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1. Introduction

In August 1991, the U.S. government’s National Institute of Standards and Tech-
nology (NIST) proposed the Digital Signature Algorithm (DSA) for digital signa-
tures [24, 21]. This algorithm has become a standard [11] and was called Digital
Signature Standard (DSS). In 1998, an elliptic curve analogue called Elliptic Curve
Digital Signature Algorithm (ECDSA) was proposed and standardized, see [19]. In
the first Subsection we recall the outlines of DSA and ECDSA.

1.1. The DSA and ECDSA Schemes. First, let us summarize DSA. The signer
chooses a prime p of size between 1024 and 3072 bits with increments of 1024, as
recommended in FIPS 186-3 [11, page 15]. Also, he chooses a prime q of size 160,
224 or 256 bits, with q|p − 1 and a generator g of the unique order q subgroup
G of the multiplicative group F∗p of the prime finite field Fp. Furthermore, he
selects randomly a ∈ {1, . . . , q − 1} and computes R = ga mod p. The public
key of the signer is (p, q, g, R) and his private key is a. He also publishes a hash
function h : {0, 1}∗ → {0, . . . , q − 1}. To sign a message m ∈ {0, 1}∗, he selects
randomly k ∈ {1, . . . , q − 1} which is the ephemeral key (or nonce), and computes
r = (gk mod p) mod q and s = k−1(h(m) + ar) mod q. The signature of m is
the pair (r, s). The signature is valid if and only if we have:

r = ((gs
−1h(m)modqRs

−1r mod q) mod p) mod q.

For the ECDSA the signer selects an elliptic curve E over Fp, a point P ∈ E(Fp)
with order a prime q of size at least 160 bits. According to FIPS 186-3, the binary
length of the prime p must be in the set {160, 224, 256, 512}. Furthermore, for
some randomly chosen a ∈ {1, . . . , q − 1} computes Q = aP . The public key
of the signer is (E, p, q, P,Q) and his private key is a. He also publishes a hash
function h : {0, 1}∗ → {0, . . . , q − 1}. To sign a message m, he selects randomly
k ∈ {1, . . . , q − 1} which is the ephemeral key and computes kP = (x, y) (where x
and y are regarded as integers between 0 and p−1). Next, he computes r = x mod q
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and s = k−1(h(m) + ar) mod q. The signature of m is the pair (r, s). For its
verification one computes

u1 = s−1h(m) mod q, u2 = s−1r mod q, u1P + u2Q = (x0, y0).

He accepts the signature if and only if r = x0 mod q.
The security of the two systems is relied on the assumption that the only way to

forge the signature is to recover either the secret key a, or the ephemeral key k (in
this case is very easy to compute a). Thus the parameters of these systems were
chosen in such a way that the computation of discrete logarithms is computationally
infeasible.

1.2. Previous Work. Attacks to DSA schemes are given in several papers based
on the equality s = k−1(h(m) + ar) mod q and using lattice reduction techniques
as LLL algorithm and Closest Vector Problem (CVP) algorithms.

The case where random numbers for DSA are generated using a linear congru-
ential pseudorandom number generator (LCG) is studied in [2]. It is proved that
the combination of the DSA “signature equations” with the LCG generation equa-
tions lead to a system of equations which provides the secret key, and Babai’s CVP
approximation algorithm is used to solve such a system.

Several heuristic attacks to recover the secret key are proposed in [18] under
the hypothesis that for a reasonable number of signatures, a small fraction of the
corresponding nonce k is revealed. The attacks are based on the LLL-based Babai
CVP approximation algorithm. They used several heuristic assumptions which did
not allow precise statements on its theoretical behaviour.

In [25], the first rigorous lattice attack was given. The authors managed to
reduce the security of (EC)DSA to a Hidden Number Problem (HNP) problem,
which can further be reduced to an approximation Closest Vector Problem (CVP)
to a specific lattice, and so in polynomial time the signer’s secret key a can be
computed. This attack is adapted to the case of ECDSA [26].

In [3], the LLL reduction method and one message is used to compute two short
vectors of a three-dimensional lattice and in case where the second shortest vec-
tor is sufficiently short, two lines are obtained which intersect in (a, k), provided
that a and k are sufficiently small. If two messages are available one has a lin-
ear congruence relating the corresponding ephemeral keys and the same attack is
applicable.

A variant of HNP provided in [17] allows someone to practically attack the im-
plementation of DSA in OpenSSL [27] in a Pentium 4 HTT processor. Further, the
implementation of ECDSA in OpenSSL [27] was attacked in [5, 6]. An improve-
ment was presented in [23], where they managed to find the secret key of the curve
secp256k1 used in the Bitcoin protocol, having 200 signatures.

The attack presented in [28] combines the algorithm LLL and two algorithms for
the computation of the integral points of two classes of conics for the computation
of the secret key provided that one message is available and at least the elements
of one of the sets {a, k−1 mod q}, {k, a−1 mod q} and {a−1 mod q, k−1 mod q}
are sufficiently small. If two messages are available we can apply these attacks to
the congruence relating the two ephemeral keys.

In [8], a two dimensional lattice L is used which is defined by a signed message.
Lagrange Lattice Reduction algorithm computes a basis of L formed by two succes-
sive minima which provides two straight lines intersecting at (a, k). If a and k are
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sufficiently small, then (a, k) can be computed in polynomial time. Similar attacks
hold for the pairs (k−1 mod q, k−1a mod q) and (a−1 mod q, a−1k mod q). If we
have two signed messages, then we can apply the same attacks to the equation
related the two ephemeral keys.

The attacks described in [10, 15] assumes that we know that there are equalities
between δ bits of the unknown ephemeral keys used to sign some messages, and it is
shown that this implicit information should be extracted by constructing a lattice
which contains a very short vector such that its components yield the secret key.
When the ephemeral keys share enough bits, this vector is small enough and so it
can be computed by the LLL lattice reduction algorithm.

In [9], an attack is provided built upon Coppersmith’s method. It is proved that
in case where a and k satisfy a certain inequality, the secret key a can be efficiently
computed.

The attack described in [29] is based on the construction of a system of linear
congruences using signed messages which has at most a unique solution below a
certain bound that can be computed efficiently. Thus in case where the length of
a vector, having as coordinates the secret and the ephemeral keys of some signed
message is quite small, the secret key can be computed. An improvement of this
attack is given in [1].

Finally, in [20] a probabilistic attack based on enumeration techniques is pre-
sented which manages to find the secret key if two bits of 100 ephemeral keys are
known. The attack first reduces the problem of finding the secret key, to a HNP
and then reduces HNP to a suitable Bounded Distance Decoding problem (which
is a variant of CVP).

1.3. Our Contribution. In the present work we consider lattice based attacks
applied to (EC)DSA, and we provide improvements of the results in [1, 29], both
in theory and practice. More precisely in this work, we also consider the system of
linear congruences of [1] and we improve the upper bound under which it has at
most one solution (Propositions 4.1 and 4.2 improve Proposition 2 of [1]). This also
updates our basic deterministic attack provided in [1] (see Table 1). Furthermore, a
heuristic improvement (see Section 6) based on our attack is presented. Assuming
the existence of a suitable oracle (which is more weak than knowing specific number
of bits of the ephemeral keys) we provide a heuristic attack. As an illustration, we
break secp161k1 (see [31]) under the assumption that one specific multiple of an
ephemeral key has 161 bits.

1.4. The Structure of the Paper. The paper is organized as follows. In Section
2 we recall some basic results about lattices. In Section 3, we prove some auxiliary
results which we need for the presentation of our attacks. In Section 4, we present
a construction of the DSA-system, which is a linear system over a prime finite field.
Our attacks are presented in Sections 5 and 6. Some experimental results are given
in Section 7. Finally, the last section is devoted to some concluding remarks.

2. Background on Lattices

In the current Section, we recall some well-known facts about lattices which form
the background to our algorithms.
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Let b1,b2, . . . ,bn be linearly independent vectors of Rm. The set

L =

{ n∑
j=1

αjbj : αj ∈ Z, 1 ≤ j ≤ n
}

is called a lattice and the set B = {b1, . . . ,bn} is a basis of L. All the bases of
L have the same number of elements n which is called dimension or rank of L. If
n = m, then the lattice L is said to have full rank. We denote by M the n ×m-
matrix having as rows the vectors b1, . . . ,bn. If L has full rank, then the volume
of the lattice L is defined to be the positive number |detM | which is independent
from the basis B. It is denoted by vol(L) or detL (see also [12]). If v ∈ Rm, then
‖v‖ denotes, as usually, the Euclidean norm of v. Further, we denote by LLL(M),
the application of the well-known LLL-algorithm on the rows of M . and by λ1(L)
the least of the lengths of vectors of L − {0}. Finally, if t ∈ Rm, then we put
dist(L, t) = min{‖v − t‖ : v ∈ L}.

We define the approximate Closest Vector Problem CV Pγn(L) (for some γn ≥ 1)
as follows: Given a lattice L ⊂ Zm of rank n and a vector t ∈ Rm, find a vector
u ∈ L such that, for every u′ ∈ L we have:

‖u− t‖ ≤ γn‖u′ − t‖.

We say that we have a CVP oracle, if we have an efficient probabilistic algorithm
that solves CVPγn for γn = 1. To solve CVPγn , we usually use Babai’s algorithm
[12, Chapter 18] (which has polynomial running time). In fact, combining this
algorithm with LLL algorithm, we solve CVPγn(L) for some lattice L ⊂ Zm, for

γn = 2n/2 and n = rank(L) in polynomial time.

Babai’s Nearest plane Algorithm:

INPUT: A n×m-matrix M with rows the vectors of a basis B = {bi}1≤i≤n
⊂ Zm of the lattice L and a vector t ∈ Rm
OUTPUT: x ∈ L such that ||x− t|| ≤ 2n/2dist(L, t).

01. M∗ = {(b∗j )j} ← GSO(M) # GSO : Gram-Schmidt Orthogonalization
02. b← t
03. For j = n to 1

04. cj ←
⌊

b·b∗
j

||b∗
j ||2

⌉
#bxe = bx+ 0.5c

05. b← b− cjbj
06. Return t− b.

In case where the dimension of L is “quite” small we can use as a CVP oracle
the deterministic algorithm of Micciancio-Voulgaris [22].

3. Auxiliary Results

In this section we provide two results that are fundamental for the description
of our attacks.

Proposition 3.1. Let n, q and Aj be positive integers satisfying

(3.1)
q

j
n+1+fq(n)

2
< Aj <

q
j

n+1+fq(n)

1.5
(j = 1, . . . , n),
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where fq(n) is a positive real number such that

(3.2) fq(n) <
1

n+ 1

and

(3.3)
q1+2fq(n)

1.5
< q − 1

2
q

n
n+1+fq(n)

Let L be the lattice generated by the vectors

b0 = (−1, A1, . . . , An),b1 = (0, q, 0, . . . , 0), . . . ,bn = (0, . . . , 0, q).

Then, for all nonzero v ∈ L, we have:

‖v‖ > 1

2
q

n
n+1+fq(n).

Proof. See [1, Proposition 3.1] �

The following two remarks show us how we can choose the quantity fq(n).

Remark 3.1. The quantity fq(n) has been choosen in order to satisfy the inequal-
ities (3.2) and (3.3). The second inequality holds if and only if we have:

4q2fq(n) + 3q−
1

n+1 qfq(n) − 6 < 0,

which is equivalent to the following inequality:

qfq(n) <
−3q−

1
n+1 +

√
96 + 9q−

2
n+1

8
.

Therefore (3.3) holds if and only if we have:

(3.4) fq(n) <

ln

(
−3q−

1
n+1 +

√
96 + 9q−

2
n+1

)
− ln 8

ln q
.

Therefore, the quantity fq(n) has to satisfy the following inequality:

fq(n) < min

{
1

n+ 1
,

ln

(
−3q−

1
n+1 +

√
96 + 9q−

2
n+1

)
− ln 8

ln q

}
.

Remark 3.2. The integers Aj (j = 1, . . . , n) satisfy the inequality

q
j

n+1+fq(n)

2
< Aj <

q
j

n+1+fq(n)

1.5
.

If the interval
[
q

j
n+1+fq(n)/2, q

j
n+1+fq(n)/1.5

]
has length > 1, which is equivalent to

q
j

n+1+fq(n) > 6, it contains an integer. So, if

fq(n) >
ln 6

ln q
− 1

n+ 1
,

then all the above intervals contain an integer.

Next, let us recall the classical Hermite’s theorem which provides an estimate
for the smallest vector of a lattice.
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Proposition 3.2. (Hermite’s theorem). Let n be a positive integer. There is a
constant γn ∈ (0, n] such that, for every full rank lattice L ⊂ Rn we have:

λ1(L) ≤ √γn (detL)
1
n .

Proof. See [13, Theorem 1.5]. �

The quantity γn is called the Hermite’s constant. The exact values for γn is
known only for 1 ≤ n ≤ 8 and for n = 24. Furthermore, an asymptotic bound is
given in (see [7, Chapter 1, p. 20]). In our case we have λ1(L) ≤

√
n q

n
n+1 , and so

Proposition 3.1 yields:

1

2
q

n
n+1+fq(n) ≤ λ1(L) <

√
n+ 1 q

n
n+1 .

It follows:

(3.5) fq(n) ≤ ln(2
√
n+ 1)

ln q
.

It is easily seen that the bound of the inequality (3.5) is larger than that of (3.4).
Hence Hermite’s result does not add any restriction on the choice of fq(n) and so,
for fq(n) we can take any real number satisfying the inequalities of Remarks 3.1
and 3.2.

The following Proposition improves in some sense Proposition 3.1. For instance
in Proposition 3.1, n can not be freely chosen. In the following Proposition we fixed
Aj to some suitable values and this allows us to consider larger values of n. So, we
can apply this to consider another variant of our attack.

Proposition 3.3. Let n and q be positive integers. Set Aj = bCqj/(n+1)+gq(n)c+ 1
(j = 1, . . . , n), where C and gq(n) ∈ (0, 1). Furthermore, we have:

(3.6) gq(n) <
1

n+ 1

and, for j = 1, . . . , n− 1,

(3.7) max
{
qj/(n+1)An+1−j , Cq

n/(n+1)+gq(n)A1

}
< q − Cqn/(n+1)+gq(n).

Denote by L the lattice generated by the vectors

b0 = (−1, A1, . . . , An),b1 = (0, q, 0, . . . , 0), . . . ,bn = (0, . . . , 0, q).

Then, for all nonzero v ∈ L, we have:

‖v‖ > Cq
n

n+1+gq(n).

Proof. Assume that there is a nonzero vector v ∈ L such that,

‖v‖ ≤ Cqn/(n+1)+gq(n).

Then, from inequality (3.6) and the fact that C ∈ (0, 1) we get ‖v‖ < q. Also
v ∈ L, so there are integers x0, . . . , xn such that

v = x0b0 + · · ·+ xnbn = (−x0, x0A1 + x1q, . . . , x0An + xnq).

Then, we have,

|x0|, |x0Aj + xjq| ≤ Cqn/(n+1)+gq(n) (j = 1, . . . , n).

If x0 = 0, then v = (0, x1q, . . . , xnq) and so, ‖v‖ ≥ q which is a contradiction, and
so x0 6= 0.

Since 1 ≤ |x0| ≤ Cqn/(n+1)+gq(n), we consider the following two cases.
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(i) Assume that,

q(k−1)/(n+1) < |x0| < qk/(n+1),

for some k ∈ {1, 2, . . . , n− 1}. So,

Cqn/(n+1)+gq(n) < |x0|An+1−k < qk/(n+1)An+1−k.

On the other hand, inequality (3.7) yields,

qk/(n+1)An+1−k < q − Cqn/(n+1)+gq(n).

Combining the two previous inequalities we obtain,

(3.8) Cqn/(n+1)+gq(n) < |x0|An+1−k < q − Cqn/(n+1)+gq(n)

If x0An+1−k + qxn+1−k = 0, then we get

0 6= |x0|An+1−k = q|xn+1−k| > q,

which contradicts with inequality (3.8). Assume that, xn+1−k 6= 0. Since ‖v‖ ≥
|x0An+1−k + qxn+1−k|, we get

(3.9) ‖v‖ ≥
∣∣|x0|An+1−k − q|xn+1−k|

∣∣ ≥ q|xn+1−k| − |x0|An+1−k.

So,

‖v‖ ≥ q − |x0|An+1−k.

Then, using the right part of inequality (3.8), we get,

‖v‖ > Cqn/(n+1)+gq(n)

which is a contradiction. Thus, we have xn+1−k = 0. Then, inequality (3.9) yields,

‖v‖ ≥ |x0|An+1−k > Cqn/(n+1)+gq(n)

which is again a contradiction.
(ii) We assume now that,

q(n−1)/(n+1) < |x0| < Cqn/(n+1)+gq(n).

So,

Cqn/(n+1)+gq(n) < |x0|A1 < Cqn/(n+1)+gq(n)A1.

By (3.7), we get,

Cqn/(n+1)+gq(n)A1 < q − Cqn/(n+1)+gq(n).

Combining the two previous inequalities we obtain,

Cqn/(n+1)+gq(n) < |x0|A1 < q − Cqn/(n+1)+gq(n),

which is relation (3.8) (for k = n). Accordingly, we proceed as previously but we
set k = n, and we finally get a contradiction. The Proposition follows. �

Remark 3.3. It is easily seen that

Cqgq(n) <
q1/(n+1)

1 + q1/(n+1)
.
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4. A System of Linear Congruences

In this Section we give two results which yield sufficient conditions for the success
of our attacks.

Proposition 4.1. Let q and Ai, Bi (i = 1, . . . , n) and fq(n) as in Proposition 3.1.
Set

Mn,q =
1

4
q

n
n+1+fq(n).

Then, the system of congruences

(4.1) yi +Aix+Bi ≡ 0 (mod q) (i = 1, . . . , n)

has at most one solution v = (x, y1, . . . , yn) having

‖v − e‖ < Mn,q,

for some e ∈ Rn+1. If such a solution exists we can find it using a CVP oracle.

Proof. Let v = (x, y1, . . . , yn) be a solution of the system with

‖v − e‖ < Mn,q.

Let L be the lattice spanned by the rows of the (n+ 1)× (n+ 1) matrix

(4.2)


−1 A1 A2 . . . An
0 q 0 . . . 0
0 0 q . . . 0
...

...
...

. . .
...

0 0 0 . . . q


and set bold = (0, B1, . . . , Bn) and bnew = bold + e. Since yi +Aix+Bi ≡ 0
(mod q) there is a zi ∈ Z, such that yi +Bi = −Aix+ ziq. Let

u = v + bold = (x, y1 +B1, . . . , yn +Bn).

Then u = (x,−A1x+ z1q, . . . ,−Anx+ znq) belongs to L and we have

‖u− bnew‖ = ‖v − e‖ < Mn,q.

On the other hand using the CVP-oracle with input the lattice L and target vector
bnew outputs a vector w such that

(4.3) ‖w − bnew‖ ≤ ‖u− bnew‖ < Mn,q.

Thus we get,

‖w − u‖ ≤ ‖w − bnew‖+ ‖bnew − u‖ < 1

2
q

n
n+1+fq(n).

Since w − u ∈ L, Proposition 3.1 implies w = u. So the CVP oracle outputs the
vector w and so we can compute

(4.4) v = w − bnew + e = w − bold.

�

Remark 4.1. (i) Taking e = 0, we have Proposition 2 of [1] which is an improve-
ment of Theorem 3.1 of [29].
(ii) If u ∈ L, then the entries of the vector u−bold satisfy the system (4.1). Indeed,
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since u ∈ L, there are integers l0, . . . , ln such that u = l0b0 + · · ·+ lnbn, and so we
get:

u− bold = (−l0, l0A1 + l1q −B1, . . . , l0An + lnq −Bn) = (x, y1, . . . , yn).

Thus we obtain yi +Aix+Bi = liq ≡ 0 (mod q) (i = 1, . . . , n).
(iii) Note that if a CVP oracle finds a vector w ∈ L such that,

‖w − bnew‖ <
1

4
q

n
n+1+fq(n),

this does not imply that w = u. Since it may occur instead of (4.3) to have

‖w − bnew‖ <
1

4
q

n
n+1+fq(n) ≤ ‖u− bnew‖.

When we apply our attack, we do not know if (4.3) holds. So, it is sound to check
if the following inequality,

‖w − bnew‖ <
1

4
q

n
n+1+fq(n)

holds. Although, there are instances that satisfy the previous inequality, but fail
to find the secret key.

Using Proposition 3.3 we obtain the following alternative result to the previous
Proposition.

Proposition 4.2. Let q, Ai, Bi (i = 1, . . . , n), C and gq(n) be as in Proposition
3.3. Set

Nn,q,C =
C

2
q

n
n+1+gq(n).

Then, the system of congruences

yi +Aix+Bi ≡ 0 (mod q)

has at most one solution v = (x, y1, . . . , yn) having

‖v − e‖ < Nn,q,C ,

for some e ∈ Rn+1. If such a solution exists, then we can find it using a CVP
oracle.

5. Babai’s Attack

This section is devoted to the description of an attack to (EC)DSA scheme based
on Babai’s algorithm which can be made rigorous if a plausible condition holds.
First, we provide an auxiliary construction of a system, crucial to our attack.

5.1. Construction of a linear system. Letmi be messages signed with (EC)DSA
system and (ri, si) their signatures (resp.) (i = 1, . . . , n). Then, there are ki ∈
{1, . . . , q − 1} such that ri = (gki mod p) mod q (resp. ri = xi mod q and
kiP = (xi, yi)) and si = k−1i (h(mi) + ari) mod q. It follows that

ki + Cia+Di ≡ 0 (mod q) (i = 1, . . . , n),

where Ci = −ris−1i mod q and Di = −s−1i h(mi) mod q. Multiplying both sides

by C−1i mod q, we get:

C−1i ki + a+ C−1i Di ≡ 0 (mod q).
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We choose fq(n) and integers Ai satisfying the hypothesis of Proposition 3.1.
We multiply by Ai both sides of the above congruence and we get:

AiC
−1
i ki +Aia+AiC

−1
i Di ≡ 0 (mod q).

Set Bi = AiC
−1
i Di mod q (i = 1, . . . , n). We call the linear system

(5.1) yi +Aix+Bi ≡ 0 (mod q) (i = 1, . . . , n),

the DSA-system associated to n, Ai and mi. The vector

(a,A1C
−1
1 k1 mod q, . . . , AnC

−1
n kn mod q)

satisfies the above system. We call the integer k′i = AiC
−1
i ki mod q the derivative

ephemeral key corresponding to the ephemeral key (or nonce) ki.

5.2. The Attack. Suppose that a public key (p, q, g, R) of a DSA scheme or a
public key (E, p, q, P,Q) of a ECDSA scheme is given.

Babai’s Attack
Input: l signed messages mi corresponding to the above public key and (ri, si)
their signatures (i = 1, . . . , l).
Output: The secret key or Fail.
1. Choose n with 0 < n ≤ l and fq(n) satisfying the hypothesis of Proposition 3.1,
and such that for every i = 1, . . . , n, the interval

Ii =

(
q

i
n+1+fq(n)

2
,
q

i
n+1+fq(n)

1.5

)
contains an integer. If such n does not exist, return fail. Otherwise, go to the next
step.
2. Choose randomly Ai from Ii.
3. Construct the DSA-system

yi +Aix+Bi ≡ 0 (mod q) (i = 1, . . . , n)

associated to n, mi and Ai.
4. Choose e ∈ Rn+1.
5. Set b = (0, B1, . . . , Bn) and construct the lattice L, generated by the rows of
the matrix M as in (4.2).
6. Compute B = LLL(M).
7. Apply Babai’s Nearest Plane Algorithm in the rows of matrix B with target
vector b + e and let s be the output.
8. If the first coordinate s1 of s satisfies either gs1 = R in F∗p, (respectively Q = s1P

in E(Fp)) or gs1±1 = R (respectively Q = (s1 ± 1)P ) return s1, else return fail.

Remark 5.1. (i) In step 2, we can choose Aj as in Proposition 3.3. That is,

Aj = bCqj/(n+1)+gq(n)c+ 1 (j = 1, . . . , n).
(ii) In step 6, we can apply BKZ instead of LLL, to get a more reduced basis.

The following proposition provides a sufficient condition for the success of the
above algorithm.



ATTACKING (EC)DSA WITH PARTIALLY KNOWN MULTIPLES OF NONCES 11

Proposition 5.1. Set Ω = Mn,q or Nn,q,C (for the definitions of the constants see
Propositions 4.1 and 4.2, respectively). If

‖(a, k′1, . . . , k′n)− e‖ < Ω,

then a CVP oracle implies that the output of the above algorithm s1 is the secret
key a.

Proof. Let Ω = Mn,k. Then, we consider quantities Ai defined as in Proposition 1
and we construct the DSA-system associated to n, Ai and mi (i = 1, . . . , n). The
system has as a solution the vector (a, k′1, . . . , k

′
n). By Proposition 4.1, the previous

DSA-system has at most one solution v satisfying

‖v − e‖ < Ω,

and v can be found by using a CVP oracle. Hence, this oracle implies that s1 = a
and so, the above algorithm provides the secret key a. If Ω = Nn,q,C , then we
consider quantities Ai defined as in Proposition 3 and we construct the DSA-system
associated to n, Ai and mi (i = 1, . . . , n). The vector (a, k′1, . . . , k

′
n) is a solution

of this system and so, as previously, Proposition 4.2 implies that s1 = a. �

Remark 5.2. In the algorithm Babai’s Attack we use as a CVP oracle the
Babai’s Nearest Plane Algorithm. Since this algorithm solve only CV Pγn , in many
cases does not provide us with the solution of CV P but with a vector close to it.
Thus, in the above algorithm, in order to find the secret key, we ask the verification
not only of the equality gs1 = R (respectively Q = s1P ) but also of the equalities
gs1±1 = R (respectively Q = (s1 ± 1)P ).

By Proposition 3.1 (respectively Proposition 3.3), we have λ1(L) > 2Mn,q (re-
spectively λ1(L) > 2Nn,q,C). So, in case that we know the quantity λ1(L), the
bound Ω of Proposition 5.1 can be replaced by λ1(L)/2. Recall however that

Gaussian heuristic implies that λ1(L) ≈
√

(n+ 1)/2πe qn/n+1. On the other hand,
we note that the inequality of Proposition 5.1 is only sufficient, and so it is possible
to find the secret key a without this inequality been satisfied.

Note that there is a variant of CVP, called BDD : Bounded Distance Decoding
problem, where we search for vectors u such that ‖u−t‖ ≤ λ1(L)/2. Further, there
are enumeration algorithms that compute all the lattice vectors within distance R
from the target vector, see [14, 16]. These algorithms are not of polynomial time
with respect to the rank of the lattice.

For the selection of e, we try to “guess” a vector e such that the length of
(a, y1, . . . , yn)− e is less than the quantity λ1(L)/2 which is not an easy task. We
deal with this issue in the next section.

5.3. Some Variants of the Attack. As in [29], we can transform our congru-
ences and obtain new systems of congruences to apply our attack. More precisely,
multiplying by a−1 mod q the congruence

kj + Cja+Dj ≡ 0 (mod q) (j = 1, . . . , n),

we get

kja
−1 + Cj +Dja

−1 ≡ 0 (mod q) (j = 1, . . . , n).

Thus replacing (Cj , Dj) by (Dj , Cj) and a by a−1, we obtain a variant of our attack
which under it is possible to provide us a−1 mod q and so a.
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Suppose now that n ≥ 2. So we can eliminate a among the congruences

kj + Cja+Dj ≡ 0 (mod q) (j = 1, . . . , n)

and we deduce the congruences

kj + C̃jkn + D̃j ≡ 0 (mod q) (j = 1, . . . , n− 1),

where C̃j = −CjC−1n mod q and D̃j = −CjC−1n Dn +Dj mod q. Replacing in our

attack (Cj , Dj) by (C̃j , D̃j) we have another variant which is possible to provide us
kn and so a.

Furthermore, multiplying by k−1n the congruences

kj + C̃jkn + D̃j ≡ 0 (mod q) (j = 1, . . . , n− 1)

we obtain

kjk
−1
n + C̃j + D̃jk

−1
n ≡ 0 (mod q) (j = 1, . . . , n− 1).

So, we have another attack which is possible to provide k−1n , and so a.

6. Heuristic Attack

We begin with two definitions, which are in fact our assumptions.

Definition 6.1. Let q be a prime with binary length ` bits and x, c ∈ Zq. Let A
be a probabilistic polynomial algorithm which accepts (c, x, `, PK), where PK is
the public key of (EC)DSA-scheme, and returns

0, if the binary length of cx mod q is ` bits,
1, if the binary length of cx mod q is `− 1 bits,
2, if the binary length of cx mod q is < `− 1 bits.

We call such an oracle a length DSA oracle.

Further, we consider the following type of (binary) oracle.

Definition 6.2. Let B be a probabilistic polynomial algorithm which accepts a
triple (x, `, PK), where PK is the public key of (EC)DSA-scheme and x ∈ Zq.
Then B returns True, if the binary length of q−x is `−1 bits, and False, otherwise.
We call such an oracle a binary length DSA oracle.

In the previous oracles, the value of ` and the public key PK are fixed, so
formally the real input is x in the case of B and x, c in the case of A. Usually,
` ∈ {160, 224, 256}. In our case we shall choose the constant c = AiC

−1
i mod q

(see Subsection 5.1). So oracle A can be used for determining a bound for the
length of the derivative ephemeral keys. Observe that, having such an oracle is
more weak than knowing the MSB of the derivative keys and secret key. We shall
use oracle B when the derivative ephemeral keys have binary length ` bits.

6.1. Conditional Babai Attack. Let PK be a (EC)DSA public key and ` be the
binary length of q. We assume that we have a length and a binary length DSA
oracle, A and B, respectively. We consider `, PK fixed and given x, c ∈ Zq, we
denote by A(cx) and B(x) the outputs of A and B at cx and x, respectively.

A Conditional Babai Attack
Input: l signed messages mi corresponding to a (EC)DSA public key and their
signatures (ri, si) (i = 1, . . . , l).
Output: The secret key or Fail.
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1. Choose n with 0 < n ≤ l and fq(n) satisfying the hypothesis of Proposition 3.1,
and such that for every i = 1, . . . , n, the interval

Ii =

(
q

i
n+1+fq(n)

2
,
q

i
n+1+fq(n)

1.5

)
contains an integer. If such n do not exist, return fail. Otherwise, go to the next
step.
3. Choose randomly Ai from Ii.
4. Let k′i as previously the derivative ephemeral key corresponding to the nonce
ki. Construct the DSA-system as follows:
For i = 1, . . . , n,

4a. if A(k′i) = 0, then
if B(k′i) = True, consider the congruence,

(−yi) + (−Ai)x+ (−Bi) ≡ 0 (mod q).

else, consider the congruence,

(2`−2 − yi) + (−Ai)x+ (−2`−2 −Bi) ≡ 0 (mod q).

4b. if A(k′i) = 1, then do not modify the i− equation.
4c. if A(k′i) = 2, then consider the congruence,

(2`−2 + yi) +Aix+ (−2`−2 +Bi) ≡ 0 (mod q).

4d. Let A′1, . . . , A
′
n and B′1, . . . , B

′
n be the coefficients of variable x and the

constant terms, respectively, of the congruences constructed in steps 4a, 4b and
4c. Thus we have the following system:

yi +A′ix+B′i ≡ 0 (mod q) (i = 1, . . . , n).

5. Consider the square matrixM having as rows (−1, A′1, . . . , A
′
n), (0, q, 0, . . . , 0),. . . ,

(0, . . . , 0, q) and denote by L the lattice generated by the rows of M . Further, set
b = (0, B′1, . . . , B

′
n) and e = (2`−2 + 2`−3, . . . , 2`−2 + 2`−3).

6. Compute B = LLL(M).
7. Apply Babai’s Nearest Plane Algorithm in the rows of matrix B with target
vector b + e and let s be its output.
8. If the first coordinate s1 of s satisfies gs1 = R, (respectively Q = s1P ) in F∗p,
return s1, else return fail.

6.2. The case A(k′i) = 0. Assume without loss of generality that ` = 160. We
consider the following assumption:
Assumption-1. All the derivative ephemeral keys have 160 bits.
Then, we can exploit the fact that q − a and q − k′i have at most 159 bits. So by
adding and subtracting to the DSA-system the number 2158, we balance the new
solution set to 159 bits (except maybe the first entry concerning to the secret key
a). In this way, we can choose e = (2158 + 2157, . . . , 2158 + 2157). So, in this case,
we modify step 4 of the previous algorithm.

4. Let k′i be as previously the derivative ephemeral key corresponding to the nonce
ki. Construct the DSA-system as follows:

4a. if B(k′i) = True, consider the congruence,

(−yi) +Ai(−x) + (−Bi) ≡ 0 (mod q).
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else, consider the congruence,

(2`−2 − yi) +Ai(−x) + (−2`−2 −Bi) ≡ 0 (mod q).

4b. Let B′i (i = 1, . . . , n) be the constant terms of the congruences of the
system constructed in 4a-step. Thus we have the following system:

yi +Aix+B′i ≡ 0 (mod q) (i = 1, . . . , n).

We applied the previous attack, which has success rate 83% for q with 160 bits
and 70% for q with 256 bits (see section 7 for the details of the experiments).

Suppose now that q = 2159 + 2α + · · · + 1, with α ≤ 156. Since k′i < q and the
size of k′i is 160 bits, we have k′i = 2159 +ε1562156 + · · ·+ε020 with εi ∈ {0, 1}. Thus
the size of q − k′i is at most 157 bits. So, in a DSA system, we first multiply with
−1 and then we add and subtract 2α+1 (instead of 2158). So we deal with shorter
keys than 159 bits as suggested in the algorithm.

Remark 6.1. (i) Note that we do not use our oracle B for the secret key a but
only for the derivative ephemeral keys.
(ii) The attack 6.2 is very close to the heuristic attack of [1]. The only difference is
that here, the binary length of the secret key a is ≤ 159 bits instead of 160 bits in
[1]. Also, we have a weaker assumption than in [1], in the following sense. Oracle
B can work even if we do not know the exact length of q − k′i, where k′i are the
derivative ephemeral keys.

6.3. An application. For instance the following ECDSA systems (recommended
by Standards for Efficient Cryptography Group (SECG) ) can easily be broken
under Assumption-1, since they use a parameter q of the previous form.

(i) The elliptic curve secp160k1 : y2 = x3 + 7, see [31], is defined over the prime
finite field Fp, where

p = 2160 − 232 − 214 − 212 − 29 − 28 − 27 − 23 − 22 − 1,

and the base point has order:

q = 1461501637330902918203686915170869725397159163571

= 2160 + 280 + · · ·+ 25 + 24 + 2 + 1,

which is a 161 bits prime. The order of the elliptic curve is

|E(Fp)| = 1461501637330902918203686915170869725397159163571

and the cofactor h = |E(Fp)|/q = 1. This curve is used in TinyECC1 which has
applications in sensor networks. The ECDSA scheme with the previous parameter
is vulnerable since q = 2160+q′ with q′ � 2157. This curve is supported by OpenSSL
(ver. 1.1.0j, 20 Nov 2018)2. Although in this specific curve we can do even better.
Since the secret and all the derivative ephemeral keys are 161 bits then q − a
and q − k′i are at most 81 bits. Set ei = ei,0280 + ei,1279 + ei,2278 (i = 1, 2)
ei,0, ei,1, ei,2 ∈ {0, 1} and e = (e1, e2). Then, there is such a vector e satisfying

‖v − e‖ < 278 <
1

4
q1/2+fq(n).

Thus Proposition 5.1 implies that q−a can be computed and hence a. The number
of the above vectors e is 64. Furthermore, since the dimension of the involved lattice

1http://discovery.csc.ncsu.edu/software/TinyECC/
2We made the check with the (Linux) command openssl ecparam -list curves

http://discovery.csc.ncsu.edu/software/TinyECC/
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is 2 (set n = 1 to the matrix (4.2) ) we can use as a CVP oracle the Micciancio -
Voulgaris algorithm [22]. Therefore if the secret and a derive ephemeral key, are 161
bits, then using only one signature we compute the secret key a in polynomial time.

(ii) The elliptic curve secp224k1 : y2 = x3 + 5, see [31], is defined over the prime
finite field Fp, where

p = 2224 − 232 − 212 − 211 − 29 − 27 − 24 − 2− 1,

and the base point has order:

q = 26959946667150639794667015087019640346510327083120074548994958668279

= 2224 + 2112 + 2111 + · · ·+ 24 + 22 + 2 + 1,

which is a prime of 225 bits, having the form q = 2224 + q′ with q′ � 2222. So,
this curve is vulnerable to the previous attack. Furthermore, it is supported by
OpenSSL.

7. Experimental Results

For the following experiments we used the computer algebra system Sagemath
[30] in a Linux PC with I3 Intel CPU and 16GB memory.

7.1. Conditional Babai’s attack. We applied the algorithm3 Conditional Babai’s
attack of Section 6. So, we assume that we have the two oracles A and B. The
system we generated have solutions s, such that

s ∈ {2159, . . . , 2160 − 1} × Znq .
That is the secret key has 160 bits and the derivative ephemeral keys are < q. So,
the solutions do not have any constraints. For preprocessing we used BKZ-70 and
for each instance we considered a different prime number q. We considered,

fq(n) = min

{
1

n+ 1
,

ln

(
−3q−

1
n+1 +

√
96 + 9q−

2
n+1

)
− ln 8

ln q

}
− 10−10.

We generated 100 random DSA systems with n = 204 and we found 64 secret keys.
The average wall time per example was about 1 min.

All the derivative ephemeral keys have 160 bits.
We tested the attack of Subsection 6.2 for primes q having 160 bits. Our algo-
rithm in 100 random instances found the secret keys in 83 instances. The (wall)
time execution per example was about 2 minutes (this time is dominated by the
preprocessing step). So, having only a binary length oracle we can find the secret
key.

Although the following reasonable question arises; how many signatures do we
need to collect, to get 206 signatures such that, their derivative ephemeral keys have
160 bits? On average we found (experimentally) that we need 1406 signatures4.
This experiment depends on the form of q. If q is large in the interval [2159, 2160−1],
then the number of signatures to collect is much smaller than 1406 signatures. If

3The code can be found in https://github.com/drazioti/python_scripts/tree/master/

paper_dsa
4https://github.com/drazioti/python_scripts/blob/master/paper_dsa/experiments.py

https://github.com/drazioti/python_scripts/tree/master/paper_dsa
https://github.com/drazioti/python_scripts/tree/master/paper_dsa
https://github.com/drazioti/python_scripts/blob/master/paper_dsa/experiments.py
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q is small in the previous interval it is unlikely to collect the desired signatures.
We tested the previous remark experimentally and we summarized the results in
Figure 1.

Figure 1. We executed three experiments. For each one we con-
sidered 2000 signatures and we computed the distributions of bits
for the derivative ephemeral keys for three types of primes q. The
green line concerns a prime of the form 2159+2158+q′ where q′ was
picked randomly from the interval (0, 2157). The other two primes
are more dense. We note that if q is dense in the sense that has
many most significant bits, then the probability to get ephemeral
keys with 160 bits increases. So dense primes q seems more vul-
nerable to this attack. For instance such a dense q is the one used
in the bitcoin curve y2 = x3+7, where q = 2255+2254+· · ·+2129+q′.

Finally, this attack improves the success rate of the heuristic attack provided in
[1, Section 5], where we were looking for solutions,

s ∈ {2α−1, . . . , 2α − 1} × {2β−1, . . . , 2β − 1}n (α ≤ 160, β ≤ 159).

That is, we assumed that the secret has at most 160 bits and the derivative
ephemeral keys have at most 159 bits. In the present paper we did not consider
any constraint in the solution, but we assumed that we have a binary length oracle.
This decides if a q−k′i (where k′i is a derivative ephemeral key) has 159 bits or not.

Further, we executed the same experiment, but for primes q having 256 bits. So
we assumed that all the derivative ephemeral keys have 256 bits. This is the case
where the prime p of DSA has 2048 or 3072 bits (see [11, Section 4.2]). In this case
we used again BKZ with blocksize 70 and having n = 300 signatures, we found 70
secret keys for 100 random DSA-systems. The average wall time per experiment
was 5 minutes.

7.2. Babai’s Attack. Finally, in the following table (Table 1) we provide an up-
date of [1, Table 2]. We applied the attack given by the algorithm : Babai’s
attack, of Subsection 5.2. For all the rows except the last one, we set n = 206 and
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gq(n) = ln (n+1)
2n ln q , e = 0 and C = 55/100 (see Remark 5.1). Note that the choice of

gq(n) satisfies inequalities (3.6) and (3.7). We generated 100 random DSA systems
for each row. The pair (α, β) at the first column, means that we pick the secret key
with α bits and the derivative ephemeral keys to have β bits (and we have fixed
a prime q of 160 bits). For preprocessing we used LLL algorithm (instead of BKZ
in [1]). The second column contains the percentage that Babai’s attack succeeds
in finding the solution i.e. the secret key. Note that, all solutions y = (yi)i that
Babai’s attack provides us satisfy either y1 = s or y1 = s± 1 (s is the secret key).
For the last row we set n = 215, e = (2158 + 2157, . . . , 2158 + 2157) and C, gq as
previously.

bits:(Skey, Der.Ep.keys) suc.rate
(158, 157) 100%
(158, 155) 100%
(157, 157) 100%
(157, 156) 100%
(160, 159) 70%

Table 1.

8. Conclusion

In the present work we considered extensions of [1, 28]. We provided two heuristic
attacks, Babais’s Attack and Conditional Babai’s attack. The first attack
is an improvement of [1]. The improvement is clear in Table 1.

The second attack is new. For instance, Conditional Babai’s attack can be
applied if we know the binary lengths of some multiples of the ephemeral keys. More
precisely, using our oracle, in the case where q has 160 bits, then 204 ephemeral
keys are enough to find the secret key with success 83%, and 70% if q has 256
bits. The heuristic attack is supported by many theoretic evidences. In some (real
world) cases the rigorous attack may applied. Here rigorous attack we mean any
attack that satisfies the assumptions of Proposition 4.1. For instance, if we know
the length of a (specific) multiple of an ephemeral key of the curve secp161k1, then
we calculate rigorously and in polynomial time the secret key. Similar for the curve
secp224k1.

The main reason that the attacks (and so the experiments) succeed so often even
they do not satisfy the requirements of the theory, is the use of the two oracles.
These provide us with good predictions for the number of bits of the derivative
ephemeral keys. Therefore, the auxiliary vector e can be guessed well enough.
Thus, if e is close to the solution of the DSA system (where with close we mean
that their distance is close to Mn,q), then Babai’s nearest plane algorithm works as
an approximate CVP-oracle and reveals the solution of the DSA system and from
this we get the secret key.

A drawback of our method is that we can not use the fault attacks to (EC)DSA,
since they simulate an oracle that outputs some contiguous bits of the ephemeral
keys, and not some multiples of them.
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