
Non-interactive distributed key generation and
key resharing

Jens Groth1

jens@dfinity.org
DFINITY Foundation

Draft
March 16, 2021

Abstract. We present a non-interactive publicly verifiable secret shar-
ing scheme where a dealer can construct a Shamir secret sharing of a field
element and confidentially yet verifiably distribute shares to multiple re-
ceivers. We also develop a non-interactive publicly verifiable resharing
scheme where existing share holders of a Shamir secret sharing can cre-
ate a new Shamir secret sharing of the same secret and distribute it to
a set of receivers in a confidential, yet verifiable manner.
A public key may be associated with the secret being shared in the form
of a group element raised to the secret field element. We use our verifi-
able secret sharing scheme to construct a non-interactive distributed key
generation protocol that creates such a public key together with a secret
sharing of the discrete logarithm. We also construct a non-interactive
distributed resharing protocol that preserves the public key but creates
a fresh secret sharing of the secret key and hands it to a set of receivers,
which may or may not overlap with the original set of share holders.
Our protocols build on a new pairing-based CCA-secure public-key en-
cryption scheme with forward secrecy. As a consequence our protocols
can use static public keys for participants but still provide compromise
protection. The scheme uses chunked encryption, which comes at a cost,
but the cost is offset by a saving gained by our ciphertexts being com-
prised only of source group elements and no target group elements. A
further efficiency saving is obtained in our protocols by extending our
single-receiver encryption scheme to a multi-receiver encryption scheme,
where the ciphertext is up to a factor 5 smaller than just having single-
receiver ciphertexts.
The non-interactive key management protocols are deployed on the In-
ternet Computer to facilitate the use of threshold BLS signatures. The
protocols provide a simple interface to remotely create secret-shared keys
to a set of receivers, to refresh the secret sharing whenever there is a
change of key holders, and provide proactive security against mobile ad-
versaries.

1 Introduction

The Internet Computer hosts clusters of nodes running subnets (shards) that
host finite state machines known as canisters (advanced smart contracts). The



subnets authenticate all communication to end users and between themselves
using BLS signatures, which happens automatically so canister developers do
not need to deal directly with authentication mechanisms. The nodes running a
subnet use threshold cryptography to create the BLS signatures such that the
subnet is resilient to compromise of a few nodes. The Internet Computer makes
key management easy by assigning each subnet a permanent public key. The
nodes running the subnet may change over time as some of them are taken out
for maintenance or upgrade or there are other reasons to change the topology of
the Internet Computer, but even under these changes the subnet is known by the
same public key. The motivation behind this work is to develop key management
protocols that make it easy to spin up a new subnet and provide the participat-
ing nodes a secret sharing of the subnet’s signing key, and to make it easy for
existing participants to reshare the secret key to a new set of nodes whenever
the composition of the subnet changes. It is desirable for these protocols to be
non-interactive since it eliminates the need for incoming nodes to participate in
the protocol before they have joined the subnet and to support deployment on
an asynchronous network such as the Internet.

1.1 Our contribution

We construct non-interactive distributed key generation and key resharing pro-
tocols that support Shamir secret sharings of the secret keys. The distributed
key generation protocol enables a set of dealers to participate in the creation of
a public verification key for the threshold BLS signature scheme together with
Shamir secret shares of the secret key that are encrypted under the public keys
of a set of receivers. A set of nodes that already hold a Shamir secret sharing
of a secret key can use the distributed key resharing protocol to act as dealers
and create a fresh random secret sharing of the same secret key and encrypt the
shares under the public keys of the receiving nodes.

The protocols are designed to be non-interactive, which simplifies their usage
and the communication pattern. Each dealer creates a dealing without interact-
ing with other participants and publishes it. Each receiver can verify whether
a dealing is correct without interaction with other participants. And given an
agreed set of verified dealings the receivers can derive a public key for the BLS
signature scheme and retrieve their shares of the secret signing key.

The basic idea behind our protocols is to use existing information theoretic
schemes for Shamir secret sharing and resharing and encrypt the messages. We
then use non-interactive zero-knowledge proofs to ensure each dealing, essentially
a batch of ciphertexts, is correct. Since anybody can verify the NIZK proof, this
means the dealings are publicly verifiable and everybody will agree on whether
a dealing is valid or not. This removes the need for interaction that appears
in existing verifiable secret sharing schemes where only the receiver can verify
whether her share is valid or not, and hence needs to complain if a dealer sent
her a bad share, which in turn requires all participants to wait and see who
complains and whether there is a sufficiently large quorum to proceed.

2



To make key management easy, each node has a static public encryption key.
However, to provide some protection against compromise we use encryption with
forward secrecy, where time is divided into epochs and the decryption key can
evolve such that ciphertexts for future epochs can be decrypted but ciphertexts
from past epochs cannot be decrypted. A general paradigm for constructing
pairing-based encryption schemes with forward secrecy is to use hierarchical
identity based encryption schemes and derive keys for different epoch according
to a tree-shaped hierarchy. These forward secure encryption schemes use the tar-
get group as message space. However, in our case the plaintexts are field elements
constituting Shamir secret shares. If we encode the field elements directly in the
target group, the NIZK proofs become unwieldy. Instead we divide the plaintexts
into small chunks, which can be encrypted in the exponent and later be extracted
using the Baby-step Giant-step algorithm. While chunking incurs an overhead,
it also makes it possible to encode the plaintext a source group pre-image of the
target group element we want the receiver to get and decode. Exploring this idea
we develop a novel pairing-based encryption scheme with forward secrecy where
the ciphertext consists of source group elements. Since source group elements
are smaller than target group elements this gives a significant saving offsetting
the overhead that comes from chunking the plaintexts.

Our new forward-secure encryption scheme has an additional benefit, it is
structured such that ciphertexts addressed to different public keys may share
randomness. Sharing randomness gives a significant performance improvement,
while a single-receiver ciphertext for a chunk consists of 3 small source group ele-
ments and one double-size source group element, amortizing over many receivers
we can reduce that cost almost down to a single small source group element per
receiver.

Finally, it has also been a design goal to facilitate efficient NIZK proofs,
since they place a computational burden on the verifiers. Since the encryption
algorithm for the forward secure encryption scheme mainly uses exponentiations,
we are in a beneficial setting for developing Schnorr-style proofs and applying
the Fiat-Shamir heuristic to make them non-interactive. Our resulting NIZK
proofs are compact and smaller than the ciphertexts. It is natural to use range
proofs to show the encrypted chunks are appropriately sized using range proofs,
but range proofs are complicated to construct. Instead we opted for approximate
range proofs. Here the verifier does not get the guarantee that a chunk is in a
given small range, the guarantee is just that the chunk is in a set that is small
enough to be decrypted by brute force, i.e., we just give decryptability proofs.
We construct a novel and simple decryptability proof. While the proof system
itself is simple, the analysis is not quite so easy, since the proof system does not
have perfect completeness and we therefore use rejection sampling to make the
completeness error negligible.

1.2 Related work

In the full paper, we will provide further recent improvements and compare our
work to the extensive literature on secret sharing and distributed key generation.

3



2 Preliminaries

2.1 Notation

In the following we write y := x for assigning y the value x. Sampling from a
probability distribution, we write y ← D. When D samples uniformly at random
from a set S, we write y ←$ S. For repeated independent and uniformly random
sampling we write y1, . . . , yn ←$ S.

Let A be an algorithm, which may be randomized. We write y ← A(x) for
assigning y the output of A running on input x. If the algorithm is deterministic
there is only one possible output, and we will sometimes write y := A(x). We
may also think of a randomized algorithm as a deterministic computation based
on the input x and some randomness r, in which case we can write y := A(x; r).
When discussing algorithms, we will often require them to be efficient. It is
context dependent what that means though, so we will not provide an explicit
definition of efficiency.

We write AO for an algorithm that has access to an oracle O, which may be
thought of as a subroutine. The oracle provides some interface to the algorithm
to which it can send an input and get back an output from the oracle. If for
instance H is a hash function, we can write AH for an algorithm that can call
the hash function on a message m and get back a message digest H(m).

Functions may be parametrized, a hash function may for instance have output
length λ = 256. In general we use λ to denote a parameter that indicates the
size of an object, e.g., λe could be the bit-length of an integer e. It depends on
the context whether it is more natural to consider a value a parameter that is
implicitly known to all and part of the setup of a protocol, or whether it is more
natural to give it as explicit input to algorithms.

When considering security, we will usually write A for an adversary. Security
is defined through experiments, where we precisely define the power and access
to system manipulation the attacker has. We say the advantage of an adversary
is the probability that it wins in the experiment. As an example, let us take
an attacker that tries to guess the value of a fair coin toss. Here the advantage
would be

Adv(A) = |2Pr[b∗ ← A; b←$ {0, 1} : b∗ = b]− 1|,
with the implicit experiment in the notation being

Exp(A)
b∗ ← A // the attacker outputs a guess
b←$ {0, 1} // we toss a coin
if b∗ = b return > // > indicates success
else return ⊥ // ⊥ indicates failure

and the adversary’s advantage being Adv(A) = |2Pr[Exp(A) = >]− 1|.
We sometimes distinguish between perfect security, where no attacker gets

any advantage; statistical security where no attacker can get significant advan-
tage; and computational security where we believe, based on specific assump-
tions, no realistic computationally bounded attacker gets a significant advantage.

4



2.2 Fields, groups and pairings

We write Zp for integers modulo p. In this article, p will always be a known prime
and therefore Zp is a finite field (also sometimes written Fp). We assume Zp comes
with a canonical representation of field elements as integers 0, 1, . . . , p − 1 and
accordingly there are efficient algorithms to compute the field operations. We
write Z∗p for the multiplicative subgroup of the field, i.e., {1, . . . , p−1}. We write
y := x mod p for assigning to y the canonical representation of x modulo p.

We write G for a group of known prime order p. All prime order groups are
cyclic, so using multiplicative notation G = {1, g1, . . . , gp−1} for some generator
g, where the unit is 1 = g0. When we refer to groups we always assume they have
known prime order, a canonical and compact representation of group elements,
and efficient algorithms to compute group operations and decide membership.

We use pairing-based cryptography, where we have two source groups G1,G2

and a target group GT of known prime order p. A pairing (in cryptographic par-
lance, deviating from standard mathematical terminology) is a non-degenerate
bilinear map e : G1 × G2 → GT . This means if g1, g2 are generators of G1,G2,
then e(g1, g2) generates GT and for all a, b ∈ Zp we have e(ga1 , gb2) = e(g1, g2)

ab.
We require that the pairing be efficiently computable. For security purposes, we
will assume there are no non-trivial efficiently computable homomorphisms be-
tween the source groups G1 and G2, i.e., we are working with Type III pairings
in the categorization of Galbraith, Paterson and Smart [GPS08]. We follow the
convention that G1 is the source group that has the most compact representation
of group elements and the most efficient computation.

In the implementation, we instantiate the pairing groups using BLS12-381
with group size p ≈ 2255. The source groups G1,G2 are elliptic curves with a
base field of size q ≈ 2381 and the target group GT is an order p multiplicative
subgroup of F∗q12 .

1

2.3 Hash functions

We rely on cryptographic hash functions to compress data. A standard crypto-
graphic hash function is an efficiently computable function H : {0, 1}∗ → {0, 1}λ
that takes arbitrary length input and maps it to a λ-bit string, where λ is a fixed
parameter. An example is SHA-256, which hashes arbitrary2 length strings into
256-bit strings.

We will not just hash to fixed length outputs though. We let Hλ : {0, 1}∗ →
{0, 1}λ be a hash function that maps arbitrary length input to a string of specified
length λ. We also sometimes map in and let HG : {0, 1}∗ → G be a hash
function that maps into the group G. And we may map into a field, and let
HZp : {0, 1}∗ → Zp be a hash function mapping into Zp. We implicitly assume

1 For general information about this choice of groups, see
https://hackmd.io/@benjaminion/bls12-381.

2 Strictly speaking the domain is string of length up to 22
64

bits, but that is equivalent
to arbitrary length strings in practice.

5



the use of domain separators in the hash functions, to ensure they are specific
to the schemes presented here and not used elsewhere.

2.4 Shamir secret sharing and Lagrange interpolation

Threshold secret sharing enables a dealer with a secret s to create shares
s1, . . . , sn such that any t shares suffice to compute the secret s, while t − 1
shares reveal no information about the secret.

Shamir secret sharing [Sha79] is a popular secret sharing scheme for secrets
in a field Zp. The idea is to choose a random degree t− 1 polynomial a(x) such
that a(0) = s and let the shares be s1 = a(1), . . . , sn = a(n).3 The idea behind
this secret sharing is that any t points in the plane with distinct x-coordinates
uniquely determine a degree t − 1 polynomial a(x) through them and allows
reconstruction of the secret s = a(0). On the other hand, given t− 1 points with
distinct non-zero x-coordinates there are p possible polynomials through them,
each yielding a different secret, so the points do not leak any information about
the secret.

To describe Shamir secret sharing formally, let us first define the Lagrange
interpolation polynomials over Zp. Given a set I = {i1, . . . , it} of distinct indices
and an index ij ∈ I, we define

LIij (x) =
∏

i∈I\{ij}

x− i
ij − i

mod p.

We observe, that all the Lagrange polynomials have degree t − 1 and satisfy
LIij (ik) = 1 for k = j and Lij (ik) = 0 for k 6= j. Consequently, given points and
shares (i1, a(i1)), . . . , (it, a(it)) on a degree t− 1 polynomial a(x), we see

a(x) =
∑
ij∈I

LIij (x)a(ij) mod p.

With a secret sharing where si1 = a(i1), . . . , sit = a(it) this means the shared
secret s = a(0) can be reconstructed as

s =
∑
ij∈I

LIij (0)sij mod p.

Which gives us the following algorithms for an (n, t)-Shamir secret sharing:

Share(n, t, s)→ (s1, . . . , sn): Given s ∈ Zp set a0 := s. Pick a1, . . . , at−1 ←$ Zp
and define a(x) =

∑t−1
k=0 akx

k mod p. Return (s1, . . . , sn) := (a(1), . . . , a(n)).

3 It is straightforward to generalize Shamir secret sharing to use any n + 1 distinct
indices in Zp for the secret and the n shares but for simplicity we just use 0, 1, . . . , n
in the article.

6



Reconstruct(I, si1 , . . . , sit): Given a set I of distinct indices 1 ≤ i1 < . . . < it ≤ n
and shares si1 , . . . , sit ∈ Zp return

s :=
∑
ij∈I

LIij (0)sij mod p.

Secret sharing poses a problem for the receiver: did she get a correct share?
The dealer may give her a bad share that does not correspond to the dealing,
or give so many fake shares to different receiver that they do not correspond to
a real dealing. Feldman [Fel87] proposed verifiable secret sharing (VSS) to deal
with this problem. His scheme uses a group G of order p. The dealers distributes
shares together with public group elements A0 = ga0 , . . . , At−1 = gat−1 . Receiver
i is supposed to get share si = a(i), which can now be checked since a correct
share satisfies

gsi = ga(i) = g
∑t−1
k=0 aki

k

=

t−1∏
k=0

Ai
k

k .

Many verifiable secret sharing schemes use related ideas. They then let the re-
ceiver issue a complaint in case his share is wrong. As it turns out, having a
separate complaint phase makes the key distribution scheme we will build on
top of the secret sharing scheme interactive. So instead we will be looking in this
article to construct a publicly verifiable secret sharing (PVSS) scheme where it
is immediately verifiable to everybody, not just the receiver, whether a share is
correct or not.

2.5 Resharing

Suppose we already have an (n, t)-Shamir secret sharing of a secret s but want
to convert it into an (n′, t′)-Shamir secret sharing of the same secret s. For this
we can use a resharing scheme, which is intended to be run by t dealers holding
the original shares and giving the new shares to n′ receivers. The idea is that
dealer i creates an (n′, t′) secret sub-sharing of her secret share si. Then she
gives the n′ sub-shares to the respective receivers. Once a receiver has her t
sub-shares, she can then use Lagrange interpolation to recombine them to a new
secret share. Formally, we define the following resharing scheme intended to be
run on a secret sharing (s1, . . . , sn):

Reshare(n′, t′, si) : Return (si,1, . . . , si,n′)← Share(n′, t′, si).
Combine(I, si1,j , . . . , sit,j): Return s′j ← Reconstruct(I, si1,j , . . . , sit,j).

The important property is for all correct (n, t)-secret sharings (s1, . . . , sn) of a
secret s ∈ Zp, positive integers t′ ≤ n′, index set I ⊂ [1..n] of size t and index
set J ⊂ [1..n′] of size t′ we have

Pr

 for i ∈ I : (si,j1 , . . . , si,jt′ )← Reshare(n′, t′, si)
for j ∈ J : s′j ← Combine(I, si1,j , . . . , sit,j)
s′ ← Reconstruct(J, s′j1 , . . . , s

′
jt′
)

: s′ = s

 = 1.

7



A key observation to see this is true is that Lagrange interpolation is linear.
The original secret shares can be recombined using Lagrange interpolation to
reconstruct the secret. But applying the same reconstruction procedure to the
sub-shares also yields a secret sharing of the same secret. The receivers, provided
they know the indices of the dealers, can therefore locally reconstruct (n′, t′)-
shares of their new shares using Lagrange interpolation. To see this, we calculate:

s′ =
∑
j`∈J

LJj`(0)s
′
j`

=
∑
j`∈J

LJj`(0)

(∑
ik∈I

LIik(0)sik,j`

)

=
∑
ik∈I

LIik(0)

∑
j`∈J

LJj`(0)sik,j`

 =
∑
ik∈I

LIik(0)sik = s

There are several special purpose resharing schemes, for instance if the set of
dealers is the same as the set of receivers, they can instead jointly create a secret
sharing of 0 and add it to their existing shares, to get a fresh (n, t)-secret sharing.
Or they can increase the threshold by adding an (n, t + 1)-secret sharing of 0
to their shares. But for simplicity we will only work with the resharing scheme
given above.

2.6 The Schwartz-Zippel lemma

We will later develop zero-knowledge proofs where a common theme is to test
polynomial identities. The Schwartz-Zippel lemma is useful in randomized test-
ing of polynomial identities and states that for a multi-variate polynomial
f(x1, . . . , xn) ∈ Zp[x1, . . . , xn] of total degree d that for any set S ⊂ Zp

Pr[x1, . . . , xn ←$ S : f(x1, . . . , xn) = 0 mod p] ≤ d

|S|
.

3 Signatures

For completeness, we recap the security definition for a signature scheme
(KGen,Sign,SigVfy). It is perfectly correct if for all m ∈ {0, 1}∗ we have

Pr[(vk, sk)← KGen;σ ← Sign(sk,m) : SigVfy(vk,m, σ) = >] = 1.

The advantage of an adversary against strong existential unforgeability under
adaptive chosen message attack is

Adv(A) = Pr[(vk, sk)← KGen; (m∗, σ∗)← ASign(vk) : SigVfy(m∗, σ∗) = > and (m∗, σ∗) /∈ Q],

where the oracle Sign on input m return σ ← Sign(sk,m) and stores Q :=
Q ∪ {(m,σ)}. The standard notion of existential unforgeability is achieved by
relaxing the success condition to m∗ /∈ Q|m, where Q|m is the set of messages in
Q.

8



3.1 BLS signatures

BLS signatures [BLS04] work as follows:

Setup: We assume all users of the signature scheme work with agreed public
parameters including descriptions of groups G1,G2,GT of known prime order
p, generator g2 of G2, and a pairing e : G1×G2 → GT . The parameters also
include a hash function HG1 : {0, 1}∗ → G1.

KGen: Sample sk ← Zq, set vk := gsk2 , and return (vk, sk)
Sign(sk,m): Return σ := HG1(m)sk

SigVfy(vk,m, σ): If vk ∈ G2, σ ∈ G1 and

e(HG1
(m), vk) = e(σ, g2)

return >, else return ⊥.

It is easy to see the BLS signature scheme is perfectly correct. We argue exis-
tential unforgeability later when we consider the threshold version of BLS sig-
natures. However, we note the important point that BLS signatures are unique.

Uniqueness. A signature scheme is said to have unique signatures if there is at
most one valid signature on a given message satisfying the verification algorithm.
For all vk,m, σ1, σ2 with SigVfy(vk,m, σ1) = > and SigVfy(vk,m, σ2) = > it
must be the case that σ1 = σ2.

Theorem 1. The BLS signature scheme has unique signatures.

Proof. If SigVfy(vk,m, σ) = >, we have vk ∈ G2, σ ∈ G1 and e(HG1
(m), vk) =

e(σ, g2). Since g2 is a generator for G2 the signature verification equation has a
unique solution σ, so there cannot be two distinct signatures σ1 6= σ2 for the
same message and verification key. ut

It follows from the uniqueness of signatures that for BLS signatures existential
unforgeability and strong existential unforgeability are equivalent.

Existential unforgeability. BLS signatures are existentially unforgeable in
the random oracle model under the assumption that given ga1 , g

a
2 and gb1 it is

hard to compute gab1 . We do not prove that here, instead we will in Sect. 8 prove
security of threshold BLS signatures under different assumptions.

4 Threshold signatures

A threshold signature scheme enables a threshold of t signers out of n potential
contributors to collaboratively sign a message. In this article, we will work with
non-interactive threshold signature schemes, where each signer by herself can
produce a signature share on the message. Given t signature shares, they can
then be combined to a digital signature on the message. We define the syntax

9



of threshold signatures by describing the constituent efficient algorithms below.
The threshold signature scheme takes parameters and keys as inputs. We will
later describe distributed key generation protocols for generating parameters and
keys, but here they are just taken for granted.

VKVfy(t, vk, shvk1, . . . , shvkn)→ b: Deterministic algorithm that on a key bun-
dle with threshold t, a verification key vk, and share verification keys
shvk1, . . . , shvkn returns > if the key bundle is considered valid, and else
returns ⊥. It can only return > if t, n are positive integers with t ≤ n

SKVfy(sk, shvk)→ ⊥: Deterministic algorithm that on a share-signing key sk
returns > if sk is considered a valid share-signing key with respect to share-
verification key shvk, and else returns ⊥.

SigShare(sk,m)→ sh: Deterministic or randomized algorithm that given a
share-signing key sk and a message m ∈ {0, 1}∗ produces a signature share
sh.

SigShVfy(shvk,m, sh)→ b: Deterministic algorithm that given a share-
verification key shvk, a message m and a signature share sh returns > if
the signature share is to be considered valid, and else returns ⊥.

SigShCombine(I, sh1, . . . , sht)→ σ: Deterministic algorithm that takes a set I
of distinct indices i1 < . . . < it and t signature shares sh1, . . . , sht and
combines them to a signature σ.

SigVfy(vk,m, σ)→ b: Deterministic algorithm that given a verification key vk,
a message m ∈ {0, 1}∗ and a signature σ returns > if the signature is to be
considered valid, and else returns ⊥.

Correctness. The threshold signature scheme, with unspecified key generation,
is perfectly correct if:

– A valid key bundle has a threshold in the right range. If
VKVfy(t, vk, shvk1, . . . , shvkn) = > then t ∈ [1..n].

– Valid share-signing keys produce valid signature shares. For all sk, shvk,m
where SKVfy(sk, shvk) = >

Pr[sh← SigShare(sk,m) : SigShVfy(shvk,m, sh) = >] = 1.

– Combining valid shares for a threshold of distinct indices yields a
valid signature. For all vk, shvk1, . . . , shvkn, I, shi1 , . . . , shit ,m where
VKVfy(t, vk, shvk1, . . . , shvkn) = >, I is a set of t distinct indices 1 ≤ i1 <
. . . < it ≤ n, for all i ∈ I : SigShVfy(shvki,m, shi) = >

Pr[σ ← SigShCombine(I, shi1 , . . . , shit) : SigVfy(vk,m, σ) = >] = 1.

Uniqueness. The unique signature property can be defined as for standard
signatures schemes as it only depends on SigVfy.

Unforgeability. We define unforgeability in Sect. 8 for threshold signature
schemes with associated distributed key generation algorithms.

10



4.1 BLS threshold signatures

We now describe BLS threshold signatures with unspecified key generation. We
reuse the signature verification algorithm from standard BLS signatures but
enable a situation where the secret key is secret shared into multiple secret
share-signing keys. These share-signing keys can be used to produce signature
shares, and given enough signature shares they can be combined to a signature.
The following algorithms can therefore be seen as an alternative to the single
signer BLS signing algorithm.

Setup: Public parameters include groups G1,G2,GT of known prime order p
with a pairing e : G1 × G2 → GT and generators g1, g2 for G1,G2. The
parameters also include a hash function HG1

: {0, 1}∗ → G1.
VKVfy(t, vk, shvk1, . . . , shvkn): Check t ∈ [1..n] and vk, shvk1, . . . , shvkn ∈ G2.

Set shvk0 := vk and I = {0, . . . , t− 1}. For j = t, . . . , n check whether

shvkj =
∏
i∈I

shvk
LIi (j)
i .

Return > if all checks pass, else return ⊥.
SKVfy(sk, shvk) : If sk ∈ Zp and shvk = gsk2 return >, else return ⊥.
SigShare(sk,m) : Return

sh := HG1
(m)sk.

SigShVfy(shvk,m, sh) : If shvk ∈ G2, sh ∈ G1 and

e(HG1
(m), shvk) = e(sh, g2)

return >, else return ⊥.
SigShCombine(I, shi1 , . . . , shit): Parse I as a set of distinct indices i1 < . . . < it

and shi1 , . . . , shit as elements in G1. Return

σ :=
∏
i∈I

sh
LIi (0)
i .

SigVfy(vk,m, σ): Check whether vk ∈ G2, σ ∈ G1 and

e(HG1(m), vk) = e(σ, g2).

If all checks pass return >, else return ⊥.

Performance optimization. Instead of using Lagrange interpolation, it is possible
to do a fast randomized check on vk, shvk1, . . . , shvkn by checking

∏n
i=0 shvk

ei
i ,

where (e0, . . . , en) is a random vector that is orthogonal to the space of discrete
logarithms corresponding to valid (n, t)-secret sharings. This makes the verifica-
tion non-deterministic though and requires slight modifications in the definitions
since we no longer get perfect correctness.

Theorem 2. The BLS threshold signature scheme is perfectly correct.

11



Proof. If t /∈ [1..n] the check of the threshold in VKVfy(t, vk, shvk1, . . . , shvkn)
fails and the verification returns ⊥.

Let sk, shvk,m be such that SKVfy(sk, shvk) = >. This means sk ∈ Zp and
shvk = gsk2 . Since SigShare(sk,m) returns sh = HG1(m)sk we now have that the
share verifies, i.e.,

e(HG1
(m), shvk) = e(HG1

(m), gsk2 ) = e(HG1
(m)sk, g2) = e(sh, g2).

Let vk, shvk1, . . . , shvkn be given together with a set I of distinct indices
1 ≤ i1 < . . . < it ≤ n, signature shares shi1 , . . . , shit , and a message m.
If VKVfy(t, vk, shvk1, . . . , shvkn) = > it means that there is a degree t − 1

polynomial a(X) ∈ Zp[X] such that shvki = g
a(i)
2 for i = 0, . . . , n using

shvk0 := vk. The condition SigShVfy(shi, shvki) = > for all i ∈ I gives
us shi ∈ G1, shvki ∈ G2, and e(shi, g2) = e(HG1

(m), g
a(i)
2 ), which implies

shi = HG1
(m)a(i). With t valid signature shares, the signature share combi-

nation algorithm produces σ =
∏
i∈I sh

LIi (0)
i . Since

∏
i∈I

sh
LIi (0)
i =

∏
i∈I

(
HG1(m)a(i)

)LIi (0)
= HG1(m)

∑
i∈I a(i)L

I
i (0) = HG1(m)a(0),

we see e(HG1(m), vk) = e(HG1(m), g
a(0)
2 ) = e(HG1(m)a(0), g2) = e(σ, g2). This

means SigVfy(vk,m, σ) = >. ut

5 Public-key encryption with forward secrecy

In Sect. 7 we present our distributed key generation and distributed key resharing
protocols. In these protocols, dealers will encrypt secret shares to receivers. All
parties have long-term public encryption keys, which makes it easy to manage the
public keys since they are static but carries with it a risk of compromise during
their lifetime. We will partly mitigate that risk by using encryption with forward
secrecy, which means if the adversary learns the decryption key it is possible
to decrypt future ciphertext to this participant but not past ciphertexts. It is
entirely plausible that an adversary may send maliciously crafted ciphertexts,
so we also want the encryption scheme to be secure against chosen ciphertext
attack. In this section, we will construct step-by-step a new CCA-secure multi-
recipient public-key encryption scheme with forward secrecy using pairing-based
cryptography.

5.1 Decisional assumption

Our encryption schemes rely on a decisional problem relative to groups
G1,G2,GT of prime order p with generators g1, g2, e(g1, g2), where e is a Type
III pairing. We assume these groups are given in the parameters together

12



with f0, f1, . . . , fλ, h ∈ G2. We define the decisional problem in the experi-
ment below and an adversary A’s advantage against the decisional problem as
Adv(A) := |Pr[Exp0(A) = >−Exp1(A) = >|.4

Expb(A)
τ1, . . . , τλ ←$ {0, 1}
x, r, s←$ Zp
For each j ∈ [1..λ] pick ρj ←$ Zp
c0 := gxr1 ; c1 ←$ G1

Return A

cb, τ1, . . . , τλ , gx1 , gr1, gs1 , f0, . . . , fλ, h,
(
f0 ·

∏λ
i=1 f

τi
i

)r
hs{

g
ρj
1 , g

x
2

(
f0 · f

1−τj
j

)ρj
, {fρji }i∈[1..λ]\{j}, hρj

}
j∈[1..λ]


The following theorem shows that there are no trivial attacks on the as-

sumption assuming there is sufficient entropy in f0, . . . , fλ, h from the attacker’s
perspective.

Theorem 3. The decisional assumption holds in the generic group model when
f0, . . . , fλ, h are chosen uniformly at random, i.e., any attacker using only
generic group operations and a bounded number of them has negligible advan-
tage.

Proof. In the generic group model, the attacker can multiply existing group
elements to construct new group elements in the same group, use the pairing to
map two existing source group elements into the target group, and test equality
in the groups. Since one can use the pairing to lift an equality in the source groups
to the target group, without loss of generality, we can assume the adversary on
source group elements A1, . . . , Am ∈ G1, B1, . . . , Bn ∈ G2 and no elements in
the target group, constructs pairing-product equalities of the form

1 = e
(∏

A
u1,i

i ,
∏

B
vj,1
j

)
· · · e

(∏
A
ui,`
i ,

∏
B
vj,`
j

)
.

Let a1, . . . , am, b1, . . . , bn be the discrete logarithms. The equality holds if and
only if

0 =
∑

ui,1ai ·
∑

vj,1bj + · · ·+
∑

ui,`ai ·
∑

vi,jbj mod p.

We can therefore reason about the adversary’s ability to learn useful information
based on such quadratic equations in the discrete logarithms of the available
group elements.
4 The intention is that λ specifies the height of a tree with 2λ leaves. We will later
define tree-based encryption where the sender encrypts a message to a leaf in the
tree; and the receiver who holds a decryption key for a node in the tree derives a
decryption key for the leaf to get the plaintext out. Our encryption schemes could
be optimized by choosing a larger branching factor for the tree, e.g., choosing a 4-
ary tree would reduce public parameter size to 1/2 and decryption key size to 3/4.
However, the decisional assumption and the resulting encryption schemes become a
bit harder to describe.

13



Let φ0, . . . , φλ, η be the discrete logarithms of f0, . . . , fλ, h. We will now show
that when the discrete logarithms of group elements in G1 and G2 are treated as
formal polynomials in φ0, . . . , φλ, η, x, r, s, ρ1, . . . , ρλ, log(c1) the adversary can-
not use the generic group operations to construct an pairing-product equality
that is non-trivial in cb. This is easy to see when cb = c1, since any such bilinear
equality could be rewritten in the form

e(c1, ∗) = e(∗, ∗) · · · e(∗, ∗),

where the unspecified entries do not depend on c1. Since c1 only appears on the
left hand side, when we take discrete logarithms we get a formal equality of the
form

log c1 · ∗ =
∑
∗ · ∗+ · · ·+ ∗ · ∗,

where the formal variable log c1 only appears on the left hand side. For the
equality to be true, we must therefore have the left hand side is of the form
log c1 ·0 to cancel out the formal variable log c1. So the pairing-product equation
the adversary uses is e(c1, 1) = e(∗, ∗) · · · e(∗, ∗), with no other entries depending
on c1. That means c1 is not used at all and therefore the equality tells the
adversary nothing about it. We now set out to prove that the adversary cannot
use generic group operations to construct a non-trivial bilinear equality of the
form e(c0, ∗) = e(∗, ∗) · e(∗, ∗) · · · either.

When cb = c0 = gxr1 the adversary can use generic group operations in G1 to
construct group elements with discrete logarithms of the form

u = ucxr + u1 + uxx+ urr + uss+
∑

j∈[1..λ]

uρjρj

for known field elements uc, u1, ux, . . .. Using generic group operations in G2 the
adversary can construct group elements with discrete logarithms of the form

v =

 v1 +
∑λ
i=0 vφiφi + vηη + vφ,η,r,s

(
(φ0 +

∑λ
i=1 τiφi)r + ηs

)
+
∑
j∈[1..λ]

(
vj (x+ (φ0 + (1− τj)φj)ρj) +

∑
i∈[1..λ]\{j} vi,jφiρj + vηρjηρj

) .

To have a non-trivial equality in c0, we can without loss of generality assume
it is an equality in the target group of the form e(c0, ∗) = e(∗, ∗) · · · e(∗, ∗), where
the right hand side does not involve c0. So after taking discrete logarithms the
question is whether the adversary can find multi-variate polynomials v 6= 0 and
u(1), v(1), . . . such that

xr · v =
∑
`

u(`)v(`), (1)

where each u(`) has uc = 0. We will now analyze coefficients of various terms
to show no such polynomials exist, i.e., if the equality holds formally in the
indeterminates x, r, s, ρ1, . . . , ρλ then v = 0.

14



The term xrηρj can arise on the left hand side of (1) as xr·vηρjηρj . Inspection
of the possible products of terms in u(`)v(`) shows that xrηρj cannot arise on
the right hand side of (1) when we keep in mind that by design u(`)c = 0. This
means the term cannot arise anywhere in the right hand side

∑n
`=1 u

(`)v(`) of
(1). The only possible coefficient for the term xrηρj is therefore 0. We conclude
that vηρj = 0 for all possible choices of j.

The term xrφiρj for i ∈ [1..λ] \ {j} can arise on the left hand side of (1) as
xr · vi,jφiρj . Again inspection of products of terms in

∑n
`=1 u

(`)v(`) show that it
cannot arise on the right hand side of (1). The only possible coefficient for the
term xrφiρj is therefore 0. We conclude that all vi,j = 0.

The terms xrφ0ρj tell us in a similar way that all vj = 0.

The term xrφ0ηs tells us vφ,η,r,s = 0.

The term xrη tells us vη = 0.

The terms xrφi can arise on the left hand side of (1) and also arise on the right
hand side of (1) as u(`)x x·v(`)φ,η,r,s

(
(φ0 +

∑λ
i=1 τiφi)r + ηs

)
. If
∑
` u

(`)
x v

(`)
φ,η,r,sτi 6= 0

though, we also have
∑
` u

(`)
x v

(`)
φ,η,r,s 6= 0 giving a non-trivial coefficient for xηs

on the right hand side of (1). Inspection of products of terms in u(`)v(`) show
that there is no other coefficients for this term, so we end up with the right hand
side having as non-trivial coefficient for xηs. And since the left hand side of (1)
is xr · v we cannot have a term xηs. We therefore conclude that vφi = 0 for all
i = 0, . . . , λ.

With the above analysis showing many coefficients on the left hand side of
(1) are zero what remains on the left hand side is v1xr. We can only hit xr on the
right hand side

∑
` u

(`)v(`) of (1) with products of the form r ·(x+(φ0+kφj)ρj).
So there must be at least one j where we have a non-trivial sum w =

∑
` u

(`)
r v

(`)
j .

However, this also gives us wrφ0ρj and w(1− τj)rφjρj on the right hand side of
(1). These terms do not appear on the left hand side of (1), so we must cancel
them out on the right hand side. The only other way we can hit such terms
is through products of the form ρj ·

(
(φ0 +

∑λ
i=1 τiφi)r + ηs

)
. To cancel out

wrφ0ρj the coefficients of the latter products must sum to −w. To cancel out
the coefficients for the term rφjρj we then need w(1− τj)rφjρj −wρjτjφjr = 0.
This means w = 0 so it cannot be non-trivial after all. We conclude v1 = 0
and therefore all equalities over the formal polynomials defining the discrete
logarithms of the group elements in the assumption exclude the use of cb.

The final question now is whether the adversary could be lucky and construct
a quadratic equality, which does not holds for formal polynomials in the inde-
terminates φ0, . . . , φλ, η, x, r, s, ρ1, . . . , ρλ, yet happens to hold for the concrete
values in the challenge. However, as noted in various Uber assumptions using
the generic group model, this means the adversary has constructed a non-trivial
low-degree multi-variate polynomial in the indeterminates that evaluates to zero.
By the Schwarz-Zippel lemma this has negligible probability of happening. ut

15



5.2 Binary tree encryption

We start by defining binary tree encryption for a single receiver. In BTE the
parameters specify a binary tree of height λ.5 The encryption algorithm takes a
plaintext and encrypts it to a leaf in the tree. To each leaf may be associated a
decryption key, and a holder of that decryption key can recover the plaintext.
There are also decryption keys associated with internal nodes. A decryption key
for an internal node lets you derive a decryption key for any children of that
node. This means, if you have the decryption key for the root you can derive
decryption keys for all leaves. But if you do not have the decryption key for the
root, you can only decrypt ciphertexts pertaining to leaves in the subtrees of the
decryption keys you hold.6

A BTE scheme has the following efficient algorithms:

Setup: The parameters include a message space M and height λ for a binary
tree. We will write a path to a node in the tree as τ1 . . . τ` with ` ≤ λ. The
root node thus has an empty path with ` = 0, while for a leaf ` = λ.

KGen→ (pk, dk): Randomized key generation algorithm that produces a public
key and a decryption key for the root of the tree

KVfy(pk)→ b: Deterministic key verification algorithm that returns > if the
public key is considered valid, and otherwise returns ⊥

Derive(dkτ1...τ`−1
, τ`)→ dkτ1,...,τ` : Randomized update algorithm that given a

decryption key for the node τ1 . . . τ`−1 and a bit τ` returns a decryption key
for the node τ1 . . . τ`. If ` > λ or τ` /∈ {0, 1} or something else goes wrong
the derivation algorithm returns ⊥.
We will throughout the paper use the convention that dk is a decryption
key and dkτ1,...,τ` is a pair (τ1 . . . τ`, dk) that explicitly indicates the node
τ1 . . . τ` the decryption key belongs to.

Enc(pk,m, τ1, . . . , τλ)→ c: Randomized encryption algorithm that given a pub-
lic key, message and a leaf returns a ciphertext or ⊥ in case of failure, e.g.,
if one of the inputs is malformed.

Dec(dkτ1,...,τλ , c)→ m: Deterministic decryption algorithm that given a cipher-
text and decryption key for a leaf returns a plaintext m ∈ M or ⊥ in case
of error.

Correctness. The tree-encryption scheme is perfectly correct if:

– Honestly generated keys verify as being valid.

Pr[(pk, dk)← KGen : KVfy(pk) = >] = 1
5 Larger branching factors are possible and give a modest performance improvement
at the cost of greater complexity in defining and describing BTE.

6 Binary tree encryption [CHK07] is closely related to hierarchical identity-based
encryption. The main difference is that in HIBE identities can be arbitrary strings,
while here we have a very small "identity" space. Another small difference is that
in our work we always encrypt to a leaf, not to some internal node in the tree (and
for this reason permit 0’s to label the leaves, where e.g. [BBG05] require identities
to be non-zero).

16



– Correctly generated ciphertexts decrypt to the original plaintext. I.e., for all
m ∈M, τ1, . . . , τλ ∈ {0, 1}

Pr

[
(pk, dk)← KGen; c← Enc(pk,m, τ1 . . . τλ)

dkτ1 ← Derive(dk); . . . , dkτ1...τλ ← Derive(dkτ1...τλ−1
);m′ ← Dec(dkτ1...τλ , c)

: m = m′
]
= 1

Indistinguishability for random leaf under chosen plaintext attack. For
a stateful adversary A we define its advantage against indistinguishability under
chosen plaintext attack against a random leaf as Adv(A) = |Pr[Exp0(A) =
>]− Pr[Exp1(A) = >|, where the experiment is

Expb(A)
(pk, dk)← KGen
τ1, . . . , τλ ←$ {0, 1}
For j = 1, . . . , λ
dkτ1...τj−10 ← Derive(dkτ1...τj−1

, 0)
dkτ1...τj−11 ← Derive(dkτ1...τj−1 , 1)

(m0,m1)← A(pk, τ1 . . . τλ, {dkτ1...τj−1(1−τj)}j∈[1..λ])
c← Enc(pk,mb, τ1 . . . τλ)
b∗ ← A(c)
If b = b∗ return >, else return ⊥

Construction.

Setup: The parameters specify pairing groups G1,G2,GT of prime order p, a
message space M = [−R..S] ⊂ Zp that is small enough to be searched by
brute force, group elements f0, f1, . . . , fλ, h ∈ G2 and a tree height λ.

KGen→ (y, dk): Pick x ←$ Zp and compute y := gx1 . Pick ρ ←$ Zp and let
dk := (gρ1 , g

x
2f

ρ
0 , f

ρ
1 , . . . , f

ρ
λ , h

ρ). Return (y, dk).
KVfy(pk)→ b: If pk = y ∈ G1 return > else return ⊥
Derive(dkτ1...τ`−1

, τ`)→ dkτ1...τ` : Given

dkτ1...τ`−1
= (τ1 . . . τ`−1, a, b, d`, . . . , dλ, e) ∈ {0, 1}`−1 ×G1 ×Gλ−`+2

2

and τ` ∈ {0, 1} pick δ ←$ Zp and return

dkτ1...τ` := (τ1 . . . τ`, a · gδ1, b · d
τ`
` · (f0

∏̀
i=1

fτii )δ, d`+1 · fδ`+1, . . . , dλ · fδλ, e · hδ).

Enc(y,m, τ1 . . . τλ)→ c: Given y ∈ G1,m ∈M, τ1 . . . τλ ∈ {0, 1}λ pick r, s← Zp
and return

c :=

(
yrgm1 , g

r
1, g

s
1,

(
f0

λ∏
i=1

fτii

)r
hs

)
.

17



Dec(dkτ1...τλ , c)→ m: Parse

dkτ1...τλ = (τ1 . . . τλ, a, b, e) ∈ {0, 1}λ ×G1 ×G2
2

and c = (C,R, S, Z) ∈ G3
1×G2. Assert e

(
R, f0

∏λ
i=1 f

τi
i

)
·e (S, h) = e (g1, Z).

Compute
M := e(C, g2) · e(R, b)−1 · e(a, Z) · e(S, e)−1.

Search for m ∈ M such that M = e(g1, g2)
m. If everything succeeds return

m, else return ⊥.

Theorem 4. The tree-encryption scheme is perfectly correct.

Proof. The key generation algorithm produces y := gx1 . So the check in KVfy(pk)
that pk = y ∈ G1 always holds.

To see we have correct decryption, first let us observe that we derive decryp-
tion keys of a particular form. Let for a public key y = gx1 a matching decryption
key

dkτ1...τ`−1
=(τ1 . . . τ`−1, a, b, d`, . . . , dλ, e)

=

(
τ1, . . . τ`−1, g

ρ
1 , g

x
2 (f0

`−1∏
i=1

fτii )ρ, fρ` , . . . , f
ρ
λ , h

ρ

)
be given. For ` ≤ λ and a bit τ`, when we derive a new decryption key dkτ1...τ` ←
Derive(dkτ1...τ`−1

, τ`) we do it by picking δ ← Zp and setting

dkτ1...τ` :=

(
τ1 . . . τ`, a · gδ1, b · d

τ`
` · (f0

∏̀
i=1

fτii )δ, d`+1 · fδ`+1, . . . , dλ · fδλ, e · hδ
)

=

(
τ1 . . . τ`, g

ρ+δ
1 , gx2 (f0

∏̀
i=1

fτii )ρ+δ, fρ+δ`+1 , . . . , f
ρ+δ
λ , hρ+δ

)
Please observe, the derived decryption key has the same type of format just
with a longer path to the node and with randomness ρ + δ. Since we af-
ter key generation start with a decryption key for the root node of the form
dk = (gρ1 , g

x
2f

ρ
0 , f

ρ
1 , . . . , f

ρ
λ , h

λ), and all derivations preserve the form, we get by
induction that the decryption key for a leaf derived in this manner will be of the
form

dkτ1...τλ = (τ1 . . . τλ, a, b, e) =

(
τ1 . . . τλ, g

ρ
1 , g

x
2

(
f0

λ∏
i=1

fτii

)ρ
, hρ

)
∈ {0, 1}λ×G1×G2

2.

An encryption of m ∈ M under public key y for a leaf τ1 . . . τλ ∈ {0, 1}λ
using randomness r, s ∈ Zp gives us a ciphertext of the form

c = (C,R, S, Z) =

(
yrgm1 , g

r
1, g

s
1,

(
f0

λ∏
i=1

fτii

)r
hs

)
∈ G3

1 ×G2.

18



The decryption algorithm first asserts e(R, f0
∏λ
i=1 f

τi
i ) · e(S, h) = e(g1, Z).

Using a ciphertext produced by the encryption algorithm this assertion is

e(gr1, f0

λ∏
i=1

fτii ) · e(gs1, h) = e(g1, (f0

λ∏
i=1

fτii )rhs),

which holds by the bilinearity of the pairing.
Next, the decryption algorithm computes M = e(C, g2) · e(R, b)−1 · e(a, Z) ·

e(S, e)−1. Plugging in the values in the ciphertext and decryption key we get

M =e(yrgm1 , g2) · e(gr1, gx2 (f0
λ∏
i=1

fτii )ρ)−1 · e(gρ1 , (f0
λ∏
i=1

fτii )rhs) · e(gs1, hρ)−1

=e(g1, g2)
m · e(gxr1 , g2) · e(gr1, gx2 )−1 · e(gr1, (f0

λ∏
i=1

fτii )ρ)−1 · e(gρ1 , (f0
λ∏
i=1

fτii )r)

· e(gρ1 , hs) · e(gs1, hρ)−1 = e(g1, g2)
m

Since m ∈M and the message space is of modest size, the decryption algorithm
finds and returns m. ut

Theorem 5. The tree-encryption scheme is rleaf-IND-CPA secure under the
decisional assumption.

Proof. Suppose we have an rleaf-IND-CPA adversary A with advantage ε, then
we can construct an adversary A′ that uses A in a black box manner and only
consumes a moderate amount of extra resources with advantage ε/2 against
the decisional assumption. We now describe A′, which gets either c0 = gxr1 or
c1 ←$ G1 as input together with other group elements and tries to decide which
is the case.

A′
cb, τ1, . . . , τλ , gx1 , gr1, gs1 , f0, . . . , fλ, h,

(
f0 ·

∏λ
i=1 f

τi
i

)r
hs{

g
ρj
1 , g

x
2

(
f0 · f

1−τj
j

)ρj
, {fρji }i 6=0,j , h

ρj
}
j∈[1..λ]


Set y := gx1
For j = 1, . . . , λ

Set dkτ1...τj−1(1−τj) :=
(
g
ρj
1 , g

x
2 (f0f

1−τj
j )ρj ·

∏j−1
i=1 (f

ρj
i )τi , f

ρj
j+1, . . . , f

ρj
λ , h

ρj
)

(m0,m1)← A(y, τ1 . . . τλ, {dkτ1...τj−1(1−τj)}j∈[1..λ])
b′′ ← {0, 1}
b′ ← A(cb · gmb′′1 , gr1, g

s
1, (f0

∏λ
i=1 f

τi
i )rhs)

If b′ = b′′ return b′′, else return a uniformly random bit

It follows by inspection that given its inputs, A can compute the relevant
group elements it uses. To analyze the success probability ofA′ let us first observe
that y = gx1 for a randomly chosen x just as in the rleaf-IND-CPA experiment.

19



Moreover, both here and in the rleaf-IND-CPA experiment each dkτ1...τj−1(1−τj)
is distributed as a uniformly random decryption key for τ1 . . . τj−1(1− τj).

If b = 0 we have cb = gxr1 and the input to the second invocation of A is a
random encryption of mb′′ . Since A has advantage ε and there is 50% chance of
having b = 0 we get advantage ε/2.

Else if b = 1, cb is just a random group element. This gives Pr[b′ = b′′] = 1/2
so A returns a uniformly random bit. This does not add or subtract from the
advantage, so taken together A gets advantage ε/2. ut

5.3 Multi-receiver binary tree-encryption

We now define multi-receiver BTE where the sender has multiple plaintexts to
address to different receivers. We could do parallel repetition of a single-receiver
tree-encryption scheme to encrypt several plaintexts to different receivers, but
reuse of randomness can make the encryption scheme much more efficient, our
construction later on gains almost a factor 5 compared to the trivial repetition
scheme.

Multi-receiver BTE has the following efficient algorithms:

Setup: The parameters specify a message spaceM and a height λ for a tree with
2λ leaves. We write a path to a node in the tree as τ1 . . . τ` with ` ≤ λ and
for a leaf ` = λ

KGen→ (pk, dk): Randomized key generation algorithm that produces a public
key and a decryption key for the root

KVfy(pk)→ b: Deterministic key verification algorithm that returns > if the
public key is considered valid, and otherwise returns ⊥

Derive(dkτ1...τ`−1
, τ`)→ dkτ1...τ`): Randomized update algorithm that given a

decryption key for the node τ1 . . . τ`−1 returns a decryption key for the node
τ1 . . . τ`−1τ`.

Enc(pk1,m1, . . . , pkn,mn, τ1 . . . τλ)→ c: Randomized encryption algorithm that
given public keys and messages addressed to their owners and a leaf returns
a ciphertext (or ⊥ in case of failure, e.g., if one of the inputs is malformed)

Dec(i, dkτ1...τλ , c)→ m: Deterministic decryption algorithm that given a cipher-
text, an index to decrypt and a decryption key for a leaf returns a plaintext
m ∈M or ⊥ in case of error.

Correctness. The tree-encryption scheme is perfectly correct if:

– Honestly generated keys verify as being valid.

Pr[(pk, dk)← KGen : KVfy(pk) = >] = 1

– Correctly generated ciphertexts decrypt to the original plaintext. I.e., for all
m1, . . . ,mn ∈ M, τ1, . . . , τλ ∈ {0, 1} and pk1, . . . , pki−1, pki+1, . . . , pkn such
that KVfy(pkj) = >

Pr

[
(pk, dk)← KGen; pki := pk; c← Enc(pk1,m1, . . . , pkn,mn, τ1 . . . τλ)

dkτ1 ← Derive(dk); . . . , dkτ1...τλ ← Derive(dkτ1...τλ−1
);m′ ← Dec(i, dkτ1...τλ , c)

: mi = m′
]
= 1

20



Indistinguishability for random leaf under chosen plaintext attack
For a stateful adversary A we define its distinguishing advantage under cho-
sen plaintext attack against a random leaf as Adv(A) = |Pr[Exp0(A) =
>]− Pr[Exp1(A) = >]|, where the experiment is

Expb(A)
(pk, dk)← KGen
τ1, . . . , τλ ←$ {0, 1}
For j = 1, . . . , λ
dkτ1...τj−10 ← Derive(dkτ1...τj−1 , 0)
dkτ1...τj−11 ← Derive(dkτ1...τj−1 , 1)

(pk1,m1, . . . , pki−1,mi−1,m
(0)
i ,m

(1)
i , pki+1,mi+1, . . . , pkn,mm)

← A(pk, τ1 . . . τλ, {dkτ1...τj−1(1−τj)}j∈[1..λ])
If (m1, . . . ,m

(0)
i ,m

(1)
i , . . . ,mn) /∈Mn+1 or there is a malformed key KVfy(pkk) = ⊥

or a key collision pkk = pk or pkk = pk` for k 6= ` return ⊥
c← Enc(pk1,m1, . . . , pk,m

(b)
i , . . . , pkn,mn, τ1 . . . τλ)

b′ ← A(c)
If b = b′ return >, else return ⊥

Please observe that while the encryption scheme may be correct if a public key
repeats, it is important for indistinguishability that the same public key is not
repeated since an adversary might use correlations in a ciphertext to distinguish.

Construction. We now give a construction of a multi-receiver BTE scheme.
Our construction is almost the same as for a single receiver, except we use the
same randomness r, s to encrypt to multiple public keys. To prove the multi-
receiver BTE is secure, we want to reduce it to the security of the single receiver
BTE scheme. For the security proof to work, this means that from a single re-
ceiver ciphertext we need to simulate an extension to a multi-receiver ciphertext,
and for this reduction to work it is useful to know the discrete logarithm of the
public key. We therefore add to each public key yi a proof of knowledge of the
discrete logarithm.

Setup: The parameters specify a message spaceM = [−R..S] ⊂ Zp that is small
enough to be searched by brute force, group elements f0, f1, . . . , fλ, h ∈ G2

and a tree height λ.
The parameters also provide a setup for a simulation-extractable NIZK proof
of knowledge of a discrete logarithm, see Sect. 6.3.

KGen→ (pk, dk): Pick x←$ Zp and compute y := gx1 . Generate a proof of knowl-
edge of the discrete logarithm x as π ← Provedlog(y;x) and set pk := (y, π).
Pick ρ←$ Zp and let dk := (gρ1 , g

x
2f

ρ
0 , f

ρ
1 , . . . , f

ρ
λ , h

ρ). Return (pk, dk).
KVfy(pk)→ b: Parse pk = (y, π). If y ∈ G1 return PVfydlog(y, π), else return ⊥
Derive(dkτ1...τ`−1

, τ`)→ dkτ1...τ` : Given

dkτ1...τ`−1
= (τ1 . . . τ`−1, a, b, d`, . . . , dλ, e) ∈ {0, 1}`−1 ×G1 ×Gλ−`+2

2

21



and a bit τ` pick δ ←$ Zp and return

dkτ1...τ` := (τ1 . . . τ`, a · gδ1, b · d
τ`
` · (f0

∏̀
i=1

fτii )δ, d`+1 · fδ`+1, . . . , dλ · fδλ, e · hδ).

Enc(pk1,m1, . . . , pkn,mn, τ1 . . . τλ)→ c: Given inputs pki = (yi, πi) with yi ∈
G1 and mi ∈M and τ1 . . . τλ ∈ {0, 1}λ pick r, s← Zp and return

c :=

(
yr1g

m1
1 , . . . , yrng

mn
1 , gr1, g

s
1,

(
f0

λ∏
i=1

fτii

)r
hs

)

Dec(i, dkτ1...τλ , c)→ m: Parse

dkτ1...τλ = (τ1 . . . τλ, a, b, e) ∈ {0, 1}λ ×G1 ×G2
2

and c = (C1, . . . , Cn, R, S, Z) ∈ Gn+2
1 × G2. Assert e

(
R, f0

∏λ
i=1 f

τi
i

)
·

e (S, h) = e (g1, Z). Assuming i ∈ [1..n] compute

M := e(Ci, g2) · e(R, b)−1 · e(a, Z) · e(S, e)−1.

Search for m ∈ M such that M = e(g1, g2)
m. If everything succeeds return

m, else return ⊥.

Theorem 6. The multi-receiver tree-encryption scheme is perfectly correct as-
suming the NIZK proof system for dlog has perfect completeness.

Proof. The key generation algorithm produces y := gx1 and π ← Provedlog(y;x).
The perfect completeness of the proof system implies the check in KVfy(pk) that
PVfy(y, π) = > holds and we also have y ∈ G1.

To see we have correct decryption, observe that for any i ∈ [1..n] restrict-
ing the output of the encryption algorithm to (Ci, R, S, Z) gives us a cipher-
text generated as in the earlier single-receiver tree-encryption scheme. More-
over, the decryption algorithm works just as in the single-receiver tree encryp-
tion scheme. It follows from the perfect correctness of the single-receiver tree-
encryption scheme that we also have perfect correctness for the multi-receiver
tree-encryption scheme. ut

Theorem 7. The multi-receiver tree-encryption scheme is rleaf-IND-CPA se-
cure assuming the single-receiver tree-encryption is rleaf-IND-CPA secure and
the NIZK proof for dlog is simulation extractable.

Sketch of proof. Let A be an rleaf-IND-CPA adversary against the multi-receiver
TBE encryption scheme that outputs n−1 public keys in addition to the honest
key in the rleaf-IND-CPA experiment. Then we can constructAzk andAse andA′
adversaries against respectively the zero-knowledge or simulation-extractability
property of the proof system or the single-receiver TBE scheme such that

Adv(A) ≤ Advzk(Azk) +Advse(Ase) +Advsingle-TBE(A′).

22



The three types of adversaries use A in a black-box manner and only consume
moderate additional resources.

Writing out the rleaf-IND-CPA experiment for a group with our concrete
encryption scheme we get the experiment below. At the same time, we indicate
experiments Expzk

b ,Expse
b implicitly defining a zero-knowledge adversary Azk

and a simulation-extractability adversary Ase (for simultaneous extraction from
multiple proofs).

Expb(A)
x←$ Zp
y := gx1
π ← Provedlog(y;x) // In Expzk

b (A),Expse
b (A) run instead π ← Simulatedlog(y)

pk := (y, π)
ρ←$ Zp
dk := (gρ1 , g

x
2f

ρ
0 , f

ρ
1 , . . . , f

ρ
λ , h

ρ)
τ1, . . . , τλ ←$ {0, 1}
For j = 1, . . . , λ
dkτ1...τj−10 ← Derive(dkτ1...τj−1 , 0)
dkτ1...τj−11 ← Derive(dkτ1...τj−1 , 1)

(pk1,m1, . . . , pki−1,mi−1,m
(0)
i ,m

(1)
i , pki+1,mi+1, . . . , pkn,mm)

← A(pk, τ1 . . . τλ, {dkτ1...τj−1(1−τj)}j∈[1..λ])
If there is j where mj /∈M or KVfy(pkj) = ⊥ or pkj = pk return ⊥
// In Expse

b (A) for j = 1, . . . , n, j 6= i : xj ← Extract(yj , πj) and if yj 6= g
xj
1 return ⊥

r, s←$ Zp
c :=

(
yr1g

m1
1 , . . . , yrng

mn
1 , gr1, g

s
1,
(
f0
∏λ
i=1 f

τi
i

)r
hs
)

b′ ← A(c)
If b = b′ return >, else return ⊥

The difference between experiments Expb(A) and Expzk
b (A) is whether

the honest public key comes with a real proof or a simulated proof. If there
is a difference, an adversary that picks the best b and runs the experiment
Expb(A)/Expzk

b (A) can distinguish between the two cases and use it to break
the zero-knowledge property of the proof system. Specifically, the experiment to-
gether with the adversary A become a joint zero-knowledge adversary Azk that
produces the instance y together with the witness x, and then on the resulting
proof π tries to distinguish whether it was simulated or not by means of the
experiment and A. Changing to the case where we extract discrete logarithms
of the adversary’s keys has similar negligible impact on the success probability,
because otherwise we could use the joint experiment and adversary to break the
simulation extractability of the proof system. Here one has to be careful though,
since this fact relies on a careful analysis of many rewindings, and we will in the
full version expand on this proof.

Finally, we construct an adversary for the single-receiver TBE that leverages
any advantage in the Expse

b (A) experiment to break the rleaf-IND-CPA for the

23



single-receiver TBE.

A′
(
y, τ1, . . . , τλ, {dkτ1...τj−1(1−τj)}j∈[1..λ]

)
→ (m′0,m

′
1)

π ← Simulatedlog(y)
pk := (y, π)

(pk1,m1, . . . ,m
(0)
i ,m

(1)
i , . . . , pkn,mn)← A(pk, τ1 . . . τλ, {dkτ1...τj−1(1−τj)}j∈[1..λ])

Return m′0 := m
(0)
i and m′1 := m

(1)
i

A′ (C,R, S, Z)→ b
If for any j we have KVfy(pkj) = ⊥ or mj = ⊥ return ⊥
For j ∈ [1..n] \ {i}
Parse pkj = (yj , πj)
If j 6= i extract from the proof xj so that yj = g

xj
1 and if failing return ⊥

If extracted set Cj := Rxjg
mj
1

Ci := C
Return A(C1, . . . , Cn, R, S, Z)

At this stage, the experiment is identical to the single-receiver experiment. So
we have Advse(A) = Advsingle(A′). To see this again some care is needed in the
analysis to see that the rewindings used in the witness extraction are meaningful
across the two phases the adversary operates in during the experiment. ut

5.4 Multi-receiver tree-encryption with message space Zp

For m ∈ Zp it is in general infeasible to compute the discrete logarithm of
M = e(g1, g2)

m and decryption would take too long time. The natural solution
is to use chunked encryption. Take m and write it as m =

∑m
j=1mjB

j−1 with
chunks mj ∈ [0..B − 1] where the bound B on the chunk size is small enough to
make it possible to brute-force search through [0..B − 1].7

Let us formally write down the details of the multi-receiver BTE scheme for
message space Zp building on a multi-receiver BTE scheme for message space
M = [−R..S].

Setup: The parameters include the setup for the basic multi-receiver tree-
encryption scheme and positive integers B,m such that [0..B − 1] ⊂ M
and p < Bm.

KGen′ → (pk, dk): Return (pk, dk)← KGen
KVfy′(pk)→ b: Return KVfy(pk)
Derive′(dkτ1,...,τ`−1

, τ`)→ dk′: Return Derive(dkτ1,...,τ`−1
, τ`)

Enc′(pk1,m1, . . . , pkn,mn, τ1, . . . , τλ)→ c′: Given m1, . . . ,mn ∈ Zp chunk them
into pieces mi,j ∈ [0..B − 1] so that mi =

∑m
j=1mi,jB

j−1. For j = 1, ...,m
set cj ← Enc(pk1,m1,j , . . . , pkn,mn,j , τ1, . . . , τλ). Return c′ := (c1, . . . , cm)

Dec′(i, dkτ1,...,τλ , c
′)→ m′: Parse c′ = (c1, . . . , cm) and for j = 1, . . . ,m compute

mi,j ← Dec(i, dkτ1...τλ , cj). If any mj = ⊥ return ⊥, else return m′ :=∑m
j=1mi,jB

j−1 mod p

7 Using the Baby-step Giant-step algorithm makes the search faster.

24



Theorem 8. The chunked multi-receiver tree-encryption scheme has perfect
correctness.

Proof. It follows from perfect correctness of the multi-receiver tree-encryption
scheme for message space M that the chunks mi,j ∈ [0..B − 1] ⊂ M that
are retrieved when running Dec(i, dkτ1...τλ , (c1, . . . , cm)) return the chunks mi,j

that were encrypted in cj . Since the encryption algorithm chose the chunks so
mi =

∑m
j=1mi,jB

j−1 we see that m′ = mi. ut

Theorem 9. The chunked multi-receiver tree-encryption scheme for Zp is rleaf-
IND-CPA secure.

Proof. It follows from a hybrid argument that an adversary A against the chun-
ked multi-receiver tree-encryption scheme can be used in a black-box manner to
construct an adversary A′ against the multi-receiver tree-encryption scheme with
messages spaceM = [−R..S], giving usAdvM′=Zp(A) ≤ m·AdvM=[−R..S](A′).

ut

Let us write out the full encryption algorithm with some rearrangement of
the group elements in order to observe that the encryption process and resulting
ciphertext can be split in two parts. The first part depends on the public keys and
the plaintexts, the second part depends on the leaf, and both parts depend on
the randomness. We also write out the decryption algorithm in order to observe
that the second part of the ciphertext is unique given the first part and the leaf.

Enc(pk1,m1, . . . , pkn,mn, τ1 . . . τλ)→ c = (c1, c2): Pick r1, s1, . . . , rm, sm ← Zp
and compute c1 := Enc1(pk1,m1, . . . , pkn,mn; r1, s1, . . . , rm, sm) and c2 :=
Enc2(τ1, . . . , τλ; r1, s1, . . . , rm, sm) where
– Enc1(pk1,m1, . . . , pkn,mn; r1, s1, . . . , rm, sm) first parses pk1, . . . , pkn as
pki = (yi, πi) with yi ∈ G1 and chunks m1, . . . ,mn ∈ Zp as mi =∑m
j=1mi,jB

j−1 using chunks mi,j ∈ [0..B − 1].
It returns c1 := (C1,1, . . . , Cn,m, R1, S1, . . . , Rm, Sm) ∈ Gn(m+2)

1 , where

Ci,j := y
rj
i g

mi,j
1 Rj := g

rj
1 Sj := g

sj
1 .

– Enc2(τ1, . . . , τλ; r1, s1, . . . , rm, sm) on τ1, . . . , τλ ∈ {0, 1} returns c2 :=
(Z1, . . . , Zm) ∈ Gm2 , where

Zj :=

(
f0

λ∏
i=1

fτii

)rj
hsj .

Return c := (c1, c2) if everything worked. If the inputs were malformed giving
c1 = ⊥ or c2 = ⊥, the encryption algorithm returns c := ⊥.

Dec(i, dkτ1...τλ , c)→ m: Parse c = (c1, c2) and c1 =

(C1,1, . . . , Cn,m, R1, S1, . . . , Rm, Sm) ∈ Gn(m+2)
1 and c2 = (Z1, . . . , Zm).

Check that for all j = 1, . . . ,m we have

e(g1, Zj) = e(Rj , f0

λ∏
i=1

fτii ) · e(Sj , h).

25



Assuming 1 ≤ i ≤ n parse dkτ1,...,τλ = (τ1 . . . τλ, a, b, e) ∈ {0, 1}λ ×G1 ×G2
2

as in the multi-receiver tree-encryption scheme for M. For j = 1, . . . ,m
compute

Mj := e(Ci,j , g2) · e(Rj , b)−1 · e(a, Zj) · e(Sj , e)−1

and search for mj ∈ M such that Mj = e(g1, g2)
mj . If everything succeeds

return m :=
∑m
j=1mjB

j−1 mod p, else return ⊥.

The following theorem states that the second part of a well-formed ciphertext
is unique.

Theorem 10. For any ciphertext c = (c1, c2) and leaf τ1 . . . τλ that does not
decrypt to ⊥, there can be no other c′2 6= c2 such that c′ = (c1, c

′
2) also decrypts

non-trivially with respect to τ1, . . . , τλ.

Proof. For the decryption algorithm to return a regular plaintext instead of
the error ⊥, the ciphertext pair c = (c1, c2) must be parseable as described
in the decryption algorithm to c1 = (C1,1, . . . , Cn,m, R1, S1, . . . , Rm, Sm) and
c2 = (Z1, . . . , Zm). The decryption algorithm checks that for all j = 1, . . . ,m we
have e(g1, Zj) = e(Rj , f0

∏λ
i=1 f

τi
i ) · e(Sj , h). Since g1 is a generator of G1 there

is no different Z ′j 6= Zj that also satisfies this equality. Therefore the decryption
algorithm will return ⊥ on any c′2 6= c2. ut

5.5 CCA-secure multi-receiver public-key encryption with forward
secrecy

A multi-receiver encryption scheme with forward secrecy consists of the following
efficient algorithms:

Setup: The parameters specify the message space M and a maximum number
of epochs T = 2λT

KGen→ (pk, dk0): Randomized key generation algorithm that produces a public
key and a decryption key for epoch τ = 0

KVfy(pk)→ b: Deterministic key verification algorithm that returns > if the
public key is considered valid, and otherwise returns ⊥

KUpd(dkτ )→ dkτ+1: Randomized update algorithm that given a decryption key
for epoch τ returns a decryption key for τ + 1. If τ + 1 = T it returns ⊥
We will throughout the paper assume dkτ indicates the epoch τ it is intended
for.

Enc(pk1,m1, . . . , pkn,mn, τ)→ c: Randomized encryption algorithm that given
n public keys and messages together with an epoch returns a ciphertext (or
⊥ in case of failure, e.g., if one of the inputs is malformed).

Dec(i, dkτ ′ , c, τ)→ m: Deterministic decryption algorithm that given a decryp-
tion key dkτ for index i and a ciphertext for epoch τ returns a plaintext
m ∈M or ⊥ in case of error. It always returns ⊥ in case τ /∈ [τ ′..T − 1].

26



Correctness. The encryption scheme with forward secrecy is perfectly correct
if:

– Honestly generated public keys verify as being valid.

Pr[(pk, dk0)← KGen : KVfy(pk) = >] = 1

– Correctly generated ciphertexts decrypt to their original plaintexts. I.e., for
all m1, . . . ,mn ∈ M, 0 ≤ τ ′ ≤ τ < T and pk1, . . . , pki−1, pki+1, . . . , pkn
where KVfy(pkj) = >

Pr

[
(pki, dk0)← KGen; c← Enc(pk1,m1, . . . , pkn,mn, τ)

dk1 ← KUpd(dk0); . . . , dkτ ′ ← KUpd(dkτ ′−1);m
′ ← Dec(i, dkτ ′ , c, τ)

: mi = m′
]
= 1

Indistinguishability under fs-CCA attack. We define the distinguish-
ing advantage of a stateful chosen ciphertext adversary A as Adv(A) =
|Pr[Exp0(A) = >]− Pr[Exp1(A) = >]|, where

Expb(A)
(pk, dk0)← KGen
Store dk0
(pk1,m1, . . . , pki−1,mi−1,m

(0)
i ,m

(1)
i , pki+1,mi+1, . . . , pkn,mn, τ)← AKUpd,Corrupt,Dec(pk)

pki := pk

If (m1, . . . ,m
(0)
i ,m

(1)
i , . . . ,mn) /∈Mn+1 or there is an invalid public key KVfy(pkj) = ⊥

or there is a collision in the public keys with pkk = pk` for k 6= ` or τ /∈ [0..T − 1] return ⊥
mi := m

(b)
i

c← Enc(pk1,m1, . . . , pkn,mn, τ)
b′ ← AKUpd,Corrupt,Dec(c)
If τCorrupt ≤ τ or (c, τ) ∈ Q return ⊥
If b = b′ return >, else return ⊥

KUpd Corrupt Dec(i, c, τ)
Fetch the last dkτ Fetch the last dkτ Fetch the last dkτ ′
dkτ+1 ← KUpd(dkτ ) τCorrupt := τ Q := Q ∪ {(c, τ)}
Store dkτ+1 Return dkτ Return Dec(i, dkτ ′ , c, τ)
Ignore further calls if τ + 1 = T Ignore further calls

,

where the decryption queries may have arbitrary (i, c, τ). In particular, the de-
cryption function may be called on an arbitrary ciphertext c that may not match
the dimensions of the challenge ciphertext for n receivers.

Construction. We now present a multi-receiver fs-CCA-secure encryption
scheme. It builds on the multi-receiver tree-encryption scheme for Zp and we
use the notation introduced in our observation that the multi-receiver BTE en-
cryption algorithm can be split into two parts, one that is independent of the
leaf and one that is independent of the plaintexts. In the security proof for the
fs-CCA secure encryption scheme we rely on the random oracle model.

27



Setup: The parameters specify the message space Zp and a maximum number
of epoch T = 2λT and a hash function H : {0, 1}∗ → {0, 1}λH .
The setup includes group elements f0, . . . , fλ, h ∈ G2 for the multi-receiver
tree-encryption scheme defined in the previous section, where λ = λT + λH .

KGen→ (pk, dk0): Pick x ← Zp and compute y := gx1 . Generate π ←
Provedlog(y, x) and let pk := (y, π). Pick ρ ← Zp and set dk :=
(gρ1 , g

x
2f

ρ
0 , f

ρ
1 , . . . , f

ρ
λ , h

ρ). Let dk0 := (0, {dk}) and return (pk, dk0).
KVfy(pk)→ b: Parse pk = (y, π) and if y ∈ G1 return PVfydlog(y, π), else return
⊥

KUpd(dkτ , τ
′)→ dkτ ′ : Return ⊥ if τ ′ /∈ [τ +1 . . . T − 1]. Parse τ = τ1 . . . , τλT in

binary and dkτ = (τ, {dkτ1...τ`}τ1...τ`∈Tτ ), where Tτ is a minimal set of nodes
such that their subtrees cover exactly the leaves in [τ..T −1] (Tτ has at most
λT nodes). Let Tτ ′ be the minimal set of nodes whose subtrees cover the
leaves [τ ′..T − 1] and for all new τ1 . . . τ` ∈ Tτ ′ \ Tτ derive a subkey dkτ1...τ` .
Return

dkτ ′ =
(
τ ′, {dkτ1...τ`}τ1...τ`∈Tτ′

)
Enc(pk1,m1, . . . , pkn,mn, τ)→ c: Parse τ = τ1 . . . τλT in binary. Pick

r1, s1, . . . , rm, sm ←$ Zp and compute

c1 := Enc1(pk1,m1, . . . , pkn,mn; r1, s1, . . . , rm, sm).

Compute τλT+1 . . . τλ := H(pk1, . . . , pkn, c1, τ) and

c2 := Enc2(τ1, . . . , τλ; r1, s1, . . . , rm, sm).

If everything succeeds return c := (c1, c2), else return ⊥.
Dec(i, dkτ ′ , c, τ)→ m: Parse c = (c1, c2) and τ = τ1 . . . τλT . Compute

τλT+1 . . . τλ := H(pk1, . . . , pkn, c1, τ). Assuming τ ∈ [τ ′..T − 1] derive
dkτ1...τλ and return Dec(i, dkτ1...τλ , c). If anything fails return ⊥.

Theorem 11. The multi-receiver encryption scheme has perfect correctness.

Proof. The underlying multi-receiver BTE scheme for Zp has perfect correctness,
which implies perfect correctness also in the case where τλT+1 . . . τλ happens to
equal H(pk1, . . . , pkn, c1, τ). It follows that our purported fs-CCA secure encryp-
tion scheme has perfect correctness. ut

Theorem 12. The multi-receiver encryption scheme is fs-CCA secure.

Proof. Suppose A is an fs-CCA adversary with advantage ε. We assume all
parties treatH as a random oracle. In the random oracle model the hash function
H returns a random string τλT+1 . . . τλ when queried on a fresh input. The
random oracle may be programmable (benignly programmable as defined later:
on a programming query it first returns a random value and then later somebody
can program the input of that value) and we do not exclude A from being able
to program the hash function as long as it cannot find collisions.

28



Writing out the fs-CCA experiment with our concrete encryption algorithm
the adversary’s advantage is ε = |Pr[Exp0(A) = >]−Pr[Exp1(A) = >]|, where

Expb(A)
(pk, dk0)← KGen
Store dk0
(pk1,m1, . . . , pki−1,mi−1,m

(0)
i ,m

(1)
i , pki+1,mi+1, . . . , pkn,mn, τ)← AKUpd,Corrupt,Dec(pk)

pki := pk

If (m1, . . . ,m
(0)
i ,m

(1)
i , . . . ,mn) /∈Mn+1 or there is an invalid public key KVfy(pkj) = ⊥

or there is a collision in the public keys with pkk = pk` for k 6= ` or τ /∈ [0..T − 1] return ⊥
mi := m

(b)
i

r1, s1, . . . , rm, sm ←$ Zp
c1 := Enc1(pk1,m1, . . . , pkn,mn; r1, s1, . . . , rm, sm)
Parse τ = τ1 . . . τλT
τλT+1 . . . τλ := H(pk1, . . . , pkn, c1, τ)
c2 := Enc2(τ1, . . . , τλ; r1, s1, . . . , rm, sm)
c := (c1, c2)
b′ ← AKUpd,Corrupt,Dec(c)
If τCorrupt ≤ τ or (c, τ) ∈ Q return ⊥
If b = b′ return >, else return ⊥

KUpd Corrupt Dec(i, c, τ)
Fetch the last dkτ Fetch the last dkτ ′ Fetch the last dkτ ′
dkτ+1 ← KUpd(dkτ ) τCorrupt := τ Q := Q ∪ {(c, τ)}
Store dkτ+1 Return dkτ Return Dec(i, dkτ ′ , c, τ)
Ignore further calls if τ + 1 = T Ignore further calls

Observe that in the random oracle model, the adversary cannot tell the dif-
ference from us first picking τλT+1 . . . τλ uniformly at random and then later pre-
tending (in essence programming the random oracle) after c1 is chosen that when-
ever A makes an oracle query on (c1, τ) the hash function returns τλT+1 . . . τλ.
So we see the advantage is unchanged if instead we run the following modified

29



experiment

Exp′b(A)
Query the random oracle for an output τλT+1, . . . , τλ ←$ {0, 1}λ
(pk, dk0)← KGen
Store dk0
(pk1,m1, . . . , pki−1,mi−1,m

(0)
i ,m

(1)
i , pki+1,mi+1, . . . , pkn,mn, τ)← AKUpd,Corrupt,Dec(pk)

pki := pk

If (m1, . . . ,m
(0)
i ,m

(1)
i , . . . ,mn) /∈Mn+1 or there is an invalid public key KVfy(pkj) = ⊥

or there is a collision in the public keys with pkk = pk` for k 6= ` or τ /∈ [0..T − 1] return ⊥
mi := m

(b)
i

r1, s1, . . . , rm, sm ←$ Zp
c1 := Enc1(pk1,m1, . . . , pkn,mn; r1, s1, . . . , rm, sm)
Parse τ = τ1 . . . τλT
Program the random oracle to H(pk1, . . . , pkn, c1, τ) := τλT+1 . . . τλ
c2 := Enc2(τ1, . . . , τλ; r1, s1, . . . , rm, sm)
c := (c1, c2)
b′ ← AKUpd,Corrupt,Dec(c)
If τCorrupt ≤ τ or (c, τ) ∈ Q return ⊥
If b = b′ return >, else return ⊥

KUpd Corrupt Dec(i, c, τ)
Fetch the lastdkτ Fetch the last dkτ ′ Fetch the last dkτ ′
dkτ+1 ← KUpd(dkτ ) τCorrupt := τ Q := Q ∪ {(c, τ)}
Store dkτ+1 Return dkτ Return Dec(i, dkτ ′ , c, τ)
Ignore further calls if τ + 1 = T Ignore further calls

The only small difference may be if A tries to program the random oracle and
hits the same output or has accidentally hit the same input before, which is
unlikely due to the entropy in the ciphertext.

Next, observe we can with probability 1/T guess τ in advance. So pick
τ1 . . . τλT ←$ {0, 1}λ and in case A outputs another epoch return a uniformly
random bit b′. This means we have ε/T advantage.

We can now use A in a black-box manner in the modified experiment to
construct an rleaf-IND-CPA adversary A′ that has the same advantage and only
uses moderately more resources. We expect A′ to have at least the same access to
the random oracle as A, i.e., if A can program the random oracle so can A′. The
main idea in the construction is similar to the [BCHK07] CCA transformation
of IBE, namely as long as the decryption key for the leaf matching the challenge
ciphertext c and challenge epoch τ remains secret, we may in principle reveal
the decryption keys for all other leaves and still have indistinguishability, and
these other leaves suffice to answer the decryption challenges. To see this, note
that if the decryption oracle is asked on a challenge c′ = (c1, c

′
2), τ matching

the challenge ciphertext c = (c1, c2) in the first part and the challenge epoch τ ,
then because they uniquely define the second part c2, we have c = c′ since c2 is

30



uniquely determined by c1 and τ , and therefore the success condition (c, τ) /∈ Q
no longer holds.

A′(pk, τ1, . . . , τλ, {dkτ1...τj−1(1−τj)}j∈[1..λ])
(pk1,m1, . . . ,m

(0)
i ,m

(1)
i , . . . , pkn,mn, τ

′)← AKUpd,Corrupt,Dec(pk)
If τ ′ 6= τ return ⊥

Where on a query KUpd,A′ keeps track of the increment τ → τ + 1
Where on a query Corrupt the tree-decryption keys suffice to construct
the decryption key dkτCorrupt

if τCorrupt > τ
Where on a query Dec(i, c, τ) the tree-decryption key for the leaf suffices to decrypt.

Return (m′0,m
′
1) := (m

(0)
i ,m

(1)
i )

A′(c)
Return A(c)

With probability 1/T we guess the epoch correctly and preserve the advantage
from there, so overall we have at least ε/T advantage in breaking our underpin-
ning multi-receiver TBE scheme. ut

6 Non-interactive zero-knowledge proofs

6.1 Random oracle model

We use the Fiat-Shamir heuristic to create NIZK proofs, which means the prover
will use a hash function to create challenges in the proof. Our proof systems will
be secure in the random oracle model, where the hash function is modeled as
a random function when proving soundness and zero knowledge. I.e., instead of
being a deterministic hash function, we allow the function to return a uniformly
random value in the codomain.

Let H : {0, 1}∗ → Y be a hash function with codomain Y. Looking ahead,
in our NIZK proofs we will use codomains of the form Y = Zp, Y = {0, 1}λe for
variable sizes λe, and as we have already used in the signatures Y = G1. When
we need to distinguish between hash functions with different codomains, we write
HY . We will restrict programmability to guarantee y is uniformly random, which
limits the simulator’s capabilities and makes our results stronger with respect to
zero knowledge. To capture this benignly programmable random oracle model
we therefore demand that algorithms using the hash function do it through the
following oracles.

O Oprog O¬Qprog

On input x : On activation return y ←$ Y On input x
If O(x) = y 6= ⊥ return y and wait for an input If x ∈ Qprog

y ← H(x) On awaited input x : return ⊥
O(x) := y If x ∈ Q ∪Qprog return ⊥ Else call
Q := Q ∪ {x} Qprog := Qprog ∪ {x} y ← O(x)
Return y O(x) := y; return > and return y

31



The convention we use is that O(x) = ⊥ whenever the oracle’s value has not
been defined yet. It is convenient to start with Q = Qprog = ∅ but note that the
parameter generation our schemes use may be entangled with usage of the hash
function, so this may be a false assumption. What we can hope for is that not too
many queries have been made, i.e., q = |Q|+|Qprog| is modest and that the inputs
have sufficient min-entropy to be unlikely to hit one of the previous queries. As
this will be the case for our concrete NIZK proofs, we will for simplicity in our
analysis assume to start out with Q = Qprog = ∅ and q = 0.

We will build schemes, where oracle calls must be performed in sequence. If
the output of one oracle call is yi, we query on H(yi, other input) to get yi+1.
Since yi is unpredictable, this guarantees the call that created yi+1 came after
the call that created yi. We formalize this guarantee in the following lemma
(omitting the easy Birthday paradox style proof).

Lemma 1. Let AO,Oprog be an adversary that creates up to q query-response
pairs O(x1) = y1, . . . ,O(xq) = yq, whether by making direct queries or by pro-
gramming the oracle. The probability that A uses xi = (yj , ∗) for some i < j is
less than q2

2|Y| .

As a consequence of Lemma 1, we can with little difference in probability dis-
tribution, assume we are working with ’chain-restricted’ adversaries that do not
create chained hash values out of order.

6.2 NIZK proofs

We define a non-interactive zero-knowledge proof for an efficiently decidable
binary relation R (which may depend on system-wide parameters) through three
efficient algorithms. The algorithms employ hash functions, which we in the
security proofs will treat as random oracles.

ProveO(instance,witness)→ π: Randomized algorithm that on an instance and
a witness returns a proof π (or error symbol ⊥)

PVfyO(instance, π)→ b: Deterministic algorithm that on an instance and a proof
π returns > if the proof is to be considered valid, and otherwise returns ⊥.
If the verification algorithm gets ⊥ as input, whether in the instance, the
proof, or from the oracle, it returns ⊥.

SimulateO,Oprog(instance)→ π: Randomized algorithm that on an instance re-
turns a simulated proof π.

We say the NIZK proof system is perfectly complete if for all
(instance,witness) ∈ R

Pr[π ← ProveO(instance,witness) : PVfyO(instance, π) = >] = 1.

More generally, we define the advantage of a completeness adversary A as

Pr

[
(instance,witness)← AO,Oprog ;π ← ProveO(instance,witness) :

(instance,witness) ∈ R and PVfyO(instance, π) = ⊥

]
.

32



In our chunking proof later on, we restrict the set of witnesses to be in a relation
Rcomplete ⊆ R.

For a zero-knowledge adversary A, we define its advantage as

|2Pr[b← {0, 1}; b′ ← AProveb,O,Oprog : b = b′]− 1|,

where on (instance,witness) ∈ R the oracle acts as Prove0(instance,witness) =
ProveO(instance,witness) and Prove1(instance,witness) =
SimulateO,Oprog(instance), while on (instance,witness) /∈ R it returns ⊥ whether
b = 0 or b = 1.

For a simulation-soundness adversary A, we define its advantage over par as

Pr[(instance, π)← AO,Oprog : instance /∈ LR and PVfyO¬Qprog (instance, π) = >].

Please observe that giving the adversary access to Oprog means it can run
SimulateOprog and therefore simulate proofs on arbitrary instances. However, we
only consider a proof on a fake instance instance /∈ LR problematic if the proof
verifies independently of the points where the random oracle was programmed,
i.e., it was not simulated.

For a simulation-extractability adversary A, we define its advantage com-
pared to a black-box extractor Extract as

Pr

[
(instance, π)← AO,Oprog ;witness← ExtractA

O,Oprog ,Transcript(instance,witness) :

(instance,witness) /∈ R and PVfyO¬Qprog (instance, π) = >

]
,

where the extractor sees the transcript of all oracle queriesAmade and is allowed
to rewind A and try again with fresh randomness in the random oracle again
seeing all queries and responses.

6.3 Proof of discrete logarithm

We use a standard Schnorr proof for knowledge of a discrete logarithm. We want
to use that it is simulation extractable.

NIZK proof for knowledge of a discrete logarithm

Setup: Group G1 of known prime order p with generator g1. An oracle O that
in the implementation will be instantiated with a hash function HZp but in
the security proofs is modeled as a random oracle.

Instance: y ∈ G1

Statement: Knowledge of the unique discrete logarithm of y
Witness: x ∈ Zp such that y = gx1
ProveO(instance,witness):

– Pick r ←$ Zp and compute a := gr1
– Compute e := O(y, a)
– Compute z := ex+ r mod p

33



– Let the proof be π = (a, z) ∈ G1 × Zp
– Return π (and delete intermediate information created during proof)

PVfyO(instance, π):
– Check that the instance and proof are correctly formatted with group

elements y, a ∈ G1 and field element z ∈ Zp as expected
– Compute e := O(y, a)
– Return > if all checks pass and

yea = gz1 ,

else reject by returning ⊥

Security

Theorem 13. The proof system for knowledge of discrete logarithm is complete
for any choice of oracle, and simulation extractable and zero knowledge in the
random oracle model.

Proof. Perfect completeness: Follows from yea = (gx1 )
e(g1)

r = gex+r1 = gz1 .

Zero knowledge: The simulator ask the programmable random oracle for a chal-
lenge e ←$ Zp. Then the simulator picks z ←$ Zp and sets a := gz1y

−e. The
simulator finalizes the simulated proof by programming the random oracle to
return e on input (y, a). Both in a real proof and in a simulation, z is is uni-
formly random as is e from the random oracle. Given these two value, the value
a is determined by the verification equation, so real proofs and simulated proofs
have identical probability distributions.

Simulation extractability. Follows along the lines of Groth [Gro02]. ut

6.4 Proof of correct secret sharing

Looking ahead, we will be construction non-interactive distributed key gener-
ation schemes where the dealers encrypt secret sharings with our forward se-
cure multi-receiver encryption scheme. The multi-receiver ciphertext group el-
ements Rj , Ci,j has uniquely defined discrete logarithms Rj = g

rj
1 and Ci,j =

y
rj
i g

si,j
1 .From such a ciphertext, anybody can compute combined group elements

R =

m∏
i=1

RB
j−1

i , C1 =

m∏
i=1

CB
j−1

1,j , . . . , Cn =

m∏
j=1

CB
j−1

n,j .

These group elements uniquely define r ∈ Zp and s1, . . . , sn ∈ Zp such that R =
gr1, Ci = yri ·g

si
1 with the relationship r =

∑m
j=1 rjB

j−1 and si =
∑m
j=1 si,jB

j−1.
In a correct dealing, each si = a(i) =

∑t−1
k=0 aki

k. We now present an NIZK
proof for the statement that this equality holds for each i = 1, . . . , n. The idea

34



is to use the hash function to compute a challenge x ∈ Zp, which we use to
compress the instance to

C :=

n∏
i=1

Cx
i

i =

n∏
i=1

yx
i

i · g
∑n
i=1 six

i

1 .

If the statement is true, we have

n∑
i=1

six
i =

n∑
i=1

(
t−1∑
k=0

aki
k

)
xi =

t−1∑
k=0

ak

(
n∑
i=1

ikxi

)

and if the statement is false, i.e., there is any si 6= a(i), then there are at most n
possible values of x where the equality accidentally holds. After the compression
step we can therefore do a standard Schnorr-style proof with a second random
oracle challenge x′ that the compressed s =

∑n
i=1 six

i is identical to the discrete

logarithm of
∏n
i=1

(∏t−1
k=0A

ik

k

)xi
.

NIZK proof for correct secret sharing

Setup: Groups G1,G2,GT of known prime order p with a pairing e : G1×G2 →
GT and with generators g1, g2, e(g1, g2). Group element h ∈ G2 \ {1}. An
oracle O that in the implementation will be instantiated with a hash function
HZp but in the security proofs is modeled as a random oracle.

Instance: y1, . . . , yn ∈ G1, A0 = ga02 , . . . , At−1 = g
at−1

2 and8

R = gr1 , C1 = yr1 · g
s1
1 , . . . , Cn = yrn · g

sn
1

Statement: The discrete logarithms in the instance satisfy for i = 1, . . . , n

si =

t−1∑
k=0

aki
k mod p

Witness: r, s1, . . . , sn ∈ Zp satisfying si = a(i), where a(i) =
∑t−1
k=0 aki

k mod
p.9

ProveO(instance,witness):
– Compute x := O(instance)
– Generate random α, ρ←$ Zp and compute

F = gρ1 , , A = gα2 , Y =

(
n∏
i=1

yx
i

i

)ρ
· gα1

8 The instance just specifies the 2n + t group elements, the exponents are not part
of the instance but uniquely defined by the group elements and indicated for later
reference.

9 The witness can be verified by using exponentiations to check R matches r, each
pair yi, Ci matches r, si, and each

∏t−1
k=0A

ik

k matches si.

35



– Compute x′ := O(x, F,A, Y )

– Compute

zr = rx′ + ρ mod p , za = x′
n∑
i=1

six
i + α mod p

– Let the proof be π = (F,A, Y, zr, za) ∈ G1 ×G2 ×G1 × Z2
p

– Return π (and delete intermediate information created during proof)
PVfyO(instance, π):

– Check that the instance and proof are correctly formatted with group
elements y1, . . . , yn, R, C1, . . . , Cn, F, Y ∈ G1, A0, . . . , At−1, A ∈ G2 and
field elements zr, za ∈ Zp as expected

– Compute x := O(instance) and x′ := O(x, F,A, Y )

– Verify

Rx
′
· F = gzr1 ,

(
t−1∏
k=0

A
∑n
i=1 i

kxi

k

)x′
·A = gza2

and (
n∏
i=1

Cx
i

i

)x′
· Y =

n∏
i=1

(
yx

i

i

)zr
· gza1

– Return > if all checks pass, else reject by returning ⊥

Cost of the proof system for correct secret sharing

Communication: The proof size, not counting the challenges, is 2 group ele-
ments in G1, 1 group element in G2 and 2 field elements in Zp

Prover computation: The prover computation is dominated an n-wide multi-
exponentiation in G1.

Verifier computation: The verifier computation is dominated by a t-wide
multi exponentiation in G2, two n-wide multi-exponentiation in G1, and
computing t n-wide inner products in Zp (which for large t and n can po-
tentially be reduced using FFTs).

Security

Theorem 14. The proof system for correct secret sharing is complete for any
choice of oracle, and simulation sound10 and zero knowledge in the random oracle
model.

10 Victor points out regular soundness may suffice

36



Proof. Perfect completeness: On a well-formed instance, we see that the prover
indeed computes a well-formatted proof with elements in G1,G2 and Zp as ex-
pected. For any oracle outputs x ∈ Zp and x′ ∈ Zp writing out the three verifica-
tion equations, we see that indeed they are satisfied by an honestly constructed
proof, i.e.,

(gr1)
x′ · gρ1 = grx

′+ρ
1 ,

(
t−1∏
k=0

(gak2 )
∑n
i=1 i

kxi

)x′
· gα2 = g

x′
∑n
i=1 six

i+α
2

using in the second equality that the witness has si =
∑t−1
k=0 aki

k, and(
n∏
i=1

(yri g
si
1 )

xi

)x′
·

(
n∏
i=1

yx
i

i

)ρ
· gα1 =

(
n∏
i=1

yx
i

i

)rx′+ρ
· gx

′∑n
i=1 six

i+α
1 .

Statistical zero knowledge in the programmable random oracle model: The simu-
lator first calls O(instance) to get a challenge x ∈ Zp. It then calls Oprog to get a
second challenge x′ ∈ Zp. The simulator picks uniformly at random zr, za ←$ Zp
and computes the unique group elements F, Y ∈ G1, A ∈ G2 satisfying the
three verification equations. It finalizes the programming of the oracle by calling
Oprog(x, F,A, Y ), which programs the oracle to have O(x, F,A, Y ) = x′, un-
less (x, F,A, Y ) has been used before, in which case the programming fails and
returns ⊥.

Let us now argue that the simulated proof is indistinguishable from a real
proof. First observe that in both cases we get uniformly random x ∈ Zp and
x′ ∈ Zp. Now define

ρ = zr − x′r mod p , α = za − x′
n∑
i=1

a(i)xi mod p.

Since zr and za are chosen uniformly random in the simulation, both real proofs
and simulated proofs have uniformly random ρ and α. Now given those values,
F,A and Y are uniquely defined by the three verification equations. So real proofs
and simulated proofs have exactly the same distribution, the only problem being
if (x, F,A, Y ) has been queried before since then the simulator fails when trying
to program the oracle. However, the random choice of zr, za ←$ Zp means that
F,A are uniformly and independently random, so the risk of stumbling across a
previous query is at most |Q∪Qprog|

p2 .

Statistical simulation soundness in the random oracle model: Consider an adver-
sary that tries to produce an instance y1, . . . , Cn, for which there is an si 6= a(i),
and a valid proof π. If the instance or proof are malformed, the proof will be
rejected, so we may without loss of generality assume the adversary returns a
well-formed instance and proof π = (F,A, Y, zr, za) ∈ G1 ×G2 ×G1 ×Z2

p. If the
adversary has programmed the oracle on instance or (x, F, Y,A) the definition
does not consider it a successful forgery, it could just be a simulated proof, so
let us assume x, x′ stem from queries O(instance) and O(x, F,A, Y ).

37



Now, the adversary may try three strategies. The first strategy is to be lucky
and make a query x′ ← O(x, F,A, Y ) before the first query x ← O(instance).
However, this means the adversary has to guess x in advance and by Lemma 1
the adversary’s chance of finding a reverse order query pair is less than q2O

2·p .
The second strategy is to hope for an x such that

∑n
i=1 six

i =
∑n
i=1 a(i)x

i

even though there is an si 6= a(i). Since s1, . . . , sn and the polynomial a(i) are
defined by the instance, in each query O(instance) the Schwartz-Zippel lemma
bounds the chance of success to at most n/p. The adversary’s chance of succeed-
ing of getting such a pair of instance and challenge x is therefore bounded by
qO·n
p .
Finally, it may be that

∑n
i=1 six

i 6=
∑n
i=1 a(i)x

i but the adversary after
choosing F,A, Y gets a random challenge x′ = O(x, F,A, Y ) it can answer with
zr, za so the proof is valid. Taking discrete logarithms of the first two verification
equations we see that zr = x′r + ρ and za = x′

∑n
i=1 a(i)x

i + α. Letting β so
Y =

∏n
i=1(y

xi
i )ρ · gβ1 the last verification equation therefore tells us

n∏
i=1

(yri g
si
1 )x

ix′ ·
n∏
i=1

yx
iρ
i · gβ1 =

n∏
i=1

y
xi(x′r+ρ)
i · gza .

The parts with yi cancel out, leaving us with

n∏
i=1

gsix
ix′

1 · gβ1 = gza1 .

Taking discrete logarithms base, we get

x′
n∑
i=1

six
i + β = x′

n∑
i=1

a(i)xi + α,

which only has a 1/p chance over the choice of x′ to be true. With up to qO
attempts, the adversary has less than qO

p probability of success.
In total, an adversary making up to qO oracle queries has a total chance of

defeating simulation soundness that is bounded by q2O
2·p +

qO·n
q + pO

p <
q2O
p , when

with little loss of generality qO > n. ut

6.5 Proof of correct chunking

A dealer must provide evidence that it is possible to decrypt ciphertexts in
a dealing so the receivers can recover their shares of the signing key. We use
the multi-receiver forward secure encryption scheme, where the ciphertexts are
for the most part publicly verifiable. The only problem is that plaintexts are
supposed to be chunked into small pieces and to extract the chunks the receiver
needs to compute discrete logarithms. A receiver would therefore have a problem
if the chunks it is supposed to extract are too large and we need an NIZK proof
system that can ensure all chunks are of modest size.

38



We start by observing that we need not consider the full cipher-
texts, only parts of them are critical for demonstrating that the encrypted
chunks have correct size. Each receiver i sees a set of ElGamal ciphertexts
(R1, Ci,1), . . . , (Rm, Ci,m) purportedly containing m chunks of her plaintext. We
would like to show that the ciphertexts are valid ElGamal encryptions to public
key yi of modest size plaintext chunks si,1, . . . , si,m so the receiver can extract
them and compute her full plaintext si =

∑m
j=1 si,jB

j−1 mod p. Each ElGamal
ciphertext (Rj , Ci,j) can be uniquely written as (grj1 , y

rj
i g

si,j
1 ). In our encryption

schemes, we use pairings on the ciphertexts in the decryption process to compute
e(g1, g2)

si,j . If the dealer is honest, then si,j ∈ [0..B− 1] and the receiver can do
a brute force search for si,j .

We want to avoid a dishonest dealer using si,j , which cannot be brute force
extracted. One strategy for doing this would be to use a range-proof demon-
strating indeed si,j ∈ [0..B − 1]. Exact range proofs are expensive to do over
prime-order groups though. Instead we aim for a relaxed range-like proof, which
will show there is a small ∆i,j such that ∆i,jsi,j belongs to a modest size range.
This suffices to show si,j can be extracted, since the receiver can now do a brute
force search for a suitable ∆i,j that takes us inside the range. Due to the multi-
plicative factor ∆i,j and the increase in the range, the brute force search is not
as efficient as in an honest dealing, but if there is modest difference between the
ranges it is still feasible.

The idea behind the proof of correct chunking is to do many small chunking
proofs in parallel. Each of the sub-proofs has modest soundness but jointly they
leave the prover with a negligible chance of cheating. Each sub-proof will use a
challenge e1,1, . . . , en,m ← [0..E − 1]. Taking the linear combination

n∏
i=1

m∏
j=1

C
ei,j
i,j =

n∏
i=1

y
∑m
j=1 ei,jrj

i · g
∑n
i=1

∑m
j=1 ei,jsi,j

1

we can derive the matching encoded randomness
∏m
j=1R

ei,j
j = g

∑m
j=1 ei,jrj

1 for

each yi, so we have a uniquely determined g
∑n
i=1

∑m
j=1 ei,jsi,j

1 . Now, we could
(without worrying about zero knowledge for the moment) ask the prover to reveal
zs =

∑n
i=1

∑m
j=1 ei,jsi,j . If the prover is honest si,j ∈ [0..B− 1] and therefore zs

is in the range [0..S], where S ≥ nm(E−1)(B−1). Now, what about a dishonest
prover providing zs ∈ [0..S]? Well, if the prover has ε > 1

E chance of doing so,
then there exists for each (i, j) two sets of challenges (e1,1, . . . , ei,j , . . . , en,m) and
(e1,1, . . . , e

′
i,j , . . . , en,m) differing only in the (i, j) entry, where the prover reveals

zs and z′s in the range [0..S]. If the prover is revealing the right zs, z′s this means
(ei,j − e′i,j)si,j =

∑
(i∗,j∗) ei∗,j∗si∗,j∗ −

∑m
(i∗,j∗) e

′
i∗,j∗si∗,j∗ = zs − z′s, so (when

wlog ei,j ≥ e′′i,j) with∆i,j = ei,j−e′i,j ∈ [1;E−1] we have that∆i,jsi,j ∈ [−S..S].
Repeating ` times, reduces the risk of fraud on entry (i, j) to ε ≤ E−`.

The next question is how to force the prover in each parallel run, num-
bered k, to reveal the correct zs,k =

∑n
i=1

∑m
j=1 ei,j,ksi,j . To verify this in a

communication-efficient manner, we use a challenge x to batch the ` parallel
runs together to show correctness of the zs,k’s in one go.

39



We also have to avoid revealing the secret values in the witness. So we make
the proof zero knowledge by adding blinding factors σk before revealing

zs,k =

n∑
i=1

m∑
j=1

ei,j,ksi,j + σk.

Now, if σk is too large though, we end up with zs,k being too large, which means
we can no longer guarantee it is possible to do brute force search in the exponent.
On the other hand, if σk is too small, perhaps it does not hide the sum very well.
To get around this problem we use rejection sampling [Gro05, Lyu09]. Consider
choosing σk at random from [−S;Z− 1]. The resulting zs,k belongs to the range
[−S;Z + S − 1]. We can split this range into two disjoint parts [0..Z − 1] and
[−S;Z+S−1]\. In the range [0..Z−1] the random choice of σk makes each zs,k
equally likely. Moreover, each possible sum

∑n
i=1

∑n
j=1 ei,jsi,j has exactly the

same probability that the random σk lands zs,k inside [0, Z−1]. So the idea is for
the prover to check each zs,k is within the range [0..Z − 1], and if not the prover
restarts the entire proof with fresh randomness and tries again. Restarting does
not leak information, since any sum

∑n
i=1

∑m
j=1 ei,j,ksi,j has equal probability

of resulting in a zs,k outside the permitted range, and is invisible in the Fiat-
Shamir heuristic since it all happens locally on the prover’s side.11 The risk of
landing outside the range in run k is at most S

Z , which means over ` runs it is
at most `S

Z . By choosing the parameter Z carefully, we can ensure the risk of
restarting is low enough that the prover on expectation has few restarts, yet also
the range [0..Z − 1] is small enough that ∆i,jsi,j ∈ [1− Z..Z − 1] can be found
by brute force when given e(g1, g2)∆i,jsi,j .

NIZK proof for chunking

Setup: The parameters specify group G1 of prime order p with generator g1.
The parameters include security parameter λ and positive integers
n,m, `,B,E, S, Z such that E = 2dλ/`e, S = nm(B − 1)(E − 1) and
2`S ≤ Z < p2−λ/` (Z = 2`S, or we can choose larger Z if we want to
reduce rejection risk below 1/2), and λe = nm`dλ/`e.
We let O be an oracle that in the implementation will be instantiated as
a hash or extended output function H and in the security proofs will be
modeled as a random oracle.

Instance: Group elements in G1

y1, . . . , yn, R1 = gr11 , . . . , Rm = grm1 , C1,1 = yr11 g
s1,1
1 , . . . , Cn,m = yrmn g

sn,m
1 .

The discrete logarithms are not part of the instance, but they are uniquely
determined by the group elements and indicated for later reference.

11 While the chance of rejection is the same for all sums, it is possible some sums
would require slightly faster or slower computation, so we may use constant time
algorithms to prevent timing leaks, though in practice, since we only terminate once
per statement it is unlikely that enough information will leak to give an adversarial
advantage.

40



Statement: The discrete logarithms of the instance satisfy for all i = 1, . . . , n
and j = 1, . . . ,m that there is ∆i,j ∈ [1;E − 1] such that

∆i,jsi,j ∈ [1− Z..Z − 1]

Witness: Discrete logarithms r1, . . . , rm, s1,1, . . . , sn,m ∈ Zp satisfying the con-
straint that all si,j ∈ [0..B − 1]

ProveO(instance,witness):
– Pick y0 ←$ G1, σ1, . . . , σ` ←$ [−S;Z − 1], β1, . . . , β` ←$ Zp
– Compute

B1 = gβ1

1 , C1 = yβ1

0 gσ1
1 , . . . , B` = gβ`1 , C` = yβ`0 g

σ`
1

– Query O(instance, y0, B1, C1, . . . , B`, C`;λe), and parse the output as
e1,1,1, . . . , em,n,` ∈ [0..E − 1]

– Compute

zs,1 =

n∑
i=1

m∑
j=1

ei,j,1si,j + σ1, . . . , zs,` =

n∑
i=1

m∑
j=1

ei,j,`si,j + σ`

and check whether they belong to the range [0..Z − 1]. If they do not,
pick fresh σ1, . . . , σ` ← [−S;Z − 1] and try again for a maximum of λ
attempts. If λ attempts fail, abort by returning π = ⊥.

– Pick δ0, . . . , δn ←$ Zp
– Compute

D0 = gδ01 , . . . , Dn = gδn1 , Y =

n∏
i=0

yδii

– Query O(e1,1,1, . . . , en,m,`, zs,1, . . . , zs,`, D0, . . . , Dn, Y ) to get x ∈
{0, 1}λ

– Compute

zr,1 =

m∑
j=1

∑̀
k=1

e1,j,krjx
k+δ1, . . . , zr,n =

m∑
j=1

∑̀
k=1

en,j,krjx
k+δn, zβ =

∑̀
k=1

βkx
k+δ0

– Let the proof be π = (y0, B1, C1, . . . , B`, C`, D0, . . . , Dn, Y, zs,1, . . . , zs,`, zr,1, . . . , zr,n, zβ)

– Erase all intermediate information created during the proof and return
π

PVfyO(instance, π):
– Check that the instance belongs to Gn+m+nm

1 and parse π =
(y0, . . . , zβ) ∈ G2`+n+2

1 × Z`+n+1
p

– Check zs,1 . . . , zs,` ∈ [0..Z − 1]

– Compute e1,1,1, . . . , en,m,` and x by querying O as done by the prover

41



– Verify

m∏
j=1

R
∑`
k=1 e1,j,kx

k

j ·D1 = g
zr,1
1 , . . . ,

m∏
j=1

R
∑`
k=1 en,j,kx

k

j ·Dn = g
zr,n
1 ,

∏̀
k=1

Bx
k

k ·D0 = g
zβ
1

and

∏̀
k=1

 n∏
i=1

m∏
j=1

C
ei,j,k
i,j

xk

·
∏̀
k=1

Cx
k

k · Y =

n∏
i=1

y
zr,i
i · yzβ0 · g

∑`
k=1 zs,kx

k

1

– If all checks pass accept by returning >, else reject by returning ⊥

Proof size, prover computation, and verifier computation

Communication: A proof consists of 2`+ n+ 3 group elements and n+ `+ 1
field elements, of which ` belong to a smaller range [0..Z − 1].

Prover computation: The prover computes ` + n single exponentiations of
g1, ` exponentiations of yi’s (ignoring the smaller exponentiations to σk,
which on expectation are repeated less than 2 times), and n` full size field
multiplications plus nm` field multiplications with the smaller ei,j,k elements.

Verifier computation: The verifier cost is dominated by ` nm-wide multi-
exponentiations to the ei,j,k-sized exponents (equivalent to an nm-
wide multi-exponentiation to full sized exponents) and n m-wide multi-
exponentiations (ignoring roughly 2`+n exponentiations and nm` field mul-
tiplications with ei,j,k-sized elements on full sized elements).

Security

Theorem 15. The non-interactive proof system is complete, sound and zero
knowledge.

Proof. Statistical completeness in the random oracle model: Since all ei,j,k ∈
[0..E−1] and in the witness all si,j,k ∈ [0..B−1], we have for all k = 1, . . . , ` that∑n
i=1

∑m
j=1 ei,j,ksi,j ∈ [0..nm(E − 1)(B − 1)] ⊆ [0..S]. There is much entropy in

the values y0, B1, . . . , B` that the prover chooses, so the probability of the first
oracle query having been made before is at most qO/p`+1. In each retry, the
prover picks new C1, . . . , C` and the risk of a collision among the up to λ queries
is bounded by λ2

(S+Z)`
. Assuming no collision with a prior input happens, the

query returns uniformly random values ei,j,k that are independent of the choice
of σ1, . . . , σ`. The prover chooses all σk uniformly at random from [−S;Z − 1],
which means

Pr

zs,k :=

n∑
i=1

m∑
j=1

ei,j,ksi,j + σk /∈ [0..Z − 1]

 =
S

Z
.

42



With ` such choices, the prover has less than `·S
Z ≤

1
2 risk of restarting. After

λ such runs, the probability of restarting is therefore bounded by 2−λ plus the
negligible risk of encountering a collision.

Now, inspecting the proof resulting from a successful run by the prover, we
see that the instance and proof have the correct format with group elements in
G1 and Zp. Moreover, by definition of a successful run zs,1, . . . , zs,` ∈ [0..Z − 1].
Plugging the proof elements into the verification equations we see that they are
all satisfied

m∏
j=1

(g
rj
1 )

∑`
k=1 e1,j,kx

k

·gδ11 = g
zr,1
1 , . . . ,

m∏
j=1

(g
rj
1 )

∑`
k=1 en,j,kx

k

·gδn1 = g
zr,n
1 ,

∏̀
k=1

(gβk1 )x
k

·gδ01 = g
zβ
1

and

∏̀
k=1

 n∏
i=1

m∏
j=1

(y
rj
i g

si,j
1 )ei,j,k

xk

·
∏̀
k=1

(yβk0 gσk1 )x
k

·
n∏
i=0

yδii =

n∏
i=1

y
zr,i
i ·yzβ0 ·g

∑`
k=1 zs,kx

k

1

Computational zero knowledge in the random oracle model based on
the DDH assumption in G1: The simulator picks uniformly at random
y0, B1, C1, . . . , B`, C` ←$ G1. Then queries O(instance, y0, B1, C1, . . . , B`, C`;λe)
to get challenges e1,1,1, . . . , en,m,`. Next, the simulator queries Oprog(λ)
to get a challenge x. Then it picks zs,1, . . . , zs,` ←$ [0..Z − 1] and
zr,1, . . . , zr,n, zβ ←$ Zp. Now it computes the unique group elements
D0, . . . , Dn, Y that can satisfy the n + 2 verification equations. Finally, it calls
Oprog(e1,1,1, . . . , en,m,`, zs,1, . . . , zs,`, D0, . . . , Dn, Y ) to finish programming the
random oracle to have O(e1,1,1, . . . , en,m,`, zs,1, . . . , zs,`, D0, . . . , Dn, Y ;λ) = x
(unless the programming fails).

To see the simulation is good, first observe that due to the large amount of
entropy in the random elements, we have less than qO

p`+1 + qO
pn+1 risk of hitting a

previous oracle query and hitting an earlier query or failing in programming the
random oracle. Assuming we avoid hitting a previous query point, the elements
ei,j,k are uniformly random and so is x, which is also likely the case in a real
proof.

Suppose now there is a distinguisher that has advantage ε in telling a real
proof on a real witness apart from a simulated proof on the same instance.
Consider the following hybrid prover, who knows the witness but acts mostly
like a simulator. For each k = 1, . . . , ` the hybrid prover selects zs,k ← [0..Z − 1]
and computes σk = zs,k−

∑n
i=1

∑m
j=1 ei,j,ksi,j , after which she proceeds as a real

prover. We observe that both in real proofs and in the hybrid proofs zs,k ends up
being uniformly random, since in the real proofs each set of ei,j,k-challenges and
zs,k ∈ [0..Z−1] has a single valid σk ∈ [−S;Z−1] that will make it happen (and
there is no sampling bias since in real proofs any collection of ei,j,k ∈ [0..E − 1]
and valid witness has equal risk of being rejected due to zs,k being out of bounds).
Next, we observe that the only difference between hybrid proofs and simulated
proofs is in the choice of ciphertexts (Bk, Ck) that in simulated proofs encrypt

43



random group elements and in hybrid proofs encrypt gσk1 . A standard hybrid
argument then shows that a distinguisher between simulated proofs and hybrid
proofs can be used to build an ElGamal (DDH) distinguisher with advantage
ε/n.
Statistical simulation soundness in the random oracle model: A cheating prover
creating a valid proof must provide a well-formed instance and proof with the
correct number of group elements in G1 and field elements in Zp, where the
zs,1, . . . , zs,` ∈ [0..Z − 1]. Moreover, since the verifier rejects if the value has
been programmed, the two queries used in the fake proof must be made with
queries to O.

The prover now has three options it can try: it may use correct zs,k =∑n
i=1

∑m
j=1 ei,j,ksi,j + σk, it may hope to make out of order queries so it learns

x before the first round, or it may try using zs,k 6=
∑n
i=1

∑m
j=1 ei,j,ksi,j+σk in a

proof where queries are made in order. We know from Lemma 1 that the middle
option has probability bounded by qO

2λ
, so let us now look at the first and last

options.
Suppose the adversary is at the stage where it is about to query O for

the first time on y0, B1, C1, . . . , B`, C` to get challenges e1,1,1, . . . , en,m,`. If it
has probability greater than E−` of using correct zs,1, . . . , zs,k of the form
zs,k =

∑n
i=1

∑m
j=1 ei,j,ksi,j + σk in a valid proof, it must also be the case

that zs,1, . . . , zs,` ∈ [0..Z − 1]. Now, we know the challenges ei,j,k, are uni-
formly random, so if the probability is higher than E−`, it means for each
pair (i, j) there are two challenges tuples (e1,1,k, . . . , ei,j,k, . . . , en,m,k) and
(e1,1,k, . . . , e

′
i,j,k, . . . , en,m,k) where it can succeed using correct zs,k values. With-

out loss of generality, let us assume ei,j,k > e′i,j,k and the corresponding answers
are zs,k, z′s,k ∈ [0..Z − 1]. This means for that index (i, j) there is an index k
such that (ei,j,k − e′i,j,k)si,j = zs,k − z′s,k ∈ [1− Z..Z − 1].

Finally, suppose the adversary uses in order queries in the proof and
at least one incorrect zs,k 6=

∑n
i=1

∑m
j=1 ei,j,ksi,j + σk. Let us ana-

lyze the probability of being able to make a valid proof when it calls
O(e1,1,1, . . . , en,m,`, zs,1, . . . , zs,`, D0, . . . , Dn, Y ;λ) to get a challenge x. Taking
discrete logarithms of the first n+ 1 verification equations we get

zr,1 =
∑̀
k=1

m∑
j=1

rje1,j,kx
k+δ1 , . . . , zr,n =

∑̀
k=1

m∑
j=1

rjen,j,kx
k+δn and zβ =

∑̀
k=1

βkx
k+δ0.

Looking at the exponents of y1, . . . , yn and y0 in the last verification equation,
we see that they are equal to yzr,11 , . . . , y

zr,n
n and yzβ0 on both sides of the equality

and hence cancel out. What remains in a valid proof is the equality

g
∑`
k=1

∑n
i=1

∑m
j=1 ei,j,ksi,jx

k

1 · g
∑`
k=1 σkx

k

1 = g
∑`
k=1 zs,kx

k

1 .

By the Schwartz-Zippel lemma, the probability of this equality holding for a
random choice of x is at most n

2λ
. With up to qO queries for the adversary we

upper bound the probability of this type of fraud to be at most qO·n
2λ

. ut

44



7 Non-interactive distributed key generation and key
resharing with forward secrecy

A distributed key generation protocol enables a set of parties to come together to
generate a public key together with shares of the secret key. The DKG protocol is
run by a set of dealers, and their goal is to generate a public key and provide a set
of receivers with matching secret shares of the secret key. The set of participants
that act as dealers and the set of participants acting as receivers may be identical,
overlapping or disjoint.

We want the DKG protocol to be non-interactive, i.e., the dealers just cre-
ate dealings and do not interact further with the receivers or each other. The
receivers and other parties can combine public key material provided in a set of
dealings to get the public keys for the threshold signature scheme. The receivers
also retrieve their secret shares of the signing key from the set of dealings. Be-
yond looking at a the set of dealings the receivers do not interact with other
participants.

If a public key has already been generated, we may want to preserve it,
but reshare the secret key. In this case, we assume the dealers already have
shares of the secret key, but they want to run a distributed resharing protocol to
provide a set of receivers with new shares of the secret key. We incorporate both
possibilities into our system; when the dealer wants to create a fresh dealing
they call the dealing algorithm with no input ’-’ to indicate they do not already
have a share, while in redistribution they call the dealing algorithm with their
secret key.

We have two reasons for being interested in resharing. The first reason is that
sometimes the set of share holders may change and then we need a method for
the present share holders to give a secret sharing to the incoming future set of
share holders. The second reason is proactive security, where participants holding
shares of a secret key periodically refresh those shares to prevent the occasional
leakage of shares to accumulate over time and lead to system compromise.

Setup: The parameters specify a set of possible indices, which we for simplicity
will assume is [1..N ] and a maximum number of epochs T .

KGen→ (pk, dk0): Randomized key generation algorithm that returns a public
encryption key and a private decryption key initialized for epoch τ = 0.

KVfy(pk)→ b: Deterministic key verification algorithm that returns > if the
public key is to be considered valid and ⊥ otherwise.

KUpd(dkτ )→ dkτ+1: Takes as input a decryption key for epoch τ (the decryp-
tion key uniquely determines the relevant epoch) and updates it to a de-
cryption key for epoch τ +1. In case the decryption key given as input is for
τ = T −1, the update call returns ⊥ to indicate the epochs have reached the
limit.

Deal(?sk, t, pk1, . . . , pkn, τ)→ d: Randomized dealing algorithm that given a
threshold and a set of public keys with n ≤ N produces a dealing for a
given epoch. It takes as optional input a secret key sk to be used in a re-
sharing dealing or if omitted creates a fresh dealing.

45



DVfy(?shvk, t, pk1, . . . , pkn, τ, d)→ b: Deterministic dealing verification algo-
rithm that returns > if the dealing d is to be considered valid and ⊥ other-
wise. It takes as optional input a share verification key shvk. The intention
is that shvk can be used to test a resharing dealing, while it is omitted when
testing a fresh dealing.
It is natural to sanity check inputs, so we assume the dealing verification
algorithm can only return> on positive integers t ≤ n ≤ N and τ ∈ [0..T−1].
We also require the consistency property that inclusion of an optional share
verification key makes dealing verification as strict or stricter than dealing
verification without a share verification key.

VKCombine(t, n, I, d1, . . . , d`)→ (vk, shvk1, . . . , shvkn): Deterministic algo-
rithm that given a set I of distinct indices i1 < . . . < i` and corresponding
dealings returns a public verification key vk and share-verification keys
shvk1, . . . , shvkn.

VKVfy(t, vk, shvk1, . . . , shvkn)→ b: Deterministic algorithm that given a
threshold t and a set of verification keys returns > if the keys are to be
considered valid, and otherwise returns ⊥. The algorithm can only return >
on positive integers t ≤ n ≤ N .

SKRetrieve(j, dkτ ′ , I, d1, . . . , d`, τ)→ sk: Deterministic algorithm that given a
decryption key, an index set I of size `, and matching dealings d1, . . . , d`
for an epoch τ returns a secret share-signing key sk for a given index j.

SKVfy(sk, shvk)→ b: Deterministic secret key verification algorithm that given
a secret share-signing key returns > if it is to be considered valid with respect
to a share-verification key shvk, and otherwise ⊥.

Correctness. The protocol is correct if

– Key generation produces valid public keys

Pr[(pk, dk0)← KGen : KVfy(pk) = >] = 1

– Dealings made over valid public keys are valid. More precisely, if 1 ≤ t ≤
n ≤ N and τ ∈ [0..T − 1] and pk1, . . . , pkn are valid public keys so that
KVfy(pki) = > and SKVfy(sk, shvk) = > or alternatively (sk, shvk) =
(−,−) then

Pr[d← Deal(?sk, t, pk1, . . . , pkn, τ) : DVfy(?shvk, t, pk1, . . . , pkn, τ, d) = >] ≈ 1.

– Dealing verification is stricter when an optional share verifica-
tion key is provided. If DVfy(shvk, t, pk1, . . . , pkn, d) = > then
DVfy(−, t, pk1, . . . , pkn, τ, d) = >.

– Valid dealings result in valid verification keys. If t, pk1, . . . , pkn, τ and deal-
ings d1, . . . , d` all satisfy DVfy(−, t, pk1, . . . , pkn, τ, dk) = > and index set
I ⊆ [1..N ] has size `, then

Pr

[
(vk, shvk1, . . . , shvkn)← VKCombine(t, n, I, d1, . . . , d`) :

VKVfy(t, vk, shvk1, . . . , shvkn′) = >

]
= 1.

46



– An honest receiver should be able to retrieve a valid secret key for herself
from a set of valid dealings. We define a retrieval adversary A’s advantage
to be

Pr


(pk, dk0)← KGen; (j, I, pk1, . . . , pkn, d1, . . . , d`, τ)← AKUpd(pk, dk0)

(vk, shvk1, . . . , shvkn)← VKCombine(t, n, I, d1, . . . , d`)
sk ← SKRetrieve(j, dkτ ′ , I, d1, . . . , d`, τ) :

I ⊂ [1..n] and |I| = ` and pkj = pk and all dealings are valid, i.e.,
DVfy(−, t, pk1, . . . , pkn, τ, di) = > and τ ′ ≤ τ, yet SKVfy(sk, shvkj) 6= >

 ,
where on each call to KUpd the oracle sets dkτ ′+1 := KUpd(dkτ ′) and τ ′ :=
τ ′+1, and stops reacting to further calls once τ ′+1 = T . The oracle responds
to the call by sending the decryption key to the adversary.12

Verification-key preservation. The protocol preserves the verification key if
after a resharing we still have the same verification key. Formally, for positive
integers t ≤ n ≤ N, t′ ≤ n′ ≤ N , verification keys vk, shvk1, . . . , shvkn with
VKVfy(t, vk, shvk1, . . . , shvkn) = >, index set I containing i1 < . . . , it ≤ n,
epoch τ ∈ [0..T − 1], public keys pk1, . . . , pkn′ and valid dealings d1, . . . , dt with
DVfy(shvkik , t

′, pk1, . . . , pkn′ , τ, dk) = >, we have

Pr[(vk′, shvk′1, . . . , shvk
′
n′)← VKCombine(t′, n′, I, d1, . . . , dt) : vk

′ = vk] = 1.

7.1 Construction.

We now present a non-interactive distributed key generation and key redistri-
bution protocol with forward secrecy. It builds on an implicit fs-CCA-secure
encryption scheme, from which we get the key generation, key verification and
key update algorithms KGen,KVfy and KUpd. It also is intended for use with
BLS threshold signatures, which use the VKVfy,SKVfy algorithms to verify the
generated keys. We present the full protocol in a self-contained manner here
including those algorithms.

Setup: Includes groups G1,G2,GT of known prime order p with a pairing e :
G1×G2 → GT and generators g1, g2, e(g1, g2). The BLS threshold signature
scheme uses a hash function HG1

: {0, 1}∗ → G1.
The parameters define a maximal number of epochs T = 2λT and a bound
N < p defining the set of indices [1..N ] the protocol may assign to partici-
pants, which means N is the maximal set of receivers we can have in a single
dealing.
The setup also specifies group elements f0, . . . , fλ, h ∈ G2, which are used
in our CCA-secure encryption scheme with forward secrecy. Implicitly the
group elements define a function f : Zλp → G2 given by f(τ1, . . . , τλ) :=

12 We assume all dealings operate with respect to the same target epoch. This can be
relaxed, it is conceivable the dealings are for different epochs, but the definitions
have to be tweaked a bit in that case.

47



f0 ·
∏λ
i=1 f

τi
i that we will make frequent use of.13 As part of the parameters

for the encryption scheme there is a chunk size B ≥ 2. We letm := dlogB(p)e,
which implies Bm ≥ p. The encryption scheme makes use of a hash function
HλH : {0, 1}∗ → {0, 1}λH and the parameter λ should satisfy λ = λT +
λH . The encryption scheme uses the simulation-extractable NIZK proof of
knowledge of a discrete logarithm of an element in G1 from Section 6.
The construction makes use of the simulation-sound NIZK proofs for correct
secret sharing and correct chunking that we presented in Section 6. The
NIZK proofs rely on a hash function HZp : {0, 1}∗ → Zp. The NIZK proof for
chunking includes functions to compute additional parameters `, E, S, Z, λe.
The NIZK proof for chunking also uses a family of hash functions Hλe :
{0, 1}∗ → {0, 1}λe , where the length of the output λe may be chosen by the
user.

KGen→ (pk, dk0): Pick x←$ Zp and set

y := gx1 .

Construct a proof of knowledge of the discrete logarithm πdlog ←
Provedlog(y;x). Set pk := (y, πdlog).
Pick ρ←$ Zp. Set

dk := (gρ1 , g
x
2f

ρ
0 , f

ρ
1 , . . . , f

ρ
λ , h

ρ) ∈ G1 ×Gλ+2
2

and dk0 := (0, dk).
Erase intermediate information and return (pk, dk0).

KVfy(pk)→ b: Parse pk = (y, πdlog) and if y ∈ G1 return PVfydlog(y, πdlog) = >,
else return ⊥.

KUpd(dkτ , k)→ dkτ+k: Before describing the update procedure, let us give the
high level structure of a decryption key dkτ .
The forward secure encryption scheme builds on a tree encryption scheme,
for a binary tree of size 2λ. Messages are encrypted to leaves of the tree
and it should be the case that a decryption key for an internal node allows
you to derive decryption keys for all nodes in the subtree below that node.
The structure of a decryption key for a public key with y = gx1 and a node
τ1 . . . τ` at height ` ≤ λ in the binary tree is

dkτ1...τ` =(τ1 . . . τ`, a, b, d`+1, . . . , dλ, e)

=

(
τ1 . . . τ`, g

ρ
1 , g

x
2

(
f0
∏̀
i=1

fτii

)ρ
, fρ`+1, . . . , f

ρ
λ , h

ρ

)
∈ {0, 1}` ×G1 ×Gλ−`+2

2 .

If the decryption key has been generated with the algorithms from the pro-
tocol, ρ will have been chosen uniformly at random from Zp.14

13 The group elements f0, . . . , fλ, h may be generated with a hash function Hsetup :
{0, 1}∗ → Gλ+2

2 to convince third parties that we have nothing up our sleeve. In the
random oracle model, this gives us a set of random group elements (up to grinding).

14 In the key generation algorithm, dk is a decryption key for the root of the binary
tree of this form.

48



From a decryption key dkτ1...τ` it is possible to derive a perfectly randomized
decryption key dkτ1...τ`+`′ for any node in the subtree by picking δ ←$ Zp and
setting

dkτ1...τ`+`′ :=

τ1 . . . τ`+`′ , a · gδ1, b · `+`′∏
i=`+1

dτii · (f0
`+`′∏
i=1

fτii )δ, d`+`′+1 · fδ`+`′+1, . . . , dλ · fδλ, e · hδ
 .

The new decryption key has randomness ρ + δ, which is uniformly random
in Zp.
In the encryption scheme with forward secrecy the prefix τ1 . . . τλT indicates
the epoch the decryption key works for. The decryption key dkτ with τ ∈
[0..T −1] must therefore allow us to derive the key dkτ1...τλT and also enable
us to derive keys for all subsequent leaves in the height λT subtree. For any
τ ∈ [0..T − 1] let Tτ be the minimal set of nodes τ1 . . . τ` (with ` ≤ λT )
such that their subtrees are disjoint and cover all the leaves in [τ..T − 1]. A
decryption key dkτ is of the form

dkτ :=
(
τ, {dkτ1...τ`}τ1...τ`∈Tτ

)
.15

The key update algorithm works given dkτ and k such that τ +k < T . From
the set of tree decryption keys {dkτ1...τ`}τ`}τ1...τ`∈Tτ it uses the relevant
keys in the subtree to derive randomized decryption keys dkτ1...τ` for all
τ1 . . . τ` ∈ Tτ+k \ Tτ . It then erases intermediate data and returns

dkτ+k = (τ + k, {dkτ1...τ`}τ1...τ`∈Tτ+k).

In case a decryption key is malformed or k /∈ [1..T − τ − 1] the update
algorithm returns ⊥.16

Deal(?sk, t, pk1, . . . , pkn, τ)→ d:
Parse the input as ?sk = − or sk ∈ Zp, t ∈ [1..n] with n ≤ N , pki = (yi, πi)
with yi ∈ G1, τ ∈ [0..T − 1] and if it fails return ⊥.17

– If sk is not present, pick at random sk ←$ Zp
– Parse τ = τ1 . . . τλT in binary.
– Set a0 := sk and pick random a1, . . . , at−1 ←$ Zp
– Compute s1, . . . , sn as si =

∑t−1
k=0 aki

k mod p
– Write each si in B-ary notation, i.e., si =

∑m
j=1 si,jB

j−1 with si,j ∈
[0..B − 1]

– Pick randomness r1, s1, . . . , rm, sm ←$ Zp
15 In the key generation algorithm, it can be seen that dk0 has this form.
16 Because decryption keys are perfectly randomized running dkτ+k ← KUpd(dkτ , k)

is equivalent to dkτ+1 ← KUpd(dkτ , 1), . . . , dkτ+k ← KUpd(dkτ+k−1, 1) so in the
security definitions we just use one-step updates and omit the jump k by defining
KUpd(dkτ ) = KUpd(dkτ , 1).

17 The dealing algorithm does not explicitly check the proofs πi of knowledge of discrete
logarithms of yi assuming such a check has already been performed elsewhere.

49



– Compute C1,1, . . . , Cn,m, R1, S1, . . . , Rm, Sm as

Ci,j := y
rj
i · g

si,j
1 Rj := g

rj
1 Sj := g

sj
1

– Compute τλT+1 . . . τλH := HλH (pk1, . . . , pkn, C1,1, . . . , Cn,m, R1, S1, . . . , Rm, Sm, τ)
– Compute f := f(τ1 . . . τλ)
– Compute Z1, . . . , Zm as Zj := frjhsj

– Compute A0 := ga02 , . . . , At−1 := g
at−1

2

– Compute r :=
∑m
j=1 rjB

j−1 mod p
– Compute R := gr1 and C1 := yr1 · g

s1
1 , . . . , Cn := yrn · g

sn
1

– Construct a correct secret sharing proof

πshare ← Proveshare(y1, . . . , yn, A0, . . . , At−1, R, C1, . . . , Cn; r, s1, . . . , sn)

– Construct a correct chunking proof

πchunk ← Provechunk(y1, . . . , yn, R1, . . . , Rm, C1,1, . . . , Cn,m; r1, . . . , rm, s1,1, . . . , sn,m)

– Erase intermediate information and return the dealing

d :=

(
C1,1, . . . , Cn,m, R1, S1 . . . , Rm, Sm

Z1, . . . , Zm, A0, . . . , At−1, πshare, πchunk

)
DVfy(?shvk, t, pk1, . . . , pkn, τ, d):

Parse the input as ?shvk = − or ?shvk ∈ G2, t ∈ [1..n] with n ≤ N ,
pki = (yi, πi) with distinct yi ∈ G1, τ ∈ [0..T − 1] and if the parsing fails
return ⊥.18
– Check the dealing is of the form

d :=

(
C1,1, . . . , Cn,m, R1, S1, . . . , Rm, Sm

Z1, . . . , Zm, A0, . . . , At−1, πshare, πchunk

)
with Ci,j , Rj , Sj ∈ G1 and Zj , Ak ∈ G2

– If the optional shvk is present, check shvk = A0

– Set τλT+1 . . . τλ := HλH (pk1, . . . , pkn, C1,1, . . . , Cn,m, R1, S1, . . . , Rm, Sm, τ)

– Set f := f(τ1, . . . , τλ)
– Verify for each triple (R1, S1, Z1), . . . , (Rm, Sm, Zm) that e(g1, Zj) =
e(Rj , f) · e(Sj , h)

– Verify the proof for correct secret sharing by checking

PVfyshare(y1, . . . , yn, A0, . . . , At−1,

m∏
j=1

RB
j−1

j ,

m∏
j=1

CB
j−1

1,j , . . . ,

m∏
j=1

CB
j−1

n,j ;πshare) = >

– Verify the proof for chunking by checking

PVfychunk(y1, . . . , yn, R1, . . . , Rm, C1,1, . . . , Cn,m;πchunk) = >
18 The dealing verification algorithm assumes the proofs πi of knowledge of the discrete

logarithms of yi have already been done elsewhere.

50



– Return > if all checks pass, else return ⊥
VKCombine(t, n, I, d1, . . . , d`): Given 1 ≤ t ≤ n ≤ N , and a set I of ` indices

1 ≤ i1 < . . . < i` ≤ n and a set of dealings

dj := (. . . , Aj,0, . . . , Aj,t−1, . . .)

with all Aj,k ∈ G2 compute A0, . . . , At−1 as

Ak :=
∏̀
j=1

A
LIi`

(0)

j,k

– Set vk := A0

– Compute shvk1, . . . , shvkn as

shvkj :=
t−1∏
k=0

Aj
k

k

– If all works return (vk, shvk1, . . . , shvkn), else return ⊥.
VKVfy(t, vk, shvk1, . . . , shvkn): We recap the validity condition for public key

material in the BLS threshold signature scheme. Check 1 ≤ t ≤ n ≤ N
and vk, shvk1, . . . , shvkn ∈ G2. Set shvk0 := vk and J = {0, . . . , t− 1}. For
i = t, . . . , n check whether

shvki =
∏
j∈J

shvk
LJj (i)

j .

Return > if all checks pass, else return ⊥
SKRetrieve(i, dkτ ′ ,K, d1, . . . , d`, τ): Parse each dealing as

dk = (Ck,1,1, . . . , Ck,n,m, . . . , Ck,i,1, Rk,1, Sk,1, . . . , Rk,m, Sk,m, Zk,1, . . . , Zk,m, . . .),

with Ck,i,j , Rk,j , Sk,j ∈ G1 and Zk,j ∈ G2. Check 1 ≤ i ≤ n ≤ N .
For k = 1, . . . , ` define τk,1 = τ1, . . . , τk,λT = τλT and compute

τk,λT+1 . . . τk,λ := HλH (pk1, . . . , pkn, Ck,1,1, . . . , Ck,n,m, Rk,1, Sk,1, . . . , Rk,m, Sk,m, τ).

Let fk := f(τk,1, . . . , τk,λ).
Assuming τ ′ ≤ τ derive as described in decryption key update from dkτ ′ a
BTE decryption key

dkτk,1,...,τk,λ = (τk,1 . . . τk,λ, ak, bk, ek) ∈ {0, 1}λ ×G1 ×G2
2

for k = 1, . . . , `.19

19 For computational efficiency, the randomization step may be omitted in the key
derivation, i.e., the key derivation may use δ = 0. When SKRetrieve is run on dealings
that verify as correct, we have e(g1, Zk,j) = e(Rk,j , f) · e(Sk,j , h) and it follows that
any choice of δ in the key randomization yields the sameMk,j values below. Assuming
the derived key and intermediate data is erased immediately after use, the retrieval
algorithm therefore returns the same result and does not leave a trace that could be
used to patch together several nonrandomized derived keys to give the adversary an
advantage.

51



For each k = 1, . . . , ` and j = 1, . . . ,m compute

Mk,j := e(Ck,i,j , g2) · e(Rk,j , b−1k ) · e(ak, Zk,j) · e(Sk,j , e−1k ).

Then do a brute force search with the Baby-Step Giant-Step algorithm for
sk,j ∈ {z/∆|∆ ∈ [1..E − 1], z ∈ [1−Z;Z − 1]} such that Mk,j = e(g1, g2)

sk,j

Compute

sk :=

m∑
j=1

sk,jB
j−1 mod p.

Parse K ⊂ [1..n] as distinct indices k1 < . . . < k` and compute

si :=
∑̀
j=1

sk,jL
K
kj (0).

Erase intermediate data and if everything went well return sk := si and
otherwise return ⊥.

SKVfy(sk, shvk): We recap the validity condition for secret share-signing keys
in the BLS threshold signature scheme. If sk ∈ Zp and shvk = gsk2 erase
intermediate data and return >, else return ⊥.

Theorem 16. The construction is correct.

Proof. Key correctness. We inherit key correctness from the underlying fs-
CCA secure encryption scheme: Key generation produces keys of the form
pk = (y, πdlog) with a proof of knowledge of the discrete logarithm x such that
y = gx1 . Key verification checks the proof of knowledge of the discrete loga-
rithm of y, and due to its perfect completeness always accepts. This means key
generation returns valid keys, Pr[(pk, dk0)← KGen : KVfy(pk) = >] = 1.

Dealings made over valid public keys are valid. More precisely, if t ≤ n ≤ N and
τ ∈ [0..T − 1] and pk1, . . . , pkn are valid public keys so that KVfy(pki) = > and
SKVfy(sk, shvk) = > or alternatively (sk, shvk) = (−,−) then we want

Pr[d← Deal(?sk, t, pk1, . . . , pkn, τ) : DVfy(?shvk, t, pk1, . . . , pkn, τ, d) = >] = 1.

First, observe that if SKVfy(sk, shvk) = > then sk ∈ Zp and shvk = gsk2 .
Including sk in the dealing algorithm makes A0 = gsk2 and including shvk in
the dealing verification adds the check A0 = shvk, which is true. So on a valid
share-signing key pair (sk, shvk) the probability of a dealing being valid is not
affected. What remains is to ensure the dealing is valid when we omit shvk in
the verification.

The precondition KVfy(pki) ensures the public keys are of the form pki =
(yi, πi) with yi ∈ G1. Taken with the other preconditions t ≤ n ≤ N, τ ∈ [0..T−1]
and the optional sk, which must belong to Zp to have SKVfy(sk, shvk) = >, we
see that the inputs to the dealing algorithm are as expected. Going through the
steps of the dealing algorithm, the completeness of the NIZK proofs (except with
small completeness error in the chunking proof) means it terminates without

52



either proof being ⊥ since we give valid witnesses for correct secret sharing and
chunking. The resulting dealing is of the form

d =

(
C1,1, . . . , Cn,m, R1, S1, . . . , Rm, Sm

Z1, . . . , Zm, A0, . . . , At−1, πshare, πchunk

)
.

Looking at the dealing verification algorithm, the preconditions 1 ≤ t ≤ n ≤
N and τ ∈ [0..T −1] and KVfy(pki) = > ensure that it parses the inputs without
problems. Then it checks the format of the dealing and sees that indeed the
format given above is correct with respect to the given parameters.

The dealing verification algorithm has all the values needed to compute
τλT+1 . . . τλ and then compute f . By construction of the ciphertexts in the
dealing algorithm we see for each triple (Rj , Sj , Zj) that the check e(g1, Zj) =
e(Rj , f) · e(Sj , h) holds since Zj = frjhsj and Rj = g

rj
1 and Sj = g

sj
1 .

Finally, the correct secret sharing proof has perfect completeness and verifies
as being correct. The same goes for the chunking proof except for the small
completeness error. The dealing verification algorithm therefore returns >.
Valid dealings result in valid verification keys. If t, pk1, . . . , pkn, τ and dealings
d1, . . . , d` all satisfy DVfy(−, t, pk1, . . . , pkn, τ, dk) = > and I ⊆ [1..N ] has size `
then

Pr[(vk, shvk1, . . . , shvkn)← VKCombine(t, n, I, d1, . . . , d`) : VKVfy(t, vk, shvk1, . . . , shvkn) = >] = 1.

To see this is true, first observe that it follows from the dealing verification that
the parameters are meaningful, i.e., 1 ≤ t ≤ N and each dealing dk includes
elements Ak,0, . . . , Ak,t−1 ∈ G2. Since the index set I ⊂ [1..N ] has size ` as
expected, the combine algorithm computes A0, . . . , Ak ∈ G2 successfully. It then
sets vk = A0, which we will think of as shvk0, and shvkj :=

∏t−1
k=0A

jk

k = g
a(j)
2 for

the implicit degree t− 1 polynomial a(j) and j = 1, . . . , n. This means that the
discrete logarithms of the share verification keys lie on a degree t−1 polynomial
and the verification succeeds since by the properties of Lagrange interpolation
polynomials

a(i) =
∑
j∈J

a(j)LJj (i),

where J = {0, . . . , t− 1}.
An honest receiver can retrieve a valid secret key for herself from a set of valid
dealings. The retrieval adversary A’s advantage is

Pr


(pk, dk0)← KGen; (i, I, pk1, . . . , pkn, d1, . . . , d`, τ)← AKUpd(pk, dk0)

(vk, shvk1, . . . , shvkn)← VKCombine(t, n, I, d1, . . . , d`)
sk ← SKRetrieve(j, dkτ , I, d1, . . . , d`) :

I ⊂ [1..n] and |I| = ` and pki = pk and all dealings are valid, i.e.,
DVfy(−, t, pk1, . . . , pkn, τ, dk) = > and τ ′ ≤ τ, yet SKVfy(sk, shvki) 6= >

 ,
where on each call to KUpd the oracle sets dkτ ′+1 := KUpd(dkτ ′) and τ ′ := τ ′+1,
and stops reacting to further calls once τ ′+1 = T . The definition says the oracle

53



should give the decryption key to the adversary, but in our scheme this is a
moot point since the adversary already has dk0 and derived keys are perfectly
randomized.

Since the dealings are valid with the same parameters t and keys pk1, . . . , pkn
and epoch τ , they all have the same format

dk =

(
Ck,1,1, . . . , Ck,n,m, Rk,1, Sk,1, . . . , Rk,m, Sk,m

Zk,1, . . . , Zk,m, Ak,0, . . . , Ak,t−1, πk,share, πk,chunk

)
.

Since pk = pki it has been generated properly by the key generation algorithm,
is of the form pki = (yi, πi) with yi ∈ G1, and the decryption key dkτ ′ for this
index is well defined in the definition. The perfect correctness of the encryption
scheme also ensures that dkτ ′ is able to decrypt the ciphertexts Ck,1,1, . . . , Zk,m
with respect to index i if the ciphertexts are correctly generated.

The dealings must all verify as valid in the success condition in the probabil-
ity. The chunking proofs in the dealing therefore guarantee up to their soundness
error that they have Rk,j = g

rk,j
1 and Ck,i,j = y

rk,j
i g

sk,i,j
1 with valid chunks sk,i,j .

Assuming chunking is correct, the other checks on the ciphertexts imply that
they are well formed, i.e., valid outputs of the encryption algorithm for some
choice of randomness rk,j , sk,j ∈ Zp. The retrieval algorithm therefore succeeds
in learning the chunks sk,j,1, . . . , sk,j,m from the dealings.

Combining the chunks, SKRetrieve obtains s1,j , . . . , st,j ∈ Zp from each deal.
For each deal, the share proof πk,share guarantees up to its soundness error
that sk,i = ak(i), where ak(X) is the degree t − 1 polynomial defined by the
discrete logarithms of Ak,0, . . . , Ak,t−1. As a result, since both the verification
key combination algorithm and the share retrieval algorithm use the same La-
grange interpolation defined by the set I, we get si =

∑t
k=1 sk,iL

I
ik
(0) and

shvki = g
∑t
k=1 ak(i)L

I
ik

(0)

2 satisfy shvki = gsi2 . Consequently, with sk := si we
have SKVfy(sk, shvki) = >. ut

Theorem 17. The construction has perfect verification-key preservation.

Proof. Suppose VKVfy(t, vk, shvk1, . . . , shvkn) = >. Since the check guarantees
shvkt, . . . , shvkn can be derived with Lagrange interpolation in the exponent
from vk and shvk1, . . . , shvkt−1 it ensures that there is a degree t−1 polynomial
a(i) so that vk = g

a(0)
2 and shvki = g

a(i)
2 . Therefore for any index set I containing

1 ≤ i1 < . . . < it ≤ n we have vk =
∏t
j=1 shvk

LIij
(0)

ij
.

Now, given t dealings d1, . . . , dt that are valid with respect to
shvki1 , . . . , shvkit respectively, we know from the validity checks
DVfy(shvkik , t

′, pk1, . . . , pkn′ , τ, dk) that they use A1,0 = shvki1 , . . . , At,0 =

shvkit . Since VKCombine computes A0 =
∏t
j=1A

LIij
(0)

j,0 we therefore have
A0 = vk. And since the new vk′ = A0 we see vk′ = vk and the verification key
is preserved. ut

54



8 Security

A threshold signature scheme with a matching dis-
tributed key generation protocol consists of the fol-
lowing algorithms KGen,KVfy,KUpd,Deal,DVfy,VKCombine,
VKVfy,SKRetrieve,SKVfy,SigShare,SigShVfy,SigShCombine,SigVfy. We have
already defined correctness, uniqueness and key-preservation earlier and assume
the scheme has those properties.

We want to avoid unauthorized signatures. This means if we see a signature
on a message it should be because a threshold of share holders were involved in
producing it. A participant can be willingly involved in a signature by creating
a signature share, but also by being corrupt and doing the adversary’s bidding,
or by failing to do timely erasure of her share-signing key or being negligent in
updating her decryption key such that it falls in the wrong hands.

Going into the security definition, we imagine a world where honest parties
may generate fresh keys that are made public, i.e., known to the adversary. Their
matching decryption keys are kept secret from the adversary unless the party is
corrupted. We will assume that public keys have enough entropy to be unique,
such that a party can be uniquely identified by its public key, and we will let
Qpk be the set of public keys generated by honest parties, specifically, they were
honest when they created the key. There may be situations where the adversary
circulates public keys on behalf of dishonest parties. We cannot say much about
those keys except we assume the Internet Computer will check all public keys in
circulation are well formed.

Parties can update their decryption key to a new epoch and erase the de-
cryption key for the previous epoch so they no longer have the ability to decrypt
messages for past epochs. They should do so whenever they know they will never
decrypt any more ciphertext wrt the old epoch. We keep track of the decryption
keys in public key records of the form (pk, dkτ ), where dkτ is pk’s decryption
key for epoch τ . In the definition of unforgeability we capture this by letting the
adversary decide when a party should update the decryption key, as long as it
such corruption does not violate the assumptions we want our key management
system to work for. As long as the adversary cannot violate those conditions,
the threshold signature scheme should remain unforgeable.

The parties may at times create new threshold signature verification keys
with matching secret shares of the signing key. We let the adversary decide
when this happens but to uniquely identify who is supposed to do what the
adversary must provide a configuration of participants with matching threshold
and epoch. This corresponds to how we configure the creation of subnet keys
on the Internet Computer and a number of sanity checks can be made on the
configuration.

We enable the adversary to trigger the creation of an honest fresh dealing,
modeling that an honest party runs Deal(−, t, pk1, . . . , pkn, τ), where the values
are taken from an existing configuration. The set Qd contains all honest dealings.
Later the adversary may combine honest dealings with arbitrary dealings of its
own to form a transcript making the Internet Computer recognize a new public

55



key. In the security definition we require the adversary to include at least one
honest dealing in a transcript, since if the adversary makes all the dealings they
cannot contribute towards security. A transcript, which references an existing
configuration, is verified and sanity checked. If the transcript is accepted, the
dealings are combined to derive a verification key vk, which is registered in Qvk.
We then let all honest receivers extract their secret share-signing keys. We keep
track of those secret share-keys in records of the form (pk, id, sk, τ), where pk is
an honest party’s key, id identifies the configuration, sk is the share-signing key
retrieved by the honest node with pk, and τ is the epoch of the batch.

At other times parties want to reshare an existing secret threshold signing
key. Here the adversary must also first create a configuration, but this time the
configuration must reference a prior configuration and a transcript of existing
public keys it is building on. Also for resharing we enable the adversary to trigger
an honest dealing, this time referencing (pk, id′) for an honest party that holds a
relevant share-signing key recorded as (pk, id′, sk, ·). The honest node then runs
Deal(sk, t, pk1, . . . , pkn, τ) and the honest dealing is added to Qd. Again the ad-
versary may combine honest dealings with arbitrary dealings of its own making to
provide a transcript that proscribes a new secret sharing of the existing verifica-
tion key. Whenever such a resharing takes place, the receivers should verify that
the resharing builds on an existing prior transcript, and we keep track of key evo-
lution in transcript records of the form (vk, id, t, pk1, shvk1, . . . , pkn, shvkn, τ).

The receivers may use the share-signing keys to provide signature shares on
arbitrary message. In our model, we give the adversary control over when this
happens and which party sign which messages.

On the Internet Computer an honest party erases a share-signing key when
it is obsolete. Of course, erasure does not make much sense as long as the party
has a decryption key that will permit it to recover the share-signing key again.
We therefore only enable the adversary to ask for erasure of a share-signing key
that can no longer be recovered by the honest party.

Finally, our security model is intended to capture dynamic corruption, so
we enable the adversary to corrupt parties. Whenever the adversary corrupts a
party, she learns all interesting data the party has, i.e., its decryption key and all
its unerased shares. Afterwards the records pertaining to that party are deleted,
since the model only keeps track of honest parties and the adversary now has
the power to act on the party’s behalf.

We define the advantage of a forging adversary A to be

Pr


(vk,m, σ)← AKGen,KUpd,Config,Deal,Transcript,Erase,SigShare,Corrupt :

vk ∈ Qvk and SigVfy(vk,m, σ) = >
and for all id with a transcript record (vk, id, t, pk1, shvk1, . . . , pkn, shvkn, τ) :

#

i
∣∣∣∣∣∣
there is a corruption record (C, pki, τ

′) with τ ′ ≤ τ, or with τ ′ > τ
and an un-erased share-signing key record (pki, id, sk, τ),

or pki /∈ Qpk, or there is a signature share record (id, pki,m)

 < t

 .

To win the adversary must produce a valid signature under a recognized ver-
ification key, i.e, a verification key from a transcript with at least one honest

56



dealing. The adversary may get help in creating such a signature by acting with
a share-signing key it knows because it corrupted an honest party, by controlling
a party that was malicious from the outset, or by seeing signature shares on
the message from honest parties. We say the adversary wins if for all indexed
configurations and transcripts pertaining to the verification key, the adversary
does not have help exceeding the threshold t that pertains to the configuration.
The oracles the definition refers to are as follows:

KGen
(pk, dk0)← KGen
If pk ∈ Qpk let experiment return >
Qpk := Qpk ∪ {pk}
Store a public key record (pk, dk0)
Return pk

KUpd(pk)
Find stored public key (pk, dkτ ) and if there is no such record or τ = T return ⊥
Set dkτ+1 ← KUpd(dkτ ) and update the stored public key record to (pk, dkτ+1)
Return >

Config(?id′, t, pk1, . . . , pkn, τ)
If there is already a configuration record (∗, ∗, t, pk1, . . . , pkn, τ) return ⊥
If id′ = − let τ ′ := −1
Else find the transcript record (vk, id′, , . . . , τ ′) and if no such record exists return ⊥
If t /∈ [1 . . . n] or τ /∈ [τ ′ + 1 . . . T − 1] return ⊥
For i = 1, . . . , n if KVfy(pki) = ⊥ return ⊥
If there is a collision in public keys pki = pkj for i 6= j return ⊥
Store a configuration record (id, id′, t, pk1, . . . , pkn, τ) // On initialization when not yet used id = 0
Set id := id+ 1 and return >

Deal(?pk, id)
Find the configuration record (id, id′, t, pk1, . . . , pkn, τ) and if there is none return ⊥
If pk = − let sk = − and if id′ 6= − return ⊥
Else find the share-signing key record (pk, id′, sk, τ ′) and if there is none return ⊥
d← Deal(sk, t, pk1, . . . , pkn, τ)
Let Qd := Qd ∪ {d} and return d

57



Transcript(id, ?I, d1, . . . , d`)
If there is already a transcript record of the form (vk, id, t, . . .) return ⊥
If a dealing repeats di = dj with i 6= j return ⊥
Find the configuration record (id, id′, t, pk1, . . . , pkn, τ) and if there is none return ⊥
If there is no honest dealing di ∈ Qd return ⊥
If the optional index set ?I is − (not included)
Only allow it if the configuration does not build on a prior configuration, if id′ 6= − return ⊥
If there is a invalid dealing di where DVfy(−, t, pk1, . . . , pkn, τ, di) = ⊥ return ⊥
Set I := {1, . . . , `}

Else
Find the transcript record (vk′, id′, t′, pk′1, shvk

′
1, . . . , pk

′
ν , shvk

′
ν , τ
′) and if there is none or ` 6= t′ return ⊥

Parse I as a set of indices 1 ≤ i1 < . . . i` ≤ ν and if it fails return ⊥
If there is some ij ∈ I where DVfy(shvk′ij , t, pk1, . . . , pkn, τ, dj) = ⊥ return ⊥

(vk, shvk1, . . . , shvkn)← VKCombine(t, n, I, d1, . . . , d`)
Qvk := Qvk ∪ {vk}
Store a transcript record (vk, id, t, pk1, shvk1, . . . , pkn, shvkn, τ)
For i = 1, . . . , n if there is a public key record (pki, dkτi) with τi ≤ τ
ski ← SKRetrieve(i, dkτi , I, d1, . . . , d`)
Store a share-signing key record (pki, id, ski, τ)

Return (vk, shvk1, . . . , shvkn)

Erase(pk, id)
Find a stored public key record (pk, dkτ ) and if there is none return ⊥
Find a stored share-signing key record (pk, id, sk, τ ′) and if there is none return ⊥
Delete the share-signing key record (pk, id, sk, τ ′) and return >

SigShare(id, pk,m)
Find a stored share-signing key record (pk, id, sk, τ) and if there is none return ⊥
sh← SigShare(sk,m)
Store a signature share record (id, pk,m) and return sh

Corrupt(pk)
Locate the stored public key record (pk, dkτ ) and if there is none return ⊥
Store a corruption record (C, pk, τ)
Return the public key record (pk, dkτ ) and all share-signing key records (pk, id, sk, τ ′)

and delete the public key record

Correctness properties in the security definition The oracles preserve
correctness properties, e.g., KGen will produce valid keys pk. Looking at the
Transcript oracle, we note in particular that it always produces valid verification
keys. I.e., if a transcript record (vk, id, t, pk1, shvk1, . . . , pkn, shvkn, τ) is stored,

58



which can only happen through a call to Transcript, then vk and the share
verification keys shvki are constructed with a call (vk, shvk1, . . . , shvkn) ←
VKCombine(t, n, I, d1, . . . , d`). The transcript oracle ensures there is a ν such
that 1 ≤ ` ≤ ν ≤ N and I contains indices 1 ≤ i1 < . . . < i` ≤
ν and all dealings are valid, i.e., DVfy(−, t, pk1, . . . , pkn, τ, dij ) = >. Cor-
rectness therefore means Transcript always produces valid public keys, i.e.,
VKVfy(t, vk, shvk1, . . . , shvkn) = >.

Configuration records are created by the Config oracle. Configuration records
can be organized into trees, where we label nodes with the id. A configuration
record (id,−, . . .) is a root of a tree. While a configuration record (id, id′, . . .)
means id is a child of id′. When the protocol has verification key preservation,
all nodes in a configuration tree will get the same verification key as the root (or
still not have been assigned a verification key) when Transcript is called.

Lemma 2. If the protocol has verification key preservation, then when Transcript
stores a transcript record (vk, id, . . .) building on a configuration (id, id′, . . .) it
must be the case a transcript record (vk′, id′, . . .) has already been stored and
vk = vk′.

Proof. Transcript records can only be stored through a call to the Transcript
oracle. For a transcript record (vk, id, . . .) to be stored, there must already be a
configuration record (id, id′, . . .). If id′ = − there is nothing to prove since it is
the root of a configuration tree, but otherwise we must argue there is already a
record (vk, id′, . . .).

The Transcript oracle indeed checks there is an earlier transcript record
(vk′, id′, `, pk′1, shvk

′
1, . . . , pk

′
ν , shvk

′
ν , τ
′). As noted before, since it is a transcript

record we must have VKVfy(`, vk′, shvk′1, . . . , shvk
′
ν) = >. It also follows from

the checks in Config and Transcript that 1 ≤ ` ≤ ν ≤ N and 1 ≤ t ≤ n ≤ N .
The oracle checks 1 ≤ i1 < . . . < i` ≤ ν and in the configuration record
(id, . . . , τ) we can only have τ ∈ [0..T − 1]. Finally, the transcript oracle checks
for each dj that DVfy(shvkij , t, pk1, . . . , pkn, τ, dj) = >. This means all condi-
tions for verification key preservation are satisfied, and therefore when it calls
(vk, shvk1, . . . , shvkn)← VKCombine(t, n, I, d1, . . . , d`) we get vk = vk′. ut

Relaxed dynamic security While our distributed key generation may be se-
cure against dynamic adversaries, our security proofs use a simulation argument
that runs into selective opening attack problems. Namely, we would like to use
the fs-CCA security of the encryption scheme to hide the shares honest receivers
get in honest dealings. But if we try to use indistinguishability of the encryption
scheme and encrypt a different dummy share, then upon corruption of the re-
ceiver the adversary will learn that the share is wrong and does not match the
ciphertexts in the dealings and not the share verification key either. This forces
us to encrypt the right shares and now we get stuck in the simulation in the
security proof. The way we get around this problem is to restrict the adversary
such that we do not have to provide those shares. Specifically, we restrict the
adversary such that it cannot corrupt an honest receiver while the decryption

59



key is at an epoch where it is possible to decrypt a simulated dealing. Moreover,
it should not be possible to corrupt a party with an unerased share.

Restricting the adversary in this way, we introduce an honesty lock: a set H
that specifies parties that cannot be corrupted until a certain epoch. We define
the advantage of a relaxed forging adversary A to be

Pr



(vk,m, σ)← AKGen,KUpd,Config,Deal,Transcript,Erase,SigShare,Corrupt :
vk ∈ Qvk and SigVfy(vk,m, σ) = >

and for all id with a transcript record (vk, id, t, pk1, shvk1, . . . , pkn, shvkn, τ) :
there is a configuration record (id, . . . ,H) with |H| > n− t and

#

i
∣∣∣∣∣∣
there is a corruption record (C, pki, τ

′) with τ ′ ≤ τ, or with τ ′ > τ
and an un-erased share-signing key record (pki, id, sk, τ),

or pki /∈ Qpk, or there is a signature share record (id, pki,m)

 < t


,

where we modify the configuration and corruption oracles

Config(?id′, t, pk1, . . . , pkn, τ,H)
If there is already a configuration record (∗, ∗, t, pk1, . . . , pkn, τ) return ⊥
If id′ = − let τ ′ := −1
Else find a prior transcript record (vk, id′, . . . , τ ′) and if there is none return ⊥
If t /∈ {1, . . . , n} or τ /∈ {τ ′ + 1, . . . , T − 1} return ⊥
For i = 1, . . . , n if KVfy(pki) = ⊥ return ⊥
If there is a collision in public keys pki = pkj for i 6= j return ⊥
Parse H = {pki1 , . . . , pki`} with 1 ≤ i1 < . . . < i` ≤ n
If there is pkij with no public key record (pkij , dkτij ) return ⊥
Store honesty records (H, pki1 , τ), . . . , (H, pki` , τ)
Store the configuration record (id, id′, t, pk1, . . . , pkn, τ,H) // On initialization id = 0
Set id := id+ 1 and return > // Wlog sequential identifiers

Corrupt(pk)
For all honesty records (H, pk, τ)

If there is a stored public key record (pk, dkτ ′) with τ ′ ≤ τ return ⊥
If there is a stored share-signing key record (pk, id, sk, τ ′) with τ ′ ≤ τ return ⊥

Locate the public key record (pk, dkτ ) and if there is none return ⊥
Store a corruption record (C, pk, τ)
Return the public key record (pk, dkτ ) and all share-signing key records (pk, id, sk, τ ′)

and delete the public key record

How should we interpret this relaxed security definition? It says the adversary
when invoking a dealing (without loss of generality we can assume the dealing
comes right after the configuration call) must supply a list H of public keys for
parties that will remain honest until after their decryption key has been updated
past this epoch and all prior secret share-signing keys have been erased, but is
that realistic? It depends on the type of corruptions we believe are realistic
in the world. If the adversary can corrupt an arbitrary party anywhere at a
moments notice, then no, but in that case why would we believe a specific is

60



realistic? If on the other hand, we believe the adversary at any moment in time
has a set of parties in mind it could realistically corrupt (e.g. a vulnerability on
a specific type of machine, a data center operator known to be susceptible to
bribes) within the next few epochs, then this is a very realistic security model on
the spectrum between static corruption and instantaneous dynamic corruption.
The shorter the delay from dealings to usage being over and parties upgrading
their decryption keys to new epochs and erasing old threshold shares, the more
realistic the relaxed security model is. This is not to say it is realistic in all
worlds: perhaps every data center operator has a price at which they will be
bribed and act quickly in collaboration with the adversary; in which case the
adversary could potentially target any node even if not being able to afford
corrupting so many. And of course the adversary may also try a DoS attack to
halt the system and extend the window in which she can corrupt somebody.

Theorem 18. Our protocol for threshold BLS signatures has relaxed dynamic
security.

Sketch of proof. As argued earlier, and this holds also for the relaxed security
definitions, configurations can be organized into trees, where each configuration
is a root of a tree or references a transcript for an earlier configuration. Moreover,
we have proved our protocol has verification key preservation, so all transcripts
in the same configuration tree have the same verification key as the the root
configuration’s transcript. It can also be shown that for verification keys created
with the involvement of at least one honest dealer, they have negligible proba-
bility of becoming the verification key in different configuration tree also created
by an honest dealer. So we only need to concern ourselves with the case where
the adversary forges a signature with respect to a uniquely defined configuration
tree.

Another useful observation is that there is negligible probability of finding
a dealing that is valid for two different configurations. The checks in the Config
oracle ensures no tuple (t, pk1, . . . , pkn, τ) appears in two configurations. Count-
ing the number of elements A0, . . . , At−1 in the dealing, we see that t must be
the same in all configurations it is valid for. Moreover, the ciphertext in the
dealing uniquely determines τ1, . . . , τλ, which in turn uniquely determines τ and
the message digest τλT+1, . . . , τλ. Since the message digest is recomputed in the
ciphertext verification, collision resistance means pk1, . . . , pkn are uniquely de-
termined.

A third useful observation is that ciphertexts from honest dealings cannot
be copied. In an honest dealing, the encrypted secret sharing defines a unique
threshold t. And as argued above, it is also tied to pk1, . . . , pkn and τ . So the
ciphertext created by an honest dealer is tied to a unique configuration. Now,
the Transcript oracle specifically checks that all dealings are distinct. This means
an adversary can only succeed in copying the ciphertext within the same con-
figuration by tweaking one of the zero-knowledge proofs. However, since they
are simulation sound this is not possible for the adversary unless the adversary
knows the full secret sharing that was encrypted.

61



Now, let A be a forging adversary that creates up to qConfig configuration
requests of the form (−, . . .), i.e., for fresh configurations. With probability at
least 1/qConfig we may guess in advance a root index of a configuration tree
with that particular verification key. If A succeeds in a forgery on the verifica-
tion key for this particular index we keep it, otherwise we let the experiment
fail. Let Adv(A) be the advantage in the original experiment, and Adv′(A)
be the advantage in the modified experiment where we guess the index. Then
Adv(A) ≤ qConfig ·Adv′(A). So at a tightness loss of qConfig we can from now on
analyze the advantage Adv′(A) defined as

Pr



idguess ← [0..qConfig − 1]; (vk,m, σ)← AKGen,KUpd,Config,Deal,Transcript,Erase,SigShare,Corrupt :
There are records (vk, idguess, ∗) and (idguess,−, ∗) and SigVfy(vk,m, σ) = >
and for all id with a transcript record (vk, id, t, pk1, shvk1, . . . , pkn, shvkn, τ)

there is a configuration record (id, . . . ,H) with |H| > n− t and

#

i
∣∣∣∣∣∣
there is a corruption record (C, pki, τ

′) with τ ′ ≤ τ, or with τ ′ > τ
and an un-erased share-signing key record (pki, id, sk, τ),

or pki /∈ Qpk, or there is a signature share record (id, pki,m)

 < t


,

observing that due to the construction of the Transcript oracle the record
(vk, id′, ∗) implies vk ∈ Qvk so that earlier condition is redundant and therefore
omitted.

We start the analysis of the modified experiment by changing the way hon-
est parties retrieve their shares from honest dealings. Recall, the Deal oracle
runs an honest dealing Deal(sk, t, pk1, . . . , pkn, τ) to create a recorded d ∈ Qd.
This dealing builds on an honest secret sharing and chunked encryption with
forward secrecy of the individual shares to the public keys pk1, . . . , pkn. Dealing
only happens if there is a prior registered configuration with those public keys,
and the registration of a configuration implies all the public keys are valid. For
each honestly generated public key pki ∈ Qpk the conditions for correctness of
the encryption scheme are satisfied. It follows that an honest dealing that gets
decrypted with an arbitrarily updated decryption key matching an honestly gen-
erated public key pki ∈ Qpk that for that public key you can decrypt correctly
(because the chunks have the right size) and by doing so you get the secret key
matching si =

∑t−1
k=0 aki

k used in this particular dealing (by construction of
the plaintexts that get chunked). We can therefore modify the experiment such
that honest dealings created by Deal store their ciphertexts together with the
matching plaintexts, which happen to be a secret sharing matching A0, . . . , At−1
in the dealing. And correspondingly, whenever SKRetrieve(i, dkτi , I, d1, . . . , d`)
inside Transcript encounters such a ciphertext addressed to an honest and un-
corrupted public key pk ∈ Qpk it just looks up the matching plaintext instead of
running the decryption algorithm. Perfect correctness ensures that this lookup
always matches a decryption and therefore the advantage is unchanged.

Next, let us modify the dealing oracle Deal to simulate proofs for the cipher-
text it creates in its honest dealings whenever it is referencing a node in the tree

62



with root idguess. The new dealing oracle is

Deal′(?pk, id)
Find the record (id, id′, t, pk1, . . . , pkn, τ,H) and if there is none return ⊥
If pk = − let sk = − and if id′ 6= − return ⊥
Else find the record (pk, id′, sk, τ ′) and if there is none return ⊥
If id is not in the subtree rooted in idguess

d← Deal(sk, t, pk1, . . . , pkn, τ)
Else

d← Deal(sk, t, pk1, . . . , pkn, τ) with simulated proofs πshare, πchunk
Let Qd := Qd ∪ {d} and return d

It follows from the zero knowledge property of the proof systems that this change
gives negligible difference in adversary’s advantage.

Shifting focus to adversarial dealings, let us look at how the Transcript oracle
deals with them on behalf of honest receivers. The Transcript oracle checks all
dealings are valid, which means the adversarial dealings must have correctly
formatted ciphertexts and accepting NIZK proofs for correct secret sharing and
chunking. Now, let us modify the Transcript oracle to let the experiment return
⊥ in case there is a ciphertext not created by the honest dealing oracle but
with valid NIZK proofs, such that decryption for an honest pk ∈ Qpk fails or
the resulting plaintext does not match what was expected given A0, . . . , At−1
in the dealing. Since the chunking proof implies our encryption scheme with
forward secrecy has a correctly generated ciphertext and the encryption scheme
has perfect correctness, failure to decrypt means we have violated soundness
of the NIZK proof for chunking. Similarly, if the plaintext does not match a
secret share as defined by A0, . . . , At−1, then we have violated soundness of the
NIZK proof for correct secret sharing. It follows from simulation soundness that
the risk of this happening is negligible and therefore the adversary’s advantage
remains almost the same.

As argued before the adversary cannot make copies of ciphertexts from honest
dealings so we can think of share-signing key retrieval from an adversarial dealing
as using a decryption oracle. All honest receivers can decrypt the adversarial
dealings, and by the correct secret sharing proof their share matches the public
share verification key for that receiver. By definition of the adversary’s advantage
Adv′(A) there can be at most t corrupt dealers and therefore are n − t > t
honest receivers. From the honest receivers’ shares it is therefore possible to use
Lagrange interpolation to reconstruct a degree t − 1 polynomial matching the
shares underpinning the public share verification keys. Using the coefficients from
the Lagrange interpolation used when combining the share verification keys, we
now know a degree t − 1 polynomial that represents the contribution towards
the shares from adversarially created dealings. We can use that to cancel out
any contribution the adversary makes to key generation.

Now, let us model the usage of the hash functionHG1
(m) in the BLS signature

scheme as a random oracle. We can see every query to the hash function as
returning a group element gµ1 with µ← Zp. If we program the random oracle to

63



give us such values, we can think of µ as random known field elements. We can
now change the way we share-sign messages on behalf of honest-locked parties.
For a pk ∈ H that must share sign a message, instead of using its secret share
si = a(i) to sign, we can think of the signature as using g

a(i)
1 and returning

(g
a(i)
1 )µ. So instead of keeping track of the plaintexts for the honesty-locked

parties, instead we can keep track of the exponentiation of their shares ga(i)1 .

At this stage, the encryption scheme and the NIZK proofs no longer play
a role. Neither do the adversarial dealings, since we can extract the full secret
sharing and cancel it out. Moreover, we may without loss of generality assume
there is a single honest dealing in each transcript, simply acting as an honest
"adversary" in the other dealings. What remains is an adversary that in each
transcript sees one honest dealing with group elements A0, . . . , At−1 and a subset
of the secret shares si1 , . . . , sic for corrupted or corruptible receivers. While for
honest-locked parties the adversary only sees gsj11 , . . . , g

sjn−c
1 but uses its control

over the random oracle to create their signature shares. We will show that we
can embed a one-more DH problem instance in this scenario such that a success-
ful attacker forging signatures can be used to break the 1MDH instance. The
1MDHP setup in Type III pairings can be formulated as giving random group
elements gµ1 and gγ01 , g

γ0
2 , . . . , g

γq
1 , g

γq
2 to the adversary. The attacker may now

adaptively ask for linear combinations of the form (r0, . . . , r`) ∈ Z`+1
p receiving

as response gµ·
∑q
i=0 riγi

1 . The attacker wins, if after q queries she is able to com-
pute gµ·γ01 , . . . , g

µ·γq
1 , i.e., she needs to compute one more Diffie-Hellman group

element than the number of queries she is allowed to ask.

Ok, let us see how we can embed the 1MDH problem into our system so a
successful attacker can be used to break the 1MDH problem. We guess in advance
the index of the random oracle query the attacker will use to create a successful
forgery, aborting the attack if we guess wrong at a bounded loss in tightness
in the reduction. We then get the 1MDH challenge gµ1 and gγ01 , g

γ0
2 , . . . , g

γq
1 , g

γq
2

where q is an upper bound on the number of honesty-locked parties in honest
dealings with the relevant configuration tree. Now, for the guessed configuration
we pick gγ02 as the honest dealer’s contribution to the verification key, which will
be modified by the adversarial dealings to give vk = gγ0+a02 for some known
a0. In each honest dealing there will be some corruptible parties with indices
i1, . . . , ic, where we just picked random shares si1 , . . . , sic . Then after having
chosen these, we will for the first m = t− c− 1 honesty-locked indices j1, . . . , jm
pick previously unused elements gγk+1

1 , . . . , g
γk+m
1 and define the shares of those

parties in this dealing to be the unknown sj1 = γk+1, . . . , sjm = γk+m. From our
1MDH challenge we know the matching public key material gγk+1

2 , . . . , g
γk+m
2 ).

Now, for the forgery message m we program the oracle to return gµ from the
1MDH challenge. We can use the 1MDH oracle to answer all share-signing queries
for this message. For all other messages, we just program the random oracle to
give us a random exponent, enabling us to sign all share-signing queries. And
agin, we can easily cancel out the contributions from adversarial dealings. So we
have now used the 1MDH oracle to get a perfect simulation of the protocol. At

64



the end of the day, the adversary may now return a forged signature σ such that

e(σ, g2) = e(H(M), vk) = e(gµ1 , g
γ0+a0
2 ) = e(gµ·γ01 · gµ·a01 , g2).

Since a0 is known, this means we can compute

σ · (gµ1 )−a0 = gµ·γ01 .

All share-signing queries are linearly independent of γ0, so computing this value
leads to a solution to the one-more DH instance. ut

8.1 Proactive security.

With public keys remaining in use for a long time, it is reasonable to assume each
share holder carries significant risk of compromise during this period, whether
that be from a glitch or malware. If the secret shares are also long lived, they may
leak one by one and if an adversary collects enough of them she can sign arbitrary
messages. To counter this effect it is natural to put defenses in place such as
monitoring the behavior of parties to detect deviation from normal behavior or
periodic resets to flush out undetected malware. We model this kind of faulty or
malicious behavior using a mobile adversary model, in which the adversary in
any given epoch may compromise parties but cannot control too many parties
at the same time. I.e., the adversary may compromise some parties in an epoch,
but if she has already reached the corruption threshold, she must also relinquish
control over some parties that then revert back to being honest. In the mobile
adversary model, every single party may be compromised at some point in time,
just not too many at the same time.

If we model a compromise as the adversary getting full control over a party,
then there is not much hope for proactive security protecting against it. As soon
as the adversary learns a decryption key, it can decrypt all future dealings where
the party is a receiver. But we can use proactive security to protect against
attacks such as accidental leakage of secret shares due to glitches, malicious
behavior due to non-severe attacks that do not affect the decryption keys, or
systems where long-term decryption keys are protected by secure hardware. To
protect against such a mobile adversary, the share holders can use the non-
interactive distributed key resharing protocol to periodically refresh their shares
and delete their old shares. Once enough shares for a given epoch have been
deleted, the remaining shares for that epoch will never suffice to reconstruct the
secret key. This way we can reduce the attack surface against a mobile adversary
to the duration of a single epoch.

Now, while we do not give a mobile attacker access to the decryption key, the
malicious behavior could still involve obtaining decryptions of different cipher-
texts; for instance even if the decryption key is protected by secure hardware
presumably the mobile adversary may request the decryption of some cipher-
texts. So we change the security model to be that the adversary may compromise
a participant to learn a share-signing key and also gain access to a decryption

65



oracle. Formally, we define the advantage of a forging adversary A with access
to a decryption oracle as

Pr


(vk,m, σ)← AKGen,KUpd,Config,Deal,Transcript,Erase,SigShare,Dec,Corrupt :

vk ∈ Qvk and SigVfy(vk,m, σ) = >
and for all id with a transcript record (vk, id, t, pk1, shvk1, . . . , pkn, shvkn, τ) :

#

i
∣∣∣∣∣∣
there is a corruption record (C, pki, τ

′) with τ ′ ≤ τ, or with τ ′ > τ
and an un-erased share-signing key record (pki, id, sk, τ),

or pki /∈ Qpk, or there is a signature share record (id, pki,m)

 < t

 .

The security proof can be adapted to cover this stronger form of security. There-
fore, we get proactive security against a mobile adversary with CCA-access to
the encryption scheme who may also able to learn some share-signing keys for a
given epoch.

Acknowledgment

Many people have guided design choices, suggested improvements to the article
and worked on implementation of the protocols on the Internet Computer, we
would especially like to thank Jan Camenisch, Andrea Cerulli, David Derler,
Manu Drijvers, Maria Dubovitskaya, Ben Lynn, Maximillian Murphy, Gregory
Neven, Franz-Stefan Preiss, Bartosz Przydatek, Victor Shoup and Björn Tack-
mann.

References

BBG05. Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based en-
cryption with constant size ciphertext. In Ronald Cramer, editor, Advances
in Cryptology - EUROCRYPT 2005, 24th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Aarhus, Den-
mark, May 22-26, 2005, Proceedings, volume 3494 of Lecture Notes in Com-
puter Science, pages 440–456. Springer, 2005.

BCHK07. Dan Boneh, Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-
ciphertext security from identity-based encryption. SIAM J. Comput.,
36(5):1301–1328, 2007.

BLS04. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil
pairing. J. Cryptol., 17(4):297–319, 2004.

Fel87. Paul Feldman. A practical scheme for non-interactive verifiable secret shar-
ing. In 28th Annual Symposium on Foundations of Computer Science, Los
Angeles, California, USA, 27-29 October 1987, pages 427–437. IEEE Com-
puter Society, 1987.

GPS08. Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings
for cryptographers. Discret. Appl. Math., 156(16):3113–3121, 2008.

Gro02. Jens Groth. Evaluating security of voting schemes in the universal com-
posability framework. Cryptology ePrint Archive, Report 2002/002, 2002.
https://eprint.iacr.org/2002/002.

66

https://eprint.iacr.org/2002/002


Gro05. Jens Groth. A verifiable secret shuffle of homomorphic encryptions. Cryp-
tology ePrint Archive, Report 2005/246, 2005.

Lyu09. Vadim Lyubashevsky. Fiat-shamir with aborts: Applications to lattice and
factoring-based signatures. In Mitsuru Matsui, editor, Advances in Cryp-
tology - ASIACRYPT 2009, 15th International Conference on the Theory
and Application of Cryptology and Information Security, Tokyo, Japan, De-
cember 6-10, 2009. Proceedings, volume 5912 of Lecture Notes in Computer
Science, pages 598–616. Springer, 2009.

Sha79. Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

67


	Non-interactive distributed key generation and key resharing

