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Abstract. We propose a novel MPC framework, Manticore, in the mul-
tiparty setting, with full threshold and semi-honest security model, sup-
porting a combination of real number arithmetic (arithmetic shares),
Boolean arithmetic (Boolean shares) and garbled circuits (Yao shares).
In contrast to prior work [34,32], Manticore never overflows, an impor-
tant feature for machine learning applications. It achieves this without
compromising efficiency or security. Compared to other overflow-free re-
cent techniques such as MP-SPDZ [17] that convert arithmetic to Boolean
shares, we introduce a novel highly efficient modular lifting/truncation
method that stays in the arithmetic domain. We revisit some of the ba-
sic MPC operations such as real-valued polynomial evaluation, division,
logarithms, exponentials and comparisons by employing our modular lift
in combination with existing efficient conversions between arithmetic,
Boolean and Yao shares. Furthermore, we provide a highly efficient and
scalable implementation supporting logistic regression models with real-
world training data sizes and high numerical precision through PCA
and blockwise variants (for memory and runtime optimizations). On a
dataset of 50 million rows and 50 columns distributed among two play-
ers, it completes in one day with at least 10 decimal digits of precision.
Our logistic regression solution placed first at Track 3 of the annual
iDASH’2020 Competition. Finally, we mention a novel oblivious sorting
algorithm built using Manticore.

1 Introduction

Motivation and background. Multiparty computation (MPC) is a method for
cryptographic computing allowing several parties holding private data to eval-
uate a public function on their aggregate data while revealing only the output
of the function and nothing else. Recent advances in the area make these proto-
cols practical [34,32,6,15,26,27,9,40,36,17,25,3]. Such privacy-preserving compu-
tations have been explored in finance [8], bioinformatics [14] and other industry
verticals in a variety of use cases including machine learning applications such as
linear regressions and logistic regressions [34], SVMs [39], clustering algorithms
[33], decision trees [18,12], neural networks [40,24,19,30].



The problem of designing and implementing a highly efficient (in terms of
runtime, memory and communication), numerically stable and robust MPC li-
brary is thus of central importance for supporting the above functionalities and
applications.

Prior work. Several MPC protocols and libraries have been proposed in the
literature and implemented. SecureML [34] provides a practical method in the
two-party setting using a combination of arithmetic, Boolean and Yao shares.
The method reduces floating point arithmetic with fixed precision to the evalua-
tion of additions, subtractions and rounded divisions on fixed-size integer types
(integers modulo 264) via a truncation of decimal numbers. SecureML was inpired
by the prior framework ABY [16] (whose security model is 1-out-of-3 corrupted
players without a dealer) except that it has been optimized for the vectorized
setting. The method is extended to the multiparty setting in [32]. Another re-
cent extension of ABY has been constructing efficient protocols for several primi-
tives such as scalar products, matrix multiplications, comparisons, maxpool, and
equality testing [35].

Several works [34,32,16,35] are based on Beaver multiplication [5] with local
rounding at the price of a small probability of an overflow on the plaintext value.
When such an overflow occurs, it is significant. Even if its amplitude has been
mitigated since SecureML [34], it still changes the most significant bits of the
result in, e.g., ABY3 [32]. Since the probability of overflow is computed on a
per-coefficient basis, in a machine learning scenario such as logistic regression,
linear regression or neural networks, the presence of at least one destructive
overflow gets multiplied by the size of the feature matrix and thus, becomes
non-negligible.

The problem of overflows during truncation has recently been addressed in
edaBits protocol [17] (see also [25]), extending the classical SPDZ protocol [15].
The main idea is the use of a new truncation method (a logical right shift opera-
tion) in both the semi-honest and the malicious models based on conversions from
arithmetic to Boolean shares as well as oblivious comparisons. SCALE-MAMBA3 is
another extension of SPDZ-2 [26,28]. It only supports computations modulo a
prime (and not modulo a power of two), garbled circuits and secret-sharing bi-
nary computations with malicious security in the honest majority model. The
dishonest majority model is only implemented using homomorphic encryption.
Yet, the strongest security model (full-threshold, active security with abort and
without a dealer) is only possible for very small datasets. The protocols are most
practical in the 1-out-of-3 setting without a dealer (for three players) or for n
players in the full-threshold setting for secret shares only (with a dealer or with
FHE) and passive security. Most of these protocols propose linear and logistic
regression but mainly for full-rank and feature scaled input datasets.

Finally, Sharemind [6,7] together with subsequent extensions such as [38] for
both arithmetic, Boolean secret shares as well as garbled circuits is a framework
providing 1-out-of-3 and full threshold. Various algorithms for oblivious sorting

3 https://github.com/KULeuven-COSIC/SCALE-MAMBA
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have been proposed in the literature built on top of Sharemind [23] (implement-
ing Batcher’s merge sort), [21,13].

Our contributions. In this work, we present a novel framework, Manticore,
for real number and Boolean arithmetic with high numerical precision in the
MPC setting. We only focus on the semi-honest security model with an offline
dealer, with full-threshold security across an arbitrary number of players. We
split the computation into offline and online phases. The offline phase (indepen-
dent of the input data) is performed by a trusted dealer and is compatible with
stronger models and the verifiability of this phase can be achieved via standard
techniques such as oblivious transfer and cut-and-choose. The offline phase gen-
erates precomputed data (e.g triples or masks) and distributes the secret shares
of these masks to the parties. The online phase computes additive shares of the
result.

We are primarily interested in efficient implementation, numerical stability
and robustness against data unbalanced-ness and singularities. Our implementa-
tion uses well-known secret sharing protocols starting from Beaver multiplication
and efficient conversions between arithmetic and Boolean shares. We represent
real numbers as fixed-point numbers using 64-bit and 128-bit integers on the
backend (Sections 3.1 and 3.2). A major improvement is coming from our al-
gorithms for modular lifts and truncations in Section 3.3 using masking data
precomputed in the offline phase. This eliminates the non-zero probability of
overflow compared to [34,32] and provides more efficient analogues of the logical
right shift operator of [17] avoiding the use of two oblivious comparisons (at least
8 times faster and 12 times less triples (see Table 1)).

Besides the almost classical tensor-like approach used in multiple prior works
where one round of communication is performed per tensor as opposed to per
individual coefficient, we improve communication complexity by using seeded
precomputed data (i.e., sending a seed instead of a full mask to reconstruct the
mask in the online phase); see Section 6 for the details.

Our logistic regression algorithm is presented in details in Section 5.1. For
better numerical stability as well as robustness against singular features ma-
trices, we use principal component analysis as well as internal normalization.
Faster convergence is achieved via second-order optimization methods (IRLS,
or Newton–Raphson) - a useful feature in the MPC setting. High precision is
obtained via a uniform approximation of the sigmoid function via Fourier series
based on the ideas of [9] (see also Section 4.1), thus, achieving the prescribed
high numerical precision. Major runtime and memory improvements for large-
scale feature matrices is done via blockwise versions of the algorithm (a row-
blockwise variant improving the memory overhead and a column-wise variant
used for improving the running time). Our experiments for training a logistic
regression model with 1–50M samples and up to 100 balanced or unbalanced
features with possible singularities, yield more than 7 decimal digits of precision
versus the same plaintext computation, which significantly outperforms state-of-
the-art implementations. Manticore based MPC logistic regression solution was
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recognized for delivering the best Federated Learning-based Cancer Prediction
Model at Track 3 of the annual iDASH’20204 with the highest model accuracy
with the lowest runtime.

Besides computing with real numbers, Manticore supports Boolean opera-
tions and garbled circuits as well as conversion algorithms between arithmetic
and Boolean/garbling shares (described in Section 3.4). Our hybrid approach for
private comparisons that leverages both Sklansky adders and ripple-carry adders
is described in Section 4.2). We also apply these Boolean primitives in the con-
text of private division and other operations (see Section 4.3). Data alignment
techniques are employed for faster memory access (also available for the real
numbers support).

Finally, in Section 5.2 we discuss a novel approach to oblivious sorting based
on the Manticore framework. Compared to prior art, it has better memory and
communication complexities thanks to the implementation of secure shuffling
(via Benes networks) and the multi-pivot approach suitable for better parallelism
of the underlying oblivious comparisons.

2 Manticore MPC protocol

2.1 Protocol participants and phases

An MPC algorithm is a computational procedure that is split both temporally
and physically across multiple participants. In our setting, a set of private data
owners provide the input data and a data analyst (DA) is interested in evaluating
a public function f over the input data via a multiparty computation protocol.
In this protocol, a set of computing parties (CP) receive shares of the input
values (the CP’s are deployed inside the perimeter of the corresponding private
data owners), a trusted dealer (TD) helps the CP’s compute f by generating
and secret-sharing among the parties random precomputed data (e.g., Beaver
triples). We assume that the dealer does not participate in the online phase (the
phase when the CP’s operate on the input data) and thus, it sees neither the
local private data, nor the communicated masked data. Furthermore, it does not
collude with any of the parties. In the paper, we interchangeably use CPs, parties
and players. Our CPs are semi-honest and the security model is full-threshold
across an arbitrary number of parties.

In the simplest model, there are n CP’s and one TD. The TD executes the
offline phase of the MPC algorithm that produces the precomputed data (also
referred to as triples or masks) by generating and distributing secret shares
of these masks to the players (see Figure 1). Each player knows its share of
the mask, but none of them knows the actual mask value. The offline phase
does not depend on the input data. The n CPs then run the online phase of
the MPC algorithm. It is a joint computation with synchronization steps where
CP’s can exchange or broadcast messages according to the MPC protocol. The
online phase runs within a firewall-ed environment among the players where the
trusted dealer has no access (see Figure 1).

4 http://www.humangenomeprivacy.org/2020/
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Fig. 1. The offline phase in left and the online phase in right

2.2 MPC variables and builtins

Our MPC protocol is based on secret sharing:

Definition 1 (secret sharing). If (G,+) is an abelian group, then an ele-
ment x ∈ G is said to be secret shared among the n players P1, . . . , Pn, if every
player Pi holds an xi, such that x1 + x2 + . . .+ xn = x. We use JxK to denote a
n-tuple of secret shares (x1, . . . , xn).

The MPC algorithm is the distributed equivalent of a plaintext pseudocode
which we can describe as an SSA (static single assignment) graph of MPC-
friendly elementary operations. The nodes of the SSA graph correspond to all
the immutable variables that occur during the execution, and each player gets
a local view (or share) of these variables. We refer to these local views as MPC
variables. The MPC-friendly elementary operations are builtins that take MPC
variables (together with some static parameters) as inputs and that produce
MPC variables as outputs. Globally, an MPC variable holds all the information
about one variable in the SSA, namely: one plaintext value x that can be either
public (known by all players, but not to the trusted dealer) or secret-shared JxK
(each player only knows its share) or more rarely, dealer-generated; one mask
JλK (known by the dealer, and secret shared among all players); and the optional
masked value a = x+ λ (known by all players, but not by the dealer).

Locally, each CP has a partial view of the MPC variable, which is a structure
with 4 optional fields; 1. the public value x (if the variable is publicly revealed);
2. one share xj of the public value; 3. one share λj of the variable’s mask; 4. the
masked value a (if the variable is masked and revealed). The special mask-and-
reveal operation instructs each player to broadcast the masked share xj + λj ,
thus allowing the parties to jointly reconstruct and store the common masked
value a = x+ λ. The trusted dealer has access only the plain variable’s mask λ
and all dealer-generated values.

5



In order to reduce the communication complexity overall by a factor n, we use
a standard technique based on deterministic pseudorandom number generators
(see Supplementary Material 6).

3 Representation of Real Numbers and Booleans

A real number x ∈ R can be represented as a floating point number x = 2e·m ∈ R
where the mantissa m is normalized so that 1/2 ≤ |m| < 1 and the exponent e ∈
Z. This representation is clearly data-dependent since both m and e depend
on the plaintext value x, the exponent being e = dlog2 |x|e, thus, making the
classical floating-point representation unsuitable for multi-party computation.

On the other hand, a fixed-point representation assumes that the exponent e
is fixed independently of the data, but with a risk of overflow or underflow if e
is too small or too large. We thus adopt fixed-point approach and we book-
keep a sufficiently good bound on the exponent for each value in the program.
This bound is estimated statically, by certain statistical analysis, via a special-
purpose compiler. This method keeps track of public bounds, as precisely as
possible, on the secret value, without revealing the secret value itself. From
the compiler’s perspective, the exponent should be thought of as being public
whereas the mantissa is private. Yet, as the compiler certainly does not know
the secret number x, it is impossible for the compiler to determine the exact
exponent e that guarantees the above normalization for m, but only an upper
bound. In practice, the limiting factor is the size of the numerical window ρ (that
is, the number of bits of the mantissa m; equivalently, the difference between
the exponent bound kept by the compiler and the number of binary digits in
the fractional part to be kept). The smaller the ρ is, the more efficient the
arithmetic is on the backend. In practice, we often use either 64-bit or 128-bit
integer arithmetic.

In a related work [2], a floating point representation is used for secure oper-
ations on a real data. The mantissa, the exponent, as well an additional bit for
the sign and the zero are all secret shared. The floating point approach avoid
the overflow issues (especially in the case of multiplication), but require a binary
decomposition for all computations, that makes it less efficient comparing to
fixed-point representation, where the exponent is public and just the mantissa
is secret shared.

3.1 Plaintext representation

Motivated by the fixed-point representation used in [34], [32], we define the
classes of plaintext values in Manticore as follows:

Definition 2 (plaintext classes). Given integers pmsb > plsb, the class of
plaintext values represented using these parameters is denoted by Ppmsb,plsb and
is defined to be:

Ppmsb,plsb = {x ∈ 2plsb · Z, |x| ≤ 2pmsb} ⊂ Q.

6



Here, pmsb and plsb indicate the positions of the most significant and the least
signficant bits of the plaintext, respectively.

Note that the class Ppmsb,plsb represents all real (in this case, rational) num-
bers between −2pmsb and 2pmsb with step 2plsb . In some sense, we are using a
floating-point backend to represent a class of fixed-point numbers. For plsb = 0,
the class contains integers only. Negative plsb means that we are considering bits
for the fractional part. The size ρ = pmsb − plsb of the numerical window is the
number of bits needed to represent the number. The smaller plsb is, the higher
precision one has for the number and the more bits one needs to represent it.
For comparison, [32] and [34] impose a fixed value of plsb when performing the
truncation while our choice above provides us a bit more flexibility. The idea is
that, at least in theory, if one is interested in a given numerical precision for the
output, one can assign specific plsb’s to all intermediate variables in a computa-
tion to achieve this output. Thus, any secret variable z in our MPC program is
assigned at compile time to a publicly known plaintext class P

p
(z)
msb,p

(z)
lsb

. For each

real-valued operation, e.g., z = f(x, y), we assume that the inputs belong to their
corresponding classes and that the output z is rounded to its class: this induces

a least significant floating-point error of magnitude ≈ 2p
(z)
lsb at each step. If the

plaintext class of z were wrongly estimated, |f(x, y)| > 2p
(z)
msb will result in an

overflow and a non-zero |f(x, y)| � 2p
(z)
lsb will be an underflow, both yielding an

undefined behaviour. Plaintext class misprediction and floating point rounding
error propagation can be avoided or controlled by carefully designing end-to-end
numerically stable or MPC-friendly algorithms, as explained in Section 5.1. We
thus assume throughout the paper that all plaintext class are correctly predicted.

3.2 Secret shares representation: Modreal

To enable MPC computations, we specify how we secret share real numbers
represented in the above form:

Definition 3 (modreal classes). Given parameters Mmsb and plsb, the class
used for modular representation of secret shares of real numbers is defined as the
finite abelian group

MMmsb,plsb =


Mmsb−1∑
i=plsb

mi2
i mod 2Mmsb , for mi ∈ {0, 1}

 = 2plsbZ/2MmsbZ.

The important properly of the classMMmsb,plsb (unlike the set of all real num-
bers R) that will ultimately allow us to achieve information-theoretic security
properties of the MPC computations is that it admits a uniform distribution.

Before we define the secret shares, we discuss several natural lifts of R/MZ
(for a positive integer M) to the real numbers that will be used throughout.

– posmodM (x): is defined as the unique real number x̃ ∈ [0,M) such that
x̃− x ∈MZ (positive representative modulo M).
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– centermodM (x): is defined to be the unique real number x̃ ∈
[
− 1

2M, 1
2M

)
such that x̃− x ∈MZ. (signed representative modulo M)

– quartermodM (x): is defined as the unique real number x̃ ∈
[
− 1

4M, 3
4M

)
such that x̃− x ∈MZ.

When all moduli are powers of 2, centermod and posmod formalize exactly
the difference between signed and unsigned integers in C, where the same se-
quence of 64 bits on the machine is interpreted either as a signed integer in
[−263, 263−1] or an unsigned integer in [0, 264−1], or for that matter, an integer
in [−262, 3.262 − 1] in the quartermod case. Similarly, a residue x ∈ MMmsb,plsb

can be represented by the machine 64-bit integer 264−Mmsbx (mod 264) or 128-bit
integer 2128−Mmsbx (mod 2128), hence benefiting from the natural modular over-
flow of 64-bit (resp. 128-bit) registers for addition and multiplication without
having to call any explicit modular reduction.

Definition 4 (Modreal secret shares). We say that a number x ∈ Ppmsb,plsb is
secret shared in the class MMmsb,plsb as JxKMmsb,plsb = (x1, . . . , xn) ∈Mn

Mmsb,plsb
if

x = centermod2Mmsb

 n∑
j=1

xj

 .

The sharing is well-defined if Mmsb ≥ pmsb + 2 (because Mmsb = pmsb + 2 is the
smallest exponent distinguishing 2pmsb from −2pmsb). Furthermore, if the first n−1
shares are uniformly distributed, this sharing is full-threshold unconditionally
secure (as n− 1 shares do not reveal any information about x).

One advantage of the Modreal classes is that they are already compati-
ble with real addition and multiplication: if x ∈ M

M
(x)
msb,p

(x)
lsb

, y ∈ M
M

(y)
msb,p

(y)
lsb

,

then the sum s = x + y is defined in any class M
M

(s)
msb,p

(s)
lsb

for which M
(s)
msb ≤

min(M
(x)
msb,M

(y)
msb), p

(s)
lsb ≤ min(p

(x)
lsb , p

(y)
lsb ). Similarly, the product p = xy is de-

fined in any class M
M

(p)
msb,p

(p)
lsb

for which p
(p)
lsb ≤ p

(x)
lsb + p

(y)
lsb ,M

(p)
msb ≤ min(M

(x)
msb +

p
(y)
lsb , p

(x)
lsb + M

(y)
msb). Unfortunately, these bounds are often too small for secret

shares to represent correctly the plaintext underneath: plsb can be artificially
increased after the sum or product by rounding each share locally: this corre-
sponds the floating point rounding. However, increasing Mmsb (above pmsb + 2
so that the resulting shares are correct, as per Definition 4) must be done before
sum or product on both inputs. This operation, which we call lift, is non trivial
and requires communication between all the secret-share holders. In Section 3.3,
we propose a new lift algorithm that is error-less and efficient.

3.3 Lifts with precomputed data and cast operations

Given a plaintext value x ∈ Ppmsb,plsb for some parameters pmsb ≥ plsb, se-
cret shares JxKMmsb,plsb in an input modular shares class MMmsb,plsb such that
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Mmsb ≥ pmsb + 2, as well as an output modular shares class MM ′
msb,p

′
lsb

with
M ′msb > Mmsb, the lifting algorithm needs to compute secret shares JxKM ′

msb,p
′
lsb

of the same plaintext value x. This problem has been subject to many lines of
research: most of the techniques involve a conversion to Booleans [17], other
techniques stay in the arithmetic domain but have a non-negligible probability
of overflow per coefficient [34]. The latter can only be reduced by increasing the
bit-length of the secret shares [32]. The lift we propose in this section avoids
overflows and has no additional overhead on the secret-share bit length, thus,
improving on the prior work [34], [32] where the algorithms are probabilistic and
have non-zero probability of failure.

For simplicity, the algorithms are presented on individual scalars, but they
extend coefficient-wise to any tensor.

Let M = 2Mmsb . We start by using the trusted dealer to generate a mask
λ ∈ MMmsb,plsb . Besides computing secret shares JλKMmsb,plsb for λ, the dealer
will extract and secret share one bit of information representing the half-interval
containing quartermodM (λ). More precisely, define

bλ =

{
0 if −M/4 ≤ quartermodM (λ) < M/4,

1 if M/4 ≤ quartermodM (λ) < 3M/4.

Letting a = x + λ ∈ 2plsbZ/2MmsbZ be the masked value, one can consider the
two lifts (both in R)

ã0 = centermodM (a) and ã1 = posmodM (a).

Since Mmsb ≥ pmsb + 2, centermodM (x) ∈ [−M/4,M/4), and we have

centermodM (x) + quartermodM (λ) =

{
ã0 if bλ = 0,

ã1 if bλ = 1,

which we conveniently rewrite as

centermodM (x) + quartermodM (λ) = ã0 + bλ(ã1 − ã0) ∈ R. (1)

To get shares of x in the output modular class MM ′
msb,p

′
lsb

, one would like to

round the above real number to the nearest integer multiple of 2p
′
lsb and reduce

this multiple modulo 2M
′
msb .

To perform this computation, the players first compute the right-hand side
of (1), one simply needs precomputed (by the dealer) secret shares of bλ a priori
in the modular class MM ′

msb,p
′
lsb

. For the unmasking, one define

ν := roundTo(quartermodM (λ), 2p
′
lsb) mod 2M

′
msb ,

where the function roundTo(z, 2`) takes a real number z and an integer ` (not
necessarily positive) and rounds z to the nearest integer multiple of 2`. The
dealer can secret share ν in the output modular class among the players.
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In fact, one can do slightly better to optimize communication: letting aj =

roundTo(ãj , 2
p′lsb) mod 2M

′
msb for j = 0, 1, note that the only non-zero bits in the

binary representation of a1 − a0 are the top M ′msb −Mmsb bits. It thus suffices
for the trusted dealer to secret share the bit bλ in the smaller modular class
MM ′

msb−Mmsb,0 instead of MM ′
msb,p

′
lsb

in order for the parties to perform the
computation.

In the online phase of the computation, one uses the lifts a0 and a1 to
2p

′
lsbZ/2M ′

msbZ and only extracts the top M ′msb − Mmsb bits for the oblivious
selection in the computation of the above centermodM (x) + quartermodM (λ).

Let msbM ′
msb−Mmsb

: Z/2M ′
msbZ→ Z/2M ′

msb−MmsbZ be the projection keeping
only the M ′msb −Mmsb most significant bits. One can define the operation

� : 2p
′
lsbZ/2M

′
msbZ× Z/2M

′
msb−MmsbZ→ 2p

′
lsbZ/2M

′
msbZ

as x� y := msbM ′
msb−Mmsb

(x) · y, extended with Mmsb − p′lsb zeros at the end.
Below, we describe the offline (Algorithm 1 and online (Algorithm 2) phases

of the lifting algorithm:

Algorithm 1 Lift: Offline phase

Input: The mask λ ∈ 2plsbZ/2MmsbZ of a modular real number
Output: Precomputed shares JλKMmsb,plsb , JbλKM′

msb
−Mmsb,0

and JνKM′
msb

,p′
lsb

.

1: JλKMmsb,plsb := secretShares(λ,MMmsb,plsb)
2: Set bλ = 0 if λ ∈ [−2Mmsb−2, 2Mmsb−2), bλ = 1 if λ ∈ [2Mmsb−2, 3 · 2Mmsb−2).
3: JbKM′

msb
−Mmsb,0

:= secretShares(b,MM′
msb
−Mmsb,0

)

4: Compute ν = roundTo(quartermod2Mmsb (λ), 2p
′
lsb) mod 2M

′
msb .

5: JνKM′
msb

,p′
lsb

:= secretShares(ν,MM′
msb

,p′
lsb

)

6: return JλKMmsb,plsb , JbλKM′
msb
−Mmsb,0

and JνKM′
msb

,p′
lsb

.

Algorithm 2 Lift: Online phase

Input: For given parameters plsb,Mmsb, p
′
lsb,M

′
msb :

– A pair (JxKMmsb,plsb , JλKMmsb,plsb , a = x + λ) of a secret shared modular real
number and a mask for a plaintext x ∈ Ppmsb,plsb and some pmsb ≤Mmsb − 2,

– Triple shares JbλKM′
msb
−Mmsb,0

, JνKM′
msb

,p′
lsb

.

Output: Output secret shares JxKM′
msb

,p′
lsb

of the same plaintext x.

1: Mask and reveal a = (x+ λ) mod 2Mmsb .

2: Player 1 computes a0 = roundTo(centermod2Mmsb (a), 2p
′
lsb) mod 2M

′
msb

3: All compute JxKM′
msb

,p′
lsb

= a0 + (a1− a0)� JbλKM′
msb
−Mmsb,0

− JνKM′
msb

,p′
lsb

, where

a1 = roundTo(posmod2Mmsb (a), 2p
′
lsb) mod 2M

′
msb

4: return JxKM′
msb

,p′
lsb
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The method keeps a single round of communication during the online phase
and adds only a few binary operations that preserve the overall running time.
The new algorithm is always correct, the security is unconditional and works for
any number of players.

It is worth comparing our Modreal representation and lifting algorithms to
the algorithm in the recent work of [17].

First, [17] proposes an MPC integer arithmetic with support for addition,
multiplication, left and right shifts. In theory, this is sufficient to represent real
numbers by using right shifts as right shifts. Yet, to make this practical, there
are several problems to be carefully analyzed and addressed by the user:

– Consistently representing real numbers to integer representation across the
computation; in other words, the user has to translate the exponents man-
ually in terms of left or right shifts between the elementary operations

– Addressing potential overflows that might compromise the correctness of the
computation.

Our backend enables the programmer to write the algorithm as if it operates
on floating point numbers (i.e., without explicitly calling the suitable conver-
sions and shift operators). In fact, the user just needs to specify the ranges and
exponents of the input variables and then we automate the estimation and prop-
agation of these exponents to all other variables by our compiler. In addition,
we automate and hide from the user the placements of casts (lifts and rounding)
throughout the whole program.

Of the above-mentioned shifts, only the logical right shift [17, Fig.9] requires
precomputed data. Unlike our approach, this algorithm uses two oblivious com-
parisons - in steps 1(b) and 2(c), as well as Boolean-to-Arithmetic conversions
in steps 1(c) and 2(d) of loc.cit. while the algorithm proposed above does not go
through these expensive conversion methods and the two oblivious comparisons
steps. There are two more advantages of the lift/round operations and the un-

Comparison Throughput Triples
operation ops/sec triple bits per coeff

Manticore lift/round 6.3M 64

[17] logical right shift ≤ 0.8M 800

Table 1. Comparison of Manticore’s Lift to [17] Logical right-shift.

derlying representation: 1) the cases are more flexible (i.e., the numerical window
in Manticore is not fixed, so we can only increase or decrease Mmsb or plsb; 2)
Manticore allows for automating the estimate of these parameters at compiler
time; 3) Manticore enables switching from 64 to 128-bit integers. The estimates,
given in Table 1, for [17] logical right-shift have been obtained from the oblivi-
ous comparisons timings in the honest majority/semi-honest setting [17, Table
7] considering that the logical right shift protocol uses two comparisons.
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Finally, it may seem surprising at a first glance that our approach of rep-
resenting shares in the modular shares class and modular lifts require in some
rare cases interaction even for linear operations like additions/linear combina-
tions (prior work typically implements such operations non-interactively). Only
cases for which M ′msb > Mmsb need interaction. In prior art, linear operations
avoid lifts by keeping Mmsb constant and sufficiently large - this trades off the
interaction for less precise bounds on Mmsb and hence, requires larger numerical
windows. In our case, by allowing interactions, we manage to book-keep the opti-
mal upper bounds on Mmsb and thus, calculate with shorter numerical windows
without compromising numerical precision (i.e., plsb). This allows us to, e.g., use
only 64-bit integers for certain non-linear operations evaluated via Fourier series
while keeping the precision high (see Section 4.1). It is also useful when chaining
multiple operations where careful optimizations are very important. Our special
purpose compiler provides an automated and precise static statistical analysis
on the Mmsb parameters for all intermediate variables.

3.4 Booleans: secret shares and garbled circuits representations

Similarly to the ABY-3 construction [32], Manticore supports conversion between
arithmetic and Boolean shares to enable operations such as oblivious compari-
son that need access to the individual bits. Both Boolean sharing and garbling
representations are supported.

Conversion from arithmetic shares J·KA to Boolean shares J·KB (resp. Yao
shares J·KY as introduced in [16, III.(C)] for two parties) is done via the same
technique as in [16]: by revealing a = x + λ for a uniformly random, dealer-
generated mask λ, plaintext bit-composing a, and canceling λ using either the
dealer-generated Boolean shares JλKB (see also edaBits from [17]), or the dealer-
generated circuit a 7→ a− λ. For conversion from Boolean (resp., Yao) to arith-
metic shares, we perform the operations in reverse order.

If x is a Boolean tensor, we use JxK⊕ to denote a n-tuple of tensors (x1, . . . , xn)
such that x1 ⊕ · · · ⊕ xn = x. If x1, . . . , xn−1 are independent uniformly random
tensors, we refer to JxK⊕ as secure Boolean secret shares of x. Boolean tensors are
mostly used to evaluate component-wise Boolean operations over full columns:
we pack each columns so that one clock cycle treats between 8 and 256 bitwise
operations. Boolean sharing is the equivalent of additive sharing with coefficient
over the field F2.

For garbled circuits, Manticore relies on a free-XOR point-and-permute gar-
bling scheme, emphasizing on the analogy between garbling and secret-sharing:
a plaintext bit {0, 1} is mapped to {0, R} ∈ F128

2 , where R is a global 128-bit
odd secret5 known by the dealer - it exactly corresponds to the random global
key generated by the garbler and used for computing the labels in the classical
free-XOR technique [29]. Each plaintext bit x (resp. y) is masked by a 128-bit
random mask λ (resp. µ) known by the dealer/garbler. The players/evaluators

5 Meaning that the least-significant bit of R (or the last component of R viewed as a
vector in F128

2 ) is always 1. This assumption is needed to support point-and-permute.
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only know the (masked-and-revealed) label a = λ⊕xR (resp. b = µ⊕ yR). Note
that the mask λ (resp., µ) corresponds to the label of the bit 0 in the classical
free-XOR scheme.

Computing c := a⊕ b yields the label of the plaintext bit x⊕ y under mask
ν = λ⊕µ (free-XOR property). For each AND gate (x AND y), we use two efficient
algorithms: garble (executed by the dealer/garbler) and eval (executed by the
players/evaluator) whose signatures are the following:

garble :(λ, µ) ∈ (F128
2 )2 7→ (ν, h1, h2) ∈ (F128

2 )3 (2)

eval :(a, b, h1, h2) ∈ (F128
2 )4 7→ c ∈ (F128

2 ). (3)

They need to satisfy the following properties: 1) ∀x, y ∈ {0, 1}, λ, µ ∈ F128
2 ,

and (ν, h1, h2) = garble(λ, µ), one has eval(λ⊕ xR, µ⊕ yR, h1, h2) = ν ⊕ xyR
(correctness); 2) knowing the labels a = λ+xR, b = µ+ yR and the ciphertexts
h1, h2 does not reveal any information about λ, µ, ν or R (privacy). Here, h1 and
h2 are published and ν is held by the dealer. Given the hashes and the two labels
a, b, the players can compute the label c = ν⊕xyR without any communication.
Constructing a correct garble and eval satisfying only 1) would be trivial -
i.e., take garble(λ, µ) = (0, λ, µ) and eval(a, b, h1, h2) = (a⊕ h1) AND (b⊕ h2);
however making it satisfy 1) and 2) simultaneously is hard: we refer to the
classical half-gate technique [44] for a possible construction and its security proof.
In this scheme, h1 and h2 correspond to the two ciphertexts generated by the
dealer and published in the garbled table. Note that if one of inputs is known to
the dealer or the player/evaluator, we do not need h2. The protocol relies on a
constant number of AES (native instructions) with the same secret key, and the
ciphertexts are presented in the evaluation order in the garbled table, in order
to improve memory latency. On GCP c2-standard-8 instance, we are able to
execute up to 10 millions of gates per second per core of players, e.g. an absolute
value on a vector of 40000 fixed-point values per second per core per player,
including the required pre-un-masking and post-re-masking for the A-to-Y and
Y-to-A conversions.

In the classical garbled circuits scheme, labels are communicated via oblivious
transfer from the garbler to the evaluator. In our context, the garbler is identified
with the dealer, hence, is not present in the online phase. Thus, one uses secret
sharing of both the key R and the mask λ instead of oblivious transfer. The play-
ers know all the input bits in plaintext (e.g. x come from the bit-decomposition
of modreal masked values), so they can jointly reveal the label Jλ⊕xRK⊕ for each
input bit x of the circuit in a single initial round of communication. Then, the
evaluation of the garbled circuit reveals each output (masked) bit. The advantage
of this approach (the garbler being the dealer and the evaluator being the set of
players) is that the evaluation of the whole circuit can be load-balanced across
all the players in the sense that different players can evaluate different indepen-
dent gates. This is not the case in arithmetic or Boolean shares where evaluating
addition and multiplication yields a total amount of work and communication
proportional to the number of players. Here, each gate is evaluated by only one
of the players and the garbled table is split and distributed accordingly. The
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amount of work per player to evaluate the whole circuit is inversely-proportional
to the number of players n. This yields more flexibility in the trade-off between
arithmetic shares, Boolean shares or garbled circuits where not only the com-
plexity of the problem is essential, but also the number of players.

4 MPC Operations

In this section we describe our methods for MPC evaluation of the basic arith-
metic operations as real-valued polynomials, division, exponential, logarithm and
comparison. For the evaluation of linear combination and multiplication, we use
classical approaches based on Beaver Triples [5] (described in the Supplementary
Material Section 6).

4.1 Real-valued classical and trigonometric polynomials

The combination of lifts, additions and Beaver multiplications over plaintext
classes and Modreal classes allows us to evaluate real-valued polynomials as well
as trigonometric polynomials. Let

P (x) =

L∑
n=0

anx
n where x ∈ [−1, 1] and an ∈ R (4)

Q(x) = Re

(
L∑
n=0

cn · exp

(
2iπnx

T

))
where x ∈ R, cn ∈ R and T ∈ R. (5)

Real-valued polynomials are first translated and rescaled in order to keep
the variable x in the interval [−1, 1] ⊆ R. All coefficients are approximated at
compile time with integers divided by the same power of 2: the plaintext and
Modreal exponents plsb, pmsb,Mmsb of the value P (x) is therefore the Modreal

exponents of the coefficients of P . Then, the secret shares of all the successive
powers (x, x2, . . . , xL) are evaluated over Modreal shares within log2 L rounds
of lift and Beaver multiplications.

We adapt the approach of [9] to the case of evaluating trigonometric poly-
nomials on Modreal secret-shared values with information-theoretic as opposed
to statistical masking. More precisely, we first compute Modreal shares of Jx/T
mod 1K (a direct application of the modular lifts from Section 3.3); we then use
a uniformly random dealer-generated mask λ ∈ [0, 1) to mask-and-reveal x/T ,
i.e., reveal a = x/T + λ mod 1 to all the players. Finally,

JQ(x)K = Re

(
L∑
n=0

Jcn · exp (−2iπnλ)K. exp (2iπna)

)
,

i.e., Q(x) is a linear combination of pre-shared dealer-generated terms that only
depend on λ. In other words, Q(x) is evaluated within a single round of commu-
nication. Real polynomials are particularly adapted to functions whose Taylor
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series has convergence radius ≥ 1, whereas trigonometric polynomials are bet-
ter suited for evaluation of functions that are either periodic or very close to a
continuous periodic function on a segment of R.

4.2 Oblivious comparisons

Comparison between two secret-shared values is performed using a combination
of Modreal, Boolean operations or Garbled circuits. Roughly speaking, the
bit sign of the difference a− b is 1 when a < b and 0 otherwise. Other compar-
isons (smaller or equal, greater and greater or equal) are computed equivalently
either by switching the operands or by negating the outputted sign. The com-
parison method implemented in Manticore is not novel and is similar to the
one implemented in [17]. In a more recent work [31] the oblivious comparison is
further optimized, although a significant performance increase is observed only
for comparisons over fields. Computing the sign bit requires a binary adder.
Two binary adders are implemented: the ripple-carry (low multiplicative size)
and the Sklansky adder [22] (low multiplicative depth). When using the Boolean
backend the adder choice should be done as a function of the size of vectors to
compare, the network (latency and bandwidth) and computation resources. In
the context of Garbled circuits, the ripple-carry adder is the best choice.

Benchmarks: Unless specified otherwise, all our benchmarks run on ma-
chines with 4×3.1GHz cores, equipped with 32GB RAM (GCP c2-standard-8

instances). A single processing core is used (no parallel execution). Two players
are used. We log RAM usage, CPU time and end-to-end execution time of on-
line/offline phases. Two types of network sizes are used: (i) the communication
between the dealer and each of the players (the “triples” column) and (ii) the
communication between the players during the online phase (the “network” col-
umn). End-to-end execution time includes communications which use a network
infrastructure with bandwidth 120MBps and latency 0.3ms.

Table 2 gives benchmark results for different sizes of input vectors. Three
implementations of the comparison are used: first two (Sklansky and ripple-
carry adder) use the Boolean backend and the last one uses Garbled circuits.
Input vectors are 60-bit wide. Being slower than the Boolean approaches, the
Garbled circuit was included here for performance illustration purposes only.
Garbled circuits having low online communication overhead, depending only
on the input/output sizes and not on the executed circuit size, are not well suited
for the comparison application.

4.3 Division, exponential and logarithm

Division. Given a Modreal number x, we approximate 1/x with an algorithm
inspired by Goldschmidt’s method (see [20] or [10]). However, unlike previous
approaches, we allow higher order polynomials, yielding faster convergence, as
explained below.
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RAM Communication CPU End-to-end

Used Input size Offline Online Triples Network Offline Online Offline Online
implem. ×106 MB seconds

Boolean 0.5 134 134 22 22 0.4 0.3 0.4 0.4
Sklansky 5 277 483 216 215 4.6 3.3 4.6 4.4

Boolean 0.5 131 132 17 18 0.4 0.3 0.4 0.4
Ripple-carry 5 278 483 167 185 3.5 2.5 3.5 3.5

Garbled 0.5 816 832 546 275 41.6 10.3 41.6 10.6
circuit 5 7953 8046 5460 2747 415.4 103.7 415.4 105.8

Table 2. Private compare execution times and communication sizes.

The aim is to construct a sequence {wi}i≥0 of Modreal numbers that suc-
cessively reduce the relative error

εi =
1/x− wi

1/x
= 1− xwi

of approximating 1/x by wi. In the sequel we assume x > 0.
We start by initialising the sequence with w0 = 2−blog2(x)c, computed via

a binary circuit on the Boolean shares representation or the garbled circuit
representation described in Section 3.4. Note that 1 ≤ xw0 < 2.

In a first iteration step we compute the truncated Chebyshev series cL1(z)
(of certain degree L1) of the function 1/z on the interval [1, 2], and update

w1 = w0 · cL1(xw0).

If δ0 = 1/xw0 − cL1(xw0) is the error of the approximation, it follows that

ε1 = 1 − xw1 = xw0δ0. Moreover, ‖1/z − cL1
(z)‖∞ ≤ (3−2

√
2)L1+1

2−
√

2
(the norm

being with respect to the interval [1, 2]), hence we deduce

|ε1| ≤ 2 · (3− 2
√

2)L1+1

2−
√

2
.

The elements {wi}i≥2, are computed via successive Taylor approximations
of the function 1/z around 1.

Lemma 1. Let tLi
(z) =

∑Li

n=0(1− z)n be the truncated Taylor series of 1/z of
degree Li around 1. If wi approximates 1/x with relative error εi, then

wi+1 = wi · tLi(xwi)

approximates 1/x with relative error εLi+1
i .

Proof. This easily follows from tLi
(xwi) =

Li∑
n=0

εni =
1− εLi+1

i

1− εi
.
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Note that in the prior works [20] and [10], the degree Li equals 1 throughout
all iterations. In our approach we are free to vary the degree Li from iteration
to iteration in order to find the best trade-off between computational cost and
convergence rate. E.g. with a single Chebyshev approximation of degree 20 the
relative error satisfies |ε1| ≤ 2.862 · 10−16. On the other side, with five iterations

of degree 1 we have |ε1| ≤ 1.005 · 10−1, hence |ε5| = |ε1|2
4 ≤ 1.083 · 10−16. We

have implemented the variant with three iterations of degree 2 (requires least

multiplications). Hence, |ε1| ≤ 1.724 · 10−2, and |ε3| = |ε1|3
2 ≤ 1.348 · 10−16.

Table 3 shows execution times for different sizes of input vectors using the
Boolean backend. Input vectors are 60-bit wide and the output has a relative
precision of 50 bits compared to the plaintext division performed on double-
precision floating-point.

RAM Communication CPU End-to-end

Used Input size Offline Online Triples Network Offline Online Offline Online
implem. ×106 MB seconds

depth 0.5 176 302 331 261 4.6 3.8 4.6 5.2
optimized 5 848 2822 3310 2611 50.7 42.8 50.7 56.0

size 0.5 192 298 313 250 4.3 3.5 4.3 4.9
optimized 5 808 2737 3133 2500 47.2 40.2 47.2 53.0

Table 3. Private division execution times and communication sizes.

Exponential. Similar to [3] our approach is based on the identity

2x = 2bxc · 2x−bxc.

However, we do not need to compute the absolute value of x first, 2bxc is com-

puted via a binary circuit from the bit-decomposition of x (as opposed to p
(x)
msb

multiplications in [3]), and 2x−bxc is computed with a Chebyshev approxima-
tion of degree 10 on the interval [0, 1] (as opposed to a Padé approximation of
degree 86 in [3]), yielding 15 decimal digits of relative precision. Moreover, since
we do not need to distinguish x ≥ 0 from x < 0, we do not need to perform an
obliviously selection between 2x and 1/2x, hence saving a private division.

Logarithm. Assuming x > 0, similar to [3] our approach is based on the identity

log2(x) = w0 + log2(x · 2−w0),

where w0 = blog2(x)c (both w0 and 2−w0 are computed via a binary circuit
from the bit-decomposition of x). Analogous to the division algorithm presented

6 With the polynomial P1045 from the appendix of [3] we observed a relative error
|1− P1045(x)/2x|, x ∈ [0, 1], of roughly 10−7.11 as opposed to the 10−12.11 claimed
in the paper.
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above, we want to construct a sequence {wi}i≥1 of Modreal numbers that suc-
cessively reduce the error

εi = log2(x)− wi.

At each iteration, wi+1 is obtained by computing an approximation, say ai, of
certain degree Li of log2(x · 2−wi) and updating

wi+1 = wi + ai.

Observe that x · 2−wi converges towards 1, since x · 2−wi = 2εi .
Computing the logarithm through iterative steps allows one to optimise a

similar convergence rate versus computation cost trade-off as for the division,
while previous methods only allow one iteration (e.g. [3] with one Padé approx-
imation7).

In a first iteration step we compute the truncated Chebyshev series cL1
(z)

(of certain degree L1) of the function log2(z) on the interval [1, 2], and update
w1 = w0 + a1, where a1 = cL1

(x · 2−w0). One can show that

‖ log2(z)− cL1(z)‖∞ ≤
(3− 2

√
2)L1+1

(L1 + 1) log(2)(
√

2− 1)

(the norm being with respect to the interval [1, 2]), which gives a bound for |ε1|.
In the next iteration step we need to approximate log2(x · 2−w1), therefore we
need to compute x · 2−w1 = (x · 2−w0) · 2−a1 . Since 0 ≤ log2(x · 2−w0) < 1
we compute 2−a1 with a Chebyshev approximation of the function 2z on the
interval [−1, 0].

The elements {wi}i≥2 are computed via successive Taylor approximations of
the function log2(z) around 1.

Lemma 2. Let tLi(z) = −1
log(2)

∑Li

n=1
(1−z)n
n be the truncated Taylor series of

log2(z) of degree Li around 1. If we update wi+1 = wi + ai, where ai = tLi
(x ·

2−wi), then the error εi+1 satisfies

|εi+1| ≤
|εi|Li+1

(Li + 1) log(2)(1− |εi|)
.

Proof. One can easily see that

εi+1 = log2(x · 2−wi)− tLi
(x · 2−wi)

=
−1

log(2)

∑
n≥Li+1

(1− 2εi)n

n
,

i.e. is equal to the error of the Taylor approximation. The proof follows from the
fact that |1− 2ε| ≤ |ε| in a neighbourhood of 0.

7 Numerator and denominator are of degree 3, yielding a relative error of 10−8.32.
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For the upcoming iteration we need to compute x · 2−wi+1 = (x · 2−wi) · 2−ai .
We compute 2−ai with a Taylor approximation of the function 2z around 0
(ai = εi − εi+1 is close to 0).

Since the update rule from one iteration to the next one is considerably more
expensive than for the division (as it amounts to compute 2−ai), it is preferable to
keep the number of iterations low. The variant we have implemented is: degree-8
Chebyshev approximation followed by one degree-1 Taylor approximation, and
yields |ε1| ≤ 4.985 · 10−8, and |ε2| ≤ 1.793 · 10−15. As a comparison, a degree-18
Chebyshev approximation yields |ε1| ≤ 5.220 · 10−16.

5 Applications

5.1 Logistic regressions and principal component analysis

Recall that, given a binary vector y and a feature matrix X (of size N × k), the
cost function of a particular model θ ∈ Rk is

L(X, y, θ) = −
N∑
i=1

(
yi log(σ(X(i)θ)) + (1− yi) log(1− σ(X(i)θ))

)
,

where X(i) denotes the ith row of X and σ(x) = 1/(1 + e−x) is the sigmoid
function. For fixed X and y and varying θ, the function L is convex so it has
a unique minimum. Furthermore, the L2-regularized cost function is given by
(where, λ is the regularization parameter):

Lreg(X, y, θ, λ) = L(X, y, θ) + λ

k∑
i=1

θ2
i .

To find the minimum, we use several (relatively cheap) gradient descent (first-
order) steps followed by several more expensive IRLS/Newton–Raphson (second
order) steps [43]. The intuition is that gradient descent still improves the model
a lot in the first few iterations and then we will switch to the more expensive
IRLS iterations for faster convergence.

Principal component analysis (PCA). In order to reduce the complexity of the
regression algorithms and obtain better precision on the final model we can
apply a singular value decomposition (SVD) on the dataset X and work on
the (normalized) principal components instead. The benefits of the PCA are
two-fold:

(i) it removes singularities and reduces the dimension of the feature space of
the data to a subspace where the data has high variance,

(ii) the change of variables allows us to work on a dataset with orthonormal8

columns, which significantly increases the performance and stability of the
algorithm.

8 A set of vectors is orthonormal if every vector in the set has norm 1 and the set of
vectors are mutually orthogonal.
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Let r be the rank of X. Our convention for the singular value decomposition is
X = UΣV t, where Σ is a r × r diagonal matrix whose diagonal entries are the
non-zero singular values of X in decreasing order, U is a N × r matrix whose
columns are the first r normalized principal components and V is a k × r ma-
trix whose columns are the first r principal axes. Note that both U and V have
orthonormal columns. We have two options to compute the SVD of X (either
way we obtain the singular value decomposition by first computing the eigende-
composition of XtX). In the first option, we mask XtX with a random secret
orthogonal matrix P (generated by the trusted dealer) and compute a public
eigendecomposition on the revealed matrix P tXtXP . This reveals the singular
values Σ. In the second option, we compute a private eigendecomposition using
a garbled circuit as in [1]. We then need to take private square-roots in order to
obtain Σ from the spectrum of XtX. No additional information is revealed in
this approach. In our implementation, the default option is the first one.

Since X and U span the same subspace of RN , for every model θ ∈ Rk, the
prediction ŷ = X · θ can be obtained as ŷ = U · θred for a unique θred ∈ Rr. That
is, instead of minimizing L(X, y, θ) one would rather minimize

Lred(U, y, θred) = −
N∑
i=1

(
yi log(σ(U (i)θred)) + (1− yi) log(1− σ(U (i)θred))

)
.

If θred minimizes Lred(U, y, θred) then θ := V Σ−1θred minimizes L(X, y, θ). More-
over, θ is the model of least L2-norm among all models that minimize L(X, y, θ).
This follows from the fact that V and ker(X) form an orthogonal decomposition
of Rk, i.e. V Σ−1θred is the unique minimum of L(X, y, θ) that is orthogonal
to ker(X).

Remark 1. We can also improve the precision by doing a pre-PCA (rank-detection)
step. In this case, the user must provide a PCA rank (or the rank r of the matrix
if he wants to keep all the dataset), and the order of magnitude of the smallest
remaining singular value (in general, a very small 6-bit integer between −32 and
32). By passing this information (and the true rank if we do not do a PCA),
we go from 5 to 10 precision digits: a.k.a. same precision or even better than
sklearn).

Internal normalization. In case X has columns of completely different orders
of magnitude, the singular value decomposition of X cannot be computed with
sufficient precision and hence, the PCA method does not yield the desired result.
In this case we need to normalize the columns of X first. Letting ∆ be a k × k
diagonal matrix with entries being bounds on the respective column of X (e.g.
the L1-, L2- or L∞-norm), we define Xn = X∆−1 the normalized dataset. Note
that in our implementation we choose ∆ with ∆jj = 2dlog2(‖X(j)‖∞)e, i.e. the
closest power of 2 that upper-bounds the maximum of the column. This is either
computed and revealed prior to the MPC computation (and X is normalized via
a public-private multiplication) or it is computed during the MPC computation
(and X is normalized via a private division, as explained in Section 4.3). The
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two matrices X and Xn span the same subspace of RN , hence one can mini-
mize L(Xn, y, θ) instead. Similar to the above paragraph we compute a singular
value decomposition Xn = UnΣnV

t
n. One then minimizes the convex function

Lred(Un, y, θred) and returns M · θred, where M ∈ Matk×r(R) sends the mini-
mum of Lred(Un, y, θred) to the unique minimum of L(X, y, θ) that is orthogonal
to ker(X).

Evaluating the sigmoid function. We have two approaches to evaluate the sig-
moid function σ(x). Either by the direct formula σ(x) − 1/2 = sign(x)(1/(1 +
e−|x|)− 1/2), where sign and absolute value are based on Boolean circuits, and
exponential and division are from Section 4.3, or we approximate the centered
sigmoid on a “large enough” interval [−B,B] with the 4B-periodic function
– 1

2 +
∑
k∈Z σ(x + 4kB) − σ(x + (4k + 2)B), whose Fourier coefficients decay

exponentially fast. In order to obtain accurate sigmoid evaluations outside the
Fourier interpolation interval, we use Boolean comparison circuits to detect if
the input is outside the interpolation interval [−B,B]. Afterwards, the resulting
binary values are used to choose between the approximation when x ∈ [−B,B],
−1/2 when x < −B and 1/2 when x > B.

Our benchmarks are presented with the Fourier approximation approach,
which is faster when the desired precision is around 28 bits, which is enough
for logistic regression use-cases. If one desires higher precision (e.g. more than
50bits), the increasing degree of the approximation and the lack of hardware
support of trigonometric functions make the direct computation of the sigmoid
preferable.

Blockwise optimizations. In order to improve run-time and memory for large-
sized feature matrices, we use blockwise approach: matrix products with large
inputs and small outputs can be computed blockwise. An example is the Hes-
sian [42] of L, which is a k × k matrix W tW , where W is a N × k matrix with
N � k, and where W can be divided vertically into smaller row-blocks. This
reduces the memory footprint for the same running time and bytes of commu-
nication. Another improvement can be applied to any convex gradient descent
problem: classical and IRLS gradient descent share a common update formula
where at each iteration θ ← θ−H−1∇. In the IRLS case, H is the Hessian ma-
trix of the cost function L. In the classical case, H is a constant diagonal matrix
containing the inverse learning rate, which must be of the order of magnitude
of the Hessian diagonal coefficients. In other advanced gradient descent (with
adaptive learning rate), H contains only the diagonal coefficients of the Hessian
of L, and 0 everywhere else. As a simple rule of thumb, the more H coincides
with the Hessian, the less iterations are required to reach full convergence. Com-
puting p coefficient out of k(k + 1)/2 yields a time speed-up of roughly p/k2

on the computation of H. Note that independently of how many coefficients we
compute, one logreg iteration cost O(Nk) bytes of RAM and communication. In
our experiments, if the number of features k is small enough so that we can afford
a O(nk2) running time, it is preferable to compute the full Hessian at each iter-
ation. In theory, within the domain of convergence, Newton method squares at
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each iteration the number fractional bits that have converged. Experimentally,
we verified that between 8 and 12 IRLS iterations are sufficient for logreg to
converges with 50 bits of precision for all orthonormal datasets, even with more
than 500 features. If k is too large to afford cubic running time, the trade-off
we propose consists in computing only diagonal blocks of fixed size B in H, and
leave the rest of the coefficients zero. The complexity of computing H drops to
O(Nk) (see Fig. 2), inversion of H requires to invert only fixed dimension B×B
blocks, and most importantly, the total number of iterations still remains much
lower than in the classical gradient descent case.

Fig. 2. In left we represent the number of coefficients to compute in case of gradient
descent, in middle the full Hessian matrix and in right our block-wise approach. Note
that just the elements in grey are computed.

Benchmarks. Table 4 shows computation overhead for datasets with 50 fea-
tures and different number of rows. Synthetic instances are randomly generated.
For the last 2 instances we have used higher memory machines (400GB of RAM
for the last one!). In the Supplementary Material 6 benchmark results are given
for larger number of players (3 and 5) and different number of features (10, 50,
and 100).

RAM Communication CPU End-to-end

Input size Offline Online Triples Network Offline Online Offline Online
×106 GB minutes

0.5 2.3 3.5 14.1 16.6 6.3 5.5 6.3 6.7

5 26.5 45.0 150.8 130.3 105.6 46.4 105.6 55.7

50 263.8 381.4 1408.8 1664.1 689.8 780.6 689.8 861.2
Table 4. Logreg execution times and communication sizes.

We then have tested the convergence of our MPC logistic regression algo-
rithm against the plaintext implementation of scikit-learn9, by looking at
the loss difference Ldiff between the trained MPC model (θmpc) and plaintext
model (θskl), Ldiff = L(X, y, θmpc)− L(X, y, θskl). We have generated numerous

9 https://scikit-learn.org
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classification datasets (X, y) by varying the dimension (N × k) of X and the
magnitude of X. The scale sj of a column j is defined as the smallest integer
such that the inequality max(|Xj |) < 10sj hold.

The scale range S of a matrix X is maxj sj−minj sj . The numerical stability
of the logistic regression decreases with the increase of the scale S, because the
fixed-point implementation has a lower precision.

We have then computed the worst loss difference Ldiff over 5 runs for different
values of λ (regularization parameter), minj sj (X scale min), and maxj sj (X
scale max axis). Partial results are shown in Figure 3 for N = 10000, k =
30, rank(X) = 20. Each of the 10 singular columns was randomly generated from
a subset of the independent columns of X. For readability Ldiff is truncated to
a power of 10 in the heatmap, and values < 10−15 are capped at 10−15 (i.e.
≈ 0). Observe that for a scale range S ≤ 6, the light blue region in the chart,
Manticore logistic regression converges to the same loss than scikit-learn, i.e
Ldiff ≈ 0. When 6 < S < 14 (dark blue region), we achieve a better loss than
scikit-learn, thanks to the internal normalization strategy. When S ≥ 14, our
algorithm does not converge to the minimal cost model due to overshooting of
the rank estimate.

Fig. 3. Log-loss difference (Ldiff) Manticore vs scikit-learn

We shall note that most of MPC implementations of logistic regression require
full rank and clean input data, and would converge only in the cell (0, 0) (in the
context of Figure 3). In Supplementary Material 6, we provide more benchmarks
on the numerical precision of Manticore versus MP-SPDZ [25] versus the plaintext
implementation of scikit-learn.

5.2 An oblivious sorting algorithm based on quicksort

One of the major challenges with efficient oblivious sorting algorithms in the
MPC setting has been the fact that the two most efficient sorting algorithms,

23



merge-sort and quicksort, are data dependent. Efforts have been made to design
oblivious versions of these two algorithms [23] (implementing Batcher’s merge
sort on Sharemind’s system [6]), [21], [13] (the latter combining [6], [21] and
Batcher sorting networks).

Here, we discuss a quicksort variant implemented on the Manticore frame-
work. Using an idea that already appears in prior work (e.g., [21], [13]), we first
make all elements unique by appending a least significant counter tag of log2(N)
bits to the elements of the original (secret-shared) array, then we shuffle the ar-
ray by applying a dealer-generated secret-shared random permutation. We then
perform (obliviously) the comparisons of the quicksort algorithm on the shuffled
array and reveal the Boolean outputs at each iteration. The uniformly random
permutation ensures that no information is leaked about the relative order of
the original array.

Shuffling the original vector represents only a minor amount of time in quick-
sort. To apply the dealer-generated permutation, we choose between two imple-
mentations: if the number of players is large (k ≥ log2(N)) we use a Benes net-
work [41] [11], where the dealer picks a uniformly random permutation, routes it,
and secret-share the Boolean network switches. This enables parallelizable shuf-
fling (using the network) within exactly 2 · log(N) rounds of hadamard products
of size N . In the opposite, when the number of players is small (k ≤ log2(N)),
we use a simpler protocol, inspired by [13], where the dealer sends one permuta-
tion to each player, and during the online phase, the players simply evaluate the
composition of these permutations, in exactly k rounds of secret permutation.
Another key idea for our implementation is the concept of multi-pivots: recall
that quicksort is a recursive procedure that, in its most basic form, chooses an
element of the array (a pivot) and first permutes the elements according to the
pivot (the smaller ones being on the left and the larger ones being on the right
of the pivot), thus partitioning the array into two subarrays. It then calls itself
on the two subarrays. The worst case of the algorithm thus occurs for highly
unbalanced partitions (one of the sets has much more elements than the other
one). The random permutation applied in the beginning is addressing this issue
on average. In order to further reduce the variance on the expected depth of the
algorithm, we partition the array into more than two sets by using more than
one pivot and use oblivious comparisons in parallel. [4] Unlike plaintext sorting
where sequential comparisons do not become the bottleneck, the more expensive
oblivious comparisons would benefit from batching/parallelization, thus, making
multiple pivots particularly useful. Since the number of rounds of communication
is proportional to the depth, the multi-pivot approach provides a heuristically
faster algorithm.

Overall, the algorithm runs in O(b · log2N) communication rounds where b
is the bit-size of each element of the array and N is the number of elements.
The Benes network requires 2 · log2N communication rounds of complexity N/2
each whereas the composition protocol requires k communication rounds of com-
plexity N each, where k is the number of players. Moreover, quicksort runs in
(heuristically) log2N comparison rounds.
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We evaluate experimentally the quicksort algorithm in our common real
world testbed with a trusted dealer and two players (c.f Table 5).

RAM Communication CPU End-to-end

Input size Offline Online Triples Network Offline Online Offline Online
×106 MB seconds

0.5 68 138 479 509 6.5 7.3 6.5 10.1

5 521 697 3649 5177 64.7 69.2 64.7 98.5

50 4893 4940 41175 59923 788.9 904.5 788.9 1223.0
Table 5. Benchmark results for Manticore Quicksort.

6 Security Analysis

Threat model. In our threat model, we assume that all communication channels
are private and authenticated. Adversaries are impersonated with the computing
parties abbreviated as CP’s hereafter. Any security leakage that may occur after
the reveal of the value of the function f over the inputs data is beyond our
security scope. Moreover, we assume that input parties provide the correct input
to the protocol and that the TD does not participate in the online phase. Our
security model is the full-threshold model, that is, no coalition of n − 1 parties
can learn even a single bit about the input data.

Before going into formal proofs, we highlight that the security of Manticore
relies upon: 1) TD not participating in the online computations; 2) At most n−1
CP’s colluding; 3) Uniformly random secret shares of each value. The required
quality of randomness during the offline phase is guaranteed by the security
properties of the underlying AES-CTR-DRBG design.

A security theorem. Manticore uses immutable MPC variables where values
are distributed (shared) among the players. Each player has its own view of an
MPC variable, it can be secret shared (SSVar), masked-and-revealed (MRVar),
or revealed (RevVar). For each SSVar, the ith player has access to the secret
share xi of a plaintext value x and the secret share λi of the plaintext mask λ.
For each masked-and-revealed MPC variable MRVar, the ith player broadcasts
the masked value ai = λi + xi to all other players. Moreover, the ith player has
access to the shares xi and λi. The reveal MPC variables RevVar are the values
revealed to all players (i.e., intermediate or output values).

MPC programs are composed of builtins VBuiltIn (e.g. Beaver multiplications,
linear combinations, private comparisons, etc.) where each builtin operates on
MPC variables SSVar, MRVar, RevVar. In addition, builtins include ephemeral
shares of masked values (e.g., shares of values such as λ ·µ in Beaver multiplica-
tion). These are shares that are not associated with a particular MPC variable
- we denote the set of these shares by ES. We assume they are indexed by
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ephemeral identifiers eid ∈ ES. Finally, for each player i, we let InVari be the set
of plaintext input values coming from that player. For a coalition G of players,

we let InVar(G) =
⋃
i∈G

InVari.

We first introduce the various random variables involved by distinguishing
three higher-level types: for a coalition G of at most n− 1 corrupted parties, we
define 1) input random variables IN(G) as all input plaintext values available
to the parties in G, 2) revealed random variables REV as all the information
explicitly revealed to all parties (this includes all the revealed outputs as well)
and 3) the view random variables VIEW(G) as all the information available to
the coalition parties in G throughout the protocol (including IN(G), REV as well
as all the secret-shares available to G, all data transmitted over the network, all
the masked-and-revealed values, etc.).

More precisely, for i = 1, . . . , n, let Xid, Xi,id and Λi,id denote the random
variables corresponding to the plaintext value, player i’s secret shares of Xid

and the plaintext mask for the MPC variable with identifier id. Moreover, let
Ei,eid be the ephemeral secret share with ephemeral identifier eid. Note that
these variables take values over the corresponding spaces of secret shares for
the corresponding parameters or output values (e.g., a builtin might output a
Boolean value or a real value). Since the parameters (pmsb, plsb) of each MPC
variable are statically known (before the execution of the program), we know
exactly the space of values of each of these random variables at compile time.

With these in mind, we can define (for the coalition G introduced above)

IN(G) :=
∏

id∈InVar(G)

Xid, REV :=
∏

id∈RevVar

Xid,

COL(G) :=
∏
i∈G

id∈SSVar∪MRVar

Xi,id ×
∏
i∈G

id∈MRVar

Λi,id ×
∏
i∈G

eid∈ES

Ei,eid,

NET :=
∏

i∈[1,n]

id∈MRVar

(Xi,id + Λi,id)×
∏

i∈[1,n]

id∈RevVar

Xi,id,

VIEW(G) := COL(G)× NET× IN(G)× REV.

Finally, if X is a random variable over the plaintext values (e.g., X can corre-
spond to the least significant bit or the most significant bit of a private input), we
will be interested in the probabilities PrA(X| VIEW) and PrA(X| IN(G) ∧ REV).
Knowing that these are equal or very similar would mean that the the extra
information of knowing VIEW would not help a coalition of n−1 players in guess-
ing the value of X (conditional on the input plaintext values IN(G) and the
output/revealed values REV).

In order to satisfy the above properties for the individual builtins of Manticore,
we often need to randomize the output shares revealed to the user with fresh
secret shares of zero. The reason is that there might be operations (such as
JxK− JxK) where the resulting secret shares are (0, . . . , 0). Randomize all output
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shares with new, independent secret shares of zero guarantees that the secret
shares in the output containers are independent and uniformly random over the
corresponding sets of definition.

We will state a general security theorem proving this equality under three
facts that we will verify for the builtins of our particular protocol:

Fact 1 The network communication is exclusively limited to the random vari-
ables in NET, the rest of the computation in the protocol being local to each player.

Fact 2 For any coalition G of at most n−1 players the following property holds:
for any i ∈ G and any id ∈ MRVar, λi,id are independent and uniformly random,
and are independent from xj,id′ for all j ∈ G and id′ ∈ SSVar ∪MRVar, and all
xid′ for id′ ∈ RevVar ∪ InVar.

Fact 3 For any coalition G of at most n − 1 players the following property
holds: for any i ∈ G, any id ∈ SSVar ∪ MRVar, for all j = 1, . . . , n, and any
id′ ∈ RevVar xi,id and xj,id′ are all independent and uniformly random, and they
are independent from all xid′′ for id′′ ∈ InVar.

All the builtins operate by construction under Fact 1, and draw each MPC
variable’s mask uniformly at random (to enable seeding), which implies Fact 2.
Fact 3, if not already satisfied, is guaranteed by additional re-randomization of
the output secret shares of each builtin.

Theorem 1. Assume Facts 1, 2 and 3. Then for any coalition G of at most
n− 1 players, any distribution on a (random) variable X on the plaintext values
and any subset values x, cG, n, iG and r for X, NET, COL(G), IN(G) and REV,
respectively, we have

Pr
A

[X ∈ x| VIEW(G) ∈ vG] = Pr
A

[X ∈ x| IN(G) ∈ iG, REV ∈ r],

where vG = cG × n× iG × r.

We now sketch a proof of Theorem 1:

Proof. (Sketch) Letting Ai,id := Xi,id + Λi,id, G
c to be the (non-empty) com-

plement of G, and suppressing (for brevity) the value subsets for the random
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variables when they are understood from the context, we can write:

P = Pr[X| VIEW(G)])

(1)
= Pr

X| ∧
id∈InVar(G)

Xid ∧
∧
i∈G

id∈SSVar∪MRVar

Xi,id ∧
∧
i∈G

id∈MRVar

Λi,id ∧
∧

1≤i≤n
id∈MRVar

Ai,id ∧
∧

1≤i≤n
id∈RevVar

Xi,id ∧
∧

id∈RevVar

Xid


(2)
= Pr

X| ∧
id∈InVar(G)

Xid ∧
∧
i∈G

id∈SSVar∪MRVar

Xi,id ∧
∧
i∈G

id∈MRVar

Λi,id ∧
∧

1≤i≤n
id∈MRVar

Ai,id ∧
∧

id∈RevVar

Xid


(3)
= Pr

X| ∧
id∈InVar(G)

Xid ∧
∧
i∈G

id∈SSVar∪MRVar

Xi,id ∧
∧
i∈G

id∈MRVar

Λi,id ∧
∧
j∈Gc

id∈MRVar

Aj,id ∧
∧

id∈RevVar

Xid


(4)
= Pr

X| ∧
id∈InVar(G)

Xid ∧
∧
i∈G

id∈SSVar∪MRVar

Xi,id ∧
∧
i∈G

id∈MRVar

Λi,id ∧
∧

id∈RevVar

Xid


(5)
= Pr

X| ∧
id∈InVar(G)

Xid ∧
∧
i∈G

id∈SSVar∪MRVar

Xi,id ∧
∧

id∈RevVar

Xid


(6)
= Pr

X| ∧
id∈InVar(G)

Xid ∧
∧

id∈RevVar

Xid


= Pr[X| IN(G) ∧ REV]

– Implication (1): follows from Fact 1 as well as the fact that the shares ei,eid
for i ∈ G are uniformly random in MMmsb,plsb and independent from the
rest of the random variables. As such, Bayes rule allows us to remove them
from the conditional event.

– Implication (2): follows from Fact 3.
– Implication (3): we remove ai,id for i ∈ G since ai,id = xi,id + λi,id and
xi,id, λi,id already exist in the formula form previous terms. As such, we only
keep ai,id for i ∈ Gc.

– Implication (4): λi,id for i ∈ Gc are independent from λi,id for i ≤ n and the
rest of the random variables (λi,id for i ∈ G act as one-time-pad encryption
key), that makes ai,id = λi,id + xi,id independent for i ∈ Gc and Bayes rule
allows to remove them.

– Implication (5): follows from Fact 2.
– Implication (6): follows from Fact 3.

Conclusion We presented a novel MPC framework Manticore in the multiparty
setting with a highly efficient and scalable implementation of the principal arith-
metic operations as well a logistic regression training algorithm, robust against
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singular features and unbalanced datasets, and an improved oblivious sorting.
We provided the security proof of our framework in a semi-honest model with an
offline dealer and full-threshold security across an arbitrary number of players.
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Supplementary Material

Seeded triple generation

In order to reduce the communication complexity overall, we use a standard
technique based on deterministic pseudorandom number generators (DRBG),
that takes as input a uniformly random seed of size ` and some parameters
params, and outputs a deterministic pseudorandom stream of bytes: randOut of
length `′, where `′ � `. Suppose that the trusted dealer needs to generate and
communicate shares for a precomputed N -by-k matrix. Instead of sending the
shares, the dealer send a much smaller seed that is sufficient for the players to
reconstruct the shares in the online phase using DRBG.

There are two different cases according to whether we generate and communi-
cate masks associated to a MPC variable (e.g., λ and µ in Beaver multiplication
that are independent of previously generated masks) or whether we generate
and communicate shares for a precomputed matrix that depends on previously
generated random matrices (e.g., λ · µ in Beaver):

1. The precomputed matrix λ should be a uniformly random matrix inde-
pendent of the previously generated precomputed data. To achieve this, the
trusted dealer generates n independent random seeds seedi, one for each player,
and sends seedi to the ith player who computes the corresponding secret share
λi = DRBG(seedi, params) in the online phase. Here, λ =

∑n
i=1 λi and the seeds

are specific to the matrix λ. The communication overhead here is only the seed
seedi, i.e., O(`) bits per player.

2. The random matrix ν depends on previously precomputed random ma-
trices (e.g., ν = λ · µ in Beaver multiplication). The space R of N -by-k ma-
trices is then decomposed as a direct sum of n vector subspaces R1, . . . ,Rn
of roughly the same dimension. For instance, a N -by-k matrix can be split
into n row blocks of roughly the same size (N/n)-by-k. Then Ri is the sub-
space of all matrices that have 0’s in all positions except for the ith row block.

We then have a direct sum decomposition R =

n⊕
i=1

Ri (here,
⊕

means direct

sum of vector spaces and not XOR). For each player, the trusted dealer gener-
ates a seed seedi and a matrix γi = DRBG′(seedi, params, i) ∈

⊕
j 6=iRj . Here,

DRBG′(seedi, params, i) is a pseudorandom function that uses DRBG and that
outputs a N -by-k matrix whose projection to the ith direct summand subspace
Ri is zero. The trusted dealer then computes c = ν −

∑n
i=1 γi, decomposes

c = c1 + · · ·+ cn according to
⊕
Ri (i.e., ci is the projection of c to the subspace

Ri) and sends (seedi, ci) to the ith player. Locally, the ith player reconstructs
its own share νi = DRBG′(seedi, params, i) + ci = γi + ci, thus giving the plain-
text mask ν =

∑n
i=1 νi =

∑n
i=1 γi + c. The communication overhead here is

O(`+ `′/n) bits per player.
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This design thus reduces the communication overhead at least by a factor n.
For the DRBG, we rely on the AES-CTR DRBG implementation of Mbed TLS10,
taking advantage of the native AES instruction set of the processor.

Linear combination and Beaver multiplication

Linear combination. The goal of the linear combination is to compute a secret

shares of z =

m∑
i=1

c(i) · x(i), where the coefficients c(1), . . . , c(m) are public real

numbers given as double-precision floating point numbers and Jx(1)K, . . . , Jx(m)K
secret shares with corresponding parameters M

(i)
msb, p

(i)
msb, p

(i)
lsb.

Let β(i) := b258 · c(i)e 11 and let

α(i) := 2−v2(β
(i))β(i) and `(i) := 58− v2

(
β(i)
)
,

where for a prime p, vp(d) denotes p-adic valuation of an integer d ∈ Z. In
practice, these integers are represented as 64-bit signed integers. The public

vector

(
α(1)

2`(1)
, . . . ,

α(m)

2`(m)

)
6= 0 will be our approximation of the coefficients.

The compiler must provide two working parameters:Mw
msb and pwlsb. These are

selected in such a way that they satisfy the following properties: 1.) The lift to the
ModReal shares classMMw

msb,p
w
lsb

of the inputs ensures that the individual scalar

products
α(i)

2`(i)
· x(i) can be computed without overflow and keeping sufficient

precision; 2.) The sum of all secret shares (there are ` of them) of all individual
terms (scalar products; there are m of them) can be computed in this class
without an overflow.

The idea of the algorithm is: For each 1 ≤ i ≤ m, the ith input variable is
first lifted to a ModReal number with parameters Mw

msb + `(i) and pwlsb + `(i).

When Mw
msb + `(i) > M

(i)
msb, this requires a lift triple (involving the variable’s

mask λ, and two ephemeral precomputed data b and ν). Then, the multiplication

by α(i)/2`
(i)

yields a value of parameters Mw
msb and pwlsb, which gets accumulated

with the other values. Finally, the sum is casted to the output parameters.

Beaver Multiplications. For the multiplication of two secret shares JxKMx
msb,p

x
lsb

and JyKMy
msb,p

y
lsb

we use the Beaver’s method [5]. The goal is to compute JzKMz
msb,p

z
lsb

with corresponding output parameters Mz
msb and pzlsb. These parameters are typ-

ically determined by the compiler during the static analysis. The compiler also
needs to provide working parameters for the intermediate variables:

– (MAW
msb , p

AW
lsb ) - lifting parameters for the masked value a = x+ λ,

10 https://tls.mbed.org
11 The choice of 58 above in order to resemble the plaintext of type float64, whereby

the mantissa is 53 bits
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– (MBW
msb , p

BW
lsb ) - lifting parameters for the masked value b = y + µ

The working parameters for x and y are generated in a such a way that
they satisfy the following properties: 1.) the multiplication can be computed in
MMW

msb,p
W
lsb

without an overflow; 2.) x and y are lifted to numerical window of

the same size; 3.) preserve the minimal precision between the two inputs and
the output. The idea of the algorithm is: First the players mask x and y and
reveal the masked values a = x+ λ and b = y + µ. After that, a and b are lifted
to the corresponding working parameters (MAW

msb , p
AW
lsb ) and (MBW

msb , p
BW
lsb ). The

output is computed using Beaver method: JzK = a · b− a · JµK− JλK · b+ JλµK =
JxK ·b−a ·JµK+JλµK (note that the 3 terms representation is equivalent and 33%
more efficient) and at the end we lift to the output parameters (Mz

msb, p
z
lsb).

Logreg benchmarks

Tables 6, 7 and 8 provide computation overhead for datasets with different num-
ber of rows and features for 2, 3 and 5 players respectively. The counter-intuitive
decrease in triples size with the increase of number of players is due to seeded
triples generation.

RAM Communication CPU End-to-end

Features Input size Offline Online Triples Network Offline Online Offline Online
count ×106 MB seconds

10 55 51 103 79 5.4 2.4 5.4 2.6
50 0.01 81 142 292 344 9.5 6.6 9.5 8.2
100 140 257 533 682 16.2 15.1 16.2 17.8

10 133 230 1025 784 63.6 21.8 63.6 23.9
50 0.1 491 784 2890 3412 106.7 64.8 106.7 80.3
100 939 1449 5228 6702 171.6 149.8 171.6 175.7

10 566 860 5120 3919 159.9 101.3 159.9 113.7
50 0.5 2359 3551 14431 17044 377.9 327.1 377.9 403.7
100 4596 6897 26077 33457 724.9 765.1 724.9 890.9

10 1123 1673 10238 7837 271.9 188.7 271.9 216.3
50 1 4699 7184 28858 34085 711.8 644.9 711.8 799.9
100 9170 13806 52139 66901 1425.5 1550.5 1425.5 1797.9

Table 6. Logistic regression execution times and communication sizes for 2 players
and different dataset sizes.
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RAM Communication CPU End-to-end

Features Input size Offline Online Triples Network Offline Online Offline Online
count ×106 MB seconds

10 55 55 69 157 5.9 2.8 5.9 3.5
50 0.01 81 166 195 688 11.2 8.6 11.2 12.6
100 140 292 356 1364 19.4 19.7 19.4 27.1

10 133 264 684 1568 66.0 26.4 66.0 34.2
50 0.1 528 826 1927 6823 120.9 84.1 120.9 124.1
100 937 1779 3486 13404 206.2 193.6 206.2 266.6

10 601 949 3413 7837 184.3 119.6 184.3 161.0
50 0.5 2360 4094 9621 34089 486.4 435.7 486.4 632.6
100 4596 8041 17386 66914 932.3 1028.8 932.3 1380.7

10 1108 1804 6826 15673 332.1 236.2 332.1 319.6
50 1 4699 8100 19239 68170 929.1 870.1 929.1 1264.2
100 9170 15422 34760 133802 1829.7 2077.7 1829.7 2777.2

Table 7. Logistic regression execution times and communication sizes for 3 players
and different dataset sizes.

RAM Communication CPU End-to-end

Features Input size Offline Online Triples Network Offline Online Offline Online
count ×106 MB seconds

10 55 62 41 314 7.2 3.3 7.2 5.2
50 0.01 81 197 117 1377 15.3 11.0 15.3 20.3
100 140 373 214 2728 27.5 26.0 27.5 43.5

10 133 289 411 3136 80.0 31.6 80.0 51.4
50 0.1 490 1202 1157 13647 163.8 114.0 163.8 204.9
100 937 2155 2093 26808 284.4 264.9 284.4 435.3

10 565 1189 2048 15674 255.1 154.1 255.1 253.9
50 0.5 2361 5261 5773 68177 717.2 601.9 717.2 1049.7
100 4596 9232 10432 133829 1368.0 1424.8 1368.0 2255.1

10 1108 2346 4096 31347 467.9 301.1 467.9 502.1
50 1 4699 9809 11544 136340 1394.2 1213.1 1394.2 2106.7
100 9170 18659 20857 267605 2689.8 2871.7 2689.8 4527.4

Table 8. Logistic regression execution times and communication sizes for 5 players
and different dataset sizes.

Numerical precision of θmpc against θskl. We also assessed the numerical
precision of θmpc against θskl by computing the maximum absolute difference of
the k coefficients of theta, δθ = max(|θmpc − θskl|). Fig.4 shows the highest dis-
crepancy δθ in the model coefficients between MPC and plaintext, for datasets
yielding approximately the same log loss, Ldiff ≈ 0. We again take the worst
result over 5 runs and apply truncation formatting for readability. The obtained
precision depends on the scale of θmpc, the higher the scale the lower the preci-

35



sion, which is unavoidable as all the model coefficients share the same fix-point.
Note however that losses of precision on smaller coefficients has negligible or no
impact on the predictions ŷ, as they contribute the least in the calculation. For
a dataset X with column scales sj ∈ [0..6] and λ = 1, we get a δθ of 10−9, thus
matching the plaintext model at least 8 digits after the decimal point.

h

Fig. 4. Theta max absolute difference (δθ) Manticore vs scikit-learn

MP-SPDZ vs Manticore . In a second experiment, we have compared the
logistic regression implementations of Manticore and MP-SPDZ [25]. Besides
execution metrics, we have compared the precision of these MPC implementa-
tions to plaintext learning via scikit-learn [37]. We have generated a synthetic
dataset X with 30000 rows and 10 features together with a vector y of labels.
The values of the matrix X are uniformly random in the interval [−4, 4] and
y consists of uniformly random binary values. Two more datasets with non-
normalized and correlated features were generated from X: in the first one, X ′,
we have re-scaled a column of X by 28 and in the second one, X|X, we have
horizontally stacked 2 times matrix X.

The Manticore logistic-regression is configured with 10 IRLS followed by 2
classical iterations. The MP-SPDZ implements a mini-batch stochastic-gradient
descent (SGD). We use the sample logistic-regression code from MP-SPDZ github12

(commit 15d179a). We have employed 4 configurations:

– mp-spdz a and mp-spdz b use a 5 piece-wise sigmoid approximation with
10 and respectively 100 iterations,

– mp-spdz c and mp-spdz d use exact sigmoid with 10 and respectively 100
iterations.

12 https://github.com/data61/MP-SPDZ
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These configurations use the same batch size 128. For other parameters, we have
tried our best to obtain similar configurations between Manticore and MP-
SPDZ implementations (no regularization, no normalization and no intercept
is used). We have compiled the logistic-regression with arithmetic modulo 2k

and extended daBits (-R 64 -Y compile arguments). Replicated secret-sharing
execution environment with 3 parties (honest-majority) is used (the ring.sh

execution script).

Dataset Method Log-loss Exec. time Comm.

manticore 0.445 12.4 512
mp-spdz a 0.449 5.5 263

X mp-spdz b 0.449 35.4 1020
mp-spdz c 0.445 43.4 2697
mp-spdz d 0.445 414.9 25352

manticore 0.445 12.5 512
mp-spdz a 8.549 5.5 263

X ′ mp-spdz b 4.689 35.6 1020
mp-spdz c 17.102 43.5 2697
mp-spdz d 3.821 415.8 25352

manticore 0.445 12.8 539
mp-spdz a 0.652 5.5 264

X|X mp-spdz b 0.695 36.3 1033
mp-spdz c 0.825 43.6 2698
mp-spdz d 0.819 415.2 25365

Table 9. MP-SPDZ vs Manticore precision, execution time (seconds) and communi-
cation overhead (MB) comparison. Logistic-loss values which differ by less than 10−3

from the scikit-learn are highlighted in bold font.

In table 9 are given execution metrics for different configurations of tested
logistic-regression implementations. Model quality is measured by the logistic-
regression objective function, i.e. the logistic loss (“logloss” column). The execu-
tion time given in column “Exec. time” corresponds to offline and online phases.
The network size is given in column “Comm.”. Manticore and MP-SPDZ model
qualities for dataset X are similar to plaintext model (log-loss difference under
10−2). The Manticore implementation is precise (same log-loss as the plaintext
model) when the dataset is not normalized (X ′) or has correlated features (X|X)
as opposed to MP-SPDZ. We suppose that the mini-batch SGD algorithm im-
plemented in MP-SPDZ is not well suited for such type of datasets. MP-SPDZ
is faster and has lower communication when approximate sigmoid and 10 SGD
iterations are used, although for same model precision the Manticore is always
better.
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