
Blitz: Secure Multi-Hop Payments Without Two-Phase Commits∗

Lukas Aumayr
TU Wien

lukas.aumayr@tuwien.ac.at

Pedro Moreno-Sanchez
IMDEA Software Institute
pedro.moreno@imdea.org

Aniket Kate
Purdue University

aniket@purdue.edu

Matteo Maffei
TU Wien

matteo.maffei@tuwien.ac.at

Abstract

Payment-channel networks (PCN) are the most prominent
approach to tackle the scalability issues of current permission-
less blockchains. A PCN reduces the load on-chain by allow-
ing arbitrarily many off-chain multi-hop payments (MHPs)
between any two users connected through a path of payment
channels. Unfortunately, current MHP protocols are far from
satisfactory. One-round MHPs (e.g., Interledger) are inse-
cure as a malicious intermediary can steal the payment funds.
Two-round MHPs (e.g., Lightning Network (LN)) follow the
2-phase-commit paradigm as in databases to overcome this is-
sue. However, when tied with economical incentives, 2-phase-
commit brings other security threats (i.e., wormhole attacks),
staggered collateral (i.e., funds are locked for a time propor-
tional to the payment path length) and dependency on specific
scripting language functionality (e.g., Hash Time-Lock Con-
tracts) that hinders a wider deployment in practice.

We present Blitz, a novel MHP protocol that demonstrates
for the first time that we can achieve the best of the two worlds:
a single round MHP where no malicious intermediary can
steal coins. Moreover, Blitz provides the same privacy for
sender and receiver as current MHP protocols do, is not prone
to the wormhole attack and requires only constant collateral.
Additionally, we construct MHPs using only digital signa-
tures and a timelock functionality, both available at the core
of virtually every cryptocurrency today. We provide the cryp-
tographic details of Blitz and we formally prove its security.
Furthermore, our experimental evaluation on a LN snapshot
shows that (i) staggered collateral in LN leads to in between
4x and 33x more unsuccessful payments than the constant
collateral in Blitz; (ii) Blitz reduces the size of the payment
contract by 26%; and (iii) Blitz prevents up to 0.3 BTC (3397
USD in October 2020) in fees being stolen over a three day
period as it avoids wormhole attacks by design.

∗This is the full version of the work accepted at 30th USENIX Security
Symposium 2021.

1 Introduction
Permissonless cryptocurrencies such as Bitcoin enable

secure payments in a decentralized, trustless environment.
Transactions are verified through a consensus mechanism
and all valid transactions are recorded in a public, distributed
ledger, often called blockchain. This approach has inherent
scalability issues and fails to meet the growing user demands:
In Bitcoin, the transaction throughput is technically limited
to tens of transactions per second and the transaction confir-
mation time is around an hour. In contrast, more centralized
payment networks such as the Visa credit card network, can
handle peaks of 47,000 transaction per second.

This scalability issue is an open problem in industry and
academia alike [16, 33]. Among the approaches proposed
so far, payment channels (PC) have emerged as one of the
most promising solutions; implementations thereof are al-
ready widely used in practice, e.g., the Lightning Network
(LN) [24] in Bitcoin. A PC enables two users to securely
perform an arbitrary amount of instantaneous transactions
between each other, while burdening the blockchain with
merely two transactions, (i) for opening and (ii) for closing. In
particular, following the unspent transaction output (UTXO)
model, two users open a PC by locking some coins in a shared
multi-signature output. By exchanging signed transactions
that spend from the shared output in a peer-to-peer fashion,
they can capture and redistribute their balances off-chain. Ei-
ther one of the two users can terminate the PC by publishing
the latest of these signed transactions on the blockchain.

As creating PCs requires locking up some coins, it is eco-
nomically infeasible to set up a PC with every user one wants
to interact with. Instead, PCs can be linked together forming a
graph known as payment channel network (PCN) [21, 24]. In
a PCN, a payment of α coins from a sender U0 to a receiver
Un can be performed via a path {Ui}i∈[0,n] of intermediaries.

1.1 State-of-the-art PCNs
A possible way of achieving such a multi-hop pay-

ment (MHP) is an optimistic 1-round approach, e.g., In-

1

terledger [29]. Here, U0 starts paying to its neighbor on the
path U1, who then pays to its neighbor U2 and so on until Un is
reached. This protocol, however, relies on every intermediary
behaving honestly, otherwise any intermediary can trivially
steal coins by not forwarding the payment to its neighbor.

To achieve security in MHPs, most widely deployed PCNs
(e.g., LN [24]) require an additional second round of commu-
nication (i.e., sequential, pair-wise communication between
sender and receiver via intermediaries). Specifically, PCNs
follow the principles of the 2-phase-commit protocol used to
perform atomic updates in distributed databases. In the first
communication round, the users on the payment path lock α

coins of the PC with their right neighbor in a simple smart
contract called Hash Time-Lock Contract (HTLC), which can
be expressed even in restricted scripting languages such as
the one used in Bitcoin. The money put into the HTLC by the
left neighbor at each PC moves to the right neighbor, if this
neighbor can present a secret chosen by Un (i.e., the receiver
of the payment); alternatively, it can be reclaimed by the left
neighbor after some time has expired.

After HTLCs have been set up on the whole path, the users
move to the second round, where they release the locks by
passing the secret from Un to U0 via the intermediaries on the
path before the time on the HTLCs has expired. Intermediaries
are economically incentivized to assist in the 2-phase payment
protocol. In the first round, when Ui receives α coins from
the left neighbor Ui−1, it forwards only α− fee to the right
neighbor Ui+1, charging fee coins for the forwarding service.
In the second round, when Ui+1 claims the α− fee coins from
Ui, the latter is incentivized to recover the α coins from Ui−1.

1.2 Open problems in current PCNs
There are some fundamental problems with current

PCNs that follow the 2-phase-commit paradigm. While
2-phase-commit has been successfully used for atomic up-
dates in distributed databases, it is not well suited to applica-
tions where economic incentives are inherently involved. In
particular, there exists a tradeoff between security, efficiency
and number of rounds in the PCN setting that constitutes not
only a challenging conceptual problem, but also one with
strong practical impact, as we motivate below.
Staggered collateral After a user Ui has paid to Ui+1, it
must have enough time to claim the coins put by Ui−1. If
Ui−1 is not cooperative, then this time is used to forcefully
claim the funds with an on-chain transaction. The timing on
the HTLCs (called collateral time in the blockchain folklore)
grows therefore in a staggered manner from right to left, ti ≥
ti+1 +ξ. In practice, ξ has to be quite long: e.g., in the LN, it
is set to one day (144 blocks). In the worst case, the funds are
locked up for a time of n ·ξ. This means that a single payment
of value α over n users can lock up a collateral of Θ(n2 ·α ·ξ).
Reducing this locktime enables a faster release time of locked
funds and directly improves the throughput of the network.
Moreover, long locktimes are also problematic when looking

at the high volatility of cryptocurrency prices, where prices
can drop significantly within the same day.
Griefing attack A malicious user can start a MHP to itself,
causing user Ui to lock up α coins for a time (n− i) ·ξ. The
malicious user subsequently goes idle and lets the payment
fail with the intention of reducing the overall throughput of the
network by causing users to lock up their funds. In a different
scenario, an intermediary could do the same by accepting
payments in the first round, but going idle in the second. It
is interesting also to observe the amplification factor: with
the relatively small amount of α coins, an attacker can lock
(n−1) ·α coins of the network. This attack is hard to detect
and can even be used to target specific users in the PCN in
order to lock up their funds.
Wormhole attack The wormhole attack [22] is an attack
on PCNs where two colluding malicious users skip honest
users in the open phase of the 2-phase-commit protocol and
thereby cheat them out of their fees. The payment does not
happen atomically anymore: For some users the payment is
successful and for others it is not, i.e., for the ones encased
by the malicious users. The users for whom it is unsuccessful
have to lock up some of their funds, but do not get any fees
for offering their services, nor can they use their locked funds
for other payments. These fees go instead to the attacker.
HTLC contracts PCNs built on top of 2-phase-commit pay-
ments depend largely on HTLCs and the underlying cryp-
tocurrencies supporting them in their scripts. However, there
are a number of cryptocurrencies that do not have this func-
tionality or that do not provide scripting capabilities at all,
such as Stellar or Ripple. Instead, these currencies provide
only digital signature schemes and timelocks.

On a conceptual level, one could actually wonder whether
or not it is required to add an agreement protocol (in the
database literature, a protocol where if an honest party delivers
a message m, then m is eventually delivered by every honest
party), like the HTLC-based 2-phase-commit paradigm, on
top of the blockchain-inherited consensus protocol.

The current state of affairs thus leads to the following ques-
tion: Is it possible to design a PCN protocol with a single
round of communication (and thus without HTLCs) while
preserving security and atomicity?

1.3 Our contributions
We positively answer this question by presenting Blitz, a

novel payment protocol built on top of the existing payment
channel constructions, which combines the advantages of both
the optimistic 1-round and the 2-phase-commit paradigms.
Our contributions are as follows.

• With Blitz, we introduce for the first time a payment pro-
tocol that achieves a MHP in one round of communication
while preserving security in the presence of malicious inter-
mediaries (i.e., as in the LN). The Blitz protocol has constant
collateral of only Θ(n ·α ·ξ), allowing for PCNs that are far
more robust against griefing attacks and provide a higher trans-

2

action throughput. Additionally, the Blitz protocol is immune
to the wormhole attack and having only one communication
round reduces the chance of unsuccessful payments due to
network faults.

• We show that Blitz payments can be realized with only
timelocks and signatures, without requiring, in particular,
HTLCs. This allows for a more widespread deployment, i.e.,
in cryptocurrencies that do not feature hashlocks or script-
ing, but only signatures and timelocks, e.g., Stellar or Ripple.
Since Blitz builds on standard payment channel constructions,
it can be smoothly integrated as an (alternative or additional)
multi-hop protocol into all popular PCNs, such as the LN.

• We formally analyze the security and privacy of Blitz in
the Universal Composability (UC) framework. We provide an
ideal functionality modeling the security and privacy notions
of interest and show that Blitz is a UC realization thereof.

• We evaluate Blitz and show that while the computation
and communication overhead is inline with that of the LN,
the size of the contract used in Blitz is around 26% smaller
than an HTLC in the LN, which in practice opens the door
for a higher number of simultaneous payments within each
channel. We have additionally evaluated the effect of the
reduction of collateral from staggered in the LN to constant in
Blitz and observed that it reduces the number of unsuccessful
payments due to locked funds by a factor between 4x and 33x,
depending on payment amount and percentage of disrupted
payments. Finally, the avoidance of the wormhole attack by
design in Blitz can save up to 0.3 BTC (3397 USD in October
2020) of fees in our setting (over a three day period).

2 Background and notation
The notation used in this work is adopted from [5]. We

provide here an overview on the necessary background and
for more details we refer the reader to [5, 21, 22].

2.1 Transactions in the UTXO model
Throughout this work, we consider cryptocurrencies that

are built with the unspent transaction output (UTXO) model,
as Bitcoin is for instance. In such a model, the units of cash,
which we will call coins, exist in outputs of transactions. Let
us define such an output θ as a tuple consisting of two values,
θ := (cash,φ), where θ.cash denotes the amount of coins held
in this output and θ.φ is the condition which must be fulfilled
in order to spend this output. The condition is encoded in the
scripting language used by the underlying cryptocurrency. We
say that a user U owns the coins in an output θ, if θ.φ con-
tains a digital signature verification script w.r.t. U’s public key
and the digital signature scheme of the underlying cryptocur-
rency. For this, we use the notation OneSig(U). If multiple
signatures are required, we write MultiSig(U1, . . . ,Un).

Ownership of outputs can change via transactions. A
transaction maps a non-empty list of existing outputs to a
non-empty list of new outputs. For better distinction, we
refer to these existing outputs as transaction inputs. We

tx

x1

x2

B
≥ t1

pkB

+t2

pkA,pkB

tx′ x2

φ1

φ2

φ3 ∧φ4

Figure 1: (Left) Transaction tx has two outputs, one of value
x1 that can be spent by B (indicated by the gray box) with
a transaction signed w.r.t. pkB at (or after) round t1, and one
of value x2 that can be spent by a transaction signed w.r.t.
pkA and pkB but only if at least t2 rounds passed since tx was
accepted on the blockchain. (Right) Transaction tx′ has one
input, which is the second output of tx containing x2 coins
and has only one output, which is of value x2 and can be spent
by a transaction whose witness satisfies the output condition
φ1∨φ2∨ (φ3∧φ4). The input of tx is not shown.

formally define a transaction body tx as an attribute tuple
tx := (id, input,output). The identifier tx.id ∈ {0,1}∗ is au-
tomatically assigned as the hash of the inputs and outputs,
tx.id := H (tx.input, tx.output), where H is modelled as a
random oracle. The attribute tx.input is a list of identifiers of
the inputs of the transaction, while tx.output := (θ1, . . . ,θn)
is a list of new outputs. A full transaction tx contains addition-
ally a list of witnesses, which fulfill the spending conditions
of the inputs. We define tx := (id, input,output,witness) or
for convenience tx := (tx,witness). Only a valid transaction
can be published on the blockchain, i.e., one that has a valid
witness for every input and has only inputs not used in other
published transactions.

In fact, a transaction is not published on the blockchain
immediately after it is submitted, but only after it is accepted
through the consensus mechanism. We model that by defining
a blockchain delay ∆, an upper bound on the time it takes for
a transaction that is broadcast until it is added to the ledger.

For better readability we use charts to visualize transac-
tions, their ordering and how they are used in protocols. The
charts are expected to be read from left to right, i.e., the di-
rection of the arrows. Every transaction is represented as a
rectangle with rounded corners. Incoming arrows represent
inputs. Every transaction has one or more output boxes inside
it. Inside these boxes we write the amount of coins stored in
the corresponding output. Every output box has one or more
outgoing arrow. This arrow has the condition needed to spend
the corresponding output written above and below it.

To present complex conditions in a compact way, we use
the following notation. On a high level, we write the owner(s)
of an output below the arrow and how they can spend it above.
In a bit more detail, most output scripts require signature
verification w.r.t. one or more public keys, a condition that
we represent by writing the necessary public keys below a
given arrow. Other conditions are written above the arrow.
The conditions above can be any script supported by the
underlying cryptocurrency, however in this paper we require
only the following. We write “+t” or RelTime(t) to denote

3

a relative timelock, i.e., the output with this condition can
be spent, if and only if at least t rounds have passed since
the transaction containing the output was published on the
blockchain. Additionally, we consider absolute timelocks,
denoted as “≥ t” or AbsTime(t): this condition is satisfied
if and only if the blockchain is at least t blocks long. If an
output condition is a disjunction of several conditions, i.e., φ=
φ1∨·· ·∨φn, we write a diamond shape in the output box and
put each subcondition φi above/below its own arrow. For the
conjunction of several conditions we write φ = φ1∧·· ·∧φn.
We illustrate an example of our transaction charts in Figure 1.

2.2 Payment channels
A payment channel is used by two parties P and Q to per-

form several payments between them while requiring only
two on-chain transactions (for opening and closing). The
balances are kept and updated in what is called a state. For
brevity and readability, we hereby abstract away from the
implementation details of a payment channel and provide a
more detailed description in Appendix C.

We assume that there is an off-chain transaction txstate

which holds the outputs representing the current state of the
payment channel. We further assume that the current txstate

can always be published on the blockchain and if an old state
is published by a dishonest user, the honest user gets the total
channel balance through some punishment mechanism.

Formally, we define a channel γ as the following attribute
tuple γ := (id,users,cash,st). Here, γ.id ∈ {0,1}∗ is a unique
identifier of the channel, γ.users ∈ P 2 denotes the two parties
that participate in the channel out of the set of all parties P .
Further, γ.cash ∈ R≥0 stores the total number of coins held
in the channel and γ.st := (θ1, . . . ,θn) is the current state of
the channel consisting of a list of outputs. For convenience,
we also define a channel skeleton γ with respect to a chan-
nel γ as the tuple γ := (γ.id,γ.users). When the channel is
used along a payment path as shown in the next section, we
say the γ.left ∈ γ.users accesses the user that is closer to the
sender and γ.right∈ γ.users the one closer to the receiver. The
balance of each user can be inferred from the state γi.st, how-
ever for convenience we define a function γi.balance(U), that
returns the coins of user U ∈ γi.users in this channel.

2.3 Payment channel networks
Since maintaining a payment channel locks a certain

amount of coins for a party, it is economically prohibitive
to set up a payment channel with every party that one poten-
tially wants to interact with. Instead, each party may open
channels with a few other parties, creating thereby a network
of channels. A payment channel network (PCN) [21] is thus a
graph where vertices represent the users and edges represent
channels between pairs of users. In a PCN, a user can pay
any other user connected through a path of payment channels
between them. Suppose user U0 wants to pay some amount α

to Un, but does not have a payment channel directly with it.

Now assume that instead, U0 has a payment channel γ0 with
U1, who in turn has a channel γ1 with U2 and so on, until the
receiver Un. We say that U0 and Un are connected by a path
and denote a payment using it as multi-hop payment (MHP).
Optimistic payment schemes In an MHP, the main chal-
lenge is to ensure that the payment happens atomically and
for everyone, so that no (honest) user loses any money. In fact,
there exists payment-channel network constructions where
this security property does not hold. We call them optimisic
payment schemes and give Interledger [29] as an example. In
this scheme, the users on the path simply forward the payment
without any guarantee of the payment reaching the receiver.
The sender U0 starts by performing an update for channel γ0,
where γ0.balance(U1) is increased by α (and γ0.balance(U0)
is decreased by α) compared to the previous state. U1 does the
same with U2 and this step is repeated until the receiver Un is
reached. This scheme works if every user is honest. However,
a malicious intermediary can easily steal the money by simply
stopping the payment and keeping the money for itself.
Secure MHPs Since the assumption that every user is honest
is infeasible in practice, most widely deployed systems instead
ensure that no honest user loses coins. The Lightning Network
(LN) [24] uses so called Hash Time-Lock Contracts (HTLCs).
An HTLC works as follows. In a payment channel between
Alice and Bob, party Alice locks some coins that belong to
her in an output that is spendable in the following fashion: (i)
After a predefined time t, Alice gets her money back. (ii) Bob
can also claim the money at any time, if he knows a pre-image
rA for a certain hash value H (rA), which is set by Alice.

For an MHP in the LN, suppose again that we have a sender
U0 who wants to pay α to a receiver Un via some interme-
diaries Ui with i ∈ [1,n−1], and that two users U j and U j+1
for j ∈ [0,n−1] have an opened payment channel. Now for
the first step, Un samples a random number r, computes the
hash of it y := H (r) and sends y to U0. In the second step, the
sender U0 sets up an HTLC with U1 by creating a new state
with three outputs θ1,θ2,θ3 that correspondingly hold the
amount of coins: α, U0’s balance minus α and U1’s balance.
While θ2 and θ3 are spendable by their respective owners, θ1
is the output used by the HTLC. The HTLC that is constructed
spends the output containing α back to U0 after n time, let us
say n days, or to U1 if it knows a value x such that H (x) = y.
Now U1 repeats this step with its right neighbor, again using
y but a different time, (n−1) days, in the HTLC. This step is
repeated until the receiver is reached, with a timeout of 1 day.

Now if constructed correctly, the receiver Un can present r
to its left neighbor Un−1, which is the secret required in the
HTLC for giving the money to Un. We call this opening the
HTLC. After doing that, the two parties can either agree to up-
date their channel to a new state, where Un has α coins more,
or otherwise the receiver can publish the state and a transac-
tion with witness r spending the money from the HTLC to
itself on-chain. When a user Ui reveals the secret r to its left
neighbor Ui−1, Ui−1 can use r to continue this process. For

4

this continuation, Ui−1 needs to have enough time. Otherwise,
Ui could claim the money of the HTLC it has with Ui−1 by
spending the HTLC on-chain at the last possible moment.
Because of the blockchain delay, user Ui−1 will notice this
too late and will not be able to claim the money of the HTLC
with Ui−2 anymore. This is the reason why the timelocks on
the HTLCs are staggered, i.e., increasing from right to left.

The aforementioned process where each user presents r to
the left neighbor is repeated until the sender U0 is reached, at
which point the payment is completed. We call this approach
of performing MHPs 2-phase-commit.

3 Solution overview
The goal of this work is to achieve the best of the two multi-

hop payment (MHP) paradigms existing nowadays (optimistic
and 2-phase-commit), that is, an MHP protocol with a single
round of communication that overcomes the drawbacks of the
current LN MHP protocol and yet maintains the security and
privacy notions of interest.

For that, we propose a paradigm shift, which we call pay-
or-revoke. The idea is to update the payment channels from
sender to receiver in a single round of communication. The
key technical challenge is thus to design a single channel
update that can be used simultaneously for sending coins from
the left neighbor to the right one if the payment is successful
and for a refund of the coins to the left neighbor if the payment
is unsuccessful (e.g., one intermediary is offline).

We present the pay-or-revoke paradigm in an incremental
way, starting with a naive design, discussing the problems
with it, and presenting a tentative solution. We iterate these
steps until we finally reach our solution.
Naive approach Assume a setting with a sender U0 who
wants to pay α coins to a receiver Un via a known path of
some intermediaries Ui (i ∈ [1,n− 1]), where each pair of
consecutive users U j and U j+1 for j ∈ [0,n−1] has a payment
channel γ j, where γ j.balance(U j)≥ α. We start out with an
optimistic payment scheme, as presented in Section 2.3. We
already explained that the success of such a payment relies on
every intermediary behaving honestly and really forwarding
the α coins. Should an intermediary not forward the payment,
Un will never receive anything. Additionally, a receiver could
claim that it never received the money even though it actually
did and it would be difficult for the sender to prove otherwise.

To solve these problems the sender faces when using this
form of payment we introduce a possibility for the sender
to step back from a payment, that is, refund itself and all
subsequent users the α coins that they initially put, should the
payment not reach Un. With such a refund functionality, the
sender can now check if a receiver is giving a confirmation
that it got the payment. This confirmation is external to the
system (e.g., a digital payment receipt) and serves additionally
as a proof that the money was received. If such a confirmation
is not received, the sender simply steps back from the payment
and the payments in every channel are reverted.

Adding refund functionality Adding a refund functionality
while avoiding additional security problems is challenging.
Two neighbors can no longer simply update their channel
γi to a state where α coins are moved from the left to the
right neighbor, as this only encodes the payment. Instead, we
need to introduce an intermediate channel state txstate, which
encodes the possibility for both a refund and a payment.

We realize that as follows. This new state has an output
holding α coins coming from γi.left (= Ui) while leaving
the rest of the balance in the channel untouched. The output
containing α coins becomes then the input for two mutu-
ally exclusive transactions: refund and payment. We denote
the refund transaction as txri , which spends the money back
to γi.left (= Ui). We denote the payment transaction as txpi ,
which spends the money to γi.right (= Ui+1). The refund
should only be possible until a certain time T . This gives the
sender time to wait for the payment to reach the receiver and
for the receiver to give a (signed) confirmation. Should some-
thing go wrong, the sender starts the refund procedure. After
time T , if no refund happened, the payment is considered
successful and the payment transaction becomes valid.

The latter condition can easily be expressed in the scripting
language of virtually any cryptocurrency including Bitcoin,
by making use of absolute timelocks, which in this work we
defined as AbsTime(T), meaning an output can be spent only
after some time T . Unfortunately, the same cannot be done
for expressing the condition that an output is spendable only
before time T (e.g., see [14] for details).

We overcome this problem in a different way. Instead of
making the refund transaction txri only valid before T , we
allow both txri and the payment transaction txpi to be valid
after time T and encode a condition that, should both be
posted after T , txpi will always be accepted over txri . We can
achieve this by adding a relative timelock on the input of txri
of the blockchain delay ∆. In other words, should a user try
to close the channel with txstate appearing on the chain after
time T , the other user will have enough time to react and post
txpi , which will get accepted before the relative timelock of txri
expires. For the honest refund case nothing changes: If txstate

is on-chain and txri gets posted before T −∆, it will always
be accepted over txpi , since the latter transaction is only valid
after time T .
Making the refund atomic So far, we added a refund func-
tionality that is (i) not atomic and (ii) triggerable by every
user on the path. An obvious attack on this scheme would be
for any user on the path to commence the refund in a way that
txri is accepted on the ledger just before T . Other users would
not have enough time to react accordingly and lose their funds.
Also, allowing intermediary users to start the refund opens up
the door to griefing, where malicious users start a refund even
though the payment reached the receiver. We therefore need
a mechanism that (i) ensures the atomicity of the refund (or
payment) and (ii) is triggerable only by the sender.

Following the LN protocol, one could add a condition

5

H (rA) on the refund transaction, such that the refund can
only happen when a pre-image rA chosen by the sender is
known. To prevent the sender from publishing at the last mo-
ment however, the timing for the refund in the next channel
would have to be T +∆ to give U1 enough time to react. In
subsequent channels, this time would grow by ∆ for every
hop and we would then have an undesirable staggered time
delay. Additionally, this approach would rely on the scripting
language supporting hash-lock functionality.

To keep the time delay constant, we instead make the refund
transactions dependent on a transaction being published by
the sender. First, the sender creates a transaction that we name
enable-refund and denote by txer. The unsigned transaction
txer is then passed through the path and is used at each channel
γ j as an additional input for txri .

This makes the refund transaction at every channel depen-
dent on txer and gives the sender and only the sender the
possibility to abort the payment until time T in case some-
thing goes wrong along the path (e.g., a user is offline or the
enable-refund transaction is tampered), and the receiver the
guarantee to get the payment after time T otherwise.

In order to use the same txer for the refund transaction txri
of every channel γi, we proceed as follows. For every user
on the path (except for the receiver) there needs to exist an
output in txer which belongs to it. Additionally, we observe
that an intermediary Ui whose left neighbor Ui−1 has used txer

as input for its refund transaction txri−1 can safely construct
a refund transaction txri dependent on the same txer, because
it will know that if its left neighbor refunded, txer has to be
on-chain, which means that it can refund itself. Also, since
the appearance of txer on the ledger is a global event that is
observable by everyone at the same time, the time T used for
the refund can be the same for every channel, i.e., constant.
Putting everything together Our approach is depicted in
Figure 2, txer is shown in Figure 3, and the transaction struc-
ture between two users is shown in Figure 4. Note that we
change the payment value from α to αi to embed a per-hop fee
(see Appendix A for details). After the payment is set up from
sender to receiver, the receiver sends a confirmation of txer

back to U0, which acts both as verification that txer was not
tampered and as a payment confirmation. Should the sender
receive this in time, it will wait until time T , after which the
payment will be successful. If no confirmation was received
in time, or txer was tampered, the sender will publish txer in
time to trigger the refund.

We remark that it is crucial that every intermediate user
can safely construct txri only observing txer, but not the input
funding it (or not even knowing whether it will be funded at
all in the first place). Indeed, an intermediary Ui does not care
if the transaction txer is spendable at all, it only cares that its
left neighbor Ui−1 uses an output of the same transaction txer

as input for its refund transaction txri−1, as Ui does in txri .
In UTXO based cryptocurrencies, using the jth output of

a transaction tx as input of another transaction tx′ means ref-

U0 U1 U2 U3 U4
1.
≥ T

2.
≥ T

3.
≥ T

4.
≥ T

txer
enables refunds

5. verify txer

Figure 4

Figure 3

Figure 2: Illustration of the pay-or-revoke paradigm.

txer

...

ε

ε

pkU0

pkUn−1

n · ε

txin

...

+tc+∆

+tc+∆

pkU0

Figure 3: Transaction txer, which enables the refunds and,
here, spends the output of some other transaction txin.

erencing the hash of the transaction body H (tx), which we
defined as tx.id, plus an index j. A transaction txri that was
created with an input referencing txer.id and some index j,
can only be valid if txer is published. This means, in particu-
lar, that it is computationally infeasible to create a different
transaction txer′ 6= txer and use one of txer′’s outputs as input
of txri without finding a collision in H . Further, as txri requires
the signatures of both Ui and Ui+1, a malicious Ui on its own
cannot create a different refund transaction txri

′ that does not
depend on txer.
A final timelock There is however still one subtle problem
with the construction up to this point regarding the timing
coming from the fact that the sender has the advantage of
being the only one able to trigger the refund by publishing
txer. In a bit more detail, as closing a channel takes some
time, a malicious sender U0 can forcefully close its channel
with U1 beforehand. Then, when txstate0 is on the ledger, the
sender publishes txer so that it appears just before T −∆. The
sender is able to publish txr0 just in time before T . All other
intermediaries however, who did not yet close their channel,
with the result that txstatei is not on the ledger, will not be able
to do this and publish txri in time.

αi

xUi−αi

xUi+1

ε
αi + ε

pkUi,pkUi+1

pkUi +∆

≥ T
αi

pkUi+1

txstatei

txer

...

...

txri

txpi

pkUi+1

pkUi

+tc+∆

Ui

Ui+1

pkUi

pkUi+1

Ui

Ui+1

Figure 4: Payment setup in the channel γi of two neighboring
users Ui and Ui+1 with the new state txstate. xUi and xUi+1 are
the amounts that Ui and Ui+1 own in the state prior to txstate.

6

To solve this problem, we introduce a relative timelock on
the outputs of txer of exactly tc+∆, as shown in Figure 3 and
Figure 4. This relative time delay is an upper bound on the
time it takes to (i) forcefully close the channel and (ii) wait for
the time delay needed to publish txri . With this, we ensure that
no user gains an advantage by closing its channel in advance,
since this can be entirely done in this relative timelock on
txer’s outputs. Honest intermediaries can easily check that
this relative timelock is present in txer’s outputs and every
user on the payment path has the same time.

A timeline of when the transactions have to appear on the
ledger is given in Appendix F. Note that for the payment to
be refunded, txer has to be posted to the ledger at the latest
at time T − tc−3∆. Still, for better readability we sometimes
refer to this case simply as txer being published before time T .
Improving anonymity of the path Until this point, we have
shown a design of the pay-or-revoke paradigm, that, while
ensuring that honest users do not lose coins, has an obvious
drawback in terms of anonymity. In particular, the transac-
tion outputs of txer contain the addresses of every user on
the path in the clear (except for the receiver who does not
need to refund and therefore needs no such output). This
means that every intermediary (or any other user that sees
txer) learns about the identity of every user on the payment
path as soon as it sees txer. To prevent this leak, we use stealth
addresses [31]. We overview our use of stealth addresses here
and refer to Section 4.2 for technical details. On a high level,
instead of spending to existing addresses, the sender uses
fresh addresses for the outputs of txer. These addresses were
never used before, but are under the control of the respective
users. With this approach, if txer is leaked, the identities of
all users on the path, especially the identity of the sender and
the receiver, remain hidden. Note that we assume the input of
txer to be an unused and unlinkable input of the sender.
Fast track payments The design considered so far has
still a practical drawback compared to MHPs in the LN. In
the LN, if every user is honest, the payment is carried out
almost instantaneously, i.e. the channels are updated as soon
as the HTLCs are opened. Obviously, users of a payment
do not want to wait until some time T until the payment is
carried out, even if all users are honest. To enable the same
fast payments in Blitz, we extend the protocol design with an
optional second communication round, called the fast track
(we compare this second round to the one adopted in the LN
below). Specifically, the users on the path can honestly update
their channels from the sender to the receiver to a state where
the α coins move from left to right.

For this, the sender does not go idle upon receiving the
confirmation in time from the receiver. Instead, U0 starts up-
dating the channel γ0 with its neighbor U1 to a state where
the α coins are paid to U1. Since U0 is the only one able to
publish txer, U0 is safe when performing this update. After
this update, U1 does the same with U2. All users on the path
repeat this step until the receiver is reached. If everyone is

honest, the payment will be carried out as quick as in the LN
honest case. If someone stops the update or some honest users
are skipped by colluding malicious users, honest users simply
wait until time T , and claim their money (and fees) either
by cooperatively updating the channel with their neighbor or
forcefully on-chain. Intuitively, since intermediary users only
update their right channel after updating their left channel,
they cannot lose any money, even if txer is published.

Using the fast track seems to be a better choice for normal
payments. However, there are applications, where the non
fast track is more suitable, e.g., a service with a trial period
or a subscription model, where a user might want to set up
a payment, that gets confirmed after some time. Should the
user decide against it, he/she can cancel the payment. The
choice of fast track is up to the user. Having this second
round is completely optional and for efficiency reasons only.
A payment that is carried out in one round has the same
security properties as one carried out in two rounds.
Fast revoke In the case that an intermediary is offline and
the payment is unsuccessful, the refund can happen without
necessarily publishing txer, saving the cost to put a transaction
on-chain. Say Ui+1 is offline and Ui has already set up the
construction with Ui−1. As soon as an honest Ui notices that
Ui+1 is unresponsive, it can start asking Ui−1 to update their
channel to the state before the payment was set up. After doing
this, Ui−1 asks its left neighbor to do the same and so on until
the sender is reached and the payment is reverted without
txer being published. Should some intermediary refuse to
honestly revoke, then txer can still be published. Apart from
funds being locked for a shorter time, one could add additional
incentives to the fast revocation (or fast track) by giving a
small fee to the users that are willing to participate in it. Of
course, users need a mechanism to find out whether others are
offline. For that, we note that the LN protocol mandates users
to periodically broadcast a heartbeat message. We consider
such default messages orthogonal to payment protocols and
do not count them in round complexity.
Honest update The transactions in Figure 4 between users
are exchanged off-chain and used to guarantee that honest
users do not lose any coins. However, should one of the users
in a channel be able to convince the other that it is able to
enforce either txri or txpi on-chain (that is if txer is on-chain
before time T or time T has already passed, respectively), two
collaborating users can simply perform an honest update. For
this, they update their channel to a state where both have their
corresponding balance, with the benefit that no transaction
has to be put on-chain and their channel remains open.
Blitz vs. ILP/LN/AMHL We claim that Blitz is a solution
for the issues presented in Section 1 and allows for PCNs that
have higher throughput, less communication complexity, addi-
tional security against certain attacks, and are implementable
in cryptocurrencies without scripting capabilities. We high-
light the differences between Blitz and other state-of-the-art
payment methods such as Interledger Payments (ILP), the LN

7

Table 1: Features of different payment methods: Interledger
(ILP), Lightning Network (LN), Anonymous Multi-Hop
Locks (AMHL), Blitz and Blitz using the fast track payment
(FT). We abbreviate timelocks as TL and signature function-
ality as σ. * The requirement of HTLC can be dropped from
the LN using scriptless scripts when feasible.

ILP LN AMHL Blitz Blitz FT
Bal. Security No Yes Yes Yes Yes
Rounds 1 2 2 1 2
Atomicity No No (Wormhole) Yes Yes Yes
Scripting σ σ, TL, HTLCs* σ, TL σ, TL σ, TL
Collateral n/a linear linear constant constant

Table 2: Collateral time for the LN, AMHL and Blitz for
unsuccessful (refund) and successful payments (pay) as well
as different threat models. We say instant when noone on the
path stops the payment in either round. ξ denotes the time
users need to claim their funds (e.g., in the LN 144 blocks).

LN / AMHL Blitz
refund pay refund pay

anyone malicious n ·ξ n ·ξ ξ ξ

sender honest n ·ξ n ·ξ ∆ ξ

everyone honest instant instant instant instant

and the wormhole secure construction Anonymous Multi-Hop
Locks (AMHL) [22] in Table 1.

First, Blitz offers balance security with only one round
of communication, while ILP does not provide that and the
LN requires two rounds. While the fast track optimization
does involve a second round (from left to right, as opposed to
right to left as in the LN), it is optional and affects only the
efficiency (in the case everyone is honest) and not security: a
payment that had a successful first round will be successful
regardless of any network faults in the second round.

Indeed, the same holds true for the wormhole attack: Once
a user has successfully set up a Blitz payment, it cannot be
skipped anymore in the second round, even with the fast track.
The payment is successful for everyone or no one, achieving
thus the atomicity property missing in ILP and the LN, and
honest intermediaries are not cheated out of their fees.

Secondly, Blitz reduces the collateral from linear (in the
size of the path) to constant in the case some of the parties are
malicious, while offering comparable performance in the opti-
mistic case, as shown in Section 6. For a corner case where the
sender is honest, the collateral can even be unlocked almost
instantaneously. We show in which cases Blitz outperforms
the LN in Table 2. Finally, in terms of interoperability, we
require only signatures and timelocks from the underlying
blockchain, with the LN additionally requiring HTLCs and
ILP only signatures.
Concurrent payments In Blitz, multiple payments can be
carried out in parallel, analogous to concurrent HTLC-based
payments in the LN (see Appendix A for further discussion
and an illustrative example).

4 Our construction
4.1 Security and privacy goals

We informally review the security and privacy goals of a
PCN, deferring the formal definitions to Appendix K.
Balance security Honest intermediaries do not lose
money [21].
Sender/Receiver privacy In the case of a successful pay-
ment, malicious intermediaries cannot determine if the left
neighbor along the path is the actual sender or just an hon-
est user connected to the sender through a path of non-
compromised users. Similarly, malicious intermediaries can-
not determine if the right neighbor is the actual receiver or
an honest user connected to the receiver through a path of
non-compromised users.
Path privacy In the case of a successful payment, malicious
intermediaries cannot determine which users participated in
the payment aside from their direct neighbors.

4.2 Assumptions and building blocks
System assumptions We assume that every party has a pub-
licly known pair of public keys (A,B) as required for stealth
address creation (see below). We further assume that hon-
est parties are required to stay online for the duration of the
protocol. Finally, we consider the route finding algorithm
an orthogonal problem and assume that every user (U0) has
access to a function pathList←GenPath(U0,Un), which gen-
erates a valid path from U0 to Un over some intermediaries.
We refer the reader to [26, 27] for more details on recent rout-
ing algorithms for PCNs. We now introduce the cryptographic
building blocks that we require in our protocol.
Ledger and payment channels We rely, as a blackbox, on
a public ledger to keep track of all balances and transactions
and a PCN that supports the creation, update, and closure of
channels (see Section 2). We further assume that payment
channels between users that want to conduct payments are
already opened. We denote the standard operations to interact
with the blockchain and the channels as follows:

publishTx(tx) : If tx is a valid transaction (Section 2), it
will be accepted on the ledger after at most time ∆.

updateChannel(γi, tx
state
i) : When called by a user ∈

γi.users, initiates an update in γi to the state txstatei . If the
update is successful, (update−ok) is returned to both users
of the channel, else (update−fail) is returned to them. We
define tu as an upper bound on the time it takes for a channel
update after this procedure is called.

closeChannel(γi) : When called by a user∈ γi.users, closes
the channel, such that the latest state transaction txstatei will
appear on the ledger. We define tc as an upper bound on
the time it takes for txstatei to appear on the ledger after this
procedure is called.
Digital signatures A digital signature scheme is a tuple of
algorithms Σ := (KeyGen,Sign,Vrfy) defined as follows:

(pk,sk)← KeyGen(λ) is a PPT algorithm that on input

8

the security parameter λ, outputs a pair of public and private
keys (pk,sk).

σ← Sign(sk,m) is a PPT algorithm that on input the pri-
vate key sk and a message m outputs a signature σ.
{0,1}← Vrfy(pk,σ,m) is a DPT algorithm that on input

the public key pk, an authentication tag σ and a message m,
outputs 1 if σ is a valid authentication for m.

We require that the digital signature scheme is cor-
rect, that is, ∀(pk,sk)← KeyGen(λ) it must hold that 1←
Vrfy(pk,Sign(sk,m),m). We additionally require a digital sig-
nature scheme that is strongly unforgeable against message-
chosen attacks (EUF-CMA) [15].
Stealth addresses [31] On a high level, this scheme allows a
user (say Alice) to derive a fresh public key in a digital signa-
ture scheme Σ controlled by another user (say Bob) on input
two of Bob’s public keys. In a bit more detail, a stealth ad-
dresses scheme is a tuple of algorithms Φ := (GenPk,GenSk)
defined as follows:

(P,R)← GenPk(A,B) is a PPT algorithm that on input
two public keys A, B controlled by some user U , creates a
new public key P under U’s control. This is done by first
sampling some randomness r ←$ [0, l − 1], where l is the
prime order of the group used in the underlying signature
scheme Σ, and computing P := gH (Ar) ·B, where H is a hash
function modelled as a random oracle. Then, the value R := gr

is calculated. P is the public key under U’s control and R is
the information required to construct the private key.

p← GenSk(a,b,P,R) is a DPT algorithm that on input
two secret keys a, b corresponding to the two public keys A,
B and a pair (P,R) that was generated as P← GenPk(A,B),
creates the secret key p corresponding to P. This is done by
computing p := H (Ra)+b.

We see that correctness follows directly: gp = gH (Ra)+b =
gH (gr·a) · gb = gH (Ar) · B = P. In [31] it is argued that this
new one-time public key P is unlinkable for a spectator even
when observing R, meaning on a high level that P for some
user U cannot be linked to any existing public key of U . For
simplicity, we denote Ũi,pkŨi

when referring to the stealth
identity or the stealth public key under the control of user Ui.
Anonymous communication network (ACN) An ACN al-
lows users to communicate anonymously with each other.
One such ACN is based on onion routing, whose ideal func-
tionality is defined in [8]. Sphinx [11] is a realization of this
and (extended with a per-hop payload) is used in the Light-
ning Network (LN). We use this functionality here as well
in a blackbox way. On a high level, routing information and
a per-hop payload is encrypted and layered for every user
along a path, in what is called an onion. Every user on the
path can then, when it is its turn, “peel off” such a layer, re-
vealing: (i) the next neighbor; (ii) the payload meant for it;
and (iii) the rest of the data, which is again an onion that
can only be opened by the next neighbor. This rest of data is
then forwarded to the next user and so on until the receiver is
reached.

For readability, we use two algorithms, where onion←
CreateRoutingInfo({Ui}i∈[1,n],{msgi}i∈[1,n]) creates such a
routing object (an onion) using (publicly known) public
encryption keys of the corresponding users on the path.
Moreover, when called by correct user Ui, the algorithm
GetRoutingInfo(onioni,Ui) returns (Ui+1,msgi,onioni+1),
that is, the next user on the path, a message and a new onion or
returns msgn if called by the recipient. A wrong user U 6=Ui
calling GetRoutingInfo(onioni,Ui) will result in an error ⊥.

4.3 2-party protocol for channel update
In this section, we show the necessary steps to update a sin-

gle channel γi between two consecutive users Ui and Ui+1 on
a payment path to a state encoding our payment functionality
as shown in Figure 4. We will describe later in Section 4.4
the complete multi-hop payment (MHP) protocol.

As overviewed in Section 3, a channel update requires to
create a series of transactions to realize the “pay-or-revoke”
semantics at a given channel. In particular, for readability,
we define the following transaction creation methods and in
Figure 7 some macros to be used hereby in the paper:

txpi := GenPay(txstatei) This transaction takes
txstatei .output[0] as input and creates a single
output := (αi,OneSig(Ui+1)).
txri := GenRef(txstatei , txer,θεi) This transaction takes as

input txstatei .output[0] and θεi ∈ txer.output. The calling user
Ui makes sure that this output belongs to a stealth address un-
der Ui’s control. It creates a single output txri .output := (αi +
ε,OneSig(Ui)), where αi, Ui, Ui+1 are taken from txstatei .

We now explain in detailed order, how these transactions
have to be created, signed and exchanged. A full description
in pseudocode is given in Figure 5. This two party update
procedure, which we call pcSetup, is called by a user Ui
giving as parameters the channel γi with its right neighbor
Ui+1, the transaction txer, a list containing the values Ri for the
stealth addresses of each user on the path, onioni+1 containing
some routing information for the next user, the output θεi ∈
txer.output that belongs to a stealth address of Ui, the amount
to be paid αi and the time T . The user Ui knows these values
either from performing pcSetup with its left neighbor Ui−1
or because Ui is the sender.

The first step for Ui is to create the new channel state
from the channel γi and the amount αi by calling txstatei :=
genState(γi,α). In the second step, Ui creates the transaction
txri from txstatei .output[0] and θεi . Then, Ui sends txer, txstatei ,
txri , rList and onioni+1 to its right neighbor Ui+1.

Now Ui+1 checks if txer is well-formed and, if it is
not the receiver, has an output θεi+1 , which belongs to
its stealth address (using its stealth address private keys
a,b) under some Ri ∈ rList. Moreover, it checks that
onioni+1 contains the correct routing information and a
message indicating that the txer was not tampered, for
instance a hash of it. All this is done using the macro
(see Figure 7) (skŨi+1

,θεi+1 ,Ri+1,Ui+2,onioni+2) :=

9

pcSetup(γi,tx
er, rList,onioni+1,θεi ,αi,T):

Ui

1. txstatei := genState(αi,T,γi)
2. txri := GenRef(txstatei ,θεi)
3. Send (txer, rList,onioni+1,tx

state,txri) to Ui+1 (= γi.right)

Ui+1 upon (txer, rList,onioni+1,tx
state,txri) from Ui

4. Check that checkTxEr(Ui+1,Ui+1.a,Ui+1.b,txer, rList,
onioni+1) 6= ⊥, but returns some values
(skŨi+1

,θεi+1 ,Ri+1,Ui+2,onioni+2)

5. Extract αi and T from txstate and check txstatei =
genState(αi,T,γi)

6. Check that for one output θεx ∈ txer.output it holds that txri :=
GenRef(txstatei ,θεx). If one of these previous checks failed,
return ⊥.

7. txpi := GenPay(txstatei)
8. Send (σUi+1(tx

r
i)) to Ui+1

Ui upon (σUi+1(tx
r
i))

9. If σUi+1(tx
r
i) is not a correct signature of Ui+1 for the txri cre-

ated in step 2, return ⊥.
10. updateChannel(γi,tx

state
i)

11. If, after tu time has expired, the message (update−ok) is re-
turned, return >. Else return ⊥.

Ui+1

12. Upon (update−ok), return
(txer, rList,onioni+2,Ui+2,θεi+1 ,αi,T)

13. Upon (update−fail), return ⊥

Figure 5: Protocol for 2-party channel update

checkTxEr(Ui+1,Ui+1.a,Ui+1.b,Ui+1.tx
er, rList,onioni+1),

which returns ⊥ if any of the checks fail.
Then, Ui+1 checks if txstatei and txri were well-constructed

and in particular, that txri uses an output of txer as input. If
everything is ok, then Ui+1 can independently create txpi , since
it requires only its own signature. Next, Ui+1 pre-signs txri
and sends this signature to Ui. Ui checks if this signature is
correct and then invokes a channel update with Ui+1 to txstatei .

After this step, the pcSetup function is finished and returns
either (txer, rList,onioni+2,Ui+2,θεi+1 ,αi,T) to Ui+1 and >
to Ui if successful or⊥ otherwise to the users γi.users. If Ui+1
is not the receiver, it will continue this process with its own
neighbor as shown in the next section.

4.4 Multi-hop payment description
In this section we describe the MHP protocol. The pseu-

docode for carrying out MHPs in Blitz is shown in Figure 6,
the macros used in are listed in Figure 7. For the full descrip-
tion of the macros, see Appendix I.
Setup Say the sender wants to pay α coins to Un via a path
channelList and for some timeout T . In the setup phase, the
sender derives a new stealth address pkŨi

and some Ri for
every user except the receiver. Then, the sender creates a list
rList of entries Ri and onions encoding the right neighbor
Ui+1 for every user Ui. Moreover, the sender constructs txer.

Then, it adds the sum of all per-hop fees to the initial
amount α: αi := α+(n−1) · fee where fee is the fee charged
by every user (see Appendix A). The setup ends when the
sender starts the open phase with its right neighbor U1.
Open After successfully setting up the payment with its left
user Ui−1,Ui knows txer, rList, onioni+1 αi−1, T and its stealth
output for θεi ∈ txer.output. Using these values and reducing
αi−1 by fee, Ui carries out the 2-party channel update with
Ui+1. The right neighbor continues this step with its right
neighbor until the receiver is reached.
Finalize Once the receiver has finished the open phase with
its left neighbor, it sends back a signature of txer as a confir-
mation to the sender, who will then check if that transaction
was tampered with. If yes, or if the sender did not receive
such a confirmation in time, the sender publishes txer on the
blockchain. Otherwise the sender goes idle.
Respond At any given time after opening a payment con-
struction, users need to check if txer was published. If it was,
they need to refund themselves via txri . Also, if some user’s
left neighbor tries to publish txri after time T , the user pub-
lishes txpi . This ensures, that if the refund did not happen
before time T , the users have a way to enforce the payment.
Note that due to the relative timelock on both txer and txstate,
txpi will always be possible if txer is published after T (or if the
left neighbor tries to refund after T by closing the channel).

The protocol is shown in Figure 6. Note that we simpli-
fied the protocol for readability purposes, (e.g., by omitting
the payment ids that are required for multiple concurrent
payments). The full protocol modelled in the Universal Com-
posability framework can be seen in Appendix J.5.

5 Security analysis
5.1 Security model

The security model we use closely follows [5, 12, 13].
We model the security of Blitz in the synchronous, global
universal composability (GUC) framework [10]. We use a
global ledger L to capture any transfer of coins. The ledger
is parameterized by a signature scheme Σ and a blockchain
delay ∆, which is an upper bound on the number of rounds
it takes between when a transaction is posted to L and when
said transaction is added to L . Our security analysis is fully
presented in Appendix J and briefly outlined here.

Firstly, we provide an ideal functionality FPay, which is
an idealized description of the behavior we expect of our
pay-or-revoke payment paradigm. This description stipulates
any input/output behavior and the impact on the ledger of a
payment protocol, as well as how adversaries can influence the
execution. In this idealized setting, all parties communicate
only with FPay, which acts as a trusted third party.

We then provide our protocol Π formally defined in the UC
framework and show that Π emulates FPay. On a high level,
we show that any attack that can be performed on Π can also
be simulated on FPay or in other words that Π is at least as

10

Setup
U0 upon receiving (setup,channelList,txin,α,T)

1. If checkChannels(channelList,U0) =⊥, abort.
2. Let n := |channelList|. If checkT(n,T) =⊥, abort.
3. If checkTxIn(txin,n,U0) =⊥, abort.
4. (txer, rList,onion) := genTxEr(U0,channelList,tx

in)
5. α0 := α+ fee · (n−1)
6. (skŨ0

,θε0 ,R0,U1,onion1) :=
checkTxEr(U0,U0.a,U0.b,txer, rList,onion)

7. pcSetup(γ0,tx
er, rList,onion1,U1,θε0 ,α0,T)

Open
Ui+1 upon receiving (txer, rList,onioni+2,Ui+2,θεi+1 ,αi,T)

1. If Ui+1 is the receiver Un, send (confirm,σUn(tx
er)) ↪−→ U0

and go idle.
2. pcSetup(γi+1,tx

er, rList,onioni+2,Ui+2,θεi+1 ,αi− fee,T)
Finalize

U0: Upon (confirm,σUn(tx
er))←−↩ Un, check that σUn(tx

er) is
Un’s valid signature for the transaction txer created in the Setup
phase. If not, or if txer was changed, or no such confirmation was
received until T − tc−3∆, publishTx(txer,σU ′0(tx

er)).

Respond (Executed in every round τx)

1. If τx < T − tc − 2∆ and txer on the blockchain,
closeChannel(γi) and, after txstatei is accepted on the
blockchain within at most tc rounds, wait ∆ rounds.
Let σŨi

(txri) be a signature using the secret key skŨi
.

publishTx(txri ,(σŨi
(txri),σUi(tx

r
i),σUi+1(tx

r
i))).

2. If τx > T , γi is closed and txer and txstatei is on the blockchain,
but not txri , publishTx(tx

p
i−1,(σUi(tx

p
i−1))).

Figure 6: The Blitz payment protocol

secure as FPay. To prove this, we design a simulator S , which
translates any attack on the protocol into an attack on the ideal
functionality. Then, we show that no PPT environment can
distinguish between interacting with the real world and inter-
acting with the ideal world. In the real world, the environment
sends instructions to a real attacker A and interacts with Π.
In the ideal world, the environment sends attack instructions
to S and interacts with FPay.

We need to show that the same messages are output in
the same rounds and the same transactions are posted on
the ledger in the same rounds in both the real and the ideal
world, regardless of adversarial presence. To achieve this, the
simulator needs to instruct the ideal functionality to output a
message whenever one is output in the real protocol and the
simulator needs to post the same transactions on the ledger.
By achieving this, the environment cannot trivially distinguish
between the real and the ideal world anymore just be looking
at the messages and transactions as well as their respective
timing. Formally, in Appendix J we prove Theorem 1.

Theorem 1. (informal) Let Σ be a EUF-CMA secure signa-
ture scheme. Then, for any ledger delay ∆ ∈ N, the protocol
Π UC-realizes the ideal functionality FPay.

Macros (see Appendix I)
checkTxIn(txin,n,U0): If txin is well-formed and has enough
coins, returns >. checkChannels(channelList,U0): If
channelList forms a valid path, returns the receiver Un, else
⊥. checkT(n,T): If T is sufficiently large, return >. Oth-
erwise, return ⊥ genTxEr(U0,channelList,tx

in): Generates
txer from txin along with a list of values rList to redeem their
stealth adresses and an onion containing the routing information.
genState(αi,T,γi): Generates and returns a new channel state
carrying transaction txstatei from the given parameters, shown
in Figure 4. checkTxEr(Ui,a,b,txer, rList,onioni): Checks if
txer is correct, Ui has a stealth address in it and onioni holds rout-
ing information. If unsuccessful, returns⊥. If Ui is the receiver, re-
turns (>,>,>,>,>). Else, returns (skŨi

,θεi ,Ri,Ui+1,onioni+1)

containing the output belonging to Ui θεi , the secret key to spend
it skŨi

, the next user and the next onion.

Figure 7: Subprocedures used in the protocol

5.2 Informal security discussion
Due to space constraints, we only argue informally here

why Blitz achieves security and privacy (see Section 4.1). We
give a more formal discussion in Appendix K and consider
the security against some concrete attacks in Appendix E.
Balance security An honest intermediary will forward a
payment to its right neighbor only if first invoked by its left
neighbor. If constructed correctly, the refund transactions in
both channels depend on txer being published and the timing
is identical. Also, the payment transactions have identical
conditions in both channels. The only possible way for an
intermediary to lose money is, if it were to pay its money to
the right neighbor, while the left neighbor refunded. However,
if the left neighbor is able to refund, this means that also the
intermediary itself can refund. Similarly, if the right neighbor
is able to claim the money, the intermediary can also claim it.
Honest sender A sender that does not receive a confirmation
of the receiver that it received the money in time, can trigger
a refund by publishing txer. In the setup phase of the protocol,
the sender ensures that there is enough time for this.
Honest receiver The receiver gets the money in exchange for
some service. It will wait until being certain that the money
will be received before shipping the product. The transaction
txer on the blockchain is a proof that a refund has occurred.
Privacy Blitz requires to share with intermediaries txer, rout-
ing information and the value that is being paid. The transac-
tion txer uses stealth addresses for its outputs and an unlink-
able input, thereby granting sender, receiver and path privacy
in the honest case, as defined in Section 4.1. As in the LN
however, the stronger notion of relationship anonymity [21]
does not hold; the payment can be linked by comparing (i) in
Blitz, txer and (ii) in the LN, the hash value. In the pessimistic
case, the balance is claimed on-chain. In both Blitz and the
LN, this breaks sender, path and receiver privacy. We defer
the reader to Appendix A for a more detailed discussion on
all privacy properties mentioned in this paragraph.

11

6 Evaluation
In this section, we evaluate the benefits that Blitz offers

over the LN. The source code for our simulation is at [1].
Testbed We took a snapshot of the LN graph (Octo-
ber 2020) from https://ln.bigsun.xyz/ containing 11.6k
nodes, 6.5k of which have 30.9k active channels with a total
capacity of 1166.7 BTC, which account for around 13.2M
USD in October 2020. We ignore the nodes without active
channels. The initial distribution of the channel balance is un-
known. We assume that initially the balance at each channel is
available to both users. It is assigned to a user as required by
payments in a first come, first serve basis. Naturally, the bal-
ance that has already been used and thus assigned to one user
in the channel, is not reassigned to the other user. Since we
use this strategy consistently throughout all our experiments,
this assignment does not introduce any bias in the results.
Simulation setup We discretize the time in rounds and each
round represents the collateral time per hop (i.e., 1 day or
144 blocks as in the LN). In such a setting, we simulate
payments in batches as follows. Assume that we want to
simulate NPay payments for an amount of Amt and with a
failure rate of FRate. For that, in a first batch we simulate the
FRate % of NPay payments, where each payment is between
two nodes s and r (such that s 6= r) selected at random in
the graph and routed through the cheapest path according to
fees. Moreover, each payment in this batch is disrupted at an
intermediary node chosen at random in the path between s and
r. Finally, for each payment, some balance is marked to be
locked at the channels for a certain number of rounds during
the second batch, depending on whether we are evaluating the
LN (i.e., staggered rounds) or Blitz (i.e., single round). We
model thereby a setting where the network contains locked
collateral due to disrupted payments.

After the first batch, we simulate a second one of NPay
payments over 3 rounds as before, assuming that they are not
disrupted (e.g., go over paths of honest nodes). We remark
that here each payment may still be unsuccessful because
there are not enough unlocked funds in the path between s
and r. We focus thus on the effect that staggered vs. constant
collateral has in the number of successful payments.
Setting parameters Due to the off-chain nature of the LN,
there is no ground truth for payment data, a common limi-
tation in PCN related work. We try to make reasonable as-
sumptions for these unknown parameters in our simulation.
We sample the payment amount Amt for each payment from
the range [1000,ub]. We use a lower bound of 1000, as tech-
nically the minimum is 546 satoshis (=1 dust) and we ad-
ditionally account for fees. We select an upper bound (ub)
out of {3000,6000,9000}, which is around 0.1%, 0.2% and
0.3% of the average channel capacity. We consider two dif-
ferent number of payments NPay, 78k and 978k. The former
corresponds to four payments per active node and per round
(ppnpr) modeling a setting with sporadic payments (e.g., a

3000 6000 9000

10

20

30

7.7 7.7

18.7

9.3

30 32.1

upper bound ub on amount

fa
il L

N
/f
ai
l B

li
tz

4 ppnpr 50 ppnpr

0.5% 1% 2.5%
0

10

20

30

7.5 4.6 4.3
9.3

33.1

8.7

% of disrupted payments

fa
il L

N
/f
ai
l B

li
tz

4 ppnpr 50 ppnpr

Figure 8: Ratio failLN/failBlitz. (Left) we fix the number of
disrupted payments at 0.5% and vary ub. (Right) we fix ub at
3000 and vary the number of disrupted payments.

banking system), whereas the latter corresponds to 50 ppnpr,
modeling a higher payment frequency (e.g., micropayments).

Finally, we vary the amount of disrupted payments FRate
as {0.5,1,2.5}% of the total payments NPay. We divide these
disrupted payments into two groups of equal size. In the first
half, the payment is stopped during the setup phase (from
s to r). In the LN, the channels before the faulty/malicious
node are locked with a staggered collateral lock time. In Blitz,
due to the sender publishing txer, the funds are immediately
unlocked. In the second half, the payment fault occurs in the
second phase, which in the LN is the unlocking and in Blitz
the fast track. This models the case where a node is offline or
an attacker delays the completion of the payment until the last
possible moment. In the LN, the collateral left of the malicious
node is again staggered, whereas in Blitz the channels right of
that node are locked for one simulation round. Finally, we note
that distributing the disrupted payments differently into these
groups will alter the results accordingly (see Appendix H).
Collateral effect We calculate the number of unsuccessful
payments in a baseline case (i.e., omitting the first batch of dis-
rupted payments), in Blitz as well as in the LN and we say that
failBlitz (correspondingly failLN) is the number of payments
that fail in Blitz (correspondingly the LN) when subtracting
those failing also in the baseline case. We carry out every
experiment for a given setting eight times and calculate the
average. In Figure 8 we show the ratio failLN/failBlitz. For all
choices of parameters, there are more unsuccessful payments
in the LN than in Blitz, showing thus the practical advantage
of Blitz by requiring only constant collateral. We also observe
that difference grows in favor of Blitz with the number of
payments, showing that the advantage in terms of collateral
is higher in use cases for which initially the LN was designed
such as micropayments. Finally, we observe that Blitz offers
higher transaction throughput even with an arguably small
ratio of disrupted payments (i.e., a reduced adversarial effect).
Wormhole attack We measure an upper bound on the
amount of fees potentially at risk in the LN, due to it being
prone to the wormhole attack. We observe that the amount
of coins at risk grows with the number of payments and their
amount. In particular, with 50 ppnpr and an upper bound of

12

https://ln.bigsun.xyz/

3000 (modeling e.g., a micropayment setting), we observe
that the LN put at risk 0.25 BTC (2831 USD in October 2020).
Increasing the upper bound to 9000 while keeping 65 ppnpr,
we observe that the LN put at risk 0.30 BTC. Blitz prevents
the wormhole attack and the stealing of these fees by design.
Computation overhead The Blitz protocol does not require
any costly cryptography. In particular, it requires that each
user verifies locally the signatures for the involved transac-
tions. Moreover, each user must compute three signatures
(see Figure 4) independently on the number of channels in-
volved in the payment. In the LN, each user requires to com-
pute only two signatures, one per each commitment trans-
action representing the new state. We remark, however, that
these are all simple computations that can be executed in
negligible time even with commodity hardware.
Communication overhead We find that the contract size in
Blitz is 26% smaller than the size of the HTLCs in the LN.
This advantage is crucial in practice as current LN payment
channels cannot hold more than 483 HTLC (and thus 483
in-flight payments) simultaneously, because otherwise, the
size of the off-chain state would be higher than a valid Bitcoin
transaction [25, 30]. The reduced communication overhead
in Blitz implies then that it allows for more simultaneous
in-flight payments per channel than in the LN.

In the pessimistic case, the LN requires to include on-chain
one transaction per channel (158 Bytes for refund, 192 Bytes
for payment), while Blitz requires not only one on-chain trans-
action per channel (307 Bytes for refund, 158 Bytes for pay-
ment), but also that the sender includes the transaction txer to
ensure that the refund is atomic. In this sense, the LN requires
a smaller overhead than Blitz for the pessimistic case. We
remark that there exist incentives in PCNs for the nodes to
follow the optimistic case and reduce entering the pessimistic
case because it requires to close the channels and cannot be
used for further off-chain payments without re-opening them,
with the consequent cost in time and fees. We give detailed
results about communication overhead in Appendix G.

7 Related work
PCNs have attracted plenty of attention from academia [14,

20, 22, 23, 29] and have been deployed in practice [24]. These
PCNs, with the exception of Interledger [29], follow the 2-
phase-commit paradigm and suffer from (some of) the draw-
backs we have discussed in this work, namely, prone to the
wormhole attack, griefing attacks, staggered collateral or rely
on scripting functionality not widely available. Interledger is
a 1-phase protocol that however does not provide security.

Sprites [23] is the first multi-hop payment (MHP) that
achieves constant collateral. It, however, relies on Turing com-
plete smart contracts (available in, e.g., Ethereum) thereby
reducing its applicability in practice. Other constructions
that require Turing complete smart contracts, e.g., State chan-
nels [12], achieve constant collateral, but have similar privacy
issues as the LN when used for MHPs. AMCU [14] achieves

constant collateral and is compatible with Bitcoin. AMCU,
however, reveals every participant to each other, a privacy
leakage undesirable in the MHP setting.

To improve privacy, [21] introduced MHTLCs. In [32],
CHTLCs based on Chameleon hash functions were intro-
duced, a functionality that is again not supported in most
cryptocurrencies (e.g., in Bitcoin). AMHL [22] replaces the
HTLC contract with novel cryptographic locks to avoid the
wormhole attack. MHTLC, CHTLC or AMHL based MHPs
all follow the 2-phase-commit paradigm and require staggered
collateral. We defer to Appendix B for works on 1-phase com-
mits in the context of distributed databases.

8 Conclusion
Payment-channel networks (PCNs) are the most prominent

solution to the scalability problem of cryptocurrencies with
practical adoption (e.g., the LN). While optimistic 1-round
payments (e.g., Interledger) are prone to theft by malicious
intermediaries, virtually all PCNs today follow the 2-phase-
commit paradigm and are thus prone to a combination of:
(i) security issues such as wormhole attacks; (ii) staggered
collateral; and (iii) limited deployability as they rely on either
HTLC or Turing complete smart contracts.

We find a redundancy implementing a 2-phase-commit pro-
tocol on top of the consensus provided by the blockchain
and instead design Blitz, a multi-hop payment protocol that
demonstrates for the first time that it is possible to have a 1-
round payment protocol that is secure, resistant to wormhole
attacks by design, has constant collateral, and builds upon dig-
ital signatures and timelock functionality from the underlying
blockchain’s scripting language. Our experimental evaluation
shows that Blitz reduces the number of unsuccessful payments
by a factor of between 4x and 33x, reduces the size of the
payment contract by a 26% and saves up to 0.3 BTC (3397
USD in October 2020) in fees over a three day period as it
avoids wormhole attacks by design.

Blitz can be seamlessly deployed as a (additional or al-
ternative) payment protocol in the current LN. We believe
that Blitz opens possibilities of performing more efficient and
secure payments across multiple different cryptocurrencies
and other applications built on top, research directions which
we intend to pursue in the near future.
Acknowledgements We thank Lloyd Fournier for his valu-
able feedback on an earlier version of this work. This work has
been supported by the European Research Council (ERC) un-
der the Horizon 2020 research (grant 771527-BROWSEC); by
the Austrian Science Fund (FWF) through the projects PRO-
FET (grant P31621), the Meitner program (grant M-2608) and
the project W1255-N23; by the Austrian Research Promotion
Agency (FFG) through the Bridge-1 project PR4DLT (grant
13808694) and the COMET K1 SBA; by the Vienna Business
Agency through the project Vienna Cybersecurity and Privacy
Research Center (VISP); by CoBloX Labs; by the National
Science Foundation (NSF) under grant CNS-1846316.

13

References
[1] Blitz simulation: Github repository, 2020. https://

github.com/blitz-payments/simulation.
[2] M. Abdallah, R. Guerraoui, and P. Pucheral. One-phase

commit: does it make sense? Conference on Parallel
and Distributed Systems, 1998.

[3] Yousef J. Al-houmaily and Panos K. Chrysanthis.
Two-Phase Commit in Gigabit-Networked Distributed
Databases. In Parallel and Distributed Computing Sys-
tems, 1995.

[4] Yousef J Al-Houmaily and Panos K Chrysanthis. 1-
2PC: the one-two phase atomic commit protocol. In
Symposium on Applied Computing, 2004.

[5] Lukas Aumayr, Oguzhan Ersoy, Andreas Erwig, Se-
bastian Faust, Kristina Hostakova, Matteo Maffei, Pe-
dro Moreno-Sanchez, and Siavash Riahi. General-
ized Bitcoin-Compatible Channels. Cryptology ePrint
Archive. https://eprint.iacr.org/2020/476.

[6] Christian Badertscher, Ueli Maurer, Daniel Tschudi, and
Vassilis Zikas. Bitcoin as a Transaction Ledger: A Com-
posable Treatment. In CRYPTO, 2017.

[7] Vivek Bagaria, Joachim Neu, and David Tse.
Boomerang: Redundancy Improves Latency and
Throughput in Payment-Channel Networks. In FC,
2020.

[8] Jan Camenisch and Anna Lysyanskaya. A Formal Treat-
ment of Onion Routing. In CRYPTO, 2005.

[9] Ran Canetti. Universally Composable Security: A New
Paradigm for Cryptographic Protocols. In FOCS, 2001.

[10] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi
Walfish. Universally Composable Security with Global
Setup. In TCC, 2007.

[11] G. Danezis and I. Goldberg. Sphinx: A Compact and
Provably Secure Mix Format. In IEEE S&P, 2009.

[12] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, Julia
Hesse, and Kristina Hostáková. Multi-party Virtual State
Channels. In EUROCRYPT, 2019.

[13] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and
Daniel Malinowski. PERUN: Virtual Payment Channels
over Cryptographic Currencies. In IEEE S&P, 2019.

[14] Christoph Egger, Pedro Moreno-Sanchez, and Matteo
Maffei. Atomic Multi-Channel Updates with Constant
Collateral in Bitcoin-Compatible Payment-Channel Net-
works. In CCS, 2019.

[15] Shafi Goldwasser, Silvio Micali, and Ronald L Rivest. A
digital signature scheme secure against adaptive chosen-
message attacks. SIAM Journal on computing, 1988.

[16] Lewis Gudgeon, Pedro Moreno-Sanchez, Stefanie Roos,
Patrick McCorry, and Arthur Gervais. SoK: Off The
Chain Transactions. In FC, 2020.

[17] Rachid Guerraoui and Jingjing Wang. How Fast can a
Distributed Transaction Commit? In PODS, 2017.

[18] Maurice Herlihy, Liuba Shrira, and Barbara Liskov.
Cross-chain Deals and Adversarial Commerce. VLDB,
2019.

[19] Jonathan Katz and Ueli Maurer and Björn Tackmann and
Vassilis Zikas. Universally Composable Synchronous
Computation. In TCC, 2013.

[20] Aggelos Kiayias and Orfeas Stefanos Thyfronitis Litos.
A Composable Security Treatment of the Lightning Net-
work. In CSF, 2019.

[21] Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate,
Matteo Maffei, and Srivatsan Ravi. Concurrency and
Privacy with Payment-Channel Networks. In CCS, 2017.

[22] Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schnei-
dewind, Aniket Kate, and Matteo Maffei. Anonymous
Multi-Hop Locks for Blockchain Scalability and Inter-
operability. In NDSS, 2019.

[23] Andrew Miller, Iddo Bentov, Ranjit Kumaresan, and
Patrick McCorry. Sprites: Payment Channels that Go
Faster than Lightning. In FC, 2019.

[24] Joseph Poon and Thaddeus Dryja. The Bitcoin Light-
ning Network: Scalable Off-Chain Instant Payments.

[25] EmelyanenkoK (pseudonym). Payment channel con-
gestion via spam-attack. https://github.com/
lightningnetwork/lightning-rfc/issues/182.

[26] Stefanie Roos, Pedro Moreno-Sanchez, Aniket Kate, and
Ian Goldberg. Settling Payments Fast and Private: Ef-
ficient Decentralized Routing for Path-Based Transac-
tions. In NDSS, 2018.

[27] Vibhaalakshmi Sivaraman, Shaileshh Bojja Venkatakr-
ishnan, Kathleen Ruan, Parimarjan Negi, Lei Yang, Rad-
hika Mittal, Giulia C. Fanti, and Mohammad Alizadeh.
High Throughput Cryptocurrency Routing in Payment
Channel Networks. In NSDI, 2020.

[28] James W Stamos and Flaviu Cristian. Coordinator log
transaction execution protocol. Distributed and Parallel
Databases, 1993.

[29] Stefan Thomas and Evan Schwartz. A proto-
col for interledger payments, 2015. https://
interledger.org/interledger.pdf.

[30] Sergei Tikhomirov, Pedro Moreno-Sanchez, and Matteo
Maffei. A Quantitative Analysis of Security, Anonymity
and Scalability for the Lightning Network. In IEEE
S&B Workshop, 2020.

[31] Nicolas Van Saberhagen. Cryptonote v 2.0, 2018.
https://cryptonote.org/whitepaper.

[32] Bin Yu, Shabnam Kasra Kermanshahi, Amin Sakzad,
and Surya Nepal. Chameleon Hash Time-lock Contract
for Privacy Preserving Payment Channel Networks. In
Conference on Provable Security, 2019.

[33] Alexei Zamyatin, Mustafa Al-Bassam, Dionysis Zindros,
Eleftherios Kokoris-Kogias, Pedro Moreno-Sanchez,
Aggelos Kiayias, and William J. Knottenbelt. SoK:
Communication Across Distributed Ledgers. In FC,
2021.

14

https://github.com/blitz-payments/simulation
https://github.com/blitz-payments/simulation
https://eprint.iacr.org/2020/476
https://github.com/lightningnetwork/lightning-rfc/issues/182
https://github.com/lightningnetwork/lightning-rfc/issues/182
https://interledger.org/interledger.pdf
https://interledger.org/interledger.pdf
https://cryptonote. org/whitepaper

A Discussion on practical deployment
Payment fees We encode a fee mechanism in our con-
struction. For simplicity, we assume that every intermediary
charges the same fee amount: fee. However, it is trivial to
extend this mechanism to allow for different fees. The sender
initially puts an amount α0 := α+ fee · (n−1) in the output
θi,0. Every intermediary now deducts fee from this amount
when opening the construction with its own right neighbor.
Specifically, an intermediary Ui receives αi−1 and forwards
only αi := αi−1− fee. Thereby, every intermediary effectively
gains fee coins in the case of a successful payment.
Refund tradeoff In the case of a refund, where a fast refund
(see Section 3) is not possible, the sender has to publish txer.
Doing this will have the cost of publishing this transaction
(and possibly the transaction containing its input) plus the
(n− 1) · ε that go to the intermediaries. The amount ε can
be the smallest possible amount of cash, since it is just used
to enable the payment. In other words, for Bitcoin we can
say ε := 1 satoshi,1 which is currently around 0.00011 USD.
However, the refund of Blitz payments has a fundamental
advantage over the one in the Lightning Network (LN). The
refund time is only consant in the worst case and if the sender
is honest, is only the time it takes to publish txer (i.e., ∆)
instead of n ·ξ. We presented this advantage in Section 3.

So the tradeoff is a more expensive, but much faster refund.
This immensely reduces the effect of griefing attacks and
increases the overall transaction throughput.
Race We already mentioned that only the sender can publish
txer and because of the time delays, the timing is the same
for every user on the path. We claimed that the latest possible
time to safely publsih txer and still be able to claim the refund
is T−tc−3∆. However, there is a time frame after T−tc−3∆

up until T − tc−2∆, where the sender could publish txer and
still, txri would be sent to the ledger before time T . However
now, everyone is at risk, because we said that accepting a
transaction takes at most ∆ time and at time T , already txpi
might be sent to the ledger and there might be a race over
which of these two transactions is accepted first. We argue,
that a sender will not do this, as this puts himself at the same
risk as ever other intermediary. For a way of preventing this
race entirely, we defer the reader to Appendix D.
Obfuscate the length of the path By adding additional
dummy outputs (that belong to fresh addresses of the sender)
to txer, a sender can obfuscate the path length. Note that the
rList has to include some random values as well, so that it has
the same number of elements as txer has outputs. Note that by
looking at the timelock in the LN, the path length or at least
ones position within the path is leaked to some degree.

1In practice, Bitcoin transactions need to carry a total amount of one
dust, which is 546 satoshis. Having individual outputs of one satoshi is not a
problem, as the sender can include an additional output to a stealth address
under its control, such that the sum is greater than one dust. In txri , the output
of txer holding one satoshi is combined with the first output of the state
txstate, resulting in a sum larger than one dust.

Extended privacy discussion As mentioned in Section 4.1,
Blitz achieves sender, receiver and path privacy, which pro-
vide a measure of privacy in the case of a successful payment.
To hide the path from users observing txer, we use stealth
addresses for the outputs of txer. This allows to have path
privacy as defined in Section 4.1, where malicious intermedi-
aries cannot determine the participants of the payment other
than their direct neighbors. We stress that as in the LN, the
stronger notion of relationship anonymity [21] does not hold.
Two users can link a payment by comparing the transaction
txer in Blitz, or the hash value in the LN.

To make an on-chain linking of the sender impossible,
we require the input of txer to be fresh and unlinkable to the
sender. In practice, this can be achieved as follows. The sender
creates off-chain an intermediary transaction txin that spends
from an output under the sender’s control txsdr to a newly
generated address of the sender, never used before. Then, txer

uses this output with the new address of txin as input. Since
txin is off-chain, users observing txer are unable to link the
payment to an on-chain identity. Again, this is due to inputs
referring to a transaction hash plus an id of the output.

In the pessimistic case, these properties do not hold any-
more. If the transactions go on-chain, they can be linked
together by observing a shared transaction txer or time T . The
same holds true in the LN, where transactions that spend from
an HTLC with the same hash value, can be linked.
Redundancy for improving throughput and latency Rout-
ing a payment through a path can fail or be delayed due to
unknown channel balances, offline or malicious users or other
reasons. Following Boomerang [7], a sender can construct
several redundant payments across several paths, that differ
in one or more users. For this, the sender creates a transac-
tion txer for each of these redundant payments and forwards
them. Intermediary users have to open a payment construction
(build txri and txpi) for every txer that they receive.

Should an intermediary user have a choice of forwarding
a payment to several different neighbors, it can choose one
and start a fast refund (Section 3) for the other payments.
Should several different payments reach the receiver, it can
start the fast refund for all but one of them. In the worst case,
if the sender sees that after some time more than one payment
is active, it can start the refund by publishing the according
transaction txer. With this, the sender can ensure that at most
one of the redundant payments is carried out. This technique
is useful to improve transaction throughput and latency and
we achieve it without any additional cryptography.
Concurrent payments Two parties of a payment channel
can achieve concurrent payments as follows. They agree to
update their current channel state txstatei to a new state txstatei

′,
where any unresolved in-flight Blitz payments are carried over.
More concretely, for every unresolved payment the transac-
tions txri and txpi are recreated, but the input for these trans-
actions is changed from using an output of txstatei to using
an output of txstatei

′. Afterwards, the right user’s signature

15

for txri is given to the left user and only then, the old state
txstatei is revoked using the revocation technique in the LN
(outlined in Appendix C). In other words, the same channel
state-management of the LN is reused in Blitz, but chang-
ing the HTLC contract for the Blitz contract. We show an
illustrative example of concurrent payments in Figure 9.

B 1-phase commits in distributed databases
The concepts of 1-phase commits [2, 3, 28] and one-two

commit [4] have been studied for distributed databases in gen-
eral. These protocols introduce recovery mechanisms such
as coordinator Log [28], implicit Yes-Vote [3] or logical log-
ging [2] towards avoiding the voting/commit/prepare phase of
2-phase commits. However, extending observation by Herlihy,
Liskov, and Shrira [18], traditional 1-phase commit ideas are
not directly applicable to PCNs: while PCNs (with blockchain-
based conflict resolution) are structurally similar to transac-
tions over distributed database, they are fundamentally dif-
ferent in terms of the ACID properties and the adversarial
assumptions. Nevertheless, analyses such as [17] can still be
interesting to understand lower-bounds for PCNs.

C Payment channels in more detail
In this section, we give a more detailed account on pay-

ment channels. A payment channel is used by two parties
P and Q to perform several payments between them while
requiring only two on-chain transactions. It is set up by two
parties spending some coins to a shared multisig output (i.e.,
an output θ with θ.φ :=MultiSig(P,Q)). Before signing and
publishing this transaction however, they create transactions
(so called commitment transactions txc) that spend this shared
output in some way, e.g., giving each party some balance. We
also refer to this as the (current) state of the channel. Now af-
ter publishing this txf on-chain, they can update their balances
by creating new commitment transactions txc, rebalancing the
funds of the channel and thereby carrying out payments. We
note that there are implementations that use two commitment
transactions per state (in other words, one per party) such
as the Lightning Network (LN) [24] whereas a more recent
construction called generalized channels [5] requires one com-
mitment transaction per state. In this work, we leverage the
latter construction, although other ledger channel protocols
such as the one of the LN would work as well.

After a channel has been updated several times, there exist
several txc that can be published. In order to prevent misbe-
havior, where one party publishes an older state of the channel,
which perhaps is financially more advantageous to it, we em-
ploy a punishment mechanism. If an old state is published,
the other, honest user can carry out this punishment to gain
all funds of the channel. For this to work, both parties ex-
change revocation secrets every time a state is succeeded by
a new one. This secret, together with the outdated txc that
is published by the misbehaving user is enough to claim all
funds of the channel. The latest state can always be safely

published as the corresponding revocation secret was not yet
revealed. This mechanism provides an economical incentive
not to publish an old txc.

To close a payment channel, the parties can merely publish
the latest txc to the ledger, which terminates the channel. In
summary, two parties can use a payment channel to carry out
arbitrary many off-chain payments that rebalance some funds,
but only need to publish two transactions on the blockchain,
one to open the channel and one to close it, saving both fees
and increasing the cryptocurrency’s transaction throughput.

D Preventing the race condition when the
sender is irrational

We mentioned in Appendix A, that if the sender posts
txer after T − tc−3∆ and before T − tc−2∆, there is an un-
wanted race condition. We argue, that this race condition is
also unwanted by the sender, but a small tweak to the pro-
tocol allows us to prevent it completely. We need to intro-
duce a new spending condition to the output of txin, i.e.,
the output that is used to fund txer. Instead of the sender
being able to just spend that output (and therefore txer)
with the condition OneSig(Ũ0), we set the following con-
dition: (RelTime(∆)∧OneSig(Ũ0))∨AbsTime(T − tc−3∆).
In other words, this output of txin can be spent by anyone, if
it is still unspent at time T − tc−3∆.2

If U0 wants to spend it, U0 has to wait until the relative
timelock of ∆ has expired. So to be safely able to post txer,
U0 has to post txin before T − tc−5∆ (accepted to the ledger
before T − tc−4∆) and subsequently, txer before T − tc−3∆

(accepted to the ledger before T − tc−2∆). After the relative
timelock of tc+∆ expires, the outputs of txer are spendable
before T −∆ , ensuring enough time and preventing a race.
If txin is posted later, then an observant intermediary can
spend its output in a different way, which makes txer unspend-
able. To convince intermediaries that this condition is actually
present, the sender needs to pass (unsigned) txin along with
txer along the path. To make txin unlinkable to the sender, the
same method mentioned in Appendix A can be employed.
We emphasize again, that this race is only a problem if we
assume an irrational sender.

E Concrete attack scenarios (informal)
In this section, we consider some attacks against Blitz and

argue informally, why balance security still holds.
txer is tampered If txer is tampered by some intermediary,
the next intermediary will see that the message embedded in
the routing information is not H (txer) anymore. Assuming
that a malicious intermediary does not know the routing in-
formation especially not the receiver, changing the routing
information will result in the receiver not being reached.

2In Bitcoin, an output can also be made spendable by anyone by putting
OP_TRUE or requiring a signature that verifies under the private key 0x1,
known by everybody.

16

αi

xUi−αi

xUi+1

ε
αi + ε

pkUi,pkUi+1

pkUi +∆

≥ T
αi

pkUi+1

txstatei

txer

...

...

txri

txpi

pkUi+1

pkUi

+tc+∆

Ui

Ui+1

pkUi

pkUi+1

Ui

Ui+1

αi

α′i

xUi−αi−α
′
i

xUi+1

ε
αi + ε

pkUi,pkUi+1

pkUi +∆

≥ T
αi

pkUi+1

txstatei
′

txer

...

...

txri

txpi

pkUi+1

pkUi

+tc+∆

Ui

Ui+1

. . .

pkUi

pkUi+1

Ui

Ui+1

Figure 9: Concurrent payments between users Ui and Ui+1: (left) a Blitz channel with a single payment; (right) an updated
channel that has this payment and a second concurrent one. To add a second payment of value α′i to the channel, the transactions
for the in-flight payment of value αi are recreated with the new state txstatei

′ as input, the channel is updated to txstatei
′ and finally,

the old state txstatei is revoked. In the LN, this process is the same, except that the HTLC contract and transactions are recreated,
instead of the Blitz ones.

time. . .τ0 τn T − tc−3∆

T − tc−2∆
T −2∆ T −∆ T

Setup payment structure

α effectively paid

Setup failure:
U0 publishes txer

Publish txer

tx
er on L

Close γi

tx
state

i
on L

Publish txri

tx
r
i on L

Case Refund:

Case Payment (txer not on L before T − tc−3∆):

some time period, ≥ 0

Figure 10: Timeline of when transactions appear on the ledger L in the case payment and refund. τn−τ0 denotes the time needed
for the setup of the whole payment.

Also, note that balance security holds even in the case
where txer is tampered, as long as every intermediary Ui
makes sure, that its refund txri depends on the same txer as the
refund of its neighbor txri−1. Also note, that intermediaries
have to ensure the same for the time T , in order to have the
same time as their neighbor. Should an intermediary change
the time T to a smaller value, it potentially only hurts itself
by not being able to refund in time, while its left neighbor
actually is. If the time T is changed to a larger value, this may
delay the execution of the payment, however it is detectable,
if the receiver sends this time T back to the sender, who can
check if it was tampered.

Some users are skipped (wormhole) Users cannot be
skipped, as the routing information can only be opened by the
next user. A malicious user would not know the receiver and
would not be able to forge the sender’s signature of H (txer)
that is embedded as a message to the receiver in this onion.
The only thing for the malicious user is to stop forwarding
the payment (griefing attack). Users that are skipped in the
fast-track payment will not be cheated out of their fees or

funds, rather this money will be locked until at most until T
instead of being accessible immediately (see Section 3).

Sender publishes txer after starting fast track Assume a
malicious sender started the fast track with its neighbor, but
the fast track updates have not yet reached the receiver. Should
the sender now publish txer, the intermediaries that did not yet
perform the fast track will refund. The receiver will say that
it did not receive the money and will not ship the promised
product. The sender cannot prove that the receiver got the
money, even though it has the payment confirmation in form
of the receiver’s signature of txer. The transaction txer on the
blockchain is a proof of revocation, and the sender will have
lost its money without getting anything in return. The sender
should thus not publish txer after starting the fast track.

F Timeline

We show a timeline of posting the transaction of the Blitz
payment construction between two users in Figure 10. Red
shows the refund case, green the payment case.

17

Table 3: Communication overhead of the LN and Blitz. The
pessimistic transactions are on-chain, the rest off-chain.

Cases LN Blitz
txs size # txs size

Pay (pessimistic) 1 192 1 158
Refund (pessimistic) per channel 1 158 1 307
Additional pess. refund cost for sender 0 0 1 157+34 ·n
Cost of p in-flight payments 1 225+119 · p 1 225+88 · p

G Communication overhead
To evaluate our payment scheme, we created an imple-

mentation that creates the transactions necessary for set-
ting up the payment. The source code is publicly available
at https://github.com/blitz-payments/overhead. We
tested the compatibility by deploying the transactions on the
Bitcoin testnet and checking if the transactions achieve our in-
tended functionalities. Furthermore, we measured the transac-
tion sizes in Bytes and compare them to multi-hop payments
in the Lightning Network (LN) in a case-by-case analysis.

We present the number of transactions and their sizes for
the different sizes in Table 3. Note that the size of the contract
in our construction is only 88 Bytes compared to the 119 of
the HTLC, a difference mostly due to the part of the script that
verifies the hash pre-image. This means, that state transactions
holding several different in-flight payments, which directly
implement the contract in their outputs, can hold around 26%
more Blitz payments than LN payments. For one payment,
this difference results in a state of size 311 Bytes for Blitz
and a state of 345 Bytes for the LN. In Blitz, additionally to
the state we require the refund transaction to be exchanged,
which is 307 Bytes, resulting in 618 Bytes for a 2-party setup.

For the rest of the cases, the Blitz payments and the LN
payments are similar. In the pessimistic case, both Blitz and
the LN require to publish one transaction (after closing the
channel) per disputed channel. In the pessimistic refund case,
the it is 158 Bytes in the LN and 307 Bytes in Blitz, due to the
additional signature of the input spending from txer. In the
pay case it is 192 Bytes in the LN and 158 Bytes in Blitz, due
to the additional hash in the LN. The most notable difference
in comparing the transaction overhead comes from the fact
that in the Blitz payment, the sender has to publish txer in
the pessimistic refund case, which is a total of 157+34 · (n)
Bytes, for a payment path of length n+ 1. However, in the
LN there is an additional communication overhead of sending
the hash pre-image of 32 Bytes per channel back in the open
phase.

H Extended simulation results
In this section, we include results for the simulation when

we do not distribute the disrupted payments equally between
the two types. As expected, letting 75% of the disrupted pay-
ments be of the second type is more favorable for Blitz, while
having 25% is less favoring than dividing equally. We show
the results in Table 4.

Table 4: Extended results of our simulation.

ub FRate ppnpr failBlitz failLN ratio
25% disrupted type 1, 75% type 2
3000 0.5% 4 4 33 8.25
3000 0.5% 50 13 4343 334.08
3000 1% 4 15 56 3.73
3000 1% 50 751 32807 43.68
3000 2.5% 4 28 182 6.50
3000 2.5% 50 1076 77213 71.76
75% disrupted type 1, 25% type 2
3000 0.5% 4 18 31 1.72
3000 0.5% 50 505 4422 8.76
3000 1% 4 19 61 3.21
3000 1% 50 1458 33386 22.90
3000 2.5% 4 78 195 2.50
3000 2.5% 50 15427 77574 5.03

I Extended macros
In this section, we give concrete pseudo-code for the used

subprocedures.

Subprocedures
checkTxIn(txin,n,U0):

1. Check that txin is a transaction on the ledger L .
2. If txin.output[0].cash ≥ n · ε and txin.output[0].φ =

OneSig(U ′0), that is spendable by an unused address of U0,
return >. Otherwise, return ⊥. When using this transaction (to
fund txer), the sender will pay any superfluous coins back to a
fresh address of itself.

checkChannels(channelList,U0):

Check that channelList forms a valid path from U0 via some
intermediaries to a receiver Un and that no users are in the path
twice. If not, return ⊥. Else, return Un.

checkT(n,T):

Let τ be the current round. If T ≥ τ+ n(2+ tu) + 3∆+ tc + 1,
return >. Otherwise, return ⊥

genTxEr(U0,channelList,tx
in):

1. Let outputList := /0 and rList := /0

2. For every channel γi in channelList:
• (pkŨi

,Ri)← GenPk(γi.left.A,γi.left.B)

• outputList := outputList ∪ (ε,OneSig(pkŨi
) ∧

RelTime(tc+∆))

• rList := rList∪Ri
3. Let P := {γi.left,γi.right}γi∈channelList and let nodeList be a

list, where P is sorted from sender to receiver. Let n := |P |.
4. Shuffle outputList and rList.
5. Let txer := (txin.output[0],outputList)
6. Create a list [msgi]i∈[0,n], where msgi := H (txer)

7. onion← CreateRoutingInfo(nodeList, [msgi]i∈[0,n])

8. Return (txer, rList,onion)

18

https://github.com/blitz-payments/overhead

genState(αi,T,γi):

1. For the users Ui := γi.left = and Ui+1 := γi.right, create the
output vector~θi := (θ0,θ1,θ2), where
• θ0 := (αi,(MultiSig(Ui,Ui+1) ∧ RelTime(T)) ∨
(OneSig(Ui+1)∧AbsTime(T)))

• θ1 := (xUi −αi,OneSig(Ui))

• θ2 := (xUi+1 ,OneSig(Ui+1))
where xUi and xUi+1 is the amount held by Ui and Ui+1 in the
channel, respectively.

2. Let txstatei be a channel transaction carrying the state with
txstate.output=~θi. Return txstatei .

checkTxEr(Ui,a,b,txer, rList,onioni):

1. x := GetRoutingInfo(onioni,Ui). If x = ⊥, return ⊥. If Ui is
the receiver and x = H (txer) , return (>,>,>,>,>). Else, if
x 6= (Ui+1,H (txer),onioni+1), return ⊥.

2. For all outputs (cash,φ) ∈ txer.output it must hold that:
• cash= ε

• φ =OneSig(pkx)∧RelTime(tc+∆) for some identity pkx

3. For exactly one output θεi := (ε,OneSig(Ũi) ∧
RelTime(tc+∆)) ∈ txer.output and one element Ri ∈ rList it
must hold that

• Let pkŨi
be the corresponding public key of OneSig(Ũi)

• skŨi
:=GenSk(a,b,pkŨi

,Ri) must be the corresponding
secret key of pkŨi

4. If the checks in 2 or 3 do not hold, return ⊥
5. Return (skŨi

,θεi ,Ri,Ui+1,onioni+1)

Subprocedures used exclusively in UC model

createMaps(U0,nodeList,tx
in):

1. For every Ui ∈ nodeList\Un do:
• (pkŨi

,Ri)← GenPk(Ui.A,Ui.B)

• outputMap(Ui) := (ε,OneSig(pkŨi
)∧RelTime(tc+∆))

• rMap(Ui) := Ri

2. rList= rMap.values().shuffle()

3. txer := (txin.output[0],outputMap.values().shuffle())
4. Create a map stealthMap that stores for every user Ui that is

a key in outputMap the corresponding output of txer corre-
sponding to outputMap(Ui)

5. Create two empty lists /0 named msgList,userList
6. For every Ui ∈ nodeList from Un to U0 (in descending order):

• Append [H (txer)] to msgList

• Prepend [Ui] to userList.
• onioni := CreateRoutingInfo(userList,msg)

• onions(Ui) := onioni

7. Return (txer,onions, rMap, rList,stealthMap)

genStateOutputs(γi,αi,T):

1. Let~θ′i := γi.st be the current state of the channel γi.
2. Let Ui := γi.left= and Ui+1 := γi.right.

3. ~θ′i consists of the outputs θ′Ui
:= (xUi ,OneSig(Ui)) and

θ′Ui+1
:=(xUi+1 ,OneSig(Ui+1)) holding the balances of the two

users.a If xUi < αi, return ⊥

4. Create the output vector~θi := (θ0,θ1,θ2), where
• θ0 := (αi,(MultiSig(Ui,Ui+1) ∧ RelTime(T)) ∨
(OneSig(Ui+1)∧AbsTime(T)))

• θ1 := (xUi −αi,OneSig(Ui))

• θ2 := (xUi+1 ,OneSig(Ui+1))

5. Return~θi.
genRefTx(θ,θεi ,Ui):
1. Create a transaction txri with txri .input := [θ,θεi] and

txri .output := (θ.cash+θεi .cash,OneSig(Ui)).
2. Return txri

genPayTx(θ,Ui+1):

1. Create a transaction txpi with txpi .input := [θ] and
txpi .output := (θ.cash,OneSig(Ui+1)).

2. Return txpi

aPossibly other outputs {θ′j} j≥0 could also be present in this state.
They, along with the off-chain objects there (e.g., other payments) would
have to be recreated in the new state while adapting the index of the output
these objects are referring to. For simplicity, we say this here in prose and
omit it in the protocol, only handling the two outputs mentioned.

J Modeling in the UC framework
We formally model our construction in the global UC

framework (GUC) [10], an extension of the standard UC
framework [9] that allows for a global setup, which we use for
instance for modelling the ledger. In this section, we provide
some preliminaries and then present the code for the ideal
functionality of the multi-hop payment construction presented
in this work. Our model follows closely the model in [5].

J.1 Preliminaries, communication model and
threat model

A protocol Π runs between parties of the set P . A protocol
is executed in the presence of an adversary A that receives
as input a security parameter λ ∈ N and an auxiliary input
z ∈ {0,1}∗. We assume a static corruption model, where A
can corrupt any party Pi ∈ P at the beginning of the execution,
which means learning Pi’s internal state and taking full control
over Pi. The environment E is a special entity, that sends
inputs to every party and the adversary A and observes every
message output by the parties. Note that E is used to model
anything that can happen outside the protocol execution.

We model communication in a synchronized network set-
ting, where the protocol execution takes place in rounds. This
abstraction allows for arguing about time more naturally. The
global ideal functionality Gclock [19] represents a global clock,
that proceeds to the next round when all honest parties agree
to do so. Every entity is aware of what the current round is.

On top of this notion of rounds, we use a functionality FGDC
that models authenticated channels with guaranteed delivery
after one round between the parties. Messages sent from a
party P to Q in round t are guaranteed to reach Q in round
t +1 with Q knowing that the sender was P. The adversary
A can observe the content of messages and reorder the ones

19

that were sent within the same round. It cannot however drop,
modify or delay messages. See [12] for a formal description
of FGDC.

Every other message, that is not sent between two party,
but rather involves for instance E or A , takes zero rounds.
Also, we assume that any computation by any party takes
zero rounds as well.

J.2 Ledger and channels
To model a UTXO cryptocurrency, we use a global func-

tionality GLedger(∆), parameterized by an upper bound of the
blockchain delay ∆, i.e., the number of rounds it at most takes
for a valid transaction to be accepted on the blockchain, af-
ter being posted, and a signature scheme Σ. This function-
ality interacts with a fixed set of parties P . To initialize
GLedger, E sets up a key pair (skP,pkP) for every P∈ P , sends
(sid,REGISTER,pkp) to GLedger and sets the intial state of L ,
the set of all published transactions. After the initialization,
the state of L is publicly accessible by every entity. When a
valid transaction (i.e., a transacation that has correct witnesses
for each input, a unique id, and the inputs have not been spent)
is posted via (sid,POST, tx), it will be accepted on L after at
most ∆ rounds. The adversary chooses the exact number of
rounds.

In this simplified model, the set of users is fixed and we
do not model the fact, that in reality, transactions are usually
bundled in blocks. We chose this simplification to increase
readability and refer to works such as [6] for a more accurate
formalization.

To model channels, we use the functionality FChannel [5]
that builds on top of GLedger. It provides the functionality to
create, update and close a payment channel between two users.
We say that updating a channel takes at most tu rounds and
closing a channel, regardless if the parties are cooperating or
not, takes at most tc rounds.

For our Blitz payments, we assume that all participating
parties have been registered with the ledger functionality and
have had channels created beforehand already. For the com-
plete API of FChannel and GLedger see below. For better read-
ability, we use the following notation instead of calling Gclock

or FGDC. We let (msg)
t
↪−→ X denote sending message (msg)

to X in round t. Moreover, (msg)
t←−↩ X means receiving mes-

sage (msg) from X at time t. Note that X as well as the
sending/receiving identity are either a party P ∈ P , the envi-
ronment E , the simulator S or another ideal functionality.

Interface of FChannel(T,k) [5]

Parameters:

T : upper bound on the maximum number of consecutive
off-chain communication rounds between channel
users

k: number of ways the channel state can be published
on the ledger

API:
Messages from E via a dummy user P:

• (sid,CREATE,γ,tidP)
τ←−↩ P:

Let γ be the attribute tuple (γ.id,γ.users,γ.cash,γ.st), where
γ.id ∈ {0,1}∗ is the identifier of the channel, γ.users ⊂ P are
the users of the channel (and P ∈ γ.users), γ.cash ∈ R≥0 is the
total money in the channel and γ.st is the initial state of the
channel. tidP defines P’s input for the funding transaction of
the channel. When invoked, this function asks γ.otherParty to
create a new channel.

• (sid,UPDATE, id,~θ)
τ←−↩ P:

Let γ be the channel where γ.id = id. When invoked by P ∈
γ.users and both parties agree, the channel γ (if it exists) is
updated to the new state ~θ. If the parties disagree or at least
one party is dishonest, the update can fail or the channel can be
forcefully closed to either the old or the new state. Regardless
of the outcome, we say that tu is the upper bound that an up-

date takes. In the successful case, (sid,UPDATED, id,~θ)
≤τ+tu
↪−−−→

γ.users is output.

• (sid,CLOSE, id)
τ←−↩ P:

Will close the channel γ, where γ.id= id, either peacefully or
forcefully. After at most tc in round ≤ τ+ tc, a transaction tx
with the current state γ.st as output (tx.output := γ.st) appears
on L (the public ledger of GLedger).

Interface of GLedger(∆,Σ) [5]

This functionality keeps a record of the public keys of parties.
Also, all transactions that are posted (and accpeted, see below)
are stored in the publicly accessible set L containing tuples of all
accepted transactions .

Parameters:
∆: upper bound on the number of rounds it takes a valid

transaction to be published on L
Σ: a digital signature scheme

API:
Messages from E via a dummy user P ∈ P :

• (sid,REGISTER,pkP)
τ←−↩ P:

This function adds an entry (pkP,P) to PKI consisting of the
public key pkP and the user P, if it does not already exist.

• (sid,POST,tx)
τ←−↩ P:

This function checks if tx is a valid transaction and if yes,
accepts it on L after at most ∆ rounds.

J.3 The UC-security definition
We denote Π as a hybrid protocol that accesses the ideal

functionalities Fprelim consisting of FChannel , GLedger, FGDC
and Gclock. An environment E that interacts with Π and an ad-
versary A will on input a security parameter λ and an auxiliary
input z output EXEC

Fprelim

Π,A ,E (λ,z). Moreover, φFPay denotes the
ideal protocol of ideal functionality FPay, where the dummy
users simply forward their input to FPay. It has access to the
same functionalities Fprelim. The output of φFPay on input λ

and z when interacting with E and a simulator S is denoted

20

as EXEC
Fprelim

φFPay ,S ,E
(λ,z).

If a protocol Π GUC-realizes an ideal functionality FPay,
then any attack that is possible on the real world protocol Π

can be carried out against the ideal protocol φFPay and vice
versa. Our security definition is as follows.

Definition 1. A protocol Π GUC-realizes an ideal function-
ality FPay, w.r.t. Fprelim, if for every adversary A there exists
a simulator S such that we have{

EXEC
Fprelim

Π,A ,E (λ,z)
}

λ∈N,
z∈{0,1}∗

c
≈
{
EXEC

Fprelim

φFPay ,S ,E
(λ,z)

}
λ∈N,

z∈{0,1}∗

where ≈c denotes computational indistinguishability.

J.4 Ideal functionality
In this section we will describe the ideal functionality (IF)

FPay in prose. We are only interested in protocols that realize
this IF and never output an ERROR. For cases where ERROR is
output, any guarantees are lost. These cases are are not mean-
ingful to us, they occur for instance when a transaction does
not appear on the ledger as it should. We use the subproce-
dures defined in Appendix I. We divide the ideal functionality
in three main parts: (i) Pay, (ii) Finalize and (iii) Respond.
Pay This sequence starts with setup, which is executed when
queried by the sender U0. In it, FPay sets up all initial ob-
jects and does the following. For every neighbor distinguish
two cases: (i) the neighbor is honest, then FPay takes care of
computing the objects and updating the channel or (ii) the
neighbor is dishonest, then FPay instructs the simulator to sim-
ulate the view of the attacker. Should an attack ask an honest
node, simulated by the simulator, to continue opening a pay-
ment with a legitimate request, the simulator will first let FPay
perform Check and then Register. This process is repeated
until the receiver is reached. At this point the Finalize part
starts.
Finalize If U0 is honest, FPay will expect a confirmation
in the correct round, which is given either by itself if Un is
honest or sent by Un via the simulator. If the confirmation is
not well formed or no confirmation is received in the correct
round, FPay instructs the simulator to publish txer. In case that
Un is honest, but not U0, either FPay via the simulator or the
simulator directly will simulate the view to the attacker by
constructing and sending the confirmation to U0.
Respond In this phase FPay reacts to transactions txer, that it
has registered for payments in step Pay, appearing on L . In
the case of txer for an honest user in a channel being published
before the time where a refund is possible, FPay will close the
channel and ask the simulator to publish a refund transaction.
In the case that the time T has already passed and the neighbor
closes the channel, FPay will instruct the simulator to claim
the money by publishing the payment transaction.

Ideal Functionality FPay(∆)

Parameters:
∆ : Upper bound on the time it takes a transaction to

appear on L .
Local variables:

idSet : A set of containing pairs of ids and users (pid,Ui)
to prevent duplicate ids to avoid loops in payments.

Φ : A map, storing for a given key (pid,U0) of an id
pid and a user U0, a tuple (τf ,tx

er,Un), where τf

is the round in which the payment confirmation is
expected from the receiver, the transaction txer and
the receiver Un. The map is initially empty and read
write access is written as Φ(pid,U0). Φ.keyList()
returns a set of all keys.

Γ : A set of tuples (pid,γi,~θi,tx
er,T,θεi ,Ri) for chan-

nels with opened payment construction, containing
a payment id pid, the channel γi, the state the pay-
ment builds upon~θi, the time T , the output used in
the refund by γi.left and value Ri to reconstruct the
secrect key of the stealth address used. It is initially
empty.

Ψ : A set of tuples (pid,txer) containing payments, that
have been opened and where the receiver is honest.

tu : Time required to perform a ledger channel update
honestly.

tc : Time it at most takes to close a channel.

Init (executed at initialization in round tinit.)

Send (sid,init)
tinit
↪−→ S and upon (sid,init-ok, tu, tc)

tinit←−↩
S set tu and tc accordingly.

Pay

Let τ be the current round.
Setup:

1. Upon (sid,pid,SETUP,channelList,txin,α,T,γ0)
τ←−↩ U0, if

(pid,U0) ∈ idSet go idle. idSet := idSet∪{(pid,U0)}
2. Let x := checkChannels(channelList,U0). If x =⊥, go idle.

Else, let Un := x. If γ0 is not the full channel between U0
and his right neighbor U1 := γ0.right (corresponding to the
channel skeleton γ0 in channelList), go idle. Let nodeList be
a list of all the users on the path sorted from U0 to Un.

3. Let n := |channelList|. If checkT(n,T) =⊥, go idle.
4. If checkTxIn(txin,n,U0) =⊥, go idle.
5. (txer,onions, rMap, rList,stealthMap) := createMaps(U0,

nodeList,txin).
6. Set α0 := α+ fee · (n−1).
7. Set Φ(pid,U0) := (τf := τ+n · (2+ tu)+1,txer,Un).
8. If U1 honest, execute

Open(pid,nodeList,txer,onions, rMap,
rList,stealthMap,α0,T,γ0).

9. Else, let onion1 := onions(U1) and θε0 := stealthMap(U0).

Send (sid,pid,open,txer, rList,onion1,α0,T,γ0,θε0)
τ
↪−→ S .

Continue:

21

1. Upon (sid,pid,continue,nodeList,txer,onions, rMap,

rList,stealthMap, αi−1,T,γi−1)
τ←−↩ S

2. Open(pid,nodeList,txer,onions, rMap, rList,stealthMap,
αi−1,T,γi−1).

Check:
1. Upon (sid,pid,check-id,txer,θεi ,Ri,Ui−1,Ui,Ui+1,αi,T)

τ←−↩ S
2. If (pid,Ui) 6∈ idSet, let idSet := idSet∪{(pid,U)} and send

the message (sid,pid,OPEN,txer,θεi ,Ri,Ui−1,Ui+1,αi−1,T)
τ
↪−→Ui

3. If (sid,pid,ACCEPT,γi)
τ←−↩Ui, (sid,pid,ok,γi)

τ
↪−→ S .

Payment-Open:

1. Upon (sid,pid,payment-open,txer)
τ←−↩ S , let Ψ := Ψ ∪

{(pid,txer)}.
Register:

1. Upon (sid,pid,register,γi,~θi,tx
er,T,θεi ,R)

τ←−↩ S
2. Γ := Γ∪{(pid,γi,~θi,tx

er,T,θεi ,R)}
Open(pid,nodeList,txer,onions, rMap, rList,stealthMap,αi−1,
T,γi−1):
Let τ be the current round and Ui := γi−1.right

1. If (pid,Ui) ∈ idSet, go idle.
2. idSet := idSet∪{(pid,Ui)}
3. If an entry after Ui in nodeList exists and is ⊥, go idle.
4. If Ui = Un (i.e., last entry in nodeList), set Ui+1 := >. Else,

get Ui+1 from nodeList (the entry after Ui).
5. Ri := rMap(Ui) and θεi := stealthMap(Ui)

6. ~θi−1 := genStateOutputs(γi−1,αi−1,T). If ~θi−1 = ⊥, go
idle. Else, wait 1 round.

7. (sid,pid,OPEN,txer,θεi ,Ri,Ui−1,Ui+1,αi−1,T)
τ+1
↪−−→Ui

8. If not (sid,pid,ACCEPT,γi)
τ+1←−−↩ Ui, go idle. Else,wait 1

round.

9. (ssidC,UPDATE,γi−1.id,~θi−1)
τ+2
↪−−→ FChannel

10. (ssidC,UPDATED,γi−1.id)
τ+2+tu←−−−−↩ FChannel , else go idle.

11. Γ := Γ∪ (pid,γi,~θi,tx
er,T,θεi ,Ri)

12. If Ui =Un:
• Ψ := Ψ∪{(pid,txer)}

• (sid,pid,PAYMENT-OPEN,txer,T,αi−1)
τ+2+tu
↪−−−−→Ui

• If U0 is dishonest, send (sid,pid,finalize,txer)
τ+2+tu
↪−−−−→

S
13. Else:

• (sid,pid,OPENED)
τ+2+tu
↪−−−−→Ui

• If Ui+1 honest, execute
Open(pid,nodeList,txer,onions, rMap,
rList,stealthMap,αi−1− fee,γi)

• Else, send (sid,pid,open,txer, rList,onioni+1,αi−1 −
fee,T,γi,θεi)

τ
↪−→ S , where onioni+1 := onions(Ui+1)

Finalize (executed at every round)

For every (pid,U0) ∈Φ.keyList() do the following:

1. Let (τf ,txer,Un) = Φ(pid,U0). If for the current round τ it
holds that τ = τ f , do the following.

2. If Un honest, check if (pid,txer) ∈ Ψ. If yes, let Ψ := Ψ \
{(pid,txer)} and go idle.

3. If Un dishonest and (sid,pid,confirmed,txerx ,σUn(tx
er
x))

τf←−↩
S , such that txerx = txer and σUn(tx

er
x) is Un’s valid signature

of txer, go idle.

4. Send (sid,pid,denied,txer,U0)
τf
↪−→ S . txer must appear on

L in round τ′ ≤ τf +∆. Otherwise, output (sid,ERROR)
t1
↪−→U0.

Respond (executed at the end of every round)

Let t be the current round. For every element
(pid,γi,~θi,tx

er,T,θεi ,Ri) ∈ Γ, check if γi.st = ~θi and txer

is on L . If yes, do the following:
Revoke: If γi.left honest and t < T − tc−2∆ do the following.
• Set Γ := Γ\{(pid,γi,~θi,tx

er,T,θεi ,Ri)}.

• (ssidC,CLOSE,γi.id)
t
↪−→ FChannel

• At time t + tc, a transaction tx with tx.output = γi.st has to
be on L . If not, do the following. If (ssidC,PUNISHED,γi.id)
τ<T←−−↩ FChannel , go idle. Else, send (sid,ERROR)

T
↪−→ γi.users.

• Wait for ∆ rounds and send (sid,pid,post-refund,γi,θεi ,Ri)
t ′<T−∆
↪−−−−→ S

• At time t ′′ < T , check whether a transaction tx′ appears
on L with tx′.input = [θεi , tx.output[0]] and tx′.output =
[(tx.output[0].cash+ θεi .cash,OneSig(Ui))]. If it does, send

(sid,pid,REVOKED)
t ′′
↪−→ γi.left. If not, send (sid,ERROR)

T
↪−→

γi.users.
Force-Pay: Else, if a transaction tx with tx.output= γi.st is on-
chain and tx.output[0] is unspent (i.e., there is no transaction on
L , that uses is as input), t ≥ T and Ui+1 is honest, do the following.
• Set Γ := Γ\{(pid,γi,~θi,tx

er,T,θεi ,Ri)}.

• Send (sid,pid,post-pay,γi)
t
↪−→ S

• In round t +∆ transaction tx′ with tx′.input = [tx.output[0]]
and tx′.output = (tx.output[0].cash,OneSig(Ui+1)) must

have appeared on L . If yes, (sid,pid,FORCE-PAY)
t+∆
↪−−→

γi.right. Otherwise, (sid,ERROR)
t+∆
↪−−→ γi.users.

J.5 Protocol
Here we present the formal protocol Π and a brief descrip-

tion thereof. For simplicity, we assume that users involved
in the payment do not use (e.g., update, close) the channels
involved in the payment.3 Moreover, for any payment the
sender knows the receiver and the receiver knows the sender.
Also, every user knows if it is the sender in a payment or if it
is the receiver in a payment. Therefore, when the simulator
simulates the behavior of an honest user, the simulator also
knows if the user is the sender/receiver or not and, if it is
the sender (receiver), the simulator also knows the receiver
(sender).

The protocol itself is similar to the simpler version pre-
sented in Section 4.4, but extended with payment ids and UC

3We refer the reader to Appendix A for an outline on how to perform
concurrent payments or use the channel otherwise while a payment is active.

22

formalism, most notably we introduce rounds and the envi-
ronment E . To reiterate briefly, the protocol is divided into
three parts. In Pay, the initial objects are setup by U0 after
being invoked by E . Afterwards, the neighbor is contacted
and they open a payment construction by creating a new state,
the appropriate transactions, signing them and then updating
the channel. When first asked, a user will forward an open
message to E , which responds with accept (or nothing). In
Finalize, the receiver sends a confirmation to the sender. The
sender expects the correct confirmation in the correct round,
otherwise it will publish txer. In the Respond phase, users will
react to txer being published and, if possible, either refund or
force the payment.

Protocol Π

Let fee ∈ N be a system parameter known to every user.
Local variables of Ui (all initially empty):

pidSet : A set storing every payment id pid that a user
has participated in to prevent duplicates.

paySet : A map storing tuples (pid,τf ,Un) where pid
is an id, τf is the round in which a confirma-
tion is expected from the receiver Un for the
payments that have been opened by this user.

local : A map, storing for a given pid Ui’s local copy
of txer and T in a tuple (txer,T).

left : A map, storing for a given pid a tuple
(γi−1,~θi−1,tx

r
i−1) containing channel with its

left neighbor Ui−1, the state and the transaction
txri−1 for Ui’s left channel in the payment pid.

right : A map, sotring for a given pid a tuple
(γi,~θi,tx

r
i ,skŨi

) containing the channel with
its right neighbor, the state, the transaction txri
and the key necessary for signing the refund
transaction in the payment pid.

rightSig : A map, storing for a given pid the signature
for txri of the right neighbor σUi+1(tx

r
i) in the

payment pid.

Pay

Setup: In every round, every node U0 ∈ P does the following. We
denote τ0 as the current round.

U0 upon (sid,pid,SETUP,channelList,txin,α,T,γ0)
τ0←−↩ E

1. If pid ∈ pidSet, abort. Add pid to pidSet.
2. Let x := checkChannels(channelList,U0). If x = ⊥, abort.

Else, let Un := x. If γ0 is not the full channel between U0
and his right neighbor U1 := γ0.right (corresponding to the
channel skeleton γ0 in channelList), go idle. Let nodeList be
a list of all the users on the path sorted from U0 to Un.

3. Let n := |channelList|. If checkT(n,T) =⊥, abort.
4. If checkTxIn(txin,n,U0) =⊥, abort
5. (txer,onions, rMap, rList,stealthMap) := createMaps(U0,

nodeList,txin).
6. (txer, rList,onion0) := genTxEr(U0,channelList,tx

in)

7. paySet := paySet∪{(pid,τf := τ+n · (2+ tu)+1,Un)}
8. (skŨ0

,θε0 ,R0,U1,onion1) :=
checkTxEr(U0,U0.a,U0.b,txer, rList,onion0)

9. Set local(pid) := (txer,T).
10. Set α0 := α+ fee · (n−1) and compute:

• ~θ0 := genStateOutputs(γ0,α0,T)

• txr0 := genRefTx(~θ0[0],θε0 ,U0)

11. Set right(pid) := (γ0,~θ0,tx
r
0,skŨ0

).

12. Send (sid,pid,open-req,txer, rList,onion1,~θ0,tx
r
0)

τ0
↪−→U1.

Open: In every round, every node Ui+1 ∈ P does the following.
We denote τx as the current round.

Ui+1 u. (sid,pid,open-req,txer, rList,onioni+1,~θi,tx
r
i)

τx←−↩Ui

1. Perform the following checks:
• Verify that pid 6∈ pidSet. Add pid to pidSet

• Let x := checkTxEr(Ui+1,Ui+1.a,Ui+1.b,txer, rList,
onioni+1). Check that x 6= ⊥, but instead
x = (skŨi+1

,θεi+1 ,Ri+1,Ui+2,onioni+2).

• Set αi =~θi[0].cash and extract T from~θi−1[0].φ (the param-
eter of AbsTime()).

• Check that there exists a channel between Ui
and Ui+1 and call this channel γi. Verify that
~θi = genStateOutputs(γi,αi,T).

• Check that txri := genRefTx(~θi[0],θεx ,Ui), where θεx is an
output of txer that is not θεi+1 .

2. If one or more of the previous checks fail, abort. Otherwise,

send (sid,pid,OPEN,txer,θεi+1 ,Ri,Ui,Ui+2,αi,T)
τx
↪−→ E .

3. If (sid,pid,ACCEPT,γi+1)
τx←−↩ E , generate σUi+1(tx

r
i). Other-

wise stop.

4. Set local(pid) := (txeri ,T), left(pid) := (γi,~θi,tx
r
i) and

(sid,pid,open-ok,σUi+1(tx
r
i))

τx
↪−→Ui.

Ui upon (sid,pid,open-ok,σUi+1(tx
r
i))

τi+2
←−−↩Ui+1

(The round τi given Ui and pid is defined in Setup or in Open step
(6), the round when the update is successful.)

5. Check that σUi+1(tx
r
i) is a valid signature for txri . If yes,

set rightSig(pid) := σUi+1(tx
r
i) and (ssidC,UPDATE,γi.id,~θi)

τi+2
↪−−→ FChannel .

Ui+1 upon (ssidC,UPDATED,γi.id,~θi)
τx+1+tu←−−−−−↩ FChannel

6. Define τ(i+1) := τx +1+ tu.
7. If Ui+1 is not the receiver, using the values of step 1:

• Send (sid,pid,OPENED)
τi+1
↪−−→ E .

• (skŨi+1
,θεi+1 ,Ri+1,Ui+2,onioni+2) :=

checkTxEr(Ui+1,Ui+1.a,Ui+1.b,txeri , rList,onioni+1)

• ~θi+1 := genStateOutputs(γi+1,αi− fee,T)

• txri+1 := genRefTx(~θi+1[0],θεi+1 ,Ui+1)

23

• Set right(pid) := (γi+1,~θi+1,tx
r
i+1,skŨi+1

)

• Send (sid,pid,open-req,txer, rList,onioni+2,~θi+1,tx
r
i+1)

τi+1
↪−−→Ui+2.

8. If Ui+1 is the receiver:
• msg := GetRoutingInfo(onioni+1,Ui+1)

• Create the signature σUn(tx
er
i) as confirmation and send

(sid,pid,finalize,txer,σUn(tx
er))

τi+1
↪−−→ U0. Send the

message (sid,pid,PAYMENT-OPEN,txer,T,αi)
τi+1
↪−−→ E .

Finalize

U0 in every round τ

For every entry (pid,τf ,Un) ∈ paySet do the following if τ = τf :

1. Remove (pid,τf ,Un) from paySet.

2. Upon receiving (sid,pid,finalize,txer,σUn(tx
er))

τ←−↩ Un,
continue if σUn(tx

er) is a valid signature for txer. Otherwise,
go to step (4).

3. If local(pid) = txer, go idle. Otherwise, continue with the next
step.

4. Sign txer yielding σU0(tx
er) and set txer := (txer,(σU0(tx

er))).

Send (ssidL,POST,txer)
τ
↪−→ GLedger.

Respond

Ui at the end of every round

Let t be the current round. Do the following:

1. For every pid in right.keyList(), let (γi,~θi,tx
r
i ,skŨi

) :=
right(pid), let (txer,T) := local(pid) and do the following. If
t < T − tc−2∆, txer is on the ledger L and γi.st=~θi, do the
following:
• Remove the entry for pid from right, send

(ssidC,CLOSE,γi.id)
t
↪−→ FChannel .

• If a transaction tx with tx.output =~θi is on L in round
t + tc, wait ∆ rounds.

• Sign txri yielding σUi(tx
r
i) and use skŨi

to sign txri yielding
σŨi

(txri).

• Set txri := (txri ,(σUi(tx
r
i), rightSig(pid),σŨi

(txri))) and

send (ssidL,POST,txri)
t+tc+∆
↪−−−−→ GLedger. When it appears

on L in round t1 < T , send (sid,pid,REVOKED)
t2
↪−→ E

2. For every pid in left.keyList(), let (γi−1,~θi−1,tx
r
i−1) :=

left(pid), let (txer,T) := local(pid) and do the following. If
t ≥ T and a transaction tx with tx.output =~θi−1 is on the
ledger L , but not txri−1, do the following:

• Remove the entry for pid from left and create txpi−1 :=
genPayTx(γi−1.st,Ui).

• Sign txpi−1 yielding σUi(tx
p
i−1).

• Set txpi−1 := (txpi−1,σUi(tx
p
i−1)) and send

(ssidL,POST,tx
p
i−1)

t
↪−→ GLedger.

• If it appears on L in round t1 ≤ t + ∆, send

(sid,pid,FORCE-PAY)
t1
↪−→ E

J.6 Proof
In this section, we describe the simulator as well as the

formal proof that the Blitz protocol (see Appendix J.5) UC-
realizes the ideal functionality FPay shown in Appendix J.4.

Simulator

Local variables:
right A map, storing the transaction txri for a given

keypair consisting of a payment id pid and a
user Ui.

rightSig A map, storing the signature of the right neighbor
for the transaction stored in right for a given
keypair consisting of a payment id pid and a
user Ui.

Simulator for init phase

Upon (sid,init)
tinit←−↩ FPay and send (sid,init-ok, tu, tc)

tinit
↪−→

FPay.

Simulator for pay phase

a) Case Ui is honest, Ui+1 dishonest

1. Upon (sid,pid,open,txer, rList,onioni+1,αi,T,γi,θεi)
τ←−↩

FPay or upon being called by the simulator S itself in round τ

with parameters (pid,txer, rList,onioni+1,αi,T,γi,θεi).
2. Let Ui := γi.left and Ui+1 := γi.right.

3. ~θi := genStateOutputs(γi,αi,T)

4. txri := genRefTx(~θi[0],θεi ,Ui)

5. (sid,pid,open-req,txer, rList,onioni+1,~θi,tx
r
i)

τ
↪−→Ui+1

6. Upon (sid,pid,open-ok,σUi+1(tx
r
i))

τ+2←−−↩ Ui+1, check
that σUi+1(tx

r
i) is a valid signature for txri . If yes, set

rightSig(pid,Ui) := σUi+1(tx
r
i), right(pid,Ui) := txri

and (ssidC,UPDATE,γi.id,~θi)
τ+2
↪−−→ FChannel .

Send(sid,pid,register,γi,~θi,tx
er,T,θεi ,R)

τ
↪−→ FPay.

Otherwise, go idle.

b) Case Ui is honest, Ui−1 dishonest

1. Upon (sid,pid,open-req,txer, rList,onioni,~θi−1,tx
r
i−1)

τ←−↩
Ui−1. Let αi−1 :=~θi−1[0].cash and extract T from~θi−1[0].φ
(the parameter of AbsTime()).

2. Let x := checkTxEr(Ui,Ui.a,Ui.b,txer, rList,onioni). Check
that x 6=⊥, but instead x = (skŨi

,θεi ,Ri,Ui+1,onioni+1). Oth-
erwise, go idle.

3. Check that there exists a channel between Ui
and Ui+1 and call this channel γi. Verify that
~θi−1 = genStateOutputs(γi−1,αi−1,T) and that
txri−1 := genRefTx(~θi−1[0],θεx ,Ui−1) for an output
θεx ∈ txer.output 6= θεi .

4. (sid,pid,check-id,txer,θεi ,Ri,Ui−1,Ui,Ui+1,αi,T)
τ
↪−→

FPay

24

5. If not (sid,pid,ok,γi)
τ←−↩ FPay, go idle. Let Ui+1 := γi.right.

6. Sign txri−1 on behalf of Ui yielding σUi(tx
r
i−1) and

(sid,pid,open-ok,σUi(tx
r
i−1))

τ
↪−→Ui−1.

7. Upon (ssidC,UPDATED,γi−1.id,~θi−1)
τ+1+tu←−−−−↩ FChannel , send

(sid,pid,register,γi−1,~θi−1,tx
er,T,⊥,⊥) τ

↪−→ FPay. Other-
wise, go idle.

8. If Ui = Un (if (skŨi
,θεi ,Ri,Ui+1,onioni+1) =

(>,>,>,>,>) holds), and U0 is honest,a send

(sid,pid,payment-open,txer)
τ+1+tu
↪−−−−→ FPay. If U0 is

dishonest, create signature σUn(tx
er) on behalf of Un and

send (sid,pid,finalize,txer,σUn(tx
er))

τ+1+tu
↪−−−−→ U0. In

both cases, send via FPay to the dummy user Un the message

(sid,pid,PAYMENT-OPEN,txer,T,αi−1)
τ+1+tu
↪−−−−→Un.

9. Send via FPay to the dummy user Ui the message

(sid,pid,OPENED)
τ+1+tu
↪−−−−→Ui.

10. If Ui+1 honest, call process(sid,pid,txer,γi−1,γi,Ri,
onioni,αi,T)

11. If dishonest, go to step Simulator Ui honest, Ui+1 dishon-
est step 1 with parameters (pid,txer, rList,onioni+1,αi−1−
fee,T,γi,θεi).

process(sid,pid,txer,γi−1,γi,Ri,onioni,αi−1,T)

Let τ be the current round.
1. Initialize nodeList := {Ui} and onions, rMap,stealthMap as

empty maps.
2. (Ui+1,msgi,onioni+1) := GetRoutingInfo(onioni)

3. stealthMap(Ui) := θεi

4. rMap(Ui) := Ri
5. While Ui and Ui+1 honest:

• x := checkTxEr(Ui+1,Ui+1.a,Ui+1.b,txer, rList,onioni+1):
– If x =⊥, append Ui+1 and then ⊥ to nodeList and break

the loop.
– If x = (>,>,>,>,>), append Ui+1 to nodeList and

break the loop.
– Else, if x = (skŨi+1

,θεi+1 ,Ui+2,onioni+2), do the follow-
ing.

• Append Ui+1 to nodeList

• onions(Ui+2) := onioni+2
• rMap(Ui+1) := Ri+1
• stealthMap(Ui+1) := θεi+1

• If Ui+2 is dishonest, append Ui+2 to nodeList and break the
loop.

• Set i := i+1 (i.e., continue loop for Ui+1 and Ui+2)
6. Send (sid,pid,continue,nodeList,txer,onions, rMap,

rList,stealthMap, αi−1,T,γi−1)
τ
↪−→ FPay

aFor simplicity, assume that the Un (and in the case it is honest, the sim-
ulator) knows the sender. As the payment is usually tied to the exchange
of some goods, this is a reasonable assumption. Note that in practice, this
is not necessary, as the sender can be embedded in the routing information
onionn.

Simulator for finalize phase

a) Publishing txer

Upon receiving a message (sid,pid,denied,txer,U0)
τ←−↩

FPay and U0 honest, sign txer on behalf of U0 yielding σU0(tx
er).

Set txer := (txer,σU0(tx
er)) and send (ssidL,POST,txer)

τ
↪−→

GLedger.

b) Case Un honest, U0 dishonest

Upon message (sid,pid,finalize,txer)
τ←−↩ FPay,

sign txer on behalf of Un yielding σUn(tx
er). Send

(sid,pid,finalize,txer,σUn(tx
er))

τ
↪−→U0.

c) Case Un dishonest, U0 honest

Upon message (sid,pid,finalize,txer,σUn(tx
er))

τ←−↩Un, send

(sid,pid,confirmed,txer,σUn(tx
er))

τ
↪−→ FPay.

Simulator for respond phase

In every round τ, upon receiving the following two messages,
react accordingly.

1. Upon (sid,pid,post-refund,γi,tx
er,θεi ,Ri)

τ←−↩ FPay.
• Extract αi and T from γi.st.output[0].
• If Ui+1 is honest, create the transaction txri :=
genRefTx(γi.st[0],θεi ,Ui). Else, let txri := right(pid,Ui)

• Extract pkŨi
from the output θεi of txer and let skŨi

:=
GenSk(Ui.a,Ui.b,pkŨi

,Ri).

• Generate signatures σUi(tx
r
i) and, using skŨi

, σŨi
(txri) on

behalf of Ui.
• If Ui+1 := γi.right is honest, generate signature σUi+1(tx

r
i)

on behalf of Ui+1. Else, let σUi+1(tx
r
i) := rightSig(pid,Ui)

• Set txri := (txri ,(σUi(tx
r
i),σUi+1(tx

r
i),σŨi

(txri))).

• Send (ssidL,POST,txri)
τ
↪−→ GLedger.

2. Upon (sid,pid,post-pay,γi)
τ←−↩ FPay

• Extract αi and T from γi.st.output[0]. Create the trans-
action txpi := genPayTx(γi.st,Ui+1).

• Generate signatures σUi+1(tx
p
i) and set

txpi := (txpi ,(σUi+1(tx
p
i))).

• Send (ssidL,POST,tx
p
i)

τ
↪−→ GLedger.

Lemma 1. Let Σ be a EUF-CMA secure signature scheme.
Then, the Pay phase of protocol Π GUC-emulates the Pay
phase of functionality FPay.

Proof. We show that the simulator S presented above inter-
acting with the Pay phase of FPay is indistinguishable for
any environment E from an interaction with Π and a dummy
adversary A . A bit more formally, we show that the ensem-
bles EXECFPay,S ,E and EXECΠ,A ,E are indistinguishable for the
environment E .

In our description, we write m[τ] to denote that message m
is observed at round τ. Moreover, we interact with other ideal
functionalities, which in turn interact with either the environ-
ment E or other parties, who are possibly under adversarial

25

control, by sending messages. These interactions can have an
additional impact on publicly observable variables, i.e., the
ledger L . When sending a message m to a ideal functionality
F in round τ, we denote the set of all by E observable actions
triggered by this as a function obsSet(m,F ,τ).

In the following, we analyze the different corruption cases.
For each case, we first describe the view of the environment
in Π and then the view of the environment as simulated by
S . For the Pay phase, we consider three different cases of
the interaction between two users Ui and Ui+1. We match the
sequences of this phase, that we use in the proof below, and
where they are used in the ideal and real world in Table 5.
Note that for Ui =U0 SETUP is performed initially, otherwise
CREATE_STATE. We define the following messages.

• m0 := (sid,pid,open-req, txer, rList,onioni+1,~θi, tx
r
i)

• m1 := (sid,pid,OPEN, txer,θεi+1 ,Ri,Ui,Ui+2,αi,T)

• m2 := (sid,pid,ACCEPT,γi+1)

• m3 := (sid,pid,open-ok,σUi+1(tx
r
i))

• m4 := (ssidC,UPDATE,γi.id, θ̃i)

• m5 := (ssidC,UPDATED,γi.id, θ̃i)

• m6 := (sid,pid,OPENED) or, if sent by the receiver,
m6 := (sid,pid,PAYMENT-OPEN, txer,T,αi)

1. Ui honest, Ui+1 corrupted
Real world: After Ui performs either SETUP or

CREATE_STATE, it sends m0 to Ui+1 in the cur-
rent round τ. The environment E controls A and
therefore Ui+1 and will see m0 in round τ + 1. Iff
Ui+1 replies with a correct message m3 in τ + 2,
Ui will perform CHECK_SIG and call FChannel with
message m4 in the same round. The ensemble is
EXECΠ,A ,E := {m0[τ+1]}∪obsSet(m4,FChannel ,τ+2)

Ideal world: After FPay performs either SETUP or simula-
tor performs CREATE_STATE, the simulator sends m0 to
Ui+1 in the current round τ. E will see m0 in round
τ+1. Iff Ui+1 replies with a correct message m3 in τ+2,
the simulator will perform CHECK_SIG and call FChannel
with message m4 in the same round. The ensemble is
EXECFPay,S ,E := {m0[τ + 1]} ∪ obsSet(m4,FChannel ,τ +
2)

2. Ui honest, Ui+1 honest
Real world: After Ui performs either SETUP or

CREATE_STATE, it sends m0 to Ui+1 in the current
round τ. Ui+1 performs CHECK_STATE and sends m1
to E in round τ+ 1. Iff E replies with m2, Ui+1, Ui+1
replies with m3. Ui receives this in round τ+2, performs
CHECK_SIG and sends m4 to FChannel . Ui+1 expects the
message m5 in round τ+2+ tu and will then send m6 to
E . Afterwards it continues with either CREATE_STATE
or FINALIZE. The ensemble is EXECΠ,A ,E :=
{m1[τ+1],m6[τ+2+ tu]}∪obsSet(m4,FChannel ,τ+2)

Ideal world: After FPay performs either SETUP or is invoked
by itself (in step Open.13) or by the simulator (in step
process.6) in the current round τ, FPay perform the pro-
cedure Open. This behaves exactly like CREATE_STATE,
CHECK_STATE and CHECK_SIG. However, since every ob-
ject is created by FPay, the checks are omitted. The pro-
cedure Open outputs the messages m1 in round τ+1 and
iff E replies with m2, calls FChannel with m4 in τ+2. Fi-
nally, if m5 is received in round τ+2+ tu, outputs m6 to
E . The ensemble is EXECFPay,S ,E := {m1[τ+ 1],m6[τ+
2+ tu]}∪obsSet(m4,FChannel ,τ+2)

3. Ui corrupted, Ui+1 honest
Real world: After Ui+1 receives the message m0 from Ui, it

performs CHECK_STATE and sends m1 to E in the current
round τ. Iff E replies with m2, Ui+1 sends m3 to Ui. If
Ui+1 receives the message m5 from FChannel in round τ+
1+ tu, it sends m6 to E . The ensemble is EXECΠ,A ,E :=
{m1[τ],m3[τ+1],m6[τ+1+ tu]}

Ideal world: After the simulator receives m0 from Ui, it per-
forms CHECK_STATE together with FPay and FPay sends
m1 to E . Iff E replies with m2, FPay asks the simula-
tor to send m3 to Ui. All of this happens in the current
round τ. If the simulator receives m5 in round τ+1+ tu,
it sends m6 to E . The ensemble is EXECFPay,S ,E :=
{m1[τ],m3[τ+1],m6[τ+1+ tu]}

Note that we do not care about the case were both Ui and
Ui+1 are corrupted, because the environment is commuincat-
ing with itself, which is trivially the same in the ideal and
the real world. We see that in these three cases, the execution
ensembles of the ideal and the real world are identical, thereby
proving Lemma 1.

Lemma 2. Let Σ be a EUF-CMA secure signature scheme.
Then, the Finalize phase of protocol Π GUC-emulates the
Finalize phase of functionality FPay.

Proof. Again, we consider the execution ensembles of the
interaction between users Un and U0 for three different cases.
We match the sequences and where they are used in the ideal
and real world in Table 6. We define the following messages.

• m7 := (sid,pid,finalize, txer)

• m8 := (ssidL,POST, txer)

1. Un honest, U0 corrupted
Real world: After performing FINALIZE in the current

round τ, Un sends m7 to U0. The ensemble is
EXECΠ,A ,E := {m7[τ]}

Ideal world: After either FPay or the simulator performs
FINALIZE in the current round τ, the simulator sends
m7 to U0. The ensemble is EXECFPay,S ,E := {m7[τ]}

2. Un honest, U0 honest

26

Table 5: Explanation of the sequence names used in Lemma 1 and where they can be found in the ideal functionality (IF),
Protocol (Prot) or Simulator (Sim).

Real World Ideal World Output Description
Ui honest, Ui+1 corrupted Ui honest, Ui+1 honest Ui corrupted, Ui+1 honest

SETUP Prot.Pay.Setup 1-12
IF.Pay.Setup 1-7,9,

Sim.Pay.a 1-5 IF.Pay.Setup 1-8 n/a m0 Does setup and contacts next user

CREATE_STATE Prot.Pay.Open 6-8 n/a
IF.Pay.Open 12, 13

Sim.Pay.a 1-5 Sim.Pay.b 8-10
m6,
m0

Upon m5, sends message m6 to E .
Then, ceates the objects to send in
m0 and sends it to Ui+1 (or finalize).

CHECK_STATE Prot.Pay.Open 1-4 n/a IF.Pay.Open 1-8

Sim.Pay.b 1-4
IF.Check

Sim.Pay.b 5-7
IF.Register

m1,
m3

Checks if objects in m0 are correct,
sends m1 to E and on m2, sends
m3 to Ui

CHECK_SIG Prot.Pay.Open 5 Sim.Pay.a 6 IF.Pay.Open 9-11 n/a m4 Checks if signature of txri is correct

Table 6: Explanation of the sequence names used in Lemma 2 and where they can be found.

Real World Ideal World Output Description
Un honest, U0 corrupted Un honest, U0 honest Un corrupted, U0 honest

FINALIZE Prot.Pay.Open 8
IF.Pay.12 and

Sim.Finalize.b or
Sim.Pay.b 8

IF.Pay.12 and
Sim.Finalize.b or

Sim.Pay.b 8
n/a m7 Sends finalize message to U0

CHECK_FINALIZE Prot.Finalize 1-6 n/a
IF.Finalize 1,2,4
Sim.Finalize.a

Sim.Finalize.c
IF.Finalize 1,3,4
Sim.Finalize.a

m8
Checks if txer is the same, if not,
publishes it to ledger with m8.

Real world: After performing FINALIZE in the current
round τ, Un sends m7 to U0. In the meantime, U0 per-
forms CHECK_FINALIZE and should it not receive a cor-
rect message m7 in the correct round, will send m8 to
GLedger in round τ′. This will result in the sets of message
The ensemble is EXECΠ,A ,E := obsSet(m8,GLedger,τ

′)

Ideal world: Either FPay or the simulator performs
FINALIZE in the current round τ. In the meantime,
FPay performs CHECK_FINALIZE and will, if the
checks in FINALIZE failed or it was performed in a
incorrect round τ′, FPay will instruct the simulator
to send m8 to GLedger in rounds τ′. The ensemble is
EXECFPay,S ,E := obsSet(m8,GLedger,τ

′)

3. Un corrupted, U0 honest
Real world: U0 performs CHECK_FINALIZE and should it

not receive a correct message m7 in the correct round,
will send m8 to GLedger in round τ′. The ensemble is
EXECΠ,A ,E := obsSet(m8,GLedger,τ

′)

Ideal world: The simulator and FPay perform
CHECK_FINALIZE and should the simulator not receive
a correct message m7 in the correct round, FPay will in-
struct the simulator to send m8 to GLedger in round τ′.The
ensemble is EXECFPay,S ,E := obsSet(m8,GLedger,τ

′)

Lemma 3. Let Σ be a EUF-CMA secure signature scheme.
Then, the Respond phase of protocol Π GUC-emulates the
Respond phase of functionality FPay.

Proof. Again, we consider the execution ensembles. This
time only for the case were a user Ui is honest, however we

distinguish between the case of revoke and force-pay. We
match the sequences and where they are used in the ideal and
real world in Table 7. We define the following messages.

• m9 := (ssidC,CLOSE,γi.id)

• m10 := (ssidL,POST, txri)

• m11 := (sid,pid,REVOKED)

• m12 := (ssidL,POST, tx
p
i−1)

• m13 := (sid,pid,FORCE-PAY)

Ui honest, revoke
Real world: In every round τ, Ui performs RESPOND, which

provides a decision on whether or not to do the fol-
lowing. If yes, Ui performs REVOKE, which results in
message m9 to FChannel in round τ. If the channel
that is sent in m9 is closed, Ui sends m10 to GLedger
in round τ+ tc +∆. Finally, if the transaction sent in
m10 appears on L in τ + tc + 2∆, Ui sends m11 to E .
The ensemble is EXECΠ,A ,E := {m11[τ + tc + 2∆]} ∪
obsSet(m9,FChannel ,τ) ∪ obsSet(m10,GLedger,τ + tc +
∆)

Ideal world: In every round τ, FPay performs RESPOND,
which provides a decision on whether or not to do
the following. If yes, FPay instructs the simulator
to perform REVOKE, which results in the message
m9 to FChannel in round τ. If the channel that is
sent in m9 is closed, the simulator sends m10 to
GLedger in round τ + tc + ∆. Finally, if the transac-
tion sent in m10 appears on L , FPay sends m11 to E .
The ensemble is EXECFPay,S ,E := {m11[τ+ tc + 2∆]} ∪
obsSet(m9,FChannel ,τ) ∪ obsSet(m10,GLedger,τ + tc +
∆)

27

Table 7: Explanation of the sequence names used in Lemma 3 and where they can be found.

Real World Ideal World Output Description
Ui honest

RESPOND Prot.Respond IF.Respond n/a Checks every round if response in order.

REVOKE Prot.Respond.1
IF.Respond.Revoke

Sim.Respond.1

m9,
m10,
m11

Carries out the revokation.

FORCE_PAY Prot.Respond.2
IF.Respond.Revoke

Sim.Respond.2
m12,
m13

Carries out the force-pay.

Ui honest, force-pay
Real world: In every round τ, Ui performs RESPOND, which

provides a decision on whether or not to do the fol-
lowing. If yes, Ui performs FORCE_PAY, which results
in the messages m12 to GLedger in round τ and, if the
transaction sent in m12 appears on L , the message m13
to E in round τ + ∆. The ensemble is EXECΠ,A ,E :=
{m13[τ+∆]}∪obsSet(m12,GLedger,τ)

Ideal world: In every round τ, FPay performs RESPOND,
which provides a decision on whether or not to do the
following. If yes, FPay instructs the simulator to perform
FORCE_PAY, which results in the messages m12 to GLedger
in round τ and, if the transaction sent in m12 appears on
L , the message m13 to E in round τ+∆. The ensemble is
EXECFPay,S ,E := {m13[τ+∆]}∪obsSet(m12,GLedger,τ)

Theorem 2. (formal) Let Σ be a EUF-CMA secure signature
scheme. Then, for any ledger delay ∆ ∈ N, the protocol Π

UC-realizes the ideal functionality FPay.

This theorem follows directly from Lemma 1, 2 and
Lemma 3.

K Discussion on security and privacy goals
So far, in Section 4.1 we have informally stated what are

our security and privacy goals in this work. Additionally,
in Appendix J.4 we have described the ideal functionality
FPay that formally defines the security and privacy guarantees
achieved by Blitz. In this section, we aim to show how FPay
indeed has the security and privacy goals that we intuitively
want to achieve. For that, we first formalize each intuitive
security and privacy goal into a cryptographic game and then
show that FPay fulfills such definition.

K.1 Assumptions
For the theorems in this section, we have the following

assumptions: (i) we assume that stealth addresses achieve
unlinkability and (ii) we assume that the routing scheme we
use (i.e., Sphinx extended with a per-hop payload) is a secure
onion routing process.

Unlinkability of stealth addresses Consider the following
game. The challenger computes two pair of stealth addresses
(A0,B0) and (A1,B1). Moreover, the challenger picks a bit
b and computes Pb,Rb ← GenPk(Ab,Bb). Finally, the chal-
lenger sends the tuples (A0,B0), (A1,B1) and Pb,Rb to the
adversary.

Additionally, the adversary has access to an oracle that
upon being queried, it returns P∗b ,R

∗
b to the adversary.

We say that they adversary wins the game if it correctly
guesses the bit b chosen by the challenger.

Definition 2 (Unlinkability of Stealth Addresses). We say
that a stealth addresses scheme achieves unlinkability if for
all PPT adversary A , the adversary wins the aforementioned
game with probability at most 1/2+ ε, where ε denotes a
negligible value.

Secure onion routing process We say that an onion routing
process is secure, if it realizes the ideal functionality defined
in [8]. Sphinx [11], for instance, is a realization of this. We
use it in Blitz, extended with a per-hop payload (see also
Section 4.2).

K.2 Balance security
Given a path channelList := γ1, . . . ,γn and given a user U

such that γi.right=U and γi+1.left=U , we say that the bal-
ance of U in the path is PathBalance(U) := γi.balance(U)+
γi+1.balance(U). Intuitively then, we say that a payment pro-
tocol achieves balance security if the PathBalance(U) for
each honest user U does not decrease.

Formally, consider the following game. The adversary se-
lects a channelList, a transaction txin, a payment amount
α and a timeout T such that the output txin.output[0]
holds at least n · ε coins, where n is the length of the
path defined in channelList. The adversary sends the tuple
(channelList, txin,α,T) to the challenger.

The challenger sets sid and pid to two random identifiers.
Then, the challenger simulates a payment from the setup
phase on input (sid,pid,SETUP,channelList, txin,α,T,γ0).
The challenger runs the Pay phase. Every time that a cor-
rupted user Ui needs to be contacted, the challenger forwards
the query to the attacker and waits for the corresponding
answer, thereby giving the attacker the opportunity to stop
payments and trigger refunds or let them be successful.

28

We say that the adversary wins the game if there exists
an honest intermediate user U , such that PathBalance(U) is
lower after the payment operation.

Definition 3 (Balance security). We say that a payment pro-
tocol achieves balance security if for every PPT adversary A ,
the adversary wins the aforementioned game with negligible
probability.

Theorem 3 (Blitz achieves balance security). Blitz payments
achieve balance security as defined in Definition 3.

Proof. Assume that an adversary exists, can win the bal-
ance privacy game. This means, that after the balance se-
curity game, there exists an honest intermediate user U , such
PathBalance(U) is lower after the payment. An intermediary
U has coins locked up in its right channel when FPay (if right
neighbor is honest) or the simulator (if right neighbor dis-
honest) updates this right channel to its new state. However,
both FPay and the simulator do this only, after successfully
updating also their left channel using the same txer to fund
the refund transactions in both channels.

Assume now that U has less channel balance after the pay-
ment. This would imply, that U lost its fund in the right chan-
nel without gaining any in the left. Consider two cases: (i)
The left neighbor refunded in time, which implies that txer

was posted in time, which triggers also the refund in FPay of
U in its right channel and no balance is lost. (ii) The right
neighbor claimed the collateral of U’s right channel. Since
for an honest U , FPay would have automatically refunded be-
fore T if possible, this means that also in U’s left channel no
refund occurred. Therefore, U can claim the money put by
its left neighbor and will not lose balance. This lead to the
conclusion, that no such honest U exists with a lower channel
balance, or if its the sender, a lower channel balance and an
unsuccessful payment.

K.3 Sender privacy
Intuitively, we say that a payment protocol achieves sender

privacy if an adversary controlling an intermediary node can-
not distinguish the case where the sender is its left neighbor
in the path from the case where the sender is separated for
one (or more) intermediaries.

A bit more formally, consider the following game. The ad-
versary controls node U∗ and selects two paths channelList0
and channelList1 that differ on the number of intermediary
nodes between the sender and the adversary. In particular, the
path channelList0 is formed by U1,U∗,U2,U3 whereas the
path channelList1 contains the users U0,U1,U∗,U2. Note that
we force both queries to have the same path length to avoid a
trivial distinguishability attack based on path length. Addition-
ally, the adversary picks transaction txin, a payment amount
α as well as a timeout T such that the output txin.output[0]
holds at least n · ε coins, where n is the length of the path de-
fined in channelListb. Finally, the adversary sends two queries

(channelList0, tx
in,α,T) and (channelList1, tx

in,α + fee,T)
to the challenger. The challenger sets sid and pid to two
random identifiers. Moreover, the challenger picks a bit b
at random and simulates setup and open of the Pay phase
on input (sid,pid,SETUP,channelListb, tx

in,α,T,γ0). Every
time that the corrupted user U∗ needs to be contacted, the
challenger forwards the query to the attacker and waits for
the corresponding answer.

We say that the adversary wins the game if it correctly
guesses the bit b chosen by the challenger.

Definition 4 (Sender privacy). We say that a payment proto-
col achieves sender privacy if for every PPT adversary A , the
adversary wins the aforementioned game with probability at
most 1/2+ ε, where ε denotes a negligible value.

Theorem 4 (Blitz achieves sender privacy). Blitz payments
achieve sender privacy as defined in Definition 4.

Proof. The message (sid,pid,open, txer, rList,onioni+1,αi,
T,γi,θεi) that FPay sends to the simulator in the Open phase, is
leaked to the adversary. By looking at γi and opening onioni+1,
U∗ knows its neighbors U1 and U2. We know that U∗ cannot
learn any additional information about the path from T and
γi. Since the amount to be sent was increased fee for the path
channelList1, the amount αi for Ui is identical for both cases.
This leaves txer, rList and onioni+1. Let us assume, that there
exists an adversary that can break sender privacy. There are
two possible cases.
1. The adversary finds out by looking at txer and rList: We
defined that the output, that serves as input for txer, has never
been used and is unlinkable to the sender and check this in
checkTxIn. Looking at the outputs of txer, the adversary
knows to whom all but one output belongs. Since our adver-
sary breaks the sender privacy, it needs to be able to recon-
struct, to whom this final output of txer belongs observing
rList. This contradicts our assumption of unlinkable stealth
addresses.
2. The adversary finds out by looking at onioni+1: The
adversary controlling U∗ is able to open onioni+1 revealing
U2, a message m and onioni+2. Since our adversary breaks
the sender privacy, he has to be able to open onioni+2 to
reveal if U2 is the receiver or not, thereby learning who is the
sender. This contradicts our assumption of secure anonymous
communication networks.

These two cases lead to the conclusion, that a PPT adver-
sary that can win the sender privacy game with a probability
non-negligibly better than 1/2, can also break our assumptions
of unlinkability of stealth addresses or secure anonymous com-
munication networks. Note that the both receiver privacy and
its proof are analogous to the sender privacy.

K.4 Path privacy
Intuitively, we say that a payment protocol achieves path

privacy if an adversary controlling an intermediary node does

29

not know what other nodes are part of the path other than its
own neighbors.

A bit more formally, consider the following game. The ad-
versary controls node U∗ and selects two paths channelList0
and channelList1 that differ on the nodes other than the adver-
sary neighbors. In particular, the path channelList0 is formed
by U0,U1,U∗,U2,U3 whereas the path channelList1 contains
the users U ′0,U1,U∗,U2,U ′3. Note that we force both queries
to have the same path length to avoid a trivial distinguisha-
bility attack based on path length. Further note that we force
that in both paths, the adversary has the same neighbors as
otherwise there exists a trivial distinguishability attack based
on what neighbors are used in each case.

Additionally, the adversary picks transaction txin, a pay-
ment amount α as well as a timeout T such that the out-
put txin.output[0] holds at least n · ε coins. Finally, the
adversary sends two queries (channelList0, tx

in,α,T) and
(channelList1, tx

in,α,T) to the challenger.
The challenger sets sid and pid to two random iden-

tifiers. Moreover, the challenger picks a bit b at ran-
dom and simulates the setup and open phases on input
(sid,pid,SETUP,channelListb, tx

in,α,T,γ0). Every time that
the corrupted user U∗ needs to be contacted, the challenger
forwards the query to the attacker and waits for the corre-
sponding answer.

We say that the adversary wins the game if it correctly
guesses the bit b chosen by the challenger.

Definition 5 (Path privacy). We say that a payment protocol
achieves path privacy if for every PPT adversary A , the adver-
sary wins the aforementioned game with probability at most
1/2+ ε, where ε denotes a negligible value.

Theorem 5 (Blitz achieves path privacy). Blitz payments
achieve path privacy as defined in Definition 5.

Proof. As this proof is analogous to the proof for sender
privacy, we only sketch it here. Again, the simulator leaks
the same message (sid,pid,open, txer, rList,onioni+1,αi,
T,γi,θεi) to the adversary. Again, the adversary can find out
the correct bit b by looking at (i) txer and rList or (ii) at
onioni+1. If there exists an adversary that breaks the path pri-
vacy of Blitz, then it also can be used to break (i) unlinkability
of stealth addresses or (ii) secure anonymous communication
networks.

30

	Introduction
	State-of-the-art PCNs
	Open problems in current PCNs
	Our contributions

	Background and notation
	Transactions in the UTXO model
	Payment channels
	Payment channel networks

	Solution overview
	Our construction
	Security and privacy goals
	Assumptions and building blocks
	2-party protocol for channel update
	Multi-hop payment description

	Security analysis
	Security model
	Informal security discussion

	Evaluation
	Related work
	Conclusion
	Discussion on practical deployment
	1-phase commits in distributed databases
	Payment channels in more detail
	Preventing the race condition when the sender is irrational
	Concrete attack scenarios (informal)
	Timeline
	Communication overhead
	Extended simulation results
	Extended macros
	Modeling in the UC framework
	Preliminaries, communication model and threat model
	Ledger and channels
	The UC-security definition
	Ideal functionality
	Protocol
	Proof

	Discussion on security and privacy goals
	Assumptions
	Balance security
	Sender privacy
	Path privacy

