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Introduction

It is well–known that error correcting codes lie among the possible candidates for
post quantum cryptographic primitives. For codes endowed with the Hamming
metric the story begins in 1978 with McEliece’s proposal [14]. The security of this
scheme relies on two difficult problems: the hardness of distinguishing classical
Goppa codes from arbitrary codes and the hardness of the syndrome decoding
problem. To instantiate McEliece scheme, the only requirement is to have a
family of codes whose structure can be hidden and benefiting from an efficient
decoder. In particular, this paradigm does not require the use of codes endowed
with the Hamming metric. Hence other metrics may be considered such as the
rank metric, as proposed by Gabidulin, Paramonov and Tretjakov in [8].

Besides McEliece’s paradigm, another approach to perform encryption with
error correcting codes consists in using codes whose structure is no longer hidden
but where encryption is performed so that decryption without the knowledge of
the secret key would require to decode the public code far beyond the decoding
radius. This principle has been first instantiated in Hamming metric by Augot
and Finiasz in [3] using Reed–Solomon codes. Later, a rank metric counterpart
is designed by Faure and Loidreau in [7]. Both proposals have been subject to
attacks, by Coron [6] for the Hamming metric proposal and by Gaborit, Otmani
and Talé–Kalachi [9] for the rank metric one. More recently, two independent
and different repairs of Faure–Loidreau scheme resisting to the attack of Gaborit,
Otmani and Talé–Kalachi appeared. The first one, due to Renner, Puchinger



and Wachter–Zeh and is called Liga [19,16]. The second one, due to Lavauzelle,
Loidreau and Pham is called Ramesses [12].

Our contribution In the present article, we show how to extend the decod-
ing of a Gabidulin code to a supercode at the cost of a significant decrease of
the decoding radius. With this decoder in hand we perform a polynomial time
message recovery attack on Ramesses and Liga.

1 Notation and Prerequisites

In this article, we work over a finite field Fq and we frequently consider two
nested extensions denoted Fqm and Fqmu . Rank metric codes will be subspaces
C ⊆ Fnqm , the code length and dimension are respectively denoted as n and k.

Vectors are represented by lower case bold face letters such as a, c, e and
matrices by upper case letters A,G,M . The space of m × n matrices with
entries in a field K is denoted by Mm,n(K). When m = n we denote it by
Mn(K) and the group of non-singular matrices is denoted by GLn(K). Given
a matrix M ∈ Mm,n(Fq) its rank is denoted by rankq(M). Similarly, given
a vector c ∈ Fnqm , the Fq–rank or rank of c is defined as the dimension of the
subspace of Fqm spanned by the entries of c. Namely,

rankq(c)
def
= dimFq

(
SpanFq

{c1, . . . , cn}
)
.

We will consider two notions of support in the rank metric. Inspired by the
Hamming metric, the most natural one which we will denote by the column
support of a vector c ∈ Fnqm is the linear subspace spanned by its coordinates:

Supp(c)
def
= SpanFq

{c1, . . . , cn}.

Given c = (c1, . . . , cn) ∈ Fnqm , and j ∈ {0, . . . ,m− 1}, we denote

c[j]
def
= (cq

j

1 , . . . , c
qj

n ).

Similarly, for a code C ⊆ Fnqm , we denote C [j] def
=
{
c[j]

∣∣ c ∈ C
}
. Let n 6 m,

k 6 n and g ∈ Fnqm with rankq(g) = n, the Gabidulin code of dimension k
supported by g is defined as

Gk(g)
def
= SpanFqm

{
g[i]

∣∣ 0 6 i 6 k − 1
}
.

A q–polynomial is a polynomial P ∈ Fqm [X] whose monomials are only q–th
powers of X, i.e. a polynomial of the form P (X) = p0X + p1X

q + · · ·+ prX
qr .

Assuming that pr 6= 0 then the integer r is called the q–degree of P . Such a
polynomial induces an Fq–linear map P : Fqm → Fqm and we call the rank of the
q–polynomial, the rank of the induced map. A well–known fact on q–polynomials



is that the Fq–dimension of the kernel of the induced endomorphism is bounded
from above by their q-degree. Conversely, any Fq–linear endomorphism of Fqm
is uniquely represented by a q–polynomial of degree < m. Denote by L the
space of q–polynomials, this space equipped with the composition law is a non
commutative ring which is left and right Euclidean [11, § 1.6] and the two–sided
ideal (Xqm −X) is the kernel of the canonical map

L −→ HomFq
(Fqm ,Fqm)

inducing an isomorphism : L/(Xqm −X) ' HomFq (Fqm ,Fqm). Finally, given a
positive integer k < m, we denote by L<k (resp. L6k) the space of q–polynomials
of q–degree less than (resp. less than or equal to) k. The Gabidulin code Gk(g)
is canonically isomorphic to L<k under the isomorphism:{

L<k −→ Gk(g)
P 7−→ (P (g1), . . . , P (gn)).

The above map is actually an isometry: it is rank preserving. In this article, we
will extensively use this isometry and Gabidulin codes will be represented either
as an evaluation code or as a space of q–polynomials of bounded degree L<k,
when one representation is more suitable than the other.

Another notion which is very useful in the sequel is the notion of adjoint of
a class of q–polynomial P =

∑m−1
i=0 piX

qi in L/(Xqm −X), which is defined as

P
∨
(X)

def
=

m−1∑
i=0

Xqm−i

pi =

m−1∑
i=0

pq
m−i

i Xqm−i

. (1)

Regarding P as an Fq–linear endomorphism of Fqm , the notion of adjoint is
nothing but the usual notion of adjoint or transposed endomorphism with respect

to the inner product

{
Fqm × Fqm −→ Fq

(x, y) 7−→ TrFqm/Fq
(xy)

(see [2, Section 2.4]) In

particular, for any P ∈ L/(Xqm −X), we have rankq(P ) = rankq(P
∨
).

2 Two Rank Metric Proposals with Short Keys

2.1 Liga encryption scheme

In this section, we recall Faure–Loidreau cryptosystem [7] and the repaired ver-
sion [19] recently extended to proposal Liga [16].

Parameters Let q,m, n, k, u, w be positive integers such that q is a prime
power, u < k < n and

n− k > w > bn−k2 c.
In the following, we consider the three finite fields Fq ⊆ Fqm ⊆ Fqmu .

Let tpub
def
= bn−k−w2 c be the public Fq–rank of the error in the ciphertext,

and let G be a generator matrix of a public Gabidulin code of length n and
dimension k over Fqm .



Key generation. Alice picks uniformly at random a vector x ∈ Fkqmu whose
last u entries form an Fqm–basis of Fqmu , and a vector z ∈ Fnqmu of Fq−rank
w. In order to do that, she chooses a full-rank vector s ∈ Fwqmu and a non-
singular matrix P ∈ GLn(Fq) and sets

z = (s | 0) · P−1.

The private key is then (x, z,P ) and the public key is the vector

kpub
def
= x ·G + z ∈ Fnqmu .

The key generation is summarised by Algorithm 1.

Algorithm 1: Original Faure–Loidreau Key Generation

Input: Parameters q,G,m, n, k, u, w.
Output: Private key sk, and public key pk

1 x
$←− {a ∈ Fk

qmu | dim(SpanFqm {ak−u+1, . . . , ak}) = u}

2 s
$←− {a ∈ Fw

qmu | rankq(a) = w}
3 P

$←− GLn(Fq)
4 z ← (s | 0) · P−1

5 kpub ← x ·G + z
6 sk← (x,z,P )
7 pk← kpub

8 return (sk,pk)

Encryption. Let m = (m1, . . . ,mk−u, 0, . . . , 0) ∈ Fkqm be the plaintext. Note
that the last u entries are chosen to be zero in order to be able to decrypt.
The encryption of m works as follows:

1. Pick α ∈ Fqmu at random.
2. Pick e ∈ Fnqm such that rankq(e) 6 tpub at random.

The ciphertext is then c ∈ Fnqm :

c = m ·G + Trqmu/qm(αkpub) + e.

As shown in (2) below, the public key acts on the one hand as a one-time
pad on the message m, and on the other hand adds a random error of large
weight. The ciphertext can indeed be seen as a codeword of the Gabidulin
code corrupted by a two-part errors formed by the private key z and the
random error vector e:

c = (m + Trqmu/qm(αx)) ·G + (Trqmu/qm(αz) + e). (2)

With very high probability, the error in the ciphertext is of rank-weight
w+ tpub. See [16] for a detailed discussion about the parameters in order to
avoid so-called weak keys.



Decryption. The receiver first computes

c · P = (m + Trqmu/qm(αx)) ·GP + (Trqmu/qm(αs) | 0) + eP .

whose last n− w entries are given by

c′ = (m + Trqmu/qm(αx)) ·G′ + e′,

where G′ is the generator matrix of a Gabidulin code of length n − w and
dimension k and e′ is an error vector of rank-weight at most tpub = bn−w−k2 c.
By decoding in this new Gabidulin code, the receiver obtains the vector

m′ = m + Trqmu/qm(αx).

Since by construction m is chosen such that its last u components are 0
and the last u components of x form a basis of Fqmu/Fqm , the receiver can
deduce the plaintext m from the knowledge of m′ and x. This encryption
scheme has no decryption failure.

A Key Recovery Attack. In [9], Gaborit, Otmani and Talé–Kalachi showed
that a valid private key for this system could be efficiently computed from kpub,
and later in [19] and [16], Renner, Puchinger and Wachter–Zeh introduced a
coding-theoretic interpretation of the public key as a corrupted codeword of an
u–interleaved Gabidulin code. They derived an equally powerful key recovery
attack, and proved that the failure conditions of both attacks were equivalent.

Based on this interpretation, Renner et. al. proposed to change the key gen-
eration algorithm to resist previous attacks. More precisely, they proved that if
ζ denotes the dimension of the Fqm–support of z, all then known attacks were
inefficient when ζ < w

n−k−w . The new key generation can be summarised in
Algorithm 2.

2.2 Ramesses

In this section, we present the proposal Ramesses [12] which is another repair of
the Faure–Loidreau scheme. We chose to describe the scheme in a rather different
manner which turns out to be completely equivalent to the original proposal. The
connection between this point of view and that of the original article is detailed
in Appendix A. Our presentation rests only on q–polynomials. As explained in
Section 1, the space L<k will be regarded as a Gabidulin code of dimension k.
We also fix an Fq–basis B of Fqm , which permits to have an m × m matrix
representation of q–polynomials (modulo (Xqm −X)) and conversely provides a
description of any m×m matrix with entries in Fq as a q–polynomial of q–degree
less than m.

Parameters The public parameters are integers 1 6 w, k, `, t 6 m and should
satisfy

t 6
n− k − `− w

2
· (3)



Algorithm 2: Liga Key Generation

Input: Parameters q,G,m, n, k, u, w, ζ.
Output: Private key sk, and public key pk

1 γ
$←− {a ∈ Fu

qmu | rankqm(a) = u}
2 x

$←− {a ∈ Fk
qmu | dim(SpanFqm {ak−u+1, . . . , ak}) = u}

3 A $←− {subspaces U ⊆ Fw
qm | dimU = ζ, U has a basis of full-Fq-rank elements}

4

s1

...
su

 $←−


s′1

...
s′u

 | 〈s′1, . . . , s′u〉Fqm = A, rankq(s′i) = w ∀i


5 s←

∑u
i=1 siγ

∗
i

6 P
$←− GLn(Fq)

7 z ← (s | 0) · P−1

8 kpub ← xG + z
9 sk← (x,z,P )

10 pk← kpub

11 return (sk,pk)

Key generation Alice picks a uniformly random q–polynomial Ksec of rank w.
The public key is the affine space:

Cpub
def
= Ksec + L<k.

Encryption The plaintext m is a t–dimensional Fq–subspace of Fqm . It is en-
crypted as follows:
– Pick a uniformly random T ∈ L of q–degree `
– Pick a uniformly random E ∈ L<m whose matrix representation admits

m as its row space, equivalently E is such that m is the image of E
∨
.

– Pick a uniformly random C ∈ L<k
– Pick a uniformly random C0 ∈ L<k, yielding a uniformly random

C ′ = C0 +Ksec ∈ Cpub.

The ciphertext is

Y
def
= C + C ′ ◦ T + E. (4)

Note that, this cipher text satisfies

Y = C1 +Ksec ◦ T + E, (5)

where C1 = C + C0 ◦ T ∈ L<k + L<k ◦ T ⊆ L<k+`. This C1 is a prioiri
unknown by anyone.

Decryption The owner of Ksec knows a q–polynomial V ∈ L6w such that
V ◦Ksec ≡ 0 mod (Xqm −X). Hence she can compute

V ◦ Y ≡ V ◦ C1 + V ◦ E mod (Xqm −X).



Now, V ◦C1 ∈ L<k+`+w, i.e. lies in a Gabidulin code, while rankq(V ◦E) 6
rankq(E) = t. Hence, thanks to (3), one can deduce V ◦ E and as soon as
rankq(V ◦ E) = t, the row space of the matrix representation of E is that
of V ◦ E which can be recovered.

3 Decoding of Gabidulin Codes on the Right

In this section, we assume that n = m, i.e. g
def
= (g1, . . . , gn) forms a basis of the

extension field Fqm/Fq. Let C be a Gabidulin code of dimension k and support
g. Suppose we receive a vector y = c+e where c ∈ C and e has rank t 6 bn−k2 c.
There exist three q–polynomials C ∈ L<k and Y,E ∈ L<m with rankq(E) = t
such that

Y = C + E (6)

and the polynomial Y can be deduced from the knowledge of y and the basis g
by interpolation (see for instance [18, Chapter 3]).

Remark 1. Note that the requirement n = m is necessary. Indeed, if n < m
the choice of the interpolating polynomial Y ∈ L<m is not unique and a wrong
choice for Y yields an E = Y − C of too large rank. It is not clear to us how to
weaken this condition.

In a nutshell, our approach can be explained as follows. Starting from the
decoding problem (6) and applying the adjunction operator we have to solve the
problem

Y
∨

= C
∨

+ E
∨
,

where rankqE
∨

= rankqE 6 bn−k2 c and C
∨

is contained in a code which is

equivalent to a Gabidulin code. Hence, C
∨

can be recovered by applying the
decoding algorithm of [13]. In Appendix B, we give further details on how to
implement in practice such a decoder. We believe that this algorithm might be
folklore, but we weren’t able to find it in the literature.

4 Decoding Supercodes of Gabidulin Codes

A common feature of the cryptanalyses to follow can be understood as the de-
coding of a supercode of a Gabidulin code. Consider a code (represented as a
subspace of L<m)

C
def
= L<k ⊕T ,

where T ⊆ L<m, the code C benefits from a decoding algorithm in a similar
manner to that of [13]. Indeed, given a received word Y = C + E where C ∈ C
and E ∈ L<m with rankqE = t, one can look for the left annihilator of E. Let
Λ ∈ L6t be the left annihilator of E. We have to solve

Λ ◦ Y ≡ Λ ◦ C mod (Xqm −X),



where the unknowns are Λ,C. Then, similarly to the decoding of Gabidulin
codes, one may linearise the system. For this sake, recall that C = C0 + T for
C0 ∈ L<k and T ∈ T . Therefore, we are looking for the solutions of a system

Λ ◦ Y ≡ N mod (Xqm −X) (7)

where N ∈ (L6t ◦ L<k) + L6t ◦T = L<k+t + L6t ◦T .

Lemma 1. Under the assumption that (L<k+t + L6t ◦ T ) ∩ (L6t ◦ E) = {0},
any nonzero solution (Λ,N) of the system (7) satisfies Λ ◦ E = 0.

Proof. Let (Λ,N) be such a nonzero solution. Then,

Λ ◦ Y − Λ ◦ C ≡ Λ ◦ E mod (Xqm −X).

Since Λ ◦ Y ≡ N mod (Xqm −X), the left–hand side is contained in (L<k+t +
L6t ◦ T ) while the right–hand one is contained in L6t ◦ E. Therefore, by as-
sumption, both sides are zero. This yields the result. ut

Under the hypotheses of Lemma 1, decoding can be performed as follows.

1. Solve System (7).
2. Take a nonzero solution (Λ,N) of the system. Compute the right kernel of
Λ. This kernel contains the image of E and hence the support of the error.

3. Knowing the support of E, one can recover it by solving a linear system. See
for instance [10, §3] or [1, §1.4].

Remark 2. Note that for the decoding of Gabidulin codes, once a solution (Λ,N)
is computed, one can recover C by left Euclidean division of N by Λ. In the
present situation, this calculation is no longer efficient. Indeed, the proof of
Lemma 1 permits only to assert that N ≡ Λ ◦ C mod (Xqm − X). In the
Gabidulin case, the fact that degq C < k permits to assert that degq Λ ◦ C < m
and hence that N = Λ ◦ C. This is no longer true in our setting since, there is
a priori no upper bound on the q–degree of C. For this reason, we need to use
the knowledge of the support of the error to decode.

For the decoding to succeed, the condition (L<k+t+L6t◦T )∩(L6t◦E) = {0}
needs to be satisfied. In the case of Gabidulin codes (i.e. T = {0}), this is
guaranteed by a minimum distance argument entailing that L<k+t ∩ L6t ◦ E
is zero as soon as t 6 n−k

2 . In our situation, estimating the minimum distance
of L<k+t + L6t ◦ T is difficult. However, one can expect that in the typical
case, the intersection (L<k+t + L6t ◦T ) ∩ (L6t ◦ E) is 0 when the sums of the
dimensions of the codes is less than that of the ambient space. Therefore, one
can reasonably expect to correct almost any error of rank t as soon as

k + 2t+ dim(L6t ◦T ) 6 n. (8)

In the case T = {0}, we find back the decoding radius of Gabidulin codes.



The right–hand side version. In the spirit of Section 3, a similar approach using
right–hand side decoding shows that decoding is also possible when

k + 2t+ dim(T ◦ L6t) 6 n. (9)

5 Applications to Cryptanalysis

5.1 Ramesses

Using the notation of Section 2.2, suppose we have a ciphertext as in (5):

Y = C + E with C = C1 +Ksec ◦ T,

where C1 ∈ L<k+`, T ∈ L` and E ∈ L<m of rank t. Recall that the plaintext

is the row space of E (equivalently, the image of E
∨
). We perform the right–

hand side version of the decoding algorithm of Section 4. Here the code T is
Ksec ◦L6` and the supercode C is L<k+`+T . We compute the solutions (Λ,N)
of the system

Y ◦ Λ ≡ N mod (Xqm −X),

where
N ∈ C ◦ L6t = L<k+`+t +Ksec ◦ L6`+t.

According to Lemma 1 and (9), the algorithm will very likely return pairs of the
form (Λ,C ◦ Λ) with E ◦ Λ = 0 as soon as

k+`+2t+dim(T ◦L6t) = k+`+2t+dim(Ksec◦L6t+`) = k+3t+2`+1 6 n. (10)

Once such a Λ is obtained, one recovers E and the image of E
∨

yields the
plaintext.

A comparison of (10) with the proposed parameters for Ramesses in [12,
Section 4] is given in Table 1. As observed, inequality (10) is satisfied for any
proposed parameter set.

m (= n) k w ` t Security (bits) k + 3t+ 2`+ 1

64 32 19 3 5 141 54
80 40 23 3 7 202 68
96 48 27 3 9 265 82

164 116 27 3 9 256 150

Table 1. This table compares the values of the formula (10) with the parameters
proposed for Ramesses. The first three rows are parameters for Ramesses as a KEM
and the last one are parameters for Ramesses as a PKE. Note that for any proposed
parameter set, we have m = n.



5.2 A Message Recovery Attack Against Liga Cryptosystem

In this section, we show that it is possible to recover the plaintext from a cipher-
text. Notice that Liga cryptosystem has been proven IND-CCA2 in [16], under
some computational assumption, namely the Restricted Gabidulin Code Deci-
sion Problem ([16], Problem 4). We are not disproving this claim here, however
our attack can be precisely used as a distinguisher, and hence this problem is
not as hard as supposed.

Recall that G is a generator matrix of a public Gabidulin code Gk(g), the
public key is a noisy vector kpub = x ·G + z and the encryption of a message
m is c = m · G + Trqmu/qm(αkpub) + e for some uniformly random element

α ∈ Fqmu and a uniformly random error e of small rank weight tpub = bn−k−w2 c
both chosen by Alice. See Section 2.1 for further details.

The attack works in two parts. First, we introduce a supercode of the public
Gabidulin code, in which we are able to decode the ciphertext and get rid of the
small error. Then, we recover the plaintext.

Step 1: Get rid of the small error. Let ζ
def
= rankqm(z), so that z =∑ζ

i=1 µizi where the µi’s ∈ Fqmu and the zi’s ∈ Fnqm are both linearly indepen-
dent over Fqm . The ciphertext can now be written as

c = m ·G +

ζ∑
i=1

Trqmu/qm(αµi)zi + e (11)

Let

C
def
= Gk(g) + SpanFqm

{z1, . . . ,zζ} ⊆ Fnqm . (12)

The ciphertext can be seen as a codeword of C corrupted by a small rank
weight error e. Moreover, C can be computed from public data as suggested by
the following statement.

Theorem 1. Let C be the code defined in (12) and Cpub be the code generated by
Gk(g) and Trqmu/qm(γikpub) for i ∈ {1, . . . , ζ}, where the γi’s denote ζ elements
of Fqmu linearly independent over Fqm . Then, for a uniformly random choice of
(γ1, . . . , γζ),

P(C = Cpub) = 1− eO( 1
qm ).

The proof of Theorem 1 rests on the following technical lemma.

Lemma 2. Let F be a linear subspace of dimension m in a linear space E of
dimension n over a finite field Fq. Then, #{G | F ⊕G = E} = qm(n−m).

Proof. Let Stab(F ) denote the stabiliser of F under the action of GL(E). It is

isomorphic to the group of the matrices of the form

(
A B
0 C

)
with A ∈ GLm(Fq),

C ∈ GLn−m(Fq) and B ∈Mm,n−m(Fq), i.e.

Stab(F ) ∼= (GLm(Fq)×GLn−m(Fq)) nMm,n−m(Fq).



This group acts transitively on the complement spaces of F . Indeed, let G and
G′ be such that F ⊕ G = F ⊕ G′ = E. Let (f1, . . . , fm) be a basis of F and
(g1, . . . , gn−m) (respectively (g′1, . . . , g

′
n−m)) be a basis of G (resp. G′). Then the

linear map that stabilises F and maps gi onto g′i is an element of Stab(F ) that
maps G onto G′. The stabiliser of a complement G under this action is simply
GLm(Fq)×GLn−m(Fq). Hence,

#{G | F ⊕G = E} =
(#GLm(Fq))× (#GLn−m(Fq))× qm(n−m)

(#GLm(Fq))× (#GLn−m(Fq))
= qm(n−m).

ut

Proof of Theorem 1. We wish to estimate the probability that C = Cpub. Note
first that inclusion ⊇ is always satisfied. This can be checked by an elementary
calculation.

Therefore, the following equality of events holds:

(C = Cpub) = (C ⊆ Cpub),

and we are reduced to study the probability that C ⊆ Cpub.
Let c ∈ C . There exists m ∈ Fkqm and λ1, . . . , λζ ∈ Fqm such that

c = mG +

ζ∑
i=1

λizi.

If we can find α
def
= (α1, . . . , αζ) ∈ Fζqm such that c −

ζ∑
i=1

αiTrqmu/qm(γikpub) ∈

Gk(g), then we are done.

c−
ζ∑
i=1

αiTrqmu/qm(γikpub) =(
m−

ζ∑
i=1

αiTrqmu/qm(γix)

)
G +

ζ∑
i=1

λi − ζ∑
j=1

αjTrqmu/qm(γjµi)

 zi.

It suffices to choose α such that λi −
∑ζ
j=1 αjTrqmu/qm(γjµi) = 0 for i ∈

{1, . . . , ζ}, i.e.

(λ1, . . . , λζ) = (α1, . . . , αζ)

Trqmu/qm(γ1µ1) · · · Trqmu/qm(γ1µζ)
...

. . .
...

Trqmu/qm(γζµ1) · · · Trqmu/qm(γζµζ)

 .

Let M denote this last matrix. The previous remark implies P(C ⊆ Cpub) >
P(M is non singular ), therefore it suffices to prove that M is non singular with
overwhelming probability over the choice of γ1, . . . , γζ .



Let
Γ

def
= Span(γ1, . . . , γζ) and M

def
= Span(µ1, . . . , µζ).

Then, M is singular if and only if Γ ∩M⊥ 6= {0}. Since Γ and M have the
same dimension ζ over Fqm , Γ ∩M⊥ = {0} if and only if Γ ⊕M⊥ = Fqmu .
Therefore,

P(M is non singular ) =
#{Γ |M⊥ ⊕ Γ = Fqmu}
#{Γ | dimFqm

(Γ ) = ζ}
·

Recall the Gaussian binomial coefficient

[
u
ζ

]
qm

denotes the number of Fqm–

linear subspaces of dimension ζ in an Fqm–vector space of dimension u. Applying
Lemma 2, we have

P(M is non singular) =
qmζ(u−ζ)[
u
ζ

]
qm

>

(
1− 1

qm

) qm

qm − 1
,

where the inequality on the right–hand side can be found for instance in [5,
Appendix A]. This yields Theorem 1. ut

Set T
def
=
⊕ζ

i=1 SpanFqm

{
Trqmu/qm(γikpub)

}
. By interpolation, it can be

regarded as a subspace of L<m, and Cpub = L<k ⊕ T . In order to remove the
error e we just need to decode in this public supercode. Notice that

dim(L6t ◦T ) 6 ζ(t+ 1).

Therefore, using the algorithm of Section 4, one can expect to decode in Cpub
whenever

k + 2t+ ζ(t+ 1) 6 n. (13)

Table 2 compares (13) with the proposed parameters for Liga in [16, Sec-
tion 7]. As observed, Inequality (13) is satisfied for any proposed parameter
set. Moreover, if one tries to increase ζ in order to avoid this attack, one also
needs to increase w to resist the key recovery attack from [9], which decreases

t
def
= bn−k−w2 c that must be greater than 1.

Name n k t ζ Security (bits) k + 2t+ ζ(t+ 1)

Liga-128 92 53 6 2 128 79
Liga-192 120 69 8 2 192 103
Liga-256 148 85 10 2 256 127

Table 2. This table compares the values of the formula (13) with the parameters
proposed for Liga.

Step 1 is summed up in Proposition 1.



Proposition 1. If c = m · G + Trqmu/qm(αkpub) + e is the encryption of a
plaintext m, then we can recover the support of the error e and the corrupted
codeword m ·G+ Trqmu/qm(αkpub) in polynomial time using only the knowledge
of the public key.

Step 2: Remove the z dependency. From now on, since we got rid of the
small error term e, we can do as if the ciphertext was

c′
def
= m ·G + Trqmu/qm(αkpub)

= (m + Trqmu/qm(αx)) ·G + Trqmu/qm(αz).
(14)

This is a codeword of a Gabidulin code G
def
= Gk(g), corrupted by an error of rank

w > bn−k2 c. Hence, we cannot decode in G to recover the plaintext. However,
thanks to the knowledge of the public key, one can easily recover the affine space

A
def
= {β ∈ Fqmu | c′ − Trqmu/qm(βkpub) ∈ G }

using linear algebra.

Lemma 3. Let β ∈ Fqmu . Then c′ − Trqmu/qm(βkpub) ∈ G if and only if
Trqmu/qm((α− β)z) = 0.

Proof. Note that for any λ ∈ Fqmu ,

rankq(Trqmu/qm(λz)) 6 rankq(z) = w < n− k.

Indeed, let B be a basis of the extension field Fqmu/Fq. Then, if λ 6= 0, the
extension of λz in B is the extension of z in the basis λB. Therefore,

RowSupp(λz) = RowSupp(z)

and the trace cannot increase the rank.
Let β ∈ Fqmu . Then

c′ − Trqmu/qm(βkpub) = (m + Trqmu/qm((α− β)x))G + Trqmu/qm((α− β)z).

Therefore, β ∈ A if and only if Trqmu/qm((α−β)z) ∈ G . Since it has rank weight
less than the minimum distance of G , it follows that Trqmu/qm((α−β)z) = 0. ut

Lemma 4. Let E
def
=

ζ⋂
i=1

〈µi〉⊥. Then A is the affine space α+ E .

Proof. β ∈ A if and only if

Trqmu/qm((α− β)z) =

ζ∑
i=1

Trqmu/qm((α− β)µi)zi = 0.



By the linear independence of the zi’s, it follows that Trqmu/qm((α− β)µi) = 0

for all i, i.e. A = α+
⋂ζ
i=1〈µi〉⊥. ut

We are now able to remove the z dependency in the ciphertext. Indeed, let

F
def
= {Trqmu/qm(γx) | γ ∈ E }. The knowledge of A gives finally access to the

affine space m + F .

Step 3: Recover the plaintext. Denote by f
def
= dimFqm

F . Since F is the
image of E by a surjective map, we have f 6 dim E = u − ζ 6 u − 1. Let s be
some random element of m + F . Notice that from a description of the affine
space m + F it is possible to recover a basis (e1, . . . , ef ) of F . Then, s can be
decomposed as

s
def
= m +

f∑
i=1

λiei

for some unknown coefficients λi ∈ Fqm . Furthermore, recall that the last u
positions of m are 0. Then, m is a solution of the following linear system of
k + f unknowns and u+ k equations: m +

f∑
i=1

λiei = s

mk−u+1 = · · · = mk = 0

(15)

Finally, the following lemma shows that m can be recovered from any solution
of (15).

Lemma 5. Let (m′, λ′) be another solution of (15). Then m′ = m.

Proof. Since m−m′ =
∑f
i=1(λ′i−λi)ei ∈ F , it is of the form Trqmu/qm(γx) for

some γ ∈ E . Moreover, its last u positions are 0. Recall that (xk−u+1, . . . ,xk) is a
basis of Fqmu/Fqm . Then, the last u positions of Trqmu/qm(γx) are the coefficients
of γ in the dual basis {x∗k−u+1, . . . ,x

∗
k}. Hence, γ = 0 and m = m′. ut

Summary of the attack

– Decode in a public supercode of a Gabidulin code to get rid of the small
error e and recover c′ = mG + Trqmu/qm(αkpub).

– Using linear algebra, deduce the affine space

A = {β ∈ Fqmu | c′ − Trqmu/qm(βkpub) ∈ G }.

– Recover the affine space m + F where F = {Trqmu/qm(γx) | α+ γ ∈ A}.
– Deduce a basis of F .
– Solve linear system (15) to recover the plaintext m.



Implementation. Tests have been done using SageMath v9.2 [17] on an Intel®

Core™ i5-10310U CPU. We are able to recover the plaintext on the three Liga
proposals. The average running times are listed in Table 3. Our implementation
is available on Github https://github.com/mbombar/Attack_on_LIGA.

Name
Parameters

(q,n,m,k,w,u, ζ)
Claimed security

level
Average running time

Liga-128 (2, 92, 92, 53, 27, 5, 2) 128 bits 8 minutes

Liga-192 (2, 120, 120, 69, 35, 5, 2) 192 bits 27 minutes

Liga-256 (2, 148, 148, 85, 43, 5, 2) 256 bits 92 minutes

Table 3. Average running times for the attack on Liga.

Acknowledgements. The second author is partially funded by the ANR project
17-CE39-0007 CBCrypt.

A Further Details About RAMESSES’ Specifications

As explained in Section 2.2, our presentation of Ramesses may seem to differ
from the original proposal [12]. Indeed in Section 2.2, we present the scheme
using only q–polynomials, while the original publication prefers using matrices
and vectors. The purpose of the present appendix is to prove that our way to
present Ramesses is equivalent to that of [12].

Caution. In the present article we use q to denote the cardinality of the ground
field Fq. In [12] the ground field is always supposed to be F2 and q refers to
some power of 2, i.e. q = 2n for some positive n. Moreover, the exponent of q is
denoted n while it is denoted m in the present article. This might be confusing
while reading both papers in parallel.

The other notations w, k, `, t are the same in the two articles. Finally, in [12]
a public Fq–basis g = (g1, . . . , gm) of Fqm is fixed once for all. Our presentation
does not require such a setting.

A.1 Key Generation.

Recall that [12] fixes a vector g ∈ Fmqm of rank m (i.e. an Fq–basis of Fqm). This
data together with a parity–check matrix H of the Gabidulin code Gk(g) are
public.

Original presentation The key generation consists in picking a uniformly random

kpriv ∈ Fmqm of weight w and the public key is its syndrome kpub
def
= Hk>priv with

respect to the public Gabidulin code.

https://github.com/mbombar/Attack_on_LIGA


Our presentation Since the code Gk(g) is public, any of its elements may be
associated to an element of L<k. The transition from codewords to q–polynomials
is nothing but interpolation. Similarly, the choice of a vector kpriv ∈ Fmqm of rank
w is (again by interpolation) equivalent to that of a q–polynomial K of rank
w. Finally, publishing its syndrome Hk>priv is equivalent to publish the coset
kpriv + Gk(g), which in our setting is nothing but publishing the affine space
Ksec + L<k.

A.2 Encryption

Original presentation The plain text is encoded into a matrix P ∈ Fm×mq in row
echelon form and of rank t.

– Compute y ∈ Fmqm such that Hy> = kpub
– Pick a uniformly random T ∈ Fm×mq of g–degree ` i.e. representing a q–

polynomial of q–degree ` in the basis g;
– Pick a uniformly random S ∈ GLm(Fq).

The ciphertext is

u>
def
= H(yT + gSP )>.

Our presentation The vector u is a syndrome of any word of the form:

yT + gSP + c,

where c ranges over Gk(g). From a q–polynomial point of view, such a word
corresponds to:

(Ksec + C0) ◦ T +G ◦ S ◦ P + C,

where

– C,C0 are arbitrary elements of L<k;
– T ∈ L` is the interpolating polynomial of T ;
– and G,S, P are the respective interpolating polynomials of g,S,P .

Note that, since g has rank m and S is supposed to be nonsingular, then their

interpolating polynomials are invertible in L/(Xqm − X). Hence, setting E
def
=

G ◦S ◦P , we get a q–polynomial whose matrix representation in basis g has the
same row space as the matrix representation of P . Thus, we get the ciphertext
description in (4).

A.3 Decryption

Original presentation Start by computing x ∈ Fnqm such that Hx> = u>. Next,
knowing kpriv, one can compute an annihilator polynomial Vkpriv ∈ Lw of the

support of kpriv. Then, compute z
def
= Vkpriv

(x) = (Vkpriv
(x1), . . . , Vkpriv

(xm))
and decode z as a corrupted codeword of Gk+`+w(g). If succeeds, it returns an
error vector a. If its rank equals t, then the row echelon form of Extg(a) yields
P .



Our presentation Similarly, the approach is based on applying Vkpriv
and per-

forming Gabidulin codes decoding. Indeed, starting from ciphertext (4), we apply
V = Vkpriv and get

V ◦ Y ≡ V ◦ C1 + V ◦ E
and a decoding procedure returns V ◦ E. If this q–polynomial has rank t, then
the row echelon form of its matrix representation yields the plaintext P .

B Detailed Presentation of the Right–Hand Side Version
of the Decoding of Gabidulin Codes

In this appendix, we provide a detailed and self–contained version of the alter-
native decoder for Gabidulin codes presented in Section 3.

Starting from the decoding problem Y = C+E, the decoding problem can be
thought as finding the q–polynomial C, given Y . Using the analogy with Reed–
Solomon codes, Loidreau introduced in [13] a Welch–Berlekamp like algorithm
to decode Gabidulin codes that consists in finding the unique q–polynomial V of
q–degree less than or equal to t such that V vanishes on the column support of
e, which is equivalent to V ◦E = 0, i.e. V is a left annihilator of the error. Using
a linearisation technique, this leads to the resolution of a linear system that can
be efficiently solved provided that t is less than half the minimum distance. It
then suffices to compute a left Euclidean division to recover C and therefore the
codeword c.

The core of the algorithm to follow consists in searching a right–hand side
annihilator of E instead of a left–hand side one. Due to the non commutativity of
the ring L, working on the right–hand side is not directly equivalent to working
on the left–hand side.

We begin to state the existence of a right–hand side annihilator.

Proposition 2. Let E be a q–polynomial of rank t. Then there exists a unique
monic q–polynomial V with degq(V ) 6 t such that E ◦V = 0 modulo (Xqm−X).

Proof. Let Q
def
=
∑t
i=0 aiX

qi be the unique monic q–polynomial of q–degree less

than or equal to t that vanishes exactly on Im(E
∨
), i.e. Im(E

∨
) = KerQ. Such a

q–polynomial is guaranteed to exist (see for instance [4] or [15].) It follows that

Ker(E) = Im(Q
∨
). Moreover,

Q
∨

=

t∑
i=0

aq
m−i

i Xqm−i

=

(
t∑
i=0

aq
m−t+i

t−i Xqi

)
◦Xqm−t

.

Let V be the leftmost factor of Q
∨

in the above decomposition. It is a q–

polynomial of q–degree t, and E ◦ Q
∨

= 0 leads to E ◦ V ◦ Xqm−t

= 0. Since
Xqm−t

is invertible in L/(Xqm −X), we get E ◦ V = 0 mod (Xqm −X). ut

The goal is to compute this right–hand side annihilator V . It satisfies

Y ◦ V = C ◦ V + E ◦ V ≡ C ◦ V mod (Xqm −X). (16)



Equation (16) leads to a non linear system of n equations whose variables are
the t+ k + 1 unknown coefficients of C and V .

(Y ◦ V )(gi) = C ◦ V (gi)
degq V 6 t
degq C 6 k − 1.

(17)

Due to the non linearity, it is not clear how this can efficiently be solved. That
is why we consider instead the following linearised system

(Y ◦ V )(gi) = N(gi)
degq V 6 t
degq N 6 k + t− 1,

(18)

whose unknowns are the k+2t+1 coefficients of N and V . The latter is a priori
more general than the former. But we can link the set of solutions of the two
systems. This is specified in the following two propositions.

Proposition 3. Any solution (V,C) of (17) gives a solution (V,N = C ◦ V ) of
(18).

Proof. This is the direct analogue of [13, Proposition 1]. ut

Proposition 4. Assume that E is of rank t 6 bn−k2 c. If (V,N) is a nonzero
solution of (18) then N = C ◦ V where C = Y − E is the interpolating q–
polynomial of the codeword.

Proof. Let (V,N) 6= (0, 0) be a solution of (18), and let C be the q–polynomial of

q–degree strictly less than k that interpolates the codeword. Let R
def
= N−C ◦V .

It is a q–polynomial, of q–degree at most k − 1 + t. Assume that R 6= 0. Then,

(Y − C) ◦ V = Y ◦ V − C ◦ V = N − C ◦ V ≡ R mod (Xqm −X)

i.e.
E ◦ V ≡ R mod (Xqm −X). (19)

Hence, rankq(R) 6 rankq(E) 6 t. Since R 6= 0, degq R > dim KerR. Therefore,
by the rank–nullity theorem,

n = dim KerR+ rankq(R) 6 degq R+ rankq(R) 6 k − 1 + 2t 6 n− 1 < n

which is a contradiction. Therefore, R must be zero, i.e. N = C ◦ V . ut

Thenceforth, whenever t 6 bn−k2 c, any non zero solution of (18) allows to
recover the codeword by simply computing a right–hand side Euclidean division,
which can be done efficiently (see [15]). The decoding process boils down to
solving the system of equations (18). However, despite the transformation, the
system is only semi-linear over Fqm . To address this issue, we will again use the



adjoint of a (class of) q–polynomial. Let yi
∨ def

= Y
∨
(gi), for all i = 1, . . . , n. Using

the anticommutativity of the adjoint operator, system (18) is equivalent to

V
∨
(yi
∨) = N

∨
(gi) for i = 1, . . . , n. (20)

which is now an Fqm–linear system of n equations whose unknowns are the

coefficients of V
∨

and N
∨
, that are in explicit one-to-one correspondence with

the coefficients of V and N .

Algorithm 3: Right–hand side variant of Welch–Berlekamp

Input: q a prime power, k, n,m integers, g = (g1, . . . , gn) a basis of Fqm/Fq,
C a Gabidulin code of dimension k and support g, t 6 bn−k

2
c an

integer, y ∈ Fn
qm .

Output: c ∈ C such that y = c + e for some e ∈ Fn
qm with rankq(e) 6 t.

1 Find Y the q–polynomial of q–degree strictly less than n such that Y (gi) = yi

2 Compute Y
∨

and evaluate in g to get y∨
def
= Y

∨
(g) ∈ Fn

qm

3 Find a non zero solution (V0, N0) of the linear system (20)

4 Compute V
def
= V0

∨
and N

def
= N0

∨

5 Recover C by computing the right–hand side Euclidean division of N by V

6 return c
def
= C(g)

An implementation of this algorithm using SageMath v9.2 [17] can be found
on Github: https://github.com/mbombar/Attack_on_LIGA.
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