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Abstract. Single Secret Leader Election (SSLE) protocols allow a set of users to elect a leader among
them so that the identity of the winner remains secret until she decides to reveal herself. This notion
was formalized and implemented in a recent result by Boneh, et al. (ACM Advances on Financial
Technology 2020) and finds important applications in the area of Proof of Stake blockchains.
In this paper we put forward new SSLE solutions that advance the state of the art both from a
theoretical and a practical front. On the theoretical side we propose a new definition of SSLE in the
universal composability framework. We believe this to be the right way to model security in highly
concurrent contexts such as those of many blockchain related applications. Next, we propose a UC-
realization of SSLE from public key encryption with keyword search (PEKS) and based on the ability
of distributing the PEKS key generation and encryption algorithms. Finally, we give a concrete PEKS
scheme with efficient distributed algorithms for key generation and encryption and that allows us to
efficiently instantiate our abstract SSLE construction.
Our resulting SSLE protocol is very efficient, does not require participants to store any state information
besides their secret keys and guarantees so called on-chain efficiency: the information to verify an
election in the new block should be of size at most logarithmic in the number of participants. To
the best of our knowledge, this is the first SSLE scheme achieving this property along with practical
efficiency.
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1 Introduction

Leader Election protocols are of fundamental importance to realize consensus in distributed systems.
The rise of blockchain and its numerous applications brought renewed interest on this topic and
motivated the need to consider consensus protocols that also provide some secrecy guarantees.
This is the case, for example, of leader elections in the context of Proof of Stake blockchains (e.g.,
[AMM18, GHM+17, KKKZ19, GOT19]) where one may wish to randomly select a secret leader,
i.e., a leader that remains hidden until she reveals herself. In these contexts, leader-secrecy allows
to protect against several attacks that would otherwise compromise the liveness of the blockchain.
Indeed, if a malicious party could know the identity of a future leader, he could try to deny the
leader’s access to the network (using a denial of service attack, for instance) before the latter
publishes her block, and this would affect, at least temporarily, the liveness and finality of the
system. An adversary could also try to bribe a potential leader to influence the set of transactions
that are going to be published.

Many existing solutions address this question by selecting a few potential leaders in expectation
(e.g. [BGM16, BPS16]). This means that, for every given round, on expectation a single block leader
is elected. Unfortunately, however, this also means that even many (or zero) leaders can be elected
in any round.

This state of affairs led to the quest for an election protocol that secretly produces a single
leader [Lab19], i.e., where exactly one single candidate is able to prove that she won the election.
In principle this problem could be solved using general multiparty computation. What makes such
an approach problematic are however the efficiency requirements that are desired in a blockchain
context. In particular, beyond being computationally efficient, an SSLE protocol should guarantee
low communication complexity (i.e. the total number of exchanged messages should scale with O(N)
or better, where N is the number of miners/users), and more importantly it should be on-chain
efficient: the amount of bits to store on chain, per new block, should be small (ideally logarithmic
in N).

The question of finding such an election protocol was formally addressed in a recent work of
Boneh et al. [BEHG20] who put forward the notion of Single Secret Leader Election (SSLE, from now
on). Informally, an SSLE scheme is a distributed protocol that secretly elects a leader and satisfies
uniqueness (at most one leader is elected), fairness (all participants have the same probability of
becoming the leader) and unpredictability (if the adversary does not win the election, she should
not be able to guess the leader better than at random). Boneh et al. [BEHG20] also proposed three
constructions meeting this notion that are based on different approaches and that achieve different
efficiency (and security) tradeoffs (cf. Table 1 for a summary).

Their first SSLE scheme relies on indistinguishability obfuscation (iO) [GGH+13] and its main
advantage is to achieve the lowest communication complexity and on-chain efficiency; indeed every
election involves a single constant-size message from the winner. At the same time, given the status
of iO realizations, this SSLE protocol is of very limited (if any) practical interest.

The second construction in [BEHG20] builds on Threshold Fully homomorphic Encryption
(TFHE) [BGG+18] and is asymptotically less efficient than the iO-based one: every election needs
O(t) communication (where t is a bound on the number of malicious users tolerated by the sys-
tem) to partially decrypt a publicly computable ciphertext; after this round of communication, the
winner can prove her victory. A nice aspect of the TFHE-based solution is that it actually requires
only a leveled scheme for circuits that for, say, N = 216 participants, can be of depth as little as 10.
However, other aspects of this solution makes it far from practical. First, it is not on-chain efficient:
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to make the election verifiable, O(t) bits of information must be stored in the new block (unless one
applies a transformation through a general-purpose SNARK proof that t valid partial decryptions
exist). Second, it requires large O(N logN) secret key shares, and no concrete distributed setup (for
the TFHE scheme) is explicitly provided in [BGG+18]. So to the best of our knowledge one would
have to rely on general multiparty computation techniques to achieve it.

The third SSLE construction in [BEHG20] is based on shuffling and the decisional Diffie-Hellman
assumption. Asymptotically, it performs worse than the other two solutions: every new election
requires to communicate and store in the new block a freshly shuffled list of N Diffie-Hellman pairs4

(along with a NIZK of shuffle). Notice that this makes the solution inherently not on-chain efficient.
The authors also describe a lightweight variant whose communication costs are O(

√
N), but the

tradeoff here is a scheme with significantly lower security guarantees, as the secret leader is selected
in a public subset of only

√
N users.

We note also that both the iO and TFHE-based SSLE protocols need a trusted setup. The latter
must be realized with a distributed protocol and should be in principle refreshed when new users
join the system. On the other hand, the shuffle-based solution is essentially setup-free and thus can
handle more easily users that join and leave the system dynamically.

Beyond efficiency considerations, another fundamental limitation of the constructions above is
that they are proved secure with respect to a (stand-alone) game-based definition which makes their
actual security in concurrent settings unclear. This is problematic in practice as it is hardly the case
that distributed consensus protocols are executed stand-alone.

Given this state of affairs, the main question that motivates our work is:
is it possible to build an SSLE protocol that is on-chain efficient and achieves good practical perfor-
mances while also realizing strong composability guarantees?

1.1 Our contribution

In this paper we propose a new SSLE solution that answers the above question in the affirmative.
Our first contribution is the proposal of a new definition of SSLE in the universal composability
model [Can01] (see Section 3). We believe this to be the right notion to model security in the highly
distributed, often concurrent, blockchain-like applications where electing a leader is required. Our
new definition implies the game-based definition of Boneh et al. [BEHG20], but, needless to say, the
converse is not true.

As a second contribution, we propose a UC-secure construction of SSLE. In particular, we
give a generic protocol based on public key encryption with keyword search (PEKS) [BDOP04],
and then propose an efficient instantiation of it based on pairings under the SXDH assumption.
The latter is our main technical contribution: it is a protocol that achieves the same (asymptotic)
communication complexity as the TFHE-based solution from [BEHG20] while achieving, in addition,
on-chain efficiency and much better practical performances. We refer to Table 1 for a comparison
between ours and the previous solutions and to the next section for an overview of our protocol.
We note that, although our protocol requires a total of 2 rounds of communication to prepare an
election, the first round can be actually executed in a preprocessing phase and shared to prepare
many elections, thus making the online rounds effectively 1, as in the other solutions. Moreover, the
protocol does not require parties to keep any state across rounds of communication, besides their
secret keys.
4 Precisely, when the winner no longer wants to participate in future elections, there is no need to shuffle for the
next election; we ignore this special case in our analysis.
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SSLE Security Setup Election efficiency

model Rounds Comm. On-chain

iO Game-based trusted 0 O(1) O(1)
TFHE Game-based trusted 1 O(t) O(t)
Shuffle-N Game-based – 1 O(N) O(N)

Shuffle-
√
N Game-based – 1 O(

√
N) O(

√
N)

Ours UC trusted 1 + 1 O(t) O(κ logN)

Table 1. Comparison between the SSLE solutions from [BEHG20] and the SSLE of this work. ‘On-chain’ refers to
the amount of information to be stored on chain in the new block after every election. Shuffle-

√
N achieves a weak

unpredictability notion. Everywhere, in O(·) we include the fixed security parameter λ. κ is a statistical security
parameter that gives meaningful security for κ = logN .

An overview of our SSLE protocol. Let us describe our protocol and its efficiency in slightly
more detail. PEKS is a notion of functional encryption [BSW11, O’N10] in which given a ciphertext
c encrypting a keyword w and secret key sk associated to another keyword w′, the decryption allows
one to learn if w = w′ and nothing more. Our SSLE protocol is based on the following simple idea.
For every election a small subset of users generates a ciphertext c that encrypts a random keyword
j ∈ {0, . . . , N − 1}. At registration time, each user is given a secret key ski associated to an integer
i, and can claim victory by giving a NIZK proof that she can decrypt the election’s ciphertext.

More specifically, our protocol consists of two phases: (1) a setup (done rarely) in which the users
run an MPC protocol to generate the public key of the PEKS and distribute its secret keys, (2) an
election’s procedure in which a randomly sampled committee of κ players generates a commitment
to the election’s ciphertext in a distributed way. The commitment is then opened in a distributed
way. Whoever knows a secret key that decrypts the ciphertext is the leader.

We formalize this approach in a generic SSLE protocol that we prove UC-secure assuming ideal
functionalities for the setup and encryption algorithms of any PEKS (see Section 4). Our main
technical contribution, however is to design an efficient instantiation of this blueprint, by showing
an “MPC-friendly” PEKS and by proposing very efficient (distributed) protocols for the setup and
election phases. To devise such a PEKS we build on (a modified variant of) the functional encryption
for orthogonality (OFE) scheme recently proposed by Wee [Wee17]. Furthermore we extend this
functionality to test keywords equality mod N albeit the message space is over a large field Fq. We
refer to this new primitive as modular PEKS.

Informally, the committed ciphertexts created in the election procedure are (plain) El Gamal
encryptions of Wee’s ciphertexts. An immediate advantage of this approach is that it allows for a
very efficient setup procedure: it merely consists in a threshold key generation for El Gamal followed
by the key generation for the functional encryption scheme. When relying on a publicly available
random beacon, we show that the latter can be realized efficiently in two rounds of communication,
one of which only used to perform complaints.

More interestingly, however, our proposed scheme allows to complete step (2) efficiently both
in terms of computation and communication. Indeed, our protocol manages to distributively create
valid (committed) ciphertexts c (encrypting messages uniformly distributed in a given range) in one
single round of communication! Moreover, this round of communication can be used to generate,
in parallel, as many ciphertexts as one wishes, one for every future election. This way, the commu-
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nication needed to perform an election effectively consists of only one round of communication in
which O(t) parties send their partial opening of the election’s ciphertext.

We note that the naïve approach of posting all these O(t) partial openings in the blockchain
would destroy our claimed on-chain efficiency guarantees. Interestingly, we can do better than this.
Parties can exchange the O(t) partial openings off-chain and store in the blockchain only much
shorter aggregate values that still enable anyone to verify the correctness of the election. Recall that
opening our committed ciphertexts consists in, distributively, decrypting corresponding El Gamal
ciphertexts. Simplifying things a bit, in our case this is achieved by letting players exchange partial
decryption shares (K1,i,K2,i) together with corresponding NIZKs. These shares are then (locally)
multiplied together to get values (K1,K2) that can be used to retrieve the encrypted ciphertext c.
Whoever is able to decrypt c correctly can then claim victory. Concretely, in our protocol, a user
can claim victory by posting on the blockchain only (K1,K2), together with a proof that she can
correctly decrypt c. Surprisingly, we show that a potentially expensive aggregated NIZK proving
correctness of (K1,K2) is not needed for our protocol to be secure, as we prove that coming up with
different (K ′1,K

′
2) which open the ElGamal commitment to another c′ 6= c that an adversary is able

to decrypt, implies breaking the underlying functional encryption scheme.

Concrete efficiency and comparison to previous solutions. To confirm the concrete perfor-
mances of our protocol we measure them for N = 214 users, as suggested in [Lab19]. Our results
show that the communication costs of an election are 36.8 KB to generate the committed election’s
ciphertext, 2.9 MB for the partial decryptions, and less than 1 KB to claim victory. Importantly,
out of all this information, only 37.8 KB per election have to be stored on-chain for verifiability.

The major cost in our protocol is that of setup, which for 214 users would amount to 252 MB.
This setup, however, is supposed to be performed rarely5. Indeed, in our protocol we can add new
users to the system without running a full setup: they engage in a registration procedure that allows
them to receive their secret keys, without altering the key material of other users. This can be done
with only 73 KB of communication per registration. If we compare to the shuffle-N solution of
Boneh et al. [BEHG20], our protocol can easily amortize the expensive setup and results in less
communication. In the shuffle-N solution, the issue is that every time a new user is added (which
always includes the winner of the previous election if he still wants to run) a new shuffle has to be
communicated and posted on-chain: this is about 1 MB per shuffle for 214 users. Concretely, if we
assume 506 new users join before every election, after 100 elections the shuffle-N scheme generates
6.2 GB to be communicated and stored on-chain, whereas our protocol involves 1.8 GB of off-chain
communication and only 5.3 MB of on-chain storage.

Our election protocol more in detail. At the heart of our protocol there is a very efficient
method to generate committed ciphertexts of the form discussed above. Here we informally highlight
the main ideas underlying this construction. Recall that we build our PEKS from a tailored variant
of the functional encryption for orthogonality (OFE) scheme recently proposed by Wee [Wee17]. In
OFE a ciphertext is associated to a vector x, a secret key corresponds to a vector y and decryption
allows one to learn if y>x = 0. The basic idea of our (modular) PEKS from OFE is inspired to that
of [KSW08] with a novel tweak.
5 As in the TFHE solution, our protocol in practice requires periodic setup to refresh the secrets shared when many
new users join

6 This number is justified by [Lab19], where O(log2N) new users are expected

6



In what follows, to keep the presentation intuitive and simple, we present a simplified version
of our methods that, in particular, supports vectors of dimension 2 (rather than 3 as in our actual
scheme) and only allows to test equality of keywords (rather than equality mod N).

During setup, each party Pi receives a public and secret key mpk, ski of the OFE scheme, where
ski is associated to the vector (1, i). If there were a magic way to directly produce an encryption c of
(m,−1) such thatm is uniform over [N ] (and no user gains any extra information onm), then, using
FE.Dec, each party could test if m = i by simply checking whether (m,−1)>(1, i) = 0. Clearly the
only user able to do this could then claim victory. Unfortunately, since no such wizardry is currently
known, we go for the next best option: we develop a very fast, one round protocol to jointly produce
a commitment of such a c7. The commitment is just a (standard) El Gamal encryption of c that
can be (distributively) opened in one round of communication.

In this informal presentation, we explain how to generate the (committed) ciphertext, in the
simpler case where m is allowed to lie in the slightly larger interval [κN ]. Our underlying ciphertexts
have the following shape

c0 = [sa]1 , c1 =
[
mσ + sa>w1

]
1
, c2 =

[
−σ + sa>w2

]
1
.

where [a]1 ,
[
a>w1

]
1
,
[
a>w2

]
1
are public key elements and s, σ are random values. Note that in

Wee’s scheme σ = sa>u, with
[
a>u

]
1
being an extra component of the public key. Using the

random beacon, we begin by generating a (small) election committee Q ⊆ [N ] of size κ and two
(random) group elements G,H that can be interpreted as an ElGamal encryption of [σ]1 in the
following way8

G = gθ, H = hθ [σ]1

where (g, h) is the El Gamal public key and θ, σ are random and unknown to participants. Using
this public information, each player Pi ∈ Q can create (committed) encryptions of mi by simply
choosing random ri, ρi, si, and mi ∈ [N ] and broadcasting [sia]1 together with

Gmi · gri = gθmi+ri Hmi · hri ·
[
sia
>w1

]
1

= hθmi+ri
[
miσ + sia

>w1

]
1

G−1 · gρi = gρi−θ H−1 · hρi ·
[
sia
>w2

]
1

= hρi−θ
[
−σ + sia

>w2

]
1

All these (committed) ciphertexts share the same randomness σ and can thus be multiplied
together to produce the final (committed) ciphertext of the vector (m =

∑
i∈Qmi,−1). Note that

the message m lies in the larger interval [κN ] but m mod N is uniform over [N ] as long as so is
at least one of the mi’s. Finally, as mentioned earlier, our actual realization (cf. Section 2.5) works
around this issue by managing to test equalities modulo N .

1.2 Other related work

The problem of extending proof of stake systems to consider privacy was considered, among others,
in [GOT19] and in [KKKZ19]. Leader election protocols were also considered by Algorand [GHM+17]
7 We stress here that no efficient single round solution to directly produce c seems possible because of rushing
attacks.

8 For clarity note that group operations are denoted multiplicatively, and that we make use of the bracket notation,
cf. Section 2.1
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and Fantomette [AMM18]. There the idea is to first identify few potential leaders (via a VRF) that
then reveal themselves in order and choose the winner via some simple tie break method (e.g. lowest
VRF output wins). The approach is efficient but has the drawback that the elected leader does not
know she was elected until everybody else published their value. Moreover, implicitly requires all
nodes to be able to see the winner’s output: users not getting this information might incorrectly
think that another leader was elected (causing the chain to fork). We stress that this cannot happen
in our setting.

1.3 Organization

In the next section we start by introducing the notation, the computational assumptions and the
cryptographic primitives used by our schemes. There we also recall the game-based definition of
SSLE from [BEHG20]. Next, in section 3 we give our definition of SSLE in the universal compos-
ability framework, and in section 4 we propose our generic SSLE construction from PEKS. Section
5 includes our main contribution, that is our efficient SSLE protocol from the SXDH assumption.
Finally, in section 6 we discuss the efficiency of our protocol in a realistic scenario and compare it
with the SSLE based on shuffles by Boneh et al. [BEHG20].

2 Preliminaries

2.1 Notation

λ ∈ N denotes the security parameter. A function ε(λ) is said negligible in λ if it vanishes faster
than the inverse of any polynomial in λ. [n] = {0, . . . , n−1}. Bold font (a,u,w, . . .) denotes vectors
with entries in a given field or a group. x←$ S means that x is sampled uniformly and with fresh
randomness from S. N is the number of players and t the threshold parameter.

We denote with G(λ) a bilinear group generator, that is an algorithm which returns the descrip-
tion of a bilinear group bg = (q,G1,G2,GT , e, g1, g2), where G1, G2 and GT are groups of the same
prime order q > 2λ, g1 ∈ G1 and g2 ∈ G2 are two generators, and e : G1×G2 → GT is an efficiently
computable, non-degenerate, bilinear map. We use gT = e(g1, g2) as a canonical generator of GT .
When G1 = G2, the groups are called symmetric; otherwise they are called asymmetric. In our work
we use Type-III asymmetric bilinear groups [GPS08] where no efficiently computable isomorphism
between G1 and G2 is known.

Fq is the finite field of prime cardinality q. Given a vector a = (ai)
n
i=1 ∈ Fnq and a group element

g we denote [a]g = (ga1 , . . . , gan). When the base is g1, g2 or gT we replace the above notation with
[a]1, [a]2 and [a]T respectively. Operations with vectors in Gn are entry-wise, i.e., for g,h ∈ Gn,
g·h = (gi·hi)ni=1, g

a = (gai )ni=1. Pairings are the only exception where e(g,h) = e(g1, h1)·. . .·e(gn, hn)
for g ∈ Gn

1 and h ∈ Gn
2 . Similarly ga = ga11 · . . . · gann .

2.2 SXDH assumption

In our efficient construction we rely on the SXDH assumption in bilinear groups, which informally
states that the classical DDH assumption holds in both G1 and G2. More formally,

Definition 1 (SXDH assumption). Let G be a bilinear group generator. We say that the SXDH
assumption holds for G if for every PPT adversary A, and every s ∈ {1, 2} there exists a negligible
function ε such that:

|Pr [A(bg, [a]s, [b]s, [c]s) = 1]− Pr [A(bg, [a]s, [b]s, [ab]s) = 1]| ≤ ε(λ)
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where the probabilities are over the random choice of a, b, c←$ Fq and bg = (q,G1,G2,GT , g1, g2)←$

G(1λ).

When the above assumption is considered in only one group Gs, for either s = 1 or s = 2, we refer
to it as DDH in Gs. We call DDH0 a game in which A received the first distribution and DDH1 a
game in which he receives the second one.

In the paper we also use an extension of DDH for vectors of n elements, called DDHn, which
briefly says that it is hard to distinguish the two tuples

([a1]s , . . . , [an]s , [b]s , [c1]s , . . . , [cn]s) ([a1]s , . . . , [an]s , [b]s , [a1b]s , . . . , [anb]s),

denoted respectively as DDH0
n and DDH1

n, for random ai, b, ci ∼ U(Fq). We note that DDHn can be
reduced to DDH in the same group [NR97].

2.3 Functional Encryption

We recall the definition of Functional Encryption [BSW11, O’N10].

Definition 2. A functionality F is a family of functions F = {f : X → Y}, where X is the plaintext
space and Y is the output space.

Definition 3. A functional encryption scheme for a functionality F is a tuple (FE.Setup,
FE.Enc,FE.KeyGen,FE.Dec) of PPTalgorithms such that

– FE.Setup(1λ) $→ (mpk,msk) generates the secret and public master keys.
– FE.Enc(m,mpk; r)→ c returns a ciphertext. Randomness r may be omitted.
– FE.KeyGen(f,msk) $→ skf returns a key associated to the function f ∈ F.
– FE.Dec(c, f,mpk, skf )→ x a bit string.

The scheme is correct if for any m ∈ X and f ∈ F, sampled mpk,msk ←$ FE.Setup(1λ), c ←$

FE.Enc(m,mpk), skf ←$ FE.KeyGen(f,msk), then up to negligible probability FE.Dec(c, f,mpk, skf ) =
f(m).

We recall the notion of selectively secure FE, which suffices for our goals.

Definition 4. A functional encryption scheme achieves selective security if for any PPT algo-
rithm A there exists a negligible function ε such that

AdvASSFE(1λ) =

∣∣∣∣Pr
[
ExpASSFE(1λ) = 1

]
− 1

2

∣∣∣∣ ≤ ε(λ).

2.4 Functional Encryption for Modular Keyword Search

Recall that the keyword search functionality [BDOP04, ABC+05] is defined as Fks = {fy : X →
{0, 1}}, where each function fy ∈ Fks labelled by y ∈ X is such that fy(x) returns 1 if x = y and
0 otherwise. Our realization works with a generalisation of the above where equality are checked
modulo a given integer. Formally we call modular keyword search functionality Fκmks = {fy : Fq ×
Fq → {0, 1}} parametrized by a positive integer κ of polynomial size, where each function fy labelled
by y ∈ Fq are such that fy(x, n) returns 1 if x = y + δn for some δ ∈ [κ], and 0 otherwise. Observe
that when y ∈ [n] and x ∈ [κn], then fy(x, n) = 1 if and only if x = y mod n.
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Selective Security Game ExpASSFE(1
λ):

1 : m0,m1 ←$ A
2 : Sample b←$ {0, 1}, mpk,msk←$ FE.Setup(1λ), c←$ FE.Enc(mb,mpk)

3 : Send A ← mpk, c

4 : When A queries f , if f(m0) 6= f(m1) then A ←⊥. Otherwise:
5 : Compute skj ←$ FE.KeyGen(f,msk) and send A ← skf

6 : When A → b′: Return b == b′

2.5 Our Realization of FE for Modular Keyword Search

We realize our FE scheme for the keyword search functionality Fκmks through a more powerful
scheme for the so-called orthogonality functionality [KSW08]. In the latter we have the message
space X = Fnq and each function fy, defined by a vector y ∈ Fnq , is such that fy(x) returns 1 when
y>x = 0 and 0 otherwise.

A construction of FE for Fks from and OFE scheme already appears in previous work [KSW08].
In this paper, we tweak this construction in order to support Fκmks described earlier (see Fig. 1).
The idea is that m = γ + δn if and only if (m,−1,−n)>(γ, 1, δ) for some δ ∈ [κ]. Therefore,
using an OFE scheme with dimension 3, a ciphertext for m and n is an encryption of the vector
xm,n = (m,−1,−n), while a key for γ is a collection of keys for the vectors yγ,δ = (1, γ, δ), with
δ ∈ [κ]. This way, decryption can be realized by testing if one of the keys successfully decrypts.

MKS.Setup(1λ):

(mpk′,msk′)←$ FE.Setup(1λ, 3)

Return mpk′,msk′

MKS.Enc(m,n,mpk):

xm,n ← (m,−1,−n)
Return c←$ FE.Enc(xm,n,mpk)

MKS.KeyGen(γ,msk):

For δ ∈ [κ]:

skγ,δ ←$ FE.KeyGen((1, y, δ),msk)

Return skγ ← (skγ,0, . . . , sk,γ,κ−1)

MKS.Dec(c, y,mpk, sky):

Set yγ,δ ← (1, γ, δ) for all δ ∈ [κ]

If ∃δ ∈ [κ] : FE.Dec(c,yγ,δ,mpk, skγ,δ) = 1

Return 1. Else Return 0

Fig. 1. Our FE for Fκmks from FE for orthogonality

Note however that the resulting construction is secure under a weaker notion in which the
adversary, who initially query an encryption of (m0, n0) and (m1, n1), can only asks secret keys for
keywords γ such that γ 6= m0 + δn0 and γ 6= m1 + δn1 for all δ ∈ [κ]. This restriction (often referred
to as weak attribute-hiding) is sufficient in our application as we want to hide the winner’s index
m mod n only from those users that haven’t won i.e. from those holding keys for γ 6= m mod n.
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FE.Setup(1λ, n):

Sample a,w1, . . . ,wn ←$ F2
q

mpk←
(
[a]1 ,

[
a>w1

]
1
, . . . ,

[
a>wn

]
1

)
msk← (wi)

n
i=1 and return (mpk,msk)

FE.KeyGen(y,msk):

r ←$ Fq \ {0}
Return sky ←

[∑n
i=1 ryiwi

]
2
, [r]2

FE.Dec(c,y,mpk, sky):

Parse c = (c0, ci)
n
i=1 with c0 ∈ G2

1

Parse sky = (d0, d1) with d0 ∈ G2
2

Return e(c0,d0)
?
= e(cy11 · · · cynn , d1) 6= 1

FE.Enc(x,mpk):

σ, s←$ Fq \ {0}
ci ←

[
σxi + sa>wi

]
1

Return c←
(
[sa]1 , c1, . . . , cn

)
.

Fig. 2. Our simplified version of [Wee17] FE scheme for orthogonality

2.6 Our Construction of FE for orthogonality

We adapt to our setting the, pairing-based, FE for orthogonality proposed by Wee in [Wee17].
Our modified scheme is detailed in Figure 2. In the appendix, Section D.1, we prove the following
theorem.

Proposition 1. The scheme in Fig. 2 is selective secure under the SXDH assumption

2.7 Non Interactive Zero-Knowledge

A non-interactive zero-knowledge (NIZK) proof system for a relation R is a tuple of PPT algorithms
(NIZK.G,NIZK.P,NIZK.V) where: NIZK.G generates a common reference string crs; NIZK.P(crs, x, w),
given (x,w) ∈ R, outputs a proof π; NIZK.V(crs, x, π), given statement x and proof π outputs 0
(reject) or 1 (accept). We say that a NIZK for R is correct if for every crs ←$ NIZK.G(1λ) and all
(x,w) ∈ R, NIZK.V (crs, x,NIZK.P(crs, x, w)) = 1 holds with probability 1. In our protocols we re-
quire the NIZKs to satisfy the notions of weak simulation extractability [Sah99] and zero-knowledge
[FLS90].

About the first property, it only guarantees the extractability of proofs produced by the adversary
that are not equal to proofs previously observed. For this reason we make them “unique” by adding
implicitly a session ID to the statement. Concretely this means that in the Fiat Shamir transform,
the hash function evaluations need to be salted with a unique session ID. Note that we won’t detail
how to handle these sid, in the same way we don’t detail it for ideal functionalities invocations.

We now define three relations about group elements. The first one checks whether two vectors
g,h ∈ Gn

1 are proportional, i.e., there exists a ∈ Fq s.t. ga = h. The second one generalise the
previous to linear maps. The third one asks for solutions to the linear system Ax = b where A, b
are given in the exponent and the last component xn lies in a prescribed range. Formally

RDDH = {((g,h), s) : g,h ∈ Gn, gs = h}

RLin =
{

(([A]1 , [B]1), X) : A ∈ Fk,mq , B ∈ Fk,nq , X ∈ Fm,nq , AX = B
}

RLR = {(([A]1 , [b]1 , B),x) : A ∈ Fm,nq , b ∈ Fmq , x ∈ Fnq , Ax = b, xn ∈ [B]}

We also use REnc and RDec which relates to a given functional encryption scheme. The first one,
given a ciphertext, requires knowledge of the message and randomness used to generate it. The
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second one instead, given a tuple (mpk, c, f, x) asks for a correct secret key skf that decrypts c to
x. Below we also introduce a language Lkey to formally capture the notion of correct secret key.

Lkey = {(mpk, f, sk) : ∀m, r; c = FE.Enc(m,mpk; r) ⇒ FE.Dec(c, f,mpk, sk) = f(m)}
RDec = {((mpk, c, f, x), sk) : (mpk, f, sk) ∈ Lkey, FE.Dec(c, f,mpk, sk) = x}
REnc = {((c,mpk), (m, r)) : c = FE.Enc(m,mpk; r)}.

Notice that asymmetric encryption scheme, that are a special case of FE with only one function
(the identity over the message space) are also captured by this definition abusing notation.

To construct our protocols, we assume the existence of a NIZK argument for each of these
relations. We note that all of them can be proved through a sigma protocol, and that Fiat-Shamir
based NIZKs from sigma protocols are weakly-simulation-extractable [FKMV12] based on a special
property called quasi-unique responses (which is essentially satisfied by all Schnorr-like protocols
where the third message is uniquely determined given the previous two). For the relations RDDH

and RLin, we can use generalised Schnorr protocols provided in [Mau15]. For RLR we propose a
variant of the folklore solution based on binary decomposition9, detailed in the appendix, Section
B.2. We propose a sigma protocol for RDec in appendix B.1.

2.8 UC model and Ideal Functionalities

The celebrated UC model, introduced in the seminal work of Ran Canetti [Can01], is a framework
that allows to prove security properties of a protocol that are preserved under composition. This is
done by comparing the protocol to an ideal functionality F defined to capture the intended proper-
ties. A protocol securely realises F if it is indistinguishable from F ◦S for a given PPT simulator S.
The distinguisher Z, also called the environment, is granted the power to choose all parties input,
learn their output and corrupt any number of parties learning their internal state and influencing
their behaviour. The challenge for S is therefore to reproduce all the messages sent by uncorrupted
parties in a consistent way with their input/output, even though S cannot access it. To make this
possible in non trivial cases, functionalities are often designed to leak some information to S and
allow the simulator to influence the result in some way.
Below we define two functionalities required in our construction: Fzk and F DCT which respectively
models a zero-knowledge proof of knowledge and a random beacon. The first one was introduced in
[CF01], even though our definition slightly differ as all the recipients receive the output messages.
This deviation is justified by our assumption of an authenticated broadcast channel. FCT instead
was recently introduced in [CD20] and realised assuming a suboptimal honest majority under stan-
dard assumptions.

2.9 Single Secret Leader Election

In this section we present the notion of a single secret leader election scheme as formalized by Boneh
et al. [BEHG20] using a game-based approach. Informally, Boneh et al. define SSLE as a collection
of protocols that allow a set of users to setup the system, register to be eligible or quit, secretly elect
a single leader among registered users, claim victory and verify these claims. Security is captured
9 In this case the most efficient choice to date may be an adaptation of Bulletproofs [BBB+18]; however, to the best
of our knowledge, this is not known to be simulation-sound.
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The ZK Functionality FRzk :
Upon receiving (prove, sid, x, w) from Pi, with sid being used by Pi for the first
time: if (x,w) ∈ R, broadcast (proof, sid, i, x).

The Coin Tossing Functionality F DCT:
Parametrized by a distribution D. Upon receiving (toss, sid) from all the honest
parties, sample x←$ D and broadcast (tossed, sid, x)

by three properties uniqueness, fairness and unpredictability respectively implying that there is only
one elected leader, that the election is not biased, and that the adversary has no information on the
winner until she reveals herself.

In the definitions given below we slightly depart from the syntax and games in [BEHG20]. First,
[BEHG20] assumes a protocol to verify the registration of a given user: we incorporate this step
as part of the registration protocol. The second and more relevant difference is that, in contrast
to the definitions in [BEHG20], our security games further require that no sub protocol aborts,
i.e. halts without returning any input. To justify this addition we observe that without it, security
is not guaranteed for protocols that restart a sub procedure that has failed. To the best of our
understanding, this assumption is de facto present in the security proofs of all schemes in [BEHG20].
The third difference is that we consider two threshold parameters to model the maximum number
of users that the adversary can corrupt: t is a threshold over the total number N of users in the
system (i.e., the adversary can corrupt up to t out of N users); ϑ(n) is instead a threshold function
over the number of registered users in an election (i.e., the adversary can corrupt < ϑ(n) users that
are registered in the election). This change is done to let the definition capture more constructions:
indeed there may be schemes where one needs honest majority over the total number of users (e.g.,
because they all hold a share of a global secret key), and others that can be secure even when the
adversary controls a majority of all the users, but security of a given election still needs an honest
majority of the users that participate in it.

Finally, we recall that our constructions satisfy a UC-secure notion of SSLE that we introduce
in the next section. We provide the following game-based notion for the sake of a comparison. As
shown in the next section, game-based SSLE is implied by UC-secure SSLE, while the converse may
not hold.

Definition 5. A Secret Single Leader Election is a tuple of five protocols (SSLE.Setup, SSLE.Reg,
SSLE.Elect, SSLE.Claim, SSLE.Vrf) executed among N users, such that

– SSLE.Setup returns pp to every player and spi to Pi.
– SSLE.Regpp(i) registers player Pi for future elections
– SSLE.Electpp returns publicly a challenge c.
– SSLE.Claimpp(c, spi, i)→ π/ ⊥ returns publicly a proof to claim victory.
– SSLE.Vrfpp(c, π, i)→ 0/1 verifies the correctness of a claim.

An SSLE scheme is said to admit revocation if there is a sixth protocol SSLE.Revpp(i) which revokes
the registration of player Pi from future elections

Definition 6 (Uniqueness). An SSLE scheme satisfies (t, ϑ)-threshold uniqueness if for all
PPTA that corrupt T < t parties there exists a negligible function ε s.t.

Pr
[
ExpAUniq(1λ, N, ϑ) = 1

]
≤ ε(λ).
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If t = N and ϑ = 1N (i.e. ϑ is the identity function) we simply say that the scheme satisfies
uniqueness.

Definition 7 (Fairness). An SSLE scheme satisfies (t, ϑ)-threshold η(λ)-fairness if for every
PPTalgorithm A that corrupts T < t players there exists a negligible function ε such that∣∣∣∣Pr

[
ExpAFair(1

λ, N, ϑ) = 1
]
− n− τ

n

∣∣∣∣ ≤ ε(λ) + η(λ).

where n and τ are defined in the experiment. If η(λ) = 0 we say that the scheme satisfies (t, ϑ)-
threshold fairness. Finally if T = N and ϑ = 1N we simply say that scheme satisfies fairness.

Definition 8 (Unpredictability). An SSLE scheme satisfies (t, ϑ)-threshold η(λ)-unpredictability
if for every PPTA that corrupts T < t parties there exists a negligible function ε such that

Pr
[
ExpAUnpr(1

λ, N, ϑ) = 1|HW
]
≤ 1

n− τ
+ ε(λ) + η(λ)

where HW is the event “∃i ∈ [N ] \M : SSLE.Vrf(cs, πi,s, i) = 1” requiring the existence of at least
one honest winner in the challenge phase.
If η(λ) = 0 the scheme satisfies (t, ϑ)-threshold unpredictability. If t = N and ϑ = 1N the scheme
is simply said to satisfy unpredictability.

Uniqueness Experiment ExpAUniq(1
λ, N, t, ϑ):

1 : When M ← A(1λ, N), simulate Pi for i ∈ [N ] \M interacting with A
2 : Execute SSLE.Setup→ pp, spi for i ∈ [N ] \M . Set s← 0, R← ∅
3 : When register, i← A: Run SSLE.Regpp(i) and add R← R ∪ {i}
4 : When revoke, i← A: Run SSLE.Revpp(i) and remove R← R \ {i}
5 : When elect← A and |R ∩M | < ϑ(|R|): Execute SSLE.Electpp → cs

6 : πi,s ← SSLE.Claimpp(cs, spi, i), A ← πi,s ∀i ∈ R \M
7 : πi,s ← A ∀i ∈ R ∩M ; s← s+ 1

8 :
When A halts, return 1 if any protocol failed or if ∃s′ ∈ [s] and i, j ∈ [N ] distinct
such that SSLE.Vrfpp(ct, πi,s′ , i) = SSLE.Vrfpp(ct, πj,s′ , j) = 1

3 Universally Composable SSLE

The game-based security definitions given in the previous section (i.e., definitions 6, 7, and 8) capture
the three essential properties an SSLE scheme should have. Yet, the security experiments do not
model scenarios where multiple executions of the setup/registration/election protocols may occur
concurrently. Moreover, as in most game-based notion, security is not guaranteed to hold when the
primitive is used in a more complex protocol.

For this reason, we propose a definition of SSLE in the universal composability model. To this
end, we define an ideal functionality FSSLE that performs elections and reveals the winners in an
ideal way. A UC-secure SSLE scheme is then any protocol that securely realizes FSSLE.
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Fairness Experiment ExpAFair(1
λ, N, t, ϑ):

1 : When M ← A(1λ, N), simulate Pi for i ∈ [N ] \M interacting with A
2 : Execute SSLE.Setup→ pp, spi for i ∈ [N ] \M . Set s← 0, R← ∅.
3 : When register, i← A: Run SSLE.Regpp(i) and add R← R ∪ {i}
4 : When revoke, i← A: Run SSLE.Revpp(i) and remove R← R \ {i}
5 : When elect← A and |R ∩M | < ϑ(|R|): Execute SSLE.Electpp → cs

6 : πi,s ← SSLE.Claimpp(cs, spi, i), A ← πi,s ∀i ∈ R \M
7 : πi,s ← A ∀i ∈ R ∩M ; s← s+ 1

8 : When chall← A and |R ∩M | < ϑ(|R|): Call n = |R| and τ = |R ∩M |;
9 : Execute SSLE.Electpp → cs

10 : πi,s ← SSLE.Claimpp(cs, spi, i) ∀i ∈ R \M

11 : Return 1 if no protocol fails and ∃i ∈ R \M such that SSLE.Vrfpp(cs, πi,s, i) = 1,
0 otherwise

Unpredictability Experiment ExpAUnpr(1
λ, N):

1 : When M ← A(1λ, N), simulate Pi for i ∈ [N ] \M interacting with A
2 : Execute SSLE.Setup→ pp, spi for i ∈ [N ] \M . Set s← 0, R← ∅.
3 : When register, i← A: Run SSLE.Regpp(i) and add R← R ∪ {i}
4 : When revoke, i← A: Run SSLE.Regpp(i) and remove R← R \ {i}
5 : When elect← A and |R ∩M | < ϑ(|R|): Execute SSLE.Electpp → cs

6 : πi,s ← SSLE.Claimpp(cs, spi, i), A ← πi,s ∀i ∈ R \M
7 : πi,s ← A ∀i ∈ R ∩M ; s← s+ 1

8 : When chall← A and |R ∩M | < ϑ(|R|): Call n = |R| and τ = |R ∩M |;
9 : Execute SSLE.Electpp → cs

10 : πi,s ← SSLE.Claimpp(c, spi, i) ∀i ∈ R \M ; j ← A
11 : Return 1 if any protocol fails or if SSLE.Vrfpp(cs, πj,s, j) = 1, 0 otherwise

At a high-level, FSSLE consists of the following commands. By using (register) a user can register
to an election. When all the honest users call (elect, eid), a new election with identifier eid is
performed, that is the ideal functionality samples a winner index j uniformly at random from the
set of registered users. By using the (elect, eid) command, every honest user is informed by the ideal
functionality on whether she is the winner of the election eid. Using (reveal, eid), an honest winning
user instructs the ideal functionality to announce the election’s outcome to everyone. Finally, the
(fake_rejected, eid, j) command is reserved to the adversary and makes ideal functionality announce
to everyone that the (corrupted) user j is not the winner. This models a scenario in which an
adversary deviates from the protocol to claim victory in spite of being the leader. The formal
definition of the FSSLE functionality is given below.

Following the same idea that led us to the (t, ϑ)-threshold definitions in Section 2.9, we now
specify a class of environments that (1) corrupts M with |M | < t parties; (2) induce FSSLE to
perform elections only when |R ∩M | < ϑ(|R|).

Definition 9. A protocol Π is said to (t, ϑ)-threshold realise FSSLE if there exists a simulator S
such that Π is indistinguishable from FSSLE ◦ S for all PPT environments Z that statically corrupt
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The SSLE functionality FSSLE:
Initialise E,R← ∅, n← 0 and let M be the set of corrupted parties. Upon receiving:

– (register) from Pi: add R← R∪{(i, n)}, broadcast (registered, i) and set n← n+1.

– (elect, eid) from all honest parties: if R 6= ∅ and eid was not requested before sample
(j, γ)←$ R and send (outcome, eid, 1) to Pj and (outcome, eid, 0) to Pi for (i, ·) ∈ R,
i 6= j. Store E ← E ∪ {(eid, j)}.

– (reveal, eid) from Pi: if (eid, i) ∈ E broadcast (result, eid, i). Otherwise broadcast
(rejected, eid, i).

– (fake_rejected, eid, j) from the adversary: if Pj is corrupted broadcast
(rejected, eid, j).

a set M of parties with |M | < t and such that at each step, calling R the set of registered users,
|R ∩M | < ϑ(|R|).

Definition 10. A (t, ϑ)-threshold statically secure UC-SSLE is a protocol Π that (t, ϑ)-securely
realise FSSLE. If t = N and ϑ = 1N then Π is called a statically secure UC-SSLE.

To further motivate our UC-secure notion of SSLE we compare it to the game-based one. First,
in the following Proposition, we show that the UC notion implies the game-based one. A proof
appears in the appendix, Section C.1

SSLE.Setup:

Pi sets (pp, spi, eid)← (⊥,⊥, 0)

SSLE.Regpp(i):

Pi sends (register, i) to Π
Others wait (registered, i)← Π

SSLE.Electpp:

All players send (elect, eid) to Π and update eid← eid+ 1

When Pi receives (outcome, eid, ·)← Π: return eid

SSLE.Claimpp(c, spi, i):

Send (reveal, c) to Π.

Return π ←⊥

SSLE.Vrfpp(c, π, i):

When (result, c, i)← Π return 1

When (rejected, c, i)← Π return 0

Fig. 3. The derived SSLE scheme from a UC-SSLE protocol Π

Proposition 2. If Π is a (t, ϑ)-threshold statically secure UC-SSLE protocol, then its derived SSLE
scheme described in Figure 3 satisfies (t, ϑ)-threshold uniqueness, (t, ϑ)-threshold fairness and (t, ϑ)-
threshold unpredictability.

Second, we argue that our UC notion is strictly stronger than the game-based one. For this, we
simply observe that taking one of the protocols from [BEHG20] (e.g., the one based on TFHE or the
one based on Shuffling) they cannot be UC-secure if the zero-knowledge proofs they employ are not
UC-secure.10 In [BEHG20], these protocols are proven secure without making any UC assumption
10 Here, as the candidate protocol we are assuming the one where each sub protocol is used to implement the

corresponding command, i.e., SSLE.Reg for register, SSLE.Elect for elect, etc.
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on these zero-knowledge proofs; so they constitute a counterexample of protocols that are secure in
the game-based sense but would not be secure according to our UC notion.

3.1 A parametrised definition

Definition 10 provides a higher level of security with respect to the game-based definition, but at
the same time requires more structure from the underlying protocol and therefore may imply higher
costs. In order to leverage security and efficiency we present here a parametrised functionality Fκ,ηSSLE
that allows the adversary with probability smaller than 2−κ to control a given election and which
may not elect any user with probability smaller than 2−η.

The Parametrised SSLE functionality Fκ,ηSSLE:
Initialise E,R← ∅, n← 0 and let M be the set of corrupted parties. Upon receiving:

– (register) from Pi: add R← R∪{(i, n)}, broadcast (registered, i) and set n← n+1.

– (elect, eid) from all honest parties: if eid was not requested before leak (electing, eid).
Upon receiving (prob, eid, p1, p2) with p1 ≤ 2−κ, p2 ≤ 2−η:
With probability p1 leak (corrupted, eid) and wait for the adversary to reply with
(infl, eid, j). Else, with probability p2 set j ←⊥. If the previous action are not per-
formed, sample (j, n′)←$ R.
Send (outcome, eid, 1) to Pj and (outcome, eid, 0) to Pi for (i, ·) ∈ R, i 6= j. Add
E ← E ∪ {(eid, j)}.

– (reveal, eid) from Pi: if (eid, i) ∈ E broadcast (result, eid, i). Otherwise broadcast
(rejected, eid, i).

– (fake_rejected, eid, j) from the adversary: if Pj is corrupted broadcast
(rejected, eid, j).

Setting κ = η = Θ(λ) we get back a functionality equivalent to FSSLE. However for smaller values
of κ, η we can now capture schemes achieving weaker fairness and unpredictability, which in practice
might be sufficient, especially if these lead to significant efficiency gains. In Section C.2 we show that
applying the construction in Figure 3 to a protocol realising Fκ,ηSSLE with less than ϑ(n) statically
corrupted players, yields an SSLE scheme with (2−κ + 2−η)-fairness and ξ(κ)-unpredictability with

ξ(κ) = sup
n∈N

(
n

n− ϑ(n)

)
· 1

2κ
· 2η

2η − 1
.

For fairness, the 2−κ + 2−η bound simply means that for κ, η = logN an adversary controlling T
parties, wins the election with probability (T + 2)/N . This is the same winning probability of an
adversary that runs a fair election but corrupts two single extra players.

4 UC-secure SSLE from FE for Modular Keyword Search

We begin presenting a generic construction of a UC-SSLE protocol based on modular keyword
search FE, which, besides being of independent interest, serves as a stepping stone toward our full
construction. More specifically we realise Fκ,ηSSLE assuming there exists a protocol Π that securely
distributes keys and on request produces ciphertexts encrypting messages uniformly distributed.
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Our construction roughly works as follows: Initially the public key mpk is distributed among
N user. To perform the n-th registration for Pi, parties run Π to give skn to Pi. Finally, when an
election is requested, users generate with Π a challenge ciphertext c that encrypts a message m,n,
with m ∈ [κn] such that m mod n ∼ U([n]), and check whether they won or lost by decrypting.
Whoever can decrypt c to 1 is the leader and can claim victory by broadcasting a NIZK argument
of this.

Unfortunately, even if this solution can already be proven secure in the game-based definition,
it is not UC-secure yet. The reason is that, if at a given round a ciphertext c encrypting m,n
with m = γ + δn is returned, γ being associated to an honest user, the adversary could re-register
malicious users until he gets skm and then test that MKS.Dec(c,m,mpk, skm) = 1. This makes the
protocol hard to simulate as the ciphertext produced needs to contain the winner’s index – which
the simulator cannot know in advance.

To prevent this issue we introduce a set S of forbidden keys: each time a user wins with key skγ ,
the indices γ+ δn for δ ∈ [κ] are added to S and, each time a new user joins, n is set to be the next
integer not lying in S. However this introduce a probability |[n] ∩ S| · n−1 to produce a ciphertext
none can decrypt, meaning that none is elected. A way to keep this smaller than 2−η is to perform
a new setup every time it would exceed this bound.

To proceed we formally define a functionality FSnC, that shapes behaviour and security of Π,
and a protocol {P (i)

MKS−SSLE : i ∈ [N ]} in the FSnC-hybrid model realising Fκ,ηSSLE. Security is proven
in Appendix D.2.

The Setup and Challenge Functionality FSnC:

Generate crs ←$ NIZK.GDec(1
λ), mpk,msk ←$ KS.Setup(1λ). Set S ← ∅ and n ← 0.

Upon receiving:

– (setup) from Pi: send (input, crs,mpk) to Pi

– (ch_request, eid) from all honest parties: If eid was not requested before, sample
m ←$ [κn] and compute c ←$ KS.Enc((m,n),mpk). Broadcast (challenge, eid, c). If
m /∈ S, divide m = γ + δn with γ < n and add S ← S ∪ {γ + δ′n : δ′ ∈ [κ]}.

– (keygen) from Pi: When honest users agree, n ← n + 1 until n /∈ S, set skn ←
MKS.KeyGen(n,msk) send (key, skn) to Pi and broadcast (key_request, i, n).

Theorem 1 The protocol {P (i)
MKS−SSLE : i ∈ [N ]} securely realises Fλ,ηSSLE in the FSnC-hybrid model

for the class of PPT environments Z that statically corrupts up to N players.

5 An Efficient UC-secure SSLE from SXDH

In this section we propose our main contribution, an SSLE protocol that works over bilinear groups
and that we prove UC-secure under the SXDH assumption.

5.1 Intuition

The idea is to instantiate the generic construction of Section 4 with the modular KS scheme obtained
applying the transformation in Fig. 1 to our OFE in Fig. 2.
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Party P
(i)
MSK−SSLE realising Fλ,ηSSLE:

Set C,R,K ← ∅, send setup to FSnC and wait for (input, crs,mpk). Upon receiving:

– register: send keygen to FSnC and for it to reply with (key, skγ). Store K ← K∪{skγ}.
– A request to generate a new secret key from FSnC: accepts if there is no election

currently in progress.
– (key_request, j, n) from FSnC: return (registered, j) and set R← R ∪ {(j, n)}.

– (elect, eid): send (ch_request) to FSnC. When it replies with (challenge, eid, c), if
there exists skγ ∈ K such that 1← MKS.Dec(c, γ,mpk, skγ), return (outcome, eid, 1).
Otherwise return (outcome, eid, 0). Add C ← C ∪ {(c, eid)}.

– (reveal, eid): if (eid, c) ∈ C and 1 ← KS.Dec(c, i,mpk, skγ) for some skγ ∈ K, prove
π ←$ NIZK.PDec(mpk, c, γ, skγ) and broadcast (claim, eid, π, γ). Otherwise broadcast
(claim, eid,⊥).

– (claim, eid, π, γ) from Pj : if (j, γ) ∈ R and 1 ← NIZK.VDec(crs,mpk, c, γ, π) return
(result, eid, j), otherwise (rejected, eid, j)

The main challenge is to efficiently generate ciphertexts in a distributed way. To address this,
we select a random committee Q ⊆ [N ] and have each member Pj secretly sample a value mj ∈ [n]
and jointly generate an encryption of m =

∑
j∈Qmj . A downside is that now m ∈ [|Q|n]. For this

reason, we use the FE for the functionality Fκmks with κ = |Q|. This way, decryption still provides a
good way to test if one wins, as with this functionality the holder of secret key for index γ learns if
m = γ mod n. Also, if at least one mj is uniform over [n], so is m mod n. Moreover, as |Q| = κ is a
small parameter, the decryption of our scheme in Fig. 1 remains efficient.

Next step is to show in more detail how the committee can accomplish its task. The ciphertext
we want to produce has the following shape:

c0 = [sa]1 , c1 =
[
σm+ sa>w1

]
1
, c2 =

[
−σ + sa>w2

]
1
, c3 =

[
−nσ + sa>w3

]
1

While c0, c2, c3 would be easy to generate alone, as they linearly depend on s, σ, in c1 we need to
compute a product σ · m. Standard MPC techniques could solve this issue within a few rounds,
however we opt for a solution that requires each user to only speak once. First, we sample two
group elements G,H through the random beacon and interpret them as the ElGamal encryption,
with respect to a previously generated public key g, h, of [σ]1. Next each player Pi for i ∈ Q samples
mi ∈ [n], si ∈ [n], and, using the linearity of ElGamal, computes and randomise an encryption of

c1,i =
[
σmi + sia

>w1

]
1
, c2,i =

[
−σ + sia

>w2

]
1
, c3,i =

[
−nσ + sia

>w3

]
1

Finally he sends these encrypted values together with c0,i = [sia]1 and a NIZK.
At this point everyone can locally set c0 as the product of c0,i, while to get the other components

we assume that the secret key x of the ElGamal public key, s.t. gx = h, was previously t-shared
among all users. This way those elements are retrieved through a threshold decryption. In conclusion
we point out that, as in the general construction in Section 4, we have to maintain a set S of keys that
cannot be generated in order to keep the protocol simulatable, incurring occasionally in elections
without leaders.

Finally, to complete the protocol we have to show how to distribute the setup and key generation
of our FE scheme. For ease of exposition, we first present a protocol assuming an ideal setup
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functionality in Section 5.2, and then in Section 5.3 we show how this functionality can be UC-
realized.

5.2 SSLE protocol with Ideal Setup Functionality

In Figure 4 we show a protocol that securely realizes the Fκ,ηSSLE ideal functionality. To this end we
use the following building blocks:

– The FE scheme for orthogonality in Fig. 2, denoted FE.
– NIZKs for RDDH ,RLR and RDec. For readability, we suppress the crs from the inputs of the

prover and verifier algorithm.
– A functionality FSK that distributes public and private keys of our OFE scheme, and t-share a

threshold ElGamal secret key – sending privately the share f(j) to Pj and publicly kj = gf(j).
– A random beacon F ch

CT returning G,H,Q with G,H ∼ U(G2
1) and Q ⊆ [N ], |Q| = ` such that

the probability that Q is contained in the set of corrupted parties is smaller than 2−κ. Note that
t < N/2 implies ` ≤ κ.

Each user maintain (or recover from the public state) four sets C,R, S,K respectively containing
previous challenges, currently registered users, forbidden keys and owned secret keys.

Elections begin by invoking F ch
CT which returns (G,H,Q). In steps 6-8 users in Q interpret

(G,H) = (gθ, hθ · [σ]1) with σ ∼ U(Fq), sample mi ∈ [n], si ∈ Fq and produce encrypted shares of
the challenge components. Then they sample ri and ρi to re-randomize these ciphertext. Interestingly
we observe that using the same randomness for the last two components does not affects security.

Next, in steps 11-15 we let Q0 ⊆ Q be the set of users who replied with a correct NIZK. Observe
that, calling s, r, ρ,m the sum of the respective shares over Q0, then G1 = gr+θm and G2 = gρ+θ.
In order to decrypt each user produces K1,i,K2,i that will open to hr+θm and hρ+θ.

In steps 16-20, users locally multiply the elements sent by the committee and reconstruct, in-
terpolating at the exponent, K1 = hr+θm and K2 = hρ+θ. Since∏

µ∈Q0

c1,µ = hr+θm
[
mσ + sa>w1

]
1

H−1
∏
µ∈Q0

c2,µ = h−ρ−θ
[
−σ + sa>w2

]
1

H−n
∏
µ∈Q0

c3,µ = h−n(ρ−θ)
[
−nσ + sa>w3

]
1

applying K1,K2 they finally obtain all the components of the challenge c. At the end of an election
(lines 20-22) each user verify whether or not he won.

When a user wins and receives a reveal command, he claim victory by sending both the elements
K1,K2 and a proof of knowledge for a secret key skyγ,j , The first part being required as we don’t
want to store on chain the threshold decryption. Even though this may sound insecure as another
user could come up with different K ′1,K ′2 that let him win, in the proof of security we show that
being able to do so implies breaking the selective security of our OFE. See Section D.3, Claim 8 for
more details.

Finally we deal with the remaining commands as in the generic construction in Section 4.

Theorem 2 The protocol in Fig. 4 (t, ϑ)-threshold securely realizes Fκ,ηSSLE in the (FCT,FSK)-hybrid
model under the SXDH assumption, for t = bN/2c and ϑ(n) = bn/2c
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The Setup and Key Generation Functionality FSK

n ← 0, S ← ∅, g ←$ G1, f ←$ Fq[x]<t, mpk, msk ←$ FE.Setup(1λ, 3). Fix
h ← gf(−1), kj ← gf(j), pp ← (mpk, g, h, (kj)

N−1
j=0 ), leak (setup_leak, pp, f(j))j∈M

and wait for (setup_infl,w∗α, f
∗)3α=1 from the adversary Z. Calling mpk = (z0, zα)

3
α=1,

msk = (wα)
3
α=1, set

mpk← (z0, zα · zw
∗
α

0 )3α=1, msk← (wα +w∗α)
3
α=1, f ← f + f∗

and update pp. Upon receiving:

– (setup) from Pj : Send (input, pp, f(j)) to Pj .

– (update, γ, n) from honest players: S ← S ∪ {γ + δn : δ ∈ [κ]}.

– (keygen) from Pj : Broadcast (key_request). while n ∈ S, increase n by 1. Set skn,δ ←
FE.KeyGen(yn,δ,msk), and send (key, (skn,δ)

κ−1
δ=0 ) to Pj .

– (infl, (w∗i )
3
i=1) from the adversary Z: For each key sk = (d, d) sent to Pj associated to

a vector y, compute sk′ = (d · [y1w∗1 + y2w
∗
2 + y3w

∗
3 ]d , d) and send (key_update, sk′)

to Pj . Update msk setting wα ← wα +w∗α.

5.3 Realising the Setup

For what regards the setup and key generation, in Protocol 4 we used for simplicity a functionality
FSK. Here we describe how to realise it.

First of all, in order to emulate private communication channels, not available in our model but
necessary to distribute secret parameters, we use an IND-CPA encryption scheme (AE.Setup,AE.Enc,AE.Dec).
Second, as our NIZKs are randomised sigma protocols compiled with Fiat-Shamir, they only need
access to a random oracle and in particular there is no need to instantiate a crs. Next, we need to
distribute the secret key of the Threshold ElGamal scheme. This is addressed by deploying standard
techniques from verifiable secret sharing.

Finally we have to generate the public and secret keys of the FE scheme in Figure 2. To this
aim, recall that

mpk = [a]1 , (
[
a>wα

]
1
)3α=1, skyγ,δ = [r(w1 + γw2 + δw3)]2 , [r]2 .

Fixing [a]1 and [r]2, which can be generated through a random beacon, the remaining components
of these keys depends linearly on wα. Therefore we can again select a random committee and let
each member Pi sample wα,i ←$ F2

q . At a high level to produce either mpk or a secret key, users
provide shares of it, which are then locally multiplied. When reconstructing a secret key moreover
the receiver checks the shares and complain if they are malformed.

More in detail in our construction we will use

– NIZKs for REnc,RDec and the ideal functionality FLin
zk .

– Two random beacon F stp
CT and F sk

CT returning respectively (Q, z0, g) and (dδ)
κ−1
δ=0 with z0 ∼ U(F2

q),
g ∼ U(G1), dδ ∼ U(G2) and Q ⊆ [N ], |Q| = ` such that the probability of Q containing only
corrupted users is smaller than 2−λ. Notice that t < N/2 implies ` ≤ λ.

In steps 1-6 members of the committee sample a polynomial fi used for the VSS, and shares
wi,α. The proof in line 4 guarantees that the adversary is aware of the plaintext fi(j) encrypted,
preventing decryption-oracle attacks.
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Party P
(i)
SSLE,κ realising Fκ,ηSSLE:

Call C,R, S,K ← ∅, n← 0. Send setup to FSK, wait for the reply (input, pp, f(i)) and
parse pp = mpk, g, h, k0, . . . , kN−1, with mpk = [a]1,

[
a>w1

]
1
,
[
a>w2

]
1
,
[
a>w3

]
1

together with bilinear groups description. Upon receiving:

1 : (register): Send keygen to FSK and wait for (key, skn); Add K ← K ∪ skn

2 : (key_requested, j) from FSK: Wait for all elected leader to reveal themselves.
3 : While n ∈ S, n← n+ 1; R← R ∪ {(j, n)}, n← n+ 1; Return (registered, j)

4 : (elect, eid): Send (toss, eid) to F ch
CT

5 : (tossed, eid,G,H,Q) from F ch
CT, if i ∈ Q:

6 : Sample si, ri, ρi ←$ Fq and mi ←$ [n] and compute:

7 : G1,i ← griGmi , G2,i ← gρi , c0,i ← [sia]1 , c1,i ← hriHmi ·
[
sia
>w1

]
1

8 : c2,i ← h−ρi ·
[
sia
>w2

]
1
, c3,i ← h−nρi ·

[
sia
>w3

]
1

9 : πLR,i ← NIZK.PLR(S, (c0,i, c1,i, c2,i, c3,i, G1,i, G2,i), [n], (si, ri, ρi,mi))

10 : Broadcast (msg, eid, c0,i, c1,i, c2,i, c3,i, G1,i, G2,i, πLR,i)

11 : (msg, eid, c0,ν , c1,ν , c2,ν , c3,ν , G1,ν , G2,ν , πLR,ν) from Pν :
12 : Let Q0 ⊆ Q be the set of ν such that πLR,ν is accepted

13 : G1 ←
∏
ν∈Q0

G1,ν , G2 ← G ·
∏
ν∈Q0

G2,ν , K1,i ← G
f(i)
1 , K2,i ← G

f(i)
2

14 : πDDH,i ← NIZK.PDDH ((g,G1, G2), (ki,K1,i,K2,i), f(i))

15 : Broadcast (open, eid,K1,i,K2,i, πDDH,i)

16 : (open, eid,K1,ν ,K2,ν , πDDH,ν) for ν ∈ Z, |Z| = t with accepting πDDH,ν :

17 : Reconstruct Kj ←
∏
ν∈Z K

λν
j,ν with λν the Lagrange coefficient for Z

18 : c0 ←
∏
µ∈Q0

c0,µ, c1 ← K−1
1 ·

∏
µ∈Q0

c1,µ, c2 ← H−1K2 ·
∏
µ∈Q0

c2,µ

19 : c3 ← H−nKn
2 ·
∏
µ∈Q0

c3,µ, c← (c0, c1, c2, c3)

20 : If there exists skγ,j ∈ K such that 1← FE.Dec(c,yγ,j ,mpk, skγ,j):
21 : Return (outcome, eid, 1) and store C ← C ∪ {(eid,K1,K2)}
22 : Else return (outcome, eid, 0).

23 : (reveal, eid): If there exists (eid,K1,K2) ∈ C: compute c as in steps 18, 19
24 : Find skγ,j ∈ K such that 1← FE.Dec(c,yγ,j ,mpk, skγ,j)

25 : Get π ← NIZK.PDec(mpk, c,yγ,j , skγ,j) and send (claim, eid, π,K1,K2, γ, j)

26 : Else broadcast (claim, eid,⊥)

27 : (claim, eid, π,K1,K2, γ, δ) from Pν : compute c as in steps 18, 19
28 : If (ν, γ) ∈ R and 1← NIZK.VDec (mpk, c,yγ,δ, π): Send (update, γ, n) to FSK

29 : Update S ← S ∪ {γ + δ′n : δ′ ∈ [κ]} and return (result, eid, ν)

30 : Else: return (rejected, eid, ν)

Fig. 4. Protocol P (i)
SSLE,κ. S ∈ G7,4

1 represents the linear operations in lines 6-8.
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In lines 7-15 users test the VSS by checking if the exponents of hµ, (ki,µ)N−1i=0 lies in the right
Reed-Solomon code. A standard test is to check orthogonality with a codeword in the dual space
RS⊥F,N+1,t. Next, consistency with si,µ = fµ(i) and ki,µ is checked. If it fails the player will complain
(lines 10-13) and remove Pµ from the committee.

Next, the generation of a new secret key begins by querying F sk
CT, line 20, which returns (dδ)

k−1
δ=0 ,

interpreted as the randomness of requested OFE keys. In lines 21-25 members of the committee
generate the secret key share d

(i)
n,δ and privately send it to the receiver. Again a NIZK is added to

prevent any decryption-oracle attack.
Observe now that, for every µ ∈ Q

(z0, z1,µ, z2,µ, z2,µ) = [a]1 ,
[
a>w1,µ

]
1
,
[
a>w2,µ

]
1
,
[
a>w3,µ

]
1

is a master public for our OFE scheme, and (d
(µ)
n,δ , dδ) is a secret key for (1, n, δ) in the same

scheme. Hence the recipient, lines 26-31, verifies this key share by checking if it is able to decrypt
an encryption of 0. Somewhat surprisingly in the proof of security we show that this is enough to
ensure correctness of the key.

Finally, if the above check fails, the recipient broadcast a complaint message exposing the mal-
formed key. Every user then checks the complaint and, if legitimate, remove Pµ from the committee.

Party P
(i)
SK realising FSK:

Initially set n← 0, S ← ∅. Create (pki, ski)←$ AE.Setup(1λ), broadcast (user_key, pki),
send (toss)→ F stp

CT and wait for its reply (tossed, Q, z0, g)

1 : If i ∈ Q: Sample fi ←$ Fq[x]<t, w1,i,w2,i,w3,i ←$ F2
q

2 : Compute hi ← gfi(−1), kj,i ← gfi(j) and zα,i ← z
wα,i
0 for j ∈ [N ], α ∈ [3]

3 : cj,i ←$ AE.Enc(fi(j), pkj) with randomness rj,i

4 : πj,i ←$ NIZK.PEnc(cj , pkj , fi(j), rj,i)

5 : Broadcast (msg, hi, (kj,i, cj,i, πj,i)
N−1
j=0 )

6 : Send (prove, (zα,i)
3
α=1, (wα,i)

3
α=1) to FRLin

zk

7 : When Pµ → (msg, hµ, kj,µ, cj,µ, πj,µ)
N−1
j=0 , FRLin

zk → (proof, µ, zα,µ)
3
α=1 for µ ∈ Q0:

8 : Set kµ = (hµ, k0,µ, . . . , kN−1,µ) and sample v←$ RS⊥F,N+1,t.

9 : If kv
µ 6= 1 or some πj,µ is rejected: remove µ from Q0.

10 : Decrypt si,µ ← AE.Dec(ci,µ, pki, ski). If gsi,µ 6= ki,µ:
11 : π ← NIZK.PDec(pki, ci,µ, si,µ, ski), and broadcast (complain, si,µ, µ, π)

12 : Upon receiving (complain, µ, si,µ, π) from Pj :
13 : If π is accepting and gsi,µ 6= ki,µ, remove µ from Q0.
14 : Compute and store zα ←

∏
µ∈Q0

zα,µ, h←
∏
µ∈Q0

hµ, kj ←
∏
µ∈Q0

kj,µ

15 : mpk← (z, z1, z2, z3), pp← (mpk, h, k0, . . . , kN−1), si ←
∏
µ∈Q0

si,µ

Fig. 5. Realisation FSK, Initial setup phase

Theorem 3 Protocol {P (i)
SK : i ∈ [N ]} securely realises FSK in the (FCT,Fzk) hybrid model under

the SXDH assumption for the class of PPT environments Z that statically corrupt up to bN/2c
players.

23



Party P
(i)
SK realising FSK upon receiving:

17 : (setup): Return (input, pp, si)

18 : (update, n, γ): set S ← {γ + δn : δ ∈ [κ]}

19 : (keygen): Broadcast (key_request)

20 : (key_request) from Pj : Send (toss, rid|j) to F sk
CT and return (key_requested, j)

21 : (tossed, rid|j, (dδ)κ−1
δ=0 ) from F

sk
CT, if i ∈ Q:

22 : While n ∈ S, increase n← n+ 1

23 : d
(i)
n,δ ← [w1,i + nw2,i + δw3,i]dδ , d

(i)
n ← (d

(i)
n,δ)

κ−1
δ=0

24 : ci ←$ AE.Enc(d
(i)
n , pkj) with randomness ri

25 : πi ←$ NIZK.PEnc(ci, pkj ,d
(i)
n , ri); Broadcast (key_partial, ci, πi, j, n)

26 : (key_partial, cµ, πµ, i, n) with accepting πµ from Pµ for µ ∈ Qn:

27 : for all µ ∈ Qn get (d(µ)
n,δ)

κ−1
δ=0 ← AE.Dec(ci, ski)

28 : If e(z0,d(µ)
n,δ) 6= e(z1,µ · zn2,µ · zδ3,µ, dδ):

29 : Remove µ from Qn, π ← NIZK.PDec(pki, cµ, (d
(µ)
n,δ)

κ−1
δ=0 , ski)

30 : Broadcast (key_complain, µ, n, δ, (d
(µ)
n,δ)

κ−1
δ=0 , π)

31 : Set skn,δ ←
(∏

µ∈Qn d
(µ)
n,δ, dδ

)
and return (key, (skn,δ)

κ−1
δ=0 )

32 : (key_complain, µ, n, δ, (sk
(µ)
n,δ)

κ−1
δ=0 , π) from Pj with accepting π:

33 : Perform the test on line 28. If it fails:
34 : Remove µ from Qn and for each key received sk let dµ be Pµ’s share

35 : Parse sk = (d, d), return (key_update, (d · d−1
µ , d))

Fig. 6. Realisation FSK, Key Distribution phase

6 Efficiency considerations

Overall communication costs of our protocol are summarised in Table 2. As mentioned in the
previous section, however most of these messages are not required for verification and, in particular,
they do not need to be stored on chain.

More in detail, for the VSS to generate the ElGamal public and secret keys, only aggregated
elements h, k0, . . . , kN−1 have to be placed on-chain, as those are the only ones required to verify the
secret sharing. Next, during elections, we have to store the partial ciphertexts and related NIZKs
sent by the committee, as these components are necessary to reconstruct the election’s ciphertext.
However, our specific OFE and protocol allow the winner to aggregate the expensive threshold
decryption, without the need to also post a proof of correctness. Note that the same property does
not hold for the first round, since together with the partial ciphertexts one would have to aggregate
the corresponding NIZKs with more sophisticated tools. Finally we remark that it is also possible
to avoid storing encrypted secret keys for our OFE on chain, using the chain only for disputes.

As shown in the Table, while election requires low communications, the setup is more expensive,
requiring 252 MB for 214 users. However, this is supposed to be performed rarely. Once this is done,
our protocol allows new users to join providing them new secret key, without updating the key
material of other users. This registration takes only 73 KB of communication. Letting users leave
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the system on the other hand introduces some inefficiencies. The problem is that users who go away
may still be elected, causing some elections to end without a winner. An obvious, but expensive,
way to completely remove this problem is to perform a new setup every time that one or more
users leave. However, one can also make a trade-off leaving the possibility that some elections finish
without a winner, and redo the setup only when this probability (which for L inactive users out of
N registered users is L/N) becomes too high.

Procedure Number of elements sent Size

Fq G1 G2 GT off-chain on-chain

VSS for ElGamal 2λN 2λN + λ – – 252 MB 1.05 MB
Distribute mpk 2λ 5λ – – 30.7 KB 30.7 KB

Election, 1st Round κ(6 + 2 logn) κ(10 + logn) – – 36.8 KB 36.8 KB

Election, 2nd Round t+ 1 5(t+ 1) – – 2.88 MB –
Election, Claim 2 2 1 2 992 B 992 B

Registration λ – 2κλ+ 2λ – 73.3 KB –

Table 2. Communication costs of our scheme, using ElGamal in place of the generic IND-CPA encryption. Size is
computed assuming log |Fq| = 256, log |G1| = 512, log |G2| = 256, log |GT | = 3072, λ = 80, κ = logN , t = bN/2c and
N = 214.

Comparison with [BEHG20] We now compare our UC-secure construction with the shuffle-
based solution in [BEHG20], which we briefly recall here. Essentially the public state contains a list
of Diffie-Hellman pairs (Ki,1,Ki,2), one for every user, and Pi’s secret key is a discrete log ki such
that Ki,2 = Kki

i,1. An election is performed by choosing one of those tuples through the random
beacon and the leader claims victory by revealing its secret key. To achieve unpredictability, each
time a pair is added by a user, he sends a shuffled and re-randomized list along with a NIZK. Note
that every election involves at least the registration of the previous winner, who has “burnt” her
secret key, if she desires to stay. Moreover, this implies that the protocol requires at each round as
many shuffles as the number of new users. Notably, all the lists and NIZKs have to be posted on
chain in order to ensure verifiability.

In the high communication solution, denoted N -shuffle, each shuffles costs 2n group elements,
while the more efficient and less secure one, denoted

√
N -shuffle, costs 2

√
n elements.

In light of the requirement in [Lab19] to support O(log2N) new users per round, we compare
these solutions evaluating the cumulative cost of several elections, interleaving between every two
a fixed amount of registrations. In Fig. 6 we provide the communication costs for such a scenario
where we assume to start with 214 users and then perform: 10 registrations for each election in the
first column, 20 in the second column, and 50 in the third one.

We remark that in those plots, the costs of the shuffle-based solutions do not even include the
costs of setup11, as it can be done only once in contrast to ours where we need to occasionally refresh
the secret key material. In spite of that, the cost of our setup is quickly compensated by our lighter
registration and election, which makes our solution more suited to dynamic scenarios.
11 I.e. the cost to generate a shuffled list containing the pairs of the initial users. This has cost O(n2) if everyone

performs a shuffle, or O(κn) using an approach similar to ours where a random committee of κ users shuffle the
initial list
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More efficient SSLE with Game Based Security We now remark that communication com-
plexity can be further reduced in our construction at the cost of giving up UC security yet achieving
the game-based security notion.

As we would not need any more to simulate each election, every secret key can now be produced
without artificially skipping some of them. For the same reason, the NIZKs need not to be simulation-
extractable, which allow us to use Bulletproofs for the range proofs. This reduces on-chain costs to
O(κ log logN).

Finally, when giving up UC security users who voluntarily leave the system can be handled by
asking such users to reveal their own secret keys upon leaving, as done in [BEHG20]. This way, if a
revoked user happens to be elected, everyone can detect it and immediately proceed to generate a
new election’s ciphertext. To keep round complexity low, one can also prepare several challenges per
election, order them, remove those that can be decrypted with keys of users who left, and set the
current challenge as the first of the remaining ones. This solution only works for non-UC security
though, as the simulator should now generate on request honest user’s secret key that are consistent
with previous elections.

0

2

4

6

8

10

C
om

m
un

ic
at
io
n
(G

B
)

N -Shuffle
Our Work off-chain

N -Shuffle
Our Work off-chain

N -Shuffle
Our Work off-chain

0 40 80 120 160 200
0

10

20

30

40

50

60

Number of Elections

C
om

m
un

ic
at
io
n
(M

B
) √

N -Shuffle
Our Work on-chain

0 40 80 120 160 200

Number of Elections

√
N -Shuffle

Our Work on-chain

0 40 80 120 160 200

Number of Elections

√
N -Shuffle

Our Work on-chain

Fig. 7. Cumulative communication costs in this work and [BEHG20]. Initially the number of users is N = 214 and
between every two elections 10 (left column), 20 (middle column) or 50 (right column) registrations occur.
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A Statistical Distance

Definition 11. Given a finite set S and two random variables x, y ∼ S we define their statistical
distance as

∆(x, y) =
1

2

∑
a∈S
|Pr [x = a]− Pr [y = a]|

If A is an event and x ∼ S a random variable we denote with x|A the conditional random
variable such that for all a ∈ A, Pr

[
x|A = a

]
= Pr [x = a|A]. In the rest of this subsection we list

some properties of the statistical distance we use in the last proofs.

Proposition 1 Let G be a finite group g, h ∼ G1 be statistically independent and u ∼ U(G1) then

∆(gh, u) ≤ ∆(g, u).

Proposition 2 Given S1, S2 two sets, x, y ∼ S1 and f : S1 → S2 any function then ∆(f(x), f(y)) ≤
∆(x, y).

Proposition 3 Given two set S1, S2 and f : S1 → S2 a bijection, if x ∼ U(S1) then f(x) ∼ U(S2)

Proposition 4 Given a finite set S and x, y ∼ S, then for any subset A ⊆ S

|Pr [x ∈ A]− Pr [y ∈ A]| ≤ ∆(x, y).

The next proposition allows to bound the joint statistical distance of two vectors (x1, y1), (x2, y2)
using upper bounds on the distance of x1, x2 and of y1, y2 conditioned on x1 = x, x2 = x for almost
all x.

Proposition 5 Given four random variables x1, x2 ∼ X, y1, y2 ∼ Y and called X+ = {a ∈ X :
Pr [xi = a] > 0, i ∈ [2]}, if there exists A ⊆ X such that

P (x1 ∈ A) ≤ ε1, ∆(x1, x2) ≤ ε2, ∆(y1|x1=x, y2|x2=x) ≤ ε3 ∀x ∈ X+ \A,

for positive real numbers ε1, ε2, ε3 ∈ R+, then ∆((x1, y1), (x2, y2)) ≤ ε1 + ε2 + ε3.

B Sigma Protocols

B.1 The Decryption Relation

In this section we provide a sigma protocol inspired by [Mau15] for the relation RDec, define in
Section 2.7, instantiated for the FE scheme in Figure 2. Even though in our SSLE protocol we use
this scheme only with message space of dimension n = 5, the protocol provided here works for
message space of any dimension and, remarkably, its communication costs always consist of 5 group
elements regardless of the dimension n.

Proposition 6 Protocol 8 satisfies perfect completeness, special soundness and perfect HVZK
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PDec(mpk, c,y, sk) : VDec(mpk, c,y) :

Parse mpk = (k, k∗, ki)
n
i=1, Parse mpk = (k, k∗, ki)

n
i=1,

c = (c, ci)
n
i=1, y = (yi)

n
i=1, c = (c, ci)

n
i=1, y = (yi)

n
i=1,

sk = (d, d)

v←$ G2
2, ρ←$ Fq

d̂← dρ, d̂← dρ

T0 ← e(k,v)

T1 ← e(c,v) d̂, T0, T1

r r ←$ Fq

z← d̂r · v z

Check:

d̂ 6= 1G2

e(k, z)
?
= T0 · e(ky11 , . . . , kynn , d̂)r

e(c, z)
?
= T1 · e(cy11 , . . . , cynn , d̂)r

Fig. 8. Sigma protocol for the RDec relation

Proof. Completeness: Given (mpk, c,y, sk) ∈ RDec by construction (mpk,y, sk) ∈ Lkey. Parsing
mpk = (k, k∗, k1, . . . , kn) and sk = (d, d) with

k = [a]1 , k∗ =
[
a>u

]
1
, ki =

[
a>wi

]
1

we have that the vector c′ = (k, k1, . . . , kn) is the encryption of 0 with randomness 1. From the
definition of Lkey, as y>0 = 0 we deduce that FE.Dec(c′,y,mpk, sk) = 1 and d 6= 1, while by
definition of RDec we get FE.Dec(c,y,mpk, sk) = 1 and in particular{

e(k,d) = e(ky11 · . . . · k
yn
n , d)

e(c,d) = e(cy11 · . . . · c
yn
n , d)

⇒

{
e(k,dρrv) = e(k,v) · e(ky11 · . . . · k

yn
n , dρ)r

e(c,dρrv) = e(c,v) · e(cy11 · . . . · c
yn
n , dρ)r

Special Soundness: Given (d̂, T0, T1, r1, z1) and (d̂, T0, T1, r2, z2) two accepting transcripts, calling
d̂ = (z1 · z−12 )(r1−r2)

−1 we have that{
e(k, d̂) = e(ky11 · . . . · k

yn
n , d̂)

e(c, d̂) = e(cy11 · . . . · c
yn
n , d̂).

From the second line sk = (d̂, d̂) decrypts c, that is FE.Dec(c,y, sk,mpk) = 1. We show now that
the first equation implies (mpk,y, sk) ∈ Lkey. Fixed mpk = (k, k∗, k1, . . . , kn) with

k = [a]1 , k∗ =
[
a>u

]
1
, ki =

[
a>wi

]
1

and d̂ = [x]2, d̂ = [σ]2, from the first equation

a>x = a>
∑n

i=1
σyiwi
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Unfortunately this does not imply x =
∑n

i=1 σyiwi, but is enough to conclude the proof. Indeed let
(c̄, c̄1, . . . , c̄n) be the encryption of a vector m with randomness s 6= 0. By construction

c̄ = [sa]1 , c̄i = [sa(miu + wi)]1 ⇒ e(c̄, d̂) · e(c̄y11 · . . . · c̄
yn
n , d̂)−1 =

=
[
sa> + sa>

∑n

i=1
σyimiu− sa>

∑n

i=1
σyiwi

]
T

=
[
s(a>u)(y>m)

]
T
.

Since s 6= 0 and a>u 6= 0, the last term is zero if and only if y>m = 0, that is the thesis.

HVZK: Below we provide the description of a simulator SDec that produces an accepting transcript
with the right distribution.
Given a tuple (mpk, c,y, sk) ∈ RDec we show that the statistical distance between (d̂, T0, T1, r, z) and

Simulator SDec(mpk, c,y):

1 : Parse mpk = (k, k∗, k1, . . . , kn), c = (c, c1, . . . , cn), y = (y1, . . . , yn)

2 : Sample r′ ←$ Fq, d̂′ ←$ G2, z′ ←$ G2
2

3 : T ′0 ← e(k, z′) · e(ky11 · . . . · kynn , d̂′)−r, T ′1 ← e(c, z′) · e(cy11 · . . . · cynn , d̂′)−r

4 : Return (d̂′, T ′0, T
′
1, r
′, z′)

(d̂′, T ′0, T
′
1, r
′, z′) is zero, where the first one is the transcript generated by PDec, VDec and the second

one is the output of SDec. We begin observing that (z, d̂, r) ∼ U(G3
2×Fq) and (z, d̂′, r′) ∼ U(G3

2×Fq).
This is true in the first case because v, ρ and r are uniformly and independently distributed, in the
second one by construction. Consequently they have statistical distance 0 and by Proposition 5 we
only need to show that ∀z0, d̂0, r0, upon conditioning on d̂ = d̂0 = d̂′, z = z0 = z′ and r = r0 = r′,
the vectors (T0, T1), (T

′
0, T

′
1) have statistical distance 0.

In the real protocol z = z0 implies v = z0d
−ρr0 and in particular

T0 = e(k,v) = e(k, z0) · e(k,dρ)−r0 =

= e(k, z0) · e(ky11 · . . . · k
yn
n , d

ρ)−r0 =

= e(k, z0) · e(ky11 · . . . · k
yn
n , d̂0)

−r0 = T ′0.

Analogously T1 = T ′1 and therefore ∆((T0, T1), (T
′
0, T

′
1)) = 0.

B.2 Linear relation in the exponent

We now provide a sigma protocol forRLR that proves, given [A]1, [b]1 and an integer `, the knowledge
of an x such that Ax = b with the last coordinate xn ∈ {0, . . . , 2`− 1}. To this aim we first provide
a randomised sigma protocol for the simpler relation

RLin = {(([A]1 , [b]1),x) : A ∈ Fm,nq , x ∈ Fnq , b ∈ Fmq , Ax = b}

A first solution can be derived from [Mau15] where the prover sends m group elements and n field
elements. In the following we provide a more efficient protocol requiring only 3 group elements and
m+ 1 field elements.
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PLin([A]1 , [b]1 ,x) : VLin([A]1 , [b]1) :

u0, . . . , un u0, . . . , un ←$ G1

α←$ Fq, c← uα0 ·
∏n
i=1 u

xi
i

c

r r←$ Fnq

y←$ Fnq , β ←$ Fq
v1 ←

[
r>Ay

]
1

v2 ← uβ0 ·
∏n
i=1 u

yi
i

(v1, v2)

ρ ρ←$ Fq

w← (y + ρx, β + ρα) w

Parse w = z|γ and check:[
r>Az

]
1

?
= v1 ·

[
r>b

]ρ
1

uγ0 ·
∏n
i=1 u

zi
i

?
= v2 · cρ

Fig. 9. Randomised sigma protocol for the RLin relation

Proposition 3. If the Discrete Logarithm Problem is hard in G1, the protocol described in Figure
9 is a constant round, public coin argument of knowledge with perfect completeness and HVZK.

Proof. Completeness. If x is such that Ax = b then for any r ∈ Fmq and ρ we have that[
r>Az

]
1

=
[
r>A(y + ρx)

]
1

=
[
r>Ay

]
1
·
[
r>Ax

]ρ
1

= v1 ·
[
r>b

]ρ
1

uγ0 ·
∏n

i=1
uzii = uβ0 ·

∏n

i=1
uyii · u

ρα
0 ·

∏n

i=1
uρxii = v2 · cρ.

HVZK: We sketch a simulator SLin that produce a correctly distributed transcript. On input [A]1,
[b]1, it samples u ←$ Gn+1

1 , c ←$ G1, r ←$ Fmq , ρ ←$ Fq and w ←$ Fn+1
q . Then it parse w = z|γ

and compute

v1 ←
[
r>Az

]
1
·
[
r>b

]−ρ
1
, v2 ← uw · c−ρ.

To see that the output follows the same distribution of an honestly generated transcript we first
condition on the verifier’s message, uniformly random in both cases. Next we observe that, as
α ∼ U(Fq), in the honest view c is uniform. Conditioning on c, since y,b are distributed uniformly
and independently from the previous variables, we have that w ∼ U(Fn+1

q ). Finally in both cases
conditioning on w we have that v1, v2 are uniquely determined as the elements that makes the
transcript accepting.
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Proof of knowledge. Given a malicious prover P̃ using at most θ random bits, we design an
extractor E that initially samples a random tape R←$ {0, 1}θ and u←$ Gn+1

1 and set c← P̃(u;R).
Then samples ri ←$ Fmq and ρi,j for i, j ∈ {0, 1} and runs the malicious prover to get

(vi,1, vi,2)← P̃(ri,u;R), zi,j |γi,j ← P̃(ρi,j , ri;R)

and if the four transcript obtained are accepting, checks if

x∗ :=
z0,0 − z0,1
ρ0,0 − ρ0,1

?
=

z1,0 − z1,1
ρ1,0 − ρ1,1

.

If any of the transcripts is rejecting or if the last check fails, E aborts, otherwise return x∗.
In order to conclude we show that, calling η the probability that P̃ produce, if this quantity is
non-negligible then E returns a witness with non-negligible probability. Let AT(R,u, r, ρ) be the
event that P̃ with randomness R, receiving u, r and ρ at each round, the transcript he produced is
accepting. We further define

X = {(R,u, ri, ρi,j) : AT(R,u, ri, ρi,j) ∀i, j ∈ {0, 1}}

Claim 1. Given a uniformly sampled vector, Pr [(R,u, ri, ρi,j) ∈ X] ≥ η4.

Proof of Claim: The above probability can be rewritten as Pr [AT(R,u, ri, ρi,j) i, j ∈ [2]] =

=
∑
R̃,ũ

Pr
[
AT(R̃, ũ, ri, ρi,j) i, j ∈ [2]

]
Pr
[
R,u = R̃, ũ

]
=
∑
R̃,ũ

Pr
[
AT(R̃, ũ, r0, ρ0,j) j ∈ [2]

]
Pr
[
AT(R̃, ũ, r1, ρ1,j) j ∈ [2]

]
Pr
[
R,u = R̃, ũ

]
=
∑
R̃,ũ

Pr
[
AT(R̃, ũ, r, ρj) j ∈ [2]

]2
Pr
[
R,u = R̃, ũ

]
≥
(∑

R̃,ũ
Pr
[
AT(R̃, ũ, r, ρj) j ∈ [2]

]
Pr
[
R,u = R̃, ũ

])2
where the last step follows from the AM-QM inequality. In order to proceed we study the inner
term Pr

[
AT(R̃, ũ, r, ρj) j ∈ [2]

]
=

=
∑
r̃

Pr
[
AT(R̃, ũ, r̃, ρj) j ∈ [2]

]
Pr [r = r̃]

=
∑
r̃

Pr
[
AT(R̃, ũ, r̃, ρ)

]2
Pr [r = r̃]

=

(∑
r̃

Pr
[
AT(R̃, ũ, r̃, ρ)

]
Pr [r = r̃]

)2

≥ Pr
[
AT(R̃, ũ, r, ρ)

]2
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where the last inequality is again by AM-QM. Applying this to our first equation we get that

. . . =

(∑
R̃,ũ

Pr
[
AT(R̃, ũ, r, ρ)

]2
Pr
[
R,u = R̃, ũ

])2

≥
(∑

R̃,ũ
Pr
[
AT(R̃, ũ, r, ρ)

]
Pr
[
R,u = R̃, ũ

])4
= Pr [AT(R,u, r, ρ)]4 = η4.

This concludes the claim’s proof.

Next we define two other sets, namely Y as the set of (R,u, ri, ρi,j) with r0 6= r1, ρi,0 6= ρi,1 and
Z the set of tuples in X ∩ Y such that calling c, (vi,1, vi,2) and zi,j |γi,j as in the construction of E
then

z0,0 − z0,1
ρ0,0 − ρ0,1

6= z1,0 − z1,1
ρ1,0 − ρ1,1

We informally observe that a random tuple lies in Z with negligible probability ε as the two dif-
ferent vectors above represent two distinct openings of the same Pedersen commitment c, that is
computationally binding under the DL assumption.
Moreover the probability that a random vector does not lie in Y is, through a union bound, smaller
that |Fq|−m + |Fq|−1 + |Fq|−1 ≤ 3q−1. We can therefore conclude that a random tuple lies in
T = X ∩ Y \ Z with probability at least η4 − ε − 4q−1. If η is non-negligible, then so is this lower
bound and in particular it is larger than |F|−1. As a consequence we will show that there are enough
vectors r that make the extractor E obtain the same witness. More formally we define the set

E = {(R,u, r, ρ1, ρ2) : ∃L < Fmq : (R,u, r, s, ρ1, ρ2, ρ
′
1, ρ
′
2) ∈ T ⇒ s ∈ L}

Claim 2. Pr
[
(R,u, ri, ρi,j) ∈ T, (r0, ρ0,j)

1
j=0 /∈ E

]
≥ η4 − ε− 4q−1.

Proof of Claim: Observe that the probability that a random tuple belongs to T conditioning to the
event (R,u, r0, ρ0,j)

1
j=0 ∈ E is smaller that q−1 as, by the way we constructed E, this implies r1 ∈ L

that happens with probability |L|q−m ≤ q−1. Therefore, calling for simplicity π the projection that
sends (R,u, ri, ρi,j) to (R,u, r0, ρ0,j), we have that

η4 − ε− 3q−1 ≤ Pr [v ∈ T |π(v) ∈ E] Pr [π(v) ∈ E] + Pr [v ∈ T, π(v) /∈ E]

≤ q−1 + Pr [v ∈ T, π(v) /∈ E] .

The claim is therefore proven.

Finally, with probability η4−ε−4q−1, E samples a tuple (R,u, ri, ρi,j) in T with (r0, ρ0,0, ρ0,1) /∈
E. By construction of E this means that there exists a base s1, . . . , sm ∈ Fmq and elements σh,j for
h ∈ {1, . . . ,m}, j ∈ {0, 1} such that (R,u, r0, sh, ρ0,j , σh,j)

1
j=0 ∈ T . Since T ⊆ X all this random

elements makes P̃ produce accepting transcripts.
More in detail, calling (vh,1, vh,2) ← P̃(u, sh;R), zh,j |γh,j ← P̃(u, sh, ρh,j ;R) and z0,j |γ0,j ←
P̃(u, r0, ρ0,j),

x∗ =
z0,0 − z0,1
ρ0,0 − ρ0,1

=
zh,0 − zh,1
σh,0 − σh,1

.
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Moreover, since the transcripts are accepting[
s>hAzh,j

]
1

= vh,1 ·
[
s>h b

]σh,j
1

⇒ s>hA

(
zh,0 − zh,1
σh,0 − σh,1

)
= s>h b ⇒

⇒ s>h (Ax∗ − b) = 0 ⇒ Ax∗ = b

where the last equality follows as s1, . . . , sm is a base of Fmq by construction. ut

Next, we provide a constant round public coin proof for RLR that builds upon RLin. In addition
to prove knowledge of a solution to the linear system we also have to prove that xn ∈ [2`] for some
given integer `. The idea is to prove that xn can be written as β0 + 2β1 + . . . + β`−12

`−1 with
βi ∈ {0, 1}. This can be done by simply adding ` more variables and one equation to linear system,
which leaves us only with the problem of proving βi ∈ {0, 1}.
A standard technique is, given k, hi random group element, to produce ci = kβihri a Pedersen
commitment of βi and then proving knowledge of an opening for βi and β2i . This is achieved by
proving knowledge of βi, r, si such that

[
k hi 1
ci 1 hi

]
·

bir
si

 =

[
ci
ci

]
⇐⇒

{
ci = kbihri
ci = cbii h

si
i

⇐⇒

{
ci = kbihri
ci = kb

2
i hbir+sii

where si = r− bir. In conclusion we produce overall a system with 2`+ 1 more equations and 2`+ 1
extra variables, and communicate ` commitments. For completeness we detail the protocol below.

PLR([A]1 , [b]1 , 2
`,x) : VLR([A]1 , [b]1 , 2

`) :

k, h0, . . . , h`−1 k, h0, . . . , h`−1 ←$ G1

xn =
∑`−1
i=0 βi2

i, βi ∈ {0, 1}
r ←$ Fq, ci ← kβihr

c0, . . . , c`−1

si ← r − bir, x′ = (x, r, βi, si)
`−1
i=0

Run PLin([A
′]1 , [b

′]1 ,x
′) Run VLin([A′]1 , [b

′]1)

Fig. 10. Public coin interactive proof for RLR relation

Proposition 4. If the Discrete Logarithm Problem is hard in G1, protocol 10 is a constant-round
public coin argument of knowledge for RLR with perfect completeness, and perfect HVZK.

C Comparing UC and Game-Based Definition

C.1 Proof of Proposition 2

Proof. Let S be a simulator such that Π is indistinguishable from FSSLE ◦S for the class of efficient
environments Z introduced in definition 9. In the following we first argue that the composition of
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any PPTadversary A with C the challenger of Uniqueness, Fairness or Unpredictability Experiment
respectively is an environment for Π in the above class. Then we show the three properties hold
replacing Π with FSSLE ◦ S.

Uniqueness: For any efficient A corrupting |M | < t, observe that A ◦ C only requests an election
to FSSLE when |R ∩M | < ϑ(|R|) by the way we defined the challenger.
Next we claim that, calling E the set used by FSSLE to record past elections (see Section 3),
(eid, i), (eid, j) ∈ E implies i = j. Assume by contradiction that i 6= j and suppose (eid, i) is added
first. Then (eid, j) would not be added afterwards as FSSLE ignores any election request with the
same eid.
To prove uniqueness suppose by contradiction that there exists an election ID eid and two distinct
players Pi, Pj such that SSLE.Vrfpp(eid, π, i) = SSLE.Vrfpp(eid, π, j) = 1 and let k ∈ [N ] \M . As
a consequence Pk receives from FSSLE both (result, eid, i) and (result, eid, j). By construction this
implies (eid, i), (eid, j) ∈ E and in particular i = j.

Fairness: For any efficient A corrupting |M | < t users, as before the composition A ◦ C, with the
latter being the challenger of the Fairness experiment, only requests election when |R∩M | < ϑ(|R|).
Next let R be the set of registered users when A sends chall, n = |R| and τ = |R ∩ M |. By
construction during the last election FSSLE samples a random j ←$ R and sends (outcome, eid, 1) to
Pj . Also by construction this the only player that by sending (reveal, eid) can make FSSLE broadcasts
(result, eid, j). In particular SSLE.Vrfpp(eid,⊥, i) = 1 holds only when j = i. It follows that

Pr
[
ExpAFair(1

λ, N, ϑ) = 1
]

= Pr [j ∈ R \M ] =
|R \M |
|R|

=
n− τ
n

.

Unpredictability: For any efficient A corrupting |M | < t users, as before the composition A ◦ C,
with the latter being the challenger of the Unpredictability experiment, only requests election when
|R ∩M | < ϑ(|R|).
Let n, τ be as before when A sends chall. In this phase, calling (eid, j) the last tuple added to E in
this phase by FSSLE, then j is independent from all the previous messages sent by FSSLE. Moreover
conditioning on HW, that is equivalent to j ∈ R \M , and calling j′ the index guessed by A

Pr
[
ExpAUnpr(1

λ, N, ϑ) = 1
]

= Pr
[
j′ = j|j ∈ R \M

]
=

1

|R|
|R|

|R \M |
=

1

n− τ
.

C.2 SSLE schemes from Parametrised SSLE

In this section we show that a protocol Π realising Fκ,ηSSLE can be compiled to an SSLE scheme with
relaxed security guarantees. To this aim we still refer to the construction detailed in Figure 3.

Proposition 5. Given a protocol Π that (t, ϑ)-threshold realise Fκ,ηSSLE, the derived SSLE scheme
defined in Figure 3 satisfy (t, ϑ)-threshold uniqueness, (t, ϑ)-threshold (2−κ+2−η)-fairness and (t, ϑ)-
threshold ξ(κ)-unpredictability with

ξ(κ) = sup
n∈N

(
n

n− ϑ(n)

)
1

2κ
2η

2η − 1
.
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Proof. Let S be a simulator such thatΠ is indistinguishable from S◦Fκ,ηSSLE for any PPT environment
in the class described in Definition 9. We first observe that the composition of any adversary A that
corrupts players in M and the challenger respectively of the Uniqueness, Fairness or Unpredictabil-
ity experiment with parameters (1λ, N, ϑ) lies in this class of environments. This happens because
the challenger C only request an election if, calling R the currently registered users, |R∩M | < ϑ(n).
Next we prove that each of these properties holds replacing Π with S ◦ Fκ,ηSSLE.

Uniqueness: Follows as in the proof of Proposition 2.

Fairness: Call R with n = |R| and τ = |R ∩M | the set of registered users when A send chall and
τ < ϑ(n). Let c be the event that Fκ,ηSSLE sends (corrupted, eid) to S and e the event that j is set to
⊥ in the last election. By construction α := Pr [c] ≤ 2−κ and β := Pr [e|¬c] ≤ 2−η. Let also (eid, j)
be the last value Fκ,ηSSLE adds to his list after this election.
If ¬c and ¬e then j ∼ U(R) by definition and Pj is the only winner, i.e. the only one for which Fκ,ηSSLE
broadcasts (result, eid, j). Therefore, calling for notational simplicity E the event ExpAFair(1

λ, N, ϑ) =
1

Pr [E] = Pr [E|c] Pr [c] + Pr [E|¬c] Pr [¬c]

= αPr [E|c] + (1− α) Pr [E|¬c,¬e] Pr [¬e|¬c]

= αPr [E|c] + (1− α)(1− β) Pr [j ∈ R \M |¬c,¬e]

= αPr [E|c] + (1− α)(1− β)

(
n− τ
n

)

Where in the second equation we used the fact that conditioning to e the event E never occurs. We
can so conclude that

∣∣Pr
[
ExpAFair(1

λ, N, ϑ) = 1
]
− n−τ

n

∣∣ ≤
≤
∣∣∣∣αPr [E|c] + (1− α)

n− τ
n

+ β(1− α)
n− τ
n
− n− τ

n

∣∣∣∣
≤ α

∣∣∣∣Pr [E|c]− n− τ
n

∣∣∣∣+ β(1− α)
n− τ
n

≤ αmax

(
τ

n
,
n− τ
n

)
+ β ≤ 1

2κ
+

1

2η
.

Unpredictability: As before let R with n = |R| and τ = |R ∩M | be the set of registered users
when A send chall and τ < ϑ(n), H = R \M the set of honest registered users, bad the event that
Fκ,ηSSLE sends (corrupted, eid) to S and (eid, j) the last message Fκ,ηSSLE store in his list E. Clearly
there is a honest winner, event denoted by hw, if and only if j ∈ R \M . Keeping the same notation
used in the Fairness proof for c, e, α and β, we begin recalling that

Pr [hw] = Pr [hw|c]α+ (1− α)(1− β)
n− τ
n

.
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Next we upper bound the advantage of a given adversary, denoting with j′ the index it returns at
the end of the experiment

Pr
[
ExpAUnpr(1

λ, N, ϑ) = 1
]

= Pr
[
j = j′|hw,¬c

]
Pr [¬c|hw] + Pr

[
j = j′|hw, c

]
Pr [c|hw]

≤ 1

n− τ
Pr [¬c|hw] + Pr [c|hw]

=
1

n− τ
+
n− τ − 1

n− τ
Pr [c|hw] ≤ 1

n− τ
+ Pr [c|hw] .

To conclude we then only need to upper bound Pr [c|hw]

Pr [c|hw] =
Pr [hw|c] · Pr [c]

Pr [hw]

= αPr [hw|c] ·
(

Pr [hw|c]α+ (1− α)(1− β)
n− τ
n

)−1
≤ α ·

(
α+ (1− α)(1− β)

n− τ
n

)−1
≤ 1

2κ

(
1

2κ
+ (1− 2−κ)(1− 2−η)

n− τ
n

)−1
=

n

n+ (2κ − 1)(1− 2−η)(n− τ)

≤ 1

2κ
· 2η

2η − 1
· n

n− τ

≤ 1

2κ
· 2η

2η − 1
· n

n− ϑ(n)
≤ 1

2κ
· 2η

2η − 1
· sup
n∈N

(
n

n− ϑ(n)

)
Where in the first inequality we used the fact that the given function is monotone in Pr [hw|c] ∈ [0, 1].
Similarly we used the same argument in the second inequality with α ∈ [0, 2−κ] and β ∈ [0, 2−η].

D Postponed Proofs

D.1 Selective Security of FE for Orthogonality

Proof of Proposition 1. We proceed with a sequence of hybrid games as in [Wee17]. Let x0 and x1

be the message returned by A(1λ). Then define

– Hb
0: The selective security game where the challenger encrypts xb.

– Hb
1: Given k ∼ U(Fq), the challenge ciphertext is replaced by

c(1) =
(

[k]1 ,
[
σxb,1 + k>w1

]
1
, . . . ,

[
σxb,n + k>wn

]
1

)
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– Hb
2: As Hb

1 but the challenger aborts if a,k are proportional. Otherwise he computes â such that
a>â = 0 and k>â = 1 and set for w∗i ∼ U(F2

q)

mpk(2) =
(

[a]1 ,
[
a>w∗1

]
1
, . . . ,

[
a>w∗n

]
1

)
c(2) =

(
[k]1 ,

[
k>w∗1

]
1
, . . . ,

[
k>w∗n

]
1

)
sk

(2)
y =

([∑n

i=1
ryiwi − rσ(x>b y) · â

]
2
, [r]2

)
– Hb

3: As Hb
2 but each sky is generated by sampling a fresh δ ←$ Fq and returning

sk
(3)
y =

([∑n

i=1
ryiwi − δ(x>b y) · â

]
2
, [r]2

)
The thesis follows if H0

0 is indistinguishable from H1
0. To this aim we argue that Hb

0,H
b
1 cannot be

distinguished if DDH is hard in G1, Hb
1,H

b
2 are statistically close, Hb

2,H
b
3 are indistinguishable as-

suming DDH is hard over G2 and H0
2,H

1
2 are equally distributed.

– Hb
0 − Hb

1. For any distinguisher D we define A breaking DDH over G1.

Adversary A(1λ, [α]1 , [β]1 , [γ]1) breaking DDH over G1

1 : Sample ρ←$ Fq and set [a]1 ← [(ρ, ρα)]1, [k]1 ← [(β, γ)]1

2 : Sample w1, . . . ,wn ←$ F2
q and run (x0,x1)←$ D(1λ, n)

3 : Compute mpk←
(
[a]1 ,

[
a>w1

]
1
, . . . ,

[
a>wn

]
1

)
4 : σ ←$ Fq \ {0}, c←

(
[k]1 ,

[
σxb,1 + k>w1

]
1
, . . . ,

[
σxb,n + k>wn

]
1

)
5 : Send D ← mpk, c

6 : When y← D: If only one of x>0 y, x>1 y is zero send D ←⊥. Else:
7 : Compute sky ←

[∑n
i=1 ryiwi

]
2
, [r]2 and send D ← sky

8 : When b′ ← D: Return b′.

Recall than in DDH1 calling s = βρ−1 ∼ U(Fq) then k = sa, while a,k are uniform and inde-
pendent in DDH0. Therefore in the first case A perfectly simulates Hb

0, while in the second Hb
1.

As a consequence D has the same advantage of A that is negligible.

– Hb
1 −Hb

2. Observe that in Hb
1, a,k are uniform over F2

q , hence the probability that k lies in the
linear span of a is q−1. Up to this negligible probability a,k are independent, so there exists
a unique vector â satisfying a>â = 0 and k>â = 1. Calling w∗i = wi + σxb,i · â this is still
uniformly distributed and we obtain the distribution of game Hb

2 since

a>wi = a>(w∗i − σxb,i · â) = a>w∗i

σxb,i + k>wi = σxb,i + k>(w∗i − σxb,i · â) = k>w∗i∑n

i=1
yiwi =

∑n

i=1
yi(w

∗
i − σxb,i · â) =

∑n

i=1
yiw

∗
i − σ(x>b y) · â.

Hence the statistical distance from this two games is smaller than q−1.
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– Hb
2 − Hb

3. For any distinguisher D that query at most ` keys, we define A that plays against
DDH` over G2.

Adversary A(1λ, [r1]2 , . . . , [r`]2 , [σ]2 , [δ1]2 , . . . , [δ`]2) for DDH` over G2

1 : Sample a,k,w1, . . . ,wn ←$ F2
q and run D(1λ, n)→ (x0,x1)

2 : Compute â such that k>â = 1 and a>â = 0

3 : Set mpk←
(
[a]1 ,

[
a>w1

]
1
, . . . ,

[
a>wn

]
1

)
4 : Set c←

(
[k]1 ,

[
k>w1

]
1
, . . . ,

[
k>wn

]
1

)
and send D ← mpk, c

5 : The j-th time D → y: if only one of x>0 y, x>1 y is zero send D ←⊥. Else:
6 : Set sky ←

[∑n
i=1 rjyiwi − δj(x>b y) · â

]
2
, [rj ]2 and send D ← sky

7 : When D → b′, return b′.

Again up to negligible probability a,k are linearly independent and â can be computed. Thus
when A receives a truly random tuple in DDH0

` it perfectly simulates Hb
3. Conversely δj = σrj

in DDH1
` , where σ 6= 0 with overwhelming probability, implies that A sends message distributed

as in Hb
2. It follows that D’s advantage is negligible as it is smaller that A’s advantage plus a

negligible term.

– H0
3 − H1

3. In this case observe that the only difference lies in the secret key associated to y.
However, if x>0 y = 0 = x>1 y in both worlds the key returned is [

∑n
i=1 ryiwi]2 , [r]2. If instead

x>0 y 6= 0 6= x>1 y then the key returned in H0
3 or H1

3 follows the same distribution of[∑n

i=1
ryiwi − δâ

]
2
, [r]2 .

To see this one can substitute δ = δ∗ · (x>b y) which remains uniformly distributed over Fq as
(x>b y) 6= 0. Finally if y is orthogonal to only one of x0,x1, ⊥ is returned in both experiments.

The proof is therefore concluded.

D.2 Proof of Theorem 1

Proof of Theorem 1. To prove the statement we have to provide a simulator S interacting with
Fλ,ηSSLE such that for all Z statically corrupting T < N players12, S ◦FSSLE is indistinguishable from
the real protocol.
In the following, given R ⊆ F2

q we call R|j = {γ ∈ Fq : (j, γ) ∈ R}.
Decryption of S: Initially set S,R ← ∅, n ← 0, mpk,msk ←$ MKS.Setup(1λ) and wait for
M ←$ Z. Upon receiving

– setup from Pj : send (input,mpk).

– keygen from Pj : When there is no pending election, increment n ← n + 1 until n /∈ S. Add
R← R∪{(j, n)} and generate skn ← MKS.KeyGen(n,msk). , send (key, skn) to Pj and broadcast
(key_requested, i, n).

12 if Z corrupts all players the simulation becomes trivial
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– (registered, j) from Fλ,ηSSLE: When there is no pending election, increment n← n+ 1 until n /∈ S.
Add R← R ∪ {(j, n)} and broadcast (key_requested).

– (electing, eid) from Fλ,ηSSLE: Set p = |S ∩ [n]| · n−1 and send (prob, eid, 0, p) to Fλ,ηSSLE.
– A request to send (outcome, eid) from Fλ,ηSSLE:
If a malicious user Pj would receive (outcome, eid, 1), sample γ ←$ R|j , m ←$ [κn] such that
m = γ mod n and compute c←$ MKS.Enc((m,n),mpk).
Else set c←$ MKS.Enc((2λ, n),mpk). Broadcast (challenge, eid, c).

– (reject, eid, j) from Fλ,ηSSLE with Pj uncorrupted: Set (γ, π)←⊥. Broadcast (claim, eid, γ, π) as Pj .
– (result, eid, j) from Fλ,ηSSLE with Pj uncorrupted: Sample γ ←$ R|j and simulate π. Broadcast

(claim, eid, γ, π) as Pj .

– (claim, eid, γ, π) from Pj : Verify π. If π is correct, send (reveal, eid) to Fλ,ηSSLE. Otherwise send
(fake_reject, eid).

Hybrid Games: Given a PPT environment performing at most L elections, we define a sequence
of hybrid functionalities.

– Hreal : The real protocol.

– H0: as Hreal but all NIZK proofs are simulated.

– H1: as H0 initially set E ← ∅. For each election with index eid, calling m the element sampled
by FSnC, set γ = m mod n, retrieve (j, γ) ∈ R, store E ← E ∪ {(eid, j)} and let honest user Pj
return (outcome, eid, 1) if (γ, j) ∈ R or (outcome, eid, 0) otherwise.

– H2: as H1 but when Z send (reveal, eid) to an honest user Pi find (eid, j) ∈ E. If i = j, set
γ ← m mod n, with m being the message generate during the election eid, and simulate π.
Else, set (γ, π)←⊥. Broadcast (claim, eid, γ, π) from Pi.

– H3: as H2 but when a corrupted Pj sends (claim, eid, γ, π), if (j, γ) ∈ R, π is accepting and
(eid, j) ∈ E then all honest users return (result, eid, j). Else they return (rejected, eid, j).

– H`
4: as H3 but for the first ` elections, if (eid, γ) is added in E with (j, γ) /∈ R for all malicious

users’ index j ∈M , then set
c←$ MKS.Enc((2λ, 0),mpk).

Claim 1. Hreal ≡ H0: Follows from perfect zero-knowledge of the argument used, which implies that
the two functionalities are identically distributed.

Claim 2. H0 ≡ H1: Follows as the only difference in the two game is the outcome message of honest
players after an election occurs. Their behaviour is identically though because in H1, if Pi returns
(outcome, eid, 1), then (eid, i) is added to E and m = γ + δn, with (i, γ) ∈ R.
By construction (i, γ) ∈ R implies that Pi received the secret key skγ . By the correctness of the
Modular PEKS scheme then, as c encrypts the message m = γ + δn for some δ ∈ [κ]

MKS.Dec(c,mpk, skγ)→ 1
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which implies that Pi would return (outcome, eid, 1) also in H0. A similar argument shows that Pi
returns (outcome, eid, 0) in H1 if it would return it in H0.

Claim 3. H1 ≡ H2: The only difference in this two games is how honest players replies to the input
(reaveal, eid).
In H2, an uncorrupted user Pi replies with (claim, eid, γ, π) with simulated π if and only if (eid, i) ∈ E
and in particular m = γ + δn for some δ ∈ [κ]. As in the previous claim this means that (i, γ) ∈ R,
so Pi received the key skγ , which decrypts the ciphertext c to 1.
An analogous argument show that the two functionality behaves identically also when Pi would
return (claim, eid, γ, π) with (γ, π) =⊥.

Claim 4. H2 ≡ H3: The difference in this case lies on how the honest parties behaves when a
corrupted Pj sends (claim, eid, γ, π). In particular in H3 the extra check (eid, j) ∈ E is performed,
hence we only need to show that if honest parties returns (result, eid, j) in H2 then the same happens
in H3.
Recall that by construction, this condition on H2 means that π is accepted by NIZK.VDec. Calling
c the challenge ciphertext for election eid, using simulation soundness and the fact that proofs are
made unique (see Section 2.7), the correctness of π implies that there exists a secret key skγ ∈ Lkey
such that

MKS.Dec(c,mpk, skγ)→ 1.

Since c is the encryption of some (m,n) with m ∈ [κn], this implies that m = γ mod n. Finally, as
(i, γ) ∈ R, this means that (eid, i) ∈ E by construction.

Claim 5. H`
4 ≡ H`−1

4 : This time we prove the two functionality are only computationally indistin-
guishable by transforming any PPT distinguisher D into an attacker A for the selective security of
the underlying Modular PEKS scheme.

Description of A: Call p an upper bound on the number of registration performed by D and sample
n∗ ←$ [p+ κL], m∗ ←$ [κL] and set x0 = (2λ, 0), x1 = (m∗, n∗). Send (x0, x1) to the challenger.
Upon receiving (mpk, c∗), simulate H`−1

4 with the following modifications:

– When a malicious user Pj register, query to the challenger skn
– During the `-th election, calling γ∗ ← m∗ mod n∗, check that

n = n∗, ∀j ∈M, (j, γ∗) /∈ R.

If any of these conditions does not hold, return a random bit. If (j, γ∗) ∈ R then add E ←
E ∪ {(eid, j)} and resume the execution of H`−1

4 .

Finally, when D → b, return the same bit.

Proof of Claim. To begin with we estimate the probability that the check performed at the `-th
election passes – we call this event check. Observe that during each election the size of S grows at
most by κ and that, calling n0 the number of registered user at a given time, then n ≤ n0 + |S| ≤
n0 + κL ≤ p + κL. As the simulation does not depend on n∗ until the `-th election, n and n∗

are independent. So Pr [n = n∗] = (p + κL)−1. Next, conditioning on n = n∗ and calling hw the
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probability that no dishonest player would win the `-th election, we have that

Pr [@j ∈M : (j, γ∗) ∈ R|n∗ = n] = Pr [hw]

Therefore the check passes with probability

Pr [check] ≥ Pr [n = n∗] · Pr [@j ∈M : (j, γ∗) ∈ R|n = n∗] ≥ 1

p+ κL
· Pr [hw]

which is significant if hw happens with significant probability.
Next we show that conditioning on check, A never query a key that applied on x0 and x1 would
yields different values (in particular, every key will decrypt both to 0).
Indeed for any key associated to a value γ requested by A for a corrupted user Pj , γ ≤ p + κL is
polynomially small. This means that γ + δ · 0 = γ will never be equal to 2λ.
On the other side, call m∗ = γ∗ + δ∗n∗. If Pj requests a key for γ before the `-th election with
m∗ = γ + δn∗ with δ ∈ [κ], then

γ + δn∗ = γ∗ + δ∗n∗ ⇒ γ − γ∗ = (δ∗ − δ)n∗.

As both γ and γ∗ are smaller than n∗ this may only happen if γ = γ∗, which implies (j, γ∗) =
(j, γ) ∈ R, contradicting our assumption on check.
Conversely, if this key is requested after the i-th step, then by the previous equation

γ = γ∗ + (δ∗ − δ)n∗ ∈ S

as (δ∗ − δ) ∈ [κ] which is again a contradiction.
We briefly observe now that when c∗ encrypts x0, A perfectly simulates, upon conditioning on check,
the functionality H`−1

4 conditioned to the even hw that no dishonest player wins the `-th election.
Conversely, when the challenger encrypts x1, it perfectly simulates H`

4 again conditioned to hw.
Hence, calling b′ the challenger’s bit

AdvASSFE(1λ) =

∣∣∣∣Pr
[
A → b′

]
− 1

2

∣∣∣∣
=

∣∣∣∣Pr
[
A → b′|check

]
Pr [check] + Pr

[
A → b′|¬check

]
Pr [¬check]− 1

2

∣∣∣∣
=

∣∣∣∣Pr
[
D → b′|hw

]
Pr [check] +

1

2
Pr [¬check]− 1

2

∣∣∣∣
=

∣∣∣∣Pr
[
D → b′|hw

]
− 1

2

∣∣∣∣ · Pr [check]

≥
∣∣∣∣Pr
[
D → b′|hw

]
− 1

2

∣∣∣∣ · 1

p+ κL
· Pr [hw] .

In order to conclude we remark that D only has a chance to win if hw occurs, as otherwise the
functionality H`

4 and H`−1
4 are indistinguishable. This means that

Adv(D) =

∣∣∣∣Pr
[
D → b′

]
− 1

2

∣∣∣∣
=

∣∣∣∣Pr
[
D → b′|hw

]
Pr [hw] + Pr

[
D → b′|¬hw

]
Pr [¬hw]− 1

2

∣∣∣∣
=

∣∣∣∣Pr
[
D → b′

]
− 1

2

∣∣∣∣ · Pr [hw]
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This allow us to conclude that AdvASSFE(1λ) · (p+ κL) ≥ Adv(D), that is therefore negligible.

D.3 Proof of Theorem 2

Proof of Theorem 2. In order to prove the statement we must provide a simulator S that interacts
with Fκ,ηSSLE such that the protocol is indistinguishable from S ◦ Fκ,ηSSLE for any PPT environment
Z that statically corrupts strictly less than t players. Intuitively we use the security of Threshold
Elgamal to make the simulator alter the first component of the message contained in the `-th
ciphertext. In particular this is fixed to −1 when an honest user wins as the resulting ciphertext
cannot be decrypted by anyone else. By selective security of the underlying FE scheme Z can’t
distinguish it from the encryption of a vector associated to a honest player. Reveal request are then
handled simulating the associated proof and the message m properly.
A detailed description of S is provided below, where we omit to specify the behaviour of honest
parties when this equals the correct one. We remark however that S can always simulate it as he
initially generates all the public and private parameters. To simply notation we also assume that
the number of corrupted parties |M | = t− 1 and denote

R|j = {γ : (j, γ) ∈ R}

the set of values in [n] associated to player Pj .

Description of S: Initially set B,R, S ← ∅, n ← 0, wait M from Z and forward it to Fκ,ηSSLE.
Generate mpk,msk ←$ FE.Setup(1λ, 3) and sample f ←$ Fq[x]≤t, g ←$ G1. Call x ← f(−1) and
compute h← gx, ki ← gf(i), pp← (mpk, g, h, k0, . . . , kN−1). Upon receiving

– (setup) from Pj : send (input, pp, f(j)) to Pj .

– (keygen) from Pν : Wait for all elected leader to reveal themselves.
While n ∈ S, increment n by one. Compute skn,δ ←$ FE.KeyGen(yn,δ,msk), update R ←
R ∪ {(ν, n)} and n ← n + 1. Set skn ← {skn,δ}δ∈[κ], send Pν ← (key, skn) and broadcast
(key_requested, ν) to dishonest users. Send (register) to Fκ,ηSSLE as Pν .

– (electing, eid) from Fκ,ηSSLE: let p be the probability that a random subset Q of registered players
is contained in M and send (prob, eid, p).

– A request to send (outcome, eid) from Fκ,ηSSLE without receiving (corrupted, eid) first: Sample
γ∗ ←$ [n] and, if γ∗ ∈ S set γ ← γ∗. Conversely read the messages sent to dishonest users.
If Pj received (outcome, eid, 1) for some j ∈ M , set γ ←$ R|j , otherwise set γ ←⊥. Sample
G,H ←$ G1, Q a subset of the registered players not contained in M and call i = min(Q \M).
• Simulate honestly all player but Pi. For Pi compute

u1, v1, u2, v2 ←$ G1, si, σ ←$ Fq

c0,i ← [sia]1 , c1,i ← v1, c2,i ← v−12 ·
[
−σ + sia

>w2

]
1

c3,i ← v−n2 ·
[
−nσ + sia

>w3

]
1
, G1 ← u1, G2 ← u2.

Simulate πLR,i and broadcast as F ch
CT (tossed, eid,G,H,Q) and as Pi the tuple

(msg, eid, c0,i, c1,i, c2,i, c3,i, G1,i, G2,i, πLR,i).
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• Upon receiving (msg, eid, c0,µ, c1,µ, c2,µ, c3,µ, G1,µ, G2,µ, πLR,µ) from dishonest Pµ:
Let Q0 be the set of µ ∈ Q such that πLR,µ is accepted. For all µ ∈ Q0 extract by brute force
mµ as the discrete logarithm in base HG−x of

c1,µ ·G−x1,µ · c
−w1
0,µ .

If γ =⊥ set m = −1 otherwise find the only mi ∈ [n] such that

m̂ =
∑

µ∈Q0\{i}
mi m̂+mi = γ mod n

and call m = m̂+mi

K1 ←
[
σm+ sia

>w1

]
1
·
(
v1 ·

∏
µ∈Q0\{i}

Gx1,µG
−xmµHmµ

)−1
K2 ←

(
v2 ·

∏
µ∈Q0\{i}

Gx2,µ

)−1
Add B ← B∪{(eid,K1,K2, m̂, n,R)}, compute G1 ←

∏
µ∈Q0

G1,i and G2 ← G ·
∏
µ∈Q0

G2,µ.

Produce for all ν ∈ M the associated group share K1,ν ← G
f(ν)
1 and K2,ν ← G

f(ν)
2 and for

j /∈M the fake decryption share

K1,j ← K
λ−1

1 ·
∏

ν∈M
Kλν

1,ν , K2,j ← K
λ−1

2 ·
∏

ν∈M
Kλν

2,ν

where λν are the Lagrange coefficients associated to M ∪ {−1} to evaluate in j. Finally
simulate πDDH,j and broadcast (open, eid,K1,i,K2,j , πDDH,j).
If γ ∈ S wait for users to repeat the election, otherwise allow Fκ,ηSSLE to send the outcome, eid
messages.

– (corrupted, eid) from Fκ,ηSSLE:
Sample G,H ←$ G1, Q ⊆M and broadcast (tossed, eid,G,H,Q).
During the protocol extract as before mµ for every Pµ ∈ Q0 with Q0 the set of parties that send
msg with a correct proof. Call m =

∑
µ∈Q0

mµ and γ = m mod n.

– (result, eid, j) from Fκ,ηSSLE and j /∈M :
Find (eid,K1,K2, m̂, n̂, R̂) ∈ B, sample γ ←$ R̂|j , set mi ∈ [n̂] such that mi = γ − m̂ mod n̂
and call m ← m̂ + mi. Next find δ such that m = δn̂ + γ. Simulate πDec from NIZK.SDec and
broadcast (claim, eid, π,K1,K2, γ, δ).
Update S ← S ∪ {γ + δ′n̂ : δ′ ∈ [κ]}.

– (claim, eid,K1,K2, π, γ, δ) from Pν :
If (ν, γ) ∈ R and π is accepted, send (reveal, eid) to Fκ,ηSSLE as Pν . Otherwise send (fake_reject, eid, ν)
to Fκ,ηSSLE.

Next, calling L the maximum number of elections Z requests, we provide a sequence of hybrid
functionalities lying between the real protocol and Fκ,ηSSLE ◦ S. To avoid repetitions observe that
the messages G1,µ, G2,µ, c0,µ, c1,µ sent by each member Pµ in the random committee with tag msg
uniquely determine four field elements mµ, rµ, sµ, ρµ such that

G1,µ = grµGmµ , G2,µ = gρµ , c0,µ = [sµa]1 , c1,µ = hrµHmµ
[
sµa
>w1

]
1
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We then define m̂, r̂, ŝ, ρ̂ to be the sum of these elements for µ ∈ Q0 \ {i}, with i = minQ \M .

– Hreal: the real protocol.

– H0: All the NIZK proof sent by honest users are simulated.

– H?
0 but in the threshold decryption compute K1,j ← G

f(j)
1,j and K2,j ← G

f(j)
1,j for j ∈ M . Next

set K̃1 ← Gx1 and K̃2 ← Gx2 with x = f(−1) and for each honest user Pν set the decryption
shares as

K1,ν ← K̃
λ−1

1

∏
j∈M

K1,j , K2,ν ← K̃
λ−1

2

∏
j∈M

K2,j

where λj are the Lagrange coefficients to evaluate in ν.

– H0
1 := H?

0. H`
1: as H`−1

1 but in the `-th election Pi samples randomly u1, v1 ←$ G1 and set
G1,i ← u1G

mi and c1,i ← v1H
mi
[
sia
>w1

]
1
.

Moreover in the threshold decryption K̃1 ← v1h
r̂Gx(m̂+mi).

– H0
2 := HL

1 . H`
2: as H`−1

2 but in the `-th election Pi samples u2, v2 ←$ G1 and set G2,i ← u2, c2,i ←
v−12

[
sia
>w2

]
1
, c3,i ← v−n2

[
sia
>w3

]
1
.

Moreover in threshold decryption K̃2 ← v2h
ρ̂Gx.

– H3: as HL
2 but, sampled θ, σ ←$ Fq calling G = gθ and H = hθ [σ]1, Pi computes

G← gθ, H ← hθ [σ]1 , G1,i ← u1, G2,i ← u2, c1,i ← v1

c2,i ← v−12

[
−σ + sia

>w2

]
1
, c3,i ← v−n2

[
−nσ + sia

>w3

]
1
.

Moreover for threshold decryption, calling m = m̂+mi, set

K̃1 ←
[
−mσ − sa>w1

]
1
·
∏

i∈Q0

c1,i, K̃2 ← v2h
ρ̂H.

– H0
4 := H3. H`

4 = H`−1
4 but in the `-th election H ←$ G1 instead of H ← gθ [σ]1.

– H5: As HL
4 but initially set B,D,E ← ∅. Upon receiving elect sample γ ←$ [n] and, during the

threshold decryption, set mi ∈ [n] such that γ = m̂ + mi mod n. If γ /∈ S find (j, γ) ∈ R and
store

E ← E ∪ {(eid, j)}, B ← B ∪ {(eid,K1,K2, m̂, n,R)}, D ← D ∪ {(eid, γ)}.

Finally let Pν return (outcome, eid, 0) if j 6= ν, (outcome, eid, 1) otherwise.
Upon receiving (reveal, eid) for honest Pν , if (eid, ν) ∈ E find the tuples (eid,K1,K2, m̂, n̂, R̂) ∈
B, (eid, γ) ∈ D and compute mi ∈ [n̂], δ such that m̂ + mi = δn̂ + γ. Next simulate πDec and
broadcast (claim, eid, πDec,K1,K2, γ, δ).
Else broadcast (claim, eid,⊥).
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– H0
6 := H5. H`

6 as H`−1
6 but, upon receiving (claim, π,K1,K2, γ, δ) from a corrupted player Pν ,

honest parties reply with (rejected, eid, ν) if (eid, ν) /∈ E.

– H0
7 := HL

6 . H`
7: as H`−1

7 but in the `-th election, if an honest user wins with a non fully malicious
committee, i.e. if Q *M and (j, γ) is chosen from R with j /∈M , then set mi = −1− m̂.

Claim 1. Hreal ≡ H0: From perfect ZK of the arguments used, simulated proofs have the same
distribution of correctly generated ones. Hence the two games are identically distributed.

Claim 2. H0 ≡ H?
0: Observe that in the second game K̃1 = Gx1 = G

f(−1)
1 and that. Moreover by the

soundness of πDDH,j the discrete logarithm of K1,j in base G1 is the same of kj in base g, i.e. f(j).
Hence the decryption shares sent by the honest user Pν are

K̃1,ν = G
λ−1f(−1)
1 ·

∏
j∈M

G
λjf(j)
1 = G

λ−1f(−1)+
∑
j∈M λjf(j)

1 = G
f(ν)
1

where the last equality follows as f has degree t, |M ∪ {−1}| = t and λ−1, λj are the Lagrange
coefficients to evaluate in ν. Therefore the decryption share K1,ν is equal to the one produced in
H0. As this relation holds in the same way for K2,ν the claim in proven.

Claim 3. H`−1
1 ≡ H`

1: Given a PPT distinguisher D, we provide an algorithm A that breaks DDH
with the same advantage.

Description of A(h′, u1, v1): Initially set α ←$ Fq, g ← gα1 , h ← (h′)α. Run M ← D(1λ, N)
which, without loss of generality, we assume to have size |M | = t − 1. Set ecnt ← 0, mpk,msk ←
FE.Setup(1λ, 3) and sample fj ←$ Fq. Compute kj ← gfj for all j ∈M and set kν ← hλ−1 ·

∏
j∈M k

λj
j

for all ν /∈M . Finally call pp← (mpk, g, h, k0, . . . , kN−1).
Upon receiving:

– (setup) from Pν : Reply with (input, pp, fj).

– (elect, eid) from all honest users: update ecnt ← ecnt + 1, sample θ, σ ←$ Fq and Q a random
subset of registered users with |Q| = κ. Call G ← gθ and H ← hθ [σ]1 and let F ch

CT return
(tossed, eid,G,H,Q). If Q * M define i = min(Q \M) and execute Pi as in the real protocol
setting

If ecnt < ` : G1,i ← ũ1G, c1,i ← ṽ1H
mi
[
sia
>w1

]
1

If ecnt = ` : G1,i ← u1G, c1,i ← v1H
mi
[
sia
>w1

]
1

If ecnt > ` : G1,i ← griG, c1,i ← hriHmi
[
sia
>w1

]
1

with uniformly sampled mi, ri, si ←$ Fq and ũ1, ṽ1 ←$ G1.
When D replies with (msg, eid,G1,µ, G2,µ, c0,µ, c1,µ, c2,µ, c3,µ, πLR,µ) with accepting proof from
Pµ, µ ∈ Q0, extract13 the witness sµ, rµ, ρµ,mµ and let ŝ, r̂, ρ̂, m̂ be the sum of these variables

13 As A is executing D as a subroutine the extraction can be performed through rewinding.
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for µ ∈ Q0 \ {i}. Compute the decryption shares of honest users setting K̃2 ← hρ̂+ρi · hθ and

If ecnt < ` : K̃1 ← ṽ1 · hr̂ · hθ(m̂+mi)

If ecnt = ` : K̃1 ← v1 · hr̂ · hθ(m̂+mi)

If ecnt > ` : K̃1 ← hr̂+ri · hθ(m̂+mi)

Finally for the remaining phases, i.e. the registration and claim, correctly simulate H`
1.

Proof of Claim: First of all, regardless of the input received by A, observe that it perfectly
simulates the setup calls because, calling x the discrete logarithm of h in base g, by polynomial
interpolation there exists a unique f ∈ Fq[x]<t such that f(−1) = x and f(j) = fj for j ∈ M ,
and in particular f is uniformly distributed over Fq[x]<t. Moreover, by the properties of Lagrange
coefficients kν = gf(ν).
Next, when ecnt 6= `, the replies to elect requests are distributed as in H`

1 and H`−1
1 because G1,i, c1,i

are computed as specified by those functionalities and hθ(m̂+mi) = Gx(m̂+mi) which implies that K̃1

is computed correctly. Similarly as hθ = Gx also K̃2 is constructed correctly.
Finally, if A is executed in DDH0 the elements u1, v1 are uniform over G1 and so it simulates by
definition the functionality H`

1. Otherwise ifA is executed in DDH1, with the above notation v1 = ux1 .
If we let ri ∈ Fq be the discrete logarithm of u1 in base g, then u1 = gri , v1 = hri implying that for
ecnt = `

G1,i = griG c1,i = hriHmi
[
sia
>w1

]
1

K̃1 = hr̂+rihθ(m̂+mi) = hr̂+riGx(m̂+mi)

Hence D distinguishes H`
1 from H`−1

1 with the same advantage A has to break DDH in G1, that is
negligible.

Claim 4. H`−1
2 ≡ H`

2: Given a PPT distinguisher D we provide an algorithm A that breaks DDH
in G1 with the same advantage.

Description of A(h′, u2, v2): Initially set α←$ Fq, g ← gα1 , h← (h′)α. Run M ←$ D(1λ, N) with
|M | = t− 1. Set ecnt← 0, mpk,msk←$ FE.Setup(1λ, 3) and sample fj ←$ Fq for j ∈M . Compute
kj ← gfj for j ∈ M and kν ← hλ−1

∏
j∈M k

λj
j where λj are the Lagrange coefficients associated to

M ∪ {−1} to evaluate in ν. Finally call pp← (mpk, g, h, k0, . . . , kN−1).
Upon receiving:

– (setup) from Pj : Reply with (input, pp, fj).

– (elect, eid) from all honest users: update enct ← ecnt + 1. Sample θ, σ ←$ Fq and Q a random
subset of the currently registered users with |Q| = κ. After setting G← gθ, H ← hθ · [σ]1 return
as F ch

CT the message (tossed, eid,G,H,Q). If Q * M call i = min(Q \M) and execute Pi as in
HL
1 but setting

If ecnt < ` : G2,i ← ũ2, c2,i ← ṽ−12

[
sia
>w2

]
1
, c3,i ← ṽ−n2

[
sia
>w3

]
1

If ecnt = ` : G2,i ← u2, c2,i ← v−12

[
sia
>w2

]
1
, c3,i ← v−n2

[
sia
>w3

]
1

If ecnt > ` : G2,i ← gρi , c2,i ← h−ρi
[
sia
>w2

]
1
, c3,i ← h−nρi

[
sia
>w3

]
1
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with uniformly distributed mi, ρi, si ←$ Fq and ũ2, ṽ2 ←$ G1.
When D replies with (msg, eid,G1,µ, G2,µ, c0,µ, c1,µ, c2,µ, c3,µ, πLR,µ) with accepting πLR,µ for µ ∈
Q0: Extract sµ, rµ, ρµ,mµ and let ŝ, r̂, ρ̂, m̂ be the sum of these variables with µ ∈ Q0 \ {i}.
Evaluate the decryption shares of honest users by setting K̃1 ← v1 · hr̂ · hθ(m̂+mi) and

If ecnt < ` : K̃2 ← ṽ2 · hρ̂ · hθ

If ecnt = ` : K̃2 ← v2 · hρ̂ · hθ

If ecnt > ` : K̃2 ← hρ̂+ρi · hθ

Finally in the registration and claim phases correctly simulate H`
2.

Proof of Claim: As in the previous claim, setup calls are correctly simulated by polynomial inter-
polation and the properties of Lagrange coefficients.
Regarding the election phase, when ecnt 6= ` the adversary A perfectly simulates both hybrid
functionalities H`−1

2 and H`
2, which in this case behave identically. This follows as G1,i, c2,i and

c3,i are computed as prescribed. Moreover in the threshold decryption step, Gx = hθ implies that
K̃1 = v1h

r̂ ·Gx(m̂+mi) and

If ecnt < ` : K̃2 = v2 · hρ̂ ·Gx If ecnt > ` : K̃2 = hρ̂+ρi ·Gx

We now show that when A is executed in DDH0, then it simulates perfectly the functionality H`
2.

This follows as u2, v2 are uniformly and independently distributed over G1, so in the `-th election
G2,i, c2,i and c3,i are generated as in H`

1 and so is K̃2 = v2h
ρ̂Gx. Conversely when A is executed

in DDH1 it simulates H`−1
2 because v2 = ux2 . Calling ρi the discrete logarithm of u2 with base g we

have that v2 = hρi with ρi ∼ U(Fq) and in particular

G2,i = gρi , c2,i = h−(ρ̂+ρi)
[
sia
>w2

]
1
, c3,i = h−n(ρ̂+ρi)

[
sia
>w3

]
1

and K̃2 = hρi+ρ̂ ·Gx, in agreement with the behaviour of H`−1
2 .

Therefore the advantage of D is equal to the advantage of A, that is negligible under the assumption
that DDH is hard in G1.

Claim 5. HL
2 ≡ H3: To show that the two given functionalities are indistinguishable we will prove

them equally distributed. For each election let G,H,Q be the messages sent by F ch
CT with G = gθ,

H = hθ [σ]1. If Q *M consider the following change of variables

u∗1 = u1G
−mi u∗2 = u2 v∗1 = v1H

−mi
[
−sia>w1

]
1

v∗2 = v2 [−σ]1

This defines a map ϕ : G4
1 → G4

1 such that ϕ(u1, u2, v1, v2) = (u∗1, u
∗
2, v
∗
1, v
∗
2). Since this map is a

bijection, the image of a uniformly distributed tuple is still uniform over G3
1. Hence, applying the

change of variables to HL
2 we have that in each election

G1,i = u∗1 G2,i = u∗2 c1,i = v∗1

c2,i = (v∗2)−1
[
−σ + sia

>w2

]
1

c3,i = (v∗2)−n
[
−nσ + sia

>w3

]
1
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Moreover in the threshold decryption phase K̃2 = v∗2h
ρ̂Gx[σ] = v∗2h

ρ̂H. To conclude we need to
shown that K̃1 after the variable change is as prescribed in H3. To this aim observe that[

mσ + sa>w1

]−1
1
·
∏

j∈Q0

c1,j =
[
mσ + sa>w1

]−1
1
· hr̂Hm̂

[
ŝa>w1

]
1
· v∗1

=
[
mσ + sia

>w1

]−1
1
· v∗1hr̂Gxm̂ [σm̂]1

=
[
miσ + sia

>w1

]−1
1
· v∗1hr̂Gxm̂ ·HmiH−mi

=
[
sia
>w1

]−1
1
· v∗1hr̂Gx(m̂+mi) ·H−mi

= K̃1.

Claim 6. H`
4 ≡ H`−1

4 : Given a distinguisher D we provide a PPT algorithm A that breaks DDH
over G1.

Description of A(h′, u3, v3): Initially set α←$ Fq, g ← gα1 , h← (h′)α. Run M ←$ D(1λ, N) with
|M | = t− 1. Set ecnt← 0, mpk,msk←$ FE.Setup(1λ, 3) and sample fj ←$ Fq for j ∈M . Compute
kj ← gfj for j ∈M and for ν /∈M compute kν interpolating at the exponent as done in the previous
claims. Set pp← (mpk, g, h, k0, . . . , kN−1).
Upon receiving:

– (setup) from Pj : reply with (input, p, fj).

– (elect, eid) from all honest users: update ecnt← ecnt + 1. Sample θ, σ ←$ Fq and compute

If ecnt < ` : G←$ G1, H ←$ G1

If ecnt = ` : G← u3, H ← v3 [σ]1

If ecnt > ` : G← gθ, H ← hθ [σ]1

andQ a random subset of registered users with |Q| = κ. Broadcast the tuple (tossed, eid,G,H,Q)
and continue the election as in the functionality H3.

Finally in the registration and claim phase, behave as H3.

Proof of Claim: As the the previous claim, the replies to setup are correctly handled. Moreover
when ecnt 6= `, G,H are distributed as in H`

4 and H`−1
4 by inspection. Finally when A is executed

in DDH0, u3, v3 are uniformly and independently random, implying that G,H ∼ U(G1) and inde-
pendently from σ. Hence A simulates the functionality H`

4.
Otherwise, when our algorithm is executed in DDH1, there exists a θ ∈ Fq such that u3 = gθ and
v3 = hθ. By inspection it follows that A simulated H`−1

4 in this case.
In conclusion the advantage of D in distinguishing the two functionalities equals the negligible ad-
vantage of A in breaking DDH over G1.

Claim 7. HL
4 ≡ H5: We begin observing two facts. First of all that R by construction satisfies

(j0, γ), (j1, γ) ∈ R ⇒ j0 = j1. Moreover mi is correctly distributed as γ ∼ U([n]) implies mi =
m̂− γ ∼ U([n]).
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Next, we show that in HL
4 and H5 the distribution of (outcome, eid, ·) messages from Pν is the same.

Since in HL
4 the user Pν looks for a key skγ,δ that decrypts the challenge ciphertext and in H5 it

only checks if (eid, j) ∈ E we now show that this two events are equivalent

⇐ If (eid, ν) ∈ E, then during the elections a tuple (ν, γ) ∈ R was sampled. In particular m = γ
mod n and the ciphertext c obtained after the threshold decryption has the following share

c =
(

[sa]1 ,
[
mσ + sa>w1

]
1
,
[
−σ + sa>w2

]
1
,
[
−nσ + sa>w3

]
1

)
i.e. it is an encryption of (m,−1,−n) = xm,n. Since m is the sum of mµ with µ ∈ Q0 ⊆ Q and
mµ ∈ [n] we have that m ∈ |Q0| · [n] ⊆ κ[n]. Therefore calling δ the integer such that m = δn+γ
then γ ∈ [κ].
This means that skγ,δ ∈ K with K the set of keys received by Pν and that the vector yγ,δ =
(1, γ, δ) is orthogonal to xm,n. Hence, by correctness of the underlying OFE scheme, FE.Dec(c,yγ,δ,mpk, skγ,δ)→
1.

⇒ If, calling c the challenge ciphertext produced after the threshold decryption, there exists a key
skγ,δ ∈ K such that FE.Dec(c,yγ,δ,mpk, skγ,δ) → 1 then (ν, γ) ∈ R and c is the encryption of
a vector xm,n orthogonal to yγ,δ. This implies that m − γ − δn = 0 or in other words m = γ
mod n. Hence a couple (j, γ) ∈ R was sampled during the election, meaning that (eid, j) ∈ E.
As (ν, γ) ∈ R we conclude that j = ν and (eid, ν) ∈ E.

The same argument shows that replies to (reveal, eid) are distributed equally in the two func-
tionalities. This proves the claim.

Claim 8. H`−1
6 ≡ H`

6: The only way in which the two functionality may be distinguished is if honest
players reject a dishonest claim in H`

6 but accept it in H`−1
6 . To make this probability negligible we

show that an adversary D capable of producing this effect can be transformed into a PPT algorithm
A trying to break the selective security of our OFE scheme.

Description of A: Run M ←$ D(1λ, N) with |M | = t − 1 and initialize ecnt ← 0, n ← 0. Let p
be the maximum number of registration D performs. Then sample n∗ ←$ [p+ κL], m∗ ←$ [n∗] and
set γ∗, δ∗ such that γ∗ ∈ [n∗] and m∗ = γ∗ + n∗δ∗. Define

x0 = (m∗,−1,−n∗), x1 = κn∗ · (κγ∗ + δ∗,−κ,−1)

and send these two vectors to the challenger Π. Wait for its reply (mpk, c∗) and compute pp as in
H5. Upon receiving:

– (keygen) from Pj , j ∈M :
Wait for all elected users to reveal themselves. While n ∈ S increment n by one. Request from Π
the keys skn,δ associated to the vectors yn,δ, δ ∈ [κ]. Send (key, {skn,δ}) to Pj and make honest
users return (key_requested, j). Finally increase n← n+ 1.

– (elect, eid) from honest players: increment ecnt by one. If ecnt 6= ` execute the election as in H5,
otherwise simulate F ch

CT returning (G,H,Q) with Q * M . Sample γ ←$ [n]. If γ ∈ S execute
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the election setting mi = m̂− γ in the threshold decryption phase.
Else, parse c∗ = (c∗0, c

∗
1, c
∗
2, c
∗
3) and execute Pi with i = min(Q \M) by setting

G1 ← u1, G2 ← u2, c0 ← c∗0, c1,i ← v1

c2,i ← v−12 c∗2, c3,i ← v−n2 c∗3.

Upon receiving (msg, G1,µ, G2,µ, c1,µ, c2,µ, c3,µ, πLR,µ) with accepting proof from Pµ with µ ∈
Q0 ⊆ Q, extract the witness sµ, rµ, ρµ,mµ and compute ŝ, m̂, r̂, m̂ the sum of the respective
variable for µ ∈ Q0. Return a random bit and abort if the following conditions are not satisfied

n = n∗, m∗ − m̂ ∈ [n]

Otherwise execute Pi setting K̃1 = (c∗1)
−1 [−ŝa>w1

]
1
ĉ1 with ĉ being the product of c1,µ for

µ ∈ Q0.

– (claim, eid, k1, k2, π, γ, δ) from Pj : if eid is the ID of the `-th election, check (j, γ) ∈ R and that
π is accepting. If γ 6= γ∗ compute

c0 ←
∏

µ∈Q0

c0,µ, c1 ← K−11 ·
∏

µ∈Q0

c1,µ,

c2 ← K2 ·
∏

µ∈Q0

c2,µ, c3 ← Kn
2 ·
∏

µ∈Q0

c3,µ

and, calling yγ,δ = (y1, y2, y3) and α = (x>0 yγ,δ)
−1,

G̃←
∏

i∈[3]

(
c∗1c
−1
1

[
ŝa>wi

]
1

)αyi
Finally, set c̃0 ← c∗0, c̃1 ← c∗1 · G̃−m

∗ , c̃2 ← c∗2 · G̃, c̃3 ← c∗3 · G̃n
∗ , call c̃ = (c̃0, c̃1, c̃2, c̃3) and

request to Π the secret key sk associated to (1, 0, 0).
Decrypt b← FE.Dec(c̃, (1, 0, 0),mpk, sk) and return 1− b
When D halts return a random bit

Proof of Claim: First of we let E be the event that all the condition checked in the `-th election
by A are satisfied, i.e. that n∗ = n and m∗ − m̂ ∈ [n], happens with significant probability. Since
D perform at most p registrations and L elections, we have that after each election S grows by
κ elements. Therefore |S| ≤ κL which implies n ≤ p + |S| ≤ p + κL and in particular, as n∗ is
independent from the value of n during the `-th election, Pr [n∗ = n] = (p+ κL)−1. Regarding the
second condition, observe that m̂ is the sum of κ−1 elements in [n], therefore its values is contained
in [(κ− 1)n]. It follows that conditioning on n∗ = n, Pr [m∗ − m̂ ∈ [n]] =

= Pr [m∗ ∈ [n] + m̂] =
|[n] + m̂|
|[κn]|

=
n

κn
= κ−1

where in the second equality we used the fact that [n] + m̂ ⊆ [κn]. We can then conclude that
Pr [E ] = (p+ κL)−1κ−1.

Next we show that conditioning on E no key request makes Π return ⊥. As A returns a bit
after the `-th election is over, all key request occurs before, i.e. they are associated to vectors
yγ,δ = (1, γ, δ) with γ < n∗.

x>0 yγ,δ = 0 ⇒ m∗ = γ + δn∗ ⇒ (γ∗ − γ) = (δ − δ∗)n∗
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Since both γ and γ∗ are smaller than n∗ so is the absolute value of their difference, and in particular
γ = γ∗, δ = δ∗ which implies x>1 yγ,δ by construction. Conversely if x>1 yγ,δ = 0

κ(γ∗ − γ) = δ − δ∗ ⇒ γ∗ = γ, δ∗ = δ ⇒ x>0 yγ,δ = 0

where we used the fact that δ, δ∗ are strictly smaller than κ.

We now define bad the event that D manage to send (claim, eid,K1,K2, π, γ, δ) with eid the ID
of the `-th election, π an accepting proof and γ 6= γ∗. We also call β the random bit chosen by the
challenger, i.e. such that c∗ is an encryption of xβ with randomness σ and s∗.
We first remark that by inspection, until it halts A perfectly simulates H`−1

6 when β = 0. It follows
that D behave as in H`−1

6 when β = 0 and, up to negligible probability ε the same happens when
β = 1 as otherwise D would breaks the selective security of the underlying OFE scheme.
Next we observe than, when bad occurs, the simulation soundness of π implies the existence of a
key sk′ = ([d0]2 , [d1]2) which behave as skγ,δ and that decrypts c. The first property implies that
sk′ correctly decrypts and encryption of 0, i.e. calling yγ,δ = (y1, y2, y3) then

e ([a]1 , [d0]2) = e
([∑3

i=1
yia
>wi

]
1
, [d1]2

)
⇒ a>d0 = d1

∑3

i=1
yia
>wi

Using now the fact that sk′ decrypt c, that is an encryption of xβ with randomness σ and s = s∗+ ŝ,
then e(c0, [d0]2) = e(cy11 c

y2
2 c

y3
3 , [d1]2). Letting z ∈ Fq be such that [z]1 = cy11 c

y2
2 c

y3
3

sa>d0 = zd1 ⇒ z = s
∑3

i=1
yia
>wi ⇒

⇒ G̃ =
[∑3

i=1

(
yixβ,iσ + s∗yia

>wi

)
−
(
syia

>wi

)
+
(
ŝyia

>wi

)]α
1

⇒

⇒ G̃ =
[
x>β yγ,δ · σ

]α
1

=
[
α · x>β yγ,δ · σ

]
1

Calling αβ = 1− α · (x>β yγ,δ) we can finally express the components of c̃ as

c̃ = [s∗a]1 , c̃1 =
[
αβxβ,1 · σ + s∗a>w1

]
1

c̃2 =
[
αβxβ,2 · σ + s∗a>w2

]
1
, c̃3 =

[
αβxβ,3 · σ + s∗a>w3

]
1

i.e. c̃ is an encryption of the vector αβxβ . Observe that for β = 0 this factor is 0 as α0 = 1 −
(x>0 yγ,δ)

−1(x>0 yγ,δ) = 0. Conversely for β = 1

x>0 yγ,δ = γ∗ − γ + n∗(δ∗ − δ), x>1 yγ,δ = n∗κ · (κ(γ∗ − γ) + δ∗ − δ)

where γ∗ 6= γ implies that both inner products are non-zero and, as they are both polynomially
bounded – so no modular reduction occur – and x>0 yγ,δ < n∗κ. In particular they cannot be equal
as x>1 yγ,δ over the integer is a multiple of n∗κ, so

x>0 yγ,δ 6= x>1 yγ,δ ⇒ (x>0 yγ,δ)
−1(x>1 yγ,δ) 6= 1 ⇒ α1 6= 0

We can then conclude that for β = 1, c̃ contains the encryption of a non-zero multiple of x1, that
is not orthogonal to (1, 0, 0). Hence when β = 0, c̃ can be decrypted with sk′ and A return 0, while
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for β = 1 the decryption is not successful and A returns 1. In conclusion

Adv(A) = |Pr [A → 0|β = 0]− Pr [A → 0|β = 1]|
= |Pr [A → 0|β = 0, E ]− Pr [A → 0|β = 1, E ]| · Pr [E ]

=

∣∣∣∣12 Pr [¬bad] + Pr [bad]− 1

2
Pr [¬bad]

∣∣∣∣ · Pr [E]

= Pr [bad] Pr [E]

Where the second equality holds as Pr [A → 0|β = 0, ¬E ] and Pr [A → 0|β = 0, E ] are both equal
to 1/2 since in this case A return a random bit.
Hence Pr [bad] is negligible.

Claim 9. H`−1
7 ≡ H`

7: Given a distinguisher D we provide a PPT adversary that breaks the selective
security of our OFE scheme whose advantage is a polynomial factor away from the advantage of D
Description of A: Run M ←$ D with |M | = t − 1. Let p be the maximum number of keygen
requests D can make and sample n∗ ←$ [p+ κL],m∗ ←$ [κn∗]. Send to the challenger Π the vectors

x0 = (m∗,−1,−n∗), x1 = (−1,−1,−n∗)

and wait for the reply mpk, c∗. Sample g, h ←$ G1, f ←$ Fq[x]<t and set kν ← gf(j), p ←
(mpk, g, h, k0, . . . , kN−1), ecnt← 0, n← 0 and E,B, S ← ∅.
Upon receiving from D:

– (keygen) from Pj , j ∈M :
Wait for all elected users to reveal themselves. While n ∈ S, increase n by one. Request from Π
the secret keys associated to the vectors yn,δ for δ ∈ [κ]. If Π replies with ⊥ abort returning a
random bit, otherwise if it replies with skn,δ, send (key, {skn,δ}δ∈[κ]) and let honest users return
(key_requested, j). Finally increase n← n+ 1.

– (elect, eid) from Pj . Set ecnt← ecnt + 1.
If ecnt 6= `, execute the election as in H`−1

7 . Else simulate F ch
CT sending G,H,Q and sample

γ ←$ [n].
If γ ∈ S execute the election as in HL

6 . Else compute γ∗, δ∗ with γ∗ ∈ [n∗] such that m∗ =
δ∗n∗ + γ∗. Next check the following conditions

Q *M, n∗ = n, ∃j∗ /∈M : (j∗, γ∗) ∈ R

and if any of them is not satisfied, return a random bit and halt. Otherwise set i = min(Q \M),
parse c∗ = (c∗0, c

∗
1, c
∗
2, c
∗
3) and execute Pi by sampling u1, u2, v1, v2 ←$ G1 and setting

G1,i ← u1, G2,i ← u2, c0,i ← c∗0, c1,i ← v1

c2,i ← v−12 c∗2 c3,i ← v−n2 c∗3.

After receiving (msg, eid, c0,µ, c1,µ, c2,µ, c3,µ, G1,µ, G2,µ, πLR,µ) with accepting proof from Pµ for
µ ∈ Q0, extract (sµ, rµ, ρµ,mµ) the witness of the proof and call ŝ, r̂, ρ̂, m̂ the sum of the
respective variables for µ ∈ Q0 \ {i}.
If m∗ − m̂ /∈ [n] return a random bit and halt, Else perform the threshold decryption setting

K̃1 ← (c∗1)
−1 ·

[
−ŝa>w1

]
1
·
∏

i∈Q0

c1,i, K̃2 ← v2 · hρ̂ ·H.
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Finally update E ← E ∪ {(eid, j)}, B ← B ∪ {(eid, K̃1, K̃2, m̂, n,R)} and D ← D ∪ {(eid, γ)}.

When b←$ D, returns b.

Proof of Claim: Let E denote the event that in the `-th election A does not abort, i.e. that Q *M ,
n∗ = n, that there exists j∗ /∈M : (j∗, γ∗) ∈ R and m∗ − m̂ ∈ [n]. The following properties holds.

– E implies that A does not abort.
Indeed if E occurs, all the keys requested before the `-th election are associated to vectors of
the form (1, γ, δ) for γ < n∗ and δ ∈ [κ]. Clearly (1, γ, δ) · (−1,−1,−n∗) 6= 0 as it is a negative
value polynomially bounded, and therefore greater than −q. Hence the challenger returns ⊥ in
this case only if (1, γ, δ) · (m∗,−1,−n∗) = 0.
Assume by contradiction that this is the case. Then m∗ = γ + δn∗. However by construction
m∗ = γ∗ + δ∗n∗ meaning that γ∗ − γ = (δ − δ∗)n∗. Since both γ, γ∗ < n∗ this implies that
γ∗ − γ = 0.
However, during the key request, (j, γ) is added to R with j ∈ M , while E implies that there
exists j∗ /∈M s.t. (j∗, γ∗) ∈ R. Hence j = j∗ that is a contradiction.

Conversely, keys requested after the `-th election are associated to vectors of the form (1, γ, δ)
with δ ∈ [κ] and γ ≥ n∗.
Assume again by contradiction that one of these vectors is orthogonal to (m∗,−1,−n∗). Then as
before this implies that γ = γ∗+(δ∗−δ)n∗. Observe that as γ ≥ n∗ > γ∗, necessarily δ∗−δ > 0.
Moreover δ∗ − δ ≤ κ.
By construction this means that γ was added to S after the `-th election, which is a contradic-
tion as the values in S are skipped while requesting a new key.

– Pr [E ] ≥ (1− 2κ) · (p+ κL)−2κ−1, i.e. Pr [E ]−1 is polynomially bounded.
First by construction Pr [Q] * M ≥ (1 − 2κ). Next, as D performs at most p registrations, of
either honest or dishonest users, and after each election the size of S grows at most of κ. It
follows that the `-th election n can at most be p+κ` ≤ p+κ`. Since D up to that point had no
information on n∗, Pr [n = n∗] = (p+ κL)−1.
Next conditioning on n∗ = n we observe that D has no information on m∗ either, as the only
component of the ciphertext that depends on m∗ is c∗1. Hence m̂,m∗ are independent and

Pr [m∗ − m̂ ∈ [n]] =
|[n] + m̂|
|[κn]|

=
n

κn
= κ−1.

Where we used the fact that m̂ ≤ (κ− 1)n implies [n] + m̂ ⊆ [κn].
Finally conditioning on m∗ ∈ [n] + m̂ we have that m∗ is uniformly distributed over this set,
and in particular γ∗ = m∗ mod n is uniform over [n]. Since there is at least one honest user
registered during the `-th election14, there exist (j∗0 , γ

∗
0) ∈ R such that j∗0 /∈M . Therefore

Pr [∃j∗ /∈M : (j∗, γ∗) ∈ R] ≥ Pr [γ∗ = γ∗0 ] =
1

n
≥ 1

(p+ κL)
.

This concludes the proof of the second property.
14 In fact we assume that half of the registered player are honest at any time, however this does not imply that with

probability 1/2 the value γ∗ is associated to an honest user, as there are values in [n] that are not associated to
any player.
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Next we define the event HW` stating that in H`−1
7 (or in H`

7) during the `-th election, calling eid
the id of this election, Q *M and that (eid, j) ∈ E with j /∈M .
With this notation we argue that when c∗ is the encryption of x0, if the event E occurs, A simulates
H`−1
7 conditioned to HW`

0. Indeed, E implies that the key request are handled correctly and during
the `-th election, calling

c∗0 = [sia]1 , c∗1 =
[
σm∗ + sia

>w1

]
1
,

c∗2 =
[
−σ + sia

>w2

]
1
, c∗3 =

[
−n∗σ + sia

>w3

]
1

for uniformly sampled σ, si ∼ U(Fq), the message sent by Pi are

c0,i = [sia]1 , c2,i = v−12

[
−σ + sia

>w2

]
1
, c3,i = v−n3

[
−nσ + sia

>w3

]
1

Finally in the threshold decryption we have that, calling ĉ1 the products of all c1,j for j ∈ Q0 \ {i},

K̃1 =
[
−σm∗ − sia>w1

]
1
·
[
−ŝa>w1

]
1
· ĉ1 =

[
−σm∗ − sa>w1

]
1
· ĉ1

Where, calling mi = m∗ − m̂ ∈ [n], m∗ = mi + m̂.
Conversely if c∗ is the encryption of x1 and E occurs, A simulates H`

7 conditioned to HW`
1. Observe

that in this case the only element that is distributed differently is c∗1, that, with the same notation
used above, is

[
−σ + sia

>w1

]
1
. For this reason we only need to check the correctness of K̃1. Indeed

K̃1 =
[
σ − sia>w1

]
1
·
[
−ŝa>w1

]
1
· ĉ1 =

[
σ − sa>w1

]
1
· ĉ1.

We can therefore conclude that the claim is true because, calling xβ the vector chosen by the
challenger Π

Adv(D) =
∣∣∣Pr
[
D → 0 | H`−1

7

]
− Pr

[
D → 0 | H`

7

]∣∣∣
≤
∣∣∣Pr
[
D → 0 | H`−1

7 , ¬HW`
]
− Pr

[
D → 0 | H`−1

7 , ¬HW`
]∣∣∣ · Pr

[
¬HW`

]
+
∣∣∣Pr
[
D → 0 | H`−1

7 , HW`
]
− Pr

[
D → 0 | H`−1

7 , HW`
]∣∣∣ · Pr

[
HW`

]
≤
∣∣∣Pr
[
D → 0 | H`−1

7 , HW`
]
− Pr

[
D → 0 | H`−1

7 , HW`
]∣∣∣

= |Pr [A → 0 | β = 0, E ]− Pr [A → 0 | β = 1, E ]|

where in the second inequality we used the fact that Pr
[
HW`

]
≤ 1 and that the functionalities H`

7

and H`−1
7 are identical if ¬HW`. This implies

Adv(A) = |Pr [A → 0|β = 0]− Pr [A → 0|β = 1]|
≥ |Pr [A → 0|β = 0, E ]− Pr [A → 0|β = 1, E ]| · Pr [E ]

≥ Adv(D) · Pr [E ] .

Claim 10. HL
7 ≡ F

κ,η
SSLE ◦ S: Follows by inspection.
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D.4 Proof of Theorem 3

Proof of Theorem 3. As in the previous proofs we need to show the existence of a simulator such
that S ◦ FSK is indistinguishable from the real protocol for any Z satisfying the hypothesis.

Description of S:
Setup Phase. Initially wait for M ←$ Z. For each uncorrupted user Pj generate (pkj , skj) ←$

AE.Setup(1λ) and broadcast (user_key, pkj). Upon receiving (setup_leak, m̃pk, g, h̃, (k̃j)
N−1
j=0 , (s̃j)j∈M )

from FSK, sample a set Q ⊆ [N ] of size λ and abort if Q ⊆M .
Parse m̃pk = (z0, z̃1, z̃2, z̃3), broadcast (tossed, Q, z0, g) and simulate honestly all players but Pi. For
Pi set

zα,i ← z̃α ∀α ∈ [3], hi ← h̃, kj,i ← k̃j,i ∀j ∈ [N ] \M

cj,i ←

{
AE.Enc(s̃j , pkj) If j ∈M
AE.Enc(0, pkj) If j /∈M

and broadcast (msg, hi, kj,i, cj,i, πj,i)
N−1
j=0 with simulated proof πj,i and (proof, i, zα,i)

3
α=1 as FRLin

zk .
Then wait for (msg, hµ, kj,µ, cj,µ, πj,µ) and (prove, µ, zα,µ,wα,µ) from Pµ, µ ∈ Q0 ∩M . Run all users
correctly, set

w∗α ←
∑

µ∈Q0\{i}
wα,µ, sj,µ ← AE.Dec(ci,µ, skj)

fµ ∈ Fq[x]<t : fµ(j) = sj,µ, f∗ =
∑

µ∈Q0\{i}
fµ

and send (setup_infl,w∗α, f
∗) to FSK.

Key Generation Phase. Upon receiving:

– A request from FSK to send (key_requested, j), j /∈ M : Send (key_request) as Pj , sample
dδ ←$ G1 and broadcast (tossed, rid|j, dδ) as F sk

CT.
Let FSK send his message and run Pi setting ci ← AE.Enc(0, skj) and simulating πi.

– (key_request) from Pj : Send (keygen) to FSK as Pj .
Upon receiving (key, skn,δ) from FSK parse skn,δ = (dδ, dδ) and broadcast (tossed, rid|j, dδ).
Execute Pi by setting

d
(i)
n,δ ← dδ ·

[
−
∑

µ∈Qn\{i}
w1,µ + nw2,µ + δw3,µ

]
dδ

– (key_complain, µ, n, δ, sk, π) from Pj . If π is accepted, and sk fails the check defined on line 28
Protocol 6, send (infl,w1,µ,w2,µ,w3,µ) to FSK.

Hybrid Games: Next, given a PPT environment Z that performs at most L registrations, we
define a sequence of hybrid functionalities:

– Hreal : The real protocol.
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– H0: If Q ⊆M in the setup, aborts. All proof produced by honest users are simulated.

– H1,0 := H0. H1,j as H1,j−1 but each time a honest user Pk would send an encrypted message to
another honest user Pj , it encrypts 0. In this case, instead of decrypting the received ciphertext,
Pj uses the value Pk would have encrypted.

– H2. Initially store accepted witnesses wα,µ sent to Fzk by users in Q and set wα the sum for
µ ∈ Q of wα,µ.
When some user sends (key_complain, µ, . . .) with accepting proof and satisfying the check on
line 28, Protocol 6, update wα ← wα −wα,µ.
When a honest user Pj request a key, after the key generation phase, it sets

skn,δ = [(w1 + nw2 + δw3) · r]1 , [r]1

and returns (key, (skn,δ)
κ−1
δ=0 ).

– H3: As H2 but after every key request from a dishonest user Pj , calling i = min(Q \M), Pi is
executed setting dn,δ ← [w1 + nw2 + δw3]dδ and

d
(i)
n,δ ← dn,δ ·

[
−
∑

µ∈Q\{i}
w1,µ + nw2,µ + δw3,µ

]
dδ

– H4: as H3 but in the setup phase, instead of storing kj as the product of kj,µ for µ ∈ Q, find a
polynomial f ∈ Fq[x]<t such that f(j) = sj for all j ∈ [N ] \M . If no such f exists, abort. Store
h← gf(−1), kj ← gf(j).

Claim 1. Hreal ≡ H0: First of all observe that by constructions |Q| = λ and that by our assumptions
on Z, |M | < N/2. Hence Pr [Q ⊆M ] ≤ 2−λ that is negligible. Moreover by the perfect HVZK of the
arguments used, simulated proof follows the same distribution of honestly generated ones. Hence
the two functionality produce statistically close views.

Claim 2. H1,j−1 ≡ H1,j : Given a distinguisher D we sketch an adversary A that breaks the
IND− CPA security of the underlying encryption scheme.
To simplify the reduction we assume that A has access to an encryption oracle OEnc(m0,m1) that
in the experiment b ∈ {0, 1} returns an encryption of mb. Through a sequence of standard hybrid
games this notion can be shown equivalent to the standard IND− CPA security game.

Description of A: Run M ←$ D(1λ, N). If j ∈ M return a random bit, otherwise wait for the
challenger Π to send pkj .
Generate πν , skν ←$ AE.Setup(1λ) for all ν /∈M ∪ {j} and broadcast (user_key, pkν) for ν /∈M .

Setup Phase: Simulate F stp
CT returning (tossed, Q, z0, g) and for all i ∈ Q\M , execute Pi honestly

by setting cj,i ← OEnc(fi(j), 0).
When D sends hµ, kj,µ, cj,µ, πj,µ as Pµ, if πj,µ is accepted, extract sj,µ from πj,µ. Execute Pj correctly.

Key Distribution Phase: When D sends (keygen) to Pj , broadcast (key_request) and return
(key_requested, j) from any honest user. Sample dδ ←$ G2 for δ ∈ [κ] and send (tossed, rid|j, (dδ)κ−1δ=0 ).
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For all i ∈ Q \M , run Pi by computing honestly d
(i)
n and setting ci ← OEnc(d

(i)
n ,0).

When Pµ, for µ ∈ Q∩M , sends (key_partial, cµ, πµ, j, n), if πµ is accepting run the extractor to get
(d

(µ)
n,δ)

κ−1
δ=0 and the randomness used for the encryption. Keep running Pj as prescribed in H0.

Output : When b←$ D, return b.

Proof of Claim: First of all we observe that by weak simulation extractability of the NIZK argu-
ment for REnc, since all proofs have to be different from previous one15 the extractor given (c, pkj)
always return, up to negligible probability, m, r such that c = AE.Enc(m, pkj ; r). By perfect cor-
rectness of the underlying encryption scheme then, AE.Dec(c, skj) → m, which implies that the
decryption step performed by Pj is correctly simulated up to negligible probability.
Hence it follows that when A is executed in the experiment 0, i.e. when OEnc(·, ·) returns an encryp-
tion of its first argument, A simulated H1,j−1. Conversely if A is run in experiment 1, then honest
users always encrypt the zero vector and in particular it simulates the functionality H1,j .

Claim 3. Let wα,µ be the values initially sent to FRLin
zk , and wα their respective sum for µ ∈ Q.

Then, calling badZ the event that a PPT machine Z interacting with H2,0 makes it return from Pj
an uncorrupted user the message

(key, (skn,δ)
κ−1
δ=0 ) : ∃δ : skn,δ 6= ([w1 + nw2 + δw3]d , d) ,

the probability that bad occurs is negligible.
We prove the claim by providing, for any Z, an algorithm A that breaks DDH over G2 with advan-
tage almost Pr [badZ ].

Description of A(ũ2, ṽ1, ṽ2): Sample ρ ←$ Fq and set u ← (gρ1 , ũ
ρ
2), v ← (ṽ1, ṽ2). Run M ←$

Z(1λ).
Simulate correctly the initial encryption key generation. Sample Q ⊆ [N ], aborting if Q ⊆ M ,

g ←$ G2 and z0 ← u. Broadcast (tossed, g, z0, Q) and execute according to H1,N−1 honest users,
storing the values wα,µ for µ ∈ Q sent to FRLin

zk .
Each time honest users remove an element from Q, update wα ←

∑
µ∈Qwα,µ.

When an honest user Pj would return (key, (skn,δ)
κ−1
δ=0 ), parse skn,δ = (d, d) and set

t← d · [w1 + nw2 + δw3]d .

If t 6= (1, 1), set b← e(v, t)
?
= 1. Return b.

When Z halts, return a random bit.

Proof of Claim: First of all observe that A perfectly simulates H1,N−1 regardless of its input
distribution because ũ2 ∼ U(G1) implies that (gρ1 , ũ

ρ
2) ∼ U(G2

1).
Next, A returns a random bit if and only if badZ does not occur. Indeed, the first event occurs if
and only if during the execution of Z a simulated honest user would return a key skn,δ = (d, d) such
that

(1, 1) 6= t = d · [w1 + nw2 + δw3]d ⇐⇒ d 6= [w1 + nw2 + δw3]d .

15 we recall that this is obtained by adding a unique session ID, and possibly the identity of the prover, to the proven
statement – which applying Fiat-Shamir means that the hash function has to be properly salted.
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Finally, assuming that badZ occurs, for any µ ∈ Q, the honest user that returned the faulty key
skn,δ did not complain about Pµ’s contribute d

(µ)
n,δ . This means that the check in line 28 pass, i.e.

e(z0,d
(µ)
n,δ) = e(z1,µ · zn2,µ · zδ3,µ, d)

= e(z
w1,µ+nw2,µ+δw3,µ

0 , d)

= e
(
z0, [w1,µ + nw2,µ + δw3,µ]d

)
where the second equality follows by the definition of FRLin

zk . Taking on both sides the product for
µ ∈ Q and using the bilinearty of e we obtain that

e (z0, d · [w1 + nw2 + δw3]d) = 1 ⇒ e(u, t) = 1

where we used the fact that u = z0. To conclude observe that in DDH1 v would be proportional to u,
an in particular e(v, t) = 1. Conversely in DDH0, v is uniformly random and is independent from any
coin tossed by A while executing Z. In particular v, t are independent and Pr [e(v, t) = 1] = q−1.
Therefore

A(A) =
∣∣Pr
[
A → 1|DDH0

]
− Pr

[
A → 1|DDH1

]∣∣
=
∣∣Pr
[
A → 1|badZ ,DDH0

]
− Pr

[
A → 1|badZ ,DDH1

]∣∣Pr [badZ ]

=
q − 1

q
· Pr [badZ ]

where in the second equation we used the independence of badZ from the experiment in which A
is executed in and the fact that when badZ does not happen A makes a random guess, which gives
no advantage.

Claim 4. H2 ≡ H1,N−1: Follows immediately from the previous claim as the only case in which the
two world differ is when, for a given adversary Z, badZ occurs.

Claim 5. H3 ≡ H2: Follows observing that by construction wα =
∑

µ∈Qwα,µ. Hence wα,i =

wα −
∑

µ∈Q\{i}wα,µ and in particular d(i)
n,δ = [w1,i + nw2,i + δw3,i]dδ in both functionalities.

Claim 6. H3 ≡ H4: We will show that the view generated interacting with this two functionalities is
statistically close. To this aim let s̃j,µ, s̃−1,µ ∈ Fq be the discrete logarithm of kj,µ and h respectively
in base g. Calling s̃µ = (s̃j,µ)N−1j=−1 we claim that, if s̃µ /∈ RSF,N+1,t then up to negligible probability
all honest users will remove µ from Q.
To see this observe that when s̃ does not belong in the prescribed Reed Solomon code, it is not
orthogonal to all elements of the dual. In particular the subset of vectors in RS⊥F,N+1,t orthogonal
to s̃ is a proper subspace of co-dimension 1. Hence, given a random vector v←$ RS⊥F,N+1,t

Pr
[
kv
µ = 1

]
= Pr

[
gs̃µ
>v = 1

]
= Pr

[
s̃>µ v = 0

]
= q−1.

Using a union bound, the probability that all honest users will remove µ from Q is smaller than
Nq−1, and in particular they will remove from Q all µ such that s̃µ /∈ RSF,N+1,t with probability
smaller than λNq−1.
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Conditioning on the latter event for all the remaining µ ∈ Q there exists a polynomial fµ ∈ Fq[x]<t
such that hµ = gfµ(−1) and kj,µ = gfµ(j). After the complain step we also have that the element sj,µ
received by honest users are such that kj,µ = gsj,µ . Hence

sj,µ = fµ(j) ⇒ sj =
∑

µ∈Q
sj,µ =

∑
µ∈Q

fµ(j)

and in particular, since t = bN/2c, interpolating sj for j ∈ [N ]\M yields f =
∑

µ∈Q fµ. This means
that honest parties in H4 will store

h = gf(−1) = g
∑
µ∈Q fµ(−1) =

∏
µ∈Q

gfµ(−1) =
∏

µ∈Q
hµ

kj = gf(j) = g
∑
µ∈Q fµ(j) =

∏
µ∈Q

gfµ(j) =
∏

µ∈Q
kj,µ.

Claim 7. H4 ≡ FSK ◦ S: follows by inspection.
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