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Abstract: Here, we elaborate an approach for determining the number of points on elliptic curves
from the family Ep = {Ea : y2 = x3 + a (mod p), a 6= 0}, where p is a prime number >3. The essence
of this approach consists in combining the well-known Hasse bound with an explicit formula for the
quantities of interest-reduced modulo p. It allows to advance an efficient technique to compute the
six cardinalities associated with the family Ep, for p ≡ 1 (mod 3), whose complexity is Õ(log2 p),
thus improving the best-known algorithmic solution with almost an order of magnitude.
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1. Introduction

The elliptic curves over finite fields play an important role in modern cryptography.
We refer to [1] for an introduction concerning their cryptographic significance (see, as well,
the pioneering works of V. Miller and N. Koblitz from 1980’s [2,3]). Briefly speaking, the
advantage of the so-called elliptic curve cryptography (ECC) over the non-ECC is that it
requires smaller keys to provide the same level of security.

It is well-known that to avoid successful relevant attacks against an ECC system, the
number of points on the involved curve (called order of the curve) must have at least one
very large prime factor. In particular, if the order itself is a (large) prime, then the entire
capabilities of the curve are exploited to achieve maximum security.

An efficient deterministic algorithm (of a complexity of, at most, constant times log8 q
bit-operations where q is the order of an employed finite field) which computes the order
of a given elliptic curve of a general type is present in [4]. In this paper, however, we
are interested in the whole family of curves Ep = {Ea : y2 = x3 + a (mod p), a 6= 0} of
cardinality p− 1. Thus, it seems that there is no deterministic way to apply the Schoof
algorithm for finding the orders of all curves in Ep when p is large, although it is still feasible,
taking into account the existence of only six equiprobable possibilities (see Corollary 1)
and the so-called coupon collector’s problem from the probability theory (see, e.g., [5]).
Of course, a similar claim is valid in respect to the probabilistic improvement of the
Schoof algorithm, that is, the SEA algorithm [4] with expected running time, heuristically,
Õ(log4 p).

Nevertheless, there are more efficient approaches to the problem of interest, like the
algorithmic solution presented in [6] that takes O(log3 p) bit operations. Moreover, an even
better approach (to which this article is devoted) does exist.
There are two main differences between the approach followed in [6] and our own:

• Munuera and Tena proposed to use a general-purpose probabilistic algorithm [7] for
finding out the square root of arbitrary quadratic residue modulo p in order to find√
−3, where p ≡ 1 (mod 3). Their algorithm is of complexity O(log3 p), whereas our

proposal for this task improves to complexity Õ(log2 p) due to an efficient targeted
method for computing that specific value;
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• The authors of [6] find solutions of the Diophantine equation F(X, Y) = X2 + XY +

Y2 = 3p, while we solve for X2 + 3Y2 = p. However, both tasks are carried out by
appropriate utilizations of the Euclidean algorithm involving p and

√
−3 mod p; thus,

both take O(log2 p) bit operations (see, e.g., [8] or [9]).

Hence, our proposal outperforms that in [6] with almost an order of magnitude,
although it is of probabilistic type, too.

For an analytic solution of the problem considered here, we refer to [10], where explicit
formulae are obtained for the order of a curve Ea ∈ Ep in terms of a proper representation
of the prime p in the form p = X2 + Y2 − XY for some integers X and Y. Those formulas,
however, distinguish between many separate cases, and the computational efficiency is
certainly beyond the author’s goals (see, for details, [10] Theorem 1). One also may find
some particular instances of this problem as exercises in [11] Ch. 8, Ex. 15, 27.

Finally, it is worth pointing out that the results obtained by the approach followed in
this article are comprehensive and compact, despite the fact that some long-established facts
from the theory of quadratic partitions of primes are used. Additionally, that approach has
been described in [12], but its efficiency is demonstrated only in the case p ≡ 7 (mod 12),
while in the present paper, the idea is further refined and elaborated in full generality.

The paper is organized as follows. In the next section, we give some preliminaries.
Section 3 exposes our approach to the problem including the amended computational
estimates for large p. Section 4 provides an example with a specially constructed prime
modulo, and also discusses the results of an program experiment to compare the per-
formance of our proposed algorithmic technique with that of the SEA algorithm in the
considered scenario. Some conclusions are drawn in the last section.

2. Preliminaries

Let p be a prime > 3 and Zp be the ring of residues modulo p, which can also be
identified with the prime field Fp. We consider a family of elliptic curves defined as
Ep = {Ea : y2 = x3 + a (mod p), a ∈ Z∗p}, where Z∗p = Zp \ {0} is the multiplicative
group of Zp. Our aim is to find a suitable method (involving closed-form formulae) for
computing the order #Ea of a general member of that family, the curve Ea, in terms of the
parameters a and p.

For basic number-theoretic notions as the least non-negative and absolute least
residues of an integer z modulo another (odd) integer m, we refer to ([13], p. 93). Notations
“≡” for congruence modulo p and “=” in Zp will be used in an interchangeable manner,
depending on the context.

Hereinafter, we recall some necessary supplementary notions and facts (possibly with
slight abuses).

An element z ∈ Z∗p is called a quadratic residue modulo p if there exists x ∈ Z∗p such
that z = x2. Analogously, for d > 2, an element of z ∈ Z∗p is called the d−th order residue
modulo p if there exists x ∈ Z∗p such that z = xd. The set of all d−th order residues form a
subgroup of Z∗p. We will denote the subgroups of quadratic and cubic residues (d = 2, 3)
modulo p by QRp and CRp, respectively.

The next fact appears to be an immediate extension of the celebrated Euler criterion
from the elementary number theory (see, e.g., [14] Ch. 7.5).

Proposition 1. If d is a factor of p− 1, then the monomial m(z) = z
p−1

d takes exactly d distinct
values in Z∗p, each one of them p−1

d times. These values are the d−th roots of unity in Z∗p, that
is, solutions of the equation: Zd = 1. In particular, m(z) equals to 1 if, and only if z is a d−th
power residue.

It is well-known that −3 ∈ QRp if, and only if p ≡ 1 (mod 3) (of course,
√
−3

modulo p takes two values with opposite signs to each other). The following statement,
which is crucial for the efficiency of our approach, shows how to find such a square root.
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Proposition 2. Let z be a cubic non-residue modulo p, where p ≡ 1 (mod 3). Then 2z
p−1

3 + 1 is
equal to one of the square roots of −3 modulo p.

Proof. Indeed, according to Proposition 1, the assumption z 6∈ CRp implies z′ = z
p−1

3 is a
third root of unity in Z∗p, different from 1. Thus, z′ satisfies the equation Z2 + Z + 1 = 0,

that is, z′ = −1±
√
−3

2 or equivalently ±
√
−3 = 2z′ + 1.

Remark 1. Proposition 1 (with d = 3) easily implies that if p ≡ 1 (mod 3), the cardinality of the
set of cubic non-residues modulo p equals to 2

3 (p− 1). This can be interpreted as a reasoning that a
randomly selected element of Z∗p is a cubic non-residue with probability of 2/3. Thus, provided there
is a high-quality generator of random integers in the interval [2, p− 1], a cubic non-residue can
be found after 1.5 attempts on average. In turn, the square roots of −3 modulo p can be efficiently
determined by using Proposition 2.

The next proposition expresses a folklore fact that is decisive for our work.

Proposition 3. For an odd prime p let Sk(p) = 1k + 2k + . . . + (p− 1)k, where k = 0, 1, . . ..
Then it holds:

Sk(p) (mod p) =

{
0, if k 6≡ 0 (mod p− 1)
−1, otherwise.

For completeness, we give an alternative proof of that exposed in [12].

Proof. We use the fact that Z∗p is a cyclic group. Let g be its generating element, that
is, for any z ∈ Z∗p, there exists an i : 0 ≤ i ≤ p− 2 such that z = gi. This means that

Sk(p) = ∑
p−1
z=1 zk ≡ ∑

p−2
i=0 (gi)k (mod p). Putting u = gk as the last congruence implies that

Sk(p) (mod p) = ∑
p−2
i=0 ui. Now, there are two cases to be considered:

• if k 6≡ 0 (mod p− 1), since the order of Z∗p is p− 1 then u 6= 1, which in turn gives
that Sk(p) (mod p) = (up−1 − 1)/(u− 1) = 0;

• otherwise, the same reasoning implies Sk(p) ≡ p− 1 (mod p) = −1.

There is no explicit formula for the number of points on a general type elliptic curve
over Zp. The most relevant well-known result in this direction is the following bound (see,
e.g., [15] Ch. 4).

Theorem 1 (Hasse). The number of points N on an elliptic curve over Zp satisfies the inequality
|(N − 1)− p| ≤ 2

√
p.

At the end of this section, we recall a needed fact from the theory of quadratic partitions
of primes. This is a long-standing result due to Jacobi (1827) later elaborated by Stern (1832)
(see, [16] vol. III, p. 55 about historical details).

Proposition 4. If p is a prime of the form p = 6k + 1 for which p = X2 + 3Y2, then

±2X =
(2k + 1) . . . (3k)

k!
(mod p),

where the sign utilized is such that ±X ≡ 1 (mod 3).

3. Our Approach

As mentioned in the Introduction, the general framework of our approach was de-
scribed in [12]. We briefly exhibit its basic steps here.
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The following proposition helps to unambiguously fix the number N of points on
a given elliptic curve, provided one can compute the absolute least residue of (N − 1)
modulo p denoted by ALR(N − 1, p).

Proposition 5. In notations of Theorem 1, for a prime p ≥ 17, it holds:

N = ALR(N − 1, p) + p + 1.

Proof. Indeed, if p ≥ 17, then evidently, 2
√

p < p
2 . Thus, the Hasse theorem implies

|(N − 1)− p| < p
2 , which means that ALR(N − 1, p) = (N − 1)− p.

Remark 2. Note that if one can compute z (mod m), or equivalently, the least non-negative residue
R of an integer z modulo odd m, he/she could easily get:

ALR(z, m) =

{
R, if R < m

2

R−m, otherwise.

3.1. An Explicit Formula for the Order of Elliptic Curve Ea ∈ Ep Reduced Modulo p

Initially, we yield the following congruence:

#Ea − 1 ≡ H(a, p) (mod p), (1)

where

H(a, p) =

p−3
2

∑
i=0

( p−1
2
i

)
aiS3l(p), (2)

with l = p−1
2 − i and sums S3l(p) defined in Proposition 3.

(For the reader’s convenience, in the Appendix A we present a derivation of the expression
for H(a, p), which has already been obtained in [12].)

Further, we evaluate H(a, p) (mod p) using Proposition 3 and observe that the in-
volved powers are only multiples of 3 in the interval [3, 3 p−1

2 ]. Thus, there are two distinct
cases to be considered:

• p ≡ 5 (mod 6)
In this case, Proposition 3 implies that for all summands on the right-hand-side of
Equation (2) vanish mod p. So, H(a, p) ≡ 0 (mod p), and in turn for each a, it holds
that #Ea = p + 1. Indeed, this is a well-known fact (see, e.g., [11] Ch. 18, Ex.1).

• p ≡ 1 (mod 6)
In this essential case, it can be easily seen that H(a, p) contains exactly one nonzero
summand modulo p, that is, that for i = p−1

6 . Thus, it holds:

H(a, p) ≡
( p−1

2
p−1

6

)
a

p−1
6 Sp−1(p) ≡

−
( p−1

2
p−1

6

)
a

p−1
6 (mod p). (3)

Finally, together with Proposition 5, this immediately implies the following:

Theorem 2. For a prime p ≥ 19 such that p ≡ 1 (mod 6), it holds:

#Ea = R(a, p) + p + 1, (4)
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whereR(a, p) denotes the absolute least residue of (3).

An immediate consequence (except the trivial cases p = 7, 13) of Proposition 1 with
d = 6, and Theorem 2 is next.

Corollary 1. If p is a prime ≡ 1 (mod 6), then the order of the curves from Ep takes exactly six
distinct values, each one p−1

6 times in accordance with the sixth roots of unity in Z∗p: ±1,±ζ,±(ζ +
√
−3) where ζ = −1−

√
−3

2 .

Remark 3. Although the claim of Corollary 1 is known in one or another form (see, e.g., [17]),
it seems that the uniform distribution of the curves’ order has not been widely discussed in the
literature.

3.2. Computational Aspects of Point-Counting in Ep When p Is a Large Prime

In this subsection, we refine and re-estimate the algorithmic technique described
roughly in [12].

A key part of those computations is that of (
p−1

2
p−1

6
) (mod p). Fortunately, this problem

can be addressed by noticing that if p is of the form p = 6k + 1, then it holds:

( p−1
2

p−1
6

)
=

(2k + 1) . . . (3k)
k!

.

Hence, Proposition 4 allows modular computation of this binomial coefficient to be
performed by taking the proper X from a solution of the quadratic Diophantine equation
X2 + 3Y2 = p with two unknowns, X and Y. Such a solution can be found by applying a
similar method as that exhibited in [18], and consisting of two steps:

• Step 1. Find a square root of −3 in Z∗p;
• Step 2. Find X by applying (partly) the Euclidean algorithm for p and the already

found
√
−3 ∈ Z∗p.

As follows by Proposition 2, Step 1 can be performed if one knows in advance a cubic
non-residue mod p. If, for a given p, such a non-residue is not available, it can be found
after 1.5 attempts on average following Remark 1. Namely, in every such attempt for a

randomly selected integer z ∈ [2, p− 1], we compute the element z′ = z
p−1

3 and check
whether z′ 6= 1. If this happens, then 2z′ + 1 is one of the possible

√
−3 in demand. Thus,

taking into account the complexity of single multiplication (squaring) (see, e.g., [19,20]),
the expected amount of work in Step 1 is, heuristically, Õ(log2 p). Additionally, notice that
Step 2 is of complexity O(log2 p) (see, e.g., [9] Theorem 3.13 about details).

Remark 4. If p ≡ 7 (mod 12), there is an efficient deterministic way to find a square root of

any quadratic residue ζ, that is, by computing ζ
p+1

4 . In particular, this can be applied for ζ = −3
(see [12]).

Besides that, as can be seen by Corollary 1, the six possible distinct values of the second

multiplier a
p−1

6 in expression (3) are linearly expressed in terms of the already found
√
−3.

In summary, the above considerations show the validity of the next theorem:

Theorem 3. The total computational complexity for simultaneously finding out the six orders
linked with family Ep by the proposed algorithmic technique is Õ(log2 p).
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4. Example and Efficiency Comparison with the SEA Algorithm
4.1. An Example

The example presented here illustrates our probabilistic approach. We choose as the
modulo the following prime

p = 2256 + 256 + 244 + 1,

which is congruent to 1 (mod 12).
The numerical data presented below are in the hexadecimal number system.

Consecutively, we:

• Calculate ±
√
−3 (mod p):

◦ choose a random number z ∈ [2, p− 1] :
D03CE6183277A6719AD52F362919187D79CA6A50D000975EC4903782F08DAAEB

◦ calculate z′ = z
p−1

3 :
1AF6F28A07E19B1F1FCCB53D1A166E14092BC3AF668514D3D2ABE80CBD6C0A16

◦ z′ 6= 1, thus 2z′ + 1 is a square root of −3 in F∗p:
35EDE5140FC3363E3F996A7A342CDC281257875ECD0A29A7A557D0197AD8142D;

• Find X by applying the Euclidean algorithm for p and the found
√
−3 ∈ Z∗p, and

calculate (
p−1

2
p−1

6
) (mod p) = 2X :

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBDB3CE472111CA9F0DC134D795D6BFFF;
• Calculate ζ1 = −1−

√
−3

2 and ζ2 = ζ1 +
√
−3:

E5090D75F81E64E0E0334AC2E5E991EBF6D43C50997AEB2C2E5427F34293F5EA,
1AF6F28A07E19B1F1FCCB53D1A166E14092BC3AF668514D3D2ABE80CBD6C0A16;

• Calculate the values of expression (3) using 1, ζ1 and ζ2 in the role of multiplier a
p−1

6 ,
and take their opposites. Finally, we find out the six orders associated with Ep:

100000000000000000000000000000001424C31B8DEEE3560F43EEB286A294004,
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBDB3CE472111CA9F0DC134D795D6C000,
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE065220C024EA85B297C0746F361E6B81,

* 100000000000000000000000000000001F9ADDF3FDB157A4D6A3FAB90C9E19483,
100000000000000000000000000000000B761AD86FC2744EC7700D0685FB85481,

* FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF489E527903D8BB138AFF4F97A047AB83.

Finally, by examining the above numbers with the APR-CL primality test, we detect
the presence of two prime orders (remarked by “*”) which correspond to #E31 and #E11.

4.2. Efficiency Comparison with the SEA Algorithm

In the program experiments for comparing efficiency of the SEA algorithm with the
proposed one, both working at instances of considered task, we used a common laptop with
an Intel Core i7-6820HQ at 2.7 GHz (four cores). The algorithm implementation is written
in Python, whereas SEA’s one is a highly optimized code written in C from the PARI/GP
computer algebra system designed specifically for fast computations in the number theory.

In Table A1 of the Appendix B, we give a list of 257−bit primes used as experimental
data input. As shown in Table A2, our method is between 20 to 67 times faster, although
the implementation is not optimized. We also carried out an experiment with a sporadic
857−bit prime input, whereby the SEA computes the orders for 22.5 s, while our own
performs the work for 33.1 milliseconds, that is, almost 680 times faster. The latter fact
indicates that the method is much more efficient than the SEA algorithm for large primes,
say, above 800 bits.

5. Conclusions

Less or more convenient formulae to compute the orders of elliptic curves over finite
fields do exist in contemporary literature (see, e.g., [10,15,21], etc.). In this article, we
derive an explicit formula for the order of a curve in the family Ep = {Ea : y2 = x3 + a
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(mod p), a 6= 0} reduced modulo p. Alongside the famous Hasse bound, this formula
comprehensively and concisely resolves the problem we deal with. Moreover, our ap-
proach permits the transparent determination of the spectrum of orders for fixed p ≡ 1
(mod 6), as well as to re-prove the corresponding known fact in the complementary case
p ≡ 5 (mod 6). Besides that, based on classical results for quadratic partitions of primes,
we describe an efficient algorithmic technique (with complexity Õ(log2 p)) to simultane-
ously compute the six orders associated with Ep in cases of interest. The experimental
results confirm theoretical estimations for efficiency within expected slight abuse due to
still unoptimized implementation. This technique improves the best previously known
algorithmic solution [6] with almost an order of magnitude, thus enabling under the same
cost to achieve values of the parameter p peculiar to higher security ECC systems. It is
especially useful when looking (say, by random search) for prime order elliptic curves
belonging to families of considered type if the modulo p is varied.
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Appendix A. Derivation of the Expression for H(a, p)

Excluding the point at infinity and taking into consideration the meaning of Legendre
symbol, for the cardinality #Ea − 1 = N′ of the set of “real” points lying on the curve
Ea ∈ Ep, it could be obtained the following expression:

N′ =
p−1

∑
x=0

[1 + (
x3 + a

p
)] = p +

p−1

∑
x=0

(
x3 + a

p
) (A1)

Next, reducing Equation (A1) modulo p and making use of the Euler criterion, we obtain:

N′ ≡
p−1

∑
x=0

(
x3 + a

p
) ≡ [(

a
p
) + h(a, p)] (mod p) (A2)

where h(a, p) denotes the sum ∑
p−1
x=1(x3 + a)

p−1
2 .
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Further, performing the binomial expansion and changing the order of summation,
we have:

h(a, p) =
p−1

∑
x=1

p−1
2

∑
i=0

( p−1
2
i

)
x3( p−1

2 −i)ai =

p−1

∑
x=1

x3 p−1
2 +

( p−1
2
1

)
a

p−1

∑
x=1

x3 p−3
2 + . . . +

( p−1
2

p−3
2

)
a

p−3
2

p−1

∑
x=1

x3 + a
p−1

2

p−1

∑
1

1. (A3)

Since the last summand above equals to a
p−1

2 (p − 1) ≡ −( a
p ) (mod p) then

Equation (A2) is simplified to

N′ ≡ H(a, p) (mod p), (A4)

where the expression for H(a, p) is obtained from (A3) by removing the last summand.

Appendix B. Tables for Comparing the Efficiency

Table A1. Prime Numbers pi, i = 1, ..., 10.

pi Prime Number (HEX)

p1 1744AA82FB357A0A99A571EABF8E72B860517859044F993E2606ECAF7BC6CB169
p2 1032FAF22DC31F3E339E3F0CAC8BF44F21B383D3A687A41326A4CC77EAC31D881
p3 19C7E604E23D3DEF8A371353FD8EFA4C9F7503083CD2FCE2EA7FEF1120EC3B3E9
p4 1750F9C8F1490EEDC1B05F0CA012ED4B42925C588AA5FFCC285F84E802EA71C65
p5 161D8802C08AC9AB133B20100B50C4CF1710A7BEDBA3292B56567D996DE3CEF4D
p6 1BF6DA0DA929F9784E07C6835AD78389B06CBD5FB776F9F2371AC79B7C7FC1B6D
p7 1946A87890B83A015439E75B2BA2C20C9D742E7A85B592815A5D6C11DDACD4695
p8 1819AA8747CF5595260B5A3D7FF8E800DD365E21E26DEBC306F7E48B12C2E2A29
p9 18864DC62E42429367F6826C5F2AAF1401875EA94E1DA3D70DB1BB7D049F90525
p10 1304670800156954405D850ABD3086D0E8AC7B898E4CC9F18000CF2B9087DBD15

Table A2. Efficiency Comparison.

Test
№

Prime
pi

SEA
Execution Time (ms)

Our Method
Execution Time (ms)

1 p1 829.7 12.4
2 p2 251.8 12.3
3 p3 636.4 12.2
4 p4 430.9 11.5
5 p5 436.8 11.1
6 p6 284.7 12.3
7 p7 355.4 10.9
8 p8 558.0 12.2
9 p9 398.1 11.1

10 p10 393.2 11.1
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