0 = a1 ⊕ a2 ⊕ a3,

a1 = a0 ⊕ a2 ⊕ a3,

a2 = a0 ⊕ a1 ⊕ a3,

a3 = a0 ⊕ a1 ⊕ a2.

AddRoundKey (AddRoundKey). In the r-th round, the internal states in Branch1
and Branch2 will be xored with the corresponding round key RK1

r and RK2
r ,

respectively.
AddConstant (AddConstant). The internal state will be xored with the cor-

responding round constant in each branch. The specification of the round
constants is displayed in Table 2, where RC1

r and RC2
r represent the round

constant used in the r-th round of Branch1 and Branch2, respectively.

S S

Mb Mb Mb Mb Mb Mb Mb Mb

Permutation (Pbr1, Pbr2)

4 bit

1 bit

X
1,2

0
X

1,2

1
X

1,2

2
X

1,2

3
X

1,2

4
X

1,2

5
X

1,2

6
X

1,2

7
X

1,2

8
X

1,2

9
X

1,2

10
X

1,2

11
X

1,2

12
X

1,2

13
X

1,2

14
X

1,2

15
X

1,2

16
X

1,2

17
X

1,2

18
X

1,2

19
X

1,2

20
X

1,2

21
X

1,2

22
X

1,2

23
X

1,2

24
X

1,2

25
X

1,2

26
X

1,2

27
X

1,2

28
X

1,2

29
X

1,2

30
X

1,2

31

RK1,2

r

4 bit

RC1,2

r

Fig. 3: The round function of Branch1 and Branch2 in the first 4 rounds.

Table 2: Specification of the round constants RC1
r and RC2

r .
Branch1

Round Number r RC1
r

1 0xa0ac9329ac4bc991c2313219c193ca81
2 0x4420cb8b49cc9ba882c104ba4a22c918
3 0x3c0b2031431044cc31401a4129a108b8
4 0x33cc10a4043289941183323849c22304
5 0xaa82c1118b929aca0409424088ba2814
6 0x2081380c9c290882aacb223114a44aa4
7 0x981c0cb22144084bab32c99a2309423a
8 0xb24119bc33c18b2938900c848a2b242b
9 0x3491a301a430822a1933241099c9b039
10 0x301248a0939b922c380330318aac40ba
11 0x440a904904b141492a048b8a9b21b3c4
12 0x92c81b00089982982a44102332909c20

Branch2
Round Number r RC2

r

1 0xa34a8ca0a88b04a1982b9381b2bacac8
2 0xca98490c308b9c0c99308bc988288c2a
3 0x403a2311bccb13a4ab39a8c42ba93924
4 0x48913c9c0c1808ca4894c19b399b1220
5 0x32b3218430109ca4a31ca91239b8c838
6 0x10bcc304a1b813b829c90b8bb1498bb3
7 0xa91c233a40c233b34a028990002b4093
8 0x8a2931ab0413bc2bb89a13abbc4b048b
9 0x9b1b8bc390a342204809124a9a180a32
10 0xa4ac29b88283c913cb4492c491aa100c
11 0xcab089094810cb043201a20c0acc09b1
12 0x4bba3b8984cb028c3839089a4cccccc1

S S

Mb Mb Mb Mb Mb Mb Mb Mb

Permutation (Pn1, Pn2)

RK1,2

r

4 bit

4 bit

4 bit

X
1,2

0
X

1,2

1
X

1,2

2
X

1,2

3
X

1,2

4
X

1,2

5
X

1,2

6
X

1,2

7
X

1,2

8
X

1,2

9
X

1,2

10
X

1,2

11
X

1,2

12
X

1,2

13
X

1,2

14
X

1,2

15
X

1,2

16
X

1,2

17
X

1,2

18
X

1,2

19
X

1,2

20
X

1,2

21
X

1,2

22
X

1,2

23
X

1,2

24
X

1,2

25
X

1,2

26
X

1,2

27
X

1,2

28
X

1,2

29
X

1,2

30
X

1,2

31

RC1,2

r

Fig. 4: The round function of Branch1 and Branch2 in the last 8 rounds. The
nibble permutation and the matrix multiplication in the last round will be
omitted.

Round Constants. In a similar manner to PRINCE, the round constants are derived
from the fraction part of π = 3.1415926.... Specifically, if the fraction part of
π = 3.1415926... is expressed in binary string, it will be 00010100000101011001....
By shifting left the binary string by 3 bits, we obtain a binary string 1010 0000
1010 1100 1..., which corresponds to a nibble string 0xa, 0x0, 0xa, 0xc, and so
on.

Illustration of Round Function. The illustration of the round function in the first
4 rounds of Branch1 and Branch2 is shown in Fig 3. The illustration of the round
function in the last 8 rounds is shown in Fig 4.

Pseudocode. The algorithms of Branch1 and Branch2 are shown in Fig 5. In
the pseudocode, when the 128-bit internal state is expressed in bits, we have
X = (x0, x1, · · ·x127) and x0 is the most significant bit of X. When the 128-bit
internal state is expressed in nibbles, we have X = (X0, X1, . . . , X31) and X0 is
the most significant nibble of X. For the constant addition, the 128-bit round
constant RCj

r is expressed in nibbles as RCj
r = (RCj

r,0, RC
j
r,1, · · · , RC

j
r,31), for

1 ≤ r ≤ 12 and 1 ≤ j ≤ 2, where j denotes the index of Branch. Similarly for
the round-key addition, the 128-bit round key RKj

r is expressed in nibbles as
RKj

r = (RKj
r,0, RK

j
r,1, . . . , RK

j
r,31), for 1 ≤ r ≤ 12 and 1 ≤ j ≤ 2.

Processing. The 128-bit ciphertext C is generated by XORing the output of
Branch1 and Branch2. The processing algorithm of Orthros is shown in Fig 6. We
provide test vectors of Orthros in Appendix E.

Claimed Security. Orthros claims single-key security, and does not claim any
security in related-key and known/chosen-key settings.

3 Design Rationale

3.1 General Construction

As described in introduction, the overall structure of Orthros is a sum of two
keyed permutations. This structure and its variant has been extensively studied
in the literature [Luc00,BI99,Pat08,DHT17,CLM19, Iwa06]. In particular, if two
keyed permutations of Orthros (Branch1 and Branch2) were independent PRPs,
we could claim n-bit provable security – more specifically the PRF advantage of
(q/2n)1.5 +2ε(q, t+O(q)) for n = 128 and q adaptive queries and time complexity
t, where ε(q, t) denotes the PRP advantages of Branch1 and Branch2 with q queries
and t time [DHT17]. However, this means that either Branch1 or Branch2 could be
already usable as a low-latency PRP, implying that they should have a sufficient
amount of security margins against known cryptanalysis. Since each Branch never
gives its outputs in clear, we expect that a pair of weak permutations can suffice
to have a desired, n-bit secure PRF. Generally this approach is described as
“prove-then-prune” [HKR15]. This means that the provable security reduction
does not hold anymore, and an implication of the security bound is more or less

Algorithm BranchN(K,X)

1. (RKN
0 ‖RKN

1 ‖ . . . ‖RKN
12)← KSFN(K)

2. X ← X ⊕RKN
0

3. (X0 ‖X1 ‖ . . . ‖X31)← X
4. for r = 1 to 11 do
5. (RCN

r,0 ‖RCN
r,1 ‖ . . . ‖RCN

r,31)← RCN
r

6. (RKN
r,0 ‖RKN

r,1 ‖ . . . ‖RKN
r,31)← RKN

r

7. for i = 0 to 31 do
8. Xi ← S(Xi)
9. end for

10. if r < 5 then
11. for i = 0 to 31 do
12. (x4i ‖x4i+1 ‖x4i+2 ‖x4i+3)← Xi

13. end for
14. (x′0, x′1, . . . , x′127)← (x0, x1, . . . , x127)
15. for i = 0 to 127 do
16. xPbrN (i) ← x′i
17. end for
18. for i = 0 to 31 do
19. Xi ← (x4i ‖x4i+1 ‖x4i+2 ‖x4i+3)
20. end for
21. else
22. (X ′0, X ′1, . . . , X ′31)← (X0, X1, . . . , X31)
23. for i = 0 to 31 do
24. XPnN (i) ← X ′i
25. end for
26. end if
27. for i = 0 to 7 do
28. (X4i, X4i+1, X4i+2, X4i+3)T ←Mb · (X4i, X4i+1, X4i+2, X4i+3)T

29. end for
30. for i = 0 to 31 do
31. Xi ← Xi ⊕RKN

r,i ⊕RCN
r,i

32. end for
33. end for
34. for i = 0 to 31 do
35. Xi ← S(Xi)
36. end for
37. (RCN

12,0 ‖RCN
12,1 ‖ . . . ‖RCN

12,31)← RCN
12

38. (RKN
12,0 ‖RKN

12,1 ‖ . . . ‖RKN
12,31)← RKN

12
39. for i = 0 to 31 do
40. Xi ← Xi ⊕RKN

12,i ⊕RCN
12,i

41. end for
42. Y ← (X0 ‖X1 ‖ . . . ‖X31)
43. return Y

Fig. 5: Algorithms of Branch1 and Branch2, where N ∈ {1, 2}.

Algorithm Orthros(K,M)

1. X1 ←M , X2 ←M
2. Y 1 ← Branch1(K,X1), Y 2 ← Branch2(K,X2)
3. C ← Y 1 ⊕ Y 2

4. return C

Fig. 6: Processing algorithm of Orthros.

Table 3: Bit permutation PbkN for key scheduling KSFN , where N ∈ {1, 2}.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Pbk1(x) 0 53 87 73 22 95 99 48 61 36 108 1 24 67 119 93
Pbk2(x) 76 30 53 35 31 46 2 79 11 125 110 87 39 91 14 101

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Pbk1(x) 54 103 69 112 16 111 94 122 31 66 33 83 47 3 65 62
Pbk2(x) 97 118 36 48 29 80 57 115 49 18 74 85 61 82 105 126

x 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Pbk1(x) 123 9 101 19 5 58 89 37 38 51 28 106 82 76 121 4
Pbk2(x) 70 12 47 111 51 17 66 1 60 96 116 71 81 114 104 15

x 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
Pbk1(x) 70 7 42 92 104 80 45 75 114 17 2 97 46 107 63 18
Pbk2(x) 42 124 100 4 113 44 75 89 23 0 84 107 32 26 88 8

x 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
Pbk1(x) 109 15 127 43 13 59 29 125 77 11 50 30 12 90 118 64
Pbk2(x) 69 121 38 94 37 86 54 21 62 123 41 10 16 95 117 65

x 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
Pbk1(x) 20 35 57 10 124 56 68 91 116 21 84 98 52 81 126 34
Pbk2(x) 45 50 72 20 109 58 7 67 108 28 3 55 92 103 24 5

x 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
Pbk1(x) 105 27 120 74 6 85 40 72 113 41 23 49 79 55 102 8
Pbk2(x) 77 9 27 102 122 6 106 22 99 34 90 56 43 83 120 64

x 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
Pbk1(x) 117 39 88 26 25 110 14 32 115 100 86 71 78 44 96 60
Pbk2(x) 78 59 119 93 40 98 52 68 112 33 63 25 19 73 127 13

Table 4: Bit permutation PbrN for round function BranchN , where N ∈ {1, 2}.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Pbr1(x) 6 46 62 126 70 52 28 14 36 125 72 83 106 95 4 35
Pbr2(x) 20 122 74 62 119 35 15 66 9 85 32 117 21 83 127 106

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Pbr1(x) 25 41 10 76 87 74 120 42 88 21 11 67 64 38 112 50
Pbr2(x) 11 98 115 59 71 90 56 26 2 44 103 121 114 107 68 16

x 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Pbr1(x) 85 109 24 65 99 0 49 37 8 66 114 47 127 100 56 40
Pbr2(x) 84 1 102 33 80 52 76 36 27 94 37 55 82 12 112 64

x 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
Pbr1(x) 13 117 78 86 92 58 124 101 55 89 97 9 18 116 59 15
Pbr2(x) 105 14 91 17 108 124 6 93 29 86 123 79 72 53 19 99

x 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
Pbr1(x) 20 45 75 2 77 27 1 60 115 107 26 69 119 3 84 51
Pbr2(x) 50 18 81 73 67 88 4 61 111 49 24 45 57 78 100 22

x 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
Pbr1(x) 123 110 31 82 113 53 81 102 63 118 93 12 30 94 108 32
Pbr2(x) 110 47 116 54 60 70 97 39 3 41 48 96 23 42 113 87

x 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
Pbr1(x) 5 111 29 43 91 19 79 33 73 44 98 48 22 61 68 105
Pbr2(x) 126 13 31 40 51 25 65 125 8 101 118 28 38 89 5 104

x 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
Pbr1(x) 34 71 54 104 17 57 80 103 96 121 23 39 122 90 7 16
Pbr2(x) 109 120 69 43 7 77 58 34 10 63 30 95 75 46 0 92

Table 5: Nibble permutation PnN for round function BranchN , where N ∈ {1, 2}.
x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pn1(x) 10 27 5 1 30 23 16 13 21 31 6 14 0 25 11 18
Pn2(x) 26 13 7 11 29 0 17 21 23 5 18 25 12 10 28 2
x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Pn1(x) 15 28 19 24 7 8 22 3 4 29 9 2 26 20 12 17
Pn2(x) 14 19 24 22 1 8 4 31 15 6 27 9 16 30 20 3

fuzzy and depends on the scheme. In our analysis we did not find a full-round
attack against Branch1 and Branch2 as a PRP, however they have rather slim
margins as a standalone block cipher. Therefore, we bolster our security claim
with an extensive security analysis on the whole construction.

We note that realizing Branch1 and Branch2 as Even-Mansour ciphers [EM93]
can reduce the circuit size thanks to the absence of key schedule. However, it
can provide 2n/3-bit PRF security at best, as proved by Chen et al. [CLM19].
Instead, we adopt bit permutation-based key scheduling functions for its hardware
friendliness.

In order to investigate the initial security of the sum of permutations from
the perspective of cryptanalysis, we compare in Appendix A the differential and
linear behaviour for two toy ciphers adopting single branch and double branches,
respectively. However, it should be emphasized that the security of Orthros never
relies on our experiments on the toy ciphers but rather a comprehensive study of
Orthros, as will be detailed in Section 4.

3.2 Linear Layer

As underlying matrices in the linear layer, we adopt 4× 4 almost MDS binary
matrix used in Midori [BBI+15], whose delay is much smaller than MDS matrices.
However, as discussed in [BBI+15], its diffusion speed is slower and the lower
bounds of the number of active S-boxes in each round is smaller than those of
ciphers employing MDS matrices due to its lower branch number. To improve
the diffusion speed and to increase active S-boxes in each round, we utilize bit
and nibble permutations in a hybrid manner. We will see that this enables to
guarantee security with a relatively small number of rounds.

Midori-128 [BBI+15] also adopted a bit and a nibble permutations, however,
our design is more efficient in term of the diffusion speed and the number of active
S-boxes while keeping the same hardware cost in an unrolled implementation.
Specifically, we adopt two different linear layers that consists of a bit permutation
and a nibble permutation, i.e., a bit permutation is used for some rounds and a
nibble permutation for the rest, while Midori-128 [BBI+15] uses a single linear
layer including both of a bit permutation and a nibble permutation. Importantly,
this change of linear layers does not require any additional hardware cost in an
unrolled implementation, as observed by [BCG+12].

Bit Permutation vs Nibble Permutation. To see the advantage of our
hybrid use of bit and nibble permutations over the consistent use of a bit or a
nibble permutation, we compare the diffusion effect and the lower bound of the
number of active S-boxes of two different 128-bit block SPN structures, which
we call SPN-B and SPN-N. Here, SPN-B (SPN-N) consistently uses a bit (nibble)
permutation. Both use the same 4-bit S-box and the matrix as those used in a
branch of Orthros. In addition, we used the full-diffusion property of S-box when
evaluating the diffusion effect.

Diffusion. To evaluate the minimum number of rounds that achieves the full
diffusion for each SPN-B and SPN-N, we look into the propagation of one active
input bit and count the upper bounds of the number of active bits through each
operation. Here, we only need to consider the number of active bits after S-box
and matrixMul as the remaining operations do not affect its value. The upper
bounds of the number of active bits after each operation over some rounds are
shown in Table 6.

Table 6: The upper bound of the number of active bits after each operation.

Round Operation Structures

SPN-B SPN-N

- Input 1 1

1 S-box 4 4
matrixMul 12 12

2 S-box 48 12
matrixMul 120 36

3 S-box 128 36
matrixMul 128 100

4 S-box 128 100
matrixMul 128 128

According to Table 6, SPN-B and SPN-N require at least 2.5 rounds (2 rounds
plus S-box) and 4 rounds, respectively, i.e., the optimal numbers of rounds for the
full diffusion of SPN-B and SPN-N are estimated as 2.5 and 4 rounds, respectively.
We conclude that there is a clear gap between bit permutations and nibble
permutations in terms of the diffusion. Note that a class of bit permutations
covers all nibble permutations. Thus, to achieve the 2.5-round full diffusion, we
need to find a class of bit permutations that are not included in a class of nibble
permutations.

Active S-box. Mixed Integer Linear Programming (MILP) is used to obtain the
lower bound of the number of active S-boxes in each round. Unfortunately, it is
computationally infeasible to estimate the lower bound of the number of active S-
boxes of SPN-B, except for a very small number of rounds, due to the large search
space of 128-bit bitwise differential and linear trails. This problem about the use
of bit permutation was also pointed out by the designers of QARMA-128 [Ava17].
As a consequence, QARMA-128 does not claim a lower bound of active S-boxes.
Indeed, it was infeasible to compute a lower bound of the number of active
S-boxes for more than 5 rounds for SPN-B, even with a computer equipped with
48 cores and 256 GB RAM. Therefore, SPN-B can only guarantee a very small
number of active S-boxes for a moderately large number of rounds (say 10), since
we have to combine the bounds obtained for a small number of rounds, which

generally yields a loose bound. For example, the lower bound for 8 rounds is
obtained by the sum of the bounds for 4 rounds. In our experiment, the best
lower bound for 4 rounds is 16, therefore the obtained bound for 8 rounds is only
32.

On the other hand, for SPN-N, it is feasible to obtain a tight lower bound of
the number of active S-boxes up to 8 rounds, using the aforementioned 48-core
computer. The evaluation of one candidate requires about 2 days by the same
computer. As a result, we found a class of nibble permutations that attain 60
active S-boxes over 8 rounds. We will explain the details in the following section.

Conclusion. Based on the above discussions, we conclude that a structure em-
ploying a single permutation cannot achieve a fast full diffusion and a guaranteed
large number of active S-boxes simultaneously. Hence, we decided to use a bit
permutation for the first few rounds, and use a nibble permutation for the rest of
the rounds. Consequently, Orthros reaches the full diffusion after first 2.5 rounds
and guarantees more than 64 active S-boxes over 10 rounds.

Finding Optimal Bit Permutations for Diffusion. We take a two-step
approach to find a class of bit permutations that achieves 2.5-round full diffusion
for SPN-B, which turns out to be optimal. Let S denote the 128-bit internal state
S of SPN-B. It is also viewed as a 4× 8 two-dimensional nibble array:

S =

S0 S4 S8 S12 S16 S20 S24 S28
S1 S5 S9 S13 S17 S21 S25 S29
S2 S6 S10 S14 S18 S22 S26 S30
S3 S7 S11 S15 S19 S23 S27 S31

 ,
where Si (0 ≤ i ≤ 31) is a 4-bit value defined as

Si = [s4i, s4i+1, s4i+2, s4i+3]T .

Note that S can also be viewed as a 16 × 8 two-dimensional binary array by
seeing each column of S as a 16-bit sequence. Hereafter, bit-cell means a binary
cell in the 16× 8 array and nibble-cell means a nibble cell in the 4× 8 array, that
is, Si.

We first try to reduce the search space of target 128-bit permutations as
it is computationally infeasible to test all possible 2716.16(= 128!) candidates.
Specifically, we focus on a class satisfying Condition 1 to efficiently find the class
of bit permutations having the 2.5 rounds full diffusion property.

Condition 1 For any nibble-cell Si (0 ≤ i ≤ 31), the corresponding 4 bits,
s4i, s4i+1, s4i+2, s4i+3, are mapped to the bit-cells in different columns after ap-
plying the bit permutation.

A detailed description of Condition 1 can be seen in Appendix B.1.
Condition 1 can be justified as follows. If a bit permutation satisfies Condi-

tion 1, for the 4 output bits of each S-box, they will be mapped to 4 different

groups of inputs to the binary matrix. Observe that in the MatrixMul operation,
the binary matrix Mb is independently applied to 8 different groups of inputs,
each of which consists of 4 consecutive nibbles. This is expected to be a key
feature for the fast diffusion since 1 input active bit is expanded to 4 active bits
via the S-box, and the 4 active bits are subsequently expanded to 12 active bits
after the bit permutation and MatrixMul operations. This matches the upper
bound of the number of active bits after one-round permutation, as shown in
Table 6.

In the class of the bit permutations satisfying Condition 1, we obtain the
following sufficient condition for the 2.5-round full diffusion. It should be empha-
sized that for each active bit in the nibble-cell Si (0 ≤ i ≤ 31), after applying the
S-box and the bit permutation satisfying Condition 1, there will exist 4 different
groups of inputs to the binary matrix, each of which will contain exactly one
active nibble. Therefore, after matrixMul there will be 12 active nibbles. We add
the following condition on these 12 active nibbles.

Condition 2 After applying the bit permutation, in each column of the 4 × 8
array, there exist at least 2 nibble-cells containing the bits coming from those in
the active 12 nibbles.

The proof that Condition 2 is sufficient for the 2.5 round full diffusion in the
class of the bit permutations satisfying Condition 1 is described in Appendix B.2.

Bit permutations of Table 4 used in Branch1 and Branch2 satisfy both Condi-
tion 1 and 2, respectively, i.e. attain 2.5-round full diffusion.

Finding Good Nibble Permutation for Active S-boxes. As in the case
of bit permutations, we take the following two-step approach to find nibble
permutations that can activate as many S-boxes as possible over a certain
number of rounds, which is expected to outperform that used in Midori-128. To
explain our approach, we use the same 4× 8 array to express the 128-bit state as
above.

In the first step, we reduce the search space by focusing on the class of
nibble permutations satisfying Condition 3 since it is computationally infeasible
to estimate the lower bound of the number of active S-boxes for all possible
2117.66(= 32!) permutations. Condition 3 is chosen to achieve fast diffusion for
differences and linear masks.

Condition 3 For each column (S4i, S4i+1, S4i+2, S4i+3) in the 4× 8 array, after
applying the nibble permutation, they will be mapped to four nibble-cells in different
columns.

In the second step, we first randomly choose 7,000 nibble permutations
satisfying Condition 3. Then, we compute the lower bound of the number of
active S-boxes after 5, 6, 7 and 8 rounds for these nibble permutations. To
efficiently find good permutations among these nibble permutations, we first find
a class of nibble permutations that have the best lower bound after 5 rounds.

Then, we focus on this class and evaluate the lower bound of the number of
active S-boxes after 6 rounds, which will be repeated until the 8th round.

As a result, we find three nibble permutations that can achieve 60 active
S-boxes over 8 rounds. Table 7 shows the comparison of the lower bound of
the number of active S-boxes for Midori-128 and our structure. Compared with
Midori-128, our nibble permutations guarantee a much larger number of active
S-boxes after 6 rounds, about a factor of 1.5.

Table 7: Comparison of lower bounds of the number of active S-boxes.
Target 4 5 6 7 8

Midori-128 [BBI+15] 16 20 30 35 38
Our nibble permutation 16 25 36 51 60

Hybrid Use of Bit and Nibble Permutations. Consequently, we obtain
a set of bit and nibble permutations. For Orthros, we pick a bit and nibble
permutations from the set, and use the bit permutation for the first 4 rounds, in
order to achieve a fast full diffusion. Specifically, it achieves full diffusion in 2.5
rounds, while Midori-128 requires 3 rounds. For the rest of 8 rounds we used the
nibble permutation to guarantee a large number of active S-boxes. Indeed, 10
rounds of Orthros starting from the 3rd round, i.e., the 3rd to the 12th round,
achieve 64 active S-boxes. We note that Midori-128 needs 13 rounds to obtain 64
active S-boxes, thus the gain is 3 rounds.

3.3 S-box

We search a small-delay and lightweight 4-bit S-box which fulfills the following
requirements: (1) the maximal probability of a differential is 2−2, (2) the maximal
absolute bias of a linear approximation is 2−2 and (3) full diffusion, i.e., any input
bit difference diffuses to all output bits. We use a metric called depth [BBI+15]
to estimate the path delay of S-boxes.

Definition 1 (depth): The depth is defined as the sum of the sequential path
delays of basic operations, namely AND, OR, NAND, NOR and NOT.

Following the assumption of [BBI+15], our search assumes that depths of
XOR, AND/OR, NAND/NOR, and NOT are weighted as 2, 1.5, 1 and 0.5, respectively,
and the required gates of NOT, NAND/NOR, AND/OR and XOR/XNOR are estimated
as 0.5, 1, 1.5 and 2 Gate Equivalents (GEs), respectively. We search over the set
of all 4-bit S-boxes, whose size is 244.3, sort them in order of small depth, and
check whether they satisfy our security requirements.

We remark that our construction does not require the involution property
of S-box unlike Midori’s Sb1. It allows us to expand the number of possible

candidates from 225.5 (the number of all involution 4-bit S-boxes) to 244.3. As
a result, we found an S-box (see Table 1) whose depth and gate size are the
lowest and the smallest in our search. Specifically, the depth is 3.5 and the area
is 20 GE under the aforementioned assumption of [BBI+15]. The S-box can be
expressed as follows9, where inputs and outputs are defined as {x0, x1, x2, x3}
and {y0, y1, y2, y3}, and x3 and y3 are the most significant bits.

y0 =
(

(x0 NOR x3) AND x1

)
NOR

(
(x1 NAND x2) AND x0

)
y1 =

(
(x1 NOR x2) OR x0

)
NAND

(
(x0 NAND x3) OR x2

)
y2 =

(
(x1 OR x3) NAND x2

)
NAND (x0 NAND x1)

y3 =
(

(x1 NAND x2) NAND x3

)
NAND

(
(x0 NAND x2) OR x3

)
Compared to the S-box of Midori-128, the depth and area can be reduced

to 3.5 and 10.7 GE from 4 and 12 GE, respectively, when synthesized with the
standard cell library of the STM 90nm CMOS logic process (as shown in Table 8)
with area optimization. The table also shows detailed comparisons with S-boxes
of the QARMA and PRINCE family when the circuit is optimized with respect to
area as well as delay. The S-box of Orthros performs well when optimized across
both metrics. Note that σ0 does not have the full diffusion property.

Table 8: Comparison of S-boxes.
Orthros Midori [BBI+15] QARMA [Ava17] PRINCE [BCG+12]

S Sb1 σ0 σ1 σ2 σ−1
2 S S−1

Area Optimized
Area [GE] 10.7 12.0 11.0 12.2 15.7 15.5 12.2 15.5
Delay [ps] 285.7 367.2 380.6 412.3 328.3 531.3 341.9 390.7

Delay Optimized
Area [GE] 40.4 32.2 43.2 36.4 40.2 65.4 51.1 41.2
Delay [ps] 37.2 71.1 39.2 89.3 58.6 53.3 52.7 80.6

Full diffusion Yes Yes No Yes Yes Yes Yes Yes
Involution No Yes Yes Yes No No No No

3.4 Key Scheduling Function

To minimize the hardware cost, key scheduling functions of Orthros are realized
by only bit permutations, whose hardware overhead, such as area and delay, is
essentially free. We use a class of bit permutations that satisfy both Condition 1
and 2 in the key scheduling functions of Branch1 and Branch2 as shown in Table 3,
although it cannot guarantee the full diffusion property as there is no S-box and

9We fixed the typos in the expressions in [BIL+21]

Matrix in the key scheduling functions. One reason to introduce two different key
scheduling functions for each branch is to increase the hardness of the key-recovery
attack, as will be discussed in the next section.

4 Security Evaluation

4.1 Differential/Linear Attack

To evaluate the resistance against differential attacks and linear attacks, one way
is to obtain the lower bound of the number of differentially and linearly active
S-boxes in each round, which can be efficiently computed with a MILP-based
method [MWGP11]. In the following, we will present lower bounds of the number
of differentially and linearly active S-boxes for Branch1, Branch2 and the whole
Orthros. Since the maximal differential and linear probability of the S-box is 2−2,
it is sufficient to guarantee the security against differential attacks and linear
attacks if there are 64 active S-boxes, as it gives 2−2×64 = 2−128 as an estimate
of a differential probability. In our evaluation, we only consider the single-key
setting.

As discussed in Section 3.2, we observed that it is computationally infeasible
to obtain a lower bound for more than 5 rounds starting from the first round
of Branch1, Branch2 and Orthros, even with a computer equipped with 48 cores
and 256 GB RAM. The search space of 128-bit bitwise differential and linear
trails for the first 4 rounds is huge. On the other hand, for the last 8 rounds of
Branch1 and Branch2 starting from the 5th round, where the nibble permutation
is adopted, we can obtain tight lower bounds of the number of active S-boxes
for the nibble-wise differential and linear trails. In addition, we can obtain tight
lower bounds of the number of active S-boxes of 5 rounds of Orthros starting
from the 5th round, i.e., 5 to 9 rounds.

In our evaluation, each of Branch1, Branch2 and Orthros is first divided into
two parts, i.e., the first 4 rounds and the remaining 8 rounds. We compute a
lower bound of the number of active S-boxes for each part. The lower bound of
Orthros is obtained by the sum of those of Branch1 and Branch2.

The corresponding results are displayed in Table 9. Table 9 shows that there
are at least 68 active S-boxes in 5 rounds of Orthros starting from the 5th round,
i.e., 5 to 9 rounds. In addition, the last 10 rounds of Branch1 and Branch2
including 2 bit-permutation rounds and 8 nibble-permutation rounds, i.e., 3 to
12 rounds, have at least 64(= 4 + 60) active S-boxes. Although we do not claim
any security for Branch1 and Branch2 as a full-fledged block cipher, each has a
sufficient number of active S-boxes in the full 12 rounds.

It should be emphasized that the lower bounds of Orthros in Table 9 are not
tight i.e., actually the full rounds of Orthros includes more active S-boxes. This is
because the number of active S-boxes of Orthros after 10 rounds is computed as
the sum of those of Branch1 and Branch2. Besides, those of first 4 rounds and the
last 8 rounds are independently obtained. Thus, we expect that the full-round
Orthros can resist against the differential attack and the linear attack.

Table 9: The lower bounds of the number of active S-boxes in the single-key
setting.

Construction bit/nibble Rounds

1 2 3 4 5 6 7 8 9 10 11 12
Orthros (the first 4 rounds) bit 2 8 12 16 - - - - - - - -
Orthros (from the 5th round) nibble - - - - 2 8 20 40 68 72 101 120
Branch1 (the first 4 rounds) bit 1 4 6 8 - - - - - - - -
Branch2 (the first 4 rounds) bit 1 4 5 8 - - - - - - - -
Branch1 (from the 5th round) nibble - - - - 1 4 7 16 25 36 50 60
Branch2 (from the 5th round) nibble - - - - 1 4 7 16 25 36 51 60

4.2 Impossible Differential Attack

The impossible differential attack can be estimated by the required number of
rounds for the full diffusions. In the forward direction, both Branch1 and Branch2
require 2.5 rounds for the full diffusion, while it is 5 rounds in the backward
direction. Consequently, we expect that there is no any probability-one impossible
differential characteristic over 8 rounds of Branch1 and Branch2, respectively.
Since Orthros take a sum of the outputs of Branch1 and Branch2, we believe that
the number of rounds of an impossible differential characteristic for Orthros is
much lower than that of Branch1 and Branch2.

To obtain actual impossible differential characteristics, we utilize the MILP-
aided automatic searching tool proposed by Sasaki and Todo [ST17]. Taking
DDT (differential distribution table) of the S-box into consideration, we searched
bit-wise impossible differential characteristics of Orthros that have one active bit
for both of a plaintext and a ciphertext. The details of modeling S-boxes is in
Appendix C.2

As a result, we found 3/5/5-round impossible differential characteristics of
Orthros, Branch1 and Branch2, respectively, as shown in Appendix C.3. Thus,
we expect that the full-round Orthros is secure against impossible differential
attacks.

4.3 Integral Attack

We present integral distinguishers on round-reduced Orthros. Since the division
property [Tod15,TM16] was proposed, it has become an efficient tool to evaluate
the resistance against integral attacks. Moreover, with the development of the
MILP model for the bit-based division property [XZBL16], the attacker now only
needs to focus on modeling the propagation of the division property.

The round function of Orthros consists of a nonlinear layer (S-box), a bit/nib-
ble permutation layer, another linear layer (matrixMul) and the constant/key
addition. To model the propagation of the division property through each com-
ponent, we only need to consider the S-box and the binary matrix used in
matrixMul. The bit/nibble permutation only has an influence on the coordinates
of the variables used in the MILP model. The modelling of the S-box and binary
matrix can be referred to Appendix C.4.

Based on our model, the longest integral distinguisher can reach up to at
most 7 rounds with 127 active bits in the input. For example, when the most
significant bit of the plaintext is constant and the remaining 127 bits take all
possible 2127 values, for 7-round Orthros, all output bits are balanced.

Remark. Although there are several 7-round integral distinguishers, it is difficult
to mount a key-recovery attack on 8 rounds of Orthros. This is different from
usual key-recovery attacks on block ciphers, where the attacker is able to add
several rounds after the integral distinguisher and guess partial key bits to decrypt
the ciphertext. It is quite costly to guess the key bits and reverse the ciphertext
for Orthros since the final output is the sum of the outputs of two branches, i.e.,
the attacker further needs to guess the output of the other branch.

4.4 Invariant Subspace Attack

Beierle et al. [BCLR17] showed that an invariant subspace attack can be mounted
on a block cipher if one finds a non-trivial invariant for the substitution layer
whose linear space is invariant under the linear layer matrix L that it uses and
contains all the differences between the round keys. For block ciphers without
a dedicated key schedule function, say when the i-th round key rki = k ⊕ rci

is simply the xor of the master key and the i-th round constant, the difference
of all round keys is the difference of the round constants. If D denotes the set
of all round constant differences, the authors of [BCLR17] computed WL(D),
which denotes the smallest L-invariant subspace containing D. If the dimension
of WL(D), dim(WL(D)), satisfies dim(WL(D)) ≥ n − 1, where n is the block
size of the cipher in bits, then the authors showed that there is no non-trivial
invariant of the substitution layer, provided that the S-box is well designed and
does not have any linear component.

If this condition is not satisfied, one must further investigate the properties
of the substitution layer. The authors then showed that, for every subspace Z of
the 0-linear space of the invariant of the substitution layer S, the invariant, g,
takes the same value on each coset of Z in Fn

2 and also on each element of the set
S(Z). To show that g is trivial, the authors computed the S-box layer at some
points in Z and hoped that all cosets would be hit when evaluating S at a few
points in Z. If g takes the same value on all the corresponding cosets, we would
conclude that g must be a constant function and thus trivial. This can be done if
we take Z = WL(D) and if dim(WL(D)) is close to n, since one would only need
to hit 2n−dim(WL(D)) cosets.

Since our construction uses a key schedule function for both branches, we can
not directly construct the setD as the difference of round constants. From this fact,
we use four different linear layers (two different in each branch) in our construction.
However for any randomly chosen value of the secret key k one can construct the
sets D1, D2, D3, D4, one each for the difference of the round keys used in each
of the four linear layers L1, L2, L3, L4, and then try to compute dim(WLi

(Di))
for each i. We found that the linear matrices composed by a bit permutation
and a matrix multiplication (used in the first to 4th rounds of each branch, call

them L1 (left), L3 (right)) have extremely high multiplicative orders – around
248 to 260 – and thus it is not directly possible to find WL(D) for these matrices.
Thus we limited ourselves to find WL(D)′ =

∑
c∈D < Li(c), i ≤ 10000 > for

L1, L2 and L3 (where < · > denotes the subspace generated by the constituent
vectors). We did an experiment with 1000 randomly chosen keys, and computed
WLi

(Di),WLi
(Di)′. The dimension of these spaces is almost always more than

127 for L1, L3 and always more than 123 for L2, L4. Whenever the dimension of
these spaces was less than 127, we tried to run Algorithm 1 of [BCLR17] to see
if all cosets are hit when trying to evaluate the S-layer. For all choices of the
random key, we find that all the cosets are always hit, and thus we conclude that
it is highly unlikely that an invariant subspace attack can be mounted on our
construction.

4.5 Meet-in-the-Middle Attack

To mount a meet-in-the middle attack, the adversary has to compute the inverse
of the cipher, i.e., computing intermediate states (matching states) from the
corresponding ciphertexts by guessing the involved round keys. As discussed
above, the adversary needs to guess one of two 128-bit outputs of branches to go
through the final XOR operation in the backward computation. As it requires at
least 2128 iterations, the attack is not efficient than the brute force attack.

Another possibility is to use the splice-and-cut technique [SA09]. With this
technique, the adversary guesses the intermediate values as the start point from
which the adversary starts the computation toward both directions. However,
once she guesses a 128-bit intermediate of one branch, she has to correctly guess
the corresponding 128-bit intermediate of the other branch. Therefore, we believe
that Orthros is secure against meet-in-the middle attacks.

4.6 Yoyo and Mixture-Differential Attacks

The yoyo attack was first introduced by Biham [BBD+99]. Recently, it has been
applied to the cryptanalysis of AES by Rønjom et al. [RBH17], where generic
attacks on up to 3 rounds of SPNs have been discussed. Since 2-round AES can
be viewed as 1-round SPN with the concept of super S-box, distinguishing attack
on up to 6 rounds of AES are derived by [RBH17]. However, there is one major
step in the yoyo attack, that is, the attacker needs to make a decryption query.
For the design of Orthros, since the final output is the xor sum of the outputs of
Branch1 and Branch2, it is infeasible to make a decryption query. In addition, due
to the fast diffusion of the bit permutation and the fact that each branch adopts
a different bit permutation, it is quite difficult to construct an efficient super
S-box for Orthros in the first four rounds. Based on these reasons, we believe that
Orthros is resistant against such an attack.

In Asiacrypt 2019, a different view of the yoyo attack on AES, called ex-
change attack, was proposed by Bardeh and Rønjom [BR19]. It does not require
decryption queries and can reach up to 6 rounds of AES. However, due to the
similarity in the underlying idea between the yoyo attack and exchange attack, we

believe that the resistance against the yoyo attack implies the resistance against
exchange attack.

The mixture differential introduced by Grassi [Gra18] is an efficient tool
to analyze a reduced-round AES, as its contribution to the recent progress of
key-recovery attacks on 5-round AES [BDK+18,DKRS20]. An important factor
which makes the mixture differential efficient is that AES adopts a word-wise
permutation. Due to the effect of the bit permutation in the first four rounds, we
are not able to find a useful mixture differential for Orthros.

4.7 Difficulty of Key-Recovery Attacks

As we repeated several times, the unique feature of Orthros (as a cryptographic
primitive) is that it takes the sum of two branch outputs. To mount a key-
recovery attack with a statistical distinguisher for block ciphers, such as a
differential/linear/integral distinguisher, it is common to append a few rounds
after a certain number of rounds for which a distinguisher exists, and guess
partial key bits by partially decrypting the ciphertext and verifying whether the
distinguishing property holds. However, such a common strategy is quite hard for
Orthros since the attacker even needs to guess the outputs of each branch in order
to reverse the ciphertext. In addition, it is required to construct two distinguishers
for two different branches with the same plaintext set simultaneously if the
attacker wants to append a few rounds after the distinguishable rounds. Even if
it is possible to construct a distinguisher for one block cipher with an advanced
cryptanalysis method as discussed above, it would be challenging to construct
two different distinguishers for two different block ciphers for the same plaintext
set simultaneously. In such a situation, we think generally the most promising
direction is to find integral distinguishers. This will be discussed later.

Another attacking strategy is to prepend some rounds before the distinguish-
able rounds. However, this implies that there exists a distinguisher for each
branch simultaneously. When extending two distinguishers backwards to the
plaintext, the attacker can derive which key bits should be guessed in order to
compute the desired value of the intermediate internal state of both branches.
Since each branch adopts a different linear layer in its round function, and the
key schedules of two branches also differ, a lot of to-be-guessed key bits will be
involved. Moreover, the whitening keys in two branches are different as well, which
further increases the complexity to prepend some rounds before a distinguisher.
For better understanding, we present a framework to recover the secret key by
extending an integral distinguisher backwards.

A Framework for Recovering the Secret Key. This framework was once applied to
a preliminary version of Orthros. Therefore, we omit the details of the design and
explain a high-level idea. First, we denote the states after the S-box layer in the
first round of Branch1 and Branch2 by XL0.5 and XR0.5, respectively. Suppose
there is a set of bit positions denoted by PSet ⊆ {i | 0 ≤ i ≤ 127} and the size of
PSet is PSize. In addition, let us denote the final output after r rounds of (an

old version of) Orthros by Cr, which is the sum of the outputs of (old versions
of) Branch1 and Branch2. Suppose there is an integral distinguisher such that∑

Cr =
∑

XL0.5∈P S

Branch1(XL0.5)⊕
∑

XR0.5∈P S′

Branch2(XR0.5) = 0,

where PS,PS′ ∈ {e ∈ F128
2 | e[i] ∈ {0, 1}, i ∈ PSet}, i.e., the set of values whose

bits located at the positions belonging to PSet take all the possible 2PSize values
and the remaining (128− PSize) bits take constant values.

To mount a key recovery attack, the attacker first derives from PSet the active
bits in the plaintext. Specifically, if i ∈ PSet, the (4× i/4)-th, (4× i/4 + 1)-th,
(4×i/4+2)-th and (4×i/4+3)-th bits of the plaintext are all active. Let ASize be
the size of the active bits in the plaintext. The attacker then prepares a plaintext
set whose active bits take all possible values and make encryption queries with
the r-round Orthros. It is easily detected that the sum of the ciphertext is zero.
Record the corresponding 2ASize pairs of plaintext and ciphertext in a table.

Suppose the whitening keys used by Branch1 and Branch2 are the same. In
this case, the attacker guesses 2ASize different values of the whitening key which is
xored with the active bits in the input. For each guess, the attacker can partially
know the corresponding XL0.5 and XR0.5 and can divide the plaintext set into
2ASize−PSize different subsets according to the value of the nonactive bits of XL0.5

and XR0.5 via the constructed integral distinguisher. For each subset, compute
the sum of the corresponding ciphertexts. For the correct key, the sum will be
zero for all subsets. However, for a wrong key, the sum is zero for a subset with a
probability 2−128. Therefore, the attacker can recover the key bits by checking
the sum of the ciphertexts for the plaintexts in each subset.

Consider the case when different whitening keys are used for Branch1 and
Branch2. In this case, when the attacker guesses the key bits in the left branch to
obtain the corresponding 2ASize−PSize subsets of the plaintexts, the sum of the
ciphetexts for the plaintexts in each subset is not clear even the guess is correct.
This is because the set of XR0.5 behaves randomly for each subset of plaintext
obtained according to the guess of the whitening key used in Branch1.

Obviously, it can be interpreted that this framework for Orthros is to convert
a r-round distinguisher into a r-round key-recovery attack. Therefore, a long
distinguisher should be prevented in our design.

5 Hardware Evaluation

Since our target construction is a low-latency PRF, the most useful hardware
evaluation of the design is a fully unrolled circuit that optimizes the signal delay
from the input to output ports. Such a circuit would be able to evaluate the PRF
in one clock cycle itself, and naturally the clock frequency can be increased till
the clock period is just above the total critical path of the circuit, affording a
maximum throughput of blocksize

critical path bits per second. To perform a fair evaluation
we compare our construction with two other low-latency primitives that provide

at least 128-bit block and 128-bit security. The first is Midori-128 and the second
is QARMA9-128-σ0 (in [Ava17], QARMA with 9 forward and backward rounds
was recommended for applications targeting 192 bit security). QARMA9-128-σ0
is a particular instantiation of QARMA with 9 forward and backward rounds
and a low-delay S-box σ0. For an added comparison, we also include the 64-bit
block cipher PRINCE in our results. On the other hand we also benchmark
some permutation based constructions that can be used as a PRF. For example
the Kangaroo12-XOF [BDP+18] which is based on the 12-round Keccak-f[1600]
permutation can be used as a PRF: one could absorb the key and plaintext in the
permutation state and extract 128 bits from the resulting XOF. Let us call this
construction Kangaroo12-PRF[1600]. Since any design based on a 1600-bit state
would naturally be hardware-intensive we also consider a lightweight version of
the above construction Kangaroo12-PRF[400] based on the 12-round Keccak-f[400]
permutation. We can also use the Subterranean-Deck function [DMMR20] to
extract a 128 bit MAC from a 128 bit key and message. We also benchmark this
design which we call Subterranean-PRF. It is even more lightweight as it has only
a 257-bit state.

We found that across all libraries, Orthros even outperforms PRINCE (see
Tables 10, 18, 19, 17) when it comes to the absolute signal delay between the
input/output ports. We remark that PRINCE is a 64-bit block cipher.

For a fair evaluation we adhered to the following design flow for all the ciphers:

1. The RTL source codes for the circuit of the ciphers were first written in
the Verilog HDL, and a functional simulation was done using the Modelsim
software to ensure correctness.

2. The RTL codes were synthesized by the Synopsys Design Vision circuit
compiler, with the compiler command set to compile_ultra. No other opti-
mizations are done at this stage. For this process we used the standard cell
libraries of the following CMOS logic processes: a) STM 90nm, b) TSMC
90nm, c) Nangate 45nm and d) Nangate 15nm.

3. A timing simulation was done on the synthesized netlist to confirm the
correctness of the design, by comparing the output of the timing simulation
with known test vectors.

4. The switching activity of each gate of the circuit was collected while running
post-synthesis simulation. The average power was obtained using Synopsys
Power Compiler, using the back annotated switching activity.

5. Step 2 outputs the critical path of the circuit. We repeat steps 2-4 (for each
of the libraries) but this time by asking the circuit compiler to constrain the
total signal delay between the input/output ports to some value less than
the critical path computed in step 2.

6. We repeat the above processes, with progressively lower values of total signal
delay, till such time as the circuit compiler is unable to construct a circuit with
given delay. We stop the flow at this point. All results have been tabulated in
Tables 10, 17, 18, 19 (for space constraints Tables 17, 18, 19 showing results
for Nangate 15nm, TSMC 90nm and Nangate 45 nm processes are shifted to
Appendix D).

Cipher Area Power Energy Latency Max TP
(µm2) (GE) (mW) (pJ) (ns) (Gbps)

Orthros 98150.7 22307 6.647 664.69 10.60 11.246
99258.2 22559 6.025 602.50 9.00 13.245
102286.4 23247 6.214 621.40 8.00 14.901
108582.3 24678 7.220 722.02 7.00 17.030
123160.6 27991 9.612 961.24 6.00 19.868
133931.3 30430 10.751 1075.07 5.00 23.842
148432.8 33735 12.614 1261.35 4.00 29.802
177991.2 40453 16.591 1659.12 3.00 39.736
298855.6 67922 27.628 2762.76 2.40 49.671

Midori-128 85435.0 19417 10.205 1020.49 18.54 6.430
86470.0 19652 9.671 967.14 16.00 7.451
89648.7 20375 9.748 974.81 14.00 8.515
96225.5 21869 11.275 1127.54 12.00 9.934
107393.6 24408 15.687 1568.7 10.00 11.921
122584.4 27860 17.887 1788.72 8.00 14.901
144109.4 32752 24.011 2401.09 5.99 19.868
277950.7 63171 46.464 4646.39 4.10 29.075

QARMA9-128-σ0 104118.3 23663 10.044 1004.38 19.41 6.142
104686.9 23792 9.810 981.04 17.00 7.012
106848.1 24284 9.911 991.05 15.00 7.947
112157.2 25490 11.571 1157.09 13.00 9.170
128032.8 29098 16.816 1681.62 11.00 10.837
147874.2 33608 20.438 2043.83 9.00 13.245
182268.6 41425 27.714 2771.37 6.96 17.128
234453.9 53285 41.508 4150.79 4.99 23.890
319634.3 72644 58.119 5811.87 4.38 27.217

PRINCE 27897.7 6340 1.867 186.73 11.35 10.503
28773.6 6539 1.791 179.13 9.00 13.245
31905.0 7251 2.057 205.67 7.00 17.030
38941.7 8850 3.274 327.44 5.00 23.842
63795.8 14499 6.023 602.25 3.00 39.736
87285.5 19838 8.151 815.12 2.56 46.566

Kangaroo12-PRF[1600] ∗ 498909.7 113389 59.533 5953.25 17.52 6.804
552581.2 125587 58.170 5817.01 12.00 9.934
590922.6 134301 57.350 5735.03 8.00 14.901
1184290.6 269157 140.664 14066.38 3.99 29.877

Kangaroo12-PRF[400] ∗ 133662.4 30378 16.674 1667.36 18.47 6.454
144600.0 32864 14.388 1438.84 12.00 9.934
167258.9 38013 18.260 1825.96 8.00 28.725
339374.6 77131 39.311 3931.14 4.15 14.901

Subterranean-PRF ∗ 130206.1 29592 9.976 997.59 17.45 6.831
139879.2 31791 8.467 846.6 12.00 9.934
177843.0 40419 18.475 1847.46 8.00 14.901
375592.1 85362 40.271 4027.13 3.63 32.840

Table 10: Results for the STM 90nm library. Power measured at 10 MHz. ∗The
core implementation of the underlying permutations in these constructions were
taken from [BDH+,DMMR]

Why area increases with decrease in latency: A cell library typically has
several drive strengths of cells that implement a given logic function. These drive
strengths correspond to the capacitive load that a cell can drive without excessive
delay and with acceptable signal characteristics. Thus when we force the circuit
compiler to construct a circuit with lower delay, it starts introducing higher
drive strength gates, that typically occupy more area while offering the same
functionality. For example, in the TSMC 90nm library 2-input xor gates of drive
strength 1, 2 ,4 occupy around 2.5, 3, 5 GE respectively. Thus it is natural for
the area of a circuit to progressively increase as we constrain the circuit compiler
to construct circuits of increasingly lower delay as shown in Tables 10, 17, 18,
19.

For a better illustrative purposes, we provide Area vs Delay (see Fig. 7).
The plots tell us that not only does Orthros perform around 40% better across
all standard cell libraries when it comes to the absolute delay value, it also
outperforms QARMA9-128-σ0 and Midori-128 when it comes to achieving a) lower
area figures and power consumption given a particular delay budget and b) lower
or competitive delay given a particular area/power budget.

6 Conclusions

We have presented a new low-latency PRF of 128-bit block, dubbed Orthros.
The design is essentially a sum of keyed permutations, which has been studied
in the context of provable security. We found this design is suitable to a low-
latency cryptographic primitive, which is intuitive, however, to our knowledge
never seriously considered before. We made it real by thoroughly revising the
current state-of-the-art low-latency, lightweight building blocks, together with an
extensive security analysis and comprehensive hardware benchmarks.

For further directions, it would be interesting to extend our design, say having
more branches (with even simpler round functions or fewer rounds), to even
reduce latency. Software performance and related-key/side-channel security would
also be interesting topics.

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable com-
ments and suggestions. The authors also thank Zihao Wei for pointing out some
typos in Section 3.3. Subhadeep Banik is supported by the Swiss National Science
Foundation (SNSF) through the Ambizione Grant PZ00P2_179921. Takanori
Isobe is supported by JST, PRESTO Grant Number JPMJPR2031, Grant-in-
Aid for Scientific Research (B)(KAKENHI 19H02141) for Japan Society for the
Promotion of Science, and Support Center for Advanced Telecommunications
Technology Research (SCAT). Kosei Sakamoto is supported by Grant-in-Aid
for JSPS Fellows (KAKENHI 20J23526) for Japan Society for the Promotion of
Science.

0.5 1 1.5 2 2.5

·105
2

4

6

8

10

12

14

16

18

20

Area (GE)

D
el
ay

(n
s)

(a) STM 90

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

·105

6

8

10

12

14

16

18

20

Area (GE)

D
el
ay

(n
s)

(b) TSMC 90

0.2 0.4 0.6 0.8 1 1.2

·105
2

3

4

5

6

7

Area (GE)

D
el
ay

(n
s)

(c) Nangate 45

0.4 0.6 0.8 1 1.2 1.4 1.6

·105
300

400

500

600

700

800

900

1,000

Area (GE)

D
el
ay

(p
s)

(d) Nangate 15

Orthros Midori-128 QARMA9-128-σ0

Kangaroo12-PRF[1600] Kangaroo12-PRF[400] Subterranean-PRF

Fig. 7: Delay vs Area comparisons.

References

[Ava17] Roberto Avanzi. The QARMA block cipher family. IACR Trans. Symm.
Cryptol., 2017(1):4–44, 2017. doi:10.13154/tosc.v2017.i1.4-44.

[BBD+99] Eli Biham, Alex Biryukov, Orr Dunkelman, Eran Richardson, and Adi
Shamir. Initial observations on Skipjack: Cryptanalysis of Skipjack-3XOR
(invited talk). In Stafford E. Tavares and Henk Meijer, editors, SAC 1998,
volume 1556 of LNCS, pages 362–376. Springer, Heidelberg, August 1999.
doi:10.1007/3-540-48892-8_27.

[BBI+15] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani,
Harunaga Hiwatari, Toru Akishita, and Francesco Regazzoni. Midori:

https://doi.org/10.13154/tosc.v2017.i1.4-44
https://doi.org/10.1007/3-540-48892-8_27

A block cipher for low energy. In Tetsu Iwata and Jung Hee Cheon,
editors, ASIACRYPT 2015, Part II, volume 9453 of LNCS, pages 411–
436. Springer, Heidelberg, November / December 2015. doi:10.1007/
978-3-662-48800-3_17.

[BCG+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav
Knežević, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof
Paar, Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga
Yalçin. PRINCE - A low-latency block cipher for pervasive computing
applications - extended abstract. In Xiaoyun Wang and Kazue Sako, edi-
tors, ASIACRYPT 2012, volume 7658 of LNCS, pages 208–225. Springer,
Heidelberg, December 2012. doi:10.1007/978-3-642-34961-4_14.

[BCLR17] Christof Beierle, Anne Canteaut, Gregor Leander, and Yann Rotella.
Proving resistance against invariant attacks: How to choose the round
constants. In Advances in Cryptology - CRYPTO 2017 - 37th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August
20-24, 2017, Proceedings, Part II, pages 647–678, 2017. doi:10.1007/
978-3-319-63715-0_22.

[BDH+] Guido Bertoni, Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van
Assche, and Ronny Van Keer. Team keccak: Hardware resources. https:
//keccak.team/hardware.html.

[BDK+18] Achiya Bar-On, Orr Dunkelman, Nathan Keller, Eyal Ronen, and Adi
Shamir. Improved key recovery attacks on reduced-round AES with
practical data and memory complexities. In Hovav Shacham and
Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992
of LNCS, pages 185–212. Springer, Heidelberg, August 2018. doi:
10.1007/978-3-319-96881-0_7.

[BDP+18] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche,
Ronny Van Keer, and Benoît Viguier. Kangarootwelve: Fast hashing based
on keccak-p. In Applied Cryptography and Network Security - 16th Inter-
national Conference, ACNS 2018, Leuven, Belgium, July 2-4, 2018, Pro-
ceedings, pages 400–418, 2018. doi:10.1007/978-3-319-93387-0_21.

[BGGS20] Zhenzhen Bao, Chun Guo, Jian Guo, and Ling Song. TNT: How to
tweak a block cipher. In Vincent Rijmen and Yuval Ishai, editors, EURO-
CRYPT 2020, Part II, LNCS, pages 641–673. Springer, Heidelberg, May
2020. doi:10.1007/978-3-030-45724-2_22.

[BI99] M. Bellare and R. Impagliazzo. A tool for obtaining tighter security
analyses of pseudorandom function based constructions, with applications
to PRP to PRF conversion. Cryptology ePrint Archive, Report 1999/024,
1999. http://eprint.iacr.org/1999/024.

[BIL+21] Subhadeep Banik, Takanori Isobe, Fukang Liu, Kazuhiko Minematsu,
and Kosei Sakamoto. Orthros: A low-latency prf. IACR Transac-
tions on Symmetric Cryptology, 2021(1):37–77, Mar. 2021. URL: https:
//tosc.iacr.org/index.php/ToSC/article/view/8833, doi:10.46586/
tosc.v2021.i1.37-77.

[Bir07] Alex Biryukov. The design of a stream cipher LEX. In Eli Biham and
Amr M. Youssef, editors, SAC 2006, volume 4356 of LNCS, pages 67–75.
Springer, Heidelberg, August 2007. doi:10.1007/978-3-540-74462-7_6.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY family of block ciphers and its low-latency variant MANTIS. In

https://doi.org/10.1007/978-3-662-48800-3_17
https://doi.org/10.1007/978-3-662-48800-3_17
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-319-63715-0_22
https://doi.org/10.1007/978-3-319-63715-0_22
https://keccak.team/hardware.html
https://keccak.team/hardware.html
https://doi.org/10.1007/978-3-319-96881-0_7
https://doi.org/10.1007/978-3-319-96881-0_7
https://doi.org/10.1007/978-3-319-93387-0_21
https://doi.org/10.1007/978-3-030-45724-2_22
http://eprint.iacr.org/1999/024
https://tosc.iacr.org/index.php/ToSC/article/view/8833
https://tosc.iacr.org/index.php/ToSC/article/view/8833
https://doi.org/10.46586/tosc.v2021.i1.37-77
https://doi.org/10.46586/tosc.v2021.i1.37-77
https://doi.org/10.1007/978-3-540-74462-7_6

Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part II,
volume 9815 of LNCS, pages 123–153. Springer, Heidelberg, August 2016.
doi:10.1007/978-3-662-53008-5_5.

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkel-
soe. PRESENT: An ultra-lightweight block cipher. In Pascal Pail-
lier and Ingrid Verbauwhede, editors, CHES 2007, volume 4727 of
LNCS, pages 450–466. Springer, Heidelberg, September 2007. doi:
10.1007/978-3-540-74735-2_31.

[BPP+17] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki,
Siang Meng Sim, and Yosuke Todo. GIFT: A small present - to-
wards reaching the limit of lightweight encryption. In Wieland Fis-
cher and Naofumi Homma, editors, CHES 2017, volume 10529 of LNCS,
pages 321–345. Springer, Heidelberg, September 2017. doi:10.1007/
978-3-319-66787-4_16.

[BR19] Navid Ghaedi Bardeh and Sondre Rønjom. The exchange attack: How
to distinguish six rounds of AES with 288.2 chosen plaintexts. LNCS,
pages 347–370. Springer, Heidelberg, December 2019. doi:10.1007/
978-3-030-34618-8_12.

[BS91] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryptosys-
tems. In Alfred J. Menezes and Scott A. Vanstone, editors, CRYPTO’90,
volume 537 of LNCS, pages 2–21. Springer, Heidelberg, August 1991.
doi:10.1007/3-540-38424-3_1.

[BSS+13] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The SIMON and SPECK families of lightweight
block ciphers. Cryptology ePrint Archive, Report 2013/404, 2013. http:
//eprint.iacr.org/2013/404.

[CLM19] Yu Long Chen, Eran Lambooij, and Bart Mennink. How to build pseu-
dorandom functions from public random permutations. In Alexandra
Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part I, vol-
ume 11692 of LNCS, pages 266–293. Springer, Heidelberg, August 2019.
doi:10.1007/978-3-030-26948-7_10.

[DBP96] Hans Dobbertin, Antoon Bosselaers, and Bart Preneel. RIPEMD-160: A
strengthened version of RIPEMD. In Dieter Gollmann, editor, FSE’96,
volume 1039 of LNCS, pages 71–82. Springer, Heidelberg, February 1996.
doi:10.1007/3-540-60865-6_44.

[DDK09] Christophe De Cannière, Orr Dunkelman, and Miroslav Knežević. KATAN
and KTANTAN - a family of small and efficient hardware-oriented block
ciphers. In Christophe Clavier and Kris Gaj, editors, CHES 2009, volume
5747 of LNCS, pages 272–288. Springer, Heidelberg, September 2009.
doi:10.1007/978-3-642-04138-9_20.

[DHT17] Wei Dai, Viet Tung Hoang, and Stefano Tessaro. Information-theoretic
indistinguishability via the chi-squared method. In Jonathan Katz
and Hovav Shacham, editors, CRYPTO 2017, Part III, volume 10403
of LNCS, pages 497–523. Springer, Heidelberg, August 2017. doi:
10.1007/978-3-319-63697-9_17.

[DIS+18] Patrick Derbez, Tetsu Iwata, Ling Sun, Siwei Sun, Yosuke Todo, Haoyang
Wang, and Meiqin Wang. Cryptanalysis of AES-PRF and its dual.
IACR Trans. Symm. Cryptol., 2018(2):161–191, 2018. doi:10.13154/
tosc.v2018.i2.161-191.

https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-319-66787-4_16
https://doi.org/10.1007/978-3-319-66787-4_16
https://doi.org/10.1007/978-3-030-34618-8_12
https://doi.org/10.1007/978-3-030-34618-8_12
https://doi.org/10.1007/3-540-38424-3_1
http://eprint.iacr.org/2013/404
http://eprint.iacr.org/2013/404
https://doi.org/10.1007/978-3-030-26948-7_10
https://doi.org/10.1007/3-540-60865-6_44
https://doi.org/10.1007/978-3-642-04138-9_20
https://doi.org/10.1007/978-3-319-63697-9_17
https://doi.org/10.1007/978-3-319-63697-9_17
https://doi.org/10.13154/tosc.v2018.i2.161-191
https://doi.org/10.13154/tosc.v2018.i2.161-191

[DKRS20] Orr Dunkelman, Nathan Keller, Eyal Ronen, and Adi Shamir. The
retracing boomerang attack. In Vincent Rijmen and Yuval Ishai, editors,
EUROCRYPT 2020, Part I, LNCS, pages 280–309. Springer, Heidelberg,
May 2020. doi:10.1007/978-3-030-45721-1_11.

[DMMR] Joan Daemen, Pedro Maat Costa Massolino, Alireza Mehrdad, and Yann
Rotella. The subterranean 2.0 cipher suite. https://cs.ru.nl/~joan/
subterranean.html.

[DMMR20] Joan Daemen, Pedro Maat Costa Massolino, Alireza Mehrdad, and Yann
Rotella. The subterranean 2.0 cipher suite. IACR Trans. Symmetric Cryp-
tol., 2020(S1):262–294, 2020. doi:10.13154/tosc.v2020.iS1.262-294.

[DR05a] Joan Daemen and Vincent Rijmen. A new MAC construction ALRED and
a specific instance ALPHA-MAC. In Henri Gilbert and Helena Handschuh,
editors, FSE 2005, volume 3557 of LNCS, pages 1–17. Springer, Heidelberg,
February 2005. doi:10.1007/11502760_1.

[DR05b] Joan Daemen and Vincent Rijmen. The Pelican MAC function 2.0.
Cryptology ePrint Archive, Report 2005/088, 2005. http://eprint.iacr.
org/2005/088.

[Dwo05] Morris Dworkin. Recommendation for Block Cipher Modes of Operation:
The CMAC Mode for Authentication. Standard, National Institute of
Standards and Technology., 2005.

[Dwo10] Morris Dworkin. Recommendation for Block Cipher Modes of Operation:
The XTS-AES Mode for Confidentiality on Storage Devices. Standard,
National Institute of Standards and Technology., 2010.

[EM93] Shimon Even and Yishay Mansour. A construction of a cipher from a
single pseudorandom permutation. In Hideki Imai, Ronald L. Rivest, and
Tsutomu Matsumoto, editors, ASIACRYPT’91, volume 739 of LNCS,
pages 210–224. Springer, Heidelberg, November 1993. doi:10.1007/
3-540-57332-1_17.

[GKM+09] Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian
Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen.
Grøstl - a SHA-3 candidate. In Helena Handschuh, Stefan Lucks, Bart
Preneel, and Phillip Rogaway, editors, Symmetric Cryptography, 11.01.
- 16.01.2009, volume 09031 of Dagstuhl Seminar Proceedings. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, Germany, 2009. URL: http:
//drops.dagstuhl.de/opus/volltexte/2009/1955/.

[GM16] Shay Gueron and Nicky Mouha. Simpira v2: A family of efficient per-
mutations using the AES round function. In Jung Hee Cheon and
Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part I, volume 10031
of LNCS, pages 95–125. Springer, Heidelberg, December 2016. doi:
10.1007/978-3-662-53887-6_4.

[GPPR11] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw.
The LED block cipher. In Bart Preneel and Tsuyoshi Takagi, editors,
CHES 2011, volume 6917 of LNCS, pages 326–341. Springer, Heidelberg,
September / October 2011. doi:10.1007/978-3-642-23951-9_22.

[Gra18] Lorenzo Grassi. Mixture differential cryptanalysis: a new approach to
distinguishers and attacks on round-reduced AES. IACR Trans. Symm.
Cryptol., 2018(2):133–160, 2018. doi:10.13154/tosc.v2018.i2.133-160.

[Gue16] Shay Gueron. A memory encryption engine suitable for general purpose
processors. Cryptology ePrint Archive, Report 2016/204, 2016. http:
//eprint.iacr.org/2016/204.

https://doi.org/10.1007/978-3-030-45721-1_11
https://cs.ru.nl/~joan/subterranean.html
https://cs.ru.nl/~joan/subterranean.html
https://doi.org/10.13154/tosc.v2020.iS1.262-294
https://doi.org/10.1007/11502760_1
http://eprint.iacr.org/2005/088
http://eprint.iacr.org/2005/088
https://doi.org/10.1007/3-540-57332-1_17
https://doi.org/10.1007/3-540-57332-1_17
http://drops.dagstuhl.de/opus/volltexte/2009/1955/
http://drops.dagstuhl.de/opus/volltexte/2009/1955/
https://doi.org/10.1007/978-3-662-53887-6_4
https://doi.org/10.1007/978-3-662-53887-6_4
https://doi.org/10.1007/978-3-642-23951-9_22
https://doi.org/10.13154/tosc.v2018.i2.133-160
http://eprint.iacr.org/2016/204
http://eprint.iacr.org/2016/204

[HJ06] W. Eric Hall and Charanjit S. Jutla. Parallelizable authentication trees.
In Bart Preneel and Stafford Tavares, editors, SAC 2005, volume 3897 of
LNCS, pages 95–109. Springer, Heidelberg, August 2006. doi:10.1007/
11693383_7.

[HKR15] Viet Tung Hoang, Ted Krovetz, and Phillip Rogaway. Robust
authenticated-encryption AEZ and the problem that it solves. In Elis-
abeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I,
volume 9056 of LNCS, pages 15–44. Springer, Heidelberg, April 2015.
doi:10.1007/978-3-662-46800-5_2.

[Iwa06] Tetsu Iwata. New blockcipher modes of operation with beyond the
birthday bound security. In Matthew J. B. Robshaw, editor, FSE 2006,
volume 4047 of LNCS, pages 310–327. Springer, Heidelberg, March 2006.
doi:10.1007/11799313_20.

[KNR12] Miroslav Knežević, Ventzislav Nikov, and Peter Rombouts. Low-latency
encryption - is “lightweight = light + wait”? In Emmanuel Prouff
and Patrick Schaumont, editors, CHES 2012, volume 7428 of LNCS,
pages 426–446. Springer, Heidelberg, September 2012. doi:10.1007/
978-3-642-33027-8_25.

[LRW02] Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block
ciphers. In Moti Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages
31–46. Springer, Heidelberg, August 2002. doi:10.1007/3-540-45708-9_
3.

[Luc00] Stefan Lucks. The sum of PRPs is a secure PRF. In Bart Preneel, editor,
EUROCRYPT 2000, volume 1807 of LNCS, pages 470–484. Springer,
Heidelberg, May 2000. doi:10.1007/3-540-45539-6_34.

[Mat94] Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In Tor
Helleseth, editor, EUROCRYPT’93, volume 765 of LNCS, pages 386–397.
Springer, Heidelberg, May 1994. doi:10.1007/3-540-48285-7_33.

[MN17a] Bart Mennink and Samuel Neves. Encrypted Davies-Meyer and its
dual: Towards optimal security using mirror theory. In Jonathan
Katz and Hovav Shacham, editors, CRYPTO 2017, Part III, volume
10403 of LNCS, pages 556–583. Springer, Heidelberg, August 2017.
doi:10.1007/978-3-319-63697-9_19.

[MN17b] Bart Mennink and Samuel Neves. Optimal PRFs from blockcipher designs.
IACR Trans. Symm. Cryptol., 2017(3):228–252, 2017. doi:10.13154/
tosc.v2017.i3.228-252.

[MWGP11] Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential
and linear cryptanalysis using mixed-integer linear programming. In
Chuankun Wu, Moti Yung, and Dongdai Lin, editors, Information Security
and Cryptology - 7th International Conference, Inscrypt 2011, Beijing,
China, November 30 - December 3, 2011. Revised Selected Papers, volume
7537 of Lecture Notes in Computer Science, pages 57–76. Springer, 2011.
doi:10.1007/978-3-642-34704-7_5.

[NIS07] Recommendation for Block Cipher Modes of Operation: Galois/Counter
Mode (GCM) and GMAC. Technical report, 2007. National Institute of
Standards and Technology.

[Pat08] Jacques Patarin. A proof of security in O(2n) for the xor of two random
permutations. In Reihaneh Safavi-Naini, editor, ICITS 08, volume 5155 of
LNCS, pages 232–248. Springer, Heidelberg, August 2008. doi:10.1007/
978-3-540-85093-9_22.

https://doi.org/10.1007/11693383_7
https://doi.org/10.1007/11693383_7
https://doi.org/10.1007/978-3-662-46800-5_2
https://doi.org/10.1007/11799313_20
https://doi.org/10.1007/978-3-642-33027-8_25
https://doi.org/10.1007/978-3-642-33027-8_25
https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/3-540-45539-6_34
https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1007/978-3-319-63697-9_19
https://doi.org/10.13154/tosc.v2017.i3.228-252
https://doi.org/10.13154/tosc.v2017.i3.228-252
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-540-85093-9_22
https://doi.org/10.1007/978-3-540-85093-9_22

[Qua] Qualcomm Technologies Inc. Pointer Authentication on
ARMv8.3. https://www.qualcomm.com/media/documents/files/
whitepaper-pointer-authentication-on-armv8-3.pdf.

[RBH17] Sondre Rønjom, Navid Ghaedi Bardeh, and Tor Helleseth. Yoyo tricks with
AES. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017,
Part I, volume 10624 of LNCS, pages 217–243. Springer, Heidelberg,
December 2017. doi:10.1007/978-3-319-70694-8_8.

[SA09] Yu Sasaki and Kazumaro Aoki. Finding preimages in full MD5 faster
than exhaustive search. In Antoine Joux, editor, EUROCRYPT 2009,
volume 5479 of LNCS, pages 134–152. Springer, Heidelberg, April 2009.
doi:10.1007/978-3-642-01001-9_8.

[SHW+14] Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling Song.
Automatic security evaluation and (related-key) differential characteristic
search: Application to SIMON, PRESENT, LBlock, DES(L) and other
bit-oriented block ciphers. In Palash Sarkar and Tetsu Iwata, editors,
ASIACRYPT 2014, Part I, volume 8873 of LNCS, pages 158–178. Springer,
Heidelberg, December 2014. doi:10.1007/978-3-662-45611-8_9.

[SIH+11] Kyoji Shibutani, Takanori Isobe, Harunaga Hiwatari, Atsushi Mitsuda,
Toru Akishita, and Taizo Shirai. Piccolo: An ultra-lightweight blockcipher.
In Bart Preneel and Tsuyoshi Takagi, editors, CHES 2011, volume 6917
of LNCS, pages 342–357. Springer, Heidelberg, September / October 2011.
doi:10.1007/978-3-642-23951-9_23.

[ST17] Yu Sasaki and Yosuke Todo. New impossible differential search tool from
design and cryptanalysis aspects - revealing structural properties of several
ciphers. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EURO-
CRYPT 2017, Part III, volume 10212 of LNCS, pages 185–215. Springer,
Heidelberg, April / May 2017. doi:10.1007/978-3-319-56617-7_7.

[TM16] Yosuke Todo and Masakatu Morii. Bit-based division property and
application to simon family. In Thomas Peyrin, editor, FSE 2016, volume
9783 of LNCS, pages 357–377. Springer, Heidelberg, March 2016. doi:
10.1007/978-3-662-52993-5_18.

[Tod15] Yosuke Todo. Structural evaluation by generalized integral property. In
Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I,
volume 9056 of LNCS, pages 287–314. Springer, Heidelberg, April 2015.
doi:10.1007/978-3-662-46800-5_12.

[XZBL16] Zejun Xiang, Wentao Zhang, Zhenzhen Bao, and Dongdai Lin. Ap-
plying MILP method to searching integral distinguishers based on di-
vision property for 6 lightweight block ciphers. In Jung Hee Cheon
and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part I, volume 10031
of LNCS, pages 648–678. Springer, Heidelberg, December 2016. doi:
10.1007/978-3-662-53887-6_24.

A Toy Ciphers

The unique feature of our design is the use of two parallel branches (effectively
block ciphers). In order to investigate the generic security of this design, we
introduce two toy ciphers using single branch and double branches as shown in
Fig. 8. We focus on the maximal differential probability (MDP) [BS91] and linear

https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://doi.org/10.1007/978-3-319-70694-8_8
https://doi.org/10.1007/978-3-642-01001-9_8
https://doi.org/10.1007/978-3-662-45611-8_9
https://doi.org/10.1007/978-3-642-23951-9_23
https://doi.org/10.1007/978-3-319-56617-7_7
https://doi.org/10.1007/978-3-662-52993-5_18
https://doi.org/10.1007/978-3-662-52993-5_18
https://doi.org/10.1007/978-3-662-46800-5_12
https://doi.org/10.1007/978-3-662-53887-6_24
https://doi.org/10.1007/978-3-662-53887-6_24

Branch

RK
WK

P C

Branch

RK0

WK0

P C

Branch

WK1

RK1

Fig. 8: (Left) The toy cipher using a single branch and (Right) that using double
branches, where WK and RK are the whitening key and round key, respectively.

bias [Mat94] as they are two of the most fundamental security metrics. For the
underlying branches, we consider both SPN and Feistel structures.

Experiments for a SPN-based toy cipher. First, we consider the case of SPN with
16-bit internal state and 16-bit round key. The basic design of this SPN-based
toy cipher is similar to Midori. For our SPN-based toy cipher, the round function
is composed of the following operations: S-box, Shuffle, Mix and AK. The state
is organized as a 4× 4 two-dimensional Boolean array A. The (4j + i)-th bit of
the internal state is placed at A[i][j] (0 ≤ i ≤ 3, 0 ≤ j ≤ 3). For the S-box, each
column A[·][j] (0 ≤ j ≤ 3) is viewed as a 4-bit value x = 8 ·A[3][j] + 4 ·A[2][j] +
2 ·A[1][j]+A[0][j] and the internal state is updated as A[·][j]=S-box(A[·][j]). The
S-box is the same with that used in Orthros. For the Shuffle operation, the state is
reorganized as A[i][j] = A[i′][j′] (0 ≤ i ≤ 3, 0 ≤ j ≤ 3), where 4j′+ i′ = SF[4j+ i]
and the array SF is defined as

SF[16] = [0, 10, 5, 15, 14, 4, 11, 1, 9, 3, 12, 6, 7, 13, 2, 8].

For the Mix operation, each column is updated by multiplying the binary matrix
Mb, i.e., (A[0][j], A[1][j], A[2][j], A[3][j])T = Mb ·(A[0][j], A[1][j], A[2][j], A[3][j])T

(0 ≤ j ≤ 3). For the AK operation, a random 16-bit round key will be XORed
with the 16-bit internal state. Since the construction of the underlying block
cipher used in Orthros is somewhat similar to that of Midori, we adopt the same
Shuffle and Mix operations as in Midori for the toy cipher in order to construct a
16-bit toy cipher.

To compute MDP over a certain number of rounds for each construction, we
first generate a random value for the round keys. Then, the whole block cipher can
be viewed as a large 16-bit S-box. By exhausting all possible 216 × (216 − 1)/2
input pairs, we count the number of occurrences for each possible output difference
and obtain the maximum frequency of the output difference, which we denote
by CNT0. In this way, MDP is calculated as CNT0/216. With this method,
we carried out 100 experiments and compute MDP for each experiments, and
take the maximum for all experiments. The results are displayed in Table 11.
Table 11 shows that the maximal value becomes stable after about 4 rounds

in the construction using double branches. For the construction using a single
branch, it becomes stable in about 5 rounds.

Table 11: The maximal differential probability of SPN-based toy ciphers.

Rounds
Max Pro. Single Branch Double Branches

1 2−3 2−1

2 2−8 2−6

3 2−8 2−5.7

4 2−11.3 2−12.3

5 2−12.5 2−12.5

6 2−12.5 2−12.5

7 2−12.5 2−12.5

8 2−12.5 2−12.5

Experiments for a Feistel-based toy cipher. For the case of Feistel-based cipher,
we consider 4-GFS (generalized Feistel structure with 4 sub-blocks), as shown in
Fig. 9. The round function consists of two parallel 4-bit S-boxes with random
round keys, where the S-box is the same with that used in Orthros. We carried
out 100 experiments and compute the maximum of the MDP for all experiments,
for both the constructions using a single branch and double branches. The
corresponding results are displayed in Table 12. It shows that the maximal value
becomes stable after about 7 rounds in the construction using double branches.
For the construction using single branch, it becomes stable in about 10 rounds.

S S

Fig. 9: 4-GFS. Dotted lines denote (random) round keys.

Experiments on linear masks. Similar experiments have also been performed
to evaluate the maximal linear bias for the toy ciphers. Due to the high time
complexity to accurately compute the maximal linear bias, we turn to calculating
it in a probabilistic way. Specifically, we randomly choose some input and output
masks and select the maximal linear bias from them. For the SPN-based toy cipher,
it is found that the maximal linear bias (2−6.4) becomes stable after 4 rounds if
using a single branch, while it becomes stable in 3 rounds for double branches.

Table 12: The maximal differential probability for each GFS-based construction.

Rounds
Max Pro.

Single Branch Double Branches

1 2−1 2−1

2 2−3 2−1

3 2−5 2−1

4 2−7 2−5.4

5 2−7 2−7.3

6 2−9.6 2−11.1

7 2−9.4 2−12.5

8 2−11 2−12.5

9 2−12 2−12.5

10 2−12.5 2−12.5

11 2−12.5 2−12.5

12 2−12.5 2−12.5

For the GFS-based toy cipher, the maximal linear bias (2−6.4) becomes stable in
9 rounds and 6 rounds for a single branch and double branches, respectively.

Summary. In our experiments, both the maximal differential probability and
linear bias of the double branches reach a stable value in a smaller number
of rounds than that of the single branch. Of course the scale of experiment is
limited and a more theoretical support should be desired. However, these results
suggest that the double branch enhances the security of the single branch. We
also emphasize that the security of Orthros is never ensured based on such a
simple simulation. Instead, a comprehensive study is performed.

B Detailed Explanations for Conditions 1 and 2

B.1 Condition 1

Fig 10 shows the transition of the state after applying Pbk1, which satisfies
Condition 1. The state is represented as a 16 × 8 bit array, where S0, S1, S2,
S3 are nibbles consisting of the first state column. Let us focus on the leftmost
column. After applying a bit-permutation satisfying Condition 1, for 0 ≤ i ≤ 3,
Fig 10 shows that the 4 bits of Si are mapped to different columns. The same
applies to the remaining 7 columns.

B.2 Proof of Condition 2

For each active bit in the nibble cell Si (0 ≤ i ≤ 31) in the input, after applying
the S-box and the bit permutation satisfying Condition 1, there will exist 4

s0 s16 s32 s48 s64 s80 s96 s112
s1 s17 s33 s49 s65 s81 s97 s113
s2 s18 s34 s50 s66 s82 s98 s114
s3 s19 s35 s51 s67 s83 s99 s115
s4 s20 s36 s52 s68 s84 s100 s116
s5 s21 s37 s53 s69 s85 s101 s117
s6 s22 s38 s54 s70 s86 s102 s118
s7 s23 s39 s55 s71 s87 s103 s119
s8 s24 s40 s56 s72 s88 s104 s120
s9 s25 s41 s57 s73 s89 s105 s121
s10 s26 s42 s58 s74 s90 s106 s122
s11 s27 s43 s59 s75 s91 s107 s123
s12 s28 s44 s60 s76 s92 s108 s124
s13 s29 s45 s61 s77 s93 s109 s125
s14 s30 s46 s62 s78 s94 s110 s126
s15 s31 s47 s63 s79 s95 s111 s127

Pbk1=⇒

s0 s20 s119 s7 s79 s53 s126 s19
s11 s57 s26 s107 s30 s93 s59 s104
s58 s63 s95 s74 s25 s44 s91 s56
s29 s35 s81 s41 s13 s27 s6 s120
s47 s80 s9 s92 s86 s90 s121 s88
s36 s89 s39 s1 s18 s101 s34 s112
s100 s4 s40 s16 s48 s122 s110 s78
s49 s106 s113 s109 s123 s2 s17 s14
s111 s12 s102 s85 s103 s114 s52 s98
s33 s116 s105 s82 s3 s38 s96 s46
s83 s115 s50 s37 s99 s77 s43 s23
s73 s97 s67 s69 s55 s87 s61 s32
s76 s42 s125 s127 s45 s51 s10 s84
s68 s70 s54 s8 s72 s15 s64 s71
s118 s75 s60 s31 s124 s22 s117 s94
s65 s24 s28 s62 s108 s5 s21 s66

S0 = (s0, s1, s2, s3)T S1 = (s4, s5, s6, s7)T S2 = (s8, s9, s10, s11)T S3 = (s12, s13, s14, s15)T

Fig. 10: Transition of a state after applying Pbk1.

different groups of inputs to the binary matrix, each of which will contain exactly
one active nibble, as shown in Fig. 11. Therefore, there will be 12 active nibbles
after MatrixMul in the first round, which will activate 12 nibbles located in the
same positions in the second round after S-box operation, as depicted in Fig. 12.
Therefore, there are 12 nibbles (48 bits in total) in the state after the S-box (with
full-diffusion property) operation in the second round, independent of the value
of the one active bit in the input to the first round.

After applying a permutation satisfying Condition 2 for these 48 bits, in
each column of the 4× 8 array, there exist at least 2 nibble cells containing the
bits coming from these 48 bits, as shown in Fig. 13 for bit level and in Fig. 14
for nibble level. In other words, after applying the bit permutation satisfying
Condition 2 in the second round, in each column of the nibble array, there are at
least 2 nibbles dependent of the one active bit in the input to the first round.
When the MatrixMul operation is further applied to each column of the 4 × 8
nibble array, the values of all the four nibbles in each column will therefore
dependent of the one active bit in the input to the first round. However, it cannot
be guaranteed that the value of each bit will be dependent of the one active bit.
Thus, after further applying the S-box with a full-diffusion property in the third
round, all 128 bits become dependent of the one active bit. This means that the
full diffusion is achieved by 2.5 rounds.

An example to explain the 2.5-round diffusion can be referred to Fig. 11, 12, 13,
and Fig. 14.

C Details of Security Evaluation

C.1 DDT of S-box
The aforementioned DDT table of our S-box is shown shown in Table 13 , where
din and dout denote the input and output difference of 4-bit S-box, respectively.

s0 s16 s32 s48 s64 s80 s96 s112
s1 s17 s33 s49 s65 s81 s97 s113
s2 s18 s34 s50 s66 s82 s98 s114
s3 s19 s35 s51 s67 s83 s99 s115
s4 s20 s36 s52 s68 s84 s100 s116
s5 s21 s37 s53 s69 s85 s101 s117
s6 s22 s38 s54 s70 s86 s102 s118
s7 s23 s39 s55 s71 s87 s103 s119
s8 s24 s40 s56 s72 s88 s104 s120
s9 s25 s41 s57 s73 s89 s105 s121
s10 s26 s42 s58 s74 s90 s106 s122
s11 s27 s43 s59 s75 s91 s107 s123
s12 s28 s44 s60 s76 s92 s108 s124
s13 s29 s45 s61 s77 s93 s109 s125
s14 s30 s46 s62 s78 s94 s110 s126
s15 s31 s47 s63 s79 s95 s111 s127

Pbk1=⇒

s0 s20 s119 s7 s79 s53 s126 s19
s11 s57 s26 s107 s30 s93 s59 s104
s58 s63 s95 s74 s25 s44 s91 s56
s29 s35 s81 s41 s13 s27 s6 s120
s47 s80 s9 s92 s86 s90 s121 s88
s36 s89 s39 s1 s18 s101 s34 s112
s100 s4 s40 s16 s48 s122 s110 s78
s49 s106 s113 s109 s123 s2 s17 s14
s111 s12 s102 s85 s103 s114 s52 s98
s33 s116 s105 s82 s3 s38 s96 s46
s83 s115 s50 s37 s99 s77 s43 s23
s73 s97 s67 s69 s55 s87 s61 s32
s76 s42 s125 s127 s45 s51 s10 s84
s68 s70 s54 s8 s72 s15 s64 s71
s118 s75 s60 s31 s124 s22 s117 s94
s65 s24 s28 s62 s108 s5 s21 s66

S0 = (s0, s1, s2, s3)T

Fig. 11: The 4 active bits after the bit permutation in the first round, as marked
in red.

 S0 S4 S8 S12 S16 S20 S24 S28
S1 S5 S9 S13 S17 S21 S25 S29
S2 S6 S10 S14 S18 S22 S26 S30
S3 S7 S11 S15 S19 S23 S27 S31

Fig. 12: The 12 active nibbles after MatrixMul in the first round, marked in red.

s0 s16 s32 s48 s64 s80 s96 s112
s1 s17 s33 s49 s65 s81 s97 s113
s2 s18 s34 s50 s66 s82 s98 s114
s3 s19 s35 s51 s67 s83 s99 s115
s4 s20 s36 s52 s68 s84 s100 s116
s5 s21 s37 s53 s69 s85 s101 s117
s6 s22 s38 s54 s70 s86 s102 s118
s7 s23 s39 s55 s71 s87 s103 s119
s8 s24 s40 s56 s72 s88 s104 s120
s9 s25 s41 s57 s73 s89 s105 s121
s10 s26 s42 s58 s74 s90 s106 s122
s11 s27 s43 s59 s75 s91 s107 s123
s12 s28 s44 s60 s76 s92 s108 s124
s13 s29 s45 s61 s77 s93 s109 s125
s14 s30 s46 s62 s78 s94 s110 s126
s15 s31 s47 s63 s79 s95 s111 s127

Pbk1=⇒

s0 s20 s119 s7 s79 s53 s126 s19
s11 s57 s26 s107 s30 s93 s59 s104
s58 s63 s95 s74 s25 s44 s91 s56
s29 s35 s81 s41 s13 s27 s6 s120
s47 s80 s9 s92 s86 s90 s121 s88
s36 s89 s39 s1 s18 s101 s34 s112
s100 s4 s40 s16 s48 s122 s110 s78
s49 s106 s113 s109 s123 s2 s17 s14
s111 s12 s102 s85 s103 s114 s52 s98
s33 s116 s105 s82 s3 s38 s96 s46
s83 s115 s50 s37 s99 s77 s43 s23
s73 s97 s67 s69 s55 s87 s61 s32
s76 s42 s125 s127 s45 s51 s10 s84
s68 s70 s54 s8 s72 s15 s64 s71
s118 s75 s60 s31 s124 s22 s117 s94
s65 s24 s28 s62 s108 s5 s21 s66

Fig. 13: The 48 active bits after bit permutation in the second round, marked
in red.

 S0 S4 S8 S12 S16 S20 S24 S28
S1 S5 S9 S13 S17 S21 S25 S29
S2 S6 S10 S14 S18 S22 S26 S30
S3 S7 S11 S15 S19 S23 S27 S31

Fig. 14: The active nibbles after bit permutation in the second round, marked
in red.

Table 13: The differential distribution table of S-box.

din

dout 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

0x0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0x1 0 2 2 4 0 2 2 0 0 0 0 4 0 0 0 0
0x2 0 0 2 2 4 4 0 0 2 2 0 0 0 0 0 0
0x3 0 2 2 0 0 2 0 2 0 0 2 2 0 0 4 0
0x4 0 0 2 0 2 0 4 0 2 2 0 2 2 0 0 0
0x5 0 0 2 2 0 4 0 0 0 4 0 0 0 0 2 2
0x6 0 2 2 0 2 0 0 2 0 0 0 0 2 2 2 2
0x7 0 2 0 0 0 0 2 4 0 0 2 0 4 2 0 0
0x8 0 2 0 0 2 0 0 0 4 2 4 0 2 0 0 0
0x9 0 0 0 2 0 0 0 2 0 2 2 2 2 0 0 4
0xa 0 2 0 0 2 0 0 0 0 2 2 2 0 2 4 0
0xb 0 0 2 0 0 0 2 0 2 0 2 2 0 2 0 4
0xc 0 2 2 2 0 2 0 0 0 0 2 0 2 2 2 0
0xd 0 2 0 2 0 0 2 2 2 2 0 0 0 2 0 2
0xe 0 0 0 0 0 2 4 2 4 0 0 0 0 2 0 2
0xf 0 0 0 2 4 0 0 2 0 0 0 2 2 2 2 0

C.2 Modeling S-box

Based on the method of [SHW+14], we derive following 37 linear inequalities from
Table 13, where din = (din0 , din1 , din2 , din3) and dout = (dout0 , dout1 , dout2 , dout3).

−din0 − din1 + 2din2 − din3 − 2dout0 + 2dout1 − dout2 + dout3 + 3 ≥ 0
din0 + din1 − din2 + din3 + dout0 + dout1 + dout2 ≥ 0
din0 + 2din2 + din3 + dout0 − dout1 − dout2 − 2dout3 + 2 ≥ 0
2din0 − din1 + din2 + 2din3 + dout0 − dout1 + dout2 − 2dout3 + 2 ≥ 0
din0 − 2din1 − 2din2 − din3 + 2dout0 − 2dout1 + 2dout2 − dout3 + 6 ≥ 0
−din0 + 2din1 − 2din2 − din3 + 2dout0 + dout1 − dout2 − 2dout3 + 5 ≥ 0
din0 + din1 + 2din2 + 2din3 − dout1 − dout3 ≥ 0
din0 + 2din1 + din2 + 2din3 − dout0 − dout1 − dout2 − dout3 + 1 ≥ 0
din0 + din1 − din2 + dout0 − dout1 − dout2 + dout3 + 2 ≥ 0
din1 + din2 + 2din3 − dout1 − dout2 − dout3 + 1 ≥ 0
2din0 + din2 + din3 − 2dout0 + dout1 − 2dout2 + 2dout3 + 2 ≥ 0
din0 − din2 − din3 − dout0 − dout1 − dout2 − dout3 + 5 ≥ 0
din0 + 2din1 + 2din2 − 2dout0 − 1dout1 − 1dout2 + dout3 + 2 ≥ 0
−din0 + 2din1 + din2 + din3 + 2dout0 − 2dout2 + dout3 + 1 ≥ 0
din0 + din1 + din2 − din3 − dout0 + dout1 + dout2 + dout3 ≥ 0
din0 + din1 + din2 − 2dout0 − dout1 + dout2 − dout3 + 2 ≥ 0
−din0 + din1 + din3 + dout0 − dout1 − dout3 + 2 ≥ 0
−din0 − din1 + din2 − dout0 + dout1 − dout2 − dout3 + 4 ≥ 0
din0 − din2 + din3 + dout0 − dout1 − dout2 + dout3 + 2 ≥ 0
din0 − din1 − din2 + dout1 − dout2 − dout3 + 3 ≥ 0
−din1 − 2din2 − din3 − 2dout0 + 2dout1 + 2dout2 − dout3 + 5 ≥ 0
−3din0 − 2din1 − 3din2 + din3 + 4dout0 + 3dout1 + dout2 + 2dout3 + 4 ≥ 0
2din0 − din1 + din2 − 3din3 + 2dout0 + dout1 + 4dout2 + 3dout3 ≥ 0
din0 − 2din1 − 2din2 − 2dout0 + 2dout1 + dout2 − 1dout3 + 5 ≥ 0
−3din0 + din1 + din2 − 2din3 + 2dout0 − 2dout1 + 3dout2 − 1dout3 + 5 ≥ 0
−2din0 − 2din1 + din2 + din3 + 3dout0 + 2dout1 + 4dout2 + 4dout3 ≥ 0
din0 − din1 + 2din2 − 3din3 + dout0 − dout1 + 2dout2 + 3dout3 + 2 ≥ 0
−din0 + din1 − 2din2 + din3 − 2dout0 − dout1 + 2dout2 + 2dout3 + 4 ≥ 0
−2din0 − 2din1 + din2 + din3 + 2dout0 − 1dout1 + dout2 + 2dout3 + 3 ≥ 0
−din0 − 2din1 − din2 + din3 − dout0 + 2dout1 + dout2 − 2dout3 + 5 ≥ 0
din1 − din2 − dout0 − dout1 + dout2 + dout3 + 2 ≥ 0
−din0 − din1 − din2 + din3 − dout0 − dout2 + dout3 + 4 ≥ 0
−3din0 − 4din1 − 2din2 − 2din3 + dout0 + 3dout1 − dout2 + 4dout3 + 8 ≥ 0
−din1 − din2 − din3 − dout0 − dout1 − dout2 − dout3 + 6 ≥ 0
−din0 + din1 − din3 − dout0 − dout1 − dout2 + dout3 + 4 ≥ 0
din0 − din1 − din2 − din3 − dout0 − dout1 − dout2 + 5 ≥ 0
−din0 + din2 − din3 − dout0 − dout1 − dout2 + dout3 + 4 ≥ 0

C.3 Impossible Differential Characteristics of
Orthros/Branch1/Branch2

3/5/5-round impossible differential characteristics of Orthros/Branch1/Branch2
are shown as follows.

Orthros:

Input

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

3 rounds−→

Output

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

,

Branch1 :

Input

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

5 rounds−→

Output

0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

,

Branch2 :

Input

1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

5 rounds−→

Output

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

.

C.4 Modeling for Division Property

Modeling S-box. Similar to Section 4.2, one could build a table to describe the
propagation of the division property through S-box, as shown in Table 14. In this

Table 14: The propagation of the division property for the S-box.

u

v 0x0 0x1 0x2 0x4 0x8 0x3 0x5 0x9 0x6 0xa 0xc 0x7 0xb 0xd 0xe 0xf

0x0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0x1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0x2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0x4 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0x8 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0x3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0x5 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0x9 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0x6 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0xa ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0xc ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0x7 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0xb ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0xd ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0xe ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0xf ∗

table, u and v denote the input and output division property of S-box, respectively.
The entry at (u, v) is ∗ when the propagation u → v is possible. Otherwise,
the propagation is impossible. Based on the method proposed by [SHW+14],
such a table is equivalent to the linear inequalities as shown below, where
u = (u0, u1, u2, u3) and v = (v0, v1, v2, v3).

−u0 − u1 + 2v0 + 2v1 + 2v2 + v3 ≥ 0
−u0 − u2 + v0 + v1 + v3 + 1 ≥ 0
−u2 − u3 + v0 + 2v1 + 2v2 + 2v3 ≥ 0
−u0 − u1 − u3 + 3v0 + 2v1 + 3v2 + 2v3 ≥ 0
−u0 − u3 + 2v0 + v1 + 2v2 + 2v3 ≥ 0
−u0 − u1 − u2 + v0 + v1 + 2 ≥ 0
−4u0 − 3u1 − 4u2 − 4u3 + v0 + v1 + v2 + 2v3 + 10 ≥ 0

Modeling the Binary Matrix. For the matrixMul operation, it can also be viewed
that the binary matrix Mb works on four bits independently. Let B = Mb · A,
where A,B ∈ F4

2. Therefore, we could pre-compute a table to describe the
mapping from A to B, as specified in Table 15.

Table 15: The mapping of the binary matrix.
A 0 1 2 3 4 5 6 7 8 9 a b c d e f
B 0 14 13 3 11 5 6 8 7 9 10 4 12 2 1 15

To model the propagation of the division property through the binary ma-
trix, similar to the way we model S-box, we first build a table to describe the

propagation rule (Table 16), where w and z denote the input and output division
property. The entroy (w, z) is marked as ∗ when the propagation w → z is possi-
ble. Otherwise, the propagation is impossible. By using the method of [SHW+14],

Table 16: The propagation of the division property for the binary matrix.

w

z
0x0 0x1 0x2 0x4 0x8 0x3 0x5 0x9 0x6 0xa 0xc 0x7 0xb 0xd 0xe 0xf

0x0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0x1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0x2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0x4 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0x8 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0x3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0x5 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0x9 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0x6 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0xa ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0xc ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0x7 ∗ ∗ ∗ ∗
0xb ∗ ∗ ∗ ∗
0xd ∗ ∗ ∗ ∗
0xe ∗ ∗ ∗ ∗
0xf ∗

Table 16 can be expressed by the linear inequalities as displayed below, where
w = (w0, w1, w2, w3) and z = (z0, z1, z2, z3).

−w0 − w1 − w2 + z3 + 2 ≥ 0
−w0 − w1 − w3 + z2 + 2 ≥ 0
−w0 − w1 − w2 − w3 + z0 + z1 + z2 + z3 ≥ 0
−w0 − w2 − w3 + z1 + 2 ≥ 0
−w1 − w2 − w3 + z0 + 2 ≥ 0
−w0 − w2 + z0 + z2 + 1 ≥ 0
−w0 − w1 + z0 + z1 + 1 ≥ 0
−w1 − w2 + z1 + z2 + 1 ≥ 0
−w1 − w3 + z1 + z3 + 1 ≥ 0
−w2 + z0 + z1 + z3 ≥ 0
−w3 + z0 + z1 + z2 ≥ 0
−w2 − w3 + z2 + z3 + 1 ≥ 0
−w1 + z0 + z2 + z3 ≥ 0
−w0 + z1 + z2 + z3 ≥ 0
−w0 − w3 + z0 + z3 + 1 ≥ 0

D Additional Hardware Results

Cipher Area Power Energy Latency Max TP
(µm2) (GE) (mW) (pJ) (ps) (Gbps)

Orthros 5766.1 29328 2.332 233.18 485.72 245.428
5792.8 29464 2.187 218.74 450.00 264.910
6013.5 30586 2.038 203.85 400.00 298.023
7439.2 37838 2.637 263.73 351.55 339.096

Midori-128 5102.3 25952 3.354 335.36 850.55 140.156
5116.7 26025 3.251 325.12 800.00 149.012
5156.9 26229 3.132 313.15 750.00 158.946
5298.5 26950 3.138 313.80 700.00 170.299
5731.8 29153 3.305 330.49 650.00 183.399
6976.4 35484 4.466 446.60 603.78 197.438

QARMA9-128-σ0 6263.3 31857 4.160 415.98 908.09 131.275
6304.8 32068 3.810 380.95 800.00 149.012
7085.8 36040 3.861 386.12 700.00 170.299
8869.9 45115 5.611 561.05 640.00 186.265

PRINCE 1664.3 8465 0.671 67.14 536.37 222.252
1671.5 8502 0.657 65.71 500.00 238.419
1698.5 8639 0.604 60.36 450.00 264.910
1889.6 9611 0.599 59.98 400.00 298.023
2337.9 11891 0.894 89.43 371.62 320.783

Kangaroo12-PRF[1600] 26957.8 137114 13.470 1347.04 722.32 165.036
27298.5 138847 12.223 1222.25 650.00 183.400
28803.4 146502 12.884 1288.39 600.00 198.682
31052.8 157943 13.096 1309.60 576.65 206.727

Kangaroo12-PRF[400] 7332.0 37293 3.812 381.22 765.95 155.636
7407.3 37675 3.711 371.08 700.00 170.300
7584.7 38578 3.501 350.11 650.00 183.400
8278.4 42106 5.571 557.07 602.81 197.756

Subterranean-PRF 7582.4 38566 3.548 354.78 692.84 172.059
7586.4 38586 3.385 338.53 650.00 183.400
7661.4 38968 3.122 312.22 600.00 198.682
8392.3 42865 2.878 287.80 543.21 219.453

Table 17: Results for the Nangate 15nm library. Power measured at 10 MHz.

Cipher Area Power Energy Latency Max TP
(µm2) (GE) (mW) (pJ) (ns) (Gbps)

Orthros 76712.1 27179 2.452 245.22 9.37 12.722
77355.6 27407 2.525 252.49 8.00 14.901
83566.3 29607 3.478 347.79 7.00 17.030
95896.7 33976 4.447 444.73 6.00 19.868
124746.6 44197 5.393 539.28 5.29 22.535

Midori-128 67710.8 23990 3.817 381.72 15.89 7.502
67938.7 24070 4.090 408.97 14.00 8.515
73455.8 26025 5.374 537.38 12.00 9.934
90043.0 31902 7.200 719.96 10.00 11.921
122156.3 43279 9.138 913.82 9.05 13.172

QARMA9-128-σ0 80258.5 28435 4.2252 422.52 17.40 6.851
80844.1 28643 5.2578 525.78 15.00 7.947
89048.8 31550 6.8206 682.06 13.00 9.170
107814.3 38198 8.4356 843.56 11.00 10.837
153286.0 54309 10.3168 1031.68 9.43 12.641

PRINCE 22036.6 7807 0.699 69.94 9.79 12.177
22674.5 8033 0.911 91.09 8.00 14.901
25879.3 9169 1.135 113.47 7.00 17.030
31206.6 11056 1.421 142.12 6.00 19.868
42518.8 15064 1.898 189.81 5.52 21.596

Kangaroo12-PRF[1600] 372818.5 132088 21.558 2155.83 16.21 7.354
379806.1 134564 20.788 2078.78 14.00 8.515
424274.4 150319 24.212 2421.24 11.00 10.837
504947.1 178901 29.376 2937.59 9.12 13.071

Kangaroo12-PRF[400] 104761.8 37117 5.259 525.93 15.15 7.869
104882.5 37159 5.661 566.09 14.00 8.515
121185.4 42935 7.248 724.75 11.00 10.837
151044.3 53514 9.119 911.92 9.27 12.860

Subterranean-PRF 103337.2 36612 3.367 336.72 14.28 8.348
105067.4 37225 3.388 338.77 12.00 9.934
123273.3 43675 5.149 514.85 10.00 11.921
156786.4 55549 5.227 522.74 7.98 14.938

Table 18: Results for the TSMC 90nm library. Power measured at 10 MHz.

Cipher Area Power Energy Latency Max TP
(µm2) (GE) (mW) (pJ) (ns) (Gbps)

Orthros 21404.5 26756 15.952 1595.20 3.81 31.289
21466.2 26833 14.858 1485.80 3.50 34.060
21548.4 26936 13.386 1338.60 3.00 39.736
24028.6 30036 13.237 1323.70 2.68 44.481

Midori-128 18784.7 23481 23.088 2308.79 6.29 18.952
18808.6 23511 22.071 2207.10 6.00 19.868
18971.7 23715 21.533 2153.30 5.50 21.674
19666.7 24583 21.014 2101.40 5.00 23.842
20396.6 25496 21.066 2106.60 4.72 25.256

QARMA9-128-σ0 22866.4 28583 28.055 2805.50 6.68 17.846
22903.4 28629 27.896 2789.60 6.50 18.340
22956.6 28696 25.678 2567.80 6.00 19.868
23044.9 28806 23.804 2380.4 5.50 21.674
24699.2 30874 24.174 2417.40 4.92 23.842

PRINCE 6037.4 7547 4.371 437.11 3.87 30.803
6072.8 7591 4.135 413.54 3.50 34.060
6473.9 8092 3.994 399.43 3.00 39.736
6693.1 8366 4.005 400.55 2.92 40.825

Kangaroo12-PRF[1600] 99007.3 124069 85.880 8588.00 5.08 23.466
101193.1 126808 82.437 8243.70 4.70 25.364
100167.0 125522 79.505 7950.50 4.50 26.491
102999.7 129072 78.764 7876.40 4.34 27.468

Kangaroo12-PRF[400] 26726.0 33491 24.496 2449.60 5.49 21.714
26756.7 33530 23.986 2398.60 5.20 22.925
27033.3 33876 22.812 2281.20 4.80 24.835
27699.4 34711 21.814 2181.40 4.50 26.491

Subterranean-PRF 27671.7 34676 22.760 2276.03 5.01 23.794
27696.2 34707 22.225 2222.50 4.70 25.364
28071.5 35177 21.406 2140.60 4.30 27.723
28960.2 36291 20.762 2076.20 3.98 29.952

Table 19: Results for the Nangate 45nm library. Power measured at 10 MHz.

E Test Vectors

Table 20 presents two test vectors for Orthros.

Table 20: Test vectors for Orthros in hex.
Plaintext 00000000000000000000000000000000
Key 00000000000000000000000000000000
Ciphertext 6060acb118f411e434ba4e01984de0de

Plaintext a947436710924ccd47f2d571deea8f05
Key 4a2be60e3db6abe0c03eaec66fd05d0c
Ciphertext e4cec0d077a3401d8c4d07b6d5196e5f

	Orthros: A Low-Latency PRF
	Introduction
	Low-Latency Encryption
	Our Design

	Specification
	Key Scheduling Function
	Round Function of Branch1 and Branch2

	Design Rationale
	General Construction
	Linear Layer
	Bit Permutation vs Nibble Permutation.
	Finding Optimal Bit Permutations for Diffusion.
	Finding Good Nibble Permutation for Active S-boxes.
	Hybrid Use of Bit and Nibble Permutations.

	S-box
	Key Scheduling Function

	Security Evaluation
	Differential/Linear Attack
	Impossible Differential Attack
	Integral Attack
	Invariant Subspace Attack
	Meet-in-the-Middle Attack
	Yoyo and Mixture-Differential Attacks
	Difficulty of Key-Recovery Attacks

	Hardware Evaluation
	Conclusions
	Toy Ciphers
	Detailed Explanations for Conditions 1 and 2
	Condition 1
	Proof of Condition 2

	Details of Security Evaluation
	DDT of S-box
	Modeling S-box
	Impossible Differential Characteristics of Orthros/Branch1/Branch2
	Modeling for Division Property

	Additional Hardware Results
	Test Vectors

