Non-Interactive Half-Aggregate Signatures
Based on Module Lattices
A First Attempt

Katharina Boudgoust1 and Adeline Roux-Langlois2

\texttt{katharina.boudgoust@cs.au.dk, adeline.roux-langlois@irisa.fr}

1 Aarhus University
2 Univ Rennes, CNRS, IRISA

Abstract. The Fiat-Shamir with Aborts paradigm of Lyubashevsky has given rise to efficient lattice-based signature schemes. One popular implementation is Dilithium which is a finalist in an ongoing standardization process run by the NIST. Informally, it can be seen as a lattice analogue of the well-known discrete-logarithm-based Schnorr signature. An interesting research question is whether it is possible to combine several unrelated signatures, issued from different signing parties on different messages, into one single aggregated signature. Of course, its size should be significantly smaller than the trivial concatenation of all signatures. Ideally, the aggregation can be done offline by a third party, called public aggregation. Previous works have shown that it is possible to half-aggregate Schnorr signatures, but it was left unclear if the underlying techniques can be adapted to the lattice setting.

In this work, we show that, indeed, we can use similar strategies to obtain a signature scheme allowing for public aggregation whose hardness is proven assuming the intractability of two well-studied problems on module lattices: The Module Learning With Errors problem (M-LWE) and the Module Short Integer Solution problem (M-SIS).

Unfortunately, our scheme produces aggregated signatures that are larger than the trivial solution of concatenating. This is due to peculiarities that seem inherent to lattice-based cryptography. Its motivation is thus mainly pedagogical, as we explain the subtleties when designing lattice-based aggregate signatures that are supported by a proper security proof.

Keywords. Lattice-Based Cryptography, Module Lattices, Signature Aggregation

1 Introduction

For a long time, the main focus of cryptology was on secure encryption. With the invention of public key cryptology in the 1970s and the spread of the internet, the need of secure key exchange and authentication of data became more and more important. This is why nowadays the focus of public key cryptology increasingly shifts towards digital signatures. A digital signature scheme Π_S with message
space \mathcal{M} is composed of three algorithms KGen, Sig and Vf. The algorithm KGen generates a key pair (sk, vk) for a given user, who can then use their secret key sk to generate a signature σ on a given message $m \in \mathcal{M}$ by running $\text{Sig}(sk, m)$. Afterwards, this signature can be verified by anyone using the verification key vk, which is publicly available, by running $\{0, 1\} \leftarrow \text{Vf}(vk, m, \sigma)$. If the verification procedure outputs 1, the signature passes validation.

An interesting research question is whether it is possible to define an additional algorithm $\sigma_{\text{agg}} \leftarrow \text{AggSig}(VK, M, \Sigma)$ which takes as input a vector of $N \in \mathbb{Z}$ verification keys $VK = (vk_j)_{j \in [N]}$, a vector of N messages $M = (m_j)_{j \in [N]}$ and a vector of N signatures $\Sigma = (\sigma_j)_{j \in [N]}$, that were generated by the N different signing parties with corresponding verification keys vk_j, and outputs a single signature σ_{agg}. We further require a way for others to verify that σ_{agg} is indeed an aggregation of valid signatures. Thus, we need to provide a second additional algorithm $\{0, 1\} \leftarrow \text{AggVf}(VK, M, \sigma_{\text{agg}})$, that outputs 1 if σ_{agg} is a valid aggregation of N valid signatures. All five algorithms define a so-called aggregate signature scheme $\Pi_{\text{AS}} = (\text{KGen, Sig, Vf, AggSig, AggVf})$, where we require that it must satisfy correctness and unforgeability properties. A trivial solution is to set σ_{agg} as the concatenation of all the N different signatures and verify one after the other. In the following we are searching for an aggregate scheme that produces a σ_{agg} which is significantly shorter than this trivial solution. Ideally, the aggregation algorithm AggSig can be performed by a third, even untrusted party without needing to communicate with the N signing parties. We call this public aggregation. The concept and a first realization of aggregate signatures with public aggregation were given by Boneh et al. [Bon+03] by using bilinear maps constructed over elliptic curves in the generic group model. Aggregate signatures are a useful tool to save communication costs in settings where different users have to authenticate their communication, for instance in consensus protocols or certificate chains. More recently, they attracted increased interest as they help to reduce the size of blockchains such as the Bitcoin blockchain.

Constructing aggregate signature schemes based on the discrete logarithm problem (without bilinear maps) turned out to be much more harder, and so far, only solutions that partly aggregate the signatures are known. Chalkias et al. [Cha+21] build a half-aggregate scheme for the well-known Schnorr signature [Sch91]. It produces aggregate signatures of half the size compared to the trivial solution of concatenating. Its security is proven in the Random Oracle Model (ROM) assuming the hardness of the discrete logarithm problem. It was left unclear if the underlying techniques can be adapted to the lattice setting.

Contributions. We propose an aggregate signature allowing public aggregation, whose security is proven assuming simultaneously the hardness of Module Learning With Errors (M-LWE) and Module Short Integer Solution (M-SIS) and thus based on worst-case module lattice problems [LS15]. Earlier proposals either only

\footnote{Throughout the paper, the neutral singular pronouns they/their are used in order to keep the language as inclusive as possible. See also https://www.acm.org/diversity-inclusion/words-matter}
offered security based on (non-standard) average-case lattice problems, or didn’t allow for public aggregation (cf. Related Works). From a high level perspective, we take the practical signature from Güneysu et al. [GLP12] as a starting point. It follows the Fiat-Shamir with Aborts (FSwA) paradigm for lattice-based schemes [Lyu12], which is also used in the signature Dilithium [Duc+18], a finalist in the ongoing NIST standardization process4.

Due to peculiarities that seem inherent to lattice-based cryptography, our scheme produces aggregated signatures whose sizes are larger than the trivial solution (that is concatenating all the single signatures together). The motivation of our work thus is pedagogical in order to demonstrate the subtleties when designing lattice-based aggregate signatures that are supported by a proper security proof, in a security model we explain below. We would like to remark that most issues we came across also apply to the MMSA(TK) aggregate signature [Dor+20] (cf. Related Works).

Technical Details. Let us quickly recall the FSwA paradigm for lattice-based signatures in the module setting. In the following, all computations are done over the ring \(R_q = \mathbb{Z}_q[x]/(x^n + 1) \), where \(n \) is a power of two and \(q \) is some prime modulus. A verification key is given as \(t = [A | I_k] \cdot s \in R_q^k \), where \(s \in R_q^{\ell+k} \) is a vector of small norm (defining \(s_k \)), \(A \in R_q^{k \times \ell} \) is a public uniform matrix and \(I_k \) the identity matrix of order \(k \). A signature is provided by \(\sigma = (u, z) \in R_q^k \times R_q^{\ell+k} \), where \(u \) is a commitment that via some hash function \(H_c \) defines a challenge \(c \), and \(z \) is the answer to this challenge. The challenge \(c \) is a polynomial with coefficients in \(\{-1, 0, 1\} \). For verification, one checks that \(z \) is short and that \([A | I_k] \cdot z = t \cdot c + u\), where \(c = H_c(u, t, m) \) for the verification key \(t \) and a message \(m \). Adding \(t \) to the input of \(H_c \) is a simple countermeasure to prevent so-called rogue-attacks [Bon+03, Sec. 3.2].

An intuitive way to aggregate \(N \) different signatures \((\sigma_j)_{j \in [N]}\) with \(\sigma_j = (u_j, z_j) \) into one signature \(\sigma_{agg} \) would be to compute the sum of all components \((\sum_j u_j, \sum_j z_j)\). However, we wouldn’t be able to verify this aggregated signature as we can’t re-compute the different challenges \(c_j \) as we don’t know the inputs \(u_j \) to \(H_c \), originally used by the signing parties. Thus, we can only sum up the \(z_j \) parts and still have to transmit all the \(u_j \), which produces an aggregate signature of the form \(\sigma_{agg} = ((\sum_j u_j), \sum_j z_j) \). This is essentially how our (half-)aggregate signature looks like. In order to prevent again rogue-type attacks, we use a linear combination (instead of the simple sum), where the coefficients come from some random oracle (which was queried on all signatures that are aggregated). This technique is also used in the Schnorr-analogue by Chalkias et al. [Cha+21]. We formally present our aggregate signature scheme in Section 3.2 and the rogue-attack for the simple-sum solution in Section 4.3.

The size of a single signature can be significantly reduced by replacing the commitment \(u \in R_q^k \) by the challenge \(c \in R \). This does not only reduce the

4 https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/

5 Chalkias et al. [Cha+21, Sec. 6] provide evidence that it is necessary to transmit all the commitments.
dimension of the vector from k to 1, but also the total bit-length from $nk \log_2 q$ to $n \log_2 3$, as u can be any vector in R^k_q but c is a polynomial with ternary coefficients. Unfortunately, this can’t be done in the aggregate setting, as we only have knowledge of the aggregated value of all z_j’s. This is the main reason of our failure in constructing aggregate signatures schemes on lattices that are shorter than the trivial concatenation. Note that in the discrete-logarithm setting of the Schnorr aggregate signature in [Cha+21], the challenge c and the commitment u are elements of the same space. This explains why there is a real improvement for Schnorr signatures, but not for FSwA signatures.

In our aggregate signature, we have to transmit all N vectors $(u_j)_j$ (and the smallish linear combination of all the z_j), whereas in the trivial concatenation we transmit all N challenges $(c_j)_j$ (and the N small vectors z_j). The size of the u_j is so large that it annihilates the compressing effect of combining all the z_j. More concretely, taking the level III parameters of Dilithium [Duc+18] and $N = 1000$ signatures to aggregate, then $(u_1, \ldots, u_N) \in (R^k_q)^N$ is of size ca. 4400 KB. However, simply concatenating N single Dilithium signatures produces an aggregate signature of a smaller size of ca. 3300 KB. Note that both earlier versions of this paper on e-print (3 Mar 2021 and 8 Apr 2021) we further compressed the aggregated signature via some linear function T to obtain a solution that was indeed smaller than the trivial concatenation. As we elaborate in Section 3.3, this allowed for simple lattice attacks.

In Section 4.2, we provide a rigorous security proof (Theorem 1), where the proof idea follows the one of Damgård et al. [Dam+21] for their interactive multi-signature (cf. Related Works). It is composed of a sequence of indistinguishable games (assuming the hardness of M-LWE), where the starting one is the security game of our aggregate signature. The game is specified by the aggregate chosen key model, as introduced by Boneh et al. [Bon+03]. In the last game, the signing procedure is simulated by some algorithm that doesn’t depend on the secret key and the verification key is sampled uniformly at random. By applying (twice) the General Forking Lemma from Bellare and Neven [BN06] we can use four different responses of a successful adversary against the scheme in the last game to solve an instance of M-SIS. This “double forking technique” has been used in the setting of multi-signatures, see Maxwell et al. [Max+19]. As we don’t need trapdoor commitment schemes, the proof is less technical than the one in [Dam+21].

Related Works. A first attempt to build lattice-based aggregate signatures with public aggregation was made by Doröz et al. [Dor+20]. Their construction builds upon the signature scheme PASS Sign, introduced by Hoffstein et al. [Hof+14]. As a warm-up, they introduce a simple linear (half-)aggregate signature, which they call MMSA (multi-message, multi-user signature aggregation). However, in this version, the aggregate signature is larger than the trivial concatenation of N different signatures. In order to improve the efficiency, they first compress the sig-

\[\log_2 q \]
nature, leading to MMSAT (the T stands for a linear compression function T), and then compress the verification keys, leading to MMSATK. Unfortunately, their construction has several disadvantages: First, the linear compression used in MMSAT(K) is prone to simple forgery attacks (similar to Section 3.3), making those constructions insecure. Second, they only provide a security proof for the first variant MMSA by showing that it inherits the security of the underlying PASS Sign, and subsequently its security can be based on the hardness of the Partial Fourier Recovery problem (PFR). The PFR asks to recover a polynomial in the ring $\mathbb{Z}[x]/\langle x^n - 1 \rangle$ of small norm having access only to a partial list of its Fourier transform. It can be formulated as a bounded distance decoding problem over some ideal lattice. This may raise security concerns, as problems over ideal lattices have been shown to be in specific parameter settings easier than their counterparts over arbitrary lattices, e.g., [CDW21]. Furthermore, up to today, there are no connections to worst-case lattice problems, which may be seen as an additional security concern.

In a parallel line of research, aggregate signature schemes that only allow for private aggregation have been proposed. In this setting, the different signing parties interact with each other to generate an aggregated signature on one message, which can be the concatenation of different messages. Those are also known as multi-signature schemes and there have been several recent protocols following the FSwA paradigm providing lattice-based inter-active aggregate signatures, see for instance [Dam+21] and references therein.

Open Problems. We leave as an open problem the construction of an aggregate signature scheme based on standard lattice-problems which allows public aggregation, produces aggregate signatures that are smaller than the simple concatenation and at the same time is provably secure in the aggregate chosen-key security model.

Change Log. This is the second revision of the paper originally submitted to e-print in March 2021. The first revision (April 2021) took into account the attack against the simple sum solution in the chosen key model (Section 4.3). As, at the time of writing this version, we weren’t aware of any other way to fix the scheme, we proved its security in a more restricted security model, that we called the aggregate independent-chosen-key model. The latest revision (May 2022) now uses a randomized linear combination of the single signatures (instead of a simple sum), where the scalars come from a large enough space. The security of the scheme can now be proven in the standard security model of aggregate signatures. However, we had to remove the compressing function T that we originally applied to the input to the hash function H_* as linear compressing is prone to simple lattice attacks (cf. Section 3.3). To avoid misunderstanding, we accordingly changed the title of the paper.
2 Preliminaries

For $k \in \mathbb{N}$, we represent the set $\{1, \ldots, k\}$ by $[k]$. Vectors are denoted in bold lowercase and matrices in bold capital letters and the identity matrix of order k is denoted by I_k. The concatenation of two matrices A and B with the same number of rows is denoted by $[A|B]$. For any set S, we denote by $U(S)$ the uniform distribution over S. We write $x \leftarrow D$ to denote the process of sampling an element x following the distribution D. Throughout the paper $R = \mathbb{Z}[x]/(x^n + 1)$ denotes the ring of integers of the $2n$-th cyclotomic field, where n is a power of two. Further, q is a prime such that $q = 1 \mod 2n$ defining the quotient ring $R_q = \mathbb{Z}_q[x]/(x^n + 1)$. An element $a = \sum_{j=1}^{n} a_j x^{j-1}$ of R is identified with its coefficient vector $a = (a_j)_{j \in [n]} \in \mathbb{Z}^n$. For any ring element $a \in R$, we set $\|a\|_\infty$, $\|a\|_2$ and $\|a\|_1$ as the infinity, the Euclidean and the ℓ_1-norm of its coefficient vector, respectively. All norms can be generalized to vectors $a \in R^k$ for $k \in \mathbb{N}$, by considering the coefficient vector of dimension kn defined by a. We rely on the key set $S_\beta = \{a \in R : \|a\|_\infty \leq \beta\}$ with $\beta \in \mathbb{N}$.

2.1 Module Lattice Problems

We also recall two lattice problems and refer to [LS15] for more details. We state them in their discrete, primal and HNF form.

Definition 1 (M-LWE). Let $k, \ell, \beta \in \mathbb{N}$. The Module Learning With Errors problem M-LWE$_{k,\ell,\beta}$ is defined as follows. Given $A \leftarrow U(R_q^{k \times \ell})$ and $t \in R_q^k$. Decide whether $t \leftarrow U(R_q^k)$ or if $t = [A|I_k] \cdot s$, where $s \leftarrow U(S_\beta^{d+k})$.

The M-LWE assumption states that no PPT distinguisher can distinguish the two distributions with non-negligible advantage. Worst-case to average-case reductions guarantee that M-LWE is quantumly [LS15] and classically [Bou+20] at least as hard as the approximate shortest vector problem over module lattices.

Definition 2 (M-SIS). Let $k, \ell, b \in \mathbb{N}$. The Module Short Integer Solution problem M-SIS$_{k,\ell,b}$ is as follows. Given a uniformly random matrix $A \leftarrow U(R_q^{k \times \ell})$. Find a non-zero vector $s \in R_q^k$ such that $\|s\|_2 \leq b$ and $[A|I_k] \cdot s = 0 \in R_q^k$.

The M-SIS assumption states that no PPT adversary can solve this problem with non-negligible probability. Worst-case to average-case reductions guarantee that M-SIS is classically [LS15] at least as hard as the approximate shortest independent vector problem over module lattices.

2.2 Aggregate Signature Schemes

We present the formal definition of aggregate signature schemes and their property of correctness.

Definition 3. An aggregate signature scheme Π_{AS} for a message space \mathcal{M} consists of a tuple of PPT algorithms $\Pi_{AS} = (\text{KGen}, \text{Sig}, \text{Vf}, \text{AggSig}, \text{AggVf})$, proceeding as specified in the following protocol:
KGen(1^\lambda) \rightarrow (sk, vk) : On input a security parameter \lambda, the key generation algorithm returns a secret signing key sk and a public verification key vk.

Sig(sk, m) \rightarrow \sigma : On input a signing key sk and a message m \in \mathcal{M}, the signing algorithm returns a signature \sigma.

Vf(vk, m, \sigma) \rightarrow \{0, 1\} : On input a verification key vk, a message m \in \mathcal{M} and a signature \sigma, the verification algorithm either accepts (i.e. outputs 1) or rejects (i.e. outputs 0).

AggSig(VK, M, \Sigma) \rightarrow \sigma_{agg} : Given as input a vector of verification keys VK = (vk_j)_{j \in [N]}, a vector of messages M = (m_j)_{j \in [N]} and a vector of signatures \Sigma = (\sigma_j)_{j \in [N]}, the signature aggregation algorithm returns an aggregated signature \sigma_{agg}.

AggVf(VK, M, \sigma_{agg}) \rightarrow \{0, 1\} : Given as input a vector of verification keys VK = (vk_j)_{j \in [N]}, a vector of messages M = (m_j)_{j \in [N]} and an aggregated signature \sigma_{agg}, the aggregated verification algorithm either accepts (i.e. outputs 1) or rejects (i.e. outputs 0).

Definition 4. Let \Pi_{AS} = (KGen, Sig, Vf, AggSig, AggVf) be an aggregate signature scheme for a message space \mathcal{M}. It is called correct if for all security parameters \lambda \in \mathbb{N} and number of signers N \in \mathbb{N} it holds

\[\Pr[\text{AggVf}(VK, M, \text{AggSig}(VK, M)) = 1] = 1, \]

where \(m_j \in \mathcal{M}, (sk_j, vk_j) \leftarrow \text{KGen}(1^\lambda) \) and \(\sigma_j \leftarrow \text{Sig}(sk_j, m_j) \) for \(j \in [N] \) and \(VK = (vk_j)_{j \in [N]}, M = (m_j)_{j \in [N]} \) and \(\Sigma = (\sigma_j)_{j \in [N]} \).

2.3 General Forking Lemma

For the sake of completeness and to fix notations, we restate the General Forking Lemma from Bellare and Neven [BN06].

Lemma 1 (General Forking Lemma). Let \(N_q \geq 1 \) be an integer and let \(C \) be a set of size \(|C| \geq 2\). Let \(B \) be a randomized algorithm that on input \(x, h_1, \ldots, h_{N_q} \) returns a pair \((j, \text{out})\), where \(j \in \{0, \ldots, N_q\} \) and a side output \text{out}. Let \(\text{IGen} \) be a randomized algorithm called the input generator, parametrized by some security parameter \lambda. We define the accepting probability of \(B \) as

\[\text{acc} = \Pr[j \neq 0 : x \leftarrow \text{IGen}(1^\lambda); h_1, \ldots, h_{N_q} \leftarrow U(H); (j, \text{out}) \leftarrow B(x, h_1, \ldots, h_{N_q})]. \]

Let \(\mathcal{F}_B \) be a forking algorithm that works as in Figure 1, given \(x \) as input and black-box access to \(B \). We define the forking probability of \(\mathcal{F}_B \) as

\[\text{frk} = \Pr[(\text{out}, \tilde{\text{out}}) \neq (\bot, \bot) : x \leftarrow \text{IGen}(1^\lambda); (\text{out}, \tilde{\text{out}}) \leftarrow \mathcal{F}_B(x)]. \]

Then it yields \(\text{acc} \leq N_q/|C| + \sqrt{N_q \cdot \text{frk}}. \)
Upon input \(x \), the algorithm \(F_B \) does the following:
1. Pick a random coin \(\rho \) for \(B \)
2. Generate \(h_1, \ldots, h_Nq \leftarrow U(C) \)
3. \((j, \text{out}) \leftarrow B(x, h_1, \ldots, h_Nq, \rho) \)
4. If \(j = 0 \), then return \((\perp, \perp) \)
5. Regenerate \(\tilde{h}_j, \ldots, \tilde{h}_{Nq} \leftarrow U(C) \)
6. \((\tilde{j}, \tilde{\text{out}}) \leftarrow B(x, h_1, \ldots, \tilde{h}_{j-1}, \tilde{h}_j, \ldots, \tilde{h}_{Nq}, \rho) \)
7. If \(j = \tilde{j} \) and \(h_j \neq \tilde{h}_j \), then return \((\text{out}, \tilde{\text{out}}) \)
8. Else return \((\perp, \perp) \).

Fig. 1. The forking algorithm \(F_B \).

3 Our Lattice-Based Aggregate Signature Scheme

In this section we first present the underlying single signature scheme (Section 3.1) before introducing our aggregate signature scheme in Section 3.2. From a high level perspective, we take the practical signature from Güneysu et al. [GLP12] as a starting point. The linear aggregation follows the idea of Doröz et. al [Dor+20], where the main difference is that we moved to the M-LWE/M-SIS framework instead of the Partial Fourier Recovery framework of the original scheme. We think that M-LWE and M-SIS are more standard lattice problems and thus they increase our confidence in the security of the proposed scheme. Lastly, we explain in Section 3.3 why the linear compression idea that we used in an earlier version and that we adapted from MMSA(TK) [Dor+20] leads to efficient lattice attacks.

3.1 The Single Signature Scheme

In the following we describe the underlying single signature scheme, which is essentially the signature scheme from Güneysu et al. [GLP12] with minor modifications. Let \(R_q = \mathbb{Z}_q[x]/(x^n + 1) \), with \(n \) a power of two and \(q \) a prime such that \(q = 1 \mod 2n \). For \(k, \ell \in \mathbb{N} \), let \(A \in R_q^{\ell \times k} \) follow the uniform distribution and be a public shared parameter of the system. The number of columns \(\ell \) and the number of rows \(k \) should be adapted to the required security level, but usually they are small constants. Let \(H_c : \{0, 1\}^* \rightarrow C = \{ c \in R : \|c\|_1 = d, \|c\|_{\infty} = 1 \} \) be a random oracle with \(d \) such that \(|C| > 2^{2\lambda} \), where \(\lambda \) denotes the required security level. Let \(s, \beta, M \in \mathbb{Z} \) and the message space \(\mathcal{M} = \{0, 1\}^* \). Finally, let \(\mathcal{D} \) denote a distribution over \(R^{\ell+k} \) providing (with overwhelming probability) vectors of norm at most \(B \) and to which we associate a rejection probability \(Pr_{\text{rej}} \).

The signature scheme \(\Pi_S = (KGen, \text{Sig}, Vf) \) from [GLP12] with minor modifications is illustrated in Figure 2.

Description. The algorithm KGen samples a secret key vector \(s \), composed of elements of \(R \) with coefficients of size at most \(\beta \), and sets the verification key to \(t = [A][I_k] \cdot s \in R_q^k \). At the beginning of the signing procedure, a masking
KGen(1^λ) : sample s ← U(S_β^{k+ℓ})
set sk = s and vk = t = [A|I_k] · s ∈ R_q^k
return (sk, vk)

Sig(sk, m) :
set z = ⊥
while z = ⊥ do:
 sample y ← D
 set u = [A|I_k] · y ∈ R_q^k
 compute c = H_c(u, t, m) ∈ C
 set z = s · c + y
 with probability 1 − Pr_rej
 set z = ⊥
return σ = (u, z)

Vf(vk, σ, m) : re-construct
 c = H_c(u, t, m)
if ∥z∥_2 < B and [A|I_k] · z = t · c + u,
 then return 1
else return 0

Fig. 2. The signature scheme from [GLP12] with minor modifications.

vector y following the distribution D is sampled. The signing party then computes u = [A|I_k] · y ∈ R_q^k, which serves together with the verification key t and the message m as input to the random oracle H_c. The output c of H_c is a polynomial in R with exactly d coefficients that are ±1 and the remaining coefficients are 0. The second part of a potential signature is defined as z = s · c + y. In order to make the distribution of the signature independent of the secret key, the algorithm only outputs the potential signature with probability Pr_rej. This step is called rejection sampling. In order to verify σ, the verifier first re-constructs the hash value c = H_c(u, t, m) and then checks if the norm of z is smaller than B and that [A|I_k] · z = t · c + u. The parameters β, d, B and Pr_rej have to be set strategically such that the scheme is correct, efficient and secure, see [Lyu12, Duc+18].

Distribution D. For simplicity, we leave the concrete implementation of the distribution D open. In the literature, mainly two instantiations have been studied: the discrete Gaussian distribution over R and the uniform distribution over the set of elements of small norms [Lyu08, Lyu12]. The literature provides concrete formulas for the rejection probability Pr_rej and the bound B. For example, for D = D_s^{k+ℓ} the discrete Gaussian distribution of width s, the bound B comes from the Gaussian tail bound and the rejection probability can be computed as min(1, D_s^{k+ℓ}(z)/M · D_{c,s⋅s}(z)), where M is a constant that depends on β (the Euclidean norm of the secret s) and d (the ℓ_1-norm of the challenge c).

Modifications. A first difference to the signature scheme in [GLP12] is that instead of transmitting c in the signature, we send u. For a single signature, both cases are equivalent, as u defines c via the hash function H_c (and the verification key t and the message m) and c defines u via the equation u = [A|I_k] · z − t · c.
over \(R_q \). In Section 3.2 we see that this is not the case for an aggregate signature scheme and we thus need to transmit the information \(u \).

Another modification is that we add the verification key \(t \) to the input of the hash function \(H_e \) to compute the challenge \(c \). As proposed by Boneh et al. [Bon+03], Sec. 3.2 and implemented for MMSA(TK) in [Dor+20, Sec. 8.2], adding \(t \) to the input of \(H_e \) ties the hash value to the \((sk, vk)\)-pair, which prevents so-called rogue key attacks (also called key swap attacks) on aggregate signatures.

Security. Overall, the security of the scheme \(\Pi_S = (\text{KGen}, \text{Sig}, \text{Vf}) \) as specified in Figure 2 is based on the hardness of M-LWE and M-SIS. For the reason of space limits, we don’t go into detail here, but refer the interested reader to the original security proofs in [Lyu12] and [GLP12] in the ROM.

3.2 Non-Interactive Half-Aggregation of Signatures

In the following we describe how to aggregate signatures from the scheme above. Assume that we have \(N \) different users with corresponding secret keys \(s_1, \ldots, s_N \) and verification keys \(\text{VK} = (vk_j)_{j \in [N]} \), where \(vk_j = t_j = [A][I_k] \cdot s_j \) using the same public matrix \(A \). The \(N \) users signed \(N \) different messages \(M = (m_j)_{j \in [N]} \), producing \(N \) independent signatures \(\Sigma = (\sigma_j)_{j \in [N]} = (u_j, z_j)_j \). For the aggregation, we need another random oracle \(H_e : \{0,1\}^* \to C \), where \(C \) is the same challenge space as in the single signature scheme, characterized by some positive integer \(d \). Further, we let \(B' \) denote the bound on the norm of an aggregated signature. It’s concrete value depends on the distribution \(D \) (and its bound \(B \)) used for the single signature. Informally speaking, if \(D \) is a discrete Gaussian, so is \(B' = O(\sqrt{N}B) \). If \(D \) is the uniform distribution over vectors of bounded norm, so is \(B' = O(NB) \). For simplicity, we set \(B' = N\sqrt{d}B \) in the following.

The non-interactive half-aggregation of signatures is illustrated in Figure 3. The aggregate signature scheme is given by \(\Pi_{AS} = (\text{KGen}, \text{Sig}, \text{Vf}, \text{AggSig}, \text{AggVf}) \).

```plaintext
AggSig(VK, M, \Sigma) : For \( j \in [N] \) compute \( c_j = H_e(u_j, t_j, m_j) \).
Then query \( c_j \leftarrow H_e(c_1, \ldots, c_N, j) \) for all \( j \in [N] \).
Set \( z = \sum_j c_j z_j \in R_q^{k+k} \).
If \( \|z\|_2 < B' \),
then return \( \sigma_{\text{agg}} = ((u_j)_j, z) \);
else return \( \perp \);
AggVf(VK, M, \sigma_{\text{agg}}) : Reconstruct \( c_j = H_e(u_j, t_j, m_j) \) for all \( j \in [N] \).
And \( c_j \leftarrow H_e(c_1, \ldots, c_N, j) \) for all \( j \in [N] \).
If \( \|z\|_2 < B' \)
and if \( [A][I_k] \cdot z = \sum_j c_j (t_j \cdot c_j + u_j) \),
return 1; else return 0;
```

Fig. 3. Non-Interactive Half-Aggregation of Signatures.
In order to aggregate N signatures $(\sigma_j)_{j \in [N]}$ the algorithm AggSig first reconstructs the challenges $c_j = H_e(u_j, t_j, m_j)$ for every $j \in [N]$ and queries H_e to obtain $(e_j = H_e(c_1, \ldots, c_N, j))$ for every index $j \in [N]$. It then computes the sum $z = \sum_j e_j z_j$ and outputs the aggregated signature $\sigma_{agg} = ((u_j)_j, z)$, if the Euclidean norm of z is bounded above by B'. Else the algorithm outputs \perp. Note that $\|z\|_2 = \left\| \sum_j e_j z_j \right\|_2 \leq \sum_j \|e_j z_j\|_2 \leq \sum_j \|e_j\|_2 \cdot \|z_j\|_2 \leq N \cdot \sqrt{d} \cdot B = B'$ (at least with overwhelming probability). Thus, the probability that AggSig outputs \perp is negligible. The aggregation can be done by anyone, even by untrusted parties, as long as they have access to the random oracle H_e. Thus, public aggregation is enabled.

To verify an aggregated signature σ_{agg}, AggVf first reconstructs the challenges c_j for $j \in [N]$ by using the commitment u_j provided in σ_{agg}, the verification key t_j and the message m_j. Then it reconstructs the scalars $e_j = H_e(c_1, \ldots, c_N, j)$ for every j. The algorithm then checks if the norm of z lies within the correct bound. Finally it verifies the equations $[A|I_k] \cdot z = \sum_j (t_j \cdot c_j + u_j)$. If all checks go through, it outputs 1, else 0.

Remark 1. It now becomes clear that transmitting c_j wouldn’t be sufficient to verify the aggregated signature: as the verifier only knows the term z, but not all the e_j, they cannot reconstruct u_j from c_j. Without knowing u_j, however, the verifier would not be able to verify the aggregated signature. Inter-active multi-signatures circumvent this issue by generating inter-actively one common input u to the random oracle that depends on all the u_j, before sending the multi-signature, see for instance [BS16] or [Dam+21]. As a public aggregation is our main objective, we accept a larger aggregated signature size.

The correctness of our protocol Π_{AS} simply follows from the linearity of matrix-vector multiplication over R_q.

Lemma 2 (Correctness). Let $\Pi_{AS} = (\text{KGen, Sig, Vf, AggSig, AggVf})$ be the aggregate signature scheme for a message space \mathcal{M} with the algorithms as in Figures 2 and 3. Assuming the correctness of the corresponding single signature scheme $\Pi_S = (\text{KGen, Sig, Vf})$, the aggregate signature is correct, i.e.,

$$\Pr[\text{AggVf}(\text{VK}, M, \text{AggSig}(\text{VK}, M, \Sigma)) = 1 | \text{AggSig}(\text{VK}, M, \Sigma) \neq \perp] = 1,$$

where $m_j \in \mathcal{M}$, $(sk_j, vk_j) \leftarrow \text{KGen}(1^\lambda)$ and $\sigma_j \leftarrow \text{Sig}(sk_j, m_j)$ for $j \in [N]$ and $\text{VK} = (vk_j)_{j \in [N]}$, $M = (m_j)_{j \in [N]}$ and $\Sigma = (\sigma_j)_{j \in [N]}$.

Proof. Let $\sigma_{agg} \neq \perp$ be the aggregate signature produced by $\text{AggSig}(\text{VK}, M, \Sigma)$. The first check if $\|z\|_2 \leq B'$ succeeds by the construction of AggSig. For the last check, we compute

$$[A|I_k] \cdot z = [A|I_k] \cdot \left(\sum_{j=1}^{N} e_j z_j \right) = \sum_{j=1}^{N} e_j [A|I_k] \cdot z_j = \sum_{j=1}^{N} e_j (t_j \cdot c_j + u_j),$$

where we used the linearity over R_q and the correctness of Π_S. \qed
Remark 2. In order to guarantee the correctness of the scheme, it is important that all key pairs \((\text{sk}, \text{vk})\) share the same public matrix \(A\). It can be computed interactively by all, or by a reasonable large subset of all parties together during a setup-phase as in [Dam+21]. In order to gain in efficiency, it can instead also be computed by some compact random seed.

3.3 Why Linear Compression Is A Bad Idea

In earlier versions of this work we followed the idea of MMSA(TK) [Dor+20] to further compress the aggregated signature. For the compression we used a linear function \(T : \mathbb{R}^k_q \rightarrow \mathbb{Z}^n_{q^0}\) and applied it to the commitment \(u_j\) before inputting it to the random oracle \(H_c\). An aggregate signature was given by \(\sigma_{\text{agg}} = (\sum_j u_j, T(u_j), \sum_j z_j)\). The key idea behind the compression was that \((\sum_j u_j, T(u_j))\) is much smaller than the complete vector \((u_j)_{j \in [N]}\). At the same time, \(n_0\) is chosen large enough to guarantee combinatorial security (that is \(2^{\lambda} \leq q^{n_0}\)) as we set \(n_0\) such that it is hard to find a collision of \(H_c\) for fixed verification key \(t\) and message \(m\).

In order to make aggregation compatible with the single signatures, the signing procedure (for a single signature) has to be modified. Instead of inputting \(u_j\) to \(H_c\), only the compressed vector \(T(u_j)\) serves as input, see Figure 4. As we elaborate in the following, this defines an insecure signature scheme.

More precisely, we define an attacker who is able to forge signatures on arbitrary messages for any given public key \(t\) without knowing the corresponding secret key \(s\). First, the attacker initiates the signing procedure by sampling \(y' \leftarrow D\)

7 For the sake of simplicity we omit here the scalars coming from the hash function \(H_c\), as they are irrelevant for the attack. Further, it makes the presentation closer to the previous version.

8 This attack has been described to us by Thomas Prest.
and computes $u' = [A|I_k] \cdot y'$. They then query $c = H_c(T(u'), t, m)$ to obtain the challenge for an arbitrary message m. Now, they exploit the fact that T reduces the lattice dimension from nk to n_0. More precisely, they use standard lattice reduction to find a short solution z to the equation $T[A|I_k]z = T(u' + t \cdot c)$ and set $u := [A|I_k]z - t \cdot c$. That is, they solve inhomogeneous SIS for the integer matrix $A' = T[A|I_k] \in \mathbb{Z}_{n_0}^{n \times (n(k+1))}$ (ignoring the structure of A'). By the linearity of T, it yields $T(u) = T(u')$ and thus $\sigma = (u, z)$ defines a valid forgery for the public key t. Note that there may not exist a short y such that $[A|I_k]y = u$, but assuming the hardness of decisional M-LWE, both u and u' are computationally close to uniform random vectors.

4 Security of Our Aggregate Signature Scheme

We recall in Sec. 4.1 the security model for aggregate signatures from Boneh et al. [Bon+03], before proving in Sec. 4.2 the security of our scheme from Sec. 3.

4.1 The Aggregate Chosen-Key Security Model

Informally speaking, the security notion we use within this paper of an aggregate signature scheme captures that there exists no efficient adversary who is able to existentially forge an aggregate signature, within a specified game. We use the aggregate chosen-key security model as introduced by Boneh et al. [Bon+03]. Let $\Pi_{AS} = (KGen, Sig, Vf, AggSig, AggVf)$ be an aggregate signature scheme with message space \mathcal{M} as in Definition 3 and let N be the number of aggregated signatures. An adversary A attacking Π_{AS} is given a single verification key vk_N, the challenge key. Their goal is the existential forgery of an aggregate signature involving N signatures, where we oblige A to include a signature that can be verified using the challenge key. The remaining $N - 1$ verification keys can be chosen freely by A. The adversary is also given access to a signing oracle on the challenge key vk_N. Their advantage, denoted by $Adv_{\text{AggSig},A}$, is defined to be their probability of success in the following game.

Setup. The aggregate forger A is provided with a challenge verification key vk_N.

Queries. Proceeding adaptively, A queries signatures on messages of their choice that can be verified using the challenge key vk_N.

Response. Finally, A outputs an aggregate signature σ_{agg}, together with a message vector $M = (m_j)_{j \in [N]}$ and verification key vector $VK = (vk_j)_{j \in [N]}$.

Result. The forger A wins the game if the aggregate signature σ_{agg} is a valid aggregate on the verification key-message pairs $(vk_j, m_j)_{j \in [N]}$, i.e., if $1 \leftarrow \text{AggVf}(VK, M, \sigma_{agg})$. In order to avoid trivial solutions, A is not allowed to hand in a pair (vk_N, m_N), which was queried on the signing oracle before.

If we show the security in the Random Oracle Model (ROM), we also have to give A the possibility to query the used random oracles.
Definition 5. Let H denote hash function that is modeled as a random oracle. An aggregate signature scheme Π_{AS} is called (N_H, N_{Sig}, N)-secure against existential forgery in the aggregate chosen-key model in the ROM, if there exists no PPT algorithm A that existentially forges an aggregate signature on N verification keys in the aggregate chosen-key model, where A has non-negligible advantage, makes at most N_H queries to the random oracle H and at most N_{Sig} queries to the signing oracle on the challenge key.

4.2 Proof of Security

We now prove that our scheme is secure against existential forgery in the independent-chosen-key model. Let $\Pi_{AS} = (KGen, \text{Sig}, \text{Vf}, \text{AggSig}, \text{AggVf})$ be the aggregate signature from Section 3.

Theorem 1. Let H_c, H_e be two hash function providing the challenges and scalars in our aggregate signature, modeled as random oracles both with image space C. Assume the hardness of $\text{M-LWE}_{k,\ell,\beta}$ and of $\text{M-SIS}_{k,\ell+1,b}$, where $b = 16d \cdot B' + 8d^3/2$. Then, the aggregate signature Π_{AS} with parameters (ℓ, k, β, B', d) is secure against existential forgery in the aggregate chosen-key model in the ROM. The advantage of some PPT adversary A against Π_{AS} is bounded above by

$$\text{Adv}_{\text{AggSig}} A \leq \frac{N_q}{|C|} + \sqrt{\frac{N_q}{|C|} + \sqrt{N_q \cdot \text{Adv}_{\text{M-SIS}_{k,\ell+1,b}}}} + \text{Adv}_{\text{M-LWE}_{k,\ell,\beta}} + \text{negl}(\lambda),$$

where λ denotes the security parameter and A makes at most N_{H_c} queries to H_c, N_{H_e} queries to H_e and N_{Sig} queries to the signing oracle and we set $N_q = N_{H_c} + N_{H_e} + N_{Sig}$.

Proof Sketch. Let us first describe the high level idea of the proof, which follows the "double forking technique" of [Max+19]. To begin, note that, assuming the hardness of $\text{M-LWE}_{k,\ell,\beta}$, the honestly generated challenge key $vk_N = t = [A, 1_k] \cdot s_N$ is computationally indistinguishable from a uniformly random vector over R_q. Thus, one can replace the input (A, t) by a real uniform element, which itself defines an instance of $\text{M-SIS}_{k,\ell+1,b}$. Now, we construct a so-called wrapper B around the adversary A, that internally invokes A to obtain a signature forgery. The wrapper has the important role to simulate the random oracles H_c and H_e and the signing queries with respect to the challenge key. They output the received forgery, together with some extra information about the forger execution. We then apply twice the General Forking Lemma (Lemma [1]). First, we construct an algorithm C that runs the forking algorithm F_B on B, where the fork is with respect to the answer of H_c to the forgery and the challenge index N. Second, we construct another algorithm D that runs now the forking algorithm F_C on C, where the fork happens regarding the answer of H_e to the
forgery and the challenge index N. At the end, the wrapper B has been run a total of 4 times, leading to four forgeries. The way how D, C and B are defined allows to derive a solution to M-SIS.

Proof. Let A be an adversary against Π_{AS} with advantage Adv_A. Our high level goal is to show that their advantage is negligible in the security parameter λ by providing a sequence of games G_0, G_1 and G_2, where G_0 is the original chosen-key security game as in Section 4.1. Assuming the hardness of M-LWE, the adversary A can distinguish between those games only with negligible advantage. In the last game G_2 we then apply twice the General Forking Lemma, leading to four different forgeries. Those then allow to construct a solution to M-SIS.

G_0: Set $N_q = N_{H_c} + N_{H_e} + N_{\text{Sig}}$, where A makes at most N_{H_c} queries to H_c, N_{H_e} queries to H_e and N_{Sig} queries to the signing oracle on vk_N. Recall that C denotes the challenge space from Sig (and the scalar space from AggSig).

Let B be a second algorithm that is provided with some randomly chosen $h_j, h'_j \leftarrow U(C)$ for $j \in [N_q]$. For the random oracle H_e, the algorithm B maintains a table HT_e which is empty at the beginning. Similarly, for the random oracle H_e, a table HT_e is maintained. Further B stores two counters ctr_e and $ctr_{e'}$, both initially set to 0.

Setup. B generates $(sk_N, vk_N) \leftarrow \text{KGen}(1^\lambda)$ and sends vk_N to A.

Queries on H_c. On input $x = (u, t, m)$, if $HT_c[x]$ is already set, B returns $HT_c[x]$. Else, if $t = t_N$, they increment ctr_e and set $HT_c[x] = h_{ctr_e}$. Else they sample $HT_c[x] \leftarrow U(C)$. Finally, they output $c = HT_c[x]$.

Queries on H_e. On input $x = (c_1, \ldots, c_N, j)$ for some $j \in [N]$, if $HT_e[x]$ is already set, B returns $HT_e[x]$. Else, B does the following. First, for all $i \in [N-1]$, they sample $HT_e[x_i] \leftarrow U(C)$ for $x_i = (c_1, \ldots, c_N, i)$ (independently of j). Only then, they increment ctr_e and set $HT_e[x_N] = h_{ctr_e}$ for $x_N = (c_1, \ldots, c_N, N)$. Finally, they output $c = HT_e[x]$ (where x_j for some j). The order is important here, as we use later that e_j has been fixed before e_N for all $i \in [N-1]$ for a fixed tuple (c_1, \ldots, c_N).

Signing queries. B follows the honest signing procedure Sig from Π_{AS} for sk_N on input message m.

Forgery. Suppose that A outputs a forgery $\sigma_{agg} = ((u_j)_{j \in [N]}$ on the message vector $M = (m_j)_{j \in [N]}$ and the verification key vector $VK = (vk_j)_{j \in [N]}$. Without loss of generality we assume that HT_e was programmed on $x = (u_N, t_N, m_N)$ and thus $c_N = h_{jN}$ for some counter index j_N. If not, A would only have a probability of $1 - 1/|C|$ to guess the correct c_N.

With the same argumentation, we assume that HT_e was programmed on $x = (c_1, \ldots, c_N, N)$ and thus $e_N = h'_{jN}$ for some counter index j'_{N}.

If $\text{AggVf}(VK, M, \sigma_{agg}) = 1$, then B outputs $(j_N, j_N, (VK, M, \sigma_{agg}, C, E))$, with $C = (c_j)_{j \in [N]}$ such that $c_j = H_e(u_j, t_j, m_j)$ and $E = (e_j)_{j \in [N]}$ such that $e_j = H_e(c_1, \ldots, c_N, j)$. Else, B outputs $(0, 0, \perp)$.

For $j = 0, 1, 2$, let $Pr[G_j]$ denote the probability that B doesn’t output $(0, 0, \perp)$ in game G_j. It yields $Pr[G_0] = \text{Adv}_A$.

G_1: The game G_1 is identical to the previous game G_0 except that B doesn’t generate the signature honestly, but instead simulates the transcript without using the secret key sk_N.

Signing queries. On input message m, B samples $c \leftarrow U(C)$ and $z \leftarrow D_{s}^{c+k}$. They compute $u = [A|I_k] \cdot z - t_N \cdot c$ and program $c = HT_e[x]$ with $x = (u, t_N, m)$ afterwards. Finally, B outputs $\sigma = (u, z)$ with probability $1/M$.

Due to the rejection sampling, the distribution of z is identical in both signing variants (see [Dam+21] Lem. 4 for more details). The only difference between the actual and the original signing algorithm is that now the output of H_e is programmed at the end, without checking whether it has already been set for x. Following the same argument as in [Lyu12, Lem. 5.3] this happens only with negligible probability and thus $|Pr[G_1] - Pr[G_0]| \leq \text{negl}(\lambda)$.

G_2: The game G_2 is identical to the previous game G_1 except how B generates the vk_N during the setup phase.

Setup. B samples $t_N \leftarrow U(R_q^k)$, sets $vk_N = t_N$ and outputs vk_N to A.

As the signing queries are answered without using the corresponding secret key sk_N, B can replace vk_N by a random vector without A noticing, assuming the hardness of M-LWE$_{k,\ell,\beta}$. Thus $|Pr[G_2] - Pr[G_1]| \leq \text{Adv}_{\text{M-LWE}}$.

Using the above, we obtain $\text{Adv}_{\text{AggSig}}_A \leq Pr[G_2] + \text{Adv}_{\text{M-LWE}_{k,\ell,\beta}} + \text{negl}(\lambda)$. Our aim for the reminder of the proof is to bound $Pr[G_2]$. To do so, we apply twice the General Forking Lemma. Note that in game G_2 the matrix $A' = [A|t_N]$ follows the uniform distribution over $R_q^{k \times (\ell+1)}$.

First Fork. We construct an algorithm C around B who invokes the General Forking Lemma (Lemma [1]), where the input generator IGen is defined to output A'. Let acc_B denote the accepting probability of B and frk_B the forking probability of F_B as defined in Lemma [1]. Further, set out $= (\tilde{h}_j, \tilde{vk}, M, \tilde{\sigma}_{agg}, C, E)$ and feed B with the input coins $\tilde{h}_1, \ldots, \tilde{h}_N$. The fork happens with respect to the counter index from c. Thus, the forking algorithm F_B outputs with probability frk_B two different outputs out, $\text{out} \neq (\perp, \perp)$, where $\text{acc}_B \leq N_q/|C| + \sqrt{N_q} \cdot \text{frk}_B$. Let out $= (\tilde{h}_j, \tilde{vk}, M, \tilde{\sigma}_{agg}, C, E)$ and out $= (\tilde{j}_j, \tilde{vk}, M, \tilde{\sigma}_{agg}, C, E)$. During the forking, neither B nor A is aware of being rewound. In particular, before arriving at the fork, they behave exactly the same in both executions. As the random coins of B are the same in both executions and as the simulation of H_E is for $j \neq N$ independent of the input $(\tilde{h}_j'_{j \in [N]})$ to B, we have $t_j = \tilde{t}_j$, $u_j = \tilde{u}_j$ and $c_j = \tilde{c}_j$ for all $j \in [N]$ and $e_j = \tilde{e}_j$ for all $j \in [N-1]$.

Further it yields $M = \tilde{M}$. As in both cases, the forgery passes validation, it yields $\|z\|_2, \|\tilde{z}\|_2 < B'$. Additionally, $[A|I_k] \cdot z = \sum_{j \in [N]} e_j (t_j \cdot c_j + u_j)$ and $[A|I_k] \cdot \tilde{z} = \sum_{j \in [N]} \tilde{e}_j (\tilde{t}_j \cdot \tilde{c}_j + \tilde{u}_j)$. Hence, we can deduce that

$$[A|I_k] \cdot (z - \tilde{z}) = (e_N - \tilde{e}_N)(t_N c_N + u_N).$$ (1)

Note that Equation (1) is not yet sufficient to extract a solution to M-SIS and we thus fork a second time.
In other words, the Euclidean norm of the vector x is bounded above by $\sqrt{\langle B' \cdot x, x \rangle}$. Thus, the Euclidean norm of the vector x is bounded above by $\sqrt{\langle B' \cdot x, x \rangle} = \sqrt{\langle B' \cdot x, x \rangle} = \sqrt{\langle B' \cdot x, x \rangle}$. Therefore, we have $\|x\|_2 \leq 2 \cdot \|z\|_2 + 2 \cdot \|e^2\|_2 \leq 4 \cdot B' + 2 \cdot 4d^{3/2} = b,$ where B' is the bound on z. This implies that $\text{frk}_C \leq \text{Adv}_{M,SIS}$. Overall, we get

$$\Pr[G_2] = \text{acc}_B \leq \frac{N_q}{|C|} + \sqrt{N_q \cdot \left(\frac{N_q}{|C|} + \sqrt{N_q \cdot \text{Adv}_{M,SIS_{k+1,b}}} \right)},$$

completing the proof. \hfill \Box

Remark 3. Using twice the General Forking Lemma introduces two disadvantages: On the one hand, it causes an important loss in the reduction. On the other hand, we currently don’t know how to extend it to the so-called quantum ROM, where an adversary has quantum access to the random oracle (and classical access to the signing oracle). Abdalla et al. [Abd+16] proposed a much tighter reduction for lattice-based signature schemes following the FSwA paradigm by introducing lossy identification schemes. Kiltz et al. [KLSS18] used their techniques to construct a generic framework for tightly secure signatures in the quantum ROM. The key idea behind lossy identification schemes is that verification keys can be replaced by random, so-called lossy, keys. Then, using a lossy key, for a fixed commitment (in our scheme this is the vector u) with overwhelming probability there exists at most one transcript that verifies. We leave it as an open problem to further investigate if those techniques can be applied to our aggregate signature scheme.
4.3 Rogue-Attack Against the Simple Sum

We just showed that the aggregate signature scheme \(\Pi_{AS} \) as presented in Section 3 is proven secure in the aggregate chosen-key model as introduced by Boneh et al. [Bon+03]. When aggregating, it is important to use random scalars for the sum. Instead of the simple (deterministic) sum, we hence obtain a (randomized) linear combination of the single signature parts \(z_j \).

As we think this is important to understand this motivation, we now describe a simple attack if one uses only the simple sum (or a linear combination where the challenge space is too small, as done in the current version of MMSA(TK)), which was first observed by Zhao [Zha19] in the context of a Schnorr-based aggregate signature scheme on elliptic curves.

1. Let \(t_N \) be the challenge key given to the adversary \(A \).
2. \(A \) generates the remaining key pairs \((s_j, t_j) \leftarrow \text{KGen} \) for \(j \in [N-1] \) and selects arbitrary messages \(m_j \) for \(j \in [N] \).
3. They sample \(y_N \leftarrow D \), set \(u_N = [A|I_k] \cdot y_N \) and query the random oracle to obtain \(c_N = H_c(u_N, t_N, m_N) \).
4. Now, \(A \) can prepare a rogue-commitment \(u_{N-1} \) by sampling \(y_{N-1} \leftarrow D \) and setting \(u_{N-1} = -t_N \cdot c_N + [A|I_k] \cdot y_{N-1} \), depending on the challenge \(c_N \) for the challenge key \(t_N \).
5. They compute \(c_{N-1} = H_c(u_{N-1}, t_{N-1}, m_{N-1}) \).
6. They set \(z_{N-1} = y_{N-1} + s_{N-1} \cdot c_{N-1} \) and apply the rejection sampling in order to make the distribution of \(z_{N-1} \) independent of \(s_{N-1} \).
7. For the remaining \(j \in [N-2] \), they follow the honest signature procedure: they sample \(y_j \leftarrow D \), set \(u_j = [A|I_k] \cdot y_j \), compute \(c_j = H_c(u_j, t_j, m_j) \) and set \(z_j = s_j \cdot c_j + y_j \). Then they apply the rejection sampling in order to make the distribution of \(z_j \) independent of \(s_j \).
8. Finally, they output the forgery \(\sigma_{agg} = (\hat{u}, (u_j)_j, z) \), where \(\hat{u} = \sum_{j=1}^{N} u_j \) and \(z = y_N + \sum_{j=1}^{N-1} z_j \).

We claim that the forgery passes verification. As all \(z_j \sim D \) and \(y \sim D \), the norm of the sum \(z \) is (with overwhelming probability) bounded above by \(N \cdot B =: B' \). Further, it yields \(\hat{u} = \sum u_j \), as the \(u_j \) are computed by honestly compressing

\[\text{For the deterministic sum, one can only show security in a much more restricted security model where the adversary has to commit themselves to the signatures they will use in the aggregate signature scheme before receiving the challenge key. More details can be found in an older version of this e-print (8 Apr 2021).} \]
the corresponding \(u_j \). It remains to show that \([A|I_k] \cdot z = \sum_{j=1}^{N} (t_j \cdot c_j) + \hat{u} \).

\[
[A|I_k] \cdot z = [A|I_k] \cdot y_N + \sum_{j=1}^{N-1} [A|I_k] \cdot z_j
\]

\[
= u_N + [A|I_k] \cdot y_{N-1} + t_{N-1} \cdot c_{N-1} + \sum_{j=1}^{N-2} t_j \cdot c_j + u_j
\]

\[
= u_N + u_{N-1} + t_N \cdot c_N + t_{N-1} \cdot c_{N-1} + \sum_{j=1}^{N-2} t_j \cdot c_j + u_j
\]

\[
= \sum_{j=1}^{N} t_j \cdot c_j + \hat{u},
\]

where we used that \([A|I_k] \cdot y_{N-1} = u_{N-1} + t_N \cdot c_N \). In this attack the adversary exploits the fact that they can define a rogue-commitment with respect to the challenge \(c_N \). In our security model, this is prevented as the adversary has to fix the signatures they are going to use in the forgery before receiving the challenge key \(t_N \).

Acknowledgments

This work was supported by the European Union PROMETHEUS project (Horizon 2020 Research and Innovation Program, grant 780701). It has also received a French government support managed by the National Research Agency in the "Investing for the Future" program, under the national project RISQ P141580260001 / DOS0044216. Katharina Boudgoust was funded by the Direction Générale de l’Armement (Pôle de Recherche CYBER). We warmly thank Akira Takahashi for making us aware of the attacks against Schnorr-based aggregate signatures in the chosen-key model and discussions with him and Claudio Orlandi. We also would like to thank Olivier Sanders for an interesting exchange regarding the security proof. Lastly, we also would like to thank Thomas Prest who explained us his attack on the linear compression function used in an earlier version of this paper.

References

