Differential Cryptanalysis of WARP

Je Sen Teha,b,∗, Alex Biryukovb

aSchool of Computer Sciences, Universiti Sains Malaysia, 11800 Gelugor, Malaysia
bInterdisciplinary Centre for Security, Reliability and Trust (SnT), Universiti of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg

Abstract

WARP is an energy-efficient lightweight block cipher that is currently the smallest 128-bit block cipher in terms of hardware. It was proposed by Banik et al. in SAC 2020 as a lightweight replacement for AES-128 without changing the mode of operation. This paper proposes key-recovery attacks on WARP based on differential cryptanalysis in single and related-key settings. We searched for differential trails for up to 20 rounds of WARP, with the first 19 having optimal differential probabilities. We also found that the cipher has a strong differential effect, whereby 16 to 20-round differentials have substantially higher probabilities than their corresponding individual trails. A 23-round key-recovery attack was then realized using an 18-round differential distinguisher. Next, we formulated an automatic boomerang search using SMT that relies on the Feistel Boomerang Connectivity Table to identify valid switches. We designed the search as an add-on to the CryptoSMT tool, making it applicable to other Feistel-like ciphers such as TWINE and LBlock-s. For WARP, we found a 21-round boomerang distinguisher which was used in a 24-round rectangle attack. In the related-key setting, we describe a family of 2-round iterative differential trails, which we used in a practical related-key attack on the full 41-round WARP.

Keywords: Differential cryptanalysis, Rectangle attack, Related-key, WARP, GFN

1. Introduction

Lightweight cryptography is currently one of the most heavily researched areas in recent years. This is due in part to the widespread use of resource-constrained devices such as smart or IoT devices which transmit sensitive information on a daily basis. Compared to other symmetric-key primitives, lightweight block ciphers have received the most attention in terms of development and cryptanalytic efforts. The first generation of lightweight block ciphers (e.g. PRESENT, KATAN, LED) focused on minimizing hardware requirements while the next emphasized latency (PRINCE) and energy (MIDORI, GIFT-128) without sacrificing hardware requirements. Although most lightweight block ciphers have block sizes of 64 bits there were a number of 128-bit block ciphers with lower area and/or power requirements than AES such as MIDORI, GIFT-128. These 128-bit lightweight block ciphers are usually based on the Substitution-Permutation Network (SPN) design paradigm which generally takes up more hardware space due to the inversion of their confusion and diffusion layers.

To overcome this hurdle, Banik et al. adopted the Type-2 Generalized Feistel Network in their 128-bit block cipher called WARP which was proposed in SAC 2020. The design team consisted of the minds behind multiple well-known lightweight block ciphers such as GIFT, MIDORI and TWINE. The motivation behind designing WARP as a 128-bit cipher with a 128-bit key was to realize a direct replacement for AES-128 without having to change the underlying mode of operation. By adopting MIDORI’s S-box (for reduced latency and area) and a simple alternating key schedule, the designers found that WARP only requires 763 Gate Equivalents (GE) for a bit-serial encryption-only circuit and has better energy consumption than MIDORI, which is widely considered the current state-of-the-art in terms of 128-bit low-energy ciphers.

Related Work. To the best of our knowledge, the only prior third-party cryptanalysis result for WARP was an attack reported by Kumar and Yadav. By using an 18-round differential trail, the authors were able to perform a key recovery attack on 21 rounds. WARP’s designers analyzed its security against differential and linear cryptanalysis based on the number of active S-boxes. They found that WARP has more than 64 active S-boxes after 19 rounds. They also found a 21-round impossible differential distinguisher and a 20-round integral distinguisher for the cipher. A meet-in-the-middle attack is expected to be feasible for at most 32 rounds of WARP. Although no concrete attacks were described, 41 rounds of WARP is expected to be secure against these attacks.

Our Contributions. In this paper, we cryptanalyze WARP using differential cryptanalysis. By using an SMT-aided differential search, we found differential trails for up to 20 rounds of WARP, with the first 19 guaranteed to be optimal. These differential trails confirm that the lower bounds provided by the designers cannot be improved. We then performed a differential cluster search for each of these trails and found that WARP has a strong differential effect from round 13 onward. Notably,

\[\text{Preprint submitted to Elsevier} \]
differentials for 16 to 20 rounds have higher probabilities than their corresponding individual trails by at least a factor of 2^{13}.

Next, we implemented an automatic search for boomerang (or more specifically, rectangle) distinguishers which includes the Feistel Boomerang Connectivity Table (FBCT) [12]. The boomerang search was written as a new module for the CryptoSMT tool [13] rather than one that was specifically catered to WARP. We showcase its flexibility by also applying it to TWINE and LBlock-s [14]. Using our tool, we were able to find a 21-round boomerang distinguisher for WARP with a differential probability, \(DP = 2^{-121.11} \).

We also performed a search for related-key differential trails for WARP. As a result, we found that WARP has a family of 2-round iterative related-key differential trails with low weight. These iterative trails can be concatenated to form distinguishers for the full 41-round WARP with \(DP = 2^{-40} \). These trails exist due to the interaction between the cipher’s nibble-wise permutation, simple alternating key schedule and subkey XOR operation performed after the S-box. The interaction between these design elements also led to another interesting observation whereby knowledge of the input difference for a Feistel-subround can be propagated to the next round without having to guess its corresponding subkey. This property was leveraged in all of our key recovery attacks to target specific subkeys.

Finally, we proposed key-recovery attacks on WARP based on the differential distinguishers that were found. In the single-key setting, we have a 23-round differential attack using an 18-round differential distinguisher that has time \(T \), data \(D \) and memory \(M \) complexities of \((T , D,M) = (2^{106.68} , 2^{106.62} , 2^{106.62}) \), followed by a 24-round rectangle attack using a 21-round distinguisher with \((T , D,M) = (2^{125.18} , 2^{125.06} , 2^{125.06}) \). In the related-key setting, we formulated a 25-round attack using a 19-round related-key differential distinguisher for the purpose of computational verification. 16 bits of the secret key were recovered within 2.5 minutes.\(^1\) We extended the same key-recovery framework and introduced a practical attack on all 41 rounds of WARP using a 35-round related-key distinguisher with \((T , D,M) = (2^{37} , 2^{37} , 2^{37}) \). Our cryptanalytic results are summarized in Table 1.

\(^1\)Verification of our related-key attack and boomerang search tool is publicly available at https://github.com/jesenteh/warp-attacks

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
<td>Block size in bits</td>
</tr>
<tr>
<td>(k)</td>
<td>Key size in bits</td>
</tr>
<tr>
<td>(\Delta P)</td>
<td>Plaintext XOR difference</td>
</tr>
<tr>
<td>(\Delta C)</td>
<td>Ciphertext XOR difference</td>
</tr>
<tr>
<td>(\alpha , \beta , \delta , \gamma)</td>
<td>(n)-bit input and output</td>
</tr>
<tr>
<td>(\alpha_i)</td>
<td>The (i)-th nibble of an (n)-bit XOR difference, (\alpha) in round (j)</td>
</tr>
<tr>
<td>(\chi_j)</td>
<td>The (i)-th nibble of an (n)-bit binary variable, (X) in round (j)</td>
</tr>
<tr>
<td>#AS</td>
<td>Number of active S-boxes</td>
</tr>
<tr>
<td>(@)</td>
<td>Binary exclusive-OR (XOR)</td>
</tr>
<tr>
<td>(|)</td>
<td>Binary concatenation</td>
</tr>
<tr>
<td>(DP)</td>
<td>Differential probability</td>
</tr>
<tr>
<td>(R)</td>
<td>Number of rounds</td>
</tr>
<tr>
<td>(DDT(x,y)/FBCT(x,y))</td>
<td>An entry in the DDT/FBCT for an input</td>
</tr>
<tr>
<td>(x) and (y)</td>
<td>(x) and output (y)</td>
</tr>
</tbody>
</table>

Table 2: Symbols and notation

\[\alpha \rightarrow a^1 \rightarrow a^2 \rightarrow ... \rightarrow a^{n-1} \rightarrow a^n \rightarrow \beta . \] (1)

An adversary must find a differential trail with sufficiently high differential probability,

\[DP = \Pr(\alpha \rightarrow ... \rightarrow a^n \rightarrow \beta) . \] (2)

Based on the Markov assumption [15] which allows treating a cipher’s rounds independently, the differential probability can be computed as

\[DP \approx \prod_{j=1}^{R} \Pr(\alpha^{j-1} \rightarrow a^j) , \] (3)

where \(\alpha^0 = \alpha \) and \(\alpha^R = \beta \). A better estimate of the differential probability can be obtained by collecting differential trails that share the same input and output differences,

\[DP = \Pr(\alpha \rightarrow \beta) = \sum_{\alpha^1 \ldots \alpha^{R-1}} (\alpha \rightarrow \beta) . \] (4)

When cryptanalyzing a block cipher, an adversary maximizes the probability of the differential by enumerating as many differential trails as possible, which can be automated using methods such as branch-and-bound algorithms [16, 17, 18].

2. Preliminaries

Notations and abbreviations used in this paper are summarized in Table 2. The rightmost (least significant) bits or nibbles have an index of 0.

2.1. Differential Cryptanalysis

A block cipher maps a set of plaintexts to a set of ciphertexts using a key-dependent round function, \(f_j \), where \(j \in R \). The goal of differential cryptanalysis is to find pairs of plaintexts \((P_1, P_2)\) and ciphertexts \((C_1, C_2)\) with a strong correlation between their differences \(\alpha \equiv P_1 \oplus P_2 \) and \(\beta \equiv C_1 \oplus C_2 \). The propagation pattern of an input difference \(\alpha \) to an output difference \(\beta \) is known as a differential characteristic or trail. A differential trail consists of a sequence of differences,

\[\alpha \rightarrow a^1 \rightarrow a^2 \rightarrow ... \rightarrow a^{n-1} \rightarrow a^n \rightarrow \beta . \] (1)

<table>
<thead>
<tr>
<th>R</th>
<th>Method</th>
<th>Time</th>
<th>Data</th>
<th>Mem</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>SK Diff.</td>
<td>(2^{13})</td>
<td>(2^{13})</td>
<td>(2^{72})</td>
<td>[10]</td>
</tr>
<tr>
<td>23</td>
<td>SK Diff.</td>
<td>(2^{106.68})</td>
<td>(2^{106.62})</td>
<td>(2^{106.62})</td>
<td>Sec 4.1</td>
</tr>
<tr>
<td>24</td>
<td>SK Rect.</td>
<td>(2^{125.18})</td>
<td>(2^{125.06})</td>
<td>(2^{127.06})</td>
<td>Sec 4.2</td>
</tr>
<tr>
<td>41</td>
<td>RK Diff.</td>
<td>(2^{37})</td>
<td>(2^{37})</td>
<td>(2^{37})</td>
<td>Sec 5.2</td>
</tr>
</tbody>
</table>

\(^\text{a}\)Time complexity to recover 60 bits of the key

Table 1: Summary of key-recovery attacks on WARP (SK/RK denotes single-key/related-key)
boomerang connectivity table (BCT) \[40\] and its Feistel counterpart \[12\], we have a systematic means of enumerating these differential trails while guaranteeing their compatibility. The sandwich attack decomposes the cipher into 3 components, \(E = E_1 \circ E_m \circ E_0 \), where \(E_m \) is the transition in the middle round with a switching probability denoted by \(r \). We can calculate \(r \) with the help of BCT or FBCT, similar to how the differential probability can be calculated based on the difference distribution table (DDT). The connectivity tables already cover the various switches that have been used in the past to improve the probability of boomerang distinguishers such as the ladder, S-box and Feistel switches \[28\]. The probability of obtaining a right quartet is now
\[
p_{2}q_{2} = \sum_{i,j} (p_{i} \oplus q_{i} \oplus r_{i,j}).
\]

2.2. Boomerang and Rectangle Attacks

The boomerang attack proposed by Wagner \[36\] is a variant of differential cryptanalysis that concatenates two shorter differentials to form a longer distinguisher. The classical boomerang attack involves decomposing a target cipher, \(E \) into two subciphers, \(E_1 \) and \(E_0 \). We denote the input and output differences of the first or top half of the cipher, \(E_1 \) as \(\alpha \) and \(\beta \) while for the lower half, these differences are denoted as \(\gamma \) and \(\delta \). We denote the probability that \(\alpha \xrightarrow{e} \beta \) as \(p \) and \(\gamma \xrightarrow{e} \delta \) as \(q \). This boomerang structure is illustrated in Figure 1. The expected probability of a boomerang differential is \(p^{2}q^{2} \), which requires an adversary to make \((pq) \) adaptive chosen plaintext and ciphertext queries to distinguish \(E \) from an ideal cipher.

The boomerang attack was later reformulated as a chosen plaintext attack called the amplified boomerang \[37\] or rectangle attack \[38\] by encrypting many pairs with the input difference \(\alpha \) and searching for a quartet which satisfies \(C_1 \oplus C_3 = C_2 \oplus C_4 = \delta \) when \(P_1 \oplus P_2 = P_3 \oplus P_4 = \alpha \). Although the probability of a quartet to be a right quartet is reduced to \(2^{-n}p^{2}q^{2} \), counting over all possible \(\beta \)'s and \(\delta \)'s as long as \(\beta \neq \delta \) improves \(E_0 \) the probability to \(2^{-n}p^{2}q^{2} \), where \(\hat{p} = (\sum_{i} Pr(\alpha \xrightarrow{e} \beta_i) i \wedge \hat{q} = (\sum_{i} Pr(\gamma \xrightarrow{e} \delta_i) i) \wedge \).

Independently chosen \(E_1 \) and \(E_0 \) trails may turn out to be incompatible \[39\]. With the introduction of the sandwich attack \[28\][29], the boomerang connectivity table (BCT) \[40\] and its Feistel counterpart \[12\], we have a systematic means of

\[
\begin{array}{c|cccccccc}
\hline
x & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline
S(x) & C & A & D & 3 & E & B & F & 7 \\
\hline
\end{array}
\]

\[
\begin{array}{c|cccccccc}
\hline
x & 8 & 9 & A & B & C & D & E & F \\
\hline
S(x) & 8 & 9 & 1 & 5 & 0 & 2 & 4 & 6 \\
\hline
\end{array}
\]

Table 3: WARP 4-bit S-box

merating these these differential trails while guaranteeing their compatibility. The sandwich attack decomposes the cipher into 3 components, \(E = E_1 \circ E_m \circ E_0 \), where \(E_m \) is the transition in the middle round with a switching probability denoted by \(r \). We can calculate \(r \) with the help of BCT or FBCT, similar to how the differential probability can be calculated based on the difference distribution table (DDT). The connectivity tables already cover the various switches that have been used in the past to improve the probability of boomerang distinguishers such as the ladder, S-box and Feistel switches \[28\]. The probability of obtaining a right quartet is now
\[
p_{2}q_{2} = \sum_{i,j} (p_{i} \oplus q_{i} \oplus r_{i,j}).
\]

2.3. Specification of WARP

The block cipher WARP is a 41-round, 128-bit block cipher with a 128-bit key designed based on a 32-nibble Type-2 GFN. The \(i \)-th round’s state is divided into 32 nibbles, \(X^i = X^i_0 || X^i_0 || \ldots || X^i_0 || X^i_0 \), where \(X^i_0 \in \{0,1\}^4 \). It has a simple key schedule that first divides the secret key into two 64-bit round keys, \(K = K^0 || K^0 \), then alternates between them (starting from \(K^0 \)). Each 64-bit round key is divided into 16 nibbles, \(K^i = K^1_0 || K^1_1 || \ldots || K^1_0 || K^1_0 \), where \(K^1_i \in \{0,1\}^4 \), \(i \in \{0,1\} \). The round function is illustrated in Figure 3 while the S-box and permutation pattern, \(\pi \) are shown in Tables 3 and 4 respectively. Apart from using the inverse permutation, \(\pi^{-1} \), the decryption algorithm is the same.

To avoid the complement property of Feistel-type ciphers \[42\], the designers of WARP opted for the key XOR operation to be after the S-box, similar to Piccolo \[43\]. However, this design decision leads to the following property:

Property 1 (Subround Filters). Since XOR with the key is done after the S-box in the Feistl-subround which works on two nibbles, it allows to partially decrypt and propagate the knowledge of the difference to the next round. This can be done for both the top and bottom rounds.

Based on Figure 4 we can see that partially encrypting \(P_1 \) and \(P_2 \) that correspond to the input difference, \(\alpha \) allows to immediately check if the given pair is valid if the left nibble of the output difference, \(\beta_3 \) is known. We can do this without having to guess the corresponding key nibble, \(K^1_i \) because the output
difference of the S-box, which we denote as γ, can be directly computed from the known values of x_1^L and x_2^L. Thus, we can check if $\alpha_1 \oplus \gamma = \beta_1$ because the effect of the round key has been negated by the XOR operation. The same property exists for the bottom rounds whereby partially decrypting known values of C_1 and C_2 when α_1 is a known difference allows to check if $\beta_1 \oplus \gamma = \alpha_1$. We will use these subround filters in our key recovery attacks to filter invalid pairs and determine key candidates associated with valid pairs.

3. Searching for WARP Distinguishers

3.1. Differential Distinguishers

We use CryptoSMT \[13\] to search for both differential trails and differentials for WARP. First, a script was written to generate the SMT model that describes its differential propagation. Then, we enumerate the optimal differential trails for each round and perform differential clustering. Our findings are summarized in Table 6 where $\#AS$ refers to the number of active S-boxes and the weight of a differential trail is calculated as $W = -\log_2 DP$. To find optimal trails (lowest possible weight) for R rounds, we first set the target weight to $\#AS \cdot 2$ for each round, where $\#AS$ is set to the minimum value according to WARP’s specification and $-\log_2 2 = 2$ is the smallest weight for a single S-box, calculated from its difference distribution table (DDT) in Table 5. If a trail was found, we repeat the search by reducing the weight by 1 to confirm its optimality. If no other solution with lower weight can be found by the solver (unsatisfiable), the R-round trail is already optimal. If no trail was found with the minimum weight, we increment the target weight and look for another trail. The first trail found is guaranteed to be optimal.

For up to 19 rounds, we verified that the minimum number of active S-boxes mentioned in WARP’s design specification was indeed the lower bound and also found the optimal differential trails for each of these rounds. The time required to find differential trails increased sharply with the number of rounds, compounded with the fact that we are dealing with a 128-bit block size. Finding a trail for Round 17 onward would take up to half a day, longer if a trail did not exist for a particular weight. We managed to find a differential trail for 20 rounds of WARP with a weight of 140 but could not verify its optimality.

Next, we clustered these differentials with a time limit of 24 hours. The results in Table 6 show that for the first 12 rounds, all differentials either had 1 or very few trails each. From Round 13 onward, however, there was a sharp increase in the number of trails. We managed to find all trails for the 13-round to

Table 4: WARP Permutation

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi(x)$</td>
<td>31</td>
<td>6</td>
<td>29</td>
<td>14</td>
<td>1</td>
<td>12</td>
<td>21</td>
<td>8</td>
<td>27</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>25</td>
<td>4</td>
<td>23</td>
<td>10</td>
</tr>
<tr>
<td>$\pi^{-1}(x)$</td>
<td>11</td>
<td>4</td>
<td>9</td>
<td>10</td>
<td>13</td>
<td>22</td>
<td>1</td>
<td>30</td>
<td>7</td>
<td>28</td>
<td>15</td>
<td>24</td>
<td>5</td>
<td>18</td>
<td>3</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi(x)$</td>
<td>15</td>
<td>22</td>
<td>13</td>
<td>30</td>
<td>17</td>
<td>28</td>
<td>5</td>
<td>24</td>
<td>11</td>
<td>18</td>
<td>19</td>
<td>16</td>
<td>9</td>
<td>20</td>
<td>7</td>
<td>26</td>
</tr>
<tr>
<td>$\pi^{-1}(x)$</td>
<td>27</td>
<td>20</td>
<td>25</td>
<td>26</td>
<td>29</td>
<td>6</td>
<td>17</td>
<td>14</td>
<td>23</td>
<td>12</td>
<td>31</td>
<td>8</td>
<td>21</td>
<td>2</td>
<td>19</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 5: Difference Distribution Table of WARP

<table>
<thead>
<tr>
<th>$\pi(x)$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi^{-1}(x)$</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 6: Difference Distribution Table of WARP

<table>
<thead>
<tr>
<th>K^i_{15}</th>
<th>K^i_{14}</th>
<th>K^i_{13}</th>
<th>K^i_{12}</th>
<th>K^i_5</th>
<th>K^i_2</th>
<th>K^i_1</th>
<th>K^i_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>29</td>
<td>27</td>
<td>25</td>
<td>24</td>
<td>8</td>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>

Figure 3: Round Function of WARP
of the upper and lower trails is determined using the FBCT as many automatic search is to maximize \(\hat{P}_{\alpha} \).

Boukerrou et al. [12] introduced an automatic boomerang search based on CryptoSMT’s differential clustering for a pair of nibbles

\[
\alpha = (\alpha_1, \alpha_2) = (x_1^2 \oplus x_2^1, x_3^1 \oplus x_4^2)
\]
\[
\beta = (\beta_1, \beta_2) = (y_1^2 \oplus y_2^1, y_3^1 \oplus y_4^2)
\]

Figure 4: Difference propagation for a pair of nibbles

15-round differentials, which ranged from 16000 to just under 500000 trails. The remaining cluster sizes were bounded by the time limit. The results show that WARP has a significant differential effect at higher rounds, whereby rounds 16 to 20 have an improvement to their differential probabilities by a factor of at least \(2^{13.48}\).

3.2. Boomerang Distinguishers

To find boomerang distinguishers for WARP, we formulated an automatic boomerang search based on CryptoSMT’s differential search functionality. The overall goal of the automatic search is to maximize \(\hat{P}_{\alpha} \) using \(\hat{P}_{\alpha} = \sum_i (\hat{\beta}_i \hat{q}_{i,j}) \) by finding as many \(E_0 \) and \(E_1 \) trails that are compatible. The compatibility of the upper and lower trails is determined using the FBCT:

\[
\text{WARP's FBCT shown in Table 7 already includes scenarios such as the ladder switch (first row/column) and the Feistel switch (diagonal) where the switching occurs with a probability of 1. The proposed boomerang search procedure is as follows:}
\]

1. Search for an \(E_0 \) trail with \(R_{E_0} \) rounds for up to a weight limit of \(W_{\text{upper}} \).

2. Search for an \(E_1 \) trail with \(R_{E_1} \) rounds for up to a weight limit of \(W_{\text{lower}} \). Limit the search to only compatible trails by propagating \(\beta \) from \(E_0 \) through \(E_m \), then including blocking constraints in the SMT model for each of its S-boxes based on entries in the FBCT. If a valid \(E_1 \) trail is found then:

(a) If this is the first iteration, fix the input and output differences of the boomerang distinguisher to \(\alpha \) and \(\delta \) for all future iterations.

(b) Calculate the switching probability, \(r_{i,j} \) based on \(\beta \), \(\gamma \), the linear layer, \(\pi \) and FBCT as

\[
r_{i,j} = \prod_{k=0}^{L} \frac{\text{FBCT}(\beta_k, \gamma_{\pi(k)})}{16},
\]

where only the even nibbles are involved in the FBCT calculations since WARP is a Feistel cipher.

(c) For the clustering process, limit the search to \(W_{\text{init}} + \frac{L}{2} \) where \(W_{\text{init}} \) is the weight of the initial trail and \(l \) controls the upper limit of the search, e.g. for \(l = 64 \), the upper weight limit of the clustering process is \(W_{\text{init}} + 2 \). Set individual limits for \(E_0 \) and \(E_1 \).

(d) Perform differential clustering for \(E_0 \) if it has not yet been done. Denote the resulting differential probability as \(\hat{P}_i \).
Property 2 (2-round Related-key Trails). Let i be an odd-numbered index ($1,3,...,29,31$) of a nonzero nibble in the input difference and x be the nibble’s difference. The input difference α consists of all zero nibbles except $\alpha_i = x$. When $K^{i}_{16 \rightarrow 0} = y$, $R^{0}_{16 \rightarrow 1} = x$ and $K^{0}_{16 \rightarrow 1} = x$, we have a 2-round related-key differential trail from $\alpha \rightarrow \alpha$ with $DP = \frac{DDT(x,y)}{16}$.

Depending on the DDT (Table 5), these trails can either have a differential probability of $\frac{2}{16} = 2^{-2}$ or $\frac{1}{16} = 2^{-4}$. Figure 5 illustrates two examples of trails described in Property 2. For a more concrete example, we set $i = 3, x = 1$ and $y = 2$ and have the following differential propagation that follows the red trail in Figure 5:

$000\ldots00000000 \xrightarrow{2} 000\ldots0000100000$,

where the key difference is $\Delta K = (\Delta K_{16}) = 0000000000000000$, $\Delta K_{0} = 0000000100000010$. The trail’s differential probability is $\frac{DDT(1,2)}{16} = 2^{-2}$. We can then concatenate this iterative related-key differential trail 20.5 times to construct a 41-round distinguisher $DP = 2^{-40}$.

4. Differential Attacks on WARP

We denote an R-round cipher, E as $E = E_f \circ E' \circ E_0$, where E' is our differential distinguisher. The R_0-round E_0 and R_f-round E_f are rounds added before and after the distinguisher, respectively. The input difference of E_0 and the output difference of E_f are denoted as ΔP and ΔC. We denote the number of active or unknown bits of ΔP as r_0 while the $n - r_0$ inactive or fixed bits are denoted as r_f and r_f for E_0 and E_f, respectively. Analogously, these bits are denoted as r_0, r_f and r_0 for ΔC. We adopt a targeted approach for the key counting procedure by strategically guessing and filtering m bits of keys involved in subround filters described in Property 2.

4.1. 23-round Attack using 18-round Differential

We use the 18-round differential from Table 6 with DP = $2^{-104.62}$ to mount an attack on 23-round WARP by adding 2 rounds at the beginning and 3 rounds at the end. The 23-round key recovery model is depicted in Table 10 where we have $(r_0 = 56, r_f = 56, r_0 = 16)$ and $(r_f = 72, r_f = 46, r_f = 10)$. We guess a total of $m = 56$ subkey bits, corresponding to K_i^0 and K_j^1, where $i \in \{0, 1, 4, 5, 7, 8, 9, 11, 14\}$ and $j \in \{2, 4, 11, 13, 14\}$.

Data Preparation. We let $s = 2$ and collect $y = 2^2 \cdot 2^{56 - 18 \cdot \frac{1}{2^{104.62}}} \approx 2^{50.62}$ structures of 2^{56} plaintexts each. The plaintexts traverse all possible values for the active r_0 bits while the r_f and r_f bits are assigned suitable constants. Notably, half of the plaintexts should have the r_0 bits set to 0 while the other half has these set to 1. We encrypt all 2^{56} plaintexts to obtain 2^{56} corresponding ciphertexts of all structures that are stored in a hash table H, according to the 46 r_f bits set to 0. For each pair of structures, we have 2^{111} pairs at the beginning.
Table 8: Boomerang distinguishers for other ciphers

<table>
<thead>
<tr>
<th>Cipher</th>
<th>R</th>
<th>α</th>
<th>δ</th>
<th>$p_i^2 q_j^2 r_{\delta}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>TWINE</td>
<td>15 (7+1+7)</td>
<td>3890 0000 0097 0000 0DB0 0010</td>
<td>0D00 0000</td>
<td>0C00 2-58.92</td>
</tr>
<tr>
<td>TWINE</td>
<td>16 (8+1+7)</td>
<td>2A50 0000 0056 0000 A000 0702</td>
<td>0050 0002</td>
<td>0002 2-61.62</td>
</tr>
<tr>
<td>LBlock-s</td>
<td>15 (7+1+7)</td>
<td>0420 0004 0620 0004 6600</td>
<td>0000 4020 0004</td>
<td>2-58.64</td>
</tr>
</tbody>
</table>

Table 9: Boomerang distinguishers for WARP

<table>
<thead>
<tr>
<th>R</th>
<th>α</th>
<th>δ</th>
<th>$p_i^2 q_j^2 r_{\delta}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 (9+1+10)</td>
<td>0000 0000 0000 1000 0000 C2C0 4200 0012</td>
<td>0202 0040 0200</td>
<td>1002 4000 0000 0202</td>
</tr>
<tr>
<td>21 (10+1+10)</td>
<td>E000 00EE EE00 0000 00E0 0000 EE00 0000</td>
<td>0000 0000 0104</td>
<td>0000 0404 0020 0100</td>
</tr>
</tbody>
</table>

Figure 5: Two examples of the 2-round iterative related-key differential trails for WARP where $i = 3$ and $i = 1$ are represented by the red and blue trails respectively (Property 2)

Table 10: The 23-round key recovery model for WARP using an 18-round differential
Key Recovery. We initialize a list of 2^{56} counters then:

1. We filter wrong pairs using inactive bits of ΔC, leaving $111-56 = 2^{53}$ pairs per structure or $2^{50.62+55} = 2^{105.62}$ pairs in total.
2. The number of filters (Property 1) in the first and final rounds are $v_b = 8$ and $v_f = 6$, respectively as indicated in red in Table 10. Thus, the number of valid pairs would be reduced to $2^{105.62-4\cdot 8-4\cdot 6} = 2^{49.62}$.
3. In Round 23: We can propagate knowledge of the output difference to Round 22 without having to guess any keys (Property 1).
4. In Round 22: In this round, guess and filter subkeys for each remaining pair based on (Property 1). For example, guess $K14^0$ to partially decrypt $\Delta X_{23}^5 = \Delta Y_{25}^5$. Directly compute $\Delta X_{23}^5 = \Delta Y_{22}^5 = \Delta X_{23}^5$ from the ciphertext pairs. Check if $\Delta X_{23}^5 \oplus S(\Delta X_{23}^5) = \Delta Y_{21}^5 = 0$. If the equality holds, keep the guessed value of K_{14}^0 and the pair, otherwise discard them. There will be around $2^{49.62} \cdot 2^1 \cdot 2^4 = 2^{49.62}$ combinations of the remaining pairs associated with the guessed K_{14}^0. We have 6 more of these filters in Round 22, for which we can guess and filter $K14^1, K14^2, K14^3, K8^0, K8^1$, and $K8^0$ candidates. We expect to have $2^{49.62}$ combinations of the remaining pairs associated with 28-bit key candidates.
5. In Round 21: Guess $K_{14}^0, K_{11}^0,$ and K_4^0 to calculate $\Delta X_{21}^5, \Delta X_{21}^5,$ and ΔX_{23}^5, respectively, while the remaining differences can be calculated based on the previous key guesses. After going through these filters, there will be $2^{49.62}$ combinations of the remaining pairs associated with 40-bit key candidates. For the remaining two filters, guess (K_{10}^0, K_{13}^1) to calculate ΔX_{21}^5 and (K_{10}^0, K_{13}^1) to calculate ΔX_{22}^5. Since there are 2^8 possible subkey candidates involved in each of these 4-bit filters, this will increase the number of combinations to $2^{49.62} \cdot 2^4 = 2^{57.62}$ pairs associated with 56-bit keys.
6. In Round 1: For all the remaining pairs, we propagate knowledge of the input difference to Round 2.
7. In Round 2: Differences ΔY_{0}^0 and ΔY_{24}^0 can be calculated using K_{10}^0 and K_{11}^0 candidates already associated with each remaining pair. ΔY_{0}^0 and ΔY_{25}^0 can be calculated from the plaintext pairs. We then discard combinations of pairs and keys based on the known differences, $\Delta X_{2}^5 = 5$ and $\Delta X_{25}^5 = 0$ due to (Property 1). This reduces the number of possible combinations to $2^{49.62-4\cdot 2} = 2^{49.62}$.
8. Increment the key counters based on the $2^{49.62}$ remaining combinations of pairs associated with the 56 bits of guessed keys. We expect 2 partners to vote for the right key while the remaining partners will vote for a random key with a probability of $2^{49.62-56} = 2^{9.38}$.
9. We select the top $2^{9.62} = 256-52 = 16$ bits in the counter to be candidates that deliver an a-bit or higher advantage [45], then brute-force the 72 remaining bits of the secret key.

Complexity Estimation. The data and memory complexities are $N = 2^{50.62} \cdot 2^{56} \approx 2^{106.62}$ plaintexts and $2^{49.62} \cdot 2^{56} \approx 2^{106.62}$ 128-bit blocks, respectively. The time complexity of the key recovery is dominated by the final round filtering in Step 3, in which the $2^{105.62}$ pairs need to be partially decrypted. This requires $2^{105.62} \cdot 2^{77} \approx 2^{102.09}$ 23-round WARP encryptions. The brute force complexity is $2^{105.62} = 2^{76}$. Therefore, the time complexity of the 23-round differential attack, including data preparation, is about $2^{106.62} + 2^{102.09} + 2^{76} \approx 2^{106.68}$ 23-round WARP encryptions when $a = 52$.

Success Probability. We calculate the probability of success, Pr_S of our attack based on the method proposed by Selcuk [46]:

$$Pr_S = \Phi \left(\frac{\sqrt{\gamma \cdot N - \Phi^{-1}(1 - 2^{-a})}}{\sqrt{N} + 1} \right),$$

where the signal-to-noise ratio is calculated as $S_N = \Phi$. With $a = 52$, the probability that the attack succeeds is 92.099%.

4.2. 24-round Rectangle Attack using 21-round Boomerang Distinguisher

We use the 21-round boomerang distinguisher from Table 9 where $R_e = 10$, $R_i = 10$ and $\sum_i \beta_i \theta^i \phi^i r_i (x_i) = 2^{121} - 1$ to mount a rectangle attack on 24-round WARP by appending 1 round at the beginning and 2 rounds at the end. The 24-round key recovery model is depicted in Table 11, which has $(r_b = 20, r_b = 84, r_b = 24)$ and $(r_f = 60, r_f = 61, r_f = 7)$. The number of subkey bits that will be guessed are $m_f = 16$, corresponding to K_4 where $j = \{2, 8, 10, 15\}$. Details of our rectangle attack are as follows:

Data Preparation. For $s = 2$ right quartets, collect $y = \sqrt[2]{\sqrt{4} \cdot \sqrt{2} \cdot \sqrt{s}} = 2^{105.66}$ structures of 2^20 plaintexts each. The plaintexts are assigned all possible combinations of the r_b active bits while the other bits are assigned suitable constants. Encrypt 2^{20} plaintexts of each structure to obtain 2^{20} corresponding ciphertexts, which are stored in a hash table, $H _i$ indexed by the r_b bits of the plaintext.

Key Recovery. Initialize a list of 2^{16} counters then:

1. Construct a set $S = \{(P_1, C_1, P_2, C_2) : E_b(P_1) \oplus E_b(P_2) = a\}$ without having to guess any keys in E_b as follows:
 (a) For every plaintext P_1 in a structure, determine the known $r_b + r_f$ bits in P_2 by calculating $P_2 = P_1 \oplus \Delta P$.
 (b) The unknown r_b in P_2, which are all left input nibbles to Feistel-subrounds, can be calculated from their corresponding right input nibbles. Let the pairs of nibbles for P_1 and P_2 be denoted as (x^4_j, x^8_j) and (x^4_f, x^8_f) respectively (see Figure 4). We already know the values for the right halves (x^8_f, x^8_f) after Step 1(a) and we also know the value of x^4_j from P_1. We can then calculate the remaining unknown value as $x^4_f = x^4_j \oplus S(x^8_f) \oplus S(x^8_f)$.
(c) After calculating all the unknown bits of P_2, check H_1 to find the corresponding plaintext-ciphertext pair indexed by the r_j bits of P_2. Since $v_0 = 5$, we expect $2^{56} \cdot 2^{-1} = 2^{55}$ pairs in S.

2. The size of S is $N = 2^{105.06} \cdot 2^{(10+1) \cdot 2^{-1}} = 2^{115.06}$ chosen plaintexts. Insert S into a hash table H_2 indexed by the 61 r_j bits of C_1 and C_2. For each element of S, check H_2 to find (P_1, C_1, P_2, C_2) where (C_1, C_2) and (C_2, C_1) collide in the $r_j + r_j = 68$ known bits. There will be $(2^{115.06})^2 \cdot 2^{-2 \cdot 68} = 2^{94.12}$ quartets remaining.

3. Since the number of subround filters is $v_f = 9$, the number of valid quartets would be reduced to $2^{94.12 - 8 \cdot 9} = 2^{22.12}$. The filtering effect due to Property 1 is twofold since it is applicable to both pairs in a quartet.

4. **In Round 24**: Propagate the knowledge of the output difference to Round 23 (Property 1).

5. **In Round 23**: Perform the guess-and-filter procedure for subkeys in Round 23. For example, $\Delta X_i^{(3)}$ can be directly computed from the ciphertext pairs. Guess K'_1 and partially decrypt (C_1, C_2) and (C_2, C_1) to obtain $\Delta X_i^{(3)}$ for each pair. Check if each pair in the quartet fulfills $\Delta X_3^{(3)} \oplus S(\Delta X_3^{(0)}) = \delta_1 = 0$. If the equality holds for both pairs in the quartet, keep the guessed key and the quartet, otherwise, discard them. There will be around $2^{22.12} \cdot 2^4 \cdot 2^{-8} = 2^{18.12}$ combinations of the remaining quartets associated with the guessed K'_1 values. Guess and filter 3 more subkeys, K'_2, K'_3 and K'_{10}, which leaves $2^{18.12} \cdot 2^{-4 \cdot 3} = 2^{6.12}$ combinations of the remaining quartets associated with the guessed keys.

6. Increment the key counters based on the $2^{6.12}$ remaining combinations of quartets associated with the 16 bits of guessed keys. On average, 2 quartets will vote for the right key while the remaining quartets will vote for a random key with a probability of $2^{6.12 - 16} = 2^{-7.88}$.

7. Select the top $2^{16-12} = 16$ hits in the counter and brute force the 112 remaining bits of the secret key.

Complexity Estimation. The data complexity of the attack is

\[N = 2^{105.06} \cdot 2^{20} \approx 2^{125.06} \text{ chosen plaintexts}. \]

The memory complexity includes the space required to store the hash tables and the key counters, which is $2 \cdot 2^{125.06} + 2^{24} \cdot 2^{15} \approx 2^{126.06} 128$-bit blocks. To prepare the quartets, we require around $2^{125.06}$

<table>
<thead>
<tr>
<th>R</th>
<th>Input Difference (ΔP)</th>
<th>00?E 0000 E000 ?EE0 ?EE? E000 E000 00?E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>After S-box (ΔX_1)</td>
<td>000E 0000E000 EE000 EE000 EE000 EE000 EE000 0000</td>
</tr>
<tr>
<td></td>
<td>After π (ΔY)</td>
<td>E000 E0EE EEE00 0000 EE000 EE000 0000 0000</td>
</tr>
<tr>
<td>22</td>
<td>Boomerang distinguisher, $\alpha \rightarrow \delta$</td>
<td>0000 0000 0104 0000 0404 0200 0100 2004</td>
</tr>
<tr>
<td>23</td>
<td>After S-box ($\Delta X_3^{(1)}$)</td>
<td>2000 0000 ?174 0000 ?474 0020 ?100 2074</td>
</tr>
<tr>
<td></td>
<td>After π ($\Delta Y^{(1)}$)</td>
<td>4007 0247 4010 0404 0200 0706 ?070 0200</td>
</tr>
<tr>
<td>24</td>
<td>After S-box ($\Delta X_2^{(3)}$)</td>
<td>40?? 0090 0400 0200 ??20 ??20 ??20 ??20</td>
</tr>
</tbody>
</table>

Table 11: 24-round key recovery model of the rectangle attack using a 21-round (10+1+10) distinguisher

24-round encryptions and 2N memory accesses, for which we make a conservative assumption is equivalent to 1 encryption round. The time complexity of the key recovery is dominated by the final round filtering in Step 3, which is approximately $\theta = 2^{94.12} \cdot 2^{141.54}$. The overall time complexity of the 24-round attack is $2^{125.06} + 2 \cdot 2^{125.06} \cdot \frac{1}{3} + 2^{93.54} + 2^{116} \approx 2^{125.18}$.

5. Related-key Differential Attacks on WARP

5.1. 25-round Related-key Differential Attack

We concatenate 9 instances of the 2-round iterative related-key differential trail described in subsection 3.3 and append 1 more round to form a 19-round distinguisher with $\text{DP} = 2^{-18}$. After appending 6 rounds to the end of this distinguisher, we have a 25-round key-recovery model depicted in Table 12 where $r = 19$. We guess a total of 16 subkey bits, corresponding to $K'_0(\Pi)$ where $i \in \{4, 7, 10, 14\}$. Although it may be possible to guess more key bits to reduce the computational complexity of the final brute force step, we stick with 16 bits so we can computationally verify the attack efficiently.

Data Preparation. Encrypt 2^{19} pairs of plaintexts, (P_1, P_2) using a pair of related keys, $(K, K \oplus \Delta K)$. We expect $s = 2$ right pairs. There is a strong filtering effect at the output difference ΔC, which has 60 inactive bits and 5 subround filters (Property 1). The probability of a wrong pair surviving is $2^{20} \cdot 2^{-60} \cdot 2^{-8} = 2^{-60}$, which implies that only the right pairs remain.

Key Recovery. For all the remaining (right) pairs:

1. **In Round 25**: Propagate knowledge of the output difference to Round 24 without having to guess any keys (Property 1).

2. **In Round 24**: Guess $K'_0(\Pi)$ to calculate 2^{24}, then derive 2^{32} from the ciphertext pairs. Since all pairs are valid,
Complexity Estimation

The data complexity of the attack is $N = 2^{30}$ chosen plaintexts and it finds correctly 16-bits of the key, which is sufficient for verification of the attack correctness. The memory requirement of the attack is negligible.

Computational Verification

We first calculated the average probability of the 19-round distinguisher. Using 10 randomly selected keys and plaintext pairs, the average differential probability was $2^{18.1}$. We then execute the 25-round attack 10 times on a PC with an Intel Core i7-9700K 3.60GHz processor and 32GB of RAM. The correct subkey always has the highest count of s. The correct 16-bit key will be among the top 2 candidates 70% of the time. On average, the attack completes in under 2.5 minutes using an unoptimized Python implementation of WARP that performs around $2^{12.68}$ encryptions per second. Thus the attack time complexity is around 2^{20} WARP encryptions, which is dominated by time required to encrypt the chosen plaintexts.

5.2. 41-round (Full) Related-key Differential Attack

The key recovery model for a 41-attack using a 35-round distinguisher with DP $= 2^{-34}$ is depicted in Table 12, where $r = 35$. We generate 2^{35} pairs and expect 2 right pairs. From Round 40 to Round 36, we guess a total of 60 subkey bits (16 in Round 40, 12 in Round 39, 16 bits in 38, 12 in Round 37 and 4 in Round 36). There are subround filters in Rounds 37 and 38 that require guessing 12 key bits, key counters that can accommodate 2^{12} possibilities are required. The memory requirement is $(6 \cdot 2^{12} \cdot \frac{1}{32} + 2 \cdot 2^{12} \cdot \frac{12}{32}) \approx 2^{39} \cdot 128$-bit blocks. The time complexity for the guess-and-determine procedure is negligible, therefore recovering 60 bits of the key comes mainly from encrypting the 2^{30} chosen plaintexts. We can either brute force the remaining 68 bits, which would then dominate the time complexity or use faster auxiliary techniques to find the rest of the key.

6. Conclusion

This paper described cryptanalytic attacks on the lightweight block cipher WARP. We show that its first 20 rounds have high-probability differentials due to a strong differential effect. Then, by using an automatic search for boomerang distinguishers, boomerang distinguishers for up to 21 rounds were found. We also described a family of 2-round iterative related-key trails which can be concatenated to form a full 41-round distinguisher for WARP. Key-recovery attacks were then demonstrated using the identified distinguishers. In the single-key setting, we attacked 23 and 24 rounds of WARP using an 18-round differential and 21-round boomerang distinguisher, respectively. Next, we computationally verified a 25-round related-key attack on WARP using a 19-round distinguisher, where 16 subkey bits were recovered in around 2.5 minutes. Using the same framework, a practical related-key attack on the full WARP was introduced. All attack complexities were summarized in Table 1. To the best of our knowledge, these are the best 3rd party cryptanalysis results for WARP.

CRediT Authorship Contribution Statement

Je Sen Teh: Conceptualization, Methodology, Validation, Investigation, Resources, Data Curation, Writing - Original Draft, Writing - Review and Editing, Visualization; **Alex Biryukov:** Resources, Validation, Writing - Review and Editing; **WARP Administration, Supervision;**
Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

Je Sen Teh was supported by the Luxembourgish Fonds National de la Recherche (FNR) and the German Research Foundation (DFG) project APLICA (C19/17). The latest version of this paper has been published in the Journal of Information Security and Applications which can be accessed at https://doi.org/10.1016/j.jisa.2022.103316.

References

