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Abstract. Anonymous tokens have recent applications in private In-
ternet browsing and anonymous statistics collection. We develop new
schemes in order to include public metadata such as expiration dates for
tokens. This inclusion enables planned mass revocation of tokens with-
out distributing new keys, which for natural instantiations can give 77–90
% amortized traffic savings compared to Privacy Pass (Davidson et al.,
2018) and PrivateStats (Huang et al., 2021), respectively. By transform-
ing the public key, we are able to append public metadata to several
existing protocols without having to change the security proofs in any
substantial way.
Additional contributions include expanded definitions and a description
of how anonymous tokens can improve the privacy in dp3t-like digital
contact tracing applications. We also show how to create efficient and
conceptually simple tokens with public metadata and public verifiability
from pairings.
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1 Introduction

Anonymous communication has been an active research area since the 1980’s,
involving schemes like blind signatures, partially blind signatures, anonymous
credentials and tokens, group signatures, ring signatures etc. This enables more
complex systems for e.g. electronic cash or electronic voting, but also to protect
the privacy of the users in chat applications like Signal.

Recent work by Davidson et al. [27] presents a very practical protocol, named
Privacy Pass [26], for anonymous tokens. This protocol allows users to browse
anonymously, e.g. using Tor, without having to solve a CAPTCHA every time
they visit a website. Privacy Pass gives the user a set of randomized tokens



whenever they solve a CAPTCHA, which they then later can redeem instead of
solving a new CAPTCHA. This improves the usability of anonymous browsing,
at the same time as it gives protection against spam, prevents DDoS attacks
and provides fraud resistance without the need for cross-site tracking or finger-
printing. However, the only way to revoke batches of tokens is by replacing the
private-public key pair, which is impractical [25].

Privacy Pass has gained a lot of attention, and is currently being integrated
to improve privacy in several applications, e.g., in PrivateStorage3 and for basic
attention tokens (BATs) in the Brave browser4. It can also be used for private
click measurement when doing a purchase or signing up for a service5.

Facebook uses partially blind signatures for combating fraud [38], and they
have developed an extension of Privacy Pass called PrivateStats [36], which is
used for privately collecting client-side telemetry from WhatsApp. PrivateStats
requires daily key-rotation to prevent DoS attacks, which led them to develop
an attribute-based verifiable oblivious pseudo-random function for more efficient
and transparent key-rotation.

The IETF [37] is currently standardizing Privacy Pass, while Trust To-
ken [49], a more generalized API based on Privacy Pass, is currently being
standardized by the W3C as a part of the Google Privacy Sandbox project.
Both standardization processes mention private and public metadata as desir-
able extensions to the Privacy Pass protocol. Public metadata allows for more
efficient key-rotation, and opens for applications using public labeling and public
anonymity sets, while private metadata allows for allow/deny lists, rate-limiting
or trust-indication.

Kreuter et al. [41] gave the first construction of anonymous tokens with pri-
vate metadata, while we give the first construction with public metadata. Our
construction can also be combined with private metadata or public verifiability.

1.1 Background

The literature provides many flavors of anonymous credentials. They all come
with some minimal requirements with respect to security, and have a variation
of desirable properties for practical applications.

Unlinkability and Unforgeability To ensure privacy of users, the anony-
mous token protocol must make sure that the information being transferred in
the attestation phase cannot be correlated with the token being received in the
redemption phase. This is called unlinkability. To ensure the system’s integrity,
the anonymous token protocol must make sure that users cannot forge tokens,

3 PrivateStorage: https://medium.com/least-authority/

the-path-from-s4-to-privatestorage-ae9d4a10b2ae.
4 Brave: https://github.com/brave/brave-browser/wiki/

Security-and-privacy-model-for-ad-confirmations
5 Private Click Measurement: https://privacycg.github.io/

private-click-measurement.
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even after receiving valid tokens from the attestation server. This is called un-
forgeability. These are the minimal requirements for anonymity and integrity,
and have been handled starting from the first classical constructions of blind
signatures starting with David Chaum in the early 1980’s [20, 21] and subse-
quent work on anonymous credentials [4, 12,13,15–19,33,43,45].

Underlying Primitives Anonymous token protocols can be built from a vari-
ety of cryptographic primitives and assumptions, e.g., factoring [1,15,16], discrete
logarithms [2,27,41,43,50] or bilinear pairings [8,23,24,51]. Protocols based on
elliptic curve discrete logarithms are the most efficient, in terms of both size
and timings, while other primitives might more easily provide correctness and
verifiability.

Verifiability and Key-Sharing Subject to the situation, it might be desirable
with either designated or public verifiability, depending on the redemption server
having access to the secret key or not. If the same party is both attesting and
redeeming tokens [27, 41], it is natural for the server(s) to share a key. In the
designated verifier setting, it is necessary for the attestation server to provide
zero-knowledge proofs to ensure that a token is honestly generated [27,41], while
pairings easily can provide public verifiability [51].

Key-Rotation and Token-Revocation To avoid misuse, we need a way to
efficiently revoke batches of tokens. This may be useful for rate limiting to avoid
denial-of-service attacks, or for protecting users from credential stuffing [27, 36,
47]. In Privacy Pass [27], this is solved by infrequent key-rotation where a few
public keys are available at a public endpoint. PrivateStats [36], who rotates
their keys every day, solve it by using a new attribute-based verifiable oblivious
pseudorandom function (VOPRF). However, both solutions are inconvenient in
practice, and adds significant overhead for validating the public keys.

Rounds of Interaction Blind signatures and anonymous tokens can be at-
tested in only one round of communication, which is optimal. This saves time
and computation for both the client and the server, and the server does not
need to keep a state. However, the only partially blind signatures achieving one
round of interaction are based on bilinear pairings or factoring [1], while pro-
tocols based on discrete logarithms [2, 50] needs two rounds. We remark that
there is no one-round anonymous token protocol with efficient revocation in the
literature based on elliptic curve discrete logarithms without pairings before this
work.

1.2 Our Contribution

Our contribution in this work is threefold: First, we present new definitions for
anonymous tokens – extending the work by Kreuter et al. [41] – to also consider



public metadata and/or public verifiability. Secondly, we present three efficient
protocols for anonymous tokens with efficient batched revocation: 1) Privacy
Pass [27] with public metadata, 2) Kreuter et al. [41] with public and private
metadata, and 3) a Privacy Pass inspired protocol using pairings to achieve
public verifiability at the same time as it includes public metadata. Thirdly, we
present contact tracing as a new concrete application for anonymous tokens, and
discuss a concrete implementation used in the Norwegian contact tracing app.

Updated Definitions Several works have asked for efficient batched revocation
of anonymous tokens without key-rotation [25,27]. Additionally, there is a need
for anonymous tokens with public verifiability [49], so that token generation can
be delegated, and verification can be performed locally for token redemption.
We provide updated definitions for all of these cases: designated verifier anony-
mous tokens with or without public and/or private metadata and public verifier
anonymous tokens with and without public metadata. Details can be found in
Section 3.

Anonymous Tokens with Public Metadata We present the first anonymous
tokens protocols with efficient batched revocation, meaning that the protocol
only requires one round of communication based on lightweight primitives and
that we avoid key-rotation. The key insight in our protocol is conceptually very
simple: all parties locally update the public key based on the hash of the public
metadata, and then execute the protocols with respect to the new key pair.
The main challenge is to sign tokens in a way that does not allow the user to
forge tokens initially signed under metadata md to be valid under metadata md′

instead. Let k be the secret key and let d = H(md) be the hash of the metadata.
Our solution, inspired by Zhang et al. [51], is to use the inverse e = (d + k)−1

as the new signing key. This allows us to directly replace the secret keys in
the previous protocols, and the security proofs proceed in the same manner as
earlier.

Further, to avoid subliminal channels, the signer needs to prove that the
signed token is computed correctly. This is easily solved for Privacy Pass [27]. In
the original protocol they use a zero-knowledge protocol to prove, given generator
G, public key K = [k]G, blinded token T ′ and signed token W ′ = [k]T ′, the
equality of discrete logarithms logGK = k = logT ′ W ′ to ensure correctness. In
our updated protocol, including metadata md, updated public key U = [d]G +
K and signed token W ′ = [e]T ′, we prove the equality of discrete logarithms
logG U = d+ k = logW ′ T ′ to ensure correctness.

However, it is not as easy to ensure correctness in the extended version of
the protocol by Kreuter et al. [41] including both public and private metadata.
We solve this by combining an OR-proof with two AND-proofs to make sure that
the right key is used. Further improvement is an open problem.

Next, we give a protocol based on pairings. The protocol is an adapted version
of the partially blind signatures by Zhang et al. [51], where we tweak it into
the same structure as Privacy Pass by using asymmetric pairings instead of



symmetric. We note that the communication in the protocol is the same, but in
addition to get a more streamlined protocol structure, we also allow for more
efficient instantiation in practice using the BLS12-381 pairing [5]. Ideally, we
would like to avoid pairings altogether, but this seems necessary in practice. See
more details about the protocols in Section 4.

Finally, we compare the efficiency of the protocols in Section 5, and com-
pare our constructions with the current state of the art with respect to efficient
batched revocation in Table 1. We show that our protocols are much more effi-
cient in practice. We also make a concrete comparison with PrivateStats [36] for
collecting telemetry-data from WhatsApp, and show that our protocol in Fig-
ure 5 would decrease the size of the signed token by 90 %, saving the Facebook
servers up to 1.7 TB of communication every day.

More Private Contact Tracing Many countries have recently developed con-
tact tracing apps as one of the measurements to battle the ongoing pandemic.
These apps are inherently storing sensitive information about the user, e.g., the
user’s location graph and social graph. To avoid large, centralized databases with
such sensitive information about a large portion of a country’s adult population,
most apps are based on the decentralized Google/Apple Exposure Notification
System (ENS). However, there are still privacy issues with regards to upload-
ing the randomized exposure keys to the central server, as the user would have
to identify themselves to ensure that only people who have tested positive for
COVID-19 are able to upload keys. We implemented Privacy Pass into the Nor-
wegian contact tracing app to improve the user’s privacy. Our code is published
at https://github.com/HenrikWM/anonymous-tokens, and the Norwegian In-
stitute of Public Health (NIPH) have made the source code for the contact
tracing infrastructure publicly available6. We present more details about the
contact tracing infrastructure and improvements to the app in Section 6.

1.3 Relevant work

Our work achieving designated verification and public metadata extends a long
line of publications. Freedman et al. [29] introduced oblivious pseudo-random
functions, and Jarecki et al. [39,40] gave an efficient instantiation based on DDH
in the random oracle model. Papadopoulos et al. [44] gave a verifiable PRF from
elliptic curves, and Burns et al. [11] gave an oblivious PRF from elliptic curves.
Privacy Pass combined these results with an extended version of the Chaum-
Pedersen zero-knowledge protocol [22] given by Henry and Goldberg [34, 35] to
prove knowledge of batches of elements having the same discrete logarithm, and
Kreuter et al. [41] added private metadata to Privacy Pass.

To achieve public verifiability we use parings, inspired by the seminal work
of Boneh et al. [10] for short and efficient signatures and a series of constructions
of anonymous credentials based on pairings [14,17,23,24,30,31,51].

6 NIPH: http://github.com/folkehelseinstituttet/?q=Smittestopp

https://github.com/HenrikWM/anonymous-tokens
http://github.com/folkehelseinstituttet/?q=Smittestopp


2 Preliminaries

We assume that the reader is familiar with the basics of elliptic curve cryptog-
raphy. To fix notation, let q be a prime and let Fq` for some ` > 0 be a field of
characteristic q. Let E be all points (x, y) that satisfy the elliptic curve equation
y2 = x3+ab+b in the algebraic closure of Fq` , and let E(Fq`) denote the set of all
such points in Fq`×Fq` along with the point at infinity O. By abuse of notation,
we often let E be a group of order p inside E(Fq`). Define the group law in the
usual additive way. In particular, let [m] : E → E be the multiplication-by-m
map, which takes the same role as exponentiation in multiplicative groups. Now
follows a brief discussion of the Chosen-Target Gap Diffie-Hellman problem and
some zero-knowledge proofs we will need as primitives.

2.1 DDH vs. CDH in Pairings

Let G1 and G2 be two additive cyclic groups of prime order, and let GT be
another cyclic group of same prime order, written multiplicatively. A pairing ê
is a map

ê : G1 ×G2 → GT
such that the following properties hold:

Bilinearity For all P1, P2 ∈ G1 and Q1, Q2 ∈ G2, it holds that ê(P1+P2, Q1) =
ê(P1, Q1)ê(P2, Q1) and ê(P1, Q1 +Q2) = ê(P1, Q1)e(P1, Q2).

Non-degeneracy For all P 6= O, ê(P, P ) 6= 1.
Computability ê can be efficiently computed.

The bilinearity property implies that for any scalars a, b, we have ê([a]P, [b]Q) =
ê(P,Q)ab, which is the crucial property used for verification later. Galbraith,
Paterson and Smart [32] sort pairings into three categories:

I G1 = G2, where φ : G2 → G1 is the identity.
II G1 6= G2, but there is an efficiently computable homomorphism φ : G2 →

G1.
III G1 6= G2 with no efficiently computable homomorphisms φ between the

groups.

Bilinear maps lend themselves to a variant of the well-known Diffie-Hellman
problem, the Chosen-Target Gap Diffie-Hellman problem [6]. Even if the adver-
sary is given oracle access to ` instances of the Computational Diffie-Hellman
(CDH) problem and arbitrary many queries to a Decision Diffie-Hellman (DDH)
oracle, it should still not be able to compute the final Diffie-Hellman instance
`+ 1. We repeat the game and definition by Kreuter et al. [41].

Definition 1 (Chosen-Target Gap Diffie-Hellman). Let G be a cyclic group
of order p with generator G produced by the algorithm Gen(1λ). Let CTGDH be
the game defined in Figure 1. Chosen-Target Gap Diffie-Hellman holds for G if
for any PPT adversary A and any ` ≥ 0,

AdvctgdhGen,A,`(λ) := Pr[CTGDHGen,A,`(λ) = 1] = negl(λ).

We will later base our security on the assumption that this problem is hard.



Game CTGDHGen,A,`(λ)

Γ = (G, p,G)← Gen(1λ)

x←$Zp;X := [x]G

q := 0;Q := []

(ti, Zi)i∈[`+1] ← ATarget,Help,DDH(Γ,X)

for i ∈ [`+ 1]

if ti /∈ Q then return 0

Yi := Q[ti]

return (q ≤ ` and

∀i 6= j ∈ [`+ 1], ti 6= tj and

∀i ∈ [`+ 1], [x]Yi = Zi)

Oracle Target(t)

if t ∈ Q then

Y := Q[t]

else

Y ←$G
Q[t] := Y

return Y

Oracle Help(Y )

q := q + 1

return [x]Y

Oracle DDH(Y,Z)

return (Z = [x]Y )

Fig. 1. The Chosen-target gap Diffie-Hellman security game.

2.2 Proof of Equal Discrete Logs

Chaum and Pedersen [22] introduced an elegant honest-verifier zero-knowledge
protocol to prove that two group elements have the same discrete logarithm
relative to their respective bases, logGK = k = logT W . We describe the protocol
loosely to ensure the reader is familiar with the idea. Let G be an additive group
of prime order p with independent generators G and T , and let K := [k]G,
W := [k]T where k is a number private to the verifier V.

P.1 Choose a random number r in the underlying field, compute A := [r]G,B :=
[r]T and send (A,B) to V.

V.1 Choose a random number c and send it to P.
P.2 Compute the response z := r − ck modulo p, and then send z to V.
V.2 Verify that A = [z]G+ [c]K and B = [z]T + [c]W .

This protocol satisfies unconditional special soundness and special honest-
verifier zero-knowledge. One can make the protocol non-interactive by applying
the Fiat-Shamir transformation [28]. The prover queries the oracle on the tuple
(G, G, T,K,W,A,B). In addition, one can reduce communication by sending the
oracle response c instead of (A,B), and modifying the final verification step to
querying the oracle on (G, G, T,K,W, [z]G+ [c]K, [z]T + [c]W ), and then verify
that it indeed returns c. We will use a shorthand notation to refer to this proof
as ΠDLEQ(T,W ; e), meaning that logG([e]G) = logW T .

The proof can be batched for many instances with respect to the same secret
scalar using the techniques by Henry [34] as showed in [27, Section 3.2.1].

2.3 AND-Proof of Equal Discrete Logs

Let G be an additive group of prime order p with generators G,H, T, S, and let
K := [k0]G+ [k1]H and V := [k0]T + [k1]S, where k0, k1 are numbers private to



the verifier V. We want to prove that V is correctly computed with respect to T, S
using the same secret numbers as K with respect to G,H. We present a simple
protocol to prove this relation, by essentially computing two Chaum-Pedersen
proofs in parallel.

P.1 Choose two random numbers r0, r1 from the underlying field. Compute
A := [r0]G,B := [r1]H,C := [r0]T,D := [r1]S, and send (A,B,C,D) to V.

V.1 Choose a random number c and send it to P.
P.2 Compute z0 := r0 − ck0 and z1 := r1 − ck1 in the field and send (z0, z1) to
V.

V.2 Verify that A+B = [c]K+ [z0]G+ [z1]H and C+D = [c]V + [z0]T + [z1]S.

It is straightforward to verify that this is a Σ-protocol with special soundness
and special honest-verifier zero-knowledge. As above, we can apply the Fiat-
Shamir [28] transformation to get a non-interactive protocol. We will refer to
this proof as ΠDLEQ2(V ; k0, k1).

2.4 OR-Proof of Equal Discrete Logs

We present the honest-verifier zero-knowledge OR-proof of equal discrete loga-
rithms instantiated by Kreuter et al. [42, Appendix B]. Let G be an additive
group of prime order p with generators G,H, T, S, and let V0 := [e0,0]G+[e0,1]H
and V1 := [e1,0]G+[e1,1]H, where ei,j are distinct numbers private to the verifier
V. Furthermore, let W := [eb,0]T + [eb,0]S for a b ∈ {0, 1}. We want to prove
that W is computed using the same secret numbers as either V0 or V1.

P.1 Choose random numbers r0, r1, cb−1, ub−1, vb−1 in the underlying field and
compute the following:

Ab,0 := [r0]G+ [r1]H,

Ab,1 := [r0]T + [r1]S,

A1−b,0 := [ub−1]G+ [vb−1]H − [cb−1]Vb−1,

A1−b,1 := [ub−1]T + [vb−1]S − [cb−1]W.

Finally, send (A0,0, A0,1A1,0, A1,1) to V.
V.1 Choose a random number c and send it to P.
P.2 Compute the responses

cb := c− c1−b, ub := r0 + cbeb,0, vb := r1 + cbeb,1,

in the underlying field. Send (ci, ui, vi)i=0,1 to V.
V.2 Verify that c = c0 + c1 and that

A0,0 = [u0]G+ [v0]H − [c0]V0,

A0,1 = [u0]T + [v0]S − [c0]W,

A1,0 = [u1]G+ [v1]H − [c1]V1,

A1,1 = [u1]T + [v1]S − [c1]W.



Again, using Fiat-Shamir [28], we can make the proof non-interactive by
evaluating a random oracle on input (G, G,H, T, S,W,A0,0, A0,1, A1,0, A1,1) to
generate the challenge c, and then the verifier can query the random oracle on
the response from the verifier to ensure correctness and soundness. We will refer
to this protocol as ΠDLEQOR2(W ; eb,0, eb,1).

ΠDLEQOR2 can be batched for many instances with respect to the same secret
scalars using the techniques by Henry [34] as shown in [41, Appendix B.1].

3 Definitions for Anonymous Tokens

Anonymous tokens as used in Privacy Pass are conceptually simple: both is-
suance and verification require the private key, and the final token is uniquely
determined by the token seed t and the private key. Kreuter et al. [41] extended
this notion by adding a private bit in the token. We further extend the defini-
tion in two different directions: we want to add public metadata, and we want
to make the token publicly verifiable. Now, private bits do not make immediate
sense in the context of a publicly verifiable token scheme, but public metadata
can be relevant in both settings.

The metadata can for instance be used to indicate an expiry date, replacing
the need for frequent key rotation in certain applications [36] as we discussed in
Section 1.1. We model it as a value that the user and issuer must agree upon,
which should restrict the issuer from using an identifiable value.

Lending terminology from programming, we would like the definition to pro-
vide backwards compatibility, and handle the notational incompatibility between
private and public verifiability. To this end, we imitate the notion of [optional
arguments] from programming. The notation [vk|sk] is meant as “either the pub-
lic or secret key, but at least one”. We align our definitions as close as possible
to those by Kreuter et al. [41].

Definition 2 (Anonymous tokens). An anonymous token scheme with zero
or more of the following features:

– private metadata bit
– public metadata
– public verifiability

consists of the following algorithms:

– (crs, td)← AT.Setup(1λ), the setup algorithm that takes as input the security
parameter λ in unary form, and returns a common reference string crs and
trapdor td. All the remaining algorithms take crs as their first input, but we
omit it for notational clarity.

– (pp, sk, [vk]) ← AT.KGen(crs), the key generation algorithm that generates a
signing key sk and a verification key vk along with public parameters pp.

– σ ← 〈AT.User(pp, [vk], t, [md]),AT.Sign(sk, [md], [b])〉, the token issuance pro-
tocol, which involves interactive algorithms AT.User and AT.Sign. The user
algorithm takes as input values the public parameters and the token seed



t ∈ {0, 1}λ, and potentially the verification key vk and the public metadata
md. The signing algorithm takes the private key sk and potentially metadata
md and the private bit b. At the end of the interaction, the issuer outputs
nothing, while the user outputs σ, or ⊥ to indicate error.

– bool← AT.Vf([vk|sk], t, [md], σ), the verification algorithm that takes as input
either the public verification key vk or the private key sk, a token seed t,
metadata md and the signature σ. It returns a bit indicating if the token was
valid or not.

– [ind ← AT.ReadBit(sk, t, [md], σ)], the private bit extraction algorithm that
takes as input the private key sk and token (t, [md], σ). It returns an indicator
ind ∈ {⊥, 0, 1} which is either the private bit, or ⊥.

The notation of the above definition should be interpreted in a global sense.
If one – for example – wants to use public metadata, it should be included
everywhere it is mentioned. As such, this listing then specifies the following six
notions:

1. With designated verification:

(a) Anonymous tokens

(b) Anonymous tokens with private metadata bit

(c) Anonymous tokens with public metadata

(d) Anonymous tokens with public and private metadata

2. With public verification:

(a) Anonymous tokens

(b) Anonymous tokens with public metadata

Examples of 1a and 1b are well known from previous work. A previous example of
2b is known as a partially blind signature scheme. We will provide new examples
of the last four (2a is implicit in 2b) in Section 4. To reduce notational clutter,
we collectively refer to all of these as anonymous tokens.

We follow the convention of dividing the interactive protocol 〈AT.User,AT.Sign〉
into the non-interactive algorithms AT.User0, AT.Sign0 and AT.User1.

An anonymous token scheme must satisfy correctness, unforgeability and
unlinkability:

Definition 3 (Token correctness). An anonymous token scheme AT is cor-
rect if any honestly generated token verifies. For any honestly generated crs,
(pp, sk, [vk]), t and [md],

Pr[AT.Vf(vk, t, [md], 〈AT.User(pp, [vk], t,md),

AT.Sign(sk, [md], [b])〉) = 1] = 1− negl(λ).

We split correctness of the private metadata bit into a separate definition in
order to reduce notational clutter. This definition only applies in the private-key
setting, and the parameters have been fixed accordingly.



Game OMUFAT,A,`(λ)

(crs, td)← AT.Setup(1λ)

(pp, sk, [vk])← AT.KGen(crs)

for b ∈ {0, 1}, qb := 0

(ti, σi)i∈[`+1] ← ASign,Verify,Read(crs, pp)

return (∀b ∈ {0, 1}, qb ≤ ` and

∀i 6= j in [`+ 1] ti 6= tj and

∀i in [`+ 1] AT.Vf([sk|vk], ti, σi) = true and

∃b ∈ {0, 1} : ∀i ∈ [`+ 1],

AT.ReadBit(sk, ti, σi) = b)

Oracle Sign(msg, [md], [b])

qb := qb + 1

return AT.Sign0(sk,msg, [md], [b])

Oracle Verify(t, [md], σ)

return AT.Vf([sk|vk], t, [md], σ)

Oracle Read(t, σ)

return AT.ReadBit(sk, t, [md], σ)

Fig. 2. One-more unforgeability with metadata.

Definition 4 (Correct private bit). An anonymous token scheme AT is cor-
rect with respect to the private metadata bit if the correct bit is retrieved success-
fully, i.e. that

Pr[AT.ReadBit(sk, t, 〈AT.User(pp, t, [md]),

AT.Sign(sk, [md], b)〉) = b] = 1− negl(λ).

No adversary should be able to redeem other tokens than those that have been
correctly issued. The one-more unforgeability notion has become the common
notion for anonymous credentials. It allows the adversary to claim ` tokens from
the issuer, and the adversary should not be able to redeem ` + 1 tokens. We
require the tokens to be unique with respect to the value of the seed t.

Definition 5 (One-more unforgeability). An anonymous token scheme AT
is one-more unforgeable if for any PPT adversary A, and any ` ≥ 0:

Advomuf
AT,A,`(λ) := Pr[OMUFAT,A,`(λ) = 1] = negl(λ),

where OMUFAT,A,` is the game defined in Figure 2.

Next, we want to provide user anonymity. The right notion for this is un-
linkability, which guarantees that even colluding issuers and verifiers are unable
to link tokens. Metadata is a strong way of creating a link, and we omit this
problem by only considering fixed public metadata for this notion. This is in
line with for example expiry dates, which would otherwise have been solved in
practice using key rotation, and the definition is (as usual) also using a fixed key.
Private metadata is outside the control of the user, and is therefore included, in
line with Krauter et al. [41].



Game UNLINKAT,A,m,[md](λ)

(crs, td)← AT.Setup(1λ)

(st, pp, [vk])← A(crs, [md])

q0 := 0; q1 := 0,Q := ∅
(st, (msgi)i∈Q)← AUser0,User1(st)

if Q = ∅ then return 0

j ←$Q;Q = Q \ {j}
σj ← AT.User1(stj , [vk],msgj , [md])

for i ∈ Q
σi ← AT.User1(sti, [vk],msgi, [md])

φ←$SQ
j′ ← A(st, (tj , σj), (tφ(i), σφ(i))i∈Q)

return q0 − q1 ≥ m and j′ = j

Oracle User0()

q0 := q0 + 1

tq0 ←$ {0, 1}λ

(msgq0 , stq0)← AT.User0(pp, [vk], tq0 , [md])

Q := Q∪ {q0}
return (q0,msgq0)

Oracle User1(j,msg)

if j /∈ Q then

return ⊥
σ ← AT.User1(stj , [vk],msg, [md])

if σ 6= ⊥ then

Q := Q \ {j}
q1 := q1 + 1

return σ

Fig. 3. Public-key unlinkability with fixed metadata. If X is a set, then SX is the
symmetric group of X.

Definition 6 (Unlinkability). An anonymous token scheme AT is κ-unlink-
able if for any PPT adversary A, a fixed md, and any m > 0,

AdvunlinkAT,A,m,[md](λ) := Pr[UNLINKAT,A,m(λ) = 1]

≤ κ

m
+ negl(λ),

where UNLINKAT,A,m is the game defined in Figure 3.

We finally consider the private metadata bit. We give the adversary access
to two signing oracles: One uses the adversary’s chosen private bit, the other is
using a fixed bit for the game. The adversary can also query a verification oracle.
At the end of the game, the adversary outputs its guess for the fixed challenge
bit.

Definition 7 (Private metadata bit). An anonymous token scheme AT pro-
vides private metadata bit if for any PPT adversary A,

Advpmb
AT,A(λ) :=

∣∣Pr[PMB0
AT,A(λ)]− Pr[PMB1

AT,A(λ)]
∣∣

= negl(λ)

where PMBβAT,A is the game defined in Figure 4.



Game PMBβAT,A(λ)

(crs, td)← AT.Setup(1λ)

(pp, sk)← AT.KGen(crs)

β′ ← ASign,Sign′,Verify(crs, pp)

return β′

Oracle Sign(msg, [md])

return AT.Sign0(sk,msg, [md], β)

Oracle Sign′(msg, [md], b)

return AT.Sign0(sk,msg, [md], b)

Oracle Verify(t, [md], σ)

return AT.Vf(sk, t, [md], σ)

Fig. 4. Game for private metadata bits for anonymous tokens.

4 Anonymous Token Protocols

The Privacy Pass protocol [27] and its siblings [36, 41] are based on verifiable
oblivious pseudo random functions (VOPRF). Here, a user holds some secret
input x and the signer holds a secret key k and they evaluate the function F
obliviously such that the user learns F (x, k) but nothing about k, and the signer
learns nothing about the input x nor the output F (x, k). Additionally, the user
is ensured that the function is evaluated by the correct secret key.

We construct three protocols for anonymous tokens (AT) with 1) public meta-
data, 2) public and private metadata, and 3) public metadata and public verifi-
ability, respectively, constructed from the same framework.

At the core of our protocols lies a verifiable key transformation. Let d :=
Hm(md) and the curve point U := [d]G+K, where G is a public generator and
K is the public key with a corresponding private key k. Let e = (d + k)−1 and
W = [e]T . Notice the relation

KT : logG([d]G+K) = (d+ k) = logW T. (1)

The keys may consist of several such pairs. In order to break a scheme with
transformed keys, one can either break properties of the original scheme, or one
can break the integrity or privacy of the transformation process. We summarize
this observation in a lemma:

Lemma 1. Let AT be a scheme with keys (pk, vk) with security property P
within adversarial advantage AdvpAT,A(λ), and assume we can prove the relation

in Equation 1 within adversarial advantage AdvrelKT,A(λ). Then A has advantage

AdvpAT,A(λ)+AdvrelKT,A(λ) against property P in the scheme AT with transformed
keys ({e = e(md, pk)}, {[e]G}).

We note that [52, Theorem 1] states that the inverse computational Diffie-
Hellman (ICDH) problem is as hard as plain CDH, and the security of the
transform e = (d+ k)−1 as signing key instead of k follows.



—————————— Attestation ——————————

User(t,md) Signer(md, sk)

d := Hm(md) d := Hm(md)

U := [d]G+K U := [d+ k]G

r←$Z∗p e := (d+ k)−1

T := Ht(t||md)

T ′ := [r−1]T T ′ W ′ := [e]T ′

W ′, πDLEQ πDLEQ ← ΠDLEQ(T ′,W ′; e)

if not V(πDLEQ) :

return ⊥
W := [r]W ′

return W

—————————— Redemption ——————————

User(t,md,W ) Verifier(sk)

t,md,W T := Ht(t||md)

e := (Hm(md) + k)−1

if W = [e]T :

return true

else :

return false

Fig. 5. Designated verifier anonymous tokens with public metadata. Our protocol is a
direct extension of Privacy Pass [27].

4.1 AT with Public Metadata

In Figure 5 we present an extension of Privacy Pass [27] with public metadata.
The protocol is designated verifier, as the secret key is needed to verify tokens.

Parameters Let λ be the security parameter, let p be a prime and let E be
an elliptic curve group of order p with generator G. Let Ht : {0, 1}∗ → E and
Hm : {0, 1}∗ → Zp be hash functions, and assume that group elements and
integers can be encoded uniquely as strings. Furthermore, let metadata md be
an element of a public set of valid strings. Finally, let sk := k←$Z∗p be the signing
key, and let pk := K := [k]G be the public key. We consider G,E, p, Ht, Hm and
K to be implicit knowledge in Fig. 5.



Zero-Knowledge Protocol DLEQ The anonymous tokens protocol in Figure 5
uses the ΠDLEQ-protocol defined in Section 2.2. The signer computes a proof
πDLEQ := (c, z) of equality of discrete logarithms by instantiating the protocol
ΠDLEQ(T ′,W ′; e). Given the public parameters G and K, and U := [d]G + K,
this is a proof that logG U = d + k = logW ′ T ′. This proves that W ′ = [e]T ′,
where e := (d+ k)−1, is computed correctly with respect to d and K. To verify,
the user instantiates the verification algorithm, denoted by V(πDLEQ) in Figure 5.

Correctness and Security

Theorem 1 (Completeness). The anonymous token protocol with public meta-
data in Figure 5 is complete according to Definition 3.

Proof. The completeness follows from expanding W :

W = [r]W ′ = [r][e]T ′ = [r][e][r−1]T = [e]Ht(t||md).

Theorem 2 (Unforgeability). The anonymous token protocol with public meta-
data in Figure 5 achieve one-more unforgeability with respect to Definition 5.

Proof. Except for the updated public-private key-pair, the protocol is identical
to Privacy Pass. The security against one-more unforgeability follows directly
from Lemma 1 and [27, Theorem 2], with respect to U .

Theorem 3 (Unlinkability). The anonymous token protocol with public meta-
data in Figure 5 achieve unlinkability with respect to Definition 6.

Proof. This proof is identical to [27, Theorem 1]: As we sample r←$Zp uniformly
at random, it follows that our protocol is unconditionally unlinkable. Since T
is a generator of E, then T ′ = [r−1]T is uniformly random and contain no
information about t nor T . As the signer only sees T ′, and the verifier only
receive t, and they are independent, there is no link between the view of the
signer and the view of the verifier.

4.2 AT with Public and Private Metadata

In Figure 6, we present an extension of the PMBTokens [41, Figure 8] with public
metadata. This protocol is also designated verifier, requiring the secret key for
verification.

Parameters Let λ be the security parameter, let p be a prime and let E be
an elliptic curve group of order p with generators G0, G1. Let Ht : {0, 1}∗ → E,
Hm : {0, 1}∗ → Z∗p and Hs : {0, 1}∗ → Z∗p be hash-functions, and assume that
group elements and integers can be encoded uniquely as strings. Furthermore,
let metadata md be an element of a public set of valid strings. Finally, let sk :=
(k0,0, k0,1, k1,0, k1,1)←$ (Z∗p)4 (all ki,j being distinct) be the signing key, and let
pk := {Ki,j} = {[ki,j ]Gi}, for i, j = 0, 1, be the public key. This is implicit
knowledge in the protocol description.



—————————— Attestation ——————————

User(t,md) Signer(md, b, sk)

d := Hm(md) d := Hm(md)

r←$Z∗p e0,j := (d+ k0,j)
−1, j = 0, 1

T := Ht(t||md) e1,j := (d+ k1,j)
−1, j = 0, 1

T ′ := [r−1]T T ′ s←$ {0, 1}λ

S′ := Hs(T
′||md||s)

Vj := [ej,0]T ′ + [ej,1]S′, j = 0, 1

W ′ := [eb,0]T ′ + [eb,1]S′

πAND ← ΠDLEQ2(V0; e0,0, e0,1)

π′AND ← ΠDLEQ2(V1; e1,0, e1,1)

S′ := Hs(T
′||md||s)

s,W ′, V0, V1,

πAND, π
′
AND, πOR

πOR ← ΠDLEQOR2(W ′; eb,0, eb,1)

if not V(πAND, π
′
AND, πOR)

return ⊥
S := [r]S′

W := [r]W ′

return (S,W )

—————————— Redemption ——————————

User(t,md, S,W ) Verifier(sk)

t,md, S,W T := Ht(t||md), d := Hm(md)

e0,j := (d+ k0,j)
−1, j = 0, 1

e1,j := (d+ k1,j)
−1, j = 0, 1

Wj := [ej,0]T + [ej,1]S, j = 0, 1

if W = W0 and W 6= W1

return 0

if W 6= W0 and W = W1

return 1

else return ⊥

Fig. 6. Designated verifier anonymous tokens with public and private metadata, an
adjusted extension of Kreuter et al. [41].



Zero-Knowledge Protocol DLEQAND The anonymous tokens protocol in Fig-
ure 6 uses the ΠDLEQ2-protocol defined in Section 2.3 twice as a subroutine to
ensure that we afterwards can prove that the signed token W ′ was computed
correctly. Given the generators G0, G1, T

′, S′, the public keys Ki,j := [ki,j ]Gi
and the elements Vi := [ei,0]T ′ + [ei,1]S′, for i, j = 0, 1, we want to prove that
the following relations hold:[

G0 +G1

Vi

]
= [ei,0]

[
[d]G0 +Ki,0

T ′

]
+ [ei,1]

[
[d]G1 +Ki,1

S′

]
.

We do this by instantiating ΠDLEQ2(V0; e0,0, e0,1) and ΠDLEQ2(V1; e1,0, e1,1) in
Figure 6 to get proofs πAND and π′AND. We denote the verification by V(πAND, π

′
AND).

Zero-Knowledge Protocol DLEQOR The anonymous tokens protocol in Fig-
ure 6 uses the ΠDLEQOR2-protocol defined in Section 2.4. The signer computes
an OR-proof of equality of discrete logs by instantiating ΠDLEQOR2(W ′; eb,0, eb,1).
Consider the generators G0, G1, T

′, S′, hashed metadata d and computed value
W ′. The signer then proves that W ′ is correctly computed, with respect to T ′

and S′, and in the same way as one of the committed values V0 or V1, with
respect to G and H. That is, for either b = 0 or b = 1:

Vb = [eb,0]G0 + [eb,1]G1 ∧ W ′ = [eb,0]T ′ + [eb,1]S′.

We denote the verification of the proof πOR by V(πOR).

Correctness and Security

Theorem 4 (Completeness). The anonymous token protocol with public and
private metadata in Figure 6 is complete according to Definition 3 and will,
according to Definition 4, return the correct metadata bit except with negligible
probability.

Proof. If the user submits (t,md, S,W ), completeness follows from expanding
Wb:

Wb = [r]([eb,0]T ′ + [eb,1]S′) = [r]([eb,0][r−1]T + [eb,1]S′)

= [eb,0]T + [r][eb,1]S′ = [eb,0]Ht(t||md) + [eb,1]S.

Furthermore, the probability that this equation holds for both b = 0 and b = 1
is negligible. If that was the case, then

[e0,0]T + [e0,1]S = [e1,0]T + [e1,1]S.

As we require all keys ki,j to be distinct, it follows that all ei,j are distinct. Then,
we have that

T =

[
e1,1 − e0,1
e0,0 − e1,0

]
S.

Since T = Ht(t||md) is sampled independently and uniformly at random, the
probability that this equation holds is 1/p, which is negligible.



Theorem 5 (Unforgeability). The anonymous token protocol with public and
private metadata in Figure 6 achieves one-more unforgeability with respect to
Definition 5.

Proof. For fixed metadata md we let the adversary query the signing oracle `
times for both b = 0 and b = 1. Then one-more unforgeability follows directly
from [41, Theorem 8] and Lemma 1.

Theorem 6 (Unlinkability). The anonymous token protocol with public and
private metadata in Figure 6 achieves unlinkability with respect to Definition 6.

Proof. We note that it is easy to create many different anonymity sets to distin-
guish users based on private metadata being b = 0 or b = 1, and in combination
with different values of public metadata md. We restrict the unlinkability to hold
for users within the same anonymity sets based on b and md, both sampled ac-
cording to the real distribution of private and public metadata. Let Ub,md be this
set, and select two sessions from Ub,md. Then it follows directly from [41, The-
orem 9] that the probability of success of the adversary will be upper bounded
by 2/m+ negl(λ)

Theorem 7 (Private metadata bit). The anonymous token protocol with
public and private metadata in Figure 6 provides private metadata bit with respect
to Definition 7.

Proof. This statement follows directly from the proof of [41, Theorem 10], which
describes a hybrid argument to prove that instances with private bit 0 are indis-
tinguishable from instances with private bit 1. Notice in particular that the extra
OR-proofs in our protocol are independent of the private bit b, and therefore need
no additional simulation.

4.3 Public Verifiability from Pairings

The authors of Privacy Pass [27] described an application where the issuer and
the recipient of a token would be the same entity, possibly separated by time. For
the application we present in Section 6, those two roles are in fact separate, and
one should therefore have a scheme that supports public verifiability. It remains
an open problem to achieve this without pairings, unless we allow for two rounds
of communication [2, 50].

We move on to provide a new variant of a little known partially blinded
signature by Zhang, Safavi-Naini and Susilo [51]. The protocol allows a user and
a signer to generate a signature on a user-private message m and agreed-upon
metadata md. Both the issuance protocol and the signature consists of a single
curve point. The authors prove security against one-more forgery, assuming that
the CTCDH problem is hard.

We show that the idea underlying this scheme can be viewed as a combination
of Boneh-Lynn-Shacham signatures [10] and Privacy Pass, inheriting its attrac-
tive properties from both. We update the ZSS protocol to use different source



groups G1 6= G2, where there are no efficiently computable homomorphism, i.e.,
a type III pairing (cf. Section 2.1). This allows more efficient concrete instanti-
ations. This is secure in our setting, but would not be in the case of type I or II
pairings.

Parameters Let λ be the security parameter, let ê : G1×G2 → GT be a pairing,
where G1, G2 and gT are generators for their respective prime p order groups.
Furthermore, let H1 : {0, 1}∗ → G1 and Hm : {0, 1}∗ → Z∗p be hash functions,
and assume that group elements and integers can be encoded uniquely as strings.
Also, let md be an element of a public set of valid metadata strings. Finally, let
sk := k←$Z∗p be the signing key, and let pk := K = [k]G2 be the public key.
This is implicit knowledge in the protocol description.

Protocol Layout Recall that the BLS-scheme signs a message m by hashing
it to the group generated by G1 and multiplying it with the secret key k; W :=
[k]H1(m). The signature can then be verified by checking that

ê(H1(m),K) = ê(W,G2).

Correctness follows from the linearity of the pairing.
We replace m by a token seed t, and use the same trick as earlier to con-

currently update the key-pair based on metadata. Then we get the following
anonymous token scheme:

Signing The user sends T ′ := [r−1]H1(t) to the issuer, who returns W ′ := [e]T ′,
for e = (d+k)−1. The user can verify that the signature is correct by checking
ê(W ′, U) = ê(T ′, G2), for U := [d+k]G, and then storing (t,md,W = [r]W ′).

Verification The user sends (t,md,W ), and the recipient can verify the token
by checking if ê(W,U) = ê(T,G2).

This scheme hides the token similarly to Privacy Pass, it can be verified
without using the private key, and its unforgeability comes directly from BLS.
We note that the check ê(W ′, U) = ê(T ′, G2) ensures that the tokens are signed
correctly with respect to the public key. The complete protocol is listed in Fig-
ure 7. Finally, we note that we can batch-verify n tokens under the same key
and metadata and check for equality in the following way:

ê

(∑
i

Wi, U

)
= ê

(∑
i

Ti, G2

)
.

This saves the verifier of 2(n − 1) expensive pairing-computations, which is es-
pecially useful in systems with large same anonymity sets.

Correctness and Security

Theorem 8 (Completeness). The anonymous token protocol with public meta-
data and public verifiability in Figure 7 is complete according to Definition 3.



—————————— Attestation ——————————

Client(t,md) Signer(md, sk)

d := Hm(md) d := Hm(md)

r←$Z∗p e := (d+ k)−1

T := H1(t||md)

T ′ := [r−1]T

U := [d]G2 +K T ′ W ′ := [e]T ′

W ′

if not ê(W ′, U) = ê(T ′, G2) :

return ⊥
W := [r]W ′

return W

—————————— Redemption ——————————

User(t,md,W ) Verifier(k)

t,md,W T := H1(t||md)

U := [Hm(md)]G2 +K

if ê(W,U) = ê(T,G2) :

return true

else :

return false

Fig. 7. Anonymous tokens with public metadata and public verifiability by adjusting
Zhang et al. [51] for type III pairings.

Proof. Completeness follows from expanding ê(W,U):

ê(W,U) = ê([r]W ′, [d+ k]G2) = ê([r][e]T ′, [d+ k]G2)

= ê([r][e][r−1]T, [d+ k]G2) = ê([e]T, [d+ k]G2)

= ê(T,G2)e·(d+k) = ê(T,G2).

Theorem 9 (Unforgeability). The anonymous token protocol with public meta-
data and public verifiability in Figure 7 achieve one-more unforgeability with
respect to Definition 5.

Proof. Unforgeability of the anonymous token protocol follows directly from the
unforgeability of the BLS-signature scheme [10] and Lemma 1. The constructions
are identical, except for the fact that we sign with e := (d + k)−1 instead of k



to embed the public metadata into the token. The relation logG[d]G + K =
(d+ k) = logW ′ T ′ is immediate from the client’s verification equation.

Unlinkability holds only because we use a type III pairing, otherwise it would
be possible to check if ê(W,φ(T ′)) = ê(W ′, φ(T )). Recall that we fix the metadata
md for this notion.

Theorem 10 (Unlinkability). The anonymous token protocol with public meta-
data and public verifiability in Figure 7 achieve unlinkability with respect to Def-
inition 6.

Proof. Assume that no efficiently computable φ : G2 → G1 exists. Observe that
given any valid token (t,md,W ) and any view (T ′,W ′) there exists a value r′

such that W − [r′]W ′ and T − [r′]T ′, and hence, T is independent of any W . It
follows that the anonymous token is unlinkable.

5 Performance and Comparison

In this section, we briefly describe the most efficient anonymous token protocols
with public metadata in the literature, for example to enable batched revoca-
tion. We compare the protocols with our schemes in Table 1. To streamline the
comparison, we assume that all parties know the public metadata, for example
that md is the current date, and assume that this implicit knowledge is not sent.
We instantiate the schemes with λ = 128 bits of security. Finally, we present a
concrete example in Section 5.6 to show that we can replace PrivateStats with
our protocol in Figure 5 to improve both communication size and computational
efficiency.

5.1 Privacy Pass

Our protocol in Figure 5 is inspired by Privacy Pass [27], and they have identical
structure and communication. The main difference is the change of private key
used for signing, and the updated zero-knowledge proof with respect to the
new public key, both depending on the public metadata. The zero-knowledge
proofs are of the same size, and it follows that the communication sizes are
equal. However, Privacy Pass does not allow public metadata unless we have one
public key for each valid string of metadata, and hence, to allow for 2N possible
messages md, Privacy Pass must publish 2N public keys. A batch of n signatures
under the same public key includes n group elements in the request, and n group
elements and only one proof in the signature since the zero-knowledge proof can
be batched for all instances.

5.2 PrivateStats

PrivateStats [36] is also inspired by Privacy Pass [27], but uses a attribute-based
VOPRF to generate new public keys on the fly. To allow for 2N strings of public



metadata, there are two main differences: 1) the public key consists of N + 2
group elements, and 2) the token consists of an additional N group elements
and zero-knowledge proofs to ensure that the correct public key is used in the
signature. We note that a batch of n signatures under the same public key
includes n group elements in the request, and n group elements and only one
proof in the signature since the final zero-knowledge proof can be batched for
all instances.

5.3 Tokens from RSA

Abe and Fujisaki [1] presents a partially blind signature scheme based on RSA.
The public exponent e must be at least two bits longer than the public meta-
data, and we fix this to be of length 130 bits. The user updates the public key to
emd = e ·τ(md), for a public formatting function τ , when they blind the message,
and the signer updates the secret key dmd = (e ·τ(md))−1 mod N when signing.
Otherwise, the partially blind signature scheme [1] is similar to the blind signa-
ture by Chaum [20]. Each message consists of one element in Z∗N , and we note
that a batch of n signatures under the same public key expands the messages
by a factor n.

5.4 Tokens with Private Metadata

Kreuter et al. [41] presents an extension of Privacy Pass [27] to include private
metadata. They publish two public keys, and the signer proves in zero-knowledge
that the token is signed with one of the corresponding private keys. To ensure
metadata privacy, each token is randomized based on a fresh seed s that is given
to the user, and hence, the signature consists of a seed, a group element and a
proof. The token consists of the initial seed t in addition to two group elements.
Like Privacy Pass, this protocol must publish a new pair of public keys for each
valid string of metadata, and can sign a batch of n tokens using a batched
zero-knowledge proof to ensure correctness.

5.5 Comparison

We present a comparison of schemes in Table 1, where we focus on communi-
cation complexity. We note that both RSA and pairing based cryptography are
usually slower than elliptic curve cryptography, in addition to requiring larger
parameters. We also note that the updated keys in our protocols are only de-
pendent on the secret key and the metadata, and can often be pre-computed.
We observe that when allowing for batched token-revocation, our protocols are
more efficient than the state of the art in all categories.

While RSA and elliptic curve cryptography are primitives implemented in all
mainstream cryptographic libraries, there are few trustworthy implementations
of pairings. Even though there exists a few implementations7, they are mostly
for academic use, maybe except for the implementation in Rust used by Zcash8.

7 Pairings: https://hackmd.io/@zkteam/eccbench
8 Zcash: https://github.com/zkcrypto/bls12_381

https://hackmd.io/@zkteam/eccbench
https://github.com/zkcrypto/bls12_381


Public Metadata (PM) PubKey Request Signature Token

Privacy Pass [27] 257 · 2N 257 769 385

PrivateStats [36] 257 · (N + 2) 257 769 · (N + 1) 385

Our scheme (Fig 5) 257 257 769 385

PM + Private Metadata PubKey Request Signature Token

Kreuter et al. [41] 514 · 2N 257 1921 642

Our Scheme (Fig 6) 1028 257 3203 642

PM + Public Verifiability PubKey Request Signature Token

Abe and Fujisaki [1] 3202 3072 3072 3200

Our scheme (Fig 7) 763 382 382 510

Table 1. All numbers are given in bits. We compare the schemes for 128 bits of
security, allowing for 2N strings md of metadata (or 2N batches of token-revocations).
Token seeds t is of size 128 bits, and metadata md is implicit knowledge. Privacy Pass,
PrivateStats, Kreuter et al. and our protocols in Fig 5 and Fig 6 are instantiated with
curve x25519 [7], Abe and Fujisaki is instantiated with RSA-3072 and our protocol in
Fig 7 is instantiated with BLS12-381 [46]. Privacy Pass, PrivateStats, Kreuter et al.,
Fig 5 and Fig 6 allows for batched ZK-proofs for additional tokens.

5.6 Telemetry Collection in WhatsApp

PrivateStats [36] was designed to allow users of WhatsApp to anonymously re-
port telemetry data to Facebook. We present a concrete comparison to our pro-
tocols in Table 2. Here, we assume that Facebook wants to update their public
keys only once a year, rotate signing keys every day, and only sign one token per
user each day. We let the public metadata be dates encoded as strings“YYYY-
MM-DD”, where the year is fixed.

Privacy Pass [27] is very efficient in terms of communication, but requires
one public key per day. Hence, the public key is of size 93805 bits over a year
of 365 days, that is, almost 12 KB. An alternative method to download all keys
and store them until usage is to use a Merkle-tree for key-transparency and give
paths corresponding to the current public key as a part of each signature. Then,
the public key consists of the root of size 256 bits, while each signature consists
of dlog2(365)e = 9 hashes of 256 bits in addition to the public key, the token and
the zero-knowledge proof. We give both instantiations in the table, and denote
the alternative as Privacy Pass+.

Our scheme in Figure 5 has the smallest overall communication complexity
of all schemes. It offers much smaller keys than Privacy Pass, and much smaller
signatures than Privacy Pass+ and PrivateStats, saving up to 90 % in commu-
nication. If all 2 billion users of WhatsApp report their telemetry every day,
our scheme in Figure 5 would save more than 1.7 TB of communication for the
Facebook servers compared to the current implementation of PrivateStats.



Protocol PubKey Request Signature Token

Privacy Pass [27] 93805 257 769 385

Privacy Pass+ 256 257 3330 385

PrivateStats [36] 2313 257 7690 385

Our scheme (Fig 5) 257 257 769 385

Our scheme (Fig 7) 763 382 382 510

Table 2. All numbers are given in bits. We compare Privacy Pass, PrivateStats, and
the protocols in Fig 5 and Fig 7 with key-rotation each day in a year, only signing one
token at a time.

Our scheme in Figure 7 offers similar improvements to communication, in
addition to public verifiability, but at the cost of less standardized cryptography
and less efficient computation.

6 Application to Contact Tracing

As nations started adopting digital contact tracing during the COVID-19 pan-
demic, privacy experts warned that such systems could enable the collection
of people’s contact graphs. The dp3t protocol [48] was eventually adopted as
the de facto method for digital contact tracing through its implementation and
deployment in iOS and Android as the Exposure Notification System (ENS).

We provide a brief overview of the basic dp3t idea in order to put our con-
tribution into context. The protocol is instantiated on each participating phone,
which generates a random key (Technical Exposure Key, TEK) every day. The
TEK is used to generate new Rotating Proximity Identifiers (RPI) every 10–20
minutes, which is then broadcast from the phone using Bluetooth Low Energy
(BLE). Other phones in the proximity store any RPI they hear, along with the
signal strength.

If Alice tests positive for COVID-19 she can upload her TEKs (now renamed
to diagnosis keys, DK) along with her BLE transmission strength to a health
authority bulletin board. Bob’s phone regularly checks the board to see if there
is a sufficiently large overlap between published the DKs and the RPIs stored
locally, and with sufficiently low difference between transmission strength and
received strength. If this is the case, then Bob is given a suitable alert to let him
know that he most likely has been in close vicinity of an infected individual, and
should follow any advice given by the health authorities.

The process of uploading TEKs should depend on some sort of authorization.
The dp3t documentation describes a simplified model where a doctor receives
the test results, and sends the patient an SMS with a short upload code. Now,
this process may take precious person-hours during a pandemic. Some countries
have therefore opted to connect their exposure notification with already existing
centralized registries of positive test results, e.g., Norway, Denmark and Estonia.
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Fig. 8. A sequence diagram of anonymous tokens in Smittestopp.

When starting the upload process, the user is prompted to log in to some
government service (“verification”). Once the user has identified herself, the ser-
vice makes a query to the relevant health registry. The service returns an access
token to the app if there exists a recent positive test, which is then used to up-
load the keys to “backend”. Unfortunately, this token may create an identifiable
link from the meant-to-be-anonymous database of DKs, and unique identities in
the health registry. Using anonymous credentials, one can break this link (up to
traffic analysis).

The Norwegian Institute of Public Health (NIPH) wanted the tokens to be
timestamped in order to avoid users posting severely delayed keys: This would
have allowed an attacker to get well again, move back out among other people,
and only then upload to the backend service. Notice that merely tying the token
to keys – e.g., by using a hash of the TEKs as the token seed t – would not
avoid this attack, as those could have been generated and stored until the time
of the attack. As a result of this, it was decided that the keys should be rotated
regularly.

Privacy Pass was implemented as a reusable C# package, to ease the integra-
tion into the contact tracing app. The verification and backend services keep a
master secret key k, and generate daily keys from some KDF(k, date). The pub-
lic key is posted from the verification service. The full integration of anonymous
tokens is described in Figure 8.

We finally note that this key distribution method suffers from a potential
attack by a dishonest verification service that could serve special public keys to



track individuals. It is, however, detectable by the users if they share their view
of the public keys with each other to ensure consistency. The current solution
was accepted by all involved stakeholders due to limited time and a weighting
of the practical risk against the potential reward. However, the challenges with
respect to key-rotation and key-sharing strongly motivated the authors’ work in
Section 4.

7 Conclusion

In this work, we have updated the definitions for anonymous tokens to also
include public metadata, and we have constructed three protocols that satisfy
these definitions. Additionally, we combine public metadata with either private
metadata or public verifiability, and show that all instantiations are efficient in
practice. For situations with frequent key-rotation, we show that our protocols
can save up to 90 % in communication over the state of the art. Furthermore,
our protocols fits nicely into the Privacy Pass framework, which makes it easy to
incorporate our contributions in the ongoing standardization processes by IETF
and W3C, answering an open problem.

We also provide a description of how anonymous tokens can be used to im-
prove the user’s privacy in contact tracing applications, and implemented this
into the solution used in Norway. The app has 870, 000 users at the time of writ-
ing9. As the Norwegian app is built on top of the same code base as the Danish
app, we consider it to be easy to extend the adaption of anonymous tokens to
their app, and most likely others as well.

We would also like to suggest new use-cases for anonymous tokens. For ex-
ample, anonymous tokens can improve the privacy of users traveling with public
transport. Bus or train companies may require patrons to verify their period
tickets for each journey, perhaps primarily to analyze traffic data. However, this
can easily reveal the routes of single users while traveling in-between their home
and work place, but also to the abortion clinic, their church or to a public demon-
stration etc. If all travelers with valid tickets are given a series of tokens (e.g.
with public metadata being the date or week or month the ticket is valid), then
these can be redeemed when boarding. This way, the companies get the statis-
tics they are interested in, without invading the user’s privacy. In general, any
systems with leveled authenticated login but anonymous actions can make use
of our protocols, e.g., systems with electronic locks that only care if the user has
certain privileges or not.

Finally, we would like to see improvements in three directions. Firstly, the
zero-knowledge proofs used by the anonymous tokens protocol with public and
private metadata in Figure 6 are much larger than the ones by Kreuter et
al. [41], in contrast to our protocol with public metadata in Figure 5 achiev-
ing the exact same communication cost as Privacy Pass [27]. In particular, we
would like to reduce the number of proofs and extra group elements in the

9 Smittestopp: https://www.fhi.no/om/smittestopp/

nokkeltall-fra-smittestopp, last accessed 2021-02-24

https://www.fhi.no/om/smittestopp/nokkeltall-fra-smittestopp
https://www.fhi.no/om/smittestopp/nokkeltall-fra-smittestopp


protocol of Section 4.2. Secondly, we would like to provide protocols free of
zero-knowledge proofs, to reduce the communication and computational cost,
as provided in [41, Section 7]. Finally, we would like to extend our protocols
to achieve post-quantum security, continuing the work by Albrecht et al. [3] on
lattices and the work by Boneh et al. [9] on isogenies.
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