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Abstract

We introduce a class of interactive protocols, which we call sumcheck arguments, that establishes a
novel connection between the sumcheck protocol (Lund et al. JACM 1992) and folding techniques for
Pedersen commitments (Bootle et al. EUROCRYPT 2016).

We define a class of sumcheck-friendly commitment schemes over modules that captures many
examples of interest, and show that the sumcheck protocol applied to a polynomial associated with the
commitment scheme yields a succinct argument of knowledge for openings of the commitment. Building
on this, we additionally obtain succinct arguments for the NP-complete language R1CS over certain rings.

Sumcheck arguments enable us to recover as a special case numerous prior works in disparate
cryptographic settings (discrete logarithms, pairings, groups of unknown order, lattices), providing one
framework to understand them all. Further, we answer open questions raised in prior works, such as
obtaining a lattice-based succinct argument from the SIS assumption for satisfiability problems over rings.
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1 Introduction

Sumcheck protocols. The sumcheck protocol is an interactive proof introduced in [LFKN92] that has
played a fundamental role in the theory of probabilistic proofs in complexity theory (e.g., [BFL91; BFLS91;
GKR08]) and, more recently, in cryptography. The sumcheck protocol has been used widely in a line of
works on succinct arguments [CMT12; VSBW13; Wah+17; ZGKPP17; WTSTW18; XZZPS19; Set20]. One
of the main benefits of the sumcheck protocol is that, in certain settings, the prover can be implemented in
a linear number of operations [Tha13] or as a streaming algorithm [CMT12]; this avoids operations such
as the Fast Fourier Transform (common in other succinct arguments) that are costly in time and in memory.
The sumcheck protocol also satisfies strong soundness properties that facilitate arguing the security of the
Fiat–Shamir transformation in the plain model [CCHLRR18], which is notoriously hard to analyze for other
interactive proofs. Moreover, variants of the sumcheck protocol have spawned lines of research: the univariate
sumcheck [BCRSVW19] was used in numerous succinct arguments [BCGGRS19; ZXZS20; CHMMVW20;
COS20; CFFQR20; BFHVXZ20]; and the sumcheck protocol for tensor codes [Mei13] was used to obtain
probabilistic proofs with linear-size proofs [BCGRS17; RR20] and linear-time provers [BCG20; BCL20].

Folding techniques. Separately, a line of works starting with [BCCGP16] constructs succinct arguments
based on folding techniques for Pedersen commitments in the discrete logarithm setting. Informally, to prove
knowledge of a long message opening a given Pedersen commitment, the prover engages with the verifier in
a reduction that halves the message length by folding the message “around” a verifier challenge. This can be
repeatedly applied until the message length is small enough to send the message directly. Beyond commitment
openings, [BCCGP16] give protocols for scalar-product relations, which lead to succinct arguments for NP
languages such as arithmetic circuit satisfiability. These succinct arguments can be realized via a linear
number of group scalar multiplications, or alternatively as streaming algorithms [BHRRS20].

Folding techniques, subsequently improved in [BBBPWM18], have been deployed in cryptocurrencies
(Monero [Mon] and PIVX [Piv]) and are widely used thanks to popular open-source libraries [dalek18; Adj].
These practical applications have motivated careful analyses of concrete security [JT20], which facilitates
setting security parameters in applications.

Folding techniques have been adapted to work in other cryptographic settings, such as bilinear groups
[LMR19], unknown-order groups [BFS20], and lattices [BLNS20]. They have also been formulated in more
abstract settings: [BMMTV19] study sufficient properties of commitment schemes that enable folding tech-
niques; and [AC20; ACF20; ACR20; BDFG20] study folding techniques for general group homomorphisms.

Folding techniques for Pedersen (and related) commitments are arguably not fully understood, despite the
numerous works and applications mentioned above. For example, they are typically used as non-interactive
arguments after the Fiat–Shamir transformation is applied to the (public-coin) interactive argument. Yet
the security of this non-interactive argument, even in the random oracle model, has only been proven via a
superpolynomial-time extractor [BMMTV19] or in the algebraic group model [GT20]. Moreover, almost all
succinct arguments are obtained via some type of probabilistic proof (and there are settings where this is
inherent [RV09; CY20]) but no such probabilistic proof is evident in folding techniques.

A connection? The sumcheck protocol and folding techniques seem rather different protocols but they
share several common features. Both protocols have a prover that can be realized via a linear number of
operations [Tha13; BCCGP16], or alternatively as a streaming algorithm [CMT12; BHRRS20]; moreover,
both protocols satisfy similar notions of strong soundness [CCHLRR18; GT20], which facilitate proving
useful security properties. Are these similarities mere coincidences?

3



1.1 Our results

We introduce a class of interactive protocols, sumcheck arguments, that establishes a novel connection
between the sumcheck protocol and folding techniques for Pedersen commitments. This provides a single
framework to understand numerous prior works in disparate cryptographic settings (prime-order groups,
bilinear groups, unknown-order groups, lattices) and also enables us to answer open questions raised in prior
works. We elaborate on these contributions below, and summarize the underlying technical ideas in Section 2.
(1) Sumcheck arguments. Recall that the sumcheck protocol is an interactive proof for statements of the
form

∑
ω∈H` p(ω) = τ for a given summation domain H , `-variate polynomial p, and claimed sum τ . While

typically stated for polynomials over finite fields, the sumcheck protocol works for polynomials over any
module M over a ring R (given certain mild conditions).1 Let Σ[R,M,H, `, τ, C, p] denote the sumcheck
protocol for the statement

∑
ω∈H` p(ω) = τ when H ⊆ R, τ ∈M , and p ∈M [X1, . . . , X`], and the verifier

uses the challenge set C ⊆ R to sample each round’s challenge. (We explain later on in Section 2.1 why the
sumncheck protocol over modules involves a given challenge set for the verifier.)

A sumcheck argument is, informally, a sumcheck protocol used to succinctly prove knowledge of openings
for certain commitments (you run the sumcheck reduction followed by a cryptographic analogue of the
consistency check). We say that a commitment scheme CM is sumcheck-friendly if the statement “I know
m of length n such that CM.Commit (ck,m) = cm” can be rewritten as the statement “I know m of length
n such that

∑
ω∈{−1,1}logn fCM(pm(ω), pck(ω)) = cm” where the message polynomial pm(X) is over an

R-module M, the key polynomial pck(X) is over an R-module K, and the combiner function fCM maps
M×K to an R-module C (and is such that fCM(pm(X), pck(X)) is a polynomial over C). We observe that
commitment schemes of interest are sumcheck-friendly, including various forms of Pedersen commitments
(we elaborate on this later). Our main result is to construct a knowledge extractor for the sumcheck protocol
applied to such statements, provided CM is invertible (a certain property that we discuss later on).

Theorem 1 (informal). Let CM be a sumcheck-friendly commitment scheme that is invertible. Let cm be a
commitment to a message m using a commitment key ck. Then (a straightforward extension of)

Σ
[
R,M = C, H = {−1, 1}, ` = log n, τ = cm, C, p = fCM(pm, pck)

]
is an interactive argument of knowledge for an opening to cm with respect to ck with knowledge error
O( logn|C| ), where the polynomial in the numerator depends on CM. The round complexity is O(log n) and the
communication complexity is O(log n) elements in C. Moreover, if fCM is a bilinear function, then the prover
and verifier complexity is dominated by O(n) operations in C.

The above informal statement omits many technical details, such as commitment randomness and relaxed
notions of commitment opening necessary to express settings over lattices. Moreover, the informal statement
fixes certain choices (such as choosing the summation domain H = {−1, 1} and ` = log n variables).

As we elaborate in Appendix A, well-known folding techniques from prior works can be viewed, perhaps
surprisingly, as special cases of a sumcheck argument. We remark that while the usual security notion of
the sumcheck protocol is an unconditional soundness guarantee, the security notion that we establish for a
sumcheck argument is a knowledge guarantee, proved from CM’s invertibility. In turn invertibility may hold
unconditionally or under certain hardness assumptions (we give examples of this in Section 2.3.2).2

(2) Succinct arguments for R1CS over rings. Building on sumcheck arguments, we obtain zero-knowledge
succinct arguments for satisfiability problems defined over rings. This is in contrast to most prior succinct

1A module is a mathematical structure the extends a vector space by allowing scalars to be from a ring rather than a field.
2Thus sumcheck arguments are distinct from direct algebraic generalizations of the sumcheck protocol to rings [CCKP19].
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arguments, which support satisfiability problems defined over prime-order fields (which are the “scalar
fields” associated to underlying cryptographic prime-order groups). This extension is motivated by the fact
that certain computations are more efficiently expressed over certain rings (e.g., approximate arithmetic
[CCKP19]), and parallels prior lines of work for secret-sharing schemes and multiparty computation protocols
[CFIK03; CDESX18; ACDEY19; Abs+20] for supporting computations defined over rings.

We focus on the ring variant of the NP-complete problem known as rank-1 constraint satisfiability
(R1CS), which is a widely used generalization of arithmetic circuit satisfiability. We obtain a zero-knowledge
succinct argument for R1CS over any ring R• with suitable algebraic properties, assuming the hardness of
the bilinear relation assumption over a related ring, which is a natural generalization of assumptions such as
the DL assumption, the SIS assumption, and others.

Definition 1 (informal). The R1CS problem asks: given a ring R•, coefficient matrices A,B,C ∈ Rn×n•
each containing at most m = Ω(n) non-zero entries, and an instance vector x over R•, is there a witness
vector w over R• such that z := (x,w) ∈ Rn• and Az ◦Bz = Cz? (Here “◦” denotes the entry-wise product
of vectors over R•.)

Theorem 2 (informal). Let R be a ring, M be an R-module, C ⊆ R a challenge space, and I ⊆ R an ideal.
If pairwise differences in C have suitable pseudoinverses in R• := R/I and the bilinear relation assumption
holds over M , then there is a zero-knowledge succinct argument of knowledge for the R1CS problem over R•.
For n× n coefficient matrices with at most m non-zero entries, the argument has knowledge error O( logn|C| ),
round complexity O(log n), communication complexity O(log n) elements of M and O(1) elements of R,
and prover and verifier complexity dominated by O(m) operations in R and O(n) operations in M .

One immediate application of our result is to lattice cryptography. Prior work used folding techniques to
obtain (zero-knowledge) succinct arguments of knowledge for lattice commitments [BLNS20], but left open
the question of obtaining succinct arguments for NP-complete problems relevant to lattices.3

Our Theorem 2 directly implies a solution to this open question. This may be surprising because the
knowledge extractor for a sumcheck argument over lattices finds only a relaxed opening of a (sumcheck-
friendly and invertible) commitment; this relaxed extraction occurs in many other lattice-based arguments of
knowledge. This notwithstanding we still derive from it a knowledge extractor for the R1CS problem.

Corollary 1 (informal). LetR := Z[X]/〈Xd+1〉 for d a power of 2. Let p and q be primes with q sufficiently
larger than p. Assuming hardness of the SIS problem overR/qR, there is an argument of knowledge for R1CS
over R• := R/pR with knowledge-soundness error O( lognd ), round complexity O(log n), communication
complexity dominated by O(log n) elements of R/qR, and prover and verifier complexity dominated by
O(m) operations in R• and O(n) operations in R/qR.

Our new lattice-based argument system shows that one can succinctly prove general relations over rings
pertinent to lattice cryptography, despite the fact that most lattice-based proofs of knowledge suffer from
relaxed soundness properties. This allows users to prove statements about lattice-based encryption and
signature schemes directly over their native rings rather than having to convert them into statements tractable
for other proof systems, which often leads to computational overheads in practical schemes [BCOS20].

Moreover, Corollary 1 contributes a new succinct argument that is plausibly post-quantum, adding to a
surprisingly short list of such candidates. (Prior constructions of post-quantum succinct arguments are from
hash functions [CMS19; CMSZ21] or lattice knowledge assumptions [BISW17; BISW18; GMNO18].) An

3This differs from using lattices to instantiate the collision-resistant hash function in Kilian’s PCP-based protocol [Kil92], because
this would not lead to a succinct argument for computations expressed over relevant rings.
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intriguing question left open by our work is whether the security reduction of the construction in Corollary 1
can be carried out against an efficient quantum adversary.

Finally, returning to Theorem 2, having a single construction of a zero-knowledge succinct argument
over general rings may simplify future practical applications. Our theorem enables having a single abstract
implementation that can be debugged and audited once and for all, and can then be instantiated over disparate
algebraic settings depending on an application’s needs, by simply specifying the desired ring.

(3) On instantiations. By instantiating the sumcheck-friendly commitment CM in Theorem 1 we obtain
succinct arguments of knowledge for different relations of interest, as we now explain.

As a simple example, the Pedersen commitment scheme can be formulated in an abstract setting where
messages and group generators are replaced by elements of appropriate rings or modules. This generalized
Pedersen commitment scheme satisfies the conditions in Theorem 1, either unconditionally or under the
same assumptions that imply its binding properties. Our sumcheck argument for the generalized Pedersen
commitment scheme thus yields succinct protocols for opening Pedersen commitments in different settings,
such as prime-order groups, bilinear groups, unknown-order groups, and lattices.

We also study instantiations that capture richer functionalities.

• Linear-function commitments: the commitment includes a commitment to the scalar product of a public
(query) message and a secret message. This draws inspiration from [AC20] which considers linear-function
commitments in the prime-order group setting, bilinear group setting, and strong RSA setting.

• Scalar-product commitments: the commitment includes a commitment to the scalar product of two secret
parts of the message. This draws inspiration from [BCCGP16; BBBPWM18; BMMTV19] which consider
bilinear commitment schemes for prime-order or bilinear groups. Proving knowledge of an opening implies
that the commitment was correctly computed, and therefore in this case that a scalar-product relation is
satisfied. These scalar-product commitments in fact underlie our proof of Theorem 2 based on Theorem 1.

In Figure 1 we provide a comparison between succinct arguments with comparable efficiency in prior works,
classified by type of relation and algebraic setting. The table demonstrates that our sumcheck arguments
recover all prior types of relations and all algebraic settings as special cases, and additionally contribute new
combinations that were not achieved before.

prime-order groups bilinear groups unknown-order groups ideal lattices
(DL assumption) (double-pairing assumption) (order assumption) (SIS assumption)

basic commitment [BLNS20]
linear-function commitment
or polynomial commitment [ACR20; AC20] [BFS20] previously open

scalar-product commitment [BCCGP16] [LMR19] previously open
bilinear commitment [BMMTV19] previously open

sumcheck-friendly commitment sumcheck arguments from this work

Figure 1: Comparison of prior works that use folding techniques to achieve succinct arguments of knowledge,
and also our sumcheck arguments. The rows from top to bottom indicate increasingly more general types of
commitment (and so a result in a row directly implies a result in all rows above it). The columns indicate
different cryptographic settings in which the commitments are constructed (along with corresponding sufficient
cryptographic assumptions). Results spanning multiple columns indicate an abstraction that simultaneously
captures all those settings. We see that our work captures all prior settings and types of commitments, and also
achieves functionalities and settings that were left open by prior works.
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1.2 New connections and new opportunities

The novel connection between folding techniques and the sumcheck protocol, captured by our sumcheck
arguments, casts many aspects of prior works in a new light. Below we provide several examples.

• [BCCGP16] describes folding techniques for splitting a long vector into more than two pieces before
folding, to allow trading argument size for round complexity. This corresponds to running a sumcheck
argument using polynomials of fewer variables and higher individual degree.

• [BBBPWM18] improves the efficiency of folding techniques via a more complicated use of verifier
challenges. This corresponds to running a sumcheck argument using a different evaluation domain, and
where the sumcheck prover sends polynomials expressed in a different monomial basis.

• [CHJKS20] gives weighted inner-product arguments to improve concrete efficiency. This corresponds to a
sumcheck argument for weighted-sums of polynomial evaluations (see Remark 4.2).

• [PLS19] gives a zero-knowledge version of folding techniques that achieves better concrete efficiency by
using less prover randomness. This relates to derandomizing a zero-knowledge sumcheck argument.

• [BMMTV19; BFS20] consider subprotocols for delegating expensive verifier computation to the prover.
This corresponds to delegating polynomial evaluation, to help the verifier outsource evaluating the com-
mitment key polynomial. Sumcheck arguments neatly conceptualize the role of polynomials in folding
protocols and simplify the task of applying delegation protocols in other settings (see Remark 4.8).

• Like [BMMTV19; ACF20; BDFG20], sumcheck arguments capture optimizations of folding techniques
that compress several target commitment values into one (e.g., the optimization from [BCCGP16] to
[BBBPWM18]) as sumcheck arguments applied to alternative commitment schemes.

We expect that other folding techniques such as [ACR20; Lee20] can also be viewed as sumcheck arguments.
Looking ahead, the new perspective offered by sumcheck arguments, with the sumcheck protocol at their

core, makes it easier to explore new design options and optimizations for succinct arguments, especially so
for those that have already been studied for the (information-theoretic) sumcheck protocol.

Existing analyses of the sumcheck protocol may also inspire analogous ones for sumcheck arguments.
For example, the sumcheck protocol can be made non-interactive via the Fiat–Shamir transformation, where
the verifier’s messages are replaced by the outputs of a hash function. Jawale et al. [JKKZ20] show that the
result is a non-interactive argument provided the hash function is lossy correlation-intractable (and construct
such hash functions based on the LWE assumption). This seems to provide a starting point for studying the
security of sumcheck arguments under the Fiat–Shamir transformation.

1.3 Related work

Folding techniques. Figure 1 summarizes the main relationship between sumcheck arguments for sumcheck-
friendly commitments and prior work that uses folding techniques. Below we additionally discuss the prior
works that have studied folding techniques for abstract commitment schemes and homomorphisms.

Bünz et al. [BMMTV19] present folding techniques for doubly-homomorphic commitments over prime-
order groups, which are both key-homomorphic and message homomorphic. These can capture non-linear
relations such as scalar-product relations under computational assumptions.

Attema, Cramer, and Fehr [ACF20] present folding techniques for pre-images of general group homomor-
phisms over prime-order groups. These were extended from prime-order groups to Z-modules in [BDFG20],
who also noted that a Z-module homomorphism could be phrased as a Pedersen-like function. These
techniques give proofs for homomorphisms and linear relations, without using computational assumptions.
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Both general group homomorphisms and doubly-homomorphic commitment schemes are special cases
of sumcheck-friendly commitment schemes. Our work also finds the same distinction between proofs and
arguments: our sumcheck argument for “linear” commitment schemes such as the generalized Pedersen
commitment scheme (and linear-function commitments) do not require computational assumptions, whereas
our sumcheck argument for “quadratic” commitment schemes require computational assumptions.

Reductions from NP-complete problems. Attema and Cramer [AC20] construct zero-knowledge succinct
arguments for NP-complete relations by (i) using secret-sharing techniques to interactively reduce NP
statements to linear relations (under computational assumptions), and then (ii) relying on succinct arguments
for linear relations. This “linearization” requires the prover to perform polynomial arithmetic on high-
degree polynomials, and hence an efficient realization would likely rely on FFTs. FFTs require linear
space-complexity for the prover, and prevent the prover from being implemented in logarithmic space as in
the sumcheck protocol [CMT12] or other succinct arguments based on folding protocols [BHRRS20]. In
contrast, we reduce NP statements to bilinear relations such as scalar-product relations, and then rely on
succinct arguments for scalar products; this reduction can be performed via a linear number of cryptographic
operations, and without relying on FFTs.

1.4 Concurrent work

Attema, Cramer, and Kohl [ACK21] construct zero-knowledge succinct arguments for NP based on the SIS
assumption, using folding techniques for lattices. As with [AC20], their construction uses secret-sharing
techniques which are likely to rely on FFTs and lead to a prover with large space complexity. Moreover,
the techniques in [ACK21] are for lattices, while our techniques based on sumcheck arguments provide a
general framework in which lattices are a special case. Additionally, [ACK21] give a detailed analysis of the
knowledge error of their lattice-based folding techniques, which was not present in [BLNS20], and establish
that the knowledge error can be reduced using parallel repetition.

Albrecht and Lai [AL21] study a variant of the folding techniques in [BLNS20], instantiated in a different
choice of ring which offers exact proofs (rather than proofs with relaxed knowledge extraction) and various
efficiency advantages. Like [ACK21], they also analyze the knowledge error of their folding techniques,
and prove results relating relaxed extraction to ring structure. We are optimistic that their ideas can be
incorporated into our sumcheck-based framework.

Ganesh, Nitulescu, and Soria-Vazquez [GNS21] model NP relations over rings and give a generic
construction of designated-verifier zero-knowledge SNARKs using techniques related to prior lattice-based
SNARK constructions [BISW17; BISW18; GMNO18].

Block et al. [BHRRS21] study a variant of the commitment scheme of [BFS20] in groups of unknown
order that is compatible with a streaming formalism, and give space-efficient arguments for NP languages.
We are optimistic that their ideas can be incorporated into our sumcheck-based framework.
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2 Techniques

We summarize the main ideas behind our results. The first few subsections are dedicated to explaining
sumcheck arguments (Theorem 1) in several steps of progressive generality. In Section 2.1 we describe the
sumcheck protocol for polynomials over modules. Then in Section 2.2 we present a succinct zero-knowledge
argument for Pedersen commitments based on the sumcheck protocol. In Section 2.3 we show how to lift this
protocol to any “sumcheck-friendly” commitment, but still in the setting of prime-order groups. Finally in
Section 2.4 we explain the main considerations in generalizing further to commitments over rings, and in
Section 2.5 we give an example of how commitments can be formulated in this framework. After that we
turn our attention to our other contributions. In Section 2.6 we discuss a generic scalar-product protocol built
from sumcheck arguments, and then in Section 2.7 we explain how it enables us to obtain zero-knowledge
succinct arguments for R1CS over rings (Theorem 2 and in particular Corollary 1). Finally, in Section 2.8 we
discuss how we also obtain polynomial commitment schemes over rings from sumcheck arguments.

2.1 Sumcheck protocol over modules

The sumcheck protocol [LFKN92] directly extends to work with polynomials over modules. The prover PSC

and verifier VSC receive a sumcheck instance xSC = (R,M,H, `, τ, C), where R is a ring, M is a module
over R, H is a subset of R, ` is a number of variables, τ ∈M is a claimed sum, and C ⊆ R is a sampling set
(more about this below). The prover PSC additionally receives a polynomial p ∈M [X1, . . . , X`] such that∑

ω∈H` p(ω) = τ . The protocol has ` rounds and works as follows.

1. For i = 1, . . . , `:
(a) PSC sends to VSC the polynomial qi(X) :=

∑
ωi+1,...,ω`∈H p(r1, . . . , ri−1, X, ωi+1, . . . , ω`) ∈M [X];

(b) VSC sends to PSC a random challenge ri ← C.
2. VSC checks that

∑
ω1∈H q1(ω1) = τ and, for i ∈ {2, . . . , `}, that

∑
ωi∈H qi(ωi) = qi−1(ri−1).

3. If the checks pass then VSC sets v := q`(r`) ∈M and outputs the tuple ((r1, . . . , r`), v).

The security guarantee of the sumcheck protocol, which requires C to be a sampling set, is given below.

Definition 2.1. We say that C ⊆ R is a sampling set for the R-module M if for every distinct c1, c2 ∈ C the
map that sends m ∈M to (c1 − c2) ·m ∈M is injective.

Lemma 2.2. Let xSC = (R,M,H, `, τ, C) be a sumcheck instance and a polynomial p ∈M [X1, . . . , X`] of
total degree d. If C is a sampling set for M then the following holds.
• Completeness. If

∑
ω∈H` p(ω) = τ then Prr←C` [〈PSC(xSC, p), VSC(xSC; r)〉 = (r, p(r))] = 1.

• Soundness. If
∑

ω∈H` p(ω) 6= τ then, for every P̃SC, Prr←C` [〈P̃SC, VSC(xSC; r)〉 = (r, p(r))] < `d
|C| .

Above 〈A, VSC(xSC; r)〉 is the output of VSC(xSC) when interacting with algorithm A using randomness r.

The lemma directly follows from a generalization of the Schwartz–Zippel lemma over modules.

Lemma 2.3. Let R be a ring, M an R-module, and f ∈ M [X1, . . . , X`] a non-zero polynomial of total
degree D. If C is a sampling set for M then Prr←C` [f(r) = 0] ≤ D

|C| .

The proof of Lemma 2.3 follows the same approach as the usual inductive proof of the standard Schwartz–
Zippel lemma. The properties of C are used to establish that a polynomial f ∈ M [X] of degree D has at
most D roots in C, which in turn is used in the base case and in the inductive step.

The sumcheck protocol in the special case when M = R has been used before, e.g., in [CCKP19].
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2.2 Sumcheck argument for Pedersen commitments

We describe a cryptographic protocol for proving knowledge of an opening of a Pedersen commitment, whose
main subroutine is the sumcheck protocol. We refer to such a protocol as a sumcheck argument. Note that for
now we ignore the goal of zero knowledge, and instead focus on achieving communication complexity that is
much smaller than (indeed, logarithmic in) the message whose knowledge is being proved.

Definition 2. We index the entries of a vector v of length n = 2` via binary strings (i1, . . . , i`) ∈ {0, 1}`,
and define the corresponding polynomial pv(X1, . . . , X`) :=

∑
i1,...,i`∈{0,1} vi1,...,i`X

i1
1 · · ·X

i`
` .

Protocol 1: sumcheck argument for Pedersen commitments

For n = 2`, the prover and verifier receive as input a commitment key G ∈ Gn and commitment C ∈ G.
The prover also receives as input an opening a ∈ Fn such that C = 〈a,G〉.

The prover and verifier engage in a sumcheck protocol for the instance

xSC := (R = F, M = G, H = {−1, 1}, ` = log n, τ = 2`C, C = F)

where the prover uses the polynomial p(X) := pa(X) · pG(X). After the end of the sumcheck protocol,
the prover learns r ∈ F` and the verifier learns (r, v) ∈ F` ×G. Then the prover computes and sends
pa(r) ∈ F to the verifier, and the verifier computes pG(r) ∈ G and checks that pa(r) · pG(r) = v.

We begin by explaining why Protocol 1 is mathematically well-defined. The “multiplication” operation
implicit in the expression pa(X) · pG(X), which maps F[X1, . . . , X`]×G[X1, . . . , X`]→ G[X1, . . . , X`],
is a natural extension of the scalar multiplication operation a · G which maps F × G → G. For example,
consider the polynomials p1(X) = a+ a′ ·X ∈ F[X] and p2(X) = G +X · G′ ∈ G[X], and let r ∈ F. The
product of p1(r) and p2(r) can be written as follows:

p1(r) · p2(r) = (a+ a′r) · (G + r · G′)
= a · (G + r · G′) + a′r · (G + r · G′)
= a · G + ar · G′ + a′r · G + a′r2 · G′

= a · G + r · (a · G′ + a′ · G) + r2 · (a′ · G′) ,

where the second and third equalities follow from the bilinear properties of scalar multiplication.4 This holds
for any r ∈ F, and so it makes sense to define the “scalar multiplication” of p1(X) and p2(X):

p1(X) · p2(X) = (a+ a′X) · (G +X · G′) := a · G +X · (a · G′ + a′ · G) +X2 · (a′ · G′) .

The polynomial pa(X) · pG(X), whose coefficients lie in G, is defined this way.
Completeness of Protocol 1 follows from the fact that

∑
ω∈{−1,1}n pa(ω) · pG(ω) = 2`〈a,G〉. Indeed,

each contribution to
∑

ω∈{−1,1}` pa(ω) · pG(ω) corresponds to the monomials of pa(X) · pG(X) of the

form X2i1
1 · · ·X

2i`
` . The coefficient of X2i1

1 · · ·X
2i`
` in pa(X) · pG(X) arises from a multiplication of the

monomials in the terms ai1,...,i`X
i1
1 · · ·X

i`
` and Gi1,...,i`X

i1
1 · · ·X

i`
` , which multiply to give ai1,...,i` ·Gi1,...,i` ·

X2i1
1 · · ·X

2i`
` . Thus,

∑
ω∈{−1,1}` pa(ω) · pG(ω) = 2`〈a,G〉.

4For any a, a′ ∈ F and G,G′ ∈ G we have (a+ a′) · G = a · G+ a′ · G and a · (G+ G′) = a · G+ a · G′.
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The security guarantee of Protocol 1 is different from that of the sumcheck protocol. The sumcheck
protocol has a soundness guarantee: if the polynomial p does not have the claimed sum τ then the verifier
accepts with small probability. In contrast, Protocol 1 has a knowledge soundness guarantee: there exists
an extractor that, given a suitable collection of accepting transcripts for a given commitment key G and
commitment C, efficiently finds an opening a such that C = 〈a,G〉.

This difference makes sense: any given Pedersen commitment C can always be expressed as a scalar
product of some opening a and the commitment key generators G; in fact, there are many different possible
openings a for which this is true! Therefore, soundness is not a meaningful notion for Protocol 1.

The security guarantee is summarized by the following lemma, whose proof we sketch in Section 2.2.1.

Lemma 2.4 (informal). Protocol 1 satisfies the following for every key G ∈ Gn and commitment C ∈ G.
• Completeness. For every a ∈ Fn such that C = 〈a,G〉, Pr[〈P(G,C, a),V(G,C)〉 = 1] = 1.
• Knowledge soundness. Given a suitable tree of accepting transcripts for V(G,C), one can efficiently

extract an opening a ∈ Fn such that C = 〈a,G〉.

Perhaps surprisingly, Protocol 1 is equivalent to the “split-and-fold” knowledge protocol for Pedersen
commitments introduced in [BCCGP16] (we describe this equivalence in Appendix A). Moreover, knowledge
soundness can be established without relying on any computational assumptions, a fact that was noted for the
“split-and-fold” knowledge protocol in [ACF20; BDFG20].

2.2.1 Proof sketch of Lemma 2.4

We discuss knowledge soundness. The extractor takes as input 3` accepting transcripts arranged in a 3-ary tree
of depth `, with each path from the root to the leaf identified by a choice of verifier randomness r1, . . . , r` ∈ F.
For i ∈ [`], the node at layer i− 1 corresponding to path r1, . . . , ri−1 ∈ F is labeled with the message sent by
the prover given challenges r1, . . . , ri−1 and has three children nodes each corresponding to a distinct chal-
lenge r(j)i ∈ F. For i ∈ [`], a prover message for the layer i− 1 is a quadratic polynomial qi[r1, . . . , ri−1] ∈
G[X] sent by the prover in the sumcheck protocol given challenges r1, . . . , ri−1; and a prover message for the
layer ` is an opening w[r1, . . . , r`] ∈ F sent by the prover after the sumcheck protocol. Since transcripts are
accepting, we know that:

∑
ω1∈{−1,1} q1(ω1) = 2`C; for i ∈ {2, . . . , `},

∑
ω∈{−1,1} qi[r1, . . . , ri−1](ω) =

qi−1[r1, . . . , ri−2](ri−1); and w[r1, . . . , r`] · pG(r1, . . . , r`) = q`[r1, . . . , r`−1](r`).
The extractor works inductively, processing each layer of the tree starting from the `-th layer and moving

upwards towards the root. For i = `, . . . , 1 and for every path (r1, . . . , ri−1) ∈ Fi−1 in the transcript tree
with children {r(j)i }j∈[3], the extractor works as follows.

1. Let G[r1, . . . , ri−1] ∈ Gn/2i−1
be the coefficients of pG(r1, . . . , ri−1, Xi, . . . , X`), and let G0[r1, . . . , ri−1]

and G1[r1, . . . , ri−1] be the coefficients for monomials without Xi and with Xi respectively. For j ∈ [3],
let G′[r1, . . . , ri−1, r

(j)
i ] := G[r1, . . . , ri−1] + r

(j)
i · G1[r1, . . . , ri−1] ∈ Gn/2i be the coefficients of

pG(r1, . . . , ri−1, r
(j)
i , Xi+1, . . . , X`).

2. We inductively know, for each j ∈ [3], an opening w[r1, . . . , ri−1, r
(j)
i ] ∈ Fn/2i to the commitment

qi[r1, . . . , ri−1](r
(j)
i ) ∈ G with respect to the key G′[r1, . . . , ri−1, r

(j)
i ]:

〈w[r1, . . . , ri−1, r
(1)
i ],G′[r1, . . . , ri−1, r

(1)
i ]〉 = qi[r1, . . . , ri−1](r

(1)
i ) ,

〈w[r1, . . . , ri−1, r
(2)
i ],G′[r1, . . . , ri−1, r

(2)
i ]〉 = qi[r1, . . . , ri−1](r

(2)
i ) ,

〈w[r1, . . . , ri−1, r
(3)
i ],G′[r1, . . . , ri−1, r

(3)
i ]〉 = qi[r1, . . . , ri−1](r

(3)
i ) .
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3. Since the polynomial qi[r1, . . . , ri−1] is quadratic, we can use linear algebra on the above three equations
to compute a quadratic polynomial π[r1, . . . , ri−1] ∈ Fn/2i−1

[X] such that

〈π[r1, . . . , ri−1](X),G[r1, . . . , ri−1]〉 = qi[r1, . . . , ri−1](X) .

Then we can obtain an opening w[r1, . . . , ri−1] ∈ Fn/2i−1
such that

〈w[r1, . . . , ri−1],G[r1, . . . , ri−1]〉 =
∑

ω∈{−1,1}qi[r1, . . . , ri−1](ω) .

Observe that:
• If i > 1, the verifier’s checks imply that

∑
ω∈{−1,1} qi[r1, . . . , ri−1](ω) = qi−1[r1, . . . , ri−2](ri−1), and

sow[r1, . . . , ri−1] is an opening to the commitment qi−1[r1, . . . , ri−2](ri−1) under the key G[r1, . . . , ri−1].
• If i = 1 (this is the last iteration) then the verifier’s checks imply that

∑
ω1∈{−1,1} q1(ω1) = 2`C, and

so w is an opening to the commitment 2`C under the key G. Dividing by 2` yields the desired opening.

A key ingredient of the knowledge extractor is the ability to double the length of known openings
by manipulating multiple transcripts for a given recursion round. The Pedersen commitment, being a
homomorphism into G, allows this unconditionally. Jumping ahead, this property of a commitment scheme,
which we call invertibility, may require computational assumptions, and is a central component of our
sumcheck argument for the general setting of sumcheck-friendly commitments (see Sections 2.3 and 2.4).

2.3 Sumcheck argument for sumcheck-friendly commitments

We explain how to formulate a sumcheck argument for proving knowledge of an opening for any commitment
scheme that satisfies certain functionality and security properties. We proceed in two steps: in Section 2.3.1
we focus on the special case of scalar product protocols under Pedersen commitments to gain intuition, and
then in Section 2.3.2 we extend this to apply to a sumcheck-friendly commitment.

2.3.1 Scalar-products under Pedersen commitments

In Section 2.2 we have seen how to construct a sumcheck argument for Pedersen commitments. We now
write a sumcheck argument that proves knowledge of openings of two Pedersen commitments such that the
scalar product of the two openings is a publicly-known value. That is, we obtain a knowledge protocol for the
commitment scheme CM that, given a commitment key (G,H), maps a message (a, b) to

CM.Commit
(

(G,H), (a, b)
)

:= (〈a,G〉, 〈b,H〉, 〈a, b〉) .

Protocol 2: sumcheck argument for scalar-products under Pedersen commitments

For n = 2`, the prover and verifier receive as input commitment keys G,H ∈ Gn, commitments
Ca,Cb ∈ G and target value t ∈ F. The prover also receives as input openings a, b ∈ Fn such that
Ca = 〈a,G〉, Cb = 〈b,H〉 and t = 〈a, b〉. (I.e., such that CM.Commit

(
(G,H), (a, b)

)
= (Ca,Cb, t).)

The prover and verifier engage in a sumcheck protocol for the instance

xSC := (R = F,M = G×G× F, H = {−1, 1}, ` = log n, τ = (2`Ca, 2
`Cb, 2

`t), C = F)
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where the prover uses the polynomial

p(X) :=
(
pa(X) · pG(X), pb(X) · pH(X), pa(X) · pb(X)

)
∈ (G×G× F)[X1, . . . , X`] .

After the end of the sumcheck protocol, the prover learns r ∈ F` and the verifier learns (r, v) ∈
F`× (G×G×F). Then the prover computes and sends pa(r), pb(r) ∈ F to the verifier, and the verifier
computes pG(r), pH(r) ∈ G and checks that (pa(r) · pG(r), pb(r) · pH(r), pa(r) · pb(r)) = v.

Similarly to Section 2.2, the first and second components of the polynomial p(X) are well-defined
because of the bilinearity of scalar multiplication from F×G to G; moreover, the third component of p(X)
is well-defined because it involves the product of two polynomials over F.

Protocol 2 is complete because∑
ω∈{−1,1}`

pa(ω)pG(ω) = 2`〈a,G〉 ,
∑

ω∈{−1,1}`
pb(ω)pH(ω) = 2`〈b,H〉 ,

∑
ω∈{−1,1}`

pa(ω)pb(ω) = 2`〈a, b〉 .

Moreover, one can show that Protocol 2 satisfies the following knowledge-soundness property: there exists
an extractor that, given a suitable collection of accepting transcripts for a given commitment key (G,H) and
commitment C = (Ca,Cb, t), efficiently finds an opening (a, b) such that C = CM.Commit((G,H), (a, b)),
assuming that the discrete logarithm problem is hard over G. Proving knowledge soundness follows a similar
approach to that for Protocol 1 sketched in Section 2.2.1. The main difference is that “inverting” from a level
to the previous one involves not only solving linear equations to find openings of commitments corresponding
to the first two components of the polynomial p(X), but also arguing that the scalar-product of these openings
equals the third component of the polynomial p(X). This step relies on the hardness of the discrete logarithm
problem over G (which one may have assumed anyway to make the commitment binding). This is different
from Protocol 1, where no assumptions were necessary to establish knowledge soundness, and intuitively is
because the commitment scheme involves a quadratic, rather than linear, computation on the message.

2.3.2 Extending to any sumcheck-friendly commitment

The commitments used in Protocols 1 and 2 are examples of a sumcheck-friendly commitment scheme. Below
we give an informal definition (which omits technicalities such as how commitment randomness is handled).

Definition 3 (informal). Let F be a prime-order field and let M,K,C be F-linear spaces. A commitment
scheme CM is sumcheck-friendly if there exists an efficient function fCM : M×K→ C such that for every
commitment key ck and message m it holds that CM.Commit (ck,m) =

∑
ω∈H` fCM(pm(ω), pck(ω)) where:

(i) H ⊆ F is a domain and ` ∈ N a number of variables; (ii) pm(X) ∈M[X] can be efficiently obtained from
the message m (and, conversely, m can be efficiently obtained from pm(X)); (iii) pck(X) ∈ K[X] can be
efficiently obtained from the commitment key ck; (iv) fCM(pm(X), pck(X)) ∈ C[X] is a polynomial.

We can obtain an opening protocol for CM via a sumcheck argument.

Protocol 3: sumcheck argument for sumcheck-friendly commitments

For n = 2`, the prover and verifier receive as input commitment key ck and commitment cm. The
prover also receives as input an opening m such that cm = CM.Commit (ck,m).
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The prover and verifier engage in a sumcheck protocol for the instance

xSC := (R = F,M = C, H, `, τ = cm, C = F)

where the prover uses the polynomial pm,ck(X) := fCM(pm(X), pck(X)). At the end of the sumcheck
protocol, the prover learns r ∈ F` and the verifier learns (r, v) ∈ F`×C. Then the prover computes and
sends pm(r) to the verifier, and the verifier computes pck(r) and checks that fCM(pm(r), pck(r)) = v.

The above opening protocol for the sumcheck-friendly commitment scheme CM has perfect completeness,
and also has knowledge soundness if CM is invertible (a property that we discuss shortly).

Theorem 3 (informal). Let CM be a sumcheck-friendly commitment scheme. If CM is invertible then
Protocol 3 is an opening protocol for CM: there exists an extractor that given a key ck, commitment cm, and a
suitable tree of accepting transcripts for (ck, cm), finds an opening m such that cm = CM.Commit (ck,m).

Completeness. The sumcheck-friendly property tells us that cm =
∑

ω∈H` fCM(pm(ω), pck(ω)), so the
completeness of Protocol 3 follows from the completeness of the sumcheck protocol.

Knowledge soundness. Since m can be efficiently obtained from pm(X), it suffices for the extractor to
recover, from the tree of transcripts, a polynomial pm(X) such that cm =

∑
ω∈H` fCM(pm(ω), pck(ω)).

The proof strategy is similar to the one described in Section 2.2.1: the extractor proceeds layer by layer,
starting from the leaf layer of the tree of transcripts and continuing to the root; for each node in a particular
layer, the extractor computes a polynomial obtained from the polynomials associated to the node’s children.
The desired polynomial pm(X) is the polynomial associated to the root of the tree.

The invertibility property facilitates progress from children to parents, and states that given enough
openings for a commitment of a layer one can find an opening of a commitment of the previous layer.

Definition 2.5 (informal). CM is K-invertible if there exists an efficient algorithm I satisfying the following.
Suppose that I receives i ∈ [`], challenge vector (r1, . . . , ri−1) ∈ Fi−1, distinct challenges r(1)i , . . . , r

(K)
i ∈

F, opening polynomials p1, . . . , pK ∈ M[Xi+1, . . . , X`], and commitment polynomial q(X) ∈ C[X] such
that

∀ j ∈ [K] , q(r
(j)
i ) =

∑
ωi+1,...,ω`∈H

fCM

(
pj(ωi+1, . . . , ω`), pck(r1, . . . , ri−1, r

(j)
i , ωi+1, . . . , ω`)

)
. (1)

Then I outputs an opening polynomial p ∈M[Xi, . . . , X`] such that∑
ωi∈H

q(ωi) =
∑

ωi,...,ω`∈H
fCM

(
p(ωi, . . . , ω`), pck(r1, . . . , ri−1, ωi, . . . , ω`)

)
. (2)

The above definition omits technicalities such as the fact that the inputs to the inverter should be restricted
to be efficiently generated by an adversary (given the commitment key ck) and the fact that input and output
opening polynomials should be restricted to be “admissible” (partial evaluations of pm for some m).

The extractor receives a K-ary tree of accepting transcripts for (ck, cm). In more detail, for every
i ∈ [`] and (r1, . . . , ri−1) ∈ Fi−1, qi[r1, . . . , ri−1] ∈ C[X] is the polynomial corresponding to the path
(r1, . . . , ri−1) in the transcript tree (the prover’s polynomial in the i-th round of the sumcheck protocol for
these challenges); moreover, for every (r1, . . . , r`) ∈ F`, w[r1, . . . , r`] ∈ C is the opening corresponding to
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the path (r1, . . . , r`) in the transcript tree (sent by the prover after the sumcheck protocol for these challenges).
Every transcript is accepting, so we know that for every (r1, . . . , r`) ∈ F` it holds that

∑
ω1∈H

q1(ω1) = cm ,

{∑
ω∈H

qi[r1, . . . , ri−1](ω) = qi−1[r1, . . . , ri−2](ri−1)

}
i∈{2,...,`}

,

and fCM(w[r1, . . . , r`], pck(r1, . . . , r`), 1) = q`(r`) .

The extractor iterates over the whole tree, proceeding with i = `, . . . , 1. In the iteration for a path
(r1, . . . , ri−1) ∈ Ci−1 with children {r(j)i }j∈[K], the extractor uses the inverter I to transform polyno-

mials {p[r1, . . . , ri−1, r(j)i ]}j∈[K] in M[Xi+1, . . . , X`] that satisfy Equation (1) into a new polynomial
p[r1, . . . , ri−1] in M[Xi, . . . , X`] that satisfies Equation (2). The initial polynomials {p[r1, . . . , r`]}(r1,...,r`)∈C`
are the constant polynomials corresponding to the opening values {w[r1, . . . , r`]}(r1,...,r`)∈C` . The fact that
transcripts are accepting ensures that the initial polynomials satisfy the required condition, and that each
produced polynomial satisfies the invertibility condition for the prior layer.

After all these iterations the extractor has found a polynomial p in M[X1, . . . , X`] such that
∑

ω1∈H q1(ω1) =∑
ω∈H` fCM(p(ω), pck(ω)); again by the accepting condition we know that

∑
ω1∈H q1(ω1) = cm so we de-

duce that cm =
∑

ω∈H` fCM(p(ω), pck(ω)), and the desired polynomial is p.
Whence invertibility? Invertibility is incomparable to the commitment’s binding property. For example,
the Pedersen commitment scheme is unconditionally invertible (see Section 2.2.1), whereas invertibility for
the scalar-product commitment scheme in Protocol 2 relies on the hardness of the discrete logarithm problem.
In Section 2.5 we elaborate on how to establish invertibility for different choices of commitment schemes.
Examples. Protocol 3 captures sumcheck arguments for several commitment schemes.

• The Pedersen commitment scheme (used in Protocol 1) is sumcheck-friendly because, for the func-
tion fCM(a,G) := 2−`a · G, for every commitment key G ∈ Gn and message a ∈ Fn it holds that
CM.Commit(G, a) =

∑
ω∈H` fCM(pa(ω), pG(ω)), where H := {−1, 1}, ` := log n, and pa(X), pG(X)

are the multilinear polynomials induced by a,G respectively. (See Definition 2.)
• The scalar-product commitment scheme (used in Protocol 2) is sumcheck-friendly because, for the func-

tion fCM((a, b), (G,H)) := 2−`(a·G, b·H, a·b), for every commitment key (G,H) ∈ Gn×Gn and message
(a, b) ∈ Fn×Fn it holds that CM.Commit((G,H), (a, b)) =

∑
ω∈H` fCM((pa(ω), pb(ω)), (pG(ω), pH(ω))),

where H := {−1, 1}, ` := log n, and pa(X), pb(X), pG(X), pH0
(X) are the multilinear polynomials in-

duced by a, b,G,H respectively. (See Definition 2.)

More generally, all inner-product commitments in [BMMTV19] are sumcheck-friendly; this includes pairing-
based commitment schemes appearing in works such as [LMR19]. Below we describe inner-product
commitments via the notion of sum-bilinear commitments, which is easier to work with in our setting.

Definition 4. A commitment scheme CM is sum-bilinear over a finite field F if the key, message, and
commitment spaces are F-linear spaces and the following properties hold for all commitment keys ckL, ckR ∈
Kn, and messages mL,mR ∈Mn:

CM.Commit (ckL + ckR,mL + mR) = CM.Commit (ckL,mL) + CM.Commit (ckR,mL)

+ CM.Commit (ckL,mR) + CM.Commit (ckR,mR) and

CM.Commit (ckL‖ckR,mL‖mR) = CM.Commit (ckL,mL) + CM.Commit (ckR,mR) .

Claim (informal). If CM is sum-bilinear then CM is sumcheck-friendly.
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Proof sketch. The first property allows us to “lift” the commitment function to a polynomial. For the function
fCM(a,G) = 2−`CM.Commit(G; a), it holds that for every message a ∈Mn and commitment key G ∈ Kn

fCM(pa(X), pG(X)) = 2−`CM.Commit
(
pG(X), pa(X)

)
= 2−`

∑
i,j∈{0,1}`

CM.Commit
(
Gj , ai

)
·Xi1+j1

1 · · ·Xi`+j`
`

where ` := log n, and pa(X), pG(X) are the multilinear polynomials induced by a,G via Definition 2. The
second property implies that

∑
ω∈H` fCM(pa(ω), pG(ω)) = CM.Commit (ck,m) for H = {−1, 1}.

2.4 Extending sumcheck arguments to modules

We have so far discussed sumcheck arguments for sumcheck-friendly commitment schemes involving a
prime-order group and its scalar field. Yet sumcheck arguments can be formulated more generally to capture
commitments in other settings, such as groups of unknown order [BFS20] and lattices [BLNS20]. We explain
the changes for this generalization, and how they affect completeness and knowledge soundness.

Modules, norms, slackness. To motivate the considerations that arise, we find it helpful to first recall the
Pedersen commitment scheme in other cryptographic settings (ignoring for now randomness for hiding).

• Pedersen over groups of unknown order. Let G be a group of unknown order and let q, p > 2 be primes
that satisfy certain conditions (determined by the type of instantiation of G). A Pedersen commitment is
computed as CM.Commit(G, a) = 〈a,G〉 ∈ G where the commitment key G equals (1·G, q·G, . . . , qn−1·G)

for a random group element G ∈ G and the message a is a vector in
(

(−p−1
2 , p−12 ) ∩ Z

)n
.

• Pedersen over lattices. Let R be a normed ring and let BSIS be a norm bound of “short” ring elements; a
popular choice is R = Zq[X]/〈Xd + 1〉 and short ring elements in R(BSIS), i.e. elements of R with norm
at most BSIS, for a suitable BSIS. A Pedersen commitment is computed as CM.Commit(G, a) = 〈a,G〉
where G is a matrix of random ring elements and a is a vector of short ring elements.

These examples suggest that we need to consider algebraic structures that are not necessarily rings but whose
scalars are over a ring, and so we rely on the notion of modules over a ring. Moreover, we need to take
into account the norms of openings. Finally, we will only be able to extract a “relaxed” opening for a given
commitment, which differs from a regular opening in two ways: (i) the opening might have larger norm
than an honestly committed value; (ii) the opening might not satisfy the commitment equation but only a
related equation parametrized by a slackness c, which we model via an opening algorithm CM.Open that
additionally takes c as input. This is similar to what happens for Schnorr protocols in these settings, as we
explain in Section 2.5.

Extending the sumcheck-friendly property. We extend the definition of a sumcheck-friendly commitment
scheme (Definition 3) as follows: (i) the spaces M,K,C are modules over the same ringR; (ii) the summation
domain is a subset H of R; (iii) a message polynomial pm(X) is over the module M; (iv) a key polynomial
pck(X) is over the module K; (v) the combiner function fCM maps M × K (and a slackness factor) to the
module C; (vi) the summation condition now involves an efficient predicate φsc and is as follows:

CM.Commit (ck,m) =
∑

ω∈H`fCM(pm(ω), pck(ω), 1) and for every slackness c

CM.Open (ck,m, cm, c) = 1 ⇔ φsc

(
cm,

∑
ω∈H`fCM(pm(ω), pck(ω), c), c

)
= 1 .
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(Thus Definition 3 is the special case where M,K,C are F-linear, R = F, φsc checks equality of cm and the
sum, and there are no slackness factors.)
Extending sumcheck arguments. In the sumcheck argument for a commitment scheme that is sumcheck-
friendly according to the extended definition, we must additionally ensure that: (i) we use a challenge set
C ⊆ R for the sumcheck protocol that satisfies certain properties (discussed further below) that facilitate
proving knowledge soundness; (ii) we use norm bounds for commitment openings, so the underlying ring R
and the module M must be equipped with a norm. With these in mind, we now rewrite Protocol 3 for the
more general setting (differences in blue), which will allow us to capture the different cryptographic settings.

Protocol 4: sumcheck argument for sumcheck-friendly commitments (over modules)

For n = 2`, the prover and verifier receive as input commitment key ck and commitment cm. The
prover also receives as input an opening m such that ‖pm(X)‖ ≤ BC and cm = CM.Commit (ck,m).

The prover and verifier engage in a sumcheck protocol for the instance

xSC := (R,M = C, H, `, τ = cm, C)

where the prover uses the polynomial pm,ck(X) := fCM(pm(X), pck(X), 1). At the end of the sumcheck
protocol, the prover learns r ∈ R` and the verifier learns (r, v) ∈ R` × C. Then the prover computes
and sends w := pm(r) to the verifier. Finally the verifier computes pck(r), checks that ‖w‖ ≤ BSA (for
BSA discussed in the completeness property below), and checks that fCM(w, pck(r), 1) = v.

Completeness. This follows similarly as in the special case considered in Section 2.3.2, with the main
difference that the norm bounds must be set so that they hold for any valid execution of the protocol. We need
that for any message m (in the message space of the given commitment key ck) such that ‖pm(X)‖ ≤ BC

and challenge vector r ∈ C` it holds that ‖pm(r)‖ ≤ BSA. An explicit expression for BSA can be computed
in a straightforward way from the maximum norm of a challenge in C, the number of variables ` of pm(X),
the degree of pm(X), and BC (a bound on the maximum norm of a coefficient in pm(X)).
Knowledge soundness. We wish to prove that Protocol 4 is an opening protocol for CM: given a tree
of accepting transcripts for the commitment key ck and commitment cm, we can extract a corresponding
(relaxed) opening m. Similarly to Section 2.3.2, we argue knowledge soundness based on an invertibility
property that generalizes the prior one (Definition 4.12); the challenge set C is now part of the property.

Definition 2.6 (informal). CM is (K,N, ξ)-invertible if there exists an efficient algorithm I satisfying the
following. Suppose that I receives i ∈ [`], challenge vector (r1, . . . , ri−1) ∈ Ci−1, distinct challenges
r
(1)
i , . . . , r

(K)
i ∈ C, opening polynomials p1, . . . , pK ∈M[Xi+1, . . . , X`], commitment polynomial q(X) ∈

C[X], and slackness c such that

∀ j ∈ [K] , φsc

q(r(j)i ),
∑

ωi+1,...,ω`∈H
fCM

(
pj(ωi+1, . . . , ω`), pck(r1, . . . , ri−1, r

(j)
i , ωi+1, . . . , ω`), c

) = 1 .

Then I outputs an opening polynomial p ∈M[Xi, . . . , X`] of norm at most N ·maxj∈[K] ‖pj‖ such that

φsc

∑
ωi∈H

q(ωi),
∑

ωi,...,ω`∈H
fCM

(
p(ωi, . . . , ω`), pck(r1, . . . , ri−1, ωi, . . . , ω`), ξ · c

) = 1 .
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Theorem 4. If the sumcheck-friendly commitment scheme CM is (K,N, ξ)-invertible then Protocol 4 is an
opening protocol for CM: there exists an extractor that given a commitment key ck, commitment cm for a
message with norm bound BC, and a K-ary tree of accepting transcripts for (ck, cm), finds an opening m
with norm ‖pm(X)‖ ≤ N `BSA such that CM.Open

(
ck, cm,m, ξ`

)
= 1.

Note that since the extractor works over a tree of depth `, the final loss in norm and slackness involves `
factors of N and ξ respectively. Technical details for our sumcheck argument are in Section 4. The definition
of invertibility there (Definition 4.12) has an extra parameter BINV, which is an absolute upper bound on the
norm of a relaxed opening for which invertibility can hold.

The slackness loss ξ depends on the cryptographic setting, and in the settings that we consider, ξ 6= 1 in
the lattice and in the GUO setting.

2.5 Instantiations of sumcheck-friendly commitments

Our main theorem on sumcheck arguments (Theorem 1) applies to any sumcheck-friendly commitment that
is invertible. Below, we summarize how to construct such commitment schemes; details are in Section 5.

• In Section 2.5.1 we introduce secure bilinear modules.
• In Section 2.5.2 we explain how to construct a (generalized) Pedersen commitment scheme from a secure

bilinear module, and give intuition for why it is sumcheck-friendly and invertible. In the technical sections,
we also discuss other commitment schemes, which capture linear functions and scalar products.

• In Section 2.5.3 we outline how to instantiate secure bilinear modules in different cryptographic settings:
(i) prime-order groups; (ii) bilinear groups; (iii) unknown-order groups; and (iv) lattices.

2.5.1 Secure bilinear modules

A bilinear moduleM = (R,ML,MR,MT, e) consists of a ring R, three modules ML,MR,MT over R, and
a non-degenerate bilinear map e : ML ×MR → MT; moreover, R and ML are equipped with norms. For
notational simplicity we denote e(a,G) as 〈a,G〉 and define M(B) := {m ∈M such that ‖m‖ ≤ B}.

A bilinear-module generator is a tuple BM = (Setup,KeyGen) where: BM.Setup (given a security
parameter and length parameter n) samples a bilinear moduleM, integer h ∈ N, and auxiliary string aux;
and BM.KeyGen (given BM.Setup’s output) samples a vector G = (G0,G1) in Mn+h

R .
A bilinear-module generator BM is secure if it satisfies the following.

• It satisfies the bilinear relation assumption: for a norm bound BBRA specified in aux and given G ←
BM.KeyGen, it is hard to find a non-zero a ∈ Mn+h

L (BBRA) such that 〈a,G〉 = 0. (This is a natural
generalization of the discrete logarithm assumption, the SIS assumption, and others.)

• The integer h is hiding: there is a distribution UML
on Mh

L such that, for every a ∈Mn
L , the following two

random variables are statistically close:{
(G, 〈a,G0〉+ 〈r,G1〉)

∣∣∣∣ G← BM.KeyGen
r ← UML

}
and

{
(G, 〈r,G1〉)

∣∣∣∣ G← BM.KeyGen
r ← UML

}
.

• The string aux specifies a norm bound BC such that BC ≤ BBRA.

• The string aux specifies pseudoinverse parameters (C, ξ,N) for (R,MT): for every m,m∗ ∈MT, a ∈ R,
and distinct c1, c2 ∈ C, if (c1 − c2)m = am∗ then there exists (and one can efficiently find) r ∈ R such
that ξm = rm∗ and ‖r‖ ≤ N‖a‖.
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2.5.2 Sumcheck-friendly commitments over bilinear modules

We use secure bilinear-module generators to construct several sumcheck-friendly commitment schemes that
are invertible: a generalized Pedersen commitment scheme (Section 5.2), as well as commitment schemes
that capture linear functions (Section 5.3) and scalar products (Sections 5.4 and 5.5). Below we restrict our
technical overview to discuss the Pedersen commitment scheme.

Definition 2.7 (informal). Let BM = (Setup,KeyGen) be a secure bilinear-module generator and consider
an output (M, h, aux) of BM.Setup (for a message length n) and an output G = (G0,G1) ∈ Mn

R ×Mh
R

of BM.KeyGen. The (generalized) Pedersen commitment scheme for messages of length n has messages
of the form a ∈ Mn

L (BC), and a commitment is computed as C := 〈a,G0〉 + 〈ρ,G1〉, where ρ is sampled
appropriately from Mh

L (BC). An opening with slackness c ∈ R for a commitment C ∈ MT under the
commitment key (G0,G1) ∈Mn

R ×Mh
R is a vector (a, ρ) ∈Mn

L (BBRA)×Mh
L (BBRA) such that

c · C = 〈a,G0〉+ c · 〈ρ,G1〉 .

The Pedersen commitment scheme is binding under the bilinear relation assumption (which holds because
BM is secure) and is hiding by the property of h (which also holds because BM is secure). Moreover, the
Pedersen commitment scheme is (unconditionally) sumcheck-friendly; this can be argued in a similar way as
for the usual Pedersen commitment scheme (over prime-order groups).

Establishing invertibility, however, is more challenging. Rather than specifically discussing invertibility
of the Pedersen commitment, in this informal overview we describe how the fact that BM is secure enables
us to (straightforwardly) obtain an extraction algorithm for the (suitably generalized) Schnorr protocol. This
protocol is a simple zero-knowledge argument of knowledge for a commitment opening of a given Pedersen
commitment, and the extractor is asked to produce a (possibly relaxed) opening for the commitment given
two accepting transcripts sharing the same first message. The considerations that arise when establishing
knowledge soundness of the (non-succinct) Schnorr protocol are loosely related to, though technically simpler
than, those that arise when establishing invertibility for the Pedersen commitment scheme (which in turns
leads to succinct arguments of knowledge via our sumcheck arguments).

Definition 2.8 (informal). In the Schnorr protocol for the (generalized) Pedersen commitment scheme, the
prover and verifier receive a key G = (G0,G1) ∈Mn+h

R , commitment C ∈MT and norm bound BC; and the
prover additionally receives as witness a message a ∈ Mn

L (BC) and randomness ρ ∈ Mh
L (BC) such that

〈a,G0〉+ 〈ρ,G1〉 = C. The prover and verifier interact as follows:
• the prover samples b ∈Mn+h

L (κ‖C‖BC), where ‖C‖ := maxr∈C ‖r‖, and sends t := 〈b,G〉 ∈MT;
• the verifier sends a random challenge r ∈ C;
• the prover sends the response s := r · (a, ρ) + b ∈Mn+h

L if ‖s‖ ≤ (κ− 1)‖C‖BC (otherwise aborts);
• the verifier accepts if 〈s,G〉 = r · C + t and ‖s‖ ≤ (κ− 1)‖C‖BC.

The parameter κ is chosen such that b “masks” (a, ρ). We discuss how to choose κ in Section 2.6, where
similar considerations arise in other protocols; here, instead, we focus on discussing knowledge extraction.
The extractor recovers an opening of C from two accepting transcripts (t, r1, s1) and (t, r2, s2) sharing the
same first message t but with distinct challenges r1 and r2. First, subtracting the verification equation for
one transcript from that of the other transcript shows that 〈s1 − s2,G〉 = (r1 − r2) · C. The fact that BM
is secure implies that (C, ξ,N) are pseudoinverse parameters for (R,MT), so we can compute an r ∈ R
such that ξ · C = r〈s1 − s2,G〉 with ‖r‖ ≤ N . Therefore, the extractor has found a relaxed opening
(a′, ρ′) := r(s1− s2) such that 〈a′,G0〉+ 〈ρ′,G1〉 = ξ ·C with ‖(a′, ρ′)‖ ≤ N2(κ− 1)‖C‖BC. (And we see
that the norm BC must satisfy N2(κ− 1)‖C‖BC ≤ BBRA.)
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The norm computations above ignore expansion factors that appear when computing the norms of
expressions that involve the multiplication of ring and module elements (see Definitions 3.1 and 3.2).

2.5.3 Instantiations of secure bilinear modules

We summarize how to instantiate secure bilinear-module generators BM = (Setup,KeyGen) in different
cryptographic settings. Technical details can be found in Section 5.6.

Prime-order groups. BM.Setup samples a group G of prime order q and outputs: (i) the bilinear module
(R,ML,MR,MT, e) := (Fq,Fq,G,G, e) where e is scalar multiplication (e sends a ∈ Fq and G ∈ G to
a · G ∈ G) and Fq is equipped with the trivial norm (zero has norm 0 and all non-zero elements have norm
1); (ii) the norm bound BBRA :=∞ (every element in Fq has trivial norm at most∞); (iii) the norm bound
BC := 1 (which is at most BBRA =∞); (iv) the hiding constant h := 1 (UML

is the uniform distribution over
Fq as discussed below); (v) the pseudoinverse parameters (C, ξ,N) := (Fq, 1, 1). BM.KeyGen samples a
random element G ∈Mn+h

R = Gn+h.
The bilinear-module generator BM above is secure, as outlined below.

• The bilinear relation assumption corresponds to the discrete logarithm assumption. (Indeed, since Fq is
equipped with the trivial norm, ML(BBRA) = Fq(1) = Fq, which means that the assumption states that,
given G ∈ Gn+h sampled by BM.KeyGen, it is hard to find a non-zero a ∈ Fn+hq such that 〈a,G〉 = 0.)

• h = 1 is a hiding constant because for every a ∈ Fnq the random variables (G, 〈a,G0〉 + r · G1) and
(G, r ·G1) are identical for random G = (G0,G1) ∈ Gn+1 (as sampled by BM.KeyGen) and secret random
r ∈ Fq (as sampled by UML

).
• (C, ξ,N) = (Fq, 1, 1) are pseudoinverse parameters because, for every distinct c1, c2 ∈ Fq, m,m∗ ∈ G

and a ∈ Fq, if (c1 − c2)m = am∗, then m = (c1 − c2)−1am∗ and ‖(c1 − c2)−1‖ = 1.

Bilinear groups. BM.Setup samples groups G1,G2,GT of prime order q equipped with a non-degenerate bi-
linear map e : G1×G2 → GT and outputs: (i) the bilinear module (R,ML,MR,MT, e) := (Fq,G1,G2,GT, e)
with Fq,G1 equipped with the trivial norm (zero has norm 0 and all non-zero elements have norm 1); (ii) the
norm bound BBRA = ∞ (every element in Fq and G1 has trivial norm at most ∞); (iii) the norm bound
BC := 1 (which is at most BBRA = ∞); (iv) the hiding constant h := 1 (UML

is the uniform distributions
over G1); (v) the pseudoinverse parameters (C, ξ,N) = (Fq, 1, 1). BM.KeyGen samples a random element
G ∈Mn+h

R = Gn+h
2 .

The bilinear-module generator BM above is secure via similar arguments as in the discrete logarithm
setting (with the bilinear relation assumption corresponding to the double-pairing assumption [AFGHO16]).

GUO setting. There are two instantiations of groups of unknown order (which are related to the commitment
schemes in [BFS20]): (a) RSA groups, and (b) class groups of an imaginary quadratic order. BM.Setup
selects a group G and primes q, p > 2, and outputs: (i) the bilinear module

(R,ML,MR,MT, e) := (Z,Z,G,G, e)

where e corresponds to group exponentiation; (ii) a norm bound BBRA which is equal to q−1
2 for RSA groups

and q−1
4 for class groups (see below); (iii) the norm bound BC; (iv) the hiding constant h := log 2λ|G|

BC

(UML
is the uniform distributions over the elements of ((−BC, BC) ∩ Z)h with norm less than BC); (v) the

pseudoinverse parameters (C, ξ,N) := ((−BC, BC) ∩ Z, lcm([p− 1]), lcm([p− 1])). BM.KeyGen samples
a random element G in G and outputs (G, qG, . . . , qn+h−1G) ∈Mn+h

R .
The bilinear-module generator BM above is secure, as outlined below.
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• The bilinear relation assumption with norm bound BBRA is implied by the Order Assumption [BFS20] for
the sampled group G. The Order Assumption is implied by the Adaptive Root Assumption [BBBPWM18;
Wes19]. The difference in BBRA for RSA groups and class groups is related to the fact that computing
square roots is easy in class groups.

• h = log 2λ|G|
BC

is a hiding constant as proved in [BFS20; BDFG20].
• (C, ξ,N) = ((−BC, BC) ∩ Z, lcm([p− 1]), lcm([p− 1])) are pseudoinverse parameters.

Lattice setting. BM.Setup selects a degree d, prime q, and dimension r and outputs: (i) the bilinear module

(R,ML,MR,MT, e) :=
(
Z[X]/〈Xd + 1〉,Z[X]/〈Xd + 1〉, (Zq[X]/〈Xd + 1〉)r, (Zq[X]/〈Xd + 1〉)r, e

)
where Z[X]/〈Xd + 1〉 is equipped with the infinity norm and e maps x ∈ Z[X]/〈Xd + 1〉 and A ∈
(Zq[X]/〈Xd + 1〉)r to Ax ∈ (Zq[X]/〈Xd + 1〉)r via ring multiplication; (ii) a norm bound BBRA related
to the SIS assumption (see below); (iii) a norm bound BC that is at most BBRA; (iv) the hiding constant
h := 2r log q

BC
(UML

is the uniform distributions over the elements of (Zq[X]/〈Xd + 1〉)h with norm
less than BC); (v) the pseudoinverse parameters (C, ξ,N) := ({Xi ∈ Z[X]/〈Xd + 1〉}0≤i≤2d−1, 2, 1).

BM.KeyGen samples a random element in Mn+h
R =

(
Zq[X]/〈Xd + 1〉

)r×(n+h).
The bilinear-module generator BM above is secure, as outlined below.

• The bilinear relation assumption with norm bound BBRA corresponds to the SIS assumption with norm
bound BBRA.

• h = 2r log q
BC

is a hiding constant as proved in [Mic07; SSTX09].
• (C, ξ,N) = ({Xi ∈ Z[X]/〈Xd + 1〉}0≤i≤2d−1, 2, 1) are pseudoinverse parameters. From [BCKLN14],

for everyXi, Xj ∈ Z[X]/〈Xd+1〉with i 6= j, it holds that the inverse (Xi−Xj)−1 over Zq[X]/〈Xd+1〉
is such that ‖2 · (Xi−Xj)−1‖ ≤ 1. Hence, for every m ∈MT = (Zq[X]/〈Xd + 1〉)r, distinct c1, c2 ∈ C,
and m∗ ∈ MT, if (Xi − Xj)m = am∗, then 2m = 2(Xi − Xj)−1m∗, where the inverse is over
Zq[X]/〈Xd + 1〉, and ‖2(Xi −Xj)−1a‖ ≤ d.

2.6 Succinct argument for scalar products over rings

We explain how to use sumcheck arguments to obtain zero-knowledge succinct arguments of knowledge for
scalar-product relations over rings. This involves choosing a specific sumcheck-friendly commitment to plug
in to Theorem 1, and also carefully using randomness to achieve zero knowledge (which is not a guarantee of
Theorem 1). Afterwards, in Section 2.7 we explain how to build on this to prove Theorem 2.

We first introduce the notion of protocol-friendly bilinear-module generator. A bilinear-module generator
BM is protocol-friendly if it satisfies the following.

• BM is secure (see Section 2.5.1).
• ML is not merely an R-module but also a ring itself (so that scalar products over ML are defined).5

• The string aux specifies κ ∈ N such that BM is masking-friendly (i.e., for every B ∈ N with BC ≤ B ≤
BBRA/κ and a ∈Mn

L (B), {a+ b}b←Mn
L (κB) is close to uniform).

• The string aux specifies an ideal I such that multiplication by ξ (which is part of the pseudoinverse
parameters (C, ξ,N) also in aux) is invertible modulo I .

The instantiations of bilinear-module generators of Section 2.5.3 are also protocol-friendly. Technical
details can be found in Section 5.6.

5In the pairing setting where ML is not a ring, we define scalar-product commitments differently. See Section 5 for details.

21



• Prime-order groups: BM.Setup additionally outputs κ :=∞ and I := {0}. This means that the argument
supports scalar products over ML/I = Fq, the scalar field of a prime-order group G.

• Bilinear groups: BM.Setup additionally outputs κ := ∞ and I := {0}. This means that the argument
supports scalar products over ML/I = G1 (alternatively, G2), a source group in the bilinear group.

• GUO setting: BM.Setup additionally outputs κ := O(2λ) and I := nZ for n ∈ Z whose prime factors are
greater than or equal to p. This means that the argument supports scalar products over ML/I = Z/nZ for
any n satisfying these conditions.

• Lattice setting: BM.Setup additionally outputs κ := O(dn) and I := nZ for odd n 6= −1, 1. This means
that the argument supports scalar products over ML/I = Z/nZ for any n satisfying these conditions.

The commitment scheme that we consider has two-part messages and includes a commitment to their
scalar-product; it is the extension of the scalar-product commitment from Section 2.3.1 to bilinear modules.

Definition 2.9 (informal). Let BM = (Setup,KeyGen) be a protocol-friendly bilinear-module generator.
The (generalized) scalar-product commitment scheme for messages of length n has messages of the form
(a, b) ∈Mn

L ×Mn
L such that ‖a‖, ‖b‖ ≤ BC, and commitment keys of the form (G0,G1,H0,H1,U0,U1) ∈

Mn+h
R ×Mn+h

R ×M1+h
R . A commitment is computed by sampling ρa, ρb, ρt ∈Mh

L (BC) and computing(
〈a,G0〉+ 〈ρa,G1〉, 〈b,H0〉+ 〈ρb,H1〉, 〈a, b〉 · U0 + 〈ρt,U1〉

)
In other words, a commitment is the tuple consisting of three generalized Pedersen commitments: for the first
part of the message a, for the second part of the message b, and for their scalar product 〈a, b〉 ∈ML.

A valid opening for a commitment (Ca,Cb,Ct) ∈ M3
T with keys (G0,G1,H0,H1U0,U1) ∈ Mn+h

R ×
Mn+h

R ×M1+h
R and slackness c ∈ R is a vector (a, b, ρa, ρb, ρt) ∈Mn

L (BBRA)×Mn
L (BBRA)×M3h

L (BBRA)
such that

c2 · C =
(
c · 〈a,G0〉+ c2 · 〈ρa,G1〉, c · 〈b,H0〉+ c2 · 〈ρb,H1〉, 〈a, b〉 · U0 + c2〈ρt,U1〉

)
.

The generalized scalar-product commitment scheme is binding under the bilinear relation assumption.
Moreover, it is sumcheck-friendly (unconditionally). The proof of invertibility follows from algebraic
manipulations analogous to the case of generalized Pedersen commitments discussed in Section 2.5; though
note that establishing invertibility in this case requires computational assumptions (even in the discrete
logarithm setting as discussed in Section 2.3.1).

We give a zero-knowledge succinct argument of knowledge for the following relation related to the
scalar-product of committed messages, which we denote byRCMSP.

Definition 2.10 (informal). The committed scalar-product relationRCMSP(c,BC) are the pairs (x,w) where:

• The instance x contains
– a protocol-friendly bilinear-module generator BM;
– commitment keys (G0,G1,H0,H1,U0,U1) ∈Mn

R ×Mh
R ×Mn

R ×Mh
R ×MR ×Mh

R ;
– commitments Ca,Cb,Ct ∈MT.

• The witness w = (a, ρa, b, ρb, t, ρt) ∈M2n+1+3h
L is such that ‖a‖, ‖ρa‖, ‖b‖, ‖ρb‖, ‖t‖, ‖ρ‖ ≤ BC and

– (a, ρa) is a valid opening of the Pedersen commitments Ca with slackness c;
– (b, ρb) is a valid opening of the Pedersen commitments Cb with slackness c;
– (t, ρt) is a valid opening of the Pedersen commitment Ct with slackness c2 and t = 〈a, b〉 mod I .
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The relation reasons about scalar-product relations over the quotient ring R• = ML/I (ML modulo I) for
the ideal I ⊆ML specified in aux. In certain settings, such as the lattice and GUO setting, we only extract
openings to commitments with slackness c 6= 1, we choose I so that we can “cancel out” the slackness c
modulo I as part of knowledge extraction algorithms and prove exact scalar-product relations over R•. We
now summarize the scalar-product argument; details can be found in Section 6.

The prover begins by computing a commitment C ∈ MT to 〈a, b〉 ∈ ML, which may not be equal
to t ∈ ML. Then the prover and verifier engage in the these sub-protocols: (i) an interactive reduction
masking the three Pedersen commitments to a, b, t, converting them into a single scalar-product commitment;
(ii) a sumcheck argument to prove knowledge of an opening to the scalar-product commitment; and (iii) a
consistency check that the committed values 〈a, b〉 and t equal modulo I .

Reduction to a sumcheck argument. The prover samples masking values ya and yb to rerandomize the
commitments to a, b, 〈a, b〉: the prover sends commitments to ya and yb, and also to v1 := 〈a, yb〉+〈b, ya〉 and
v0 := 〈ya, yb〉 (which depend only on a, b, ya, yb). Then the verifier sends to the prover a random challenge
α ∈ C. Then the prover computes ea := αa+ ya, eb := αb+ yb, and 〈ea, eb〉 = α2〈a, b〉+ αv1 + v0. The
openings of the rerandomized commitments do not leak any information about a or b, and so the prover
can safely send the corresponding commitment randomness to the verifier. Finally, the prover and verifier
engage in a sumcheck argument on the scalar-product commitment consisting of the commitments to ea, eb,
and 〈ea, eb〉. Since the sumcheck argument is invoked on inputs that have been masked, zero knowledge is
ensured (i.e., no information about the witnessw = (a, ρa, b, ρb, t, ρt) is revealed) even though the sumcheck
argument itself is not zero knowledge.

Checking consistency modulo I . The sumcheck argument merely convinces the verifier that the prover
knows a witness for the scalar-product commitment (Ca,Cb,C), while the verifier additionally wants to know
that the openings of C and Ct are equal modulo I . For this, we rely on a protocol on the commitments to 〈a, b〉
and t to check that they are equivalent modulo I . First, before receiving the verifier’s challenge α, the prover
samples a masking value ζ, and sends to the verifier its Pedersen commitment Cζ and its reduction ζ mod I
(in the clear); after receiving α the prover sends to the verifier the value v̄ := α · (〈a, b〉 − t) + ζ . The verifier
then checks that v̄ = ζ mod I , and that v̄ is a valid opening for the commitment to α · (〈a, b〉 − t) + ζ (for
appropriate commitment randomness). Intuitively, if v̄ = α · (〈a, b〉 − t) + ζ for two distinct values of α,
then one can solve linear equations to deduce that ξ · (〈a, b〉 − t) = 0 mod I . Then, since multiplication by
the constant ξ from the pseudoinverse parameters (C, ξ,N) is invertible modulo I (this is required by the
protocol-friendly property), we conclude that 〈a, b〉 = t mod I .

2.7 Succinct argument for R1CS over rings

We explain the main ideas behind Theorem 2, which provides a zero-knowledge succinct argument of
knowledge for R1CS over rings. Recall that the R1CS problem over a ring R• asks: given coefficient
matrices A,B,C ∈ Rn×n• and an instance vector x over R•, is there a witness vector w over R• such that
z := (x,w) ∈ Rn• satisfies Az ◦ Bz = Cz? To a first order, Theorem 2 is proved by reducing the R1CS
problem over R• to several scalar-product sub-problems over R•, and then relying on the zero-knowledge
succinct argument for scalar products in Section 2.6. This implies that we support R1CS over the rings
supported in that section: R• = ML/I , where ML is the left module of a protocol-friendly bilinear module,
and I ⊆ML is an ideal. As with our scalar-product arguments, I is used to cancel out slackness factors and
prove exact relations. Below we summarize the reduction from R1CS to scalar products.

The prover P sends commitments to the full assignment z ∈ Rn• and to its linear combinations zA, zB ∈
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Rn• . Then P is left to convince the verifier V that the committed information satisfies these conditions:

zA = Az , zB = Bz , zA ◦ zB = Cz , x is a prefix of z .

To reduce the first three conditions, the verifier V sends a structured challenge vector r. Multiplying on the
left by rᵀ reduces the first three conditions to 〈r, zA〉 = 〈rA, z〉, 〈r, zB〉 = 〈rB, z〉, 〈r ◦ zA, zB〉 = 〈rC , z〉;
here we defined rA := rᵀA, rB := rᵀB, and rC := rᵀC. Moreover, to reduce the last condition, the verifier
V sends a random challenge vector s of the same length as x; padding s with zeroes to get s′ of the same
length as z, we have 〈s′, z〉 = 〈s, x〉. Note that both parties can each individually compute rA, rB, rC by
right-multiplying r by A,B,C respectively, and also both parties can each individually compute 〈s, x〉.

Next, the prover P sends a commitment to z′A := r ◦ zA, and also commitments to α := 〈rA, z〉,
β := 〈rB, z〉, and γ := 〈rC , z〉. Then the prover and verifier engage in scalar-product sub-protocols
(described in Section 2.6) to verify these 7 scalar products (recall each party can compute 〈s, x〉):

〈r, zA〉 = α
〈rA, z〉 = α

,
〈r, zB〉 = β
〈rB, z〉 = β

,
〈z′A, zB〉 = γ
〈rC , z〉 = γ

, 〈s′, z〉 = 〈s, x〉 .

The prover and verifier use an additional challenge vector y and 2 further scalar-product sub-protocols to
check that 〈z′A, y〉 = 〈zA, r ◦ y〉, which shows that z′A was correctly computed from zA and r.

All commitments in the protocol are hiding, and hence do not leak any information about the witness
vector w. Hence the zero-knowledge property of the above protocol directly reduces to the zero-knowledge
property of the scalar-product sub-protocols.

We conclude by noting that if we instantiate the bilinear module with lattices then Theorem 2 gives
Corollary 1: a zero-knowledge succinct argument of knowledge for R1CS based on the SIS assumption.

Technical details can be found in Section 7.

Remark 2.11 (on succinct verification). The verifier complexity in the above succinct argument for R1CS is
proportional to the description of the R1CS instance. Nevertheless, one could aim for a succinct verifier in
appropriate settings: when the R1CS matrices have structure [BCGGRS19] or in the preprocessing setting
[CHMMVW20; COS20; Set20; BCG20; BCL20]. We believe that the tools developed in this paper can be
extended to these settings, and leave additionally achieving a succinct verifier to future work.

Remark 2.12 (using polynomial commitments instead). The above protocol is built atop scalar-product sub-
protocols, similar to [BCG20; BCL20]. We could have also built the protocol atop a polynomial commitment
scheme (such as the one we discuss in Section 2.8), following the approaches in [CHMMVW20; COS20;
Set20]. This alternate route offers several tradeoffs, and we leave exploring these tradeoffs to future work.

2.8 Commitments to linear functions and polynomials over modules

As another application of sumcheck arguments, we construct commitment schemes for linear functions over
modules. This directly leads to polynomial commitment schemes over modules, as we explain.

Linear-function commitments. The first step is to extend the (generalized) Pedersen commitment scheme
to linear functions, similar to prior works [AC20; BDFG20]. LetM = (R,ML,MR,MT, e) be a bilinear
module. Let mS ∈Mn

L , and consider the R-linear function f over ML that maps z ∈ Rn to 〈z,mS〉 ∈ML. A
linear-function commitment (over modules) consists of a Pedersen commitment C := 〈mS,G0〉+ 〈ρ,G1〉 ∈
MT to the coefficients of f (with a key (G0,G1) ∈ Mn

R ×Mh
R and randomness ρ ∈ Mh

L ), a public vector
mP ∈ Rn specifying the evaluation point for f , and the evaluation v := 〈mP,mS〉 ∈ ML of f at mP.
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We show, in a similar way to the generalized Pedersen commitment scheme, that this linear-function
commitment scheme is sumcheck-friendly and, if M is sampled by a secure bilinear-module generator,
invertible. Therefore we can use our sumcheck argument, and thereby obtain an argument of knowledge
for succinctly opening the linear function commitment. In more detail, the communication complexity is
logarithmic in the length n of the vector describing the linear-function, and the knowledge property has the
following form: there exists an extractor that given a commitment key (G0,G1) ∈Mn

R ×Mh
R , commitment

C ∈MT for a message with norm bound BC, and a 3-ary tree of accepting transcripts for (G0,G1,C), finds
an opening mS ∈ Mn

L with norm at most (2N‖C‖)logn · BC and randomness ρ ∈ Mh
L with norm at most

BC such that ξlogn · C = 〈mS,G0〉 + ξlogn · 〈ρ,G1〉 and ξlogn · v = 〈mP,mS〉. Here (C, ξ,N) are the
pseudoinverse parameters for (R,MT) output by the bilinear-module generator.

Polynomial commitments. As a direct application of the above, we construct a polynomial commitment
scheme for polynomials (over modules). In a polynomial commitment, the prover commits to a polynomial p
with coefficients in ML and then later proves the correct evaluation of the polynomial at a desired point. It
is easy to see that this is a special case of a linear function commitment. For example, if p is a univariate
polynomial of degree d described by its coefficients in the monomial basis, then we can take mS ∈Md+1

L to
be the vector of coefficients, and mP = (1, z, . . . , zd) where z ∈ R is the desired evaluation point, so that
p(z) = 〈mP,mS〉. This directly extends to more variables and other polynomial bases (see Remark 5.14).

Therefore, the aforementioned succinct argument of knowledge for linear-function commitments yields
a polynomial commitment scheme whose knowledge guarantee has the following form: there exists an
extractor that given a commitment key (G0,G1) ∈Md+1

R ×Mh
R , commitment C ∈MT for a message with

norm bound BC, and a 3-ary tree of accepting transcripts for (G0,G1,C), finds a polynomial p ∈ML[X] of
degree at most d and with norm at most (2N‖C‖)logn ·BC and randomness ρ ∈Mh

L with norm at most BC

such that ξlogn · C = 〈p,G0〉+ ξlogn · 〈ρ,G1〉 and ξlogn · v = p(z).
When ξ = 1, this is the usual guarantee of a polynomial commitment scheme. However, when ξ 6= 1, this

relaxed guarantee does not immediately give an opening protocol. This is because p(z) = ξlogn · v which is
different from the claimed evaluation v. Unfortunately, multiplication of elements of ML by ξ might not be
invertible, so the knowledge extractor cannot give “ξ− lognp” as its final output.

To address this problem, we require an additional property ofM: we require thatM is quotient-friendly,
and remove the extra factors of ξ in a quotient module. WhenM is quotient-friendly, there is a submodule
I ⊆ ML included in the auxiliary information for the bilinear module, such that multiplication by ξ is
invertible modulo I . Then, we can view the commitment scheme as a commitment to polynomials over
ML/I , and the polynomial “ξ− lognp mod I” evaluates to v mod I at z.

Theorem 2.13 (informal). LetM be a quotient-friendly secure bilinear-module generator which produces R,
C ⊆ R, ML and I ⊆ML. Then, there is a polynomial commitment scheme (e.g., for univariate polynomials
in the monomial basis) with coefficients in ML/I where the evaluation protocol is a sumcheck argument.
If n is the number of coefficients of the polynomial (e.g., its degree plus one if a univariate polynomial),
the evaluation protocol has knowledge error O( logn|C| ), round complexity O(log n), communication O(log n)

elements of MT, and prover and verifier complexity O(n) operations in ML,MR and O(n) applications of e.
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3 Preliminaries

3.1 Rings and modules

A ring R is a mathematical structure that generalizes a field: R is equipped with addition and multiplication
operations, but, unlike in a field, multiplicative inverses need not exist. We will use only commutative rings,
where the multiplication operation commutes. A module M over a ring R extends the notion of vector space
over a field, where the scalars are elements of a ring.

Norms. We use rings and modules equipped with norms. The definitions below are slightly different than
the ones in standard algebra textbooks due to the expansion factors used.

Definition 3.1. Let R be a ring. A norm for R is a map ‖ · ‖R : R → R≥0 that satisfies the following
properties: (i) ‖0‖R = 0 and ‖1‖R = 1; (ii) for all a ∈ R, ‖a‖R = ‖ − a‖R; (iii) for all a, b ∈ R,
‖a + b‖R ≤ ‖a‖R + ‖b‖R; (iv) there exists a constant “expansion factor” γR ∈ R>0 such that, for all
a, b ∈ R, ‖ab‖R ≤ γR‖a‖R‖b‖R.

Definition 3.2. Let R be a ring with norm ‖ · ‖R, and let M be an R-module. A norm for M is a map
‖ · ‖M : R→ R≥0 that satisfies the following properties: (i) ‖0‖M = 0; (ii) for all a ∈M , ‖a‖M = ‖− a‖M ;
(iii) for all a, b ∈M , ‖a+ b‖M ≤ ‖a‖M + ‖b‖M ; (iv) there exists a constant “expansion factor” γM ∈ R>0

such that, for all a ∈ R and b ∈M , ‖ab‖M ≤ γM‖a‖R‖b‖M .

Remark 3.3. To simplify notation in later analysis, although multiplication of elements of M and R may
cause norm expansion by different factors γR and γM , we will only use the notation γR, which will represent
the maximum of these quantities.

Definition 3.4. For a ringR with norm ‖·‖R,R(B) := {r ∈ R : ‖r‖R ≤ B} is the set of ring elements with
norm at most B; and similarly for a module M and set M(B). For a set C ⊆ R, ‖C‖R := maxx∈C ‖x‖R.

For a normed module M , the norm of a vector v ∈ Mn is ‖v‖M := maxi∈[n] ‖vi‖M (the maximum of
the norms of all entries of v).

Polynomials over modules. Let R be a ring and M an R-module. We denote by M [X1, . . . , X`] the set of
polynomials in variables X1, . . . , X` with coefficients in M . A polynomial p ∈ M [X1, . . . , X`] defines a
function from R` to M . Similarly to the case of vectors, if M is normed then the norm of p is defined to be
the maximum of the norms of its coefficients.

We often use multilinear polynomials whose coefficients are defined by a vector v as follows.

Definition 3.5. Let R be a ring and M an R-module. For n ∈ N a power of 2, set ` := log n and let
v ∈Mn be vector whose entries we index via binary strings (i1, . . . , i`) ∈ {0, 1}`. The `-variate polynomial
pv ∈M [X1, . . . , X`] is defined as follows:

pv(X1, . . . , X`) :=
∑

i1,...,i`∈{0,1}

vi1,...,i`X
i1
1 · · ·X

i`
` .

We state a straightforward generalization of a lemma from [BCG20] concerning sums of polynomials;
we rely on this several times in this paper.

Lemma 3.6. LetH be a cyclic subgroup (of finite order) of the multiplicative group of a ringR, such that 1−h
is not a zero-divisor for any h ∈ H \ {1}. Let M be an R-module and let p(X1, . . . , X`) ∈M [X1, . . . , X`]
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be a polynomial. If we denote by pi1,...,i` ∈M the coefficient ofXi1
1 · · ·X

i`
` in the polynomial p(X1, . . . , X`),

then ∑
ω∈H`

p(ω) =

 ∑
i≡0 mod |H|

pi

 · |H|` . (3)

Proof. We prove the case ` = 1; the general case follows by induction on `. Let h0 be a generator of H .
When ` = 1, p(X) =

∑
i piX

i, so that

∑
ω∈H

p(ω) =
∑
ω∈H

∑
i

piω
i =

∑
i

pi

|H|−1∑
j=0

(hj)i .

When i ≡ 0 mod |H|, then hi = 1 so
∑|H|−1

j=0 (hi)j = |H|. When i 6≡ 0 mod |H|, then hi 6= 1 and

(hi − 1)
∑|H|−1

j=0 (hi)j = h|H| − 1 = 0; since (hi − 1) is not a zero-divisor,
∑|H|−1

j=0 (hi)j = 0.

We apply Lemma 3.6 with subgroups H with |H| = 2 in this paper. An analogue holds for the case of
additive subgroups of finite fields, which implies that our results also hold for fields of characteristic 2.

Lemma 3.7. Let H be an additive subgroup of F. Let a0 be the (formal) linear term of the subspace
polynomial

∏
h∈H(X − h). Then

∑
ω∈H`

p(ω) =

 ∑
i≡−1 mod |H|

pi

 · |a0|` . (4)

Remark 3.8. Lemma 3.7 does not hold if F is replaced with a ring R. Taking R = Z/4Z, H = {0, 2}, and
p(X) = 1 gives a counterexample:

∑
ω∈H` p(ω) = 2 but (

∑
i≡−1 mod |H| pi) · |a0|` = 0. Nevertheless, to

apply the techniques in this paper to rings such as Z/2kZ, one can explore the use of Galois extensions as in
[ACDEY19; GNS21], to obtain suitable subgroups of size 3 for Lemma 3.6 (though the original motivation
of [ACDEY19; GNS21] was to ensure the existence of large sampling sets of the type that we discuss next).

Sampling sets. The verifier in protocols will sample challenges from a designated subset C ⊆ R with
certain properties, where R is the ring associated to a certain module M .

Definition 3.9. A sampling set C for an R-module M is a subset of R such that for all c1, c2 ∈ C with
c1 6= c2, the mapping M →M that sends m 7→ (c1 − c2)m is injective.

Definition 3.10. A strong sampling set C for an R-module M is a subset of R such that for all c1, c2 ∈ C
with c1 6= c2, there exists r ∈ R (depending on c1 and c2) such that r(c1 − c2)m = m for all m ∈M .

The special case M = R recovers the notions of sampling sets for rings in [CCKP19].
One can verify that a strong sampling set for M is also a sampling set for M . Conversely, for many rings,

a sampling set is also a strong sampling set, as shown in the following lemma.

Lemma 3.11. Let R be a finite commutative ring. If r ∈ R is not a zero-divisor then r is invertible.

Proof. The function f : R→ R defined as f(x) := r · x is a ring homomorphism. The kernel of f contains
only 0, as otherwise r would be a zero divisor. By the first Isomorphism Theorem for rings, we know that
R/ ker(f) ' Im(f), and we can write |R| = | ker(f)| · |Im(f)|. But | ker(f)| = 1, so |R| = |Im(f)|. Since
R is finite and Im(f) ⊆ R, we deduce that Im(f) = R. Hence, there exists s ∈ R such that rs = 1.
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Note that Lemma 3.11 does not hold over infinite rings. For example, take R = Z and r = 2. (The proof
breaks down because Im(f) = 2Z has the same cardinality as Z, but is a subset of Z.)

Constants. We associate certain constants to a given sampling set.

Definition 3.12. Let R be a ring with norm ‖ · ‖R and C ⊆ R a set. Let Vc1,...,cK be the Vandermonde matrix
with respect to distinct c1, . . . , cK ∈ C:

Vc1,...,cK :=


1 c1 · · · cK−11

1 c2 · · · cK−12
...

...
. . .

...
1 cK · · · cK−1K


and let Ac1,...,cK be the adjugate of Vc1,...,cK (which satisfies Ac1,...,cK · Vc1,...,cK = det(Vc1,...,cK ) · IK).

For K ∈ N, we define the K-th inversion constant associated to C to be

ι(C,K) := max
c1,...,cK∈C

max
i,j∈[K]

‖Ac1,...,cK [i, j]‖R .

Definition 3.13. Let R be a ring and M an R-module. For ξ ∈ R and N ∈ N and C ⊆ R a set, we say that
(C, ξ,N) are pseudoinverse parameters for (R,M) if for every a ∈ R, m,m∗ ∈M , and distinct c1, c2 ∈ C
it holds that if (c1 − c2)m = a ·m∗ then there exists r ∈ R such that ξ ·m = r ·m∗ and ‖r‖R ≤ N‖a‖R.

When M = R, Definition 3.13 is related to [ACK21, Definition 16] and [AL21, Definition 6].

3.2 Commitments

A (non-interactive) commitment scheme is a tuple of algorithms CM = (Setup,KeyGen,Commit,Open)
with the following syntax.

• CM.Setup(1λ, n)→ pp: samples public parameters given a security parameter and a message length.

• CM.KeyGen(pp)→ ck: samples a commitment key, which in particular determines a commitment space
Cck, message space Mck, randomness space Rck, and slackness space Sck.

• CM.Commit (ck,m; ρ)→ cm: use the commitment key ck to commit to m ∈ Mck by sampling ρ ∈ Rck

according to some (possibly not uniform) distribution and computing a commitment cm ∈ Cck.

• CM.Open (ck,m, ρ, cm, c)→ b ∈ {0, 1}: checks that cm ∈ Cck is a commitment to the message m ∈Mck

with randomness ρ ∈ Rck and slackness value c ∈ Sck, relative to the commitment key ck.

We require CM to satisfy completeness and binding, and sometimes also hiding, as specified below.

Definition 3.14. CM is complete if for every n ∈ N and adversary A,

Pr

CM.Open (ck,m, ρ, cm, 1) = 1

∣∣∣∣∣∣∣∣
pp← CM.Setup(1λ, n)
ck← CM.KeyGen(pp)

(m ∈Mck, ρ ∈ Rck)← A(pp, ck)
cm← CM.Commit (ck,m; ρ)

 = 1 .
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Definition 3.15. CM is (computationally) binding if for every n ∈ N and polynomial-size adversary A,

Pr

 m0 6= m1

CM.Open (ck,m0, ρ0, cm, c) = 1
CM.Open (ck,m1, ρ1, cm, c) = 1

∣∣∣∣∣∣
pp← CM.Setup(1λ, n)
ck← CM.KeyGen(pp)

(cm,m0,m1, ρ0, ρ1, c)← A(pp, ck)

 = negl(λ) .

Definition 3.16. CM is (statistically) hiding if for every n ∈ N and adversary A,

Pr

A(pp, ck, cm) = b

∣∣∣∣∣∣∣∣∣∣∣∣

pp← CM.Setup(1λ, n)
ck← CM.KeyGen(pp)
(m0,m1)← A(pp, ck)

b← {0, 1}
ρ← Rck

cm← CM.Commit (ck,mb; ρ)

 =
1

2
+ negl(λ) .

If we the above probability equals 1/2 then CM is perfectly hiding.

3.3 Interactive arguments

We say that ARG = (G,P,V) is an interactive argument of knowledge for a relation R if it satisfies the
following completeness and knowledge properties.

• Completeness. For every adversary A,

Pr

[
(x,w) 6∈ R or

〈P(pp,x,w),V(pp,x)〉 = 1
pp← G(1λ)

(x,w)← A(pp)

]
= 1 .

We also consider constructions with a completeness error ε, where the above probability is at least 1− ε(λ).

• Witness-extended emulation. ARG has witness-extended emulation with knowledge error κ if there exists
an expected polynomial-time algorithm E such that for every polynomial-size adversary A it holds that∣∣∣∣∣∣Pr

A(aux, tr) = 1
pp← G(1λ)

(x, aux)← A(pp)
tr← 〈A(aux),V(pp,x)〉


− Pr

 A(aux, tr) = 1
and

if tr is accepting then (x,w) ∈ R

pp← G(1λ)
(x, aux)← A(pp)

(tr,w)← EA(aux)(pp,x)

∣∣∣∣∣∣ ≤ κ(λ) .

Above E has oracle access to (the next-message functions of) A(aux).

We also consider argument systems with a zero-knowledge property.

• Semi-honest-verifier (statistical) zero knowledge. There exists a probabilistic polynomial-time simulator
S such that for every stateful adversary A the following probabilities are negl(λ)-close:

Pr

 (x,w) ∈ R
A(tr) = 1

pp← G(1λ)
(x,w, ρ)← A(pp)

tr← 〈P(pp,x,w),V(pp,x; ρ)〉

 and Pr

 (x,w) ∈ R
A(tr) = 1

pp← G(1λ)
(x,w, ρ)← A(pp)

tr← S(pp,x, ρ)

 .
Above, ρ is the randomness used by the verifier V (and chosen by the adversary A).
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3.3.1 Extraction from trees

We say that ARG is public coin if each verifier message is a uniform random string (of a prescribed length).
The public-coin interactive arguments in this paper have the property that a witness can be extracted from an
appropriate tree of accepting transcripts. The definition below is a natural generalization of special-soundness
for sigma-protocols (where m = 1 and n1 = 2).

Definition 3.17. Let ARG be a public-coin interactive argument for a relation R where the verifier sends
m messages. For n1, . . . , nm ∈ Z, we say that T is a (n1, . . . , nm)-tree of accepting transcripts for x if
(1) T is a tree of depth m where, for each i ∈ [m], each vertex at layer i has ni children (so the tree has∏
i∈[m] ni leaves); (2) the ni outgoing edges of every vertex in layer i are labeled with ni different choices

of randomness for the verifier’s i-th message; (3) each vertex in layer i is labeled with a prover message;
(4) every path from the root to a leaf in the tree is an accepting transcript for the interactive argument.

Definition 3.18. ARG has (n1, . . . , nm)-tree extraction if there exists an efficient algorithm χ such that

Pr

 T is a (n1, . . . , nm)-tree of accepting transcripts for x
(x,w) 6∈ R

pp← G(1λ)
(x, T )← A(pp)
w← χ(pp,x, T )

 = negl(λ) .

The following lemma from [ACK21] proves the existence of a tree-finding algorithm, which shows that
tree extraction implies witness-extended emulation. Throughout this paper we rely on this generic implication
in that it will suffice for our technical statements to establish tree extraction for the protocols that we study.

Lemma 3.19 ([ACK21, Lemma 5], adapted). Let n1, . . . , nm : N→ N be functions such that K :=
∏m
i=1 ni

is upper bounded by a polynomial. Let ARG be a (2m+1)-message public-coin interactive argument in which
the verifier V samples each challenge uniformly at random from a challenge set of size N ≥ maxi∈[m] ni.
There is an algorithm Tree such that for any malicious prover P̃ for ARG that makes V accept with probability
at least ε, TreeP̃(pp,x) runs in expected time at most K (where running P̃ takes unit time) and produces a
(n1, . . . , nm)-tree of accepting transcripts for x with probability at least ε−

∑m
i=1(ni−1)
N (otherwise producing

a tree that is incomplete or contains non-accepting transcripts). Further, the first transcript produced by Tree
(corresponding to the first leaf in the tree) is distributed according to 〈P̃,V〉.

Lemma 3.20. If ARG has (n1, . . . , nm)-tree extraction, and satisfies the conditions in Lemma 3.19, then
ARG has witness-extended emulation with knowledge error κ =

∑m
i=1(ni−1)
N + negl(λ).

Proof. Let A be an adversary against witness-extended emulation such that 〈A(aux),V(pp,x)〉 = 1 with
probability at least ε. We construct an algorithm E for witness-extended emulation:

1. Run TreeA(aux)(pp,x) from Lemma 3.19.
2. If TreeA(aux)(pp,x) finds a (n1, . . . , nm)-tree of accepting transcripts for x, then run χ from

Definition 3.18 to obtain w; otherwise set w := ⊥.
3. Outputs the first transcript tr produced by Tree, along with w.

We argue that E satisfies witness-extended emulation.

• Running time. Tree runs in expected polynomial time and χ runs in polynomial time, so E runs in expected
polynomial time.
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• Failure probability. Despite producing an accepting transcript, E may fail to produce a witness w such that
(x,w) ∈ R if Tree fails to produce an (n1, . . . , nm)-tree of accepting transcripts, or χ fails to produce a
valid witness from an accepting tree. The probability that this occurs is at most

∑m
i=1(ni−1)
N + negl(λ).

• Distribution. Consider the two sampling procedures in the definition of witness-extended emulation. Since
tr is distributed according to 〈A(aux),V(pp,x)〉 in either case, the probability that A(aux, tr) = 1 is the
same for either procedure. The probability that E produces accepting tr with an invalid witness is at most∑m

i=1(ni−1)
N + negl(λ), which implies the result.
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4 Sumcheck argument for opening a commitment

We define the notion of a sumcheck-friendly commitment scheme, and then describe a protocol for proving
knowledge of openings for such commitment schemes. We call our protocol a sumcheck argument because it
builds directly on top of the sumcheck protocol.

Definition 4.1. A commitment scheme CM = (Setup,KeyGen,Commit,Open) is sumcheck-friendly if for
every security parameter λ ∈ N, message length n ∈ N, and public parameters pp ∈ CM.Setup(1λ, n)
there exist a ring R, domain H ⊆ R, challenge set C ⊆ R, number of variables ` ∈ N, modules M,K,C
over R with M having a norm, and efficient functions fCM, gCM, φsc, αsc such that for every commitment key
ck ∈ CM.KeyGen(pp), message m ∈Mck, randomness ρ ∈ Rck, and slackness c ∈ Sck:

• CM.Commit (ck,m, ρ)− gCM(ck, ρ) =
∑

ω∈H` fCM(pm(ω), pck(ω), 1); and
• φsc

(
cm− gCM(ck, ρ),

∑
ω∈H` fCM(pm(ω), pck(ω), c), c

)
= 1 if and only if CM.Open (ck,m, ρ, cm, c) = 1;

• when c = 1, φsc is simply an equality check on its first two inputs;
• for every i ∈ {0, 1, . . . , `}, p ∈M[Xi+1, . . . , X`], and (r1, . . . , ri) ∈ Ci, αsc(ck, p, r1, . . . , ri) = 1 if and

only if there exists a message m ∈Mck such that p(Xi+1, . . . , X`) = pm(r1, . . . , ri, Xi+1, . . . , X`).

Here:

• pm(X1, . . . , X`) is a polynomial over M that can be efficiently obtained from the message m (and, con-
versely, m can be efficiently obtained from pm);

• pck(X1, . . . , X`) is a polynomial over K that can be efficiently obtained from the commitment key ck;
• psc(X1, . . . , X`) := fCM(pm(X1, . . . , X`), pck(X1, . . . , X`), c) is a polynomial over C.

Letting ideg denote the maximum individual degree of a polynomial, we also define the following degrees:

dck := max
m∈Mck

ideg
(
pm(X)

)
,

d?ck := max
m∈Mck

max
c

ideg
(
fCM(pm(X), pck(X), c)

)
.

At the end of every sumcheck argument, the verifier will use αsc to check that the opening message
w is admissible. We use this to prove the security property of the sumcheck argument. For most of our
instantiations, every scalar w ∈M will be admissible and this check will be trivial.

Remark 4.2 (weights). Definition 4.1 extends, analogously to [Mei13], to weighted sums of the form∑
ω∈H`

µ1(ω1) · · ·µ`(ω`) fCM(pm(ω), pck(ω), c)

with coefficients µ1, . . . , µ` ∈ RH . Our sumcheck argument extends to support weighted sums as well.

Remark 4.3 (existence of psc). Given a strong sampling set S ⊆ R for C that is sufficiently large, one can find
a polynomial psc satisfying the conditions above by interpolating {fCM(pm(a), pck(a), 1)}a∈S` . Alternatively,
when fCM satisfies certain homomorphic properties (fCM is R-linear or R-bilinear), it is possible to “lift” fCM
from a function fCM : M × K × R → C to a function on fCM : M[X] × K[X] × R → C[X] to show the
existence of a suitable fCM, without any additional assumptions on C. We explain this in Appendix B.
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Definition 4.4. The relationRSC(c,BC) is the set of tuples

(x,w) =
(

(CM, pp, C, ck, cm), (m, ρ)
)

where CM is a sumcheck-friendly commitment scheme, pp ∈ CM.Setup(1λ, n) (that in particular specifies
R,H, `,M,K,C, fCM, gCM, φsc), C ⊆ R, ck ∈ CM.KeyGen(pp), cm ∈ C, m ∈ Mck, ‖pm(X)‖M ≤ BC,
ρ ∈ Rck, c ∈ Sck and CM.Open (ck,m, ρ, cm, c) = 1.

Construction 4.5 (sumcheck argument). We describe a public-coin interactive argument SCA = (P,V) for
the relation in Definition 4.4. The prover P and verifier V take as input an instance x = (CM, pp, C, ck, cm);
the prover P additionally takes as input a witness w = (m, ρ). Here, CM is sumcheck-friendly with respect
to the ring R and subset H .

The prover sends the randomness ρ to the verifier. The prover P and verifier V engage in a sumcheck
protocol for the instance

xSC :=
(
R,M = C, H, `, τ = cm− gCM(ck, ρ), C

)
where the prover P uses the polynomial psc(X) := fCM(pm(X), pck(X), 1) induced by x and w.

After the end of the sumcheck protocol, the prover P learns r ∈ C` and the verifier V learns (r, v) ∈ C`×
C. (If the sumcheck verifier rejects, then V rejects.) Then the prover P computes and sends w := pm(r) ∈M
to the verifier V. The verifier V checks that ‖w‖M ≤ BC · (dck + 1)` γ`dckR ‖C‖`dckR , checks that ρ ∈ Rck,
computes pck(r) ∈ K, checks that fCM(w, pck(r), 1) = v, and checks that αsc(ck, w, r) = 1.

Theorem 4.6. The sumcheck argument SCA in Construction 4.5 satisfies the following properties:

• Communication: the prover sends d?ck` elements of C, an element of M with norm at most BC · (dck +

1)` γ`dckR ‖C‖`dckR , and an element of R, and the verifier sends ` elements of C.
• The prover performs the following operations: computing psc(X), and partially evaluating it O(|H|`−1)

times; and O(d?ck|H|`−1) additions and scalar-multiplications in C.
• The verifier performs the following operations: O(d?ck|H|`) additions and scalar multiplications in C; 1

evaluation of the polynomial pck(X); 1 evaluation of fCM; 1 evaluation of gCM; one evaluation of αsc; and
a norm-check on w.

• If CM is sumcheck-friendly (see Definition 4.1), then Construction 4.5 has perfect completeness.
• If CM is invertible with parameter K (see Definition 4.12), then Construction 4.5 has K`-tree extraction.

Proof. We prove the theorem via several lemmas. In Lemma 4.9 and Lemma 4.10, we discuss the arithmetic
complexity of the prover and of the verifier. In Lemma 4.11 we prove perfect completeness. In Definition 4.12
we define invertibility, and in Lemma 4.13 we prove tree extraction.

Remark 4.7 (on prover efficiency). The prover costs in Theorem 4.6 are based on a generic prover imple-
mentation that computes psc and then naively evaluates all sums in the sumcheck protocol (Lemma 2.2). This
generic method is more expensive than many instantiations of interest because efficiency improvements are
possible when given additional information about H or fCM. For example, if fCM is R-linear, or R-bilinear,
then prover efficiency can be improved considerably, by avoiding handling psc directly. This will lead to a
linear prover-time in our instantiations. We explain this in Appendix B.

Remark 4.8 (on verifier efficiency). Typically, the most expensive operation for the verifier is computing the
polynomial evaluation pck(r) ∈ K. For example, in many instantiations, pck(X) is a multilinear polynomial
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in log n variables and computing pck(r) naively (say, via Horner’s method) uses O(n) operations in K. In
some cases this cost can be avoided (and ultimately lead to an overall succinct verifier time), e.g., by relying
on a sub-protocol to outsource the computation of pck(r) to the prover, or by ensuring that pck(X) has a
special structure that allows a more efficient evaluation. Both ideas are exploited in [BMMTV19] (they ensure
that pck(r) is itself a commitment to a polynomial using the scheme of [KZG10], and that this polynomial
has a special factorization allowing it to be evaluated in O(log n) operations).

Separately, computing each of the ` verification equations in the sumcheck protocol involves O(|H|)
additions and scalar-multiplications in C. This is typically cheap for the verifier, but can be expensive when
using weighted sums (Remark 4.2) where the coefficients µ1, . . . , µ` have large representation. This is the
case in [BFS20], where the commitment space C is an unknown-order group and the scalar multiplications in
the verification equations involve large integer scalars; nevertheless, this cost is avoided by outsourcing to the
prover the expensive scalar multiplications via the protocol of [Wes19].

4.1 Efficiency

Lemma 4.9. The prover in Construction 4.5 performs the following operations: computing psc(X), and
partially evaluating it O(|H|`−1) times; and O(d?ck|H|`−1) additions and scalar-multiplications in C.

Proof. The prover computes the coefficients of the polynomial psc(X). In the i-th round of the sumcheck
protocol, the prover computes qi(X) =

∑
ωi+1,...,ω`∈H psc(r1, . . . , ri−1, X, ωi+1, . . . , ω`) ∈ C[X], which

involves partially evaluating psc(X) at |H|`−i points. Each partial evaluation of psc(X) in the sum is a
univariate polynomial of degree at most d?ck, so computing the sum costs O(d?ck|H|`−1) additions and
scalar-multiplications in C. Summing over i gives the result.

Lemma 4.10. The verifier in Construction 4.5 performs the following operations: O(d?ck|H|`) additions
and scalar multiplications in C; 1 evaluation of the polynomial pck(X); 1 evaluation of the function fCM; 1
evaluation of the function gCM; one evaluation of the function αsc, and a norm check on w.

Proof. The sumcheck verifier checks that
∑

ω1∈H q1(ω1) = cm and, for i ∈ {2, . . . , `}, that
∑

ωi∈H qi(ωi) =
qi−1(ri−1). For each round i, the polynomial qi(X) has degree at most d?ck and must be evaluated at each
ω ∈ H and at ri, which is |H|+ 1 points. Each evaluation costs d?ck additions and scalar-multiplications in
C. These evaluations contribute the dominant cost for the sumcheck verifier, which is O(d?ck|H|`) additions
and scalar multiplications in C. All other verifier operations are easily read off from Construction 4.5.

4.2 Completeness

Lemma 4.11. If CM is sumcheck-friendly, then Construction 4.5 has perfect completeness.

Proof. Let
(
(CM, pp, C, ck, cm), (m, ρ)

)
∈ RSC(1, BC), so that CM.Open (ck,m, ρ, cm, c) = 1. Fix any

choice of verifier challenges r ∈ C`. We need to show that the (honest) prover makes the verifier accept.
The verifier checks whether fCM(w, pck(r)) = v, whether ‖w‖M ≤ BC · (dck + 1)` γ`dckR ‖C‖`dckR , where
w := pm(r), and whether αsc(ck, w, r) = 1.

Since CM is sumcheck-friendly, and psc(r) is equal to fCM(pm(r), pck(r), 1) for every choice of r, we have
cm =

∑
ω∈H` fCM(pm(ω), pck(ω), 1) + gCM(ck, ρ) =

∑
ω∈H` psc(ω) + gCM(ck, ρ). Thus, cm − gCM(ck, ρ)

and psc(X) define a valid sumcheck instance. By completeness of the sumcheck protocol (Lemma 2.2), the
sumcheck verifier does not reject and outputs the claim (r, v), where v = psc(r) = fCM(pm(r), pck(r), 1).
The honest prover sends w := pm(r), so the verifier’s check that v = fCM(w, pck(r), 1) succeeds. Further, w
is clearly admissible, so αsc(ck, w, r) = 1.
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Finally, we show that ‖w‖M ≤ BC · (dck + 1)` γ`dckR ‖C‖`dckR . Since pm(X) has ` variables and individual
degree dck, we can write pm(X) =

∑dck
i1,...,i`=0 pi1,...,i`X

i1
1 · · ·X

i`
` . We can then bound the norm of pm(r):

‖pm(r)‖M ≤
dck∑

i1,...,i`=0

‖pi1,...,i`r
i1
1 · · · r

i`
` ‖M

≤
dck∑

i1,...,i`=0

γi1+···+i`R ‖pi1,...,i`‖M‖r1‖
i1
M · · · ‖r`‖

i`
M

≤ BC · (dck + 1)` γ`dckR ‖C‖`dckR .

The first inequality follows from the triangle inequality. The second follows from the multiplicative property
of the norm on M. The final inequality follows from the fact that ‖pm(X)‖M ≤ BC, and the fact that norms
of challenges are bounded by ‖C‖R.

4.3 Knowledge soundness

We define invertibility and prove knowledge soundness of our protocol via tree extraction (see Lemma 3.20).

Definition 4.12. A sumcheck-friendly commitment scheme CM is (K,BINV, N, ξ)-invertible if there exists a
polynomial-time inverter algorithm I such that for every security parameter λ ∈ N, message length n ∈ N,
and polynomial-time algorithm A, the following experiment outputs 1 with probability 1− negl(λ).

1. Sample pp← CM.Setup(1λ, n) and ck← CM.KeyGen(pp).
2. A(pp, ck) outputs

• an index i ∈ [`];
• a challenge vector (r1, . . . , ri−1) ∈ Ci−1;
• distinct challenges r(1)i , . . . , r

(K)
i ∈ C;

• polynomials p1, . . . , pK ∈M[Xi+1, . . . , X`];
• a polynomial q(X) in C[X] of degree at most d?ck; and
• a slackness c ∈ Sck.

3. The experiment outputs 1 if and only if one of the following conditions hold:

• there exists j ∈ [K] such that N · ‖pj‖M > BINV;
• there exists j ∈ [K] such that pj is not ck-admissible for (r1, . . . , ri−1, r

(j)
i );

• there exists j ∈ [K] such that

φsc

q(r(j)i ),
∑

ωi+1,...,ω`∈H
fCM

(
pj(ωi+1, . . . , ω`), pck(r1, . . . , ri−1, r

(j)
i , ωi+1, . . . , ω`), c

)
, c

 = 1 ;

• I(pp, ck,A(pp, ck)) outputs ck-admissible p ∈M[Xi, . . . , X`] with ‖p‖M ≤ N ·maxj∈[K] ‖pj‖M such
that

φsc

∑
ωi∈H

q(ωi),
∑

ωi,...,ω`∈H
fCM

(
p(ωi, . . . , ω`), pck(r1, . . . , ri−1, ωi, . . . , ω`), ξ · c

)
, ξ · c

 = 1 .
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Lemma 4.13. Suppose that CM is (K,BINV, N, ξ)-invertible andB′ := N `·(BC·(dck+1)` γ`dckR ‖C‖`dckR ) sat-
isfiesB′ ≤ BINV. Then there exists an efficient algorithm χ such that, given an instance x = (CM, pp, C, ck, cm)
and a K`-tree of accepting transcripts for x, outputs a witness w = (m, ρ) for the instance x relative to the
relationRSC(ξ`, B′).

Proof. First we describe the extractor algorithm, then show that it runs in polynomial time, and finally prove
that it produces the required output.

The extractor. The inputs and output of the extractor χ are as follows:

• Input: An instance x = (CM, pp, C, ck, cm) and a K`-tree of accepting transcripts for Construction 4.5.
• Output: A witness w = (m, ρ) such that ‖pm(X)‖M, ρ ∈ Rck and CM.Open

(
ck,m, ρ, cm, ξ`

)
= 1.

For every i ∈ [`] and (r1, . . . , ri−1) ∈ Ci−1, let qi[r1, . . . , ri−1] be the polynomial corresponding to the
path (r1, . . . , ri−1) in the transcript tree; this polynomial represents the prover’s polynomial in the i-th
round of the sumcheck protocol given challenges (r1, . . . , ri−1). Acceptance in the sumcheck protocol
implies that

∑
ω1∈H q1(ω1) = cm + gCM(ck, ρ) and, for i ∈ {2, . . . , `}, that

∑
ω∈H qi[r1, . . . , ri−1](ω) =

qi−1[r1, . . . , ri−2](ri−1). Moreover, for every (r1, . . . , r`) ∈ C`, let w[r1, . . . , r`] be the opening corre-
sponding to the path (r1, . . . , r`) in the transcript tree (i.e., sent by the prover in the sumcheck argument
given challenges (r1, . . . , r`)). Acceptance in the sumcheck argument implies that ‖w[r1, . . . , r`]‖M ≤
BC · (dck + 1)` γ`dckR ‖C‖`dckR and fCM(w[r1, . . . , r`], pck(r1, . . . , r`), 1) = q`(r`) (and that w[r1, . . . , r`] is
ck-admissible).

By the sumcheck-friendly property, it holds that φsc(q`(r`), fCM(w[r1, . . . , r`], pck(r1, . . . , r`), 1), 1) = 1.
In the iteration for a path (r1, . . . , ri−1) ∈ Ci−1 with children {r(j)i }j∈[K], the extractor will use ck-

admissible polynomials {p[r1, . . . , ri−1, r(j)i ]}j∈[K] in M[Xi+1, . . . , X`] of M-norm at mostN `−i ·BC ·(dck+

1)` γ`dckR ‖C‖`dckR (that satisfy certain properties) to construct a new ck-admissible polynomial p[r1, . . . , ri−1]
of M-norm at most N `−(i−1) · BC · (dck + 1)` γ`dckR ‖C‖`dckR (that satisfies certain properties). We set the
initial polynomials {p[r1, . . . , r`]}(r1,...,r`)∈C` to be the constant polynomials corresponding to the opening
values {w[r1, . . . , r`]}(r1,...,r`)∈C` .

The extractor χ works as follows.

For i = `, . . . , 1:

• For every path (r1, . . . , ri−1) ∈ Ci−1 in the transcript tree with children {r(j)i }j∈[K]:

– For each j ∈ [K], we have that

φsc

qi[r1, . . . , ri−1](r(j)i ),
∑

ω∈H`−i

fCM

(
p[r1, . . . , ri−1, r

(j)
i ](ω), pck(r1, . . . , ri−1, r

(j)
i , ω), ξ`−i

)
, ξ`−i

 = 1 ,

– Run the inverter I on input (pp, ck) and

* the index i ∈ [`],
* the challenge vector (r1, . . . , ri−1) ∈ Ci−1,

* the distinct challenges {r(j)i }j∈[K] in C,

* the polynomials {p[r1, . . . , ri−1, r(j)i ]}j∈[K],
* the polynomial qi[r1, . . . , ri−1],
* the slackness ξ`−i
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to produce new polynomial p[r1, . . . , ri−1] ∈M[Xi, . . . , X`] with norm at most N `−(i−1) ·BC · (dck +
1)` γ`dckR ‖C‖`dckR such that

φsc

∑
ω∈H

qi[r1, . . . , ri−1](ω),
∑

ω∈H`−(i−1)

fCM

(
p[r1, . . . , ri−1](ω), pck(r1, . . . , ri−1, ω), ξ`−(i−1)

)
, ξ`−(i−1)

 = 1 .

If the inverter fails to produce a valid output, then output ⊥.

The inverter preserves admissibility and increases the norms of extracted openings by N on each of its
` invocations. After the final step, the extractor has found a ck-admissible polynomial p ∈M[X1, . . . , X`]
with norm at most B′ = N ` ·BC · (dck + 1)` γ`dckR ‖C‖`dckR such that

φsc

∑
ω∈H

q1(ω),
∑
ω∈H`

fCM(p(ω), pck(ω), ξ`), ξ`

 = φsc

cm− gCM(ck, ρ),
∑
ω∈H`

fCM(p(ω), pck(ω), ξ`), ξ`

 = 1 .

The extractor then computes the message m encoded by p. By the sumcheck-friendly property of CM, it
follows that CM.Open

(
ck,m, ρ, ξ`

)
= 1, which means that the extractor has found a witness for the instance

x = (CM, pp, C, ck, cm) relative to the relationRSC(ξ`, B′).

Running time. Let T (i) denote the running time of the inverter I on inputs with parameter i ∈ [`]. At step
i, the extractor runs the inverter I a total of Ki−1 times with parameter i. Therefore, the running time of the
extractor is

∑
i∈[`]K

i−1T (i).

Success probability. Let ε(i) denote the failure probability of the inverter I on properly-distributed inputs
with parameter i. If any execution of the inverter fails for any i, then the extractor will terminate in failure
rather than producing an opening of cm. Therefore, by a union bound, the failure probability of the extractor
is at most

∑
i∈[`]K

i−1ε(i).

37



5 Instantiations of sumcheck-friendly commitments

We describe instantiations of sumcheck-friendly commitments suitable for a sumcheck argument (Section 4).
In Section 5.1 we define bilinear modules and describe properties that we use to construct sumcheck-friendly
commitments. Then we provide examples of sumcheck-friendly commitments:
• in Section 5.2 we describe a generalization of the Pedersen commitment;
• in Section 5.3 we describe a linear-function commitment;
• in Section 5.4 we describe a scalar-product commitment; and
• in Section 5.5 we describe a compressed version of the scalar-product commitment.
Finally, in Section 5.6 we describe how to instantiate the bilinear modules in different cryptographic settings.

Remark 5.1 (simplifying assumption). For simplicity, throughout this section we restrict our attention to
working with rings R where 2 is not a zero-divisor. This is because we use Lemma 3.6 with a multiplicative
subgroupH with |H| = 2, which introduces factors of 2 into various algebraic expressions. One way to avoid
this is to use multiplicative subgroups H with |H| = 3 (or other invertible constants), and generalizations
of Lemma 3.6 and Definition 4.1 to suitable weighted sums. One might work with ring extensions of rings
of interest as in [Abs+20; GNS21], to ensure the existence of a suitable subgroup. Another way, in certain
settings, is to use an additive subgroup H and rely on Lemma 3.7 instead of Lemma 3.6.

5.1 Bilinear modules

We define bilinear modules and describe properties that we use to construct sumcheck-friendly commitments.

Definition 5.2. A bilinear module is a tupleM = (R,ML,MR,MT, e) whereR is a ring, ML,MR,MT are
R-modules, and e : ML ×MR →MT is a non-degenerate bilinear map; moreover, R and ML are equipped
with norms ‖ · ‖R and ‖ · ‖ML

. We use arithmetic notation as a shorthand for e: for a ∈ ML and G ∈ MR,
“a · G” denotes e(a,G) ∈MT; similarly, for a ∈Mn

L and ∈Mn
R , “〈a,G〉” denotes

∑
i∈[n] e(ai,Gi) ∈MT.

Definition 5.3. LetM = (R,ML,MR,MT, e) be bilinear module. An integer h ∈ N is (M,UML
,UMR

, ε)-
hiding, where UML

,UMR
are distributions over Mh

L ,M
n+h
R respectively, if for every a ∈Mn

L the following
random variables are ε-close:{

(G, 〈a,G0〉+ 〈r,G1〉)
∣∣∣∣ G← UMR

r ← UML

}
and

{
(G, 〈r,G1〉)

∣∣∣∣ G← UMR

r ← UML

}
.

Definition 5.4. A bilinear-module generator is a tuple BM = (Setup,KeyGen) with the following syntax:
• BM.Setup, given 1λ and n ∈ N, outputs a bilinear moduleM, integer h ∈ N, and auxiliary string aux;
• BM.KeyGen, given (M, h, aux), outputs a vector in Mn+h

R .
We assume without loss of generality that the parameters λ and n are part of aux.

Definition 5.5. BM is scalar-product compatible if ML output by BM.Setup is itself a ring.

The bilinear-module generators that we consider output auxiliary strings that contain several pieces of
information: aux = (BBRA,UML

, C, ξ,N,BC) where BBRA ∈ Z, UML
is a distribution over Mh

L , C ⊆ R,
ξ ∈ R, N ∈ Z, and BC ∈ Z with BC ≤ BBRA.

Definition 5.6. A bilinear-module generator BM is secure if it satisfies the following properties.
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• BM satisfies the bilinear relation assumption (BRA): for every n ∈ N, algorithm Check, and polynomial-
size adversary A,

Pr

 Check(M, h, aux) = 1

a ∈Mn+h
L (BBRA) \ {0n+h}
〈a,G〉 = 0

∣∣∣∣∣∣
(M, h, aux)← BM.Setup(1λ, n)

G← BM.KeyGen(M, h, aux)
a← A(M, h, aux,G)

 = negl(λ) ;

• h is (M,UML
,UMR

, negl(λ))-hiding, where UML
is in aux and UMR

is the distribution of BM.KeyGen
(Definition 5.3);

• (C, ξ,N) in aux are pseudoinverse parameters for (R,MT) output by BM.Setup (Definition 3.13).

We use secure bilinear-module generators to define invertible sumcheck-friendly commitments. In
Section 6 and Section 7, we use bilinear-module generators with additional properties, which we call
protocol-friendly bilinear-module generators.

Definition 5.7. BM is masking-friendly if aux output by BM contains κ ∈ N such that for every B ∈ Z
with BC ≤ B ≤ BBRA/κ and a ∈ Mn

L (B) the procedure “sample b ← Mn
L (κB) and output a + b if

‖a+ b‖ML
≤ (κ− 1)B and ⊥ otherwise” has the following properties:

• The procedure outputs ⊥ with probability at most n/κ.
• Conditioned on not outputting ⊥, the distribution of a+ b is uniform in Mn

L ((κ− 1)B).

Definition 5.8. BM is quotient-friendly if ML output by BM.Setup contains an R-submodule I ⊆ML such
that (C, ξ,N) in aux output by BM.Setup are pseudoinverse parameters for (R,MT) such that multiplication
by ξ is invertible in ML/I . (Definition 3.13).

Definition 5.9. A bilinear-module generator BM is protocol-friendly if it satisfies the following properties.

• BM is secure for any UML
that is the uniform distribution over Mh

L (B) with BC ≤ B ≤ BBRA;

• BM is scalar-product compatible (Definition 5.5);

• BM is masking-friendly (Definition 5.7);

• BM is quotient-friendly (Definition 5.8).

5.2 Pedersen commitment

The Pedersen commitment scheme is an example of a sumcheck-friendly commitment scheme.

Definition 5.10. Let BM = (Setup,KeyGen) be a bilinear-module generator. The (generalized) Pedersen
commitment scheme is defined via the following algorithms.

• Ped.Setup(1λ, n): sample (M, h, aux)← BM.Setup(1λ, n) and output pp := (M, h, aux).
• Ped.KeyGen(pp): sample ck← BM.KeyGen(M, h, aux) and output ck = (ck0, ck1) ∈Mn

R ×Mh
R .

• Ped.Commit(ck,m; ρ): given m ∈Mn
L (BC) and ρ← UML

, output cm := 〈m, ck0〉+ 〈ρ, ck1〉 ∈MT.
• Ped.Open(ck,m, ρ, cm, c): check that m ∈Mn

L (BBRA), ρ ∈Mh
L (BBRA), c · cm = 〈m, ck0〉+ c · 〈ρ, ck1〉.

Lemma 5.11. If BM is secure then Ped is a sumcheck-friendly invertible commitment scheme. In more detail:

1. if BM satisfies the BRA then Ped is binding;
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2. if h is (M,UML
,UMR

,negl(λ))-hiding then Ped is computationally hiding;

3. Ped is sumcheck-friendly;

4. if (C, ξ,N) are pseudoinverse parameters for (R,MT) then, for every B ∈ N (regardless of BBRA in aux),
Ped is (3, B, ξ3, NPed)-invertible for

NPed := 6γ2RN
3ι(C, 3)‖C‖R . (5)

The proofs of Items 1 and 2 follow directly from the definition of the BRA and the hiding constant of
BM. We now prove the other two items.

Proof of Item 3. Let H := {−1, 1} and ` := log n. We define pm and pck to be the multilinear polynomials
corresponding to the message m ∈ Mn

L and to the subkey ck0 ∈ Mn
R in the key ck respectively (see

Definition 3.5). We also define:

• fCM : ML ×MR ×R→MT as fCM(a,G, c) := 2−`a · G;
• gCM : Mn+h

R ×Mh
L →MT as gCM(ck, ρ) := 〈ρ, ck1〉;

• φsc : MT ×MT ×R→ {0, 1} as φsc(cm, cm
′, c) := I[c · cm ?

= cm′], which checks equality when c = 1.
• αsc ≡ 1. (For every i ∈ {0, 1, . . . , `}, p ∈ ML[Xi+1, . . . , X`], and (r1, . . . , ri) ∈ Ci, there exists a

message m ∈Mn
L such that p(Xi+1, . . . , X`) = pm(r1, . . . , ri, Xi+1, . . . , X`).)

For a key ck = (ck0, ck1) ∈Mn
R ×Mh

R , message m ∈Mn
L , randomness ρ ∈Mh

L , and slackness c ∈ R,
it holds that ∑

ω∈{−1,1}`
fCM(pm(ω), pck(ω), c) =

∑
ω∈{−1,1}`

2−`pm(ω) · pck(ω) .

Since pm and pck are multilinear polynomials, their product has individual degree at most 2 in each
variable. By Lemma 3.6,

∑
ω∈{−1,1}` 2−`pm(ω) · pck(ω) is the sum of the coefficients of Xi1

1 · · ·X
i`
` such

that i1, . . . , i` ≡ 0 mod 2. Note that for i, j ∈ {0, 1}, i+ j ≡ 0 mod 2 if and only if i = j. This means that
each of the coefficients of pa(X) · prv(G)(X) with i1, . . . , i` ≡ 0 mod 2 arise from a multiplication of the
monomials in the terms miX

i1
1 · · ·X

i`
` and ckiX

i1
1 · · ·X

i`
` . This implies that∑

ω∈{−1,1}`
fCM(pm(ω), pck(ω), c) =

∑
ω∈{−1,1}`

2−`pm(ω) · pck(ω) = 〈m, ck0〉 .

Therefore

Ped.Commit(ck,m; ρ) = 〈m, ck0〉+ 〈ρ, ck1〉 =
∑

ω∈{−1,1}`
fCM(pm(ω), pck(ω), 1) + gCM(ck0, ck1, ρ) .

We have Ped.Open(ck,m, ρ, cm, c) = 1 if and only if c · cm = 〈m, ck0〉+ c · 〈ρ, ck1〉, which is true if and
only if c · (cm− gCM(ck0, ck1, ρ)) =

∑
ω∈{−1,1}` fCM(pm(ω), pck(ω), c), implying the required property of

φsc. Finally, we have dck = 1 and d?ck = 2.

Proof of Item 4. Let ck ∈Mn+h
R be the commitment key sampled in the first step of the invertibility definition.

Also, fix an output of A: an index i ∈ [`]; a challenge vector (r1, . . . , ri−1) ∈ Ci−1; distinct challenges
r
(1)
i , r

(2)
i , r

(3)
i ∈ C; polynomials p1, p2, p3 ∈ML[Xi+1, . . . , X`]; a polynomial q(X) = q0 + q1X + q2X

2 in
MT[X]; and a slackness c ∈ R.
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Moreover, suppose that A’s outputs satisfy the experiment’s checks (or else the experiment just outputs
1): for every j ∈ [3] it holds that NPed · ‖pj‖ML

≤ B, pj is ck-admissible for (r1, . . . , ri−1, r
(j)
i ), and

q(r
(j)
i ) =

∑
ωi+1,...,ω`∈H

fCM

(
pj(ωi+1, . . . , ω`), pck(r1, . . . , ri−1, r

(j)
i , ωi+1, . . . , ω`), c

)
.

We have to specify an inverter I that, given pp, ck, andA’s outputs, outputs a ck-admissible p ∈ML[Xi, . . . , X`]
with ‖p‖ML

≤ NPed ·maxj∈[3] ‖pj‖ML
such that∑

ωi∈H
q(ωi) =

∑
ωi,...,ω`∈H

fCM

(
p(ωi, . . . , ω`), pck(r1, . . . , ri−1, ωi, . . . , ω`), ξ · c

)
.

Denoting by pck[r1, . . . , ri−1; 0] and pck[r1, . . . , ri−1; 1] the coefficients in pck(r1, . . . , ri−1, Xi, . . . , X`)
for monomials without Xi and with Xi respectively, for every j ∈ [3] it holds that:

c · (q0 + q1r
(j)
i + q2r

(j)
i

2
)

= c · q(r(j)i )

=
∑

ω∈{−1,1}`−i
2−`pj(ω) · pck(r1, . . . , ri−1, r

(j)
i , ω)

= 2−i〈pj , pck[r1, . . . , ri−1; 0] + r
(j)
i pck[r1, . . . , ri−1; 1]〉 ,

where pj are the coefficients of pj , and the last equality follows from Lemma 3.6.
Define the following Vandermonde matrix and its adjugate:

V :=

1 r
(1)
i r

(1)
i

2

1 r
(2)
i r

(2)
i

2

1 r
(3)
i r

(3)
i

2

 and adj(V ) :=

a11 a12 a13
a21 a22 a23
a31 a32 a33

 .

We can find multiples of q0, q1, q2 in terms of pck[r1, . . . , ri−1; 0] and pck[r1, . . . , ri−1; 1] by computingdet(V )c · q0
det(V )c · q1
det(V )c · q2

 := adj(V ) ·

2−i〈p1, pck[r1, . . . , ri−1; 0] + r
(1)
i pck[r1, . . . , ri−1; 1]〉

2−i〈p2, pck[r1, . . . , ri−1; 0] + r
(2)
i pck[r1, . . . , ri−1; 1]〉

2−i〈p3, pck[r1, . . . , ri−1; 0] + r
(3)
i pck[r1, . . . , ri−1; 1]〉


= 2−i

a11 a12 a13
a21 a22 a23
a31 a32 a33

 ·
〈p1, pck[r1, . . . , ri−1; 0]〉+ 〈r(1)i p1, pck[r1, . . . , ri−1; 1]〉
〈p2, pck[r1, . . . , ri−1; 0]〉+ 〈r(2)i p2, pck[r1, . . . , ri−1; 1]〉
〈p3, pck[r1, . . . , ri−1; 0]〉+ 〈r(3)i p3, pck[r1, . . . , ri−1; 1]〉



= 2−i

〈
∑3

j=1 a1jpj , pck[r1, . . . , ri−1; 0]〉+ 〈
∑3

j=1 a1jr
(j)
i pj , pck[r1, . . . , ri−1; 1]〉

〈
∑3

j=1 a2jpj , pck[r1, . . . , ri−1; 0]〉+ 〈
∑3

j=1 a2jr
(j)
i pj , pck[r1, . . . , ri−1; 1]〉

〈
∑3

j=1 a3jpj , pck[r1, . . . , ri−1; 0]〉+ 〈
∑3

j=1 a3jr
(j)
i pj , pck[r1, . . . , ri−1; 1]〉



= 2−i

〈
∑3

j=1(a1jpj , a1jr
(j)
i pj), (pck[r1, . . . , ri−1; 0], pck[r1, . . . , ri−1; 1])〉

〈
∑3

j=1(a2jpj , a2jr
(j)
i pj), (pck[r1, . . . , ri−1; 0], pck[r1, . . . , ri−1; 1])〉

〈
∑3

j=1(a3jpj , a3jr
(j)
i pj), (pck[r1, . . . , ri−1; 0], pck[r1, . . . , ri−1; 1])〉

 .
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Note that, for each k ∈ [3], it holds that

‖
∑3

j=1(akjpj , akjr
(j)
i pj)‖ML

≤ 3γ2Rι(C, 3)‖C‖R max
j∈[3]
‖pj‖ML

because the sum contains three terms, and each of these terms is a multiplication of at most three elements: an
entry of adj(V ), an element of C, and a coordinate of pj (for j ∈ [3]). See Definition 3.12 for the definition of
ι(C, 3), and Definition 3.4 for the definition of ‖C‖R; the term γ2R arises from the expansion factor of norms
when multiplying (in this case at most three) elements (see Remark 3.3).

In other words, we can find a quadratic polynomial π ∈M2`−i+1

L [X] such that

det(V )c · q(X) = 2−i〈π(X), (pck[r1, . . . , ri−1; 0], pck[r1, . . . , ri−1; 1])〉

where each coefficient of π has ML-norm at most 3γ2Rι(C, 3)‖C‖R maxj∈[3] ‖pj‖ML
.

Note that det(V ) = (r
(1)
i −r

(2)
i )(r

(2)
i −r

(3)
i )(r

(3)
i −r

(1)
i ), and the constants (ξ,N) satisfy Definition 3.13.

So, we can find a0, a1, a2, b0, b1, b2 ∈M2`−i
L withML-norm at mostN3(3γ2Rι(C, 3)‖C‖R maxj∈[3] ‖pj‖ML

) =
3γ2RN

3ι(C, 3)‖C‖R maxj∈[3] ‖pj‖ML
such that

ξ3c·q(X) = 2−i〈a0+a1X+a2X
2, pck[r1, . . . , ri−1; 0]〉+2−i〈b0+b1X+b2X

2, pck[r1, . . . , ri−1; 1]〉 . (6)

By summing the above equation over H = {−1, 1}, we obtain that

ξ3c ·
(
q(1) + q(−1)

)
= 2−i〈a0 + a1 + a2, pck[r1, . . . , ri−1; 0]〉+ 2−i〈b0 + b1 + b2, pck[r1, . . . , ri−1; 1]〉

+ 2−i〈a0 − a1 + a2, pck[r1, . . . , ri−1; 0]〉+ 2−i〈b0 − b1 + b2, pck[r1, . . . , ri−1; 1]〉
= 2−i〈2a0 + 2a2, pck[r1, . . . , ri−1; 0]〉+ 2−i〈2a0 + 2a2, pck[r1, . . . , ri−1; 1]〉

= 2−i
〈(

2a0 + 2a2, 2b0 + 2b2

)
,
(
pck[r1, . . . , ri−1; 0], pck[r1, . . . , ri−1; 1]

)〉
= 2−i+1

〈(
a0 + a2, b0 + b2

)
,
(
pck[r1, . . . , ri−1; 0], pck[r1, . . . , ri−1; 1]

)〉
.

Now consider the vector vi := (a0 + a2, b0 + b2) ∈M2`−i+1

L , and its corresponding multilinear polynomial
pvi ∈ML[Xi, . . . , X`] obtained according to Definition 3.5. Note that vi, and thus pvi , has ML-norm at most

6γ2RN
3ι(C, 3)‖C‖R max

j∈[3]
‖pj‖ML

= NPed max
j∈[3]
‖pj‖ML

and satisfies the following equation:

ξ3c · (q(1) + q(−1)) =
∑

ωi,...,ω`∈{−1,1}

fCM

(
pvi(ωi, . . . , ω`), pck(r1, . . . , ri−1, ωi, . . . , ω`), ξ

3 · c
)
.

Moreover, pvi is ck-admissible and all the derivations to obtain pvi , the desired polynomial, are efficient.

5.3 Linear-function commitment

We define a commitment scheme that includes the scalar-product of two parts of a message, where one part
is public and the other part is in a Pedersen commitment. This commitment scheme can be viewed as a
linear-function commitment, where the linear function is the committed part of message, the “query” to
the linear function is the public part of the message, and query answer is the scalar product of the two; the
committed part of the message can be created in an online phase and re-used across different queries.
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Definition 5.12. Let BM = (Setup,KeyGen) be a bilinear-module generator. The linear-function commit-
ment scheme is defined via the following algorithms.

• LF.Setup(1λ, n): sample (M, h, aux)← BM.Setup(1λ, n) and output pp := (M, h, aux).
• LF.KeyGen(pp): sample ck← BM.KeyGen(M, h, aux) and output ck = (ck0, ck1) ∈Mn

R ×Mh
R .

• LF.Commit(ck,m; ρ): given m = (mP,mS) ∈ Rn ×Mn
L (BC) and ρ← UML

, output

cm :=
(
mP, 〈mS, ck0〉+ 〈ρ, ck1〉, 〈mP,mS〉

)
∈ R×MT ×ML .

• LF.Open(ck,m, ρ, cm, c): check that m = (mP,mS) ∈ Rn ×Mn
L (BBRA), and ρ ∈ Mh

L (BBRA), c · cm =
(c ·mP, 〈mS, ck0〉+ c〈ρ, ck1〉, 〈mP,mS〉).

Lemma 5.13. If BM is secure then LF is a sumcheck-friendly invertible commitment scheme. In more detail:

1. if BM satisfies the BRA then LF is binding;

2. LF is sumcheck-friendly;

3. if (C, ξ,N) are pseudoinverse parameters for (R,MT) then, for every B ∈ N (regardless of BBRA in aux),
LF is (3, B, ξ3, NLF)-invertible for

NLF := 6γ2RN
3ι(C, 3)‖C‖R . (7)

Note that LF is not hiding because the message part mP is included in the commitment cm (but note
that the other message part mS is hidden because it is under a Pedersen commitment). The proof of Item 1
follows directly from the definition of the BRA. We now prove the other two items.

Proof of Item 2. Let H := {−1, 1} and ` := logn. We define pm := (mP, pmP, pmS), where pmP and
pmS are the multilinear polynomials corresponding to the messages mP ∈Mn

L and mS ∈Mn
L respectively

(see Definition 3.5). We also define pck to be the multilinear polynomial corresponding to ck0 ∈Mn
R (see

Definition 3.5). We define the functions fCM, gCM, φsc as

• fCM((aP 0, aP1, aS),G, c) := 2−`(c · aP 0, aS · G, aP1 · aS);
• gCM(ck, ρ) := (0, 〈ρ, ck1〉, 0);

• φsc(cm, cm
′, c) := I[c · cm ?

= cm′];
• for every i ∈ {0, 1, . . . , `}, p = (c, p1, p2) ∈ Rn × (R ×ML)[Xi+1, . . . , X`], and (r1, . . . , ri) ∈ Ci,
αsc(ck, p, r1, . . . , ri) := 1 if only if p1 = pc(r1, . . . , ri, Xi+1, . . . , X`).

For a key ck ∈Mn
R ×Mh

R , message m ∈Mn
L , randomness ρ ∈Mh

L , and slackness c ∈ R, it holds that∑
ω∈{−1,1}`

fCM(pm(ω), pck(ω), c) =
∑

ω∈{−1,1}`
2−`(mP, c · pmS(ω) · pck(ω), c · pmS(ω) · pmP)

= (mP, c〈mS, ck0〉, c〈mP,mS〉) .

The last equality follows from Lemma 3.6. This implies that

LF.Commit(ck,m; ρ) = (mP, 〈mS, ck0〉+ 〈ρ, ck1〉, 〈mP,mS〉)

=
∑

ω∈{−1,1}`
fCM(pm(ω), pck(ω), 1) + gCM(ck0, ck1, ρ) .
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We have LF.Open(ck,m, ρ, cm, c) = 1 if and only if c · cm = (c · mP, 〈mS, ck0〉 + c〈ρ, ck1〉, 〈mP,mS〉),
which is true if and only if c · (cm − gCM(ck0, ck1, ρ)) =

∑
ω∈{−1,1}` fCM(pm(ω), pck(ω), c), implying the

required property of φsc. Also, we have dck = 1 and d?ck = 2.

Proof of Item 4. Let ck = (ck0, ck1) ∈ Mn+h
R be the commitment key sampled in the first step of the

invertibility definition. Also, fix an output of A: an index i ∈ [`]; a challenge vector (r1, . . . , ri−1) ∈ Ci−1;
distinct challenges r(1)i , r

(2)
i , r

(3)
i ∈ C; polynomials p1, p2, p3 ∈ Rn×(R×ML)[Xi+1, . . . , X`]; a polynomial

q(X) = q0 + q1X + q2X
2 in Rn × (MT ×ML)[X]; and a slackness c ∈ R. Moreover, suppose that A’s

outputs satisfy the experiment’s checks (or else the experiment just outputs 1).
We introduce some notation:

• pck[r1, . . . , ri−1; 0] and pck[r1, . . . , ri−1; 1] are the coefficients in pck(r1, . . . , ri−1, Xi, . . . , X`) for mono-
mials without Xi and with Xi respectively;

• qC ∈ Rn is the first part of q, which is a vector in Rn;
• qC[r1, . . . , ri−1; 0] and qC[r1, . . . , ri−1; 1] are the coefficients in pqC(r1, . . . , ri−1, Xi, . . . , X`) for mono-

mials without Xi and with Xi respectively;
• writing pj = (pj,P,0, pj,P,1, pj,S), pj,S are the coefficients of pj,S
For every j ∈ [3], it holds that:

c · (q0 + q1r
(j)
i + q2r

(j)
i

2
)

= c · q(r(j)i )

= c
∑

ω∈{−1,1}`−i
fCM(pj(ω), pck(r1, . . . , ri−1, r

(j)
i , ω))

= 2−i
∑

ω∈{−1,1}`−i

(
c · pj,P,0, pj,S(ω)pck(r1, . . . , ri−1, r

(j)
i , ω), pj,P,1(ω)pj,S(ω)

)
= 2−i

(
c · qC, 〈pj,S , pck[r1, . . . , ri−1; 0] + r

(j)
i pck[r1, . . . , ri−1; 1]〉, 〈pj,P,1, pj,S〉

)
= 2−i

(
c · qC, 〈pj,S , pck[r1, . . . , ri−1; 0] + r

(j)
i pck[r1, . . . , ri−1; 1]〉,

〈qC[r1, . . . , ri−1; 0] + r
(j)
i qC[r1, . . . , ri−1; 1], pj,S〉

)
.

The second to last equality follows from Lemma 3.6 and the fact that the first coordinate of q(X) is a constant
in Rn (pj,P,0 = qC for every j). The last equality follows because pj is admissible.

Similarly to the proof of Lemma 5.11, we can find representations of ξ3c · q0, ξ3c · q1, ξ3c · q2 in terms of
pck[r1, . . . , ri−1; 0], pck[r1, . . . , ri−1; 1], qC[r1, . . . , ri−1; 0], and qC[r1, . . . , ri−1; 1]. Namely, we can find
a0, a1, a2, b0, b1, b2 ∈M2`−i

L with ML-norm at most 3γ2RN
3ι(C, 3)‖C‖R maxj∈[3] ‖pj‖ML

such that

ξ3c · q(X)

= 2−i
(
ξ3c · qC,

〈a0 + a1X + a2X
2, pck[r1, . . . , ri−1; 0]〉+ 〈b0 + b1X + b2X

2, pck[r1, . . . , ri−1; 1]〉,

〈qC[r1, . . . , ri−1; 0], a0 + a1X + a2X
2〉+ 〈qC[r1, . . . , ri−1; 1], b0 + b1X + b2X

2〉
)
.

By summing the above equation over H = {−1, 1}, we obtain that

ξ3c ·
(
q(1) + q(−1)

)
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= 2−i+1
(
ξ3c · qC,

〈(a0 + a2, b0 + b2), (pck[r1, . . . , ri−1; 0], pck[r1, . . . , ri−1; 1])〉,

〈(pqC [r1, . . . , ri−1; 0], pqC [r1, . . . , ri−1; 1]), (a0 + a2, b0 + b2)〉
)
.

Now consider the vector vi := (a0 + a2, b0 + b2) ∈M2`−i+1

L and the polynomial

p(X) := (qC, pqC(r1, . . . , ri−1, X), pvi(X)) ∈ (Rn ×R×ML)[Xi, . . . , X`]

obtained using Definition 3.5. Note that vi, and thus p, has ML-norm at most

6γ2RN
3ι(C, 3)‖C‖R max

j∈[3]
‖pj‖ML

= NLF max
j∈[3]
‖pj‖ML

and satisfies the following equation:

ξ3c · (q(1) + q(−1)) =
∑

ωi,...,ω`∈{−1,1}

fCM

(
(qC, pqC(r1, . . . , ri−1, ω), p(ωi, . . . , ω`)),

pck(r1, . . . , ri−1, ωi, . . . , ω`), ξ
3 · c

)
.

which implies that φsc evaluates to 1 as required. Moreover, p is ck-admissible and all the derivations to
obtain p, the desired polynomial, are efficient.

Remark 5.14 (polynomial evaluation). Linear functions capture polynomial evaluation, in any basis (whether
in monomial basis, in Lagrange basis, or other bases). We give some examples below.

• Univariate polynomial in monomial basis. The evaluation of p(X) =
∑d

i=0 ciX
i ∈ ML[X] at z ∈ R is

〈mP,mS〉 ∈ML for mP := (1, z, z2, . . . , zd) ∈ Rd+1 and mS := (c0, . . . , cd) ∈Md+1
L .

• Univariate polynomial in Lagrange basis. Let S ⊆ R be a strong sampling set for R (Definition 3.10),
and for every a ∈ S let `S,a(X) :=

∏
b∈S\{a}(a− b)−1(X − b) ∈ R[X] be the a-th Lagrange polynomial

over S. The evaluation of p(X) =
∑

a∈S ca`S,a(X) ∈ ML[X] at z ∈ R is 〈mP,mS〉 ∈ ML for

mP := (`S,a(z))a∈S ∈ R|S| and mS := (ca)a∈S ∈M |S|L .
• Multilinear polynomial in monomial basis. The evaluation of p(X1, . . . , Xm) =

∑
i1,...,im∈{0,1} ci1,...,imX

i1
1 · · ·Xim

m

at (z1, . . . , zm) ∈ Rm is 〈mP,mS〉 ∈ ML for mP := (
∏
j∈[m] z

ij
j )i1,...,im∈{0,1} ∈ R2m and mS :=

(ci1,...,im)i1,...,im∈{0,1} ∈M2m
L .

• Multilinear polynomial in Lagrange basis. As above, `{0,1},b(X) := bX + (1− b)X is the b-th Lagrange
polynomial over {0, 1}. The evaluation of p(X1, . . . , Xm) =

∑
i1,...,im∈{0,1} ci1,...,im

∏
j∈[m] `{0,1},ij (X)

at (z1, . . . , zm) ∈ Rm is 〈mP,mS〉 ∈ ML for mP := (
∏
j∈[m] `{0,1},ij (zj))i1,...,im∈{0,1} ∈ R2m and

mS := (ci1,...,im)i1,...,im∈{0,1} ∈M2m
L .

Remark 5.15 (polynomial commitments over rings). We have explained that linear functions capture
polynomial evaluation (Remark 5.14), and this implies that we can use our sumcheck argument to obtain
polynomial commitment schemes for polynomials over rings, as we now explain.

In the commit phase, the sender commits to a polynomial p via a Pedersen commitment: C := 〈p, ck0〉+
〈ρ, ck1〉 for randomness ρ. Subsequently, in the reveal phase (which can be repeated any number of times for
this commitment), the sender can reveal evaluations of p by applying our sumcheck argument to appropriate
statements about the commitment scheme LF. In more detail, suppose that the sender wishes to prove the
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statement “given a commitment C, evaluation point z, and claimed value v, I know a polynomial p and
randomness ρ such that C = 〈p, ck0〉 + 〈ρ, ck1〉 and p(z) = v”. Then the sender and receiver engage in a
sumcheck argument for the instance x = (CM, pp, C, ck, cm) and witness w = (m, ρ) where

CM := LF , ck := (ck0, ck1) , cm := (f(z),C, v) , m := (mP,mS) = (f(z), p) ,

where f is a function depending on the representation of p. Tree extraction with slackness factor c implies that
the extractor can find a polynomial p and randomness ρ such that c · C = 〈p, ck0〉+ c〈ρ, ck1〉 and p(z) = cv.
This may be enough for applications, or else one can eliminate the slackness factor by “quotienting out”.

This “quotienting” strategy, which we do use later in Section 6, uses bilinear module generators that are
quotient-friendly (Definition 5.8), which means that there is a submodule I ⊆ML

6 such that multiplication by
the slackness factor c ∈ R can be inverted in the quotient moduleML/I . Then, while computing commitments
over ML as before, we can view C as a commitment to p mod I in ML/I rather than a commitment to p in
ML. The knowledge extractor can find a polynomial p satisfying p(z) = cv over ML, which implies that
c−1p(z) = v mod I . This method yields openings without slackness in the case where multiplication by c
may not be invertible in ML.

Note that our sumcheck argument is not zero knowledge so the opening algorithm of the polynomial
commitment scheme outlined above is also not zero knowledge. There are several ways to achieve a
zero-knowledge opening algorithm.

• One option is to devise a zero-knowledge sumcheck argument (say, by leveraging ideas for zero-knowledge
sumcheck protocols [BCFGRS17] or by adding randomness in each round of the sumcheck argument) and
apply that to LF as above; we leave this interesting direction to future work.

• Another (and somewhat overkill) option is to rely on the zero-knowledge succinct argument for scalar
products that we design in Section 6. This latter, which is based on applying our sumcheck argument to
the scalar-product commitment scheme SP from Section 5.4 and then adding zero knowledge, captures
polynomial evaluation because scalar products generalize linear functions (both parts of the message can
be committed rather than just one) and also takes care of quotienting out slackness factors.

A key difference between the two options is that the sumcheck argument is a proof of knowledge for LF but
merely an argument of knowledge for SP. This is because in the former invertibility holds unconditionally
(Lemma 5.13) while in the latter invertibility holds if SP is binding (Lemma 5.17).

5.4 Scalar-product commitment

We define a commitment scheme that includes the scalar-product of two committed messages. For this
commitment scheme, we assume that ML in the bilinear module is a ring, so that the scalar-product of two
message vectors with entries in ML is well-defined (which is not the case if ML is merely a module).

Definition 5.16. Let BM = (Setup,KeyGen) be a bilinear-module generator that is scalar-product compati-
ble. The scalar-product commitment scheme is defined via the following algorithms.

• SP.Setup(1λ, n): sample (M, h, aux)← BM.Setup(1λ, n) and output pp := (M, h, aux).
• SP.KeyGen(pp): sample

ckL = (ckL0, ckL1)← BM.KeyGen(M, h, aux) ,

6If BM is scalar-product compatible and ML is a ring, then I will be an ideal of ML.

46



ckR = (ckR0, ckR1)← BM.KeyGen(M, h, aux) ,

(ckP?, ckH)← BM.KeyGen(M, h, aux) ,

set ckP := ckP?[1] ∈MR, and output ck := (ckL0, ckR0, ckP, ckL1, ckR1, ckH) ∈M2n+1
R ×M3h

R .
• SP.Commit(ck,m; ρ): given m = (mL,mR) ∈M2n

L (BC) and ρ = (ρL, ρR, ρH) ∈M3h
L where ρL, ρR, ρH←

UML
, output cm := (cmL, cmR, cmP) ∈M3

T where

cmL := 〈mL, ckL0〉+ 〈ρL, ckL1〉 ,
cmR := 〈mR, ckR0〉+ 〈ρR, ckR1〉 ,
cmP := 〈mL,mR〉 · ckP + 〈ρH, ckH〉 .

• SP.Open(ck,m, ρ, cm, c): check that m = (mL,mR) ∈ M2n
L (BBRA), ρ = (ρL, ρR, ρH) ∈ M3h

L (BBRA),
and, parsing cm and (cmL, cmR, cmP), also that

c · cmL = 〈mL, ckL0〉+ c〈ρL, ckL1〉 ,
c · cmR = 〈mR, ckR0〉+ c〈ρR, ckR1〉 ,
c2 · cmP = 〈mL,mR〉 · ckP + c2〈ρH, ckH〉 .

Lemma 5.17. If BM is secure then SP is a sumcheck-friendly invertible commitment scheme. In more detail:

1. if BM satisfies the BRA then SP is binding;

2. if h is (M,UML
,UMR

,negl(λ))-hiding then SP is computationally hiding;

3. SP is sumcheck-friendly;

4. if SP is binding and (C, ξ,N) are pseudoinverse parameters for (R,MT) then SP is (4, BSP, ξ
3, NSP)-

invertible for

BSP :=
BBRA

3γ2R‖C‖2R‖ξ3‖R
, (8)

NSP := 3γ2RN
3ι(C, 3)‖C‖R . (9)

The proofs of Items 1 and 2 follow directly from the definition of the BRA and the hiding constant of
BM. We now prove the other two items.

Proof of Item 3. Let H := {−1, 1} and ` := log n. For a message m = (mL,mR) ∈ M2n
L , we define

pm := (pmL, pmR) ∈M2
L [X1, . . . , X`] where pmL, pmR are the multilinear polynomials respectively obtained

from mL,mR ∈Mn
L via Definition 3.5. For a key ck = (ckL0, ckR0, ckP, ckL1, ckR1, ckH), we define pck :=

(pckL0 , pckR0 , pckP) ∈ M3
L [X1, . . . , X`] where pckL0 , pckR0 are the multilinear polynomials respectively

obtained from ckL0, ckR0 ∈Mn
R via Definition 3.5 and ckP is a degenerate 0-degree polynomial equal to the

constant ckP ∈MR. We define:

• fCM : M2
L ×M3

R ×R→M3
T as fCM((aL, aR), (GL,GR,GSC), c) := 2−`( aL · GL, aR · GR, aLaRGSC);

• gCM : M2n+1+3h
R ×M3h

L →M3
T as gCM(ck, ρ) := (〈ρL, ckL1〉, 〈ρR, ckR1〉, 〈ρH, ckH〉);

• φsc : MT ×MT × R → {0, 1} as φsc(cm, cm
′, c) = I[(c · cmL, c · cmR, c2cmP)

?
= cm′], where cm =

(cmL, cmR, cmP), which checks equality when c = 1.
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• αsc ≡ 1. (For every i ∈ {0, 1, . . . , `}, p ∈ M2
L [Xi+1, . . . , X`], and (r1, . . . , ri) ∈ Ci, there ex-

ists a message m = (mL,mR) ∈ M2n
L such that p(Xi+1, . . . , X`) = (pmL(r1, . . . , ri, Xi+1, . . . , X`),

pmR(r1, . . . , ri, Xi+1, . . . , X`)).)

For a key ck ∈ M2n+1+3h
R , message m ∈ M2n

L , randomness ρ ∈ M3h
L , and slackness c ∈ R, one can

show, using Lemma 3.6 and arguments similar to the proof of Lemma 5.11, that∑
ω∈{−1,1}`

fCM(pm(ω), pck(ω), c)

=
∑

ω∈{−1,1}`
2−` (pmL(ω) · pckL0(ω), pmR(ω) · pckR0(ω), pmL(ω) · pmR(ω) · pckP)

= (〈mL, ckL0〉, 〈mR, ckR0〉, 〈mL,mR〉 · ckP) .

This implies that

SP.Commit(ck,m; ρ)

= (〈mL, ckL0〉, 〈mR, ckR0〉, 〈mL,mR〉 · ckP) + (〈ρL, ckL1〉, 〈ρR, ckR1〉, 〈ρH, ckH〉)

=
∑

ω∈{−1,1}`
fCM(pm(ω), pck(ω), 1) + gCM(ck, ρ) .

We have SP.Open(ck,m, ρ, cm, c) = 1 if and only if

(c·cmL, c·cmR, c2·cmP) = (〈mL, ckL0〉+c〈ρL, ckL1〉, 〈mR, ckR0〉+c〈ρR, ckR1〉, 〈mL,mR〉·ckP+c2〈ρH, ckH〉) ,

which is true if and only if (c, c, c2)·((cmL, cmR, cmP)−gCM(ck0, ck1, ρ)) =
∑

ω∈{−1,1}` fCM(pm(ω), pck(ω), c),
implying the required property of φsc. Finally, we have dck = 1 and d?ck = 2.

Proof of Item 4. Let ck ∈M2n+1
R ×M3h

R be the commitment key sampled in the first step of the invertibility
definition. Also, fix an output of A: an index i ∈ [`]; a challenge vector (r1, . . . , ri−1) ∈ Ci−1; distinct
challenges r(1)i , r

(2)
i , r

(3)
i , r

(4)
i ∈ C; polynomials p1, p2, p3, p4 ∈M2

L [Xi+1, . . . , X`]; a polynomial q(X) =
(qL, qR, qP )(X) = (qL0, qR0, qP0) + (qL1, qR1, qP1)X + (qL2, qR2, qP2)X

2 in M3
T[X]; and a slackness

c ∈ R. Moreover, suppose that A’s outputs satisfy the experiment’s checks (or else the experiment just
outputs 1).

We introduce some notation:
• pckL[r1, . . . , ri−1; 0] and pckL[r1, . . . , ri−1; 1] are the coefficients in pckL(r1, . . . , ri−1, Xi, . . . , X`) for

monomials without Xi and with Xi respectively;
• pckR[r1, . . . , ri−1; 0] and pckR[r1, . . . , ri−1; 1] are the coefficients in pckR(r1, . . . , ri−1, Xi, . . . , X`) for

monomials without Xi and with Xi;
• for j ∈ [4], pj,L and pj,R are the coefficients of the two coordinates of pj .

For every j ∈ [4] it holds that:

(c · qL0, c · qR0, c
2 · qP0) + (c · qL1, c · qR1, c

2 · qP1)r
(j)
i + (c · qL2, c · qR2, c

2 · qP2)r
(j)
i

2

= (c · qL, c · qR, c2qP )(r
(j)
i )

=
∑

ωi+1,...,ω`∈H
fCM

(
pj(ωi+1, . . . , ω`), pck(r1, . . . , ri−1, r

(j)
i , ωi+1, . . . , ω`), c

)
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= 2−`
∑

ωi+1,...,ω`

(
pj,L(ωi+1, . . . , ω`) · pckL(r1, . . . , ri−1, r

(j)
i , ωi+1, . . . , ω`),

pj,R(ωi+1, . . . , ω`) · pckR(r1, . . . , ri−1, r
(j)
i , ωi+1, . . . , ω`),

pj,L(ωi+1, . . . , ω`)pj,R(ωi+1, . . . , ω`) · ckP
)

= 2−i
(
〈pj,L, pckL[r1, . . . , ri−1; 0] + r

(j)
i pckL[r1, . . . , ri−1; 1]〉, (10)

〈pj,R, pckR[r1, . . . , ri−1; 0] + r
(j)
i pckR[r1, . . . , ri−1; 1]〉,

〈pj,L, pj,R〉 · ckP
)
,

where the last equality follows from Lemma 3.6.
Similarly to the proof of Lemma 5.11, we can find representations of (ξ3c·qL, ξ3c·qR, ξ6c2 ·qP ) in terms

of pckL[r1, . . . , ri−1; 0], pckL[r1, . . . , ri−1; 1], pckR[r1, . . . , ri−1; 0], pckR[r1, . . . , ri−1; 1] and ckP. Namely,
we can find aL,0, aL,1, aL,2, bL,0, bL,1, bL,2 ∈ M2`−i

L , aR,0, aR,1, aR,2, bR,0, bR,1, bR,2 ∈ M2`−i
L with ML-

norm at most 3γ2RN
3ι(C, 3)‖C‖R maxj∈[4] ‖pj‖ML

= NSP maxj∈[4] ‖pj‖ML
and a•,0, a•,1, a•,2 ∈ M2`−i

L

such that

(ξ3c · qL, ξ3c · qR, ξ6c2 · qP )(X)

= 2−i
(

(〈aL,0 + aL,1X + aL,2X
2, pckL[r1, . . . , ri−1; 0]〉+ 〈bL,0 + bL,1X + bL,2X

2, pckL[r1, . . . , ri−1; 1]〉),

(〈aR,0 + aR,1X + aR,2X
2, pckR[r1, . . . , ri−1; 0]〉+ 〈bR,0 + bR,1X + bR,2X

2, pckR[r1, . . . , ri−1; 1]〉),
(11)

(a•,0 + a•,1X + a•,2X
2) · ckP

)
.

This step uses Equation (10) for three choices of j ∈ [4]; the fourth one is used for the following claim.

Claim 5.18.

(ξ3c · qL, ξ3c · qR, ξ6c2 · qP )(X)

= 2−i
(

(〈aL,0 + aL,1X, pckL[r1, . . . , ri−1; 0]〉+ 〈(aL,0 + aL,1X)X, pckL[r1, . . . , ri−1; 1]〉),

(〈aR,0 + aR,1X, pckR[r1, . . . , ri−1; 0]〉+ 〈(aR,0 + aR,1X)X, pckR[r1, . . . , ri−1; 1]〉),

(〈aL,0 + aL,1X), aR,0 + aR,1X〉) · ckP
)
.

Proof. The claimed equation follows from Equation (11) and the following equalities.

• aL,0 = bL,1, aL,1 = bL,2, aL,2 = bL,0 = 0. By comparing coefficients of pckL[r1, . . . , ri−1; 0] and
pckL[r1, . . . , ri−1; 1] in Equation (11), we now argue that for every j ∈ [4]

(aL,0 + aL,1r
(j)
i + aL,2r

(j)
i

2
)r

(j)
i = bL,0 + bL,1r

(j)
i + bL,2r

(j)
i

2
. (12)

This in turn implies that aL,0 = bL,1, aL,1 = bL,2, and aL,2 = bL,0 = 0.

Suppose by way of contradiction that Equation (12) does not hold for some j ∈ [4]. Define the messages

m
(j)
1 := (aL,0 + aL,1r

(j)
i + aL,2r

(j)
i

2
, bL,0 + bL,1r

(j)
i + bL,2r

(j)
i

2
) ,

m
(j)
2 := ξ3(pj,L, r

(j)
i pj,L) .
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Note that

‖m(j)
1 ‖ML

≤ 3γ2R‖C‖2R max{‖aL,0‖ML
, ‖aL,1‖ML

, ‖aL,2‖ML
, ‖bL,0‖ML

, ‖bL,1‖ML
, ‖bL,2‖ML

}

≤ 3γ2R‖C‖2RNSP max
j∈[4]
‖pj‖ML

≤ 3γ2R‖C‖2RBSP ≤ 3γ2R‖C‖2R
BBRA

3γ2R‖C‖2R‖ξ3‖R
≤ BBRA ,

‖m(j)
2 ‖ML

≤ γ2R‖ξ3‖R‖C‖R max
j∈[4]
‖pj‖ML

≤ γ2R‖ξ3‖R‖C‖RBSP ≤ γ2R‖ξ3‖R‖C‖R
BBRA

3γ2R‖C‖2R‖ξ3‖R
≤ BBRA .

Moreover, from Equation (10) we deduce that

〈m(j)
1 , (pckL[r1, . . . , ri−1; 0], pckL[r1, . . . , ri−1; 1]0〉 = 〈m(j)

2 , (pckL[r1, . . . , ri−1; 0], pckL[r1, . . . , ri−1; 1])〉

which for cm := ξ3〈(pj,L, r
(j)
i pj,L), (pckL[r1, . . . , ri−1; 0], pckL[r1, . . . , ri−1; 1])〉 implies that

SP.Open(ck, (m
(j)
1 , 0), 0, cm, ξ3c) = 1 and SP.Open(ck, (m

(j)
2 , 0), 0, cm, ξ3c) = 1 ,

which breaks the binding property of SP. Above we set the right part of the message mR := 0 and the
commitment randomness ρ := 0.

• aR,0 = bR,1, aR,1 = bR,2, aR,2 = bR,0 = 0. We apply the same argument as above for

m
(j)
1 := (aR,0 + aR,1r

(j)
i + aR,2r

(j)
i

2
, bR,0 + bR,1r

(j)
i + bR,2r

(j)
i

2
) ,

m
(j)
2 := ξ3(pj,R, r

(j)
i pj,R) .

• a•,0 + a•,1X + a•,2X
2 = 〈aL,0 + aL,1X, aR,0 + aR,1X〉. Below we argue that for each j ∈ [4]

ξ3pj,L = aL,0 + aL,1r
(j)
i and ξ3pj,R = aR,0 + aR,1r

(j)
i .

This in turn implies that for each j ∈ [4]

a•,0 + a•,1r
(j)
i + a•,2r

(j)
i

2
= ξ6〈pj,L, pj,R〉 = 〈aL,0 + aL,1r

(j)
i , aR,0 + aR,1r

(j)
i 〉

where the first equation follows by combining Equation (10) and Equation (11). So, a•,0+a•,1X+a•,2X
2 =

〈aL,0 + aL,1X, aR,0 + aR,1X〉 as claimed.

Suppose by way of contradiction that there exists j ∈ [4] such that ξ3pj,L 6= aL,0 + aL,1r
(j)
i . Then the two

distinct messages m(j)
1 := (aL,0 + aL,1r

(j)
i , r

(j)
i (aL,0 + aL,1r

(j)
i )) and m(j)

2 := (ξ3pj,L, r
(j)
i ξ3pj,L) satisfy

SP.Open(ck, (m
(j)
1 , 0), 0, cm, ξ3c) = 1 and SP.Open(ck, (m

(j)
2 , 0), 0, cm, ξ3c) = 1 ,

which breaks the binding property of SP, since ‖m(j)
1 ‖ML

, ‖m(j)
2 ‖ML

≤ BBRA. A similar argument holds if
there exists j ∈ [4] such that ξ3pj,R 6= aR,0 + aR,1r

(j)
i .

50



By summing the equation of Claim 5.18 over H = {−1, 1}, we obtain that

(ξ3c · qL, ξ3c · qR, ξ6c2 · qP )(1) + (ξ3c · qL, ξ3c · qR, ξ6c2 · qP )(−1) =

2−i+1
(
〈(aL,0, aL,1), (pckL[r1, . . . , ri−1; 0], pckL[r1, . . . , ri−1; 1])〉,

〈(aR,0, aR,1), (pckR[r1, . . . , ri−1; 0], pckR[r1, . . . , ri−1; 1])〉,

〈(aL,0, aL,1), (aR,0, aR,1)〉ck0
)
.

Now consider the vector vi :=
(
(aL,0, aL,1), (aR,0, aR,1)

)
∈ (M2`−i+1

L )2 and its corresponding polyno-
mial pvi ∈ M2

L [Xi, . . . , X`] whose two coordinates are the multilinear polynomials obtained from the
two vectors (aL,0, aL,1) and (aR,0, aR,1) in M2`−i+1

L . Note that vi, and thus pvi , has ML-norm at most
NSP maxj∈[4] ‖pj‖ML

and satisfies

(ξ3c, ξ3c, ξ6c2)·(q(1)+q(−1)) =
∑

ωi,...,ω`∈{−1,1}

fCM

(
pvi(ωi, . . . , ω`), pck(r1, . . . , ri−1, ωi, . . . , ω`), ξ

3·c
)
,

which implies that φsc evaluates to 1 as required. Moreover, pvi is ck-admissible and all the derivations to
obtain pvi , the desired polynomial, are efficient.

Remark 5.19 (scalar products without scalar-product compatibility). If BM is not scalar-product compatible,
we can still define a scalar-product commitment as follows. Sample commitment keys (ckL0, ckL1) ∈Mn+h

R ,
(ckR0, ckR1) ∈ Mn+h

L , and ckH ∈ Mh
R . The message and randomness are (mL,mR) ∈ Mn

L ×Mn
R and

(ρL, ρR, ρH) ∈Mh
L ×Mh

R ×Mh
L . A commitment is computed as three Pedersen commitments:(

〈mL, ckL0〉+ 〈ρL, ckL1〉, 〈mR, ckR0〉+ 〈ρR, ckR1〉, 〈mL,mR〉+ 〈ρH, ckH〉
)
∈M3

T .

To prove Lemma 5.17 for this construction we require that BM is secure, and also that the bilinear-module
generator that outputs the bilinear moduleM = (R,MR,ML,MT, e) with ML and MR swapped is secure.
The binding property follows from the bilinear-relation assumption for both of the two generators. The hiding
property of both bilinear-module generators implies that the commitment scheme is hiding.

5.5 Compressed scalar-product commitment

One can “compress” the three parts of the commitment in Section 5.4 into one. This leads to a commitment
scheme that is similar to a Pedersen commitment, except that the last coordinate corresponds to the scalar-
product of the “first” and “second” half of the message.

Definition 5.20. Let BM = (Setup,KeyGen) be a bilinear-module generator that is scalar-product compati-
ble. The compressed scalar-product commitment scheme is defined via the following algorithms.

• CSP.Setup(1λ, n): sample (M, h, aux)← BM.Setup(1λ, 2n+ 1) and output pp := (M, h, aux).
• CSP.KeyGen(pp): sample ck← BM.KeyGen(M, h, aux) and output

ck := (ckL, ckR, ckP, ckH) ∈M2n+1
R ×Mh

R .

• CSP.Commit(ck,m; ρ): given m = (mL,mR) ∈M2n
L (BC) and ρ← UML

, output

cm := 〈mL, ckL〉+ 〈mR, ckR〉+ 〈mL,mR〉 · ckP + 〈ρ, ckH〉 ∈MT .
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• CSP.Open(ck,m, ρ, cm, c): check that m = (mL,mR) ∈ M2n
L (BBRA), ρ ∈ Mh

L (BBRA), and c2 · cm =
c〈mL, ckL〉+ c〈mR, ckR〉+ 〈mL,mR〉 · ckP + c2 · 〈ρ, ckH〉.

Lemma 5.21. If BM is secure then CSP is a sumcheck-friendly invertible commitment scheme. In more
detail:

1. if BM satisfies the BRA then CSP is binding;

2. if h is (M,UML
,UMR

,negl(λ))-hiding then CSP is computationally hiding;

3. CSP is sumcheck-friendly;

4. if the BRA holds and (C, ξ,N) are pseudoinverse parameters for (R,MT) then CSP is (4, BCSP, ξ
3, NCSP)-

invertible for

BCSP :=

√
BBRA

nγ2R‖C‖2R‖ξ6‖R
, (13)

NCSP := 3γ2RN
3ι(C, 3)‖C‖R . (14)

The proofs of Items 1 and 2 follow directly from the definition of the BRA and the hiding constant of BM.
The proof of Item 3 is similar to the corresponding argument in Lemma 5.17, so we simply list the functions
involved. We only provide a proof sketch for the last item, highlighting the main differences in the proof.

Functions for Item 3. Let H := {−1, 1} and ` := log n. For a message m = (mL,mR) ∈M2n
L , we define

pm := (pmL, pmR) ∈M2
L [X1, . . . , X`] where pmL, pmR are the multilinear polynomials respectively obtained

from mL,mR ∈Mn
L via Definition 3.5. For a key (ckL, ckR, ckP, ckH), we define pck := (pckL, pckR, pckP) ∈

M3
L [X1, . . . , X`] where pckL, pckR are the multilinear polynomials respectively obtained from ckL0, ckR0 ∈

Mn
R via Definition 3.5 and ckP is a degenerate 0-degree polynomial equal to the constant ckP ∈ MR. We

define

• fCM : M2
L ×M3

R ×R→MT as fCM((aL, aR), (GL,GR,GSC), c) := 2−`c aL · GL + c aR · GR + aLaRGSC ;
• gCM : M2n+1+h

R ×Mh
L →M3

T as gCM(ck, ρ) := 〈ρH, ckH〉;
• φsc : MT ×MT ×R→ {0, 1} as φsc(cm, cm

′, c) := I[c2 · cm ?
= cm′], which checks equality when c = 1.

• αsc ≡ 1.

Proof sketch for Item 4. The proof follows similar steps to the proof of Lemma 5.17. We sketch the differ-
ences between the two proofs.

First, we find aL,0, aL,1, aL,2, bL,0, bL,1, bL,2 ∈ M2`−i
L , aR,0, aR,1, aR,2, bR,0, bR,1, bR,2 ∈ M2`−i

L with
ML-norm at most 3γ2RN

3ι(C, 3)‖C‖R maxj∈[4] ‖pj‖ML
= NCSP maxj∈[4] ‖pj‖ML

and a•,0, a•,1, a•,2 ∈
M2`−i

L with ML-norm at most 2`−iNCSP(maxj∈[4] ‖pj‖ML
)2 such that

ξ6c2 · q(X)

= 2−i
(
ξ3c(〈aL,0 + aL,1X + aL,2X

2, pckL[r1, . . . , ri−1; 0]〉+ 〈bL,0 + bL,1X + bL,2X
2, pckL[r1, . . . , ri−1; 1]〉),

ξ3c(〈aR,0 + aR,1X + aR,2X
2, pckR[r1, . . . , ri−1; 0]〉+ 〈bR,0 + bR,1X + bR,2X

2, pckR[r1, . . . , ri−1; 1]〉),
(15)
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(a•,0 + a•,1X + a•,2X
2) · ckP

)
.

Next, we show that the following holds.

Claim 5.22.

ξ6c2 · q(X)

= 2−i
(
ξ3c(〈aL,0 + aL,1X, pckL[r1, . . . , ri−1; 0]〉+ 〈(aL,0 + aL,1X)X, pckL[r1, . . . , ri−1; 1]〉)+

ξ3c(〈aR,0 + aR,1X, pckR[r1, . . . , ri−1; 0]〉+ 〈(aR,0 + aR,1X)X, pckR[r1, . . . , ri−1; 1]〉)+

(〈aL,0 + aL,1X, aR,0 + aR,1X〉) · ckP
)
.

Proof. The claimed equation follows from Equation (15) and the following equalities.

• aL,0 = bL,1, aL,1 = bL,2, aL,2 = bL,0 = 0, aR,0 = bR,1, aR,1 = bR,2, aR,2 = bR,0 = 0. Unlike the
corresponding proof of Lemma 5.17, we argue about all coefficients of the polynomials aL,0 + aL,1X +
aL,2X

2, bL,0 + bL,1X + bL,2X
2, aR,0 + aR,1X + aR,2X

2, and bR,0 + bR,1X + bR,2X
2 simultaneously.

For each j ∈ [4], we define messages m(j)
1 := (m

(j)
1,L,m

(j)
1,R,m

(j)
1,•) and m(j)

2 := (m
(j)
2,L,m

(j)
2,R,m

(j)
2,•) such

that

m
(j)
1,L := (aL,0 + aL,1r

(j)
i + aL,2r

(j)
i

2
, bL,0 + bL,1r

(j)
i + bL,2r

(j)
i

2
) ,

m
(j)
1,R := (aR,0 + aR,1r

(j)
i + aR,2r

(j)
i

2
, bR,0 + bR,1r

(j)
i + bR,2r

(j)
i

2
) ,

m
(j)
1,• := a•,0 + a•,1r

(j)
i + a•,2r

(j)
i

2
,

m
(j)
2,L := ξ3(pj,L, r

(j)
i pj,L) ,

m
(j)
2,R := ξ3(pj,R, r

(j)
i pj,R) ,

m
(j)
2,• := ξ6〈(pj,L, r

(j)
i pj,L), (pj,R, r

(j)
i pj,R)〉 .

One can verify that ‖m(j)
1 ‖ML

, ‖m(j)
2 ‖ML

≤ nγ2R‖C‖2R‖ξ6‖RB2
CSP ≤ BBRA, so the BRA implies that

m
(j)
1 = m

(j)
2 .

• a•,0 + a•,1X + a•,2X
2 = 〈aL,0 + aL,1X, aR,0 + aR,1X〉. From the last coordinate of m(j)

1 and m(j)
2 ,

a•,0 + a•,1r
(j)
i + a•,2r

(j)
i

2
= ξ6〈(pj,L, r

(j)
i pj,L), (pj,R, r

(j)
i pj,R)〉. (16)

Similarly, we argue that for each j ∈ [4]

ξ3pj,L = aL,0 + aL,1r
(j)
i ,

ξ3pj,R = aR,0 + aR,1r
(j)
i ,

ξ6〈pj,L, pj,R〉 = 〈aL,0 + aL,1r
(j)
i , aR,0 + aR,1r

(j)
i 〉 .

Combining the above with Equation (16) shows that a•,0+a•,1X+a•,2X
2 = 〈aL,0+aL,1X, aR,0+aR,1X〉.
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By summing the equation of Claim 5.22 over H = {−1, 1}, we obtain that

ξ6 · c2(q(1) + q(−1))

= 2−i+1
(
〈ξ3 · c (aL,0, aL,1), (pckL[r1, . . . , ri−1; 0], pckL[r1, . . . , ri−1; 1])〉

+ 〈ξ3 · c (aR,0, aR,1), (pckL[r1, . . . , ri−1; 0], pckL[r1, . . . , ri−1; 1])〉

+ 〈(aL,0, aL,1), (aR,0, aR,1)〉ckP
)
.

Now consider the vector vi :=
(
(aL,0, aL,1), (aR,0, aR,1)

)
∈ (M2`−i+1

L )2 and its corresponding polyno-
mial pvi ∈ M2

L [Xi, . . . , X`] whose two coordinates are the multilinear polynomials obtained from the
two vectors (aL,0, aL,1) and (aR,0, aR,1) in M2`−i+1

L . Note that vi, and thus pvi , has ML-norm at most
NSP maxj∈[4] ‖pj‖ML

and satisfies the following equation:

ξ6 · c2 · (q(1) + q(−1)) =
∑

ωi,...,ω`∈{−1,1}

fCM

(
pvi(ωi, . . . , ω`), pck(r1, . . . , ri−1, ωi, . . . , ω`), ξ

3 · c
)
,

which implies that φsc evaluates to 1 as required. Moreover, pvi is ck-admissible and all the derivations to
obtain pvi , the desired polynomial, are efficient.

5.6 Instantiations of bilinear-module generators

We describe instantiations of bilinear-module generators BM = (Setup,KeyGen) for several cryptographic
settings; in each case the BRA follows from corresponding well-known cryptographic assumptions (DL
assumption, SIS assumption, and so on). For each setting, we specify the algorithms BM.Setup and
BM.KeyGen, give the corresponding output parameters in Figure 2, and argue the required properties of BM.

Discrete logarithms. The algorithm BM.Setup(1λ, n) samples a group G of prime order q = exp(λ) and
outputs (M, h, aux) as in Figure 2. The algorithm BM.KeyGen(M, h, aux) samples a uniformly random
element G ∈Mn+h

R = Gn+h. Since ML = Fq is a ring, BM is scalar-product compatible.
Moreover BM is protocol-friendly. First, it is secure:

• Assuming the hardness of the discrete logarithm problem in G, the BRA holds for BM = (Setup,KeyGen).
• The integer h = 1 is (M,UML

,UMR
, ε)-hiding where UML

is the uniform distribution on ML = Fq, UMR

the uniform distribution on Mn+1
R = Gn+1, and ε = 0.

• (C, ξ,N) = (Fq, 1, 1) are pseudoinverse parameters for (R,MT) = (Fq,G).

Next, BM is masking-friendly for κ =∞. For any B with 1 ≤ B ≤ ∞, Mn
L (B) = Fnq , and hence, for

any a ∈ Fnq and b← Fnq , a+ b is distributed uniformly in Fq; the rejection probability is 0.
Finally, we investigate choices of I for which BM is quotient-friendly. Since ML = Fq is a prime-order

field, its only submodules are I = {0} and I = Fq. If I = Fq then ξ is 0 in ML/I , so I = {0} is the only
ideal for which BM is quotient-friendly (in which case ML/I = Fq and so ξ = 1 is invertible).

Instantiating the commitment schemes in the previous sections with the above choice of BM gives
NPed = 1, NLF = 1, BSP = ∞, NSP = 1, BCSP = ∞, and NCSP = 1 (since we consider the trivial norm
for R and ML all constants greater than 0 can be thought as equal to 1). Additionally, BC = 1, γR = 1,
and ‖C‖R = 1 and in all settings dck = 1, so we can apply Lemma 4.13 to the corresponding commitment
schemes forRSC(1, 1).
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DL pairings GUO ideal lattices
R Fq Fq Z Z[X]/〈Xd + 1〉
ML Fq G1 Z Z[X]/〈Xd + 1〉
MR G G2 G

(
Zq[X]/〈Xd + 1〉

)r
MT G GT G

(
Zq[X]/〈Xd + 1〉

)r
e group exp bilinear map group exp poly multiplication mod q and Xd + 1

R-norm trivial † trivial † absolute value `∞
ML-norm trivial † trivial † absolute value `∞

h 1 1 log 2λ|G|
BC

2r log q
BC

BBRA ∞ ∞ BRSA = q−1
2 , BCL = q−1

4 ? BSIS

UML
uniform over G uniform over G1

uniform over (−B,B) ∩ Z uniform over ML(B)
where BC ≤ B ≤ BBRA where BC ≤ B ≤ BBRA

C Fq Fq (−p−12 , p−12 ) ∩ Z {Xi ∈ Z[X]/〈Xd + 1〉 : 0 ≤ i ≤ 2d− 1}
ξ 1 1 lcm([p− 1]) 2
N 1 1 lcm([p− 1]) d
BC 1 1 B B
κ ∞ ∞ O(2λ) O(dn)

I {0} {0} I = nZ for n ∈ Z
I = nZ for odd n 6= −1, 1 ‡with prime factors ≥ p

Figure 2: Output (M, h, aux) of a bilinear-module generator in the different cryptographic settings, where
M = (R,ML,MR,MT, e) and aux = (BBRA,UML , C, ξ,N,BC, κ, I). (†: Equals 1 for any non-zero element of
R or ML and equals 0 otherwise. ?: The difference in BBRA between RSA groups and class groups is related to the
fact that computing square roots is easy in class groups. ‡: There are more choices of I related to Dedekind’s
Factorization Criterion as discussed further below.)

Pairings. The algorithm BM.Setup(1λ, n) samples groups G1,G2,GT of prime order q = exp(λ)
equipped with a pairing e : G1 × G2 → GT and outputs (M, h, aux) as in Figure 2. The algorithm
BM.KeyGen(M, h, aux) samples a uniformly random element G ∈Mn+h

R = Gn+h
2 .

Moreover BM is protocol-friendly. First, it is secure:

• Assuming the double-pairing assumption,7 the BRA holds for BM = (Setup,KeyGen).
• The integer h = 1 is (M,UML

,UMR
, ε)-hiding where UML

is the uniform distribution on ML = Fq, UMR

the uniform distribution on Mn+1
R = Gn+1

2 , and ε = 0.
• (C, ξ,N) = (Fq, 1, 1) are pseudoinverse parameters for (R,MT) = (Fq,GT).

Next, BM is masking-friendly for κ =∞. For any B with 1 ≤ B ≤ ∞, Mn
L (B) = Gn

1 , and hence, for
any a ∈ Gn

1 and b← Gn
1 , a+ b is distributed uniformly in G1; the rejection probability is 0.

Finally, we investigate choices of I for which BM is quotient-friendly. Since ML = G1 (a vector space
of dimension 1 over a field of prime order), its only submodules are I = {0} and I = G1. If I = G1 then ξ
is 0 in ML/I , so I = {0} is the only ideal for which BM is quotient-friendly (in which case ML/I = G1 and
multiplication by ξ = 1 is invertible).

Note that we could also have chosen ML := G2 and MR := G1, and then switched the inputs of e.
BM described above is not scalar-product compatible, because ML is merely a group but not a ring.

Nevertheless one can still construct commitment schemes for scalar products, as described in Remark 5.19.
7This assumption is implied by the decisional Diffie–Hellman assumption in G2, which in turn implies binding for the commitment

scheme in [AFGHO16]
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Instantiating the commitment schemes in the previous sections with the above choice of BM gives
NPed = 1, NLF = 1, BSP =∞ and NSP = 1. Note that we cannot instantiate the commitment scheme CSP,
since BM is not scalar-product compatible. Additionally, BC = 1, γR = 1, and ‖C‖R = 1 and in all settings
dck = 1, so we can apply Lemma 4.13 to the corresponding commitment schemes forRSC(1, 1).
Groups of unknown order. There are two instantiations of groups of unknown order (which are related to
the commitment schemes in [BFS20]): RSA groups and class groups of an imaginary quadratic order.

The algorithm BM.Setup(1λ, n) samples a group of unknown order G and primes q, p > 2 and out-
puts (M, h, aux) as in Figure 2. Observe that BBRA differs in the RSA and class group settings (and, in
the RSA case, the primes q, p are unrelated to the primes that determine the order of G). The algorithm
BM.KeyGen(M, h, aux) samples a random element G ∈MR = G, computes G0 = (qhG, qh+1G, . . . , qn+h−1G),
G1 = (G, . . . , qh−1G), and outputs the vector (G0,G1) ∈ Mn+h

R = Gn+h. Since ML = Z is a ring, BM is
scalar-product compatible.

Moreover BM is protocol-friendly. First, it is secure:

• Assuming the Order Assumption [BFS20] for the sampled group G, the BRA holds for BM = (Setup,KeyGen).
The Order Assumption is implied by the Adaptive Root Assumption [BBBPWM18; Wes19].

• Any integer h ≥ log 2λ|G|
BC

is (M,UML
,UMR

, ε)-hiding where UML
is the uniform distribution over

((−B,B) ∩ Z)h for any B such that BC ≤ B ≤ BBRA, UMR
samples a random element G ∈ G and

outputs (qhG, . . . , qn+h−1G, . . . ,G, qh−1G) (this matches the output of BM.KeyGen), and ε = negl(λ).
(See [BFS20; BDFG20] for the proof.)

• (C, ξ,N) = ((−p−1
2 , p−12 ) ∩ Z, lcm([p− 1]), lcm([p− 1])) are pseudoinverse parameters for (R,MT) =

(Z,G). If (c1 − c2)m = a ·m∗ for distinct challenges c1, c2 ∈ C, then (c1 − c2) ∈ (−(p− 1), p− 1) ∪ Z,
so we can set r = lcm([p− 1])/(c1 − c2).

Next, if q = O(2λ), then BM is masking-friendly for κ = O(2λ). For every B ∈ Z with BC ≤ B ≤
BBRA/κ and a ∈ Zn(B), if b← Zn(κB), then a+ b has norm more than (κ− 1)B with probability less than
n 2B
2κB = n

κ = negl(λ). Also, conditioned that the masking procedure does not output ⊥, the distribution of
a+ b is uniform in Zn((κ− 1)B); the rejection probability is negl(λ).

Finally, we investigate choices of I for which BM is quotient-friendly. Since ML = Z (a ring), its
submodules are the ideals I = nZ for n ∈ N ∪ {0}. As with previous examples, it is clear that I = ML

(when n = 1) does not lead to a quotient-friendly bilinear module. We have ξ = lcm([p− 1]), so it is clear
that ξ is invertible modulo ML/I = Z/nZ if and only if all prime factors of n are at least p. This means that
ML is quotient friendly if and only if I = nZ for n ∈ Z whose prime factors are all at least p.

Instantiating the commitment schemes in the previous sections with BM and observing that ι(C, 3) =

2γ2R‖C‖3R = 2(p−12 )3 = (p−1)3
4 gives

NPed = 6γ2RN
3ι(C, 3)‖C‖R = 3/4 · (p− 1)4 · lcm([p− 1])3 ,

NLF = 6γ2RN
3ι(C, 3)‖C‖R = 3/4 · (p− 1)4 · lcm([p− 1])3 ,

BSP =
BBRA

3γ2R‖C‖2R‖ξ3‖R
=

4BBRA

3(p− 1)2lcm([p− 1])3
,

NSP = 3γ2RB
3
BRAι(C, 3)‖C‖R = 3/8 · (p− 1)4 · lcm([p− 1])3 ,

BCSP =

√
BBRA

nγ2R‖C‖2R‖ξ6‖R
=

2
√
BBRA√

n(p− 1)lcm([p− 1])3
,

NCSP = 3γ2RN
3ι(C, 3)‖C‖R = 3/8 · (p− 1)4 · lcm([p− 1])3 .
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Additionally, BC = B, γR = 1 and ‖C‖R = p−1
2 , so we can apply Lemma 4.13 as follows:

• to the Pedersen commitment scheme forRSC(lcm([p− 1])`, B′ = B · (3/4)` · (p− 1)5` · lcm([p− 1])3`),

• to the linear-function commitment scheme forRSC(lcm([p−1])`, B′ = B ·(3/4)` ·(p−1)5` ·lcm([p−1])3`),

• to the scalar-product commitment scheme forRSC(lcm([p−1])`, B′ = B ·(3/8)` ·(p−1)5` ·lcm([p−1])3`)
if

B′ ≤ BSP =⇒ 3B · (3/8)` · (p− 1)5`+2 · lcm([p− 1])3`+3 ≤ 4BBRA ,

• to the compressed scalar-product commitment scheme forRSC(lcm([p− 1])`, B′ = B · (3/8)` · (p− 1)5` ·
lcm([p− 1])3`) if

B′ ≤ BCSP =⇒ nB2(3/8)2`(p− 1)10`+2lcm([p− 1])6`+6 ≤ 4BBRA .

Remark 5.23. The values ξ,N have size eO(p). This means that a polynomial-sized challenge space leads to
exponentially-large slackness. Reducing the size of the slackness will directly lead to asymptotic performance
improvements by allowing a smaller choice of q, or a larger challenge space. Prior work [BFS20] in this
setting used exponential challenge spaces and ξ = 1, but the security argument was later found to be flawed
[BHRRS21]. This latter works repairs the argument by using a different configuration of rings and modules
with ξ = 1, but the argument requires amortization over multiple committed values. It is plausible that a
more refined security analysis of our approach would lead to much better slackness.

Lattices. The algorithm BM.Setup(1λ, n) samples a prime number q, an integer d that is a power of
2, and norm bounds BSIS, B ∈ Z, and outputs (M, h, aux) as in Figure 2; note that the challenge set
C consists of 2d elements. The algorithm BM.KeyGen(M, h, aux) outputs a uniformly random vector
in Mn+h

R =
(
Zq[X]/〈Xd + 1〉

)r×(n+h). Since ML = Z[X]/〈Xd + 1〉 is a ring, BM is scalar-product
compatible.

Moreover BM is protocol-friendly. First, it is secure:

• Assuming the hardness of the SIS assumption for norm boundBSIS, the BRA holds for BM = (Setup,KeyGen).
In turn, for the SIS assumption to hold, BSIS should be less than min{q, 22

√
r log q log δ} [GN08] (δ is related

to the optimal block size in the BKZ algorithm applied to the SIS problem and is typically set to δ ≈ 1.005).
• Any integer h ≥ 2r log q

BC
is (M,UML

,UMR
, ε)-hiding where UML

is the uniform distribution overML(B)

for any B such that BC ≤ B ≤ BBRA, UMR
is the uniform distribution on

(
Zq[X]/〈Xd + 1〉

)r×(n+h), and
ε = negl(λ). (This holds by [Mic07; SSTX09].) We note that, alternatively, UML

could also be a discrete
Gaussian [LPR10; SS11].

• The lemma below states that the difference of any two elements in the challenge space has a short
“pseudoinverse”, and implies that (C, ξ,N) = ({Xi}i∈{0,...,2d−1}, 2, d) are pseudoinverse parameters for
(R,MT) = (Z[X]/〈Xd + 1〉,

(
Zq[X]/〈Xd + 1〉

)r
).

Lemma 5.24 ([BCKLN14, Lemma 3.1]). Fix i, j ∈ {0, . . . , 2d−1} with i < j. In the ring Z[X]/(Xd+1),
there exists an efficiently computable r ∈ R with coefficients in {−1, 0, 1} such that r · (Xi −Xj) = 2.

Hence, if (c1 − c2)m = a ·m∗ for distinct challenges c1, c2 ∈ C, then there exists an r ∈ R such that
2m = r · a ·m∗, and ‖r · a‖R ≤ γR‖r‖R‖a‖R = d‖a‖R.
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Furthermore, BM is masking-friendly with κ = O(dn). For every B ∈ Z with BC ≤ B ≤ BBRA/κ and
a ∈ (Z[X]/〈Xd + 1〉)n(B), if b← (Z[X]/〈Xd + 1〉)n(κB), then a+ b has norm more than (κ− 1)B with
probability less than nd 2B

2κB = nd
κ = O(1). Also, conditioned that the masking procedure does not output ⊥,

the distribution of a+ b is uniform in (Z[X]/〈Xd + 1〉)n((κ− 1)B).
Finally, we investigate choices of I for which BM is quotient-friendly. Since ML = Z[X]/〈Xd + 1〉, a

ring, its submodules are its ideals. In this setting, ξ = 2, and it is clear that setting I = nML for even n or
n ∈ {−1, 1} does not give a quotient-friendly bilinear module, since in these cases, multiplication by ξ will
not be invertible in ML/I . Otherwise, if n is odd, 2 is invertible in ML/I , and BM is quotient friendly.

These are not the only ideals in ML. According to Dedekind’s Factorization Criterion, the prime ideals
of ML are of the form 〈p, f(X)〉, where p ∈ Z is a prime number and f(X) is an irreducible factor of
Xd + 1 modulo p. Furthermore, since ML is a Dedekind domain, every non-zero ideal of ML has a unique
factorization into these prime ideas. We leave investigations into which of these ideals are quotient-friendly
or have other desirable properties to future work.

Instantiating the commitment schemes in the previous sections with the above choice of BM and observing
that ι(C, 3) = 2γ2R‖C‖R = 2d2 gives

NPed = 6γ2RN
3ι(C, 3)‖C‖R = 12d7 ,

NLF = 6γ2RN
3ι(C, 3)‖C‖R = 12d7 ,

BSP =
BBRA

3γ2R‖C‖2R‖ξ3‖R
=

BSIS

24d2
,

NSP = 3γ2RN
3ι(C, 3)‖C‖R = 48d7 ,

BCSP =

√
BBRA

nγ2R‖C‖2R‖ξ6‖R
=

√
BSIS

64nd2
,

NCSP = 3γ2RN
3ι(C, 3)‖C‖R = 6d7 .

Additionally, BC = B, γR = d and ‖C‖R = 1, so we can apply Lemma 4.13 as follows

• to the Pedersen commitment scheme forRSC(8`, B′ = 24`d8`B),

• to the linear-function commitment scheme forRSC(8`, B′ = 23`d8`B),

• to the scalar-product commitment scheme forRSC(8`, B′ = 96`d8`B) if

B′ ≤ BSP =⇒ 24d296`d8`B ≤ BSIS ,

• to the compressed scalar-product commitment scheme forRSC(8`, B′ = 12`d8`B) if

B′ ≤ BCSP =⇒ 64nd2(12`d8`B)2 ≤ BSIS .
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6 Succinct argument for scalar products over rings

We give zero-knowledge succinct arguments for committed scalar-products for secure bilinear-module
generators, which are scalar-product compatible, quotient-friendly and masking.

Definition 6.1. For c ∈ R, the committed scalar product relationRCMSP(c,BC) is the set of tuples

(x,w) =
((

BM, (M, h, aux), (G0,G1,H0,H1,U0,U1), (Ca,Cb,Ct)
)
,
(
a, b, t, ρa, ρb, ρt

))
where BM is a protocol-friendly bilinear-module generator, (M, h, aux) ∈ BM.Setup(1λ, n), with aux =
(BBRA,UML

, C, ξ,N,BC, κ, I), where UML
is the uniform distribution over Mh

L (BC), such that

• Ped.Open((G0,G1), a, ρa,Ca, c) = 1 ,
• Ped.Open((H0,H1), b, ρb,Cb, c) = 1 ,
• Ped.Open((U0,U1), t, ρt,Ct, c

2) = 1 ,

where t = 〈a, b〉 mod I , (G0,G1), (H0,H1) ∈ Mn
R × Mh

R , (U0,U1) ∈ MR × Mh
R , Ca,Cb,Ct ∈ MT,

a, b ∈Mn
L (BC), t ∈ML(BC), ρa, ρb, ρt ∈Mh

L (BC).

Theorem 6.2. If BM is a protocol-friendly bilinear-module generator then Construction 6.3 is an interactive
argument forRCMSP(1, BC) supporting instances with n = 2` that satisfies the following properties:
• (Lemma 6.5) it has completeness error eSP = O(n/κ);
• (Lemma 6.6) it has (3, 4`)-tree extraction;
• (Lemma 6.7) it has semi-honest-verifier statistical zero-knowledge;
• the round complexity is O(log n);
• the communication complexity is dominated by O(log n) elements of MT;
• the prover performs O(n) applications of e and O(n) operations in ML, MR, and MT;
• the verifier performs O(h) applications of e; O(n) operations in MR; and O(log n) additions in MT.

We state various bounds that we use in our construction.

m1 := γR‖C‖RBC ,

m2 := γRnB
2
C ,

m3 := γR‖C‖R(m2 +BC) ,

m4 := 2κγRnBCm1 ,

m5 := γ2R‖C‖2Rm2 + γR‖C‖Rm4 .

Construction 6.3. We construct an interactive argument for the relation in Definition 6.1. The prover P and
verifier V take as input an instance x =

(
BM, (M, h, aux), (G0,G1,H0,H1,U0,U1), (Ca,Cb,Ct)

)
, while

the prover P additionally takes as input a witness w =
(
a, b, t, ρa, ρb, ρt

)
.

• The prover P samples random masks ya, yb ←Mn
L (κm1), ζ ←Mn

L (κm3), and computes:

– Cya := Ped.Commit((G0,G1), ya;σya) for σya ←Mh
L (κm1),

– Cyb := Ped.Commit((H0,H1), yb;σyb) for σyb ←Mh
L (κm1),

– Cζ := Ped.Commit((U0,U1), ζ;σζ) for σζ ←Mh
L (κm3),

– v0 := 〈ya, yb〉,
– v1 := 〈a, yb〉+ 〈ya, b〉,
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– v2 := 〈a, b〉,
– Cv0 := Ped.Commit((U0,U1), v0;σv0) for σv0 ←Mh

L (κm5),
– Cv1 := Ped.Commit((U0,U1), v1;σv1) for σv1 ←Mh

L (κm4),
– Cv2 := Ped.Commit((U0,U1), v2;σv2) for σv2 ←Mh

L (κm2).

The prover P sends Cya ,Cyb ,Cζ ,Cv0 ,Cv1 ,Cv2 ∈MT, and ζ ′ := ζ mod I to the verifier V.

• The verifier V sends a random challenge α← C to the prover P.

• The prover P computes the masked values

– ea := αa+ ya ∈Mn
L ,

– eb := αb+ yb ∈Mn
L ,

– ρ′a := αρa + σya ∈M
h
L ,

– ρ′b := αρb + σyb ∈M
h
L ,

– ρ′t := α2σv2 + ασv1 + σv0 ∈M
h
L ,

– v̄ := α(〈a, b〉 − t) + ζ ∈ML,
– σ′ := α(σv2 − ρt) + σζ ∈Mh

L .

The prover P aborts if any of the following conditions are not satisfied:

‖ea‖ML
≤ (κ− 1)m1 , ‖eb‖ML

≤ (κ− 1)m1 ,

‖ρ′a‖ML
≤ (κ− 1)m1 , ‖ρ′b‖ML

≤ (κ− 1)m1 ,

‖ρ′t‖ML
≤ (κ− 1)m5 , ‖v̄‖ML

≤ (κ− 1)m3 ,

‖σ′‖ML
≤ (κ− 1)m3 . (17)

The prover P sends v̄ and σ′ to the verifier V.

• The verifier V checks that

‖v̄‖ML
≤ (κ− 1)m3 , and ‖σ′‖ML

≤ (κ− 1)m3 . (18)

The verifier V computes

T :=
(
αCa + Cya , αCb + Cyb , α

2Ct + αCv1 + Cv0
)

= SP.Commit((G0,G1,H0,H1,U0,U1), (ea, eb); (ρ′a, ρ
′
b, ρ
′
t)) .

• The prover P and the verifier V run the opening protocol of Construction 4.5 forRSC(1, (κ− 1)m1) with
instance x = (SP, ppSP, C, (G0,G1,H0,H1,U0,U1),T) and witness w = (ea, eb) to show that

SP.Open((G0,G1,H0,H1,U0,U1), (ea, eb), (ρ
′
a, ρ
′
b, ρ
′
t),T, 1) = 1 .

Since ρ′a, ρ
′
b ∈MR((κ− 1)m1), and ρ′t ∈MR((κ− 1)m5), the randomness space Rck for the sumcheck

argument is equal to MR((κ− 1)m1)×MR((κ− 1)m1)×MR((κ− 1)m5).

• The verifier V checks that Ped.Open((U0,U1), v̄, σ
′, α(Cv2 − Ct) + Cζ , 1) = 1 and v̄ mod I = ζ ′.
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6.1 Proof of Theorem 6.2

The prover and verifier efficiency of Construction 6.3 are directly inherited from the efficiency of Construc-
tion 4.5 for the scalar-product commitment scheme, which is analyzed in Section 4 and Appendix B.

Lemma 6.4. The prover in Construction 6.3 performs O(n) applications of e; O(n) operations in ML; O(n)
operations in MR; and O(n) additions in MT. The verifier in Construction 6.3 performs O(h) applications
of e; O(n) operations in MR; and O(log n) additions in MT.

Lemma 6.5 (completeness). Construction 6.3 is complete forRCMSP(1, BC) with error O(n/κ).

Proof. Suppose that((
BM, (M, h, aux), (G0,G1,H0,H1,U0,U1), (Ca,Cb,Ct)

)
,
(
a, b, t, ρa, ρb, ρt

))
∈ RCMSP(1, BC) .

First, by the masking property of BM, the probability that any of the inequalities of Equation (17) are not
satisfied is at most n/κ for each inequality. So, the prover aborts with probability at most 7n/κ. In this case,
the verifier’s checks of Equation (18) are all satisfied, and we have ‖ea‖ML

, ‖eb‖ML
≤ (κ− 1)m1.

Next, we argue that

(x′,w′) =
(
BM, (M, h, aux), (G0,G1,H0,H1,U0,U1),T), (ea, eb, ρ

′
a, ρ
′
b, ρ
′
t)
)
∈ RSC(1, (κ− 1)m1) .

By construction, we have 〈ea, eb〉 = 〈αa + ya, αb + yb〉 = α2〈a, b〉 + α(〈a, yb〉 + 〈ya, b〉) + 〈ya, yb〉 =
α2v2 + αv1 + v0. Thus,

T =
(
αCa + Cya , αCb + Cyb , α

2Ct + αCv1 + Cv0
)

=
(
〈ea,G0〉+ 〈ρ′a,G1〉, 〈eb,H0〉+ 〈ρ′b,H1〉, 〈ea, eb〉 · U0 + 〈ρ′t,U1〉

)
= SP.Commit((G0,G1,H0,H1,U0,U1), (ea, eb); (ρ′a, ρ

′
b, ρ
′
t)) .

The vector (ea, eb) is a valid opening of T with respect to the appropriate bases. By completeness of
Construction 4.5 for the scalar-product commitment scheme, the verifier of the subprotocol forRSC(1, (κ−
1)m1) will accept.

It remains to show that the verifier checks that Ped.Open((U0,U1), v̄, σ
′, α(Cv2 − Ct) + Cζ , 1) = 1 and

v̄ mod I = ζ succeed. Since

Cv2 = Ped.Commit((U0,U1), 〈a, b〉;σv2) ,

Ct = Ped.Commit((U0,U1), t; ρt) ,

Cζ = Ped.Commit((U0,U1), ζ;σζ) ,

v̄ = α(〈a, b〉 − t) + ζ ,

σ′ = α(σv2 − ρt) + σζ ,

and by the homomorphic property of the Pedersen commitment scheme, it follows that α(Cv2 − Ct) + Cζ =
Ped.Commit((U0,U1), v̄;σ′). Therefore, the verifier’s checks succeed by the completeness property of the
generalized Pedersen commitment scheme, and by reducing v̄ modulo I .

Lemma 6.6 (tree extraction). Let NSP be as in Lemma 5.17 and

B′ = n · (γR‖C‖RNSP)` · (κ− 1)m1
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BCMSP = 4‖ξ4‖RγRN2B′2 + 2‖ξ2(`+3)‖RNm3 + 3N3‖ξ‖Rι(C, 3)(κ− 1)m5 .

Suppose that BM is protocol-friendly and that

max(2γRN‖C‖RB′, BCMSP) ≤ BBRA ,

then there exists an efficient algorithm that, given an instance

x =
(
BM, (M, h, aux), (G0,G1,H0,H1,U0,U1), (Ca,Cb,Ct)

)
,

and a (3, 4`)-tree of accepting transcripts, extracts a witness toRCMSP(cCMSP, BCMSP) for cCMSP = ξ`+3.
Note that since BM is protocol-friendly, multiplication by cCMSP is invertible in ML/I .

Proof. By Lemma 4.13, there is an efficient algorithm which takes the 4`-subtree of accepting transcripts for
Construction 4.5 applied toRSC(1, (κ− 1)m1) and produces a witness (ea, eb) toRSC(c∗, B

′) with c∗ = ξ`

and B′ := n · (γR‖C‖RNSP)` · (κ− 1)m1 satisfying

(c∗ · Ta, c∗ · Tb, c2∗ · Tt) =
(
〈ea,G0〉+ c∗〈ρ′a,G1〉, 〈eb,H0〉+ c∗〈ρ′b,H1〉, 〈ea, eb〉 · U0 + c2∗〈ρ′t,U1〉

)
,

where T = (Ta,Tb,Tt), ρ′a ∈ MR((κ− 1)m1), ρ′b ∈ MR((κ− 1)m1), and ρ′t ∈ MR((κ− 1)m5). This is
done for each value of α(j), j ∈ [3], in the (3, 4`)-tree of accepting transcripts. Hence, we have that for each
j ∈ [3]

(c∗ · T(j)
a , c∗ · T(j)

b , c2∗ · T
(j)
t ) =

(
c∗(α

(j)Ca + Cya), c∗(α
(j)Cb + Cyb), c

2
∗(α

(j)2Cv2 + α(j)Cv1 + Cv0)
)

(19)

=
(
Ped.Commit((G0,G1), e

(j)
a ; c∗ρ

′
a
(j)

),

Ped.Commit((H0,H1), e
(j)
b ; c∗ρ

′
b
(j)

),

Ped.Commit((U0,U1), 〈e(j)a , e
(j)
b 〉; c

2
∗ρ
′
t
(j)

)
)
.

Examining each component of Equation (19) gives

c∗(α
(j)Ca + Cya) =Ped.Commit((G0,G1), e

(j)
a ; c∗ρ

′
a
(j)

) , (20)

c∗(α
(j)Cb + Cyb) =Ped.Commit((H0,H1), e

(j)
b ; c∗ρ

′
b
(j)

) , (21)

and c2∗(α
(j)2Cv2 + α(j)Cv1 + Cv0) =Ped.Commit((U0,U1), 〈e(j)a , e

(j)
b 〉; c

2
∗ρ
′
t
(j)

) . (22)

Now, we consider Equation (20) and Equation (21) for two distinct challenge values α(1) and α(2) and set
c := α(1) − α(2). By subtracting Equation (20) and Equation (21) for the two distinct challenges α(1) and
α(2) and using the pseudoinverse parameters (C, ξ,N) (Definition 3.13), we obtain a, b, ρa, ρb with norms at
most 2NB′ such that

ξ`+1Ca = 〈a,G0〉+ ξ`+1〈ρa,G1〉
ξ`+1Cb = 〈b,H0〉+ ξ`+1〈ρb,H1〉 .

It is left to show how to recover an opening of Ct. We first recover openings to Cv2 and Cζ , and then use
the verification check Ped.Open((U0,U1), v̄, σ

′, α(Cv2 − Ct) + Cζ , 1) = 1 to recover a relaxed opening of
Ct.
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By multiplying Equation (20) and Equation (21) for challenges α(1) and α(2) with α(2) and α(1), respec-
tively, and then subtracting them, we obtain ya, yb, σya , σyb with norms at most 2γRN‖C‖RB′ ≤ BBRA such
that

ξ`+1Cya = 〈ya,G0〉+ ξ`+1〈σya ,G1〉
ξ`+1Cyb = 〈yb,H0〉+ ξ`+1〈σyb ,H1〉 .

It must be that for each j ∈ [3], ξe(j)a = α(j)a+ ya, ξe(j)b = α(j)b+ yb, ξ
`+1ρ′a

(j) = ξ`+1(α(j)ρa + σya)

and ξ`+1ρ′b
(j) = ξ`+1(α(j)ρb + σyb), otherwise we can use Equation (20) or Equation (21) to break the

binding property of the generalized Pedersen commitment scheme. Substituting in Equation (22) these values
gives

ξ2(`+1)(α(j)2Cv2+α(j)Cv1+Cv0) = α(j)2〈a, b〉·U0+α
(j)(〈a, yb〉+〈ya, b〉)·U0+〈ya, yb〉·U0+ξ

2(`+1)〈ρ′t,U1〉
(23)

We define the Vandermonde matrix V :=

α(1)2 α(1) 1

α(2)2 α(2) 1

α(3)2 α(3) 1

, and its adjugate adj(V ).

Multiplying the first row of adj(V ) with (α(j)2Cv2 +α(j)Cv1 +Cv0)j∈[3] gives det(V )Cv2 . Hence, from
Equation (23) multiplied by the first row of adj(V ), and the pseudoinverse parameters (C, ξ,N), we get σv2
with norm at most 3N3‖ξ‖Rι(C, 3)(κ− 1)m5 ≤ BBRA such that

ξ2(`+3)Cv2 = ξ4〈a, b〉 · U0 + ξ2(`+3)〈σv2 ,U1〉 (24)

This means that the message 〈ξ2a, ξ2b〉 and randomness σv2 are a relaxed opening to Cv2 with slackness
ξ2(`+3).

Finally, we show that Ct has a relaxed opening which is related to the opening of Cv2 in ML, considered
modulo I . The verifier’s check that Ped.Open((U0,U1), v̄

(j), σ′(j), α(j)(Cv2 − Ct) + Cζ , 1) = 1 for each
j ∈ [3] implies that

α(j)(Cv2 − Ct) + Cζ = Ped.Commit((U0,U1), v̄
(j);σ′(j)) . (25)

We also have that v̄(j) mod I = ζ ′. Considering Equation (25) for j = 1 and j = 2, subtracting one
from the other, and using the definition of pseudoinverse parameters (C, ξ,N) we find openings O and ζ , and
randomness φ and σζ such that

ξ(Cv2 − Ct) = Ped.Commit((U0,U1), ξO; ξφ) , (26)

ξCζ = Ped.Commit((U0,U1), ξζ; ξσζ) , (27)

where the norms of O, ζ, φ and σζ are at most 2Nm3 ≤ BBRA. Furthermore, multiplying Equation (25) by ξ
and substituting the openings of Equation (26) and Equation (27), we have that either ξv̄(j) = α(j)O + ζ and
ξσ′(j) = α(j)φ+ σζ , or we can use Equation (25) to break the binding property of Pedersen commitment.

The verifier’s checks guarantee that v̄(1) = v̄(2) = ζ ′ mod I . Hence, we have α(1)O + ζ = α(2)O +
ζ mod I =⇒ (α(1) − α(2))O = 0 mod I . Since multiplication by ξ is invertible in ML/I , it follows that
O = 0 mod I .

Rearranging Equation (26), multiplying by ξ2`+5, and using Equation (24) shows that

ξ2(`+3)Ct = ξ2(`+3)Cv2 − Ped.Commit((U0,U1), ξ
2(`+3)O; ξ2(`+3)φ)
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= Ped.Commit((U0,U1), 〈ξ2a, ξ2b〉; ξ2(`+3)σv2)− Ped.Commit((U0,U1), ξ
2(`+3)O; ξ2(`+3)φ)

This means that message 〈ξ2a, ξ2b〉 − ξ2(`+3)O and randomness σv2 − φ give a relaxed opening to Ct with
slackness ξ2(`+3). Since O = 0 mod I , 〈ξ2a, ξ2b〉, which is a relaxed opening of Cv2 , and 〈ξ2a, ξ2b〉 −
ξ2(`+3)O, which is the opening of Ct, are equal modulo I .

The norms of 〈ξ2a, ξ2b〉 − ξ2(`+3)O and σv2 − φ are at most

BCMSP = 4‖ξ4‖RγRN2B′2 + 2‖ξ2(`+3)‖RNm3 + 3N3‖ξ‖Rι(C, 3)(κ− 1)m5 .

Finally, (ξ2a, ξ2b, 〈ξ2a, ξ2b〉 − ξ2(`+3)O, ξ2ρa, ξ
2ρb, σv2 − φ) is a witness toRCMSP(cCMSP, BCMSP), with

cCMSP = ξ`+3.

Lemma 6.7 (zero knowledge). Construction 6.3 is semi-honest-verifier statistical zero-knowledge.

Proof. We give a simulator for Construction 6.3, which takes an input the verifier’s message α and the
verifier’s randomness rSC for the opening protocol of Construction 4.5.

1. Sample openings ea, eb ←Mn
L ((κ− 1)m1) and v̄ ←Mn

L ((κ− 1)m1). Set ζ ′ = v̄ mod I .

2. Sample commitment randomness ρ′a, ρ
′
b ← Mh

L ((κ − 1)m1), σ′ ← Mh
L ((κ − 1)m3) and ρ′t ←

Mh
L ((κ− 1)m5).

3. Compute T := (〈ea,G0〉, 〈eb,H0〉, 〈ea, eb〉 · U0) and T′ := T + (〈ρ′a,G1〉, 〈ρ′b,H1〉, 〈ρ′t,U1〉).

4. Compute the following commitments:

Cya := Ped.Commit((G0,G1), 0;σya) for σya ←Mh
L (κm1) ,

Cyb := Ped.Commit((H0,H1), 0;σyb) for σyb ←Mh
L (κm1) ,

Cv2 := Ped.Commit((U0,U1), 0;σv2) for σv2 ←Mh
L (κm2) ,

Cv1 := Ped.Commit((U0,U1), 0;σv1) for σv1 ←Mh
L (κm4) ,

Cv0 := T′ −
(
αCa + Cya , αCb + Cyb , α

2Ct − αCv1
)
,

Cζ := Ped.Commit(U0,U1; v̄, σ
′)− α(Cv2 − Ct) .

5. Run the opening protocol of Construction 4.5 for RSC(1, (κ − 1)m1) with instance x =
(SP, ppSP, C, (G0,G1,H0,H1,U0,U1),T) and witness w = (ea, eb) using the verifier’s randomness
rSC.

6. Abort with probability 7n/κ, equal to that of the honest prover, outputting only the commitments and
ζ ′ in that case.

We argue that the simulated transcript is statistically indistinguishable from a transcript generated by an
honest prover. Firstly, note that the simulator aborts with the same probability as the honest prover.

The openings ea, eb ∈Mn
L ((κ− 1)m1), and v̄ ∈Mn

L ((κ− 1)m1), and randomness ρ′a, ρ
′
b ←Mh

L ((κ−
1)m1), σ′ ← Mh

L ((κ − 1)m3) and ρ′t ← Mh
L ((κ − 1)m5), are uniformly distributed in a real protocol
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execution when the prover does not abort. This implies that the simulator produces distributions of these
values which are statistically indistinguishable from those in a real protocol execution.

By the hiding property of the generalized Pedersen commitment scheme, Cya ,Cyb ,Cv2 ,Cv1 are statisti-
cally indistinguishable from honestly generated commitments.

In both a real or simulated execution, all other simulated values are now fully determined: Cζ and Cv0 by
linear relations used in the protocol, ζ ′ by reducing v̄ modulo I , and the rest of the transcript by executing
Construction 4.5. The result follows.
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7 Succinct argument for R1CS over rings

We construct a zero-knowledge succinct argument for R1CS over rings. We define the R1CS relation, we
formally re-state Theorem 2, and then describe the protocol. In Lemmas 7.5 to 7.7 we show that the protocol
is complete, knowledge sound, and zero-knowledge respectively. In Lemma 7.8, we provide bounds on the
number of operations performed by the prover and verifier.

Definition 7.1 (R1CS). Given a ring R•, the relationRR1CS(R•) is the set of all triples

(x,w) =
(
(A,B,C,m, nrow, ncol, nin, x), w

)
where A,B,C are matrices in Rnrow×ncol• each having at most m non-zero entries, x ∈ Rnin• , w ∈ Rncol−nin

• ,
and z := (x,w) ∈ Rncol• is such that Az ◦Bz = Cz. (Here “◦” is the entry-wise product between vectors.)

Our results supports R1CS over rings R• induced by suitable bilinear modules: R• = ML/I where ML

is itself a ring and I is a suitable ideal of ML. For simplicity we state the lemma for nrow = ncol = 2`.

Theorem 7.2. If BM is a protocol-friendly bilinear-module generator then Construction 7.4 is an interactive
argument forRR1CS(R•) supporting instances with nrow = ncol = 2` that satisfies the following properties:
• (Lemma 7.5) it has completeness error O(eSP) = O(nrow/κ);
• (Lemma 7.6) it has (2`, 2`, 2lognin , 3, 2, 2, 4`)-tree extraction;
• (Lemma 7.7) it has semi-honest-verifier statistical zero-knowledge;
• the round complexity is O(log nrow);
• the communication complexity is dominated by O(log nrow) elements of MT;
• (Lemma 7.8) the prover and verifier each perform O(nrow) applications of e, O(nrow +m) operations in
ML, and O(nrow) additions in MT.

Remark 7.3 (computing on RR1CS). The R1CS instance and its witness are defined over R• = ML/I .
However, the commitment scheme used in the protocol commits to messages over ML. Therefore, during
the protocol, we will consider w and other values defined over R• as elements of ML, with each element in
R• represented by a fixed representative of ML that reduces to w modulo I . We define ‖R•‖ML,I

to be the
maximum over the norms of representatives of elements of R• in ML. In principle, one could use any set of
representatives. We pick representatives with minimal norm.

Construction 7.4. The prover P and verifier V take as input an instance x = (A,B,C,m, nrow, ncol, nin,
x), while the prover P additionally takes as input a witness w = w.

• The prover P assembles the satisfying assignment z := (x,w) ∈ Rncol• , and computes the vectors
zA := Az mod I , zB := Bz mod I , zC := Cz mod I in Rnrow

• . Then P computes commitments to
z, zA, zB as follows.

Cz := Ped.Commit((G0,G1), z; ρ) for ρ←Mh
L (‖R•‖ML,I

) ,

CzA := Ped.Commit((G0,G1), zA; ρA) for ρA ←Mh
L (‖R•‖ML,I

) ,

CzB := Ped.Commit((G0,G1), zB; ρB) for ρB ←Mh
L (‖R•‖ML,I

) .

The prover P sends Cz,CzA ,CzB ∈MT to the verifier V.

• The verifier V sends random challenge vectors (r1, . . . , rlognrow) ∈ Clognrow and (y1, . . . , ylognrow) ∈
Clognrow to the prover P.
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• The prover P and verifier V compute:

– the vectors r :=
⊗lognrow

i=1 (1, ri) and y :=
⊗lognrow

i=1 (1, yi) in Rnrow ,
– the vectors rA := rᵀA mod I , rB := rᵀB mod I , rC := rᵀC mod I in Rncol• .

• The prover P computes the following elements and commitments

α := 〈zA, r〉 mod I Cα := Ped.Commit((U0,U1), α; ρα) for ρα ←Mh
L (‖R•‖ML,I

)

β := 〈zB, r〉 mod I Cβ := Ped.Commit((U0,U1), β; ρβ) for ρβ ←Mh
L (‖R•‖ML,I

)

γ := 〈zC , r〉 mod I Cγ := Ped.Commit((U0,U1), γ; ργ) for ργ ←Mh
L (‖R•‖ML,I

)

α′ := 〈zA, r ◦ y〉 mod I C′α := Ped.Commit((U0,U1), α
′; ρ′′α) for ρ′′α ←Mh

L (‖R•‖ML,I
)

z′A := r ◦ zA mod I C′zA := Ped.Commit((H0,H1), z
′
A; ρ′A) for ρ′A ←Mh

L (‖R•‖ML,I
)

and sends Cα,Cβ,Cγ ,C′α,C
′
zA
∈MT to the verifier V.

• The verifier V samples a random challenge vector (s1, . . . , slognin
) ∈ Clognin and sends it to the prover P.

The prover P and the verifier V compute the vectors s :=
⊗lognin

i=1 (1, si) ∈ Rnin and s′ ∈ Rnrow obtained
by padding s with zeroes. The verifier V computes σ := 〈x, s〉 mod I ∈ R•.

• The prover P and verifier V engage in several scalar-product sub-protocols, in parallel. Each scalar-product
sub-protocol has instance x of the form (M, h, I,G0,G1,H0,H1,U0,U1, X, Y, Z). The values of X,Y, Z,
the witnesses, and the purpose of each sub-protocol are specified in the table below; for each protocol, the
witnesses are reduced modulo I and have norm at most ‖R•‖ML,I

.

Note that r, y, rA, rB, rC , s
′, σ are known to V, who will compute commitments to these values for itself,

with respect to bases G0, H0, or U0 as required. This is signified in the table using a “#” symbol.

Also note that the challenge vectors, such as r, have elements in R rather than ML, but are easy to map into
ML simply by multiplying each element by 1ML

. We do not do this explicitly in order to keep notation
simple.

Witness X,Y, Z Checks Purpose
(zB, z

′
A, ρB, ρ

′
A, ργ) CzB ,C

′
zA
,Cγ 〈zB, z′A〉 = γ mod I Hadamard check

(y, z′A, 0, ρ
′
A, ρ

′′
α) #,C′zA ,C

′
α 〈y, z′A〉 = α′ mod I Consistency check on zA, z

′
A

(zA, r ◦ y, ρA, 0, ρ′′α) CzA ,#,C
′
α 〈zA, r ◦ y〉 = α′ mod I Consistency check on zA, z

′
A

(z, rA, ρ, 0, ρα) Cz,#,Cα 〈z, rA〉 = α mod I Lincheck for A
(zA, r, ρA, 0, ρα) CzA ,#,Cα 〈zA, r〉 = α mod I Lincheck for A
(z, rB, ρ, 0, ρβ) Cz,#,Cβ 〈z, rB〉 = β mod I Lincheck for B

(zB, r, ρB, 0, ρβ) CzB ,#,Cβ 〈zB, r〉 = β mod I Lincheck for B
(z, rC , ρ, 0, ργ) Cz,#,Cγ 〈z, rC〉 = γ mod I Lincheck for C
(z, s′, ρ, 0, 0) Cz,#,# 〈z, s′〉 = σ mod I Partial assignment

Lemma 7.5 (completeness). Let eSP be the completeness error for the scalar-product sub-protocol (Con-
struction 6.3) obtained in Lemma 6.5. Then Construction 7.4 is complete with completeness error O(eSP).

Proof. Let (x,w) =
(
(A,B,C,m, nrow, ncol, nin, x), w

)
∈ RR1CS. Then z := (x,w) satisfies Az ◦ Bz =

Cz mod I . The prover computes zA = Az mod I and similarly for B and C. Hence zA ◦ zB = zC mod I .
We argue that each scalar-product sub-protocol is invoked on a valid instance-witness pair. As there are

nine such sub-protocols, the claimed completeness error follows directly.
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• Hadamard and consistency checks. For any choice of r, we have

〈zB, z′A〉 = 〈zB, r ◦ zA〉 = 〈r, zA ◦ zB〉 = 〈zC , r〉 = γ mod I .

Thus, zB , z′A and γ and their commitments give a member of the scalar-product relationRCMSP(1, ‖R•‖ML,I
).

Further, for every choice of y, we have 〈y, z′A〉 = 〈y, r ◦ zA〉 = α′ mod I . Therefore, the second and third
scalar-product protocols succeed, except with probability O(eSP).

• Linchecks. For every choice of r it holds that 〈r, zA〉 = 〈r,Az〉 = 〈rᵀA, z〉 = 〈rA, z〉 mod I , and
therefore, the fourth and fifth scalar-product protocols succeed (the Lincheck forA), except with probability
O(eSP). Similar reasoning applies to the Linchecks for B and C.

• Partial assignment consistency. For every choice of s, it holds that 〈s′, z〉 = 〈s, x〉 = σ mod I , which is
the equation checked by the verifier. This means that z, s′, σ and their commitments are in the relation
RCMSP, so the final scalar product sub-protocol succeeds.

Lemma 7.6 (tree extraction). There exists an efficient algorithm such that given an instance x = (A,B,C,
m, nrow, ncol, nin, x), and a (2`, 2`, 2lognin , 3, 2, 2, 4`)-tree of accepting transcripts, either extracts a valid
witness w = w for the relationRR1CS(R•) or a non-trivial bilinear relation, whenever γRnB2

CMSP < BBRA.
Here BCMSP is the norm bound derived in Lemma 6.6, with BC = ‖R•‖ML,I

.

Proof. Fix values of r, y and s (this corresponds to following some path from the root down to the (2` +
log nin)-th level of the tree of transcripts). By Lemma 6.6 there exists a polynomial-time algorithm which
takes as input the (3, 2, 2, 4`)-subtree of accepting transcripts (the full tree restricted to each scalar-product
subprotocol) and outputs a witness toRCMSP(cCMSP, BCMSP) (see Definition 6.1) for some cCMSP that is invertible
modulo I since BM is quotient-friendly.

Consider the first scalar-product subprotocol, run on commitments CzB ,C
′
zA
,Cγ . By applying the

knowledge extractor for the scalar-product subprotocol, we can extract vectors zB, z
′
A ∈ ML(BCMSP)ncol

and a scalar γ such that cCMSP · CzB = 〈zB,G0〉 + 〈ρB,G1〉, cCMSP · C′zA = 〈z′A,H0〉 + 〈ρ′A,H1〉, and
c2CMSP · Cγ = γ · U0 + 〈ργ ,U1〉, for suitable randomness values ρB , ρ′A and ργ , with 〈zB, z′A〉 = γ mod I .

Now consider the second scalar-product protocol, run on an honestly-made commitment to y, and
commitments C′α, C′zA . We can extract vectors z′′A ∈ ML(BCMSP)ncol and a scalar α′ such that 〈cCMSP ·
y, z′′A〉 = α′ mod I which open C′α and C′zA with suitable randomness values. Note that ‖cCMSP · y‖R ≤
γR‖cCMSP‖R‖C‖R ≤ BCMSP < BBRA. Since the norms of all the openings are less than BBRA, by the binding
property of the generalized Pedersen commitment scheme, z′′A = z′A, so 〈cCMSP · y, z′A〉 = α′ mod I .

Similarly, by applying the knowledge extractor for each scalar-product protocol and using the binding
property to show that relaxed openings for commitments made by the verifier are multiples of the honestly
committed values, we can extract vectors z, zA, zB and scalars α, α′, β, γ with norms at mostBCMSP, satisfying
the following equations:

〈zB, z′A〉 = γ mod I

〈cCMSP · y, z′A〉 = α′ mod I

〈zA, cCMSP · r ◦ y〉 = α′ mod I

〈z, cCMSP · rA〉 = α mod I

〈zA, cCMSP · r〉 = α mod I
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〈z, cCMSP · rB〉 = β mod I

〈zB, cCMSP · r〉 = β mod I

〈z, cCMSP · rC〉 = γ mod I

〈z, cCMSP · s′〉 = c2CMSP · σ mod I

We also know that 〈cCMSP · s, cCMSP · x〉 = c2CMSP · σ mod I .
Equating the left-hand sides of the equations above which have related right-hand sides, and dividing by

c2CMSP mod I (cCMSP is invertible modulo I by Lemma 6.6), we can write

〈c−1CMSP · zB, c−1CMSP · z′A〉 = 〈c−1CMSP · z, rC〉 mod I , (28)

〈y, c−1CMSP · z′A〉 = 〈c−1CMSP · zA, r ◦ y〉 mod I , (29)

〈c−1CMSP · z, rA〉 = 〈c−1CMSP · zA, r〉 mod I , (30)

〈c−1CMSP · z, rB〉 = 〈c−1CMSP · zB, r〉 mod I , (31)

〈c−1CMSP · z, s′〉 = 〈s, x〉 mod I . (32)

Rearranging Equation (29) gives

〈c−1CMSP · z′A − c−1CMSP · zA ◦ r, y〉 = 0 mod I . (33)

Now, we show that c−1CMSP · z is a witness to the R1CS instance modulo I .
Consider Equation (33) for each accepting transcript at the (2` + log nin)-th level. The entries of y

are distinct monomials in y1, . . . , y`, and Equation (33) is a multilinear polynomial in (y1, . . . , ylognrow
)

where each coefficient is an entry of c−1CMSP · z′A − c
−1
CMSP · zA ◦ r. Equation (33) holds for a (2`, 2`)-tree

of values of (r1, . . . , r`), (y1, . . . , y`), and gives a system of linear equations with coefficients in terms
of the yi for each choice of (r1, . . . , r`). We can solve the linear equations to deduce that each entry of
c−1CMSP · z′A − c

−1
CMSP · zA ◦ r is equal to zero. This implies that for every choice of (r1, . . . , r`) in the tree of

accepting transcripts, c−1CMSP · z′A = c−1CMSP · r ◦ zA mod I . It is always possible to solve the linear system
because Equation (33) is a multilinear polynomial, and solving for the coefficients amounts to solving linear
equations in ylognrow

, then ylognrow−1, and so on, recursively. Each linear equation is solvable up to factors
of ξ. Since BM is protocol-friendly, multiplication by ξ is invertible modulo I , so each linear equation is
completely solvable modulo I .

Substituting c−1CMSP · z′A = c−1CMSP · r ◦ zA into Equation (28) and applying the same technique shows that
c−1CMSPzA ◦ c−1CMSPzB = C · c−1CMSPz mod I . Applying the same technique to Equation (30), Equation (31) and
Equation (32) implies that c−1CMSPzA = A · c−1CMSPz mod I , c−1CMSPzB = B · c−1CMSPz mod I , and c−1CMSPz = (x,w)
for some vector w, and thus c−1CMSPz is a witness to the R1CS relation modulo I .

Lemma 7.7 (zero-knowledge). Suppose that

• the scalar-product sub-protocol (Construction 6.3) is statistically semi-honest-verifier zero-knowledge,
with statistical distance at most δSP between simulated transcripts and real transcripts; and

• the generalized Pedersen commitment is statistically hiding with statistical distance at most ε between
commitments to different messages.

Then Construction 7.4 is statistically semi-honest-verifier zero-knowledge, with statistical distance at most
O(δSP + ε) between simulated transcripts and real transcripts.
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Proof. We give a simulator for Construction 7.4, which takes as input the verifier’s messages (r1, . . . , rlognrow) ∈
Clognrow , (y1, . . . , ylognrow) ∈ Clognrow and (s1, . . . , slognin

) ∈ Clognin , and the verifier’s randomness
rCMSP,1, . . . , rCMSP,9 for each of the 9 scalar-product sub-protocols, described by Construction 6.3.

The simulator runs as follows:

• The simulator computes random commitments Cz,CzA ,CzB ,Cα,Cβ,Cγ ,C
′
α,C

′
zA

to zero messages, using
randomness sampled uniformly from Mh

L (‖R•‖ML,I
).

• For i = 1, . . . , 9, the simulator invokes the simulator of the scalar-product protocol (given by Lemma 6.7)
for the i-th scalar-product subprotocol, using verifier randomness rCMSP,i.

Zero-knowledge follows from the hiding property of the generalized Pedersen commitment scheme, and the
zero-knowledge property of the scalar-product protocol.

Lemma 7.8. The prover and verifier in Construction 7.4 each performO(nrow) applications of e;O(nrow+m)
operations in ML; and O(nrow) additions in MT.

Proof. The costs of Construction 7.4 are mostly inherited from the costs of Construction 6.3, which are
analyzed in Lemma 6.4. Both the prover and the verifier must also compute rA, rB, rC in ML, which costs
O(m) operations in ML.
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A Folding techniques as a sumcheck argument

We review the folding technique introduced in [BCCGP16], which is an interactive protocol for proving
knowledge of an opening of a given Pedersen commitment. Then we explain how that interactive protocol can
be reformulated as a sumcheck argument. Similar reformulations can be done for other folding techniques in
the literature (including for scalar-product commitments, and different cryptographic settings).

The folding technique in [BCCGP16] is an interactive reduction that halves the message length and can
be applied recursively. Below G is a group of prime order and F is the finite field of size |G|.

Protocol 5: folding technique for Pedersen commitments

For n = 2`, the prover and verifier receive as input a commitment key G ∈ Gn and commitment C ∈ G.
The prover also receives as input an opening a ∈ Fn such that C = 〈a,G〉.

If n = 1 then the prover sends a ∈ F to the verifier, and the verifier checks if a · G = C as claimed.
If n > 1, the interactive reduction works as follows.

1. Parse G ∈ Gn as (G0,G1) ∈ Gn/2 ×Gn/2, and a ∈ Fn as (a0, a1) ∈ Fn/2 × Fn/2.
2. The prover computes cross terms C− := 〈a0,G1〉 and C+ := 〈a1,G0〉 and sends them to the verifier.
3. The verifier samples r ← F and sends r to the prover.
4. The verifier outputs the new commitment key G′ := r · G0 + G1 ∈ Gn/2 and the new commitment

C′ := C− + r · C + r2 · C+. The prover outputs the new opening a′ := a0 + r · a1 ∈ Fn/2.

The reduction preserves completeness because if we expand the new commitment C′ then the original
commitment C appears as the middle coefficient of the polynomial in r with C+ and C− as the other terms:

〈a′,G′〉 = 〈a0 + r · a1, r · G0 + G1〉 = 〈a0,G1〉+ r · 〈a,G〉+ r2 · 〈a1,G0〉 = C− + r · C + r2 · C+ = C′ .

Thus a′ is a new opening for the new commitment C′ under the new commitment key G′. Intuitively, the
reduction is secure because the prover sends the cross terms C+ and C− before receiving the challenge r; this
intuition can be formalized via an extraction argument.

After the reduction, the prover may send the new opening a′ ∈ Fn/2 to the verifier, who checks that
C′ = 〈a′,G′〉. Alternatively, the interactive reduction can be applied recursively until the final opening is a
single field element a, the final Pedersen commitment key is a single group element G, and the verifier checks
that the final commitment C∗ satisfies C∗ = a · G. In this case the total number of recursions is ` = log2 n.

Next, we describe a sumcheck argument that also proves knowledge of an opening for a given Pedersen
commitment. For a vector v of length n = 2`, whose entries we index via binary strings (i1, . . . , i`) ∈ {0, 1}`,
we consider the multilinear polynomial pv from Definition 2; we use rv(v) to denote v in reverse order.

We use a generalization of the sumcheck protocol over modules (Section 2.1) that works for weighted
sums of the form

τ =
∑
ω∈H`

µ1(ω1) · · ·µ`(ω`) p(ω)

with coefficients µ1, . . . , µ` ∈ RH as in [Mei13]. In this protocol, the i-th prover message is the polynomial

qi(X) :=
∑

ωi+1,...,ω`∈H
µi+1(ωi+1) · · ·µ`(ω`) p(r1, . . . , ri−1, X, ωi+1, . . . , ω`) ,

and the verifier checks that τ =
∑

ω1∈H µ1(ω1) q1(ω1) and that ∧`i=2qi−1(ri−1) =
∑

ωi∈H µi(ωi) qi(ωi).
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Protocol 6: sumcheck argument for Pedersen commitments (variant of Protocol 1)

For n = 2`, the prover and verifier receive as input a commitment key G ∈ Gn and commitment C ∈ G.
The prover also receives as input an opening a ∈ Fn such that C = 〈a,G〉.

The prover and verifier engage in a sumcheck protocol for the instance

xSC := (R = F, M = G, H = {−1, 1}, ` = log n, τ = C, C = F, {µi(ωi)}`i=1 = {ωi2 }
`
i=1)

where the prover uses the polynomial p(X) := pa(X) · prv(G)(X). After the end of the sumcheck
protocol, the prover learns r ∈ F` and the verifier learns (r, v) ∈ F` ×G. Then the prover computes
and sends pa(r) ∈ F to the verifier, and the verifier computes prv(G)(r) ∈ G and checks that pa(r) ·
prv(G)(r) = v.

Finally, we explain how Protocol 6 is essentially mathematically equivalent to Protocol 5. Note that
Protocol 6 is slightly different from Protocol 1 (another knowledge protocol for Pedersen commitments) in
order to facilitate the equivalence. We establish the equivalence via a sequence of observations.
(1) Pedersen commitment as polynomial summation. One can express the Pedersen commitment C =
〈a,G〉 ∈ G (the scalar product of a vector over F and a vector over G) as a sum of evaluations of pa · prv(G):∑

ω1,...,ω`∈{−1,1}

ω1

2
· · · ω`

2
· pa(ω1, . . . , ω`) · prv(G)(ω1, . . . , ω`) = 〈a,G〉 . (34)

Below we follow [BCG20] which explains the same for the scalar product of two vectors over F.
Each contribution to the coefficient of X1 · · ·X` in pa(X) · prv(G)(X) arises from a multiplication

of the monomials in the terms ai1,...,i`X
i1
1 · · ·X

i`
` and Gi1,...,i`X

1−i1
1 · · ·X1−i`

` , which multiply to give
ai1,...,i` · Gi1,...,i` ·X1 · · ·X`. Thus, the coefficient of X1 · · ·X` in pa(X) · prv(G)(X) is equal to 〈a,G〉 = C.

Next, for any univariate polynomial P (X), computing 1
2P (1)− 1

2P (−1) =
∑

ω∈{−1,1}
ω
2 · P (ω) gives

the sum of the odd coefficients of P . Applying the same idea to p(X) = pa(X) · prv(G)(X) and summing
ω1
2 · · ·

ω`
2 · p(ω) over ω ∈ {−1, 1}` returns the sum of the coefficients pi such that i ≡ 1 mod 2. The only

such non-zero coefficient is the coefficient of X1 · · ·X`, which is 〈a,G〉, as claimed in Equation (34).
(2) New commitment key and new opening. Each iteration of Protocol 5 produces a new commitment
key and a new opening that are the same as the coefficients of partial evaluations of pG(X) and pa(X) in
each round of Protocol 6. We focus on the first iteration of Protocol 5, as commitment keys and openings for
other iterations are computed similarly.

• The new commitment key in Protocol 5 is G′ = r · G0 + G1 ∈ Gn/2 and its entries are G′i2,...,i` =

r · G0,...,i` + G1,...,i` =
∑

i1∈{0,1} Gi1,...,i`r
1−i1 . In Protocol 6 after the first round, we have

prv(G)(r,X2, . . . , X`) =
∑

i1,...,i`∈{0,1}

G1−i1,...,1−i`r
i1Xi2

2 · · ·X
i`
`

and so rv(G′) are the coefficients of prv(G)(r,X2, . . . , X`).

• The new opening in Protocol 5 is a′ = a0 +r ·a1 ∈ Fn/2 and its entries are a′i2,...,i` = a0,...,i` +r ·a1,...,i` =∑
i1∈{0,1} ai1,...,i`r

i1 . In Protocol 6 after the first round, we have

pa(r,X2, . . . , X`) =
∑

i1,...,i`∈{0,1}

ai1,...,i`r
i1Xi2

2 · · ·X
i`
`
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and so a′ are the coefficients of pa(r,X2, . . . , X`).

(3) The cross terms as coefficients of qi. The cross terms C+,C− in the i-th iteration of Protocol 5 are the
coefficients of X2, X0 of the polynomial qi(X) sent by the prover in the i-th round in Protocol 6. We again
focus on the first iteration of Protocol 5, and argue that q1(X) = C− +X · C +X2 · C+. In Protocol 6 the
coefficients of 1, X,X2 in

q1(X) =
∑

ω2,...,ω`∈{−1,1}

ω2

2
· · · ω`

2
· p(X,ω2, . . . , ω`)

are equal to the coefficients of X2 · · ·X`, X1X2 · · ·X`, X
2
1X2 · · ·X` in the polynomial pa(X) · prv(G)(X),

because the sum leaves only the coefficients pi such that (i2, . . . , i`) ≡ 1 mod 2. We have already estab-
lished that the coefficient of X1X2 · · ·X` is C = 〈a,G〉. Next, each contribution to the X2 · · ·X` term
of pa(X) · prv(G)(X) arises from a multiplication of the monomials in the terms a0,i2,...,i`X

i2
2 · · ·X

i`
` and

G1,i2,...,i`X
1−i2
2 · · ·X1−i`

` , which multiply to give a0,i2,...,i` · G1,i2,...,i` ·X2 · · ·X`. Thus, the coefficient of
X2 · · ·X` in pa(X) · prv(G)(X) is equal to 〈a0,G1〉, which is equal to C−. Similar reasoning applies to C+.

(4) The verification equations. In Protocol 6 the prover in the first round sends q1(X) = c0+X ·c1+X2 ·c2
to the verifier, and the verifier checks that C = 1

2q1(1) − 1
2q1(−1). One can then view the next round’s

commitment C′ to be q1(r) = c0 + r · c1 + r2 · c2. The verification equations in Protocol 6 simplify to give
the calculation of the new commitment key in Protocol 5, as we now explain. We have already argued that for
the honest prover in Protocol 6 it holds that (c0, c1, c2) = (C−,C,C+), and so the prover could send only
c0 and c2 to the verifier, and the verifier could avoid the verification check and simply compute q1(r) as
c0 + r · C + r2 · c2 (as c1 and C are supposed to be equal). Similarly, we can avoid the verification equations
for all rounds of Protocol 6. Therefore, Protocol 5 incorporates a straightforward optimization to Protocol 6.
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B Sumcheck arguments with additional homomorphism

We show that if a sumcheck-friendly commitment scheme has linear or bilinear properties then the polynomial
psc(X) := fCM(pm(X), pck(X), 1) has a straightforward representation in terms of the coefficients of pm(X)
and pck(X), and the prover of Construction 4.5 can be implemented more efficiently.

Definition B.1. Let fCM : M×K× Sck → C, pm(X) ∈M[X], and pck(X) ∈ K[X].

• (fCM, pm, pck) is R-linear if pm(X) =
∑

a∈I` pm,aX
a ∈ M[X] for some I ⊆ Z, pck(X) is equal to a

constant pck ∈ K, and for all r ∈ R, m,m′ ∈M, ck ∈ K,

fCM(m + m′, ck, 1) = fCM(m, ck, 1) + fCM(m′, ck, 1) ,

fCM(r ·m, ck, 1) = r · fCM(m, ck, 1) .

• (fCM, pm, pck) is R-bilinear if pm(X) =
∑

a∈I` pm,aX
a ∈M[X] and pck(X) =

∑
b∈I` pck,bX

b ∈ K[X]

for some I ⊆ Z, and for all r ∈ R, m,m′ ∈M, ck, ck′ ∈ K,

fCM(m + m′, ck, 1) = fCM(m, ck, 1) + fCM(m′, ck, 1) ,

fCM(m, ck + ck′, 1) = fCM(m, ck, 1) + fCM(m, ck′, 1) ,

r · fCM(m, ck, 1) = fCM(r ·m, ck, 1) = fCM(m, r · ck, 1) .

• (fCM, pm, pck) is R-cross-bilinear if M = ML ×MR, K = KL ×KR ×KU,

pm(X) =

∑
a∈I`

pm,L,aX
a,
∑
a∈I`

pm,R,aX
a

 ∈ML[X]×MR[X] and

pck(X) =

∑
b∈I`

pck,L,bX
b,
∑
b∈I`

pck,R,bX
b, pck,U

 ∈ KL[X]×KR[X]×KU ,

and for every r ∈ R, (mL,mR), (m′L,m
′
R) ∈ML×MR, (ckL, ckR, ckU), (ck′L, ck

′
R, ck

′
U) ∈ KL×KR×KU,

fCM(mL + m′L,mR, ckL + ck′L, ckR, ckU, 1) = fCM(mL,mR, ckL, ckR, ckU, 1) + fCM(m′L,mR, ck
′
L, ckR, ckU, 1) ,

fCM(mL,mR + m′R, ckL, ckR + ck′R, ckU, 1) = fCM(mL,mR, ckL, ckR, ckU, 1) + fCM(mL,m
′
R, ckL, ck

′
R, ckU, 1) ,

r · fCM(mL,mR, ckL, ckR, ckU, 1) = fCM(r ·mL,mR, ckL, r · ckR, ckU, 1) = fCM(mL, r ·mR, r · ckL, ckR, ckU, 1) .

Some of the conditions on pm and pck in Definition B.1 are vacuously true, since pm and pck can always
be written using an indexing set I ⊆ Z. However, pck must be a constant in the R-linear case, and the
KU-component of pck must be a constant in the R-cross-bilinear case. These latter are meaningful restrictions
that are used to provide expressions for psc in Lemma B.3 below.

The generalized Pedersen commitment scheme (Section 5.2) is an example of a sumcheck-friendly
commitment scheme where (fCM, pm, pck) is R-bilinear. The commitment schemes in Sections 5.3 to 5.5 are
examples where (fCM, pm, pck) is R-cross-bilinear. While we do not work out the details, the commitment
scheme in [BFS20] is a sumcheck-friendly commitment scheme where (fCM, pm, pck) is R-linear.

Next, we describe simple representations of psc when a sumcheck-friendly commitment scheme is
R-linear, R-bilinear, or R-cross-bilinear.
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Definition B.2. The polynomial psc(X) is defined as below for each case of Definition B.1.
• If (fCM, pm, pck) is R-linear, psc(X) :=

∑
a∈I` fCM(pm,a, pck, 1) ·Xa.

• If (fCM, pm, pck) is R-bilinear, psc(X) :=
∑

a,b∈I` fCM(pm,a, pck,b, 1) ·Xa+b.
• If (fCM, pm, pck) is R-cross-bilinear, psc(X) :=

∑
a,b∈I` fCM(pm,L,a, pm,R,b, pck,L,a, pck,R,b, pck,U, 1) ·Xa+b.

Lemma B.3. In each case of Definition B.2, for every r ∈ R` it holds that psc(r) = fCM(pm(r), pck(r), 1).

Proof. We prove the bilinear case, as the linear and cross-bilinear cases can be proved in a similar way. Using
the properties of R-bilinearity,

fCM(pm(r), pck(r), 1) =
∑
a∈I`

fCM(pm,a, pck(r), 1) · r a =
∑
a,b∈I`

fCM(pm,a, pck,b, 1) · r a+b = psc(r) .

One can view the definitions of psc(X) in Definition B.2 as the result of “lifting” fCM so that it takes as
input polynomials over M[X1, . . . , X`] and K[X1, . . . , X`] instead of scalars over M and K, by acting on
the coefficients of the polynomials individually. Other work [ACR20] uses a similar idea and shows that
operations such as multi-exponentiation and elliptic-curve pairings, which can described by “bilinear gates”,
can be made to take polynomials of group and field elements as inputs instead of group and field elements.

Next, we describe how the honest prover, given pm ∈M[X] and pck ∈ K[X], and challenges r1, . . . , r` ∈
C, can compute the coefficients of the polynomials q1(X1), . . . , q`(X`) to be sent in the sumcheck protocol
by exploiting the homomorphic properties of fCM. In many cases, this is more efficient than the “generic”
prover complexity stated in Theorem 4.6 (and in more detail in Lemma 4.9).

Lemma B.4. Suppose thatH is a multiplicative subgroup ofR, and d := max{ideg
(
pm(X)

)
, ideg

(
pck(X)

)
}

is at most |H|.
• If fCM is R-linear, the prover in Construction 4.5 can be implemented in O(d`) scalar multiplications in K;
O(d`) scalar multiplications in M; O(d`) applications of fCM; and O(d`+1) additions in C.

• If fCM is R-bilinear, the prover in Construction 4.5 can be implemented in O(d`) scalar multiplications in
K; O(d`) scalar multiplications in M; O(d`+1) applications of fCM; and O(d`+1) additions in C.

• If fCM isR-cross-bilinear, the prover in Construction 4.5 can be implemented inO(d`) scalar multiplications
in each of KL and KR; O(d`) scalar multiplications in each of ML and MR; O(d`+1) applications of fCM;
and O(d`+1) additions in C.

As stated in Theorem 4.6, a generic implementation of the prover in Construction 4.5 computes psc(X),
partially evaluates it O(|H|`−1) times, and performs O(d?ck|H|`−1) additions and scalar-multiplications over
K. We now compare this against the costs from Lemma B.4 for the bilinear case. By Definition B.2, psc has
degree ideg

(
pm(X)

)
+ideg

(
pck(X)

)
, which is at most 2d. Hence psc has O(2`d`) coefficients, meaning that

a single partial evaluation would cost O(2`d`) additions and scalar-multiplications in C. Since O(|H|`−1)
partial evaluations are required of the prover from Theorem 4.6, this could lead to a prover algorithm which
performs O(|H|`−12`d`) operations in C and O(d?ck|H|`−1) operations in K. By contrast, Lemma B.4 shows
that, in the bilinear case, the prover need only perform O(d`+1) operations over C, as well as O(d`) scalar
multiplications in K, O(d`) scalar multiplications in M, and O(d`+1) applications of fCM. Since d ≤ |H|,
the prover algorithm of Theorem 4.6 might perform up to 2`|H|`−2 times as many operations over C in
the worst case. This can be a significant improvement in complexity. For example, when instantiating
sumcheck arguments in the prime-order group setting, operations over K and applications of fCM have the
same complexity as operations over C, and dominate the cost of operations over M.
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Proof. Fix verifier challenges r = (r1, . . . , r`) ∈ C`. At round i ∈ [`], the prover must compute

qi(Xi) =
∑

ωi+1,...,ω`∈H
psc(r1, . . . , ri−1, Xi, ωi+1, . . . , ω`) .

Each of the polynomials q1(X1), . . . , q`(X`) can be evaluated and the evaluation points sent to the verifier as
and when required. We explain how to do this efficiently in the bilinear case, and then explain simplifications
that apply in the linear case. The argument for the cross-bilinear case is similar to the bilinear case.

First, we express each qi(Xi) in terms of partial evaluations of pm(X) and pck(X). Then, we give an
algorithm that computes the coefficients of q1(X1), . . . , q`(X`) in O(d`+1) arithmetic operations.

Define coefficients ck(i)a and m(i)
a by pck(r1, . . . , ri, Xi+1, . . . , X`) =

∑
a∈I`−i ck

(i)
a X

ai+1

i+1 · · ·X
a`
` and

pm(r1, . . . , ri, Xi+1, . . . , X`) =
∑

a∈I`−i m
(i)
a X

ai+1

i+1 · · ·X
a`
` . Note that ck(i)a and m(i)

a satisfy the following
recurrence relations.

ck
(i)
ai+1···a` =

∑
ai∈I

ck
(i−1)
ai···a` r

ai
i ,

m
(i)
ai+1···a` =

∑
ai∈I

m
(i−1)
ai···a` r

ai
i .

Using the bilinear properties of fCM, we have

psc(r1, . . . , r`−1, X`) = q`(X`) =
∑

a`,b`∈I
fCM(m(`−1)

a`
, ck

(`−1)
b`

, 1) Xa`+b`
` . (35)

Since q`−1(r`−1) =
∑

ω`∈H q`(ω`), we have q`−1(r`−1) =
∑

ω`∈H
∑

a,b∈I fCM(m
(`−1)
a , ck

(`−1)
b , 1) ωa+b` .

The set H is a multiplicative subgroup of R, and so we can apply Lemma 3.6 (which is about sums of
polynomial evaluations over multiplicative subgroups) and then expand using the recurrence relations. We
thus obtain that:

q`−1(r`−1) =
∑

a`,b`∈I s.t.
a`+b`≡0 mod |H|

fCM(m(`−1)
a`

, ck
(`−1)
b`

, 1)

=
∑

a`,b`∈I s.t.
a`+b`≡0 mod |H|

fCM

 ∑
a`−1∈I

m(`−2)
a`−1a`

r
a`−1

`−1 ,
∑
b`−1∈I

ck
(`−2)
b`−1b`

r
b`−1

`−1 , 1


=

∑
a`−1,b`−1∈I

r
a`−1+b`−1

`−1

∑
a`,b`∈I s.t.

a`+b`≡0 mod |H|

fCM

(
m(`−2)
a`−1a`

, ck
(`−2)
b`−1b`

, 1
)
.

Thus, q`−1(X`−1) =
∑

a`−1,b`−1∈I X
a`−1+b`−1

`−1
∑

a`,b`∈I : a`+b`≡0 mod |H| fCM

(
m

(`−2)
a`−1a` , ck

(`−2)
b`−1b`

, 1
)

.

Next, we see that for each i ∈ [`], we can express qi(Xi) in terms of the coefficients ck
(i−1)
ai+1...a` and

m
(i−1)
ai+1...a` :

qi(Xi) =
∑
ai,bi∈I

Xai+bi
i

∑
ai+1,...,a`,bi+1,...,b`∈I s.t.

∀j∈[i+1,...,`], aj+bj≡0 mod |H|

fCM

(
m(i−1)
aiai+1...a`

, ck
(i−1)
bibi+1...b`

, 1
)
. (36)

We now give an algorithm that computes the coefficients of q1(X1), . . . , q`(X`) in O(d`+1) arithmetic
operations. For i = 0, the prover already knows the coefficients ck(0)a1...a` and m

(0)
a1...a` . Then, for each i ∈ [`]:
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• The prover has the coefficients ck(i)ai+1...a` ,m
(i)
ai+1...a` for every (ai+1, . . . , a`) ∈ I`−i.

• The sums in Equation (36) giving the coefficients of qi(Xi) contain d2 · d`−i terms. Given the values
of ck(i)ai+1...a` ,m

(i)
ai+1...a` for every (ai+1, . . . , a`) ∈ I`−i we can compute all of the terms using d2 · d`−i

applications of fCM and add them together in d2 · d`−i additions over C to find the coefficients of qi(Xi).

• On receiving ri from the verifier, the prover computes the coefficients ck
(i)
ai+1...a` ,m

(i)
ai+1...a` for every

(ai+1, . . . , a`) ∈ I`−i via the recurrence relations. This requires d`−(i−1) scalar multiplications and
d`−(i−1) additions in K and M. The prover need not compute ck(`).

The total cost of computing the polynomials q1(X1), . . . , q`(X`) is the sum of a geometric series and is
O(d`+1) applications of fCM and additions in C, and O(d`) additions and scalar multiplications in K and M.

Further improvements can be made when (fCM, pm, pck) is R-linear. Since pck(X) is a constant in this
case, the expression for qi(Xi) in Equation (36) becomes

qi(Xi) =
∑
ai∈I

Xai
i

∑
ai+1,...,a`∈I`−i s.t.

∀j∈[i+1,...,`], aj≡0 mod |H|

fCM

(
m(i−1)
aiai+1...a`

, pck, 1
)
.

This simplifies to qi(Xi) =
∑

ai∈I X
ai
i fCM

(
m

(i−1)
ai0`−i

, pck, 1
)

since d ≤ |H|, so that only d` applications of
fCM are required.
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[SSTX09] Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. “Efficient Public Key Encryption
Based on Ideal Lattices”. In: Proceedings of the 15th International Conference on the Theory and
Application of Cryptology and Information Security. ASIACRYPT ’09. 2009, pp. 617–635.

[Set20] Srinath Setty. “Spartan: Efficient and General-Purpose zkSNARKs Without Trusted Setup”. In:
Proceedings of the 40th Annual International Cryptology Conference. CRYPTO ’20. 2020, pp. 704–
737.

[Tha13] Justin Thaler. “Time-Optimal Interactive Proofs for Circuit Evaluation”. In: Proceedings of the 33rd
Annual International Cryptology Conference. CRYPTO ’13. 2013, pp. 71–89.

[VSBW13] Victor Vu, Srinath Setty, Andrew J. Blumberg, and Michael Walfish. “A hybrid architecture for
interactive verifiable computation”. In: Proceedings of the 34th IEEE Symposium on Security and
Privacy. Oakland ’13. 2013, pp. 223–237.

[WTSTW18] Riad S. Wahby, Ioanna Tzialla, Abhi Shelat, Justin Thaler, and Michael Walfish. “Doubly-efficient
zkSNARKs without trusted setup”. In: Proceedings of the 39th IEEE Symposium on Security and
Privacy. S&P ’18. 2018, pp. 926–943.

[Wah+17] Riad S. Wahby, Ye Ji, Andrew J. Blumberg, Abhi Shelat, Justin Thaler, Michael Walfish, and Thomas
Wies. “Full Accounting for Verifiable Outsourcing”. In: Proceedings of the 24th ACM Conference
on Computer and Communications Security. CCS ’17. 2017, pp. 2071–2086.

[Wes19] Benjamin Wesolowski. “Efficient Verifiable Delay Functions”. In: Proceedings of the 38th Annual
International Conference on the Theory and Applications of Cryptographic Techniques. EURO-
CRYPT ’19. 2019, pp. 379–407.

[XZZPS19] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and Dawn Song. “Libra:
Succinct Zero-Knowledge Proofs with Optimal Prover Computation”. In: Proceedings of the 39th
Annual International Cryptology Conference. CRYPTO ’19. 2019, pp. 733–764.

[ZGKPP17] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Charalampos Papa-
manthou. “vSQL: Verifying Arbitrary SQL Queries over Dynamic Outsourced Databases”. In:
Proceedings of the 38th IEEE Symposium on Security and Privacy. S&P ’17. 2017, pp. 863–880.

[ZXZS20] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. “Transparent Polynomial Delegation
and Its Applications to Zero Knowledge Proof”. In: Proceedings of the 41st IEEE Symposium on
Security and Privacy. S&P ’20. 2020, pp. 859–876.

[dalek18] dalek cryptography. A pure-Rust implementation of Bulletproofs using Ristretto. 2018. URL: https:
//github.com/dalek-cryptography/bulletproofs.

82

https://github.com/dalek-cryptography/bulletproofs
https://github.com/dalek-cryptography/bulletproofs

	Abstract
	Contents
	1 Introduction
	1.1 Our results
	1.2 New connections and new opportunities
	1.3 Related work
	1.4 Concurrent work

	2 Techniques
	2.1 Sumcheck protocol over modules
	2.2 Sumcheck argument for Pedersen commitments
	2.3 Sumcheck argument for sumcheck-friendly commitments
	2.4 Extending sumcheck arguments to modules
	2.5 Instantiations of sumcheck-friendly commitments
	2.6 Succinct argument for scalar products over rings
	2.7 Succinct argument for R1CS over rings
	2.8 Commitments to linear functions and polynomials over modules

	3 Preliminaries
	3.1 Rings and modules
	3.2 Commitments
	3.3 Interactive arguments

	4 Sumcheck argument for opening a commitment
	4.1 Efficiency
	4.2 Completeness
	4.3 Knowledge soundness

	5 Instantiations of sumcheck-friendly commitments
	5.1 Bilinear modules
	5.2 Pedersen commitment
	5.3 Linear-function commitment
	5.4 Scalar-product commitment
	5.5 Compressed scalar-product commitment
	5.6 Instantiations of bilinear-module generators

	6 Succinct argument for scalar products over rings
	6.1 Proof of theorem:sp-protocol

	7 Succinct argument for R1CS over rings
	A Folding techniques as a sumcheck argument
	B Sumcheck arguments with additional homomorphism
	Acknowledgments
	References

