
Roulette: A Diverse Family of Feasible Fault
Attacks on Masked Kyber∗

Jeroen Delvaux 

Cryptography Research Centre, Technology Innovation Institute, Abu Dhabi, UAE
jeroen.delvaux@tii.ae

Abstract. At Indocrypt 2021, Hermelink, Pessl, and Pöppelmann presented a fault
attack against Kyber in which a system of linear inequalities over the private key
is generated and solved. The attack requires a laser and is, understandably, demon-
strated with simulations—not actual equipment. We facilitate and diversify the
attack in four ways, thereby admitting cheaper and more forgiving fault-injection
setups. Firstly, the attack surface is enlarged: originally, the two input operands
of the ciphertext comparison are covered, and we additionally cover re-encryption
modules such as binomial sampling and butterflies in the last layer of the inverse
number-theoretic transform (INTT). This extra surface also allows an attacker to by-
pass the custom countermeasure that was proposed in the Indocrypt paper. Secondly,
the fault model is relaxed: originally, precise bit flips are required, and we addition-
ally support set-to-0 faults, random faults, arbitrary bit flips, and instruction skips.
Thirdly, masking and blinding methods that randomize intermediate variables kindly
help our attack, whereas the IndoCrypt attack is like most other fault attacks ei-
ther hindered or unaltered by countermeasures against passive side-channel analysis
(SCA). Randomization helps because we randomly fault intermediate prime-field ele-
ments until a desired set of values is hit. If these prime-field elements are represented
on a circle, which is a common visualization, our attack is analogous to spinning a
roulette wheel until the ball lands in a desired set of pockets. Hence, the nickname.
Fourthly, we accelerate and improve the error tolerance of solving the system of linear
inequalities: run times of roughly 100 minutes are reduced to roughly one minute,
and inequality error rates of roughly 1% are relaxed to roughly 25%. Benefiting from
the four advances above, we use a reasonably priced ChipWhisperer® board to break
a masked implementation of Kyber running on an ARM Cortex-M4 through clock
glitching.
Keywords: Fault Attack · Kyber · Key-Encapsulation Mechanism · Lattice-Based
Cryptography · Post-Quantum Cryptography

1 Introduction
Kyber [ABD+20] is a lattice-based key-encapsulation mechanism (KEM) and was selected
as a post-quantum cryptography (PQC) standard by the United States’ National Institute
of Standards and Technology (NIST) in July 2022. We revisit a fault attack against
Kyber proposed by Hermelink, Pessl, and Pöppelmann at Indocrypt 2021 [HPP21a],
where a single ciphertext bit in either input operand of the ciphertext comparison must
be flipped. Every faulted decapsulation provides one inequality over the private key, and
fewer than 10000 inequalities suffice to break all versions of Kyber.

∗This paper extends an article accepted to CHES 2022. The only legitimate source for downloading
this extended version is the Cryptology ePrint Archive, https://eprint.iacr.org/2021/1622.

https://orcid.org/0000-0003-0684-8427
mailto:jeroen.delvaux@tii.ae
https://eprint.iacr.org/2021/1622

2 Roulette: A Diverse Family of Feasible Fault Attacks on Masked Kyber

Hermelink et al. [HPP21a] suggest using a laser to flip a single bit; lasers have a small
spot size and, therefore, attain a high spatial precision. The time, budget, and expertise
needed to (i) decapsulate a target chip [SH07] and (ii) calibrate and use such a specialized
fault-injection setup is substantial—but unaccounted for. Especially in scenarios where a
single device instead of a batch of devices is targeted, the time spent on building the setup
has no advantages of scale and likely surpasses the time needed for the actual key-recovery.
Presumably for the above reasons, the authors simulate the use of a laser in software.

1.1 Contributions
We improve the practicality of the above fault attack such that even a low-budget adver-
sary has plenty of options. Four advances are made:

• Before the IndoCrypt paper [HPP21a], the ciphertext comparison was already iden-
tified as a prime target for fault attacks [OSPG18, XIU+21]. We forewarn secure-
system designers that previously untargeted building blocks of the re-encryption
should be protected against fault attacks too. This includes binomial sampling, but-
terflies in the last layer of the inverse number-theoretic transform (INTT), ciphertext
compression, and its preceding modular reduction. By faulting any of these build-
ing blocks, an attacker can obtain inequalities over the private key while bypassing
any potential countermeasures that guard the ciphertext comparison. One such
countermeasure is proposed in the IndoCrypt paper.

• Whilst the IndoCrypt attack [HPP21a] requires a laser to precisely flip a bit, we
support various equipment through various fault models, i.e., set-to-0 faults, set-to-
1 faults, random faults, arbitrary bit-flip patterns, instruction skips, and instruction
corruptions. The flip side is that more faults are needed for a key recovery: roughly
speaking, 1000s become 10000s or 100000s. Even so, for a Kyber implementation
that is clocked at MHz rates, and depending on its efficiency and security level, the
latter range typically equates to a few hours up to a few days and thus a feasible
attack. Furthermore, the additional time needed for a key recovery can partially,
if not completely, be recouped by not having to set-up and calibrate a laser. This
thought actually pertains to the entire field of study: in many papers that propose
fault attacks using pure theory and no equipment, minimizing the number of faults
is the exclusive focus [ASMM18], i.e., penalties encountered in practice and caused
by strong theoretical assumptions are missing from the optimization model.

• Because most building blocks of Kyber have known weaknesses against side-channel
analysis (SCA), such as power-consumption analysis, countermeasures should be in
place [RCB22]. We lay out a peculiar case where masking and blinding methods
that randomize intermediate variables facilitate a fault attack. Under normal circum-
stances, which includes the IndoCrypt paper [HPP21a], the vulnerability to fault
attacks either decreases or remains the same upon introducing these countermea-
sures. We fault otherwise input-defined prime-field elements such that they cover
a wide range of values, ideally but not necessarily uniformly distributed, so data-
randomizing countermeasures naturally help achieving a more uniform coverage. To
succeed, an attacker needs to keep faulting the element until its value is contained in
a specific subset of values. In related work, field elements are often represented on
a circle [OSPG18], or in our analogy, a wheel from the casino game roulette. Every
fault spins the wheel until, eventually, the ball lands in a winning set of pockets.

• The IndoCrypt paper [HPP21a] presents an algorithm based on belief propagation
to solve systems of linear inequalities. Solving 7000 inequalities for Kyber768 takes
approximately 100 minutes using a single thread. To get around this inconvenience,

Jeroen Delvaux 3

the authors parallelize their code: 32 threads on 16 cores result in circa 7 minutes.
Instead, we deploy an accurate numerical approximation that reduces the execution
time to roughly one minute using a single thread. Upscaling the hardware through
threading remains possible but is no longer needed. A second, more acute problem
with the solver from the IndoCrypt paper is that all inequalities are assumed to be
correct, but fault-injection setups that supposedly provide these inequalities are not
perfectly reliable. Based on a previous report by Pessl and Prokop [PP21a], a 1%
error rate is yet to be exceeded. We alter the algorithm such that at least 25% of the
inequalities can be incorrect. To tie the above two improvements together: higher
error rates necessitate more inequalities and thus more computation time, causing
our acceleration technique to pay off. Our solver is made open-source.

To demonstrate the above four advances, we break a masked implementation of Ky-
ber running on an ARM Cortex-M4. A ChipWhisperer® board, which is affordable for
individuals not just organizations, is used to inject faults in the INTT through clock
glitching, thereby providing inequalities that are mostly but not always correct.

1.2 Structure
The remainder of this paper is structured as follows. Sections 2 to 4 provide prelimi-
naries on Kyber, SCA, and fault attacks respectively. Section 5 presents our roulette
attacks from a theoretical perspective. Section 6 presents our solver. Section 7 presents
ChipWhisperer experiments. Section 8 concludes this work.

1.3 Notation
Variables and constants are denoted by characters from the Latin and Greek alphabets
respectively. Vectors and matrices are denoted by bold lowercase and bold uppercase
characters respectively. Functions are printed in a sans-serif font. Operator ⌈·⌋ denotes
rounding to the nearest integer where ties, i.e., fractions of exactly 0.5, are rounded up.

2 Kyber
Kyber [ABD+20] starts from a public-key encryption (PKE) scheme that is secure against
chosen-plaintext attacks (CPAs), as recapitulated in Section 2.1, and to which a variation
of the Fujisaki–Okamoto (FO) transform is applied to additionally resist chosen-ciphertext
attacks (CCAs), as summarized in Section 2.2. We abstain from comprehensive descrip-
tions and only highlight aspects that are important for this work.

2.1 Public-Key Encryption
The PKE scheme consists of key generation, encryption, and decryption, as specified in
Algorithms 1 to 3 respectively. For brevity, the use of binary encodings to efficiently
transmit data is omitted. Parameters corresponding to three security levels are given in
Table 1. The security of the scheme is based on the module learning with errors (MLWE)
problem. Errors are drawn from a centered binomial distribution (CBD), i.e., e ≜ e1 − e2
where e1, e2 ∼ B(ϵ, 1/2).

Polynomial arithmetic is performed in the ring Zρ[x]/(xη + 1), where degree η = 256
of the irreducible polynomial is a power of two and where prime ρ = 3329 = 256 · 13 + 1
so that the η-th root of unity exists, i.e., ζ256 mod ρ = 1 where ζ = 17. These design
choices allow polynomial multiplications to be realized with quasilinear time complexity
O(η · log2 η) through the number-theoretic transform (NTT) according to Eq. (1), where
operator ◦ comprises η/2 = 128 products of linear polynomials.

4 Roulette: A Diverse Family of Feasible Fault Attacks on Masked Kyber

Algorithm 1 Kyber.PKE.KeyGen
Output: Public key kpub
Output: Private key ŝ

1: d← {0, 1}256

2: (q, b)← H1(d)
3: for i ∈ [0, κ− 1] do
4: for j ∈ [0, κ− 1] do
5: Â[i, j]← Parse(XOF(q; j, i))
6: s[i]← CBD(PRF(b; i); ϵ1)
7: ŝ[i]← NTT(s[i])
8: e[i]← CBD(PRF(b;κ+ i); ϵ1)
9: ê[i]← NTT(e[i])

10: t̂← Â ◦ ŝ + ê
11: kpub ← t̂∥q

Algorithm 2 Kyber.PKE.Encrypt

Input: Public key kpub ≜ t̂∥q
Input: Message m
Input: Coins r
Output: Ciphertext c ≜ (u, v)

1: for i ∈ [0, κ− 1] do
2: for j ∈ [0, κ− 1] do
3: Â

⊺
[i, j]← Parse(XOF(q; i, j))

4: r[i]← CBD(PRF(r; i); ϵ1)
5: r̂[i]← NTT(r[i])
6: e1 ← CBD(PRF(r;κ+ i); ϵ2)
7: e2 ← CBD(PRF(r; 2κ); ϵ2)
8: û← Â

⊺
◦ r̂

9: for i ∈ [0, κ− 1] do
10: u′[i]← INTT(û[i]) + e1
11: u[i]← Compress(u′[i]; ρ, δu)
12: m′ ← Decompress(m; ρ, 1)
13: v′ ← INTT(t̂⊺ ◦ r̂) + e2 +m′

14: v ← Compress(v′; ρ, δv)

Algorithm 3 Kyber.PKE.Decrypt
Input: Private key ŝ
Input: Ciphertext c ≜ (u, v)
Output: Message m

1: for i ∈ [0, κ− 1] do
2: u′[i]← Decompress(u[i]; ρ, δu)
3: û[i]← NTT(u′[i])
4: v′ ← Decompress(v; ρ, δv)
5: m′ ← v′ − INTT(ŝ⊺ ◦ û)
6: m← Compress(m′; ρ, 1)

Algorithm 4 Kyber.KEM.KeyGen
Output: Public key kpub
Output: Private key kpriv

1: z ← {0, 1}256

2: (kpub, ŝ)← Kyber.PKE.KeyGen()
3: h← H2(kpub)
4: kpriv ← ŝ∥kpub∥h∥z

Algorithm 5 Kyber.KEM.Encapsulate
Input: Public key kpub
Output: Ciphertext c
Output: Symmetric key k

1: m← {0, 1}256

2: m← H2(m)
3: (k′, r)← H1(m∥H2(kpub))
4: c← Kyber.PKE.Encrypt(kpub,m, r)
5: k ← KDF(k′∥H2(c))

Algorithm 6 Kyber.KEM.Decapsulate
Input: Ciphertext c
Input: Private key kpriv ≜ ŝ∥kpub∥h∥z
Output: Symmetric key k

1: m← Kyber.PKE.Decrypt(ŝ, c)
2: (k′, r)← H1(m∥h)
3: c′ ← Kyber.PKE.Encrypt(kpub,m, r)
4: if c = c′ then
5: k ← KDF(k′∥H2(c))
6: else
7: k ← KDF(z∥H2(c))

Table 1: Parameters of Kyber

Para
mete

r

Kybe
r51

2

Kybe
r76

8

Kybe
r10

24

κ 2 3 4
η 256 256 256
ρ 3329 3329 3329
ϵ1 3 2 2
ϵ2 2 2 2
δu 10 10 11
δv 4 4 5

Jeroen Delvaux 5

a[x] · b[x] mod (xη + 1) = INTT(NTT(a) ◦ NTT(b)). (1)
The NTT and the INTT both consist of log2(η) − 1 = 7 layers that each contains

η/2 = 128 butterfly operations Butterfly : Z2
ρ → Z2

ρ. The INTT is typically implemented
using the Gentleman–Sande (GS) butterfly in Eq. (2), where twiddle factor τ is a power
of the root of unity ζ. Barrett and Montgomery reduction methods enable efficient and
time-constant implementations of modular arithmetic in the prime field Zρ.

GSButterfly(a, b; τ) ≜
(
a+ b, (a− b) τ

)
mod ρ. (2)

The lossy compression is defined in Eq. (3). The compression of message coefficients
m ∈ Zρ in Line 6 of Algorithm 3 uses δ = 1, and boils down to Eq. (4).

Compress(x; ρ, δ) ≜ ⌈2δx/ρ⌋ mod 2δ, Decompress(x; ρ, δ) ≜ ⌈ρ x/2δ⌋. (3)

Compress(x; ρ, 1) =

{
1 if ρ/4 < x < 3ρ/4,
0 otherwise.

(4)

The decryption faces an accumulated error on the uncompressed message m′ as given
in Eq. (5), where summands ∆u and ∆v denote contributions from the lossy ciphertext
compression. Roughly speaking, the compressed message m ∈ {0, 1}η is correct if and
only if it holds for each coefficient i ∈ [0, η − 1] that −ρ/2 < ∆mi < ρ/2.

∆m = e⊺r− s⊺(e1 + ∆u) + e2 + ∆v mod ±ρ. (5)

2.2 Key-encapsulation mechanism
Kyber [ABD+20] uses a variation of the FO transform that is specified in Algorithms 4
to 6. Essentially, the ciphertext c received by the decapsulation is re-encrypted after
decryption and the result c′ is compared to c. If this comparison fails, the decapsulation
returns a pseudorandom value instead of a failure symbol ⊥, which is referred to as
implicit rejection. Hash functions H1 and H2 are instantiated with SHA3-512 and SHA3-
256 respectively; the key-derivation function (KDF) is instantiated with SHAKE-256.
Kyber has a 90s variant with other symmetric primitives, which we do not use.

2.3 ARM Cortex-M4
Following a recommendation by NIST, the ARM Cortex-M4 is the primary reduced in-
struction set computer (RISC) processor for benchmarking the implementation efficiency
of PQC schemes. This embedded processor features thirteen 32-bit registers for general
purposes, which may pack two 16-bit signed integers. Instructions that perform multipli-
cations, subtractions, and other operations on these halfwords are supported.

Source code for Kyber is publicly available in the pqm4 library [KRSS]. Although the
implementation is largely written in C, we analyze routines written in assembly exclusively.
These routines were updated after our analysis, yet similar conclusions can be drawn from
the latest version. Given that prime ρ = 3329 < 212, 16-bit halfwords can efficiently store
polynomial coefficients whilst providing a margin for lazy reductions, i.e., reductions after
additions and subtractions that do not cause overflow may be skipped. As pointed out by
Alkim et al. [ABCG20, Algorithm 11], Montgomery reductions can be implemented using
two instructions only. The realization from the pqm4 library is shown in Algorithm 7. The
NTT and INTT exclusively rely on these Montgomery reductions, as evidenced by the
double GS butterfly in Algorithm 8. Unfortunately, the Montgomery-reduced coefficients
lie in the interval [−ρ+ 1, ρ− 1] instead of [0, ρ− 1]. To obtain coefficients in the interval
[0, ρ− 1] right before compression, a slower Barrett reduction is used.

6 Roulette: A Diverse Family of Feasible Fault Attacks on Masked Kyber

Algorithm 7 Montgomery [KRSS]
Input: Integer a where −(β/2) · ρ ≤ a < (β/2) · ρ and β = 216

Input: Prime ρ = 3329
Input: Negated inverted prime −ρ−1[31 : 16] = 3327
Output: Reduced t[31 : 16] where t[31 : 16] = β−1a mod ρ and −ρ < t[31 : 16] < ρ

1: smulbt t, a, −ρ−1 ▷ t← (a mod β) · (−ρ−1)
2: smlabb t, ρ, t, a ▷ t[31 : 16]← ⌊((t mod β)ρ+ a)/216⌋

Algorithm 8 DoubleGSButterfly [KRSS]
Input: (a[15 : 0], b[15 : 0]) to first butterfly
Input: (a[31 : 16], b[31 : 16]) to second butterfly
Input: Twiddle factor τ [15 : 0] or τ [31 : 16]
Output: (a[15 : 0], b[15 : 0]) from first butterfly
Output: (a[31 : 16], b[31 : 16]) from second butterfly

1: usub16 t1, a, b ▷

{
t1[15 : 0]← a[15 : 0]− b[15 : 0],
t1[31 : 16]← a[31 : 16]− b[31 : 16]

2: uadd16 a, a, b ▷

{
a[15 : 0]← a[15 : 0] + b[15 : 0],
a[31 : 16]← a[31 : 16] + b[31 : 16]

3: smulbt/smulbb b, t1, τ ▷ b← t1[15 : 0] · τ [· · ·]
4: smultt/smultb t1, t1, τ ▷ t1 ← t1[31 : 16] · τ [· · ·]
5: montgomery ρ, −ρ−1, b, t2 ▷ Algorithm 7: reduce b to t2[31 : 16]
6: montgomery ρ, −ρ−1, t1, b ▷ Algorithm 7: reduce t1 to b[31 : 16]
7: pkhtb b, b, t2, asr#16 ▷ b[15 : 0]← t2[31 : 16]

3 Side-Channel Analysis
As specified in Algorithm 6, the decryption is the only building block of Kyber’s de-
capsulation that uses the private key ŝ and is thus the obvious target for SCA. However,
SCA-assisted CCAs proposed by D’Anvers et al. [DTVV19], Ravi et al. [RRCB20], and
Ueno et al. [UXT+21] subverted this intuition. An attacker can construct ciphertexts c
such that the correctness of exactly one decrypted message bit mι ∈ {0, 1} depends on ŝ.
To avoid the realization of a message-checking oracle through SCA, algorithms that process
m should be protected. This includes the hash function H1 and the entire re-encryption.
The academically preferred way of countering SCA is to randomize computations such that
dependencies between internal secrets and measurable emissions are weakened. Below, we
distinguish between masking methods, which are expensive and substantiated by a secu-
rity proof in a probing model, and blinding methods, which are cheap and unsupported
by a security proof.

3.1 Masking
In masked implementations, finite-ring elements x ∈ X are randomly and uniformly split
into λ ≥ 2 shares according to Definition 1. According to Lemma 1, one way to meet
Definition 1 is to first select

(
x(2), x(3), · · · , x(λ)) uniformly at random from X λ−1, followed

by a computation x(1) = x− x(2) − x(3) − · · · − x(λ).

Definition 1 (Uniformity). A finite-ring element x ∈ X is randomly and uniformly split
into λ ≥ 2 shares if Pr(x(1), x(2), · · · , x(λ) | x) equals 1/|X |λ−1 if x(1) +x(2) + · · ·+x(λ) = x
and 0 otherwise.

Jeroen Delvaux 7

Lemma 1 (Subset of Shares). For a finite-ring element x ∈ X that is randomly and
uniformly split into λ shares according to Definition 1, any tuple of λ−1 shares is uniformly
distributed on X λ−1 and thus independent of x. More generally, any tuple of α ∈ [1, λ−1]
shares is uniformly distributed on Xα.

We distinguish between (i) Boolean masking, where X = {0, 1}σ and additions are
defined by XORing, and (ii) arithmetic masking, where x ∈ Zρ, and additions are per-
formed modulo a prime ρ. For efficiency reasons, Boolean masking is typically used for
symmetric-key algorithms, whereas arithmetic masking is used for polynomial operations.
Hence, Boolean-to-arithmetic and arithmetic-to-Boolean conversions are commonplace.

A function G : X → Y must also be split such that shares of x ∈ X satisfying
Definition 1 are mapped to shares of y = G(x) that again satisfy Definition 1. If G
is linear, G is trivially split by defining ∀i ∈ [1, λ] : G(i)(x(i)) ≜ G(x(i)), considering
that G(1)(x(1)) + G(2)(x(2)) + · · · + G(λ)(x(λ)) = G(x(1) + x(2) + · · · + x(λ)) = G(x). For
lattice-based cryptography, linear components include polynomial additions, the NTT,
and the INTT. Non-linear components, such as Compress in Eq. (3) and the polynomial
comparison, require custom-developed masking schemes [BGR+21].

3.2 Blinding
For blinding methods, we distinguish between randomization of data and randomization
of time. The latter can be achieved by randomly permuting the order of parallelizable
operations [Saa18, OSPG18, RPBC20, PP21a]. For example, the polynomial coefficients
fed into Compress and Decompress in Eq. (3) can be permuted. Similarly, the butterfly
operations within an NTT/INTT layer can be shuffled.

As an example of data randomization, consider a finite-field multiplication y = G(x1, x2)
= x1 · x2, where x1, x2, y ∈ F. Saarinen [Saa18] proposed computing (r1 · r2)−1 · G(x1 ·
r1, x2 ·r2) where r1 and r2 are chosen randomly, uniformly, and independently from F\{0}.
For a prime-field multiplication y = G(x, ζi) within an NTT/INTT, where x, y ∈ Zρ and
i ∈ [0, η− 1], costs can be lowered by computing ζ−r1−r2 ·G(x · ζr1 , ζi+r2) where r1 and r2
are chosen randomly, uniformly, and independently from [0, η − 1]. At least, if a lookup
table of the powers of ζ is available. Ravi et al. [RPBC20] applied the latter technique at
various granularities: the extent to which r1 and r2 are reused across the multiplications
within an NTT/INTT layer is a trade-off between cost and security. In its most generic
form, the GS butterfly in Eq. (2) is realized as in Eq. (6), where blinding factors ζr1 and
ζr2 cancel out to a factor 1 after the last layer.

BlindedGSButterfly(a, b; ζi) ≜
(
(a+ b) ζr1 , (a− b) ζi+r2

)
mod ρ. (6)

4 Fault Attacks
Although fault attacks on the key generation and the encapsulation exist [VOGR18,
RRB+19], the decapsulation is once again particularly vulnerable. An attacker can fault
this module a virtually unlimited number of times in order to retrieve the private key s.

4.1 Differential fault analysis
As pointed out by Oder et al. [OSPG18], a positive side effect of using the FO transform is
that many fault attacks on the decapsulation are inherently countered: by re-encrypting
the decrypted message m and comparing the result c′ to the externally provided cipher-
text c, secret-revealing faulted data is kept internal instead of forwarded to the output.
This countermeasure, which also exists in a simpler form where an encryption or decryp-
tion is executed twice, is well-established since the early 2000s, at which time Karri et

8 Roulette: A Diverse Family of Feasible Fault Attacks on Masked Kyber

al. [KWMK02] protected block ciphers such as the Advanced Encryption Standard (AES)
against differential fault analysis (DFA). For block ciphers, the countermeasure can only
be defeated through a double fault injection: a fault in the encryption can compensate
a fault in the decryption such that the equality-check is passed, or a fault can skip the
equality-check so that an arbitrary fault in the encryption propagates to the output. Un-
fortunately, and as surveyed by Xagawa et al. [XIU+21], the lattice-based version can
be broken through a single fault that skips the equality check, considering that CCA
resistance is removed this way.

4.2 Ineffective Faults
Another concern is that the inherent FO defense only counters DFA, or more generally,
any attack that leverages faulted data. As already established in the 2000s, mere knowl-
edge of whether the output of a keyed cryptographic algorithm is wrong or correct after
introducing a fault might leak information about the secret. Faults that have the latter
effect are often referred to as safe errors [YJ00] or ineffective faults [Cla07]. Because the
attacker gains at most one bit of information per injected fault, a full key recovery typ-
ically requires more injections than with DFA. Bettale, Montoya, and Renault [BMR21]
proposed an ineffective-fault attack against several lattice-based schemes, but Kyber is
deemed secure. Attacks presented at CHES 2021 [PP21a] and IndoCrypt 2021 [HPP21a],
the latter of which is based on the former, target Kyber and are recapitulated below.

4.2.1 CHES 2021

Pessl and Prokop [PP21a] skipped a subtraction instruction in the final compression step
of Kyber’s decryption, i.e., m ← Compress(m′; ρ, 1) in Line 6 in Algorithm 3, such that
m′ and thus also the accumulated error ∆m in Eq. (5) increases by ⌊ρ/4⌋. This increase
is represented in Eq. (7), where index ι ∈ [0, η − 1] points to the targeted polynomial
coefficient, and also in Fig. 1 through a quarter counterclockwise turn. Values of m′

ι and
(m′

ι)
⋆ that compress to m = 0 and m = 1 are colored orange and blue respectively. The

radial indents represent a probability mass function (PMF), although not drawn to scale
for visibility. Recall that a single erroneous message bit m⋆

ι ̸= mι triggers an avalanche of
errors in coins r = H1(m∥h) and thus also in the re-encryption result c′ = Encrypt(kpub,
m, r). Roughly speaking, the effectiveness of the fault reveals the sign of the accumulated
error ∆mι. The exact version is given in Eq. (8), which takes into account that the real
numbers ρ/4, ρ/2, and 3ρ/4 do not coincide with integer representatives in Zρ.

0
ρ

2

ρ/4

3ρ/4

mι = 0

+⌊ρ/4⌋

mι = 1

+⌊ρ/4⌋

Figure 1: Rotation of m′
ι.

(m′
ι)
⋆ = m′

ι + ⌊ρ/4⌋ =⇒
∆m⋆

ι = ∆mι + ⌊ρ/4⌋.
(7)

m⋆
ι ̸= mι ⇐⇒ ∆mι ≥ tι, (8a)

where tι ≜
{

1 if mι = 0,
0 if mι = 1.

(8b)

From Eqs. (5) and (8), it follows that the observed effectiveness of the fault provides
one inequality that is linear in the secret x ≜ (s, e) ∈ [−ϵ1, ϵ1]ψ where ψ ≜ 2κ η, as given
in Eq. (9). Both a and b are entirely determined by the encapsulation and are thus not

Jeroen Delvaux 9

only known but also controllable by the attacker. Reductions modulo prime ρ are omitted
because (i) b and the elements of a and x are small in absolute value, and (ii) opposite
signs ensure that a x + b is small in absolute value too. Thanks to this omission, and by
gathering ω inequalities where ω is several thousands, the system comprising a matrix A
with size ω × ψ and a vector b of length ω can be solved for the secret x. In practice,
the index ι is kept the same for all ω inequalities so that the fault-injection setup only
needs to be aligned with a single point in space and time. From Eq. (9b) and the coin-
based randomization of the encapsulation, it follows that making ι constant and selecting
ι uniformly at random from [0, η − 1] for each inequality would result in equally solvable
systems anyway.

a x + b

{
≥ 0 if decapsulation fails,
< 0 otherwise,

where b ≜ (e2 + ∆v − t)ι,

x ≜



Poly2Vec(s[0])
...

Poly2Vec(s[κ− 1])
Poly2Vec(e[0])

...
Poly2Vec(e[κ− 1])


,

Poly2Vec(p)

≜

 p0
...

pη−1

 ,
(9a)

a⊺ ≜



−Poly2VecX(e1[0] + ∆u[0]; ι)
...

−Poly2VecX(e1[κ− 1] + ∆u[κ− 1]; ι)
Poly2VecX(r[0]; ι)

...
Poly2VecX(r[κ− 1]; ι)


, Poly2VecX(p; ι) ≜



pι
...
p0
−pη−1

...
−pι+1


. (9b)

In practice, the obtained inequalities might be incorrect. Void injections where no
fault is actually introduced can be misclassified as an ineffective fault. Similarly, injec-
tions that cause faults other than the intended instruction skip can be misclassified as an
effective fault: the returned symmetric key is k ← KDF(z∥H2(c)) either way. In order to
tolerate errors, and in order to keep execution times reasonable despite the large dimen-
sions (ω, ψ), the authors abstain from using linear programming and base their solver on
belief propagation. Their eventual algorithm, however, was unable to exceed a 1% error
rate, and attempts to increase this number were deferred to future work.

The solver is an iterative method that maintains a PMF for each unknown x[j] in
Eq. (9), where j ∈ [0, ψ − 1]. All ψ PMFs are initialized with the CBD on [−ϵ1, ϵ1],
and in each iteration, all ψ PMFs are updated, until they sufficiently approximate one-
point distributions on [−ϵ1, ϵ1] to make further iterations pointless. To update the PMF
of any given x[j], the probability that a x + b ≥ 0 in Eq. (9) holds is computed for each
possible outcome of x[j] ∈ [−ϵ1, ϵ1] and for each out of ω inequalities according to Eq. (10),
and these 2 ϵ1 ω probabilities are then aggregated. Importantly, the PMF updates do not
interfere with one another, i.e., each update only uses probability masses from the previous
iteration.

∀i ∈ [0, ω − 1],
∀j ∈ [0, ψ − 1],
∀k ∈ [0, 2 ϵ1],

P[i, j, k] = Pr

(
A[i, j] (k−ϵ1)+

(∑
j′∈[0,ψ−1]\{j}

A[i, j′] x[j′]

)
+b[i] ≥ 0

)
.

(10)
Each probability in Eq. (10) involves a linear combination of ψ − 1 random variables

x[j], which do not have a special shape anymore after the first iteration, and generally
necessitates linear (non-circular) convolution. Even though the fast Fourier transform

10 Roulette: A Diverse Family of Feasible Fault Attacks on Masked Kyber

(FFT) is used to accelerate these convolutions, similar to how the NTT is used in Kyber
to accelerate polynomial multiplication according to Eq. (1), and even though binary trees
improve the reuse of intermediate variables, the computational load remains heavy with
ω ψ FFTs and ω ψ inverse FFTs per iteration.

4.2.2 Indocrypt 2021

Hermelink, Pessl, and Pöppelmann [HPP21a] presented a similar attack: Eqs. (7) to (10)
and Fig. 1 remain identical. The difference is that the increase of m′

ι by ⌊ρ/4⌋ in Eq. (7)
is not realized by a fault but by manipulating the compressed ciphertext coefficient vι of
an otherwise correctly computed encapsulation as specified in Eq. (11) and enabled by
m′ ← v′− INTT(ŝ⊺ ◦ û) in Line 5 in Algorithm 3. Similar manipulations were used in the
aforementioned SCA-assisted CCAs [DTVV19, RRCB20, UXT+21], with the difference
that the message-checking oracle is now realized by reintroducing a fault instead of SCA.
To authors make the decapsulation succeed in case of a correctly decrypted message bit
m⋆
ι = mι by the suggested use of a laser to flip a single bit in either input operand of

the ciphertext comparison. If multiple bits can reliably be flipped, the Hamming distance
(HD) constraint can be removed. Depending on which operand is faulted, the symmetric
key k is either KDF(k′∥H2(c)) or KDF(k′∥H2(c⋆)); both values are known to the attacker.
If m⋆

ι ̸= mι, the coins r used by the re-encryption and thus also the produced ciphertext
c′ are entirely corrupted, and any attempt for rectification is in vain: k ← KDF(z∥H2(c⋆)).

(v′
ι)
⋆ = v′

ι + ⌊ρ/4⌋ and v⋆ι = Compress((v′
ι)
⋆), where HD(vι, v⋆ι) = 1. (11)

Unlike the attack at CHES 2021, the error rate of the obtained inequalities is inher-
ently asymmetric: an observed decapsulation success cannot be misclassified, whereas an
observed decapsulation failure can be misclassified due to void injections and unintended
faults. To reduce the error rate in the latter case, β > 1 fault-injection attempts per
inequality can be made. The solver is another variation of belief propagation making use
of Eq. (10), FFTs, and binary trees, and is fed inequalities that are 100% correct, originat-
ing from perfect software-simulated faults. Around 6000, 7000, and 9000 faulted decap-
sulations suffice to recover the private key of Kyber512, Kyber768, and Kyber1024
respectively, with a success rate of nearly 100%. To achieve an execution time under 10
minutes for Kyber768 with 7000 inequalities, 32 threads running on 16 cores are required.

The attack may be hindered by masking, shuffling, and/or double executions, but is
not precluded, in part due to the error-rate asymmetry. Therefore, the authors proposed
an additional countermeasure: instead of ciphertexts c, pairs (c,H3(c)) where H3 is another
hash function are stored in random-access memory (RAM) and eventually compared. Al-
though faulting c while it is stored in RAM becomes pointless, the attack still succeeds by
faulting c before it is fed into the hash function, e.g., in the back end of Compress(v; ρ, δv).

5 Roulette Attacks
Considering that our roulette attacks may be applicable to several KEMs, we first present
a general methodology in Section 5.1, and then apply this methodology to Kyber’s de-
capsulation in Section 5.2.

5.1 General Methodology
Consider a keyed cryptographic algorithm A : S × I → O where s ∈ S is keying material,
i ∈ I is the public input, and o ∈ O is the output. Output o is not necessarily public, but
an attacker can observe whether or not o is correct. We decompose A into four parts, as

Jeroen Delvaux 11

shown in Fig. 2. To keep the execution time of the attack within bounds, we require that
the cardinalities |T1|, |T2|, and |T3| are small.

A1

A2 A3

A4

s

i

t1 t2 t3

w1
w2

w3
o

Figure 2: Decomposition of cryptographic algorithm A.

For a constant input (s, i), the attacker repeatedly faults either t1 or A2 or t2 or A3
or t3 such that t⋆3 ∈ T3 is not constant, i.e., t⋆3 does not follow a one-point distribution
with respect to the infinite set of fault injections. If for the given distribution of t⋆3, the
probability that A fails to produce the correct output o depends on the secret s ∈ S, then
the attacker retrieves information on s. Although many distributions might enable an
attack, we idealize the case where t⋆3 is uniformly distributed on T3. In our casino analogy,
this corresponds to spinning a fair roulette wheel, at least if we visualize T3 through a
circular representation. Our motivation for this idealization is that uniform distributions
naturally support (i) a large attack surface, as shown by the fault-propagation properties
in Section 5.1.1, and (ii) various fault models, as shown by the examples in Section 5.1.2.

5.1.1 Attack Surface

For a function that is balanced according to Definition 2, which extends existing defini-
tions [DMB19], uniformly distributed faults propagate as uniformly distributed faults, as
formalized in Lemma 2 and proven in Appendix C.1. If the function A3 : T2 ×W2 → T3
in Fig. 2 happens to be balanced with respect to t2, an attacker who is able to fault
either A2 or t2 such that the faulted value t⋆2 ∼ U(T2), indirectly achieves t⋆3 ∼ U(T3). If,
additionally, A2 is balanced with respect to t1, then a faulted value t⋆1 ∼ U(T1) has the
same effect.

Definition 2 (Balanced Function). Let G : X → Y be a function. If it holds ∀y ∈ Y
that |{x ∈ X | G(x) = y}| = |X |/|Y|, then G is balanced. Similarly, for a function
G : X1×X2 → Y, if it holds ∀(x2, y) ∈ X2×Y that |{x1 ∈ X1 | G(x1, x2) = y}| = |X1|/|Y|,
then G is balanced with respect to input x1 ∈ X1.

Lemma 2 (Fault Propagation by Balanced Functions). Let G : X → Y be a balanced
function, as formalized in Definition 2. If x ∼ U(X), then y ∼ U(Y). Similarly, for a
function G : X1×X2 → Y that is balanced with respect to input x1 ∈ X1, if x1 ∼ U(X1) is
independent of x2 ∈ X2, then y ∼ U(Y).

Fortunately for the attacker, balanced functions are frequently used in cryptography.
Bijections are a trivial example. Additions in a finite ring and multiplications in a finite
field are two more examples, as formalized in Lemmas 3 and 4 respectively, and proven
in Appendices C.2 and C.3 respectively. In fact, balancedness is merely the ideal case;
imbalanced fault propagation might still enable an attack in practice.

Lemma 3 (Balancedness of Addition in Finite Rings). Let R be a finite ring and let
G : R2 → R be defined as y ≜ G(x1, x2) ≜ x1 + x2. It holds that G is fully balanced, i.e.,
Definition 2 is met with respect to both input x1 ∈ R and x2 ∈ R.

Lemma 4 (Balancedness of Multiplication in Finite Fields). Let F be a finite field and
let G : F2 → F be defined as y ≜ G(x1, x2) ≜ x1 · x2, where x2 ̸= 0. It holds that G is
balanced, i.e., Definition 2 is met with respect to input x1 ∈ F .

12 Roulette: A Diverse Family of Feasible Fault Attacks on Masked Kyber

5.1.2 Fault Models

Examples 1 to 4 demonstrate that the ideal distribution, t⋆3 ∼ U(T3), can be achieved
for various fault models. Masking is a facilitator in Examples 2 and 3; data-randomizing
blinding is a facilitator in Example 4. Depending on whether A2 and A3 are balanced,
Examples 1 and 2 can be applied to t1, t2, and/or t3, and Examples 3 and 4 can be applied
to A2 and/or A3. At least in the ideal case, because non-uniform distributions also enable
attacks in practice.

Example 1 (Random Faults). Random faults where y⋆ ∼ U(Y) comprise a well-established
fault model in the academic literature and are covered by definition. Also stronger fault
models where y ∈ {0, 1}φ is XORed with an attacker-chosen error e ∈ {0, 1}φ are covered.
If the attacker chooses e ∼ U({0, 1}φ), then y⋆ ≜ y ⊕ e ∼ U({0, 1}φ).

Example 2 (Set-To-Constant Faults). Set-to-0 and set-to-1 faults are covered for masked
implementations. Let y be randomly and uniformly split into λ ≥ 2 shares according to
Definition 1, and without loss of generality, assume that the first share, y(1) ∈ Y, is set to
an arbitrary constant θ ∈ Y, whereas shares y(2), · · · , y(λ) ∈ Y are untouched. Considering
that y(1) ∼ U(Y) and

(
y(2), · · · , y(λ)) ∼ U(Yλ−1) according to Lemma 1, it follows that

the faulted value y⋆ = θ + y(2) + · · ·+ y(λ) = y − y(1) + θ ∼ U(Y).

Example 3 (Instruction Skips and Corruptions). Let G : X → Y be realized through a
masked software implementation. Without loss of generality, assume that an instruction
in the first share function, G(1), is either skipped or corrupted such that the faulty output
share (y(1))⋆ is independent of the correct output share y(1). Hence, y⋆ = (y(1))⋆ + y(2) +
· · ·+ y(λ) is again uniformly distributed on Y.

Example 4 (Arbitrary Bit Flips). Let G : X → Y be an affine function over a finite
field X = Y = {0, 1}φ where addition is defined by XORing. Let y ≜ G(x) be realized
through a blinded implementation y = r−1 G(r · x) where r ∼ U({0, 1}φ \ {0}). For any
pattern of bit flips e ∈ {0, 1}φ \ {0} applied to the input of G, it holds that the faulted
output y⋆ ≜ r−1 G(r · x ⊕ e) = y ⊕ r−1 G(e) ∼ U({0, 1}φ \ {y}). Strictly speaking, this
distribution is nearly uniform, given that the case y⋆ = y is excluded. One could achieve
y⋆ ∼ U({0, 1}φ) by aborting the fault injection with probability 1/2φ, but this would be
pointless in an actual attack.

5.1.3 Comparisons

Table 2 compares our roulette attacks to well-known fault attacks, i.e., DFA, fault sensi-
tivity analysis (FSA) [LOS12], and a statistical ineffective fault attack (SIFA) [DEK+18].
The standout property of roulette attacks is that masking is a facilitator. Although mask-
ing may not preclude DFA [BH08], FSA [MMP+11, Del20], or SIFA [DEG+18], it is not
a facilitator here. Furthermore, note that the fault distributions of roulette attacks and
SIFA are complementary to some extent.

5.2 Application to Kyber’s Decapsulation
We now instantiate the generic cryptographic algorithm A from Section 5.1 with Kyber’s
decapsulation, as specified in Algorithm 6. Our first and foremost roulette attack is an
extension of the IndoCrypt attack [HPP21a]; the private key s is recovered by faulting the
re-encryption. A second roulette attack recovers the message m and the corresponding
session key k by faulting the decryption. Considering that the second attack is far less
practical while recovering the short-term and thus not the long-term secret, its specifica-
tion is deferred to Appendix B.

Jeroen Delvaux 13

Table 2: Comparison of fault attacks.
Technique DFA FSA SIFA Roulette

Input i Unknown Known Unknown Known
Correct output o Known Unknown Known Unknown
Faulty output o⋆ Known Unknown Unknown Unknown

Input i Constant i Constant i i← U(I) Constant i
Correct intermediate t Constant t Constant t t ∼ U(T) Constant t
Faulty intermediate t⋆ Any Any t⋆ ̸∼ U(T) Any, t⋆ ∼ U(T)

Fault intensity Constant Variable Constant Constant
Masking Nuisance Nuisance Nuisance Facilitator

Duplication Game over Don’t care Don’t care Nuisance

5.2.1 Attack Surface

The generic variable t3 ∈ T3 in Fig. 2 is instantiated with a compressed ciphertext co-
efficient vι ∈ {0, 1}δv that is output from the re-encryption, as specified in Algorithm 2.
Following Hermelink et al. [HPP21a], the goal is to match a manipulated coefficient so
that the polynomial comparison succeeds, at least if the preceding decryption is correct.
If the faulted value v⋆ι is uniformly distributed on {0, 1}δv , then the probability of a suc-
cessful decapsulation is approximately 0 if mι ̸= m⋆

ι and 1/2δv otherwise. For Kyber512
and Kyber768, the latter probability is 1/16; for Kyber1024, the latter probability is
1/32. The attacker injects faults until a decapsulation success is observed. After β unsuc-
cessful injections, a decapsulation failure is assumed. Inequalities that correspond to an
observed decapsulation success are always correct, whereas the error rate of inequalities
that correspond to an observed decapsulation failure decreases with β.

Compared to the Indocrypt attack [HPP21a] in its original form, the number of fault
injections increases by roughly one or two orders of magnitude, but we get a considerably
larger attack surface and support for various fault models in return. As illustrated in
Fig. 3 and in accordance with the C reference implementation of Kyber submitted to
NIST [ABD+20], the function A3◦A2 that produces a coefficient vι ∈ {0, 1}δv comprises (i)
one GS butterfly in the last layer of the INTT, which includes one Montgomery multipli-
cation, (ii) another Montogomery multiplication for scaling purposes, (iii) the generation
of one CBD sample, (iv) the decompression of one message bit, (v) one addition, (vi) one
Barrett reduction, and (vii) one compression. Moreover, by faulting any of these building
blocks, the countermeasure of Hermelink et al. [HPP21a] to store (c,H3(c)) in RAM is
bypassed.

Another godsend for the attacker is that the fault-propagation statistics are almost
ideal. The modular addition is perfectly balanced according to Definition 2 with respect
to all three inputs (this is a trivial generalization of Lemma 3). Ciphertext compression
as defined in Eq. (3) is not perfectly balanced, but the deviation is too small to notably
impact the attack. If we introduce faults such that the uncompressed coefficient (v′

ι)
⋆ is

uniformly distributed on [0, ρ− 1], then the compressed coefficient (vι)⋆ slightly deviates
from uniform. For Kyber512 and Kyber768, the zero coefficient occurs with probability
209/3329, whereas all other coefficients occur with probability 208/3329. Similarly, for
Kyber1024, this becomes 105/3329 for the zero coefficient and 104/3329 for all other
coefficients.

14 Roulette: A Diverse Family of Feasible Fault Attacks on Masked Kyber

A4

A3 ◦ A2

A1

Decompress

CBD + Reduce

Compress

=?

KDF

×
×−

+

H2

...
H1

Decrypt

m′
ι(e2)ι

v′
ι

m

v⋆ι

c′

u′, v′
0, · · · , v′

ι−1, v
′
ι+1, · · · , v′

η−1

z

k

r

mι

s

c

Figure 3: The attack surface of the IndoCrypt paper [HPP21a] is colored blue; our exten-
sion is colored orange.

5.2.2 Optional Hamming-Distance Constraint

The sole purpose of the HD constraint in Eq. (11) is to establish single bit flips as the fault
model. In our extension of the attack, this constraint does not affect the feasibility of a
fault injection and is thus entirely optional. To accommodate a potential omission, we
replace Eqs. (8b) and (11). As a starting point, we summarize the behavior of Compress
and Decompress in Eq. (3). For Kyber512 and Kyber768, where δv = 4, our summary
is contained in the first five columns of Table 3. The first and last elements of each bin are
defined by Compress; the bin centers are defined by Decompress. For brevity, we do not
discuss Kyber1024, where δv = 5, but identical conclusions can be drawn from Table 5
in Appendix A.

An evident anomaly is that bin 0 is ‘oversized’: it contains 209 elements, whereas 15
‘ordinary’ bins each contain 208 elements. The proposed manipulation in Eq. (11) is to
add ⌊ρ/4⌋ = 832 = 4 · 208 to the uncompressed coefficient v′

ι, which is a jump spanning
exactly 4 ‘ordinary’ bins. Unfortunately, the first element of bin 0 then maps to the last
element of bin 3, given that 3225+832 mod 3329 = 728, and thus not to the first element
of bin 4. In absence of the HD constraint, the decryption would face an accumulated error
∆m⋆

ι = ∆mι + 632, which significantly undershoots the desired effect ∆m⋆
ι = ∆mι + 832

in Eq. (7). An easy fix is to replace Eq. (11) by a direct manipulation of the compressed
coefficient vι as specified in Eq. (12).

v⋆ι = vι + 2δv−2 mod 2δv . (12)
Furthermore, in cases where the HD is 2 instead of 1, the accumulated error ∆mι

happens to be increased by 833 instead of 832. Equation (13) extends Eq. (8b) accordingly.

tι ≜


1 if mι = 0 and ∆m⋆

ι = ∆mι + 832,
−1 if mι = 1 and ∆m⋆

ι = ∆mι + 833,
0 otherwise.

(13)

5.2.3 Masked Software on ARM Cortex-M4

To demonstrate how roulette attacks can defeat SCA countermeasures, theoretical exam-
ples are given. Due to the large attack surface in Fig. 3, where most building blocks come

Jeroen Delvaux 15

Table 3: Properties of the compressed ciphertext coefficients v ∈ [0, 2δ − 1] where δ = 4.
Original Manipulated

Bin Size First Last Center Bin Fault HD ∆m⋆

0 209 3225 104 0 4

0100 1 ∆m+ 8321

208

105 312 208 5
2 313 520 416 6
3 521 728 624 7
4 729 936 832 8

1100 2 ∆m+ 8335 937 1144 1040 9
6 1145 1352 1248 10
7 1353 1560 1456 11
8 1561 1768 1665 12

0100 1 ∆m+ 8329 1769 1976 1873 13
10 1977 2184 2081 14
11 2185 2392 2289 15
12 2393 2600 2497 0

1100 2 ∆m+ 83313 2601 2808 2705 1
14 2809 3016 2913 2
15 3017 3224 3121 3

with a plethora of implementation strategies and masking schemes, we cannot possibly be
exhaustive. Our first example is a segment of masked software on the ARM Cortex-M4.
Although the Kyber implementations in the pqm4 library [KRSS] are unprotected, we
focus on linear functions exclusively so that masking is realized merely by executing the
corresponding code segments λ ≥ 2 times on their respective shares. More specifically,
we focus on linear functions that are written in assembly so that differences among C
compilers and build settings are irrelevant. We opted for the double GS butterfly in the
last layer of the INTT, as implemented in Algorithm 8 and executed on λ ≥ 2 shares. For
all nine instructions, Table 4 summarizes the effect of skipping that particular instruction
for a single share.

Table 4: The impact of an instruction skip on the double GS butterfly in Algorithm 8
where one out of λ ≥ 2 shares is targeted. A checkmark (3) denotes the correct result.

Skipped instruction c⋆1 d⋆1 c⋆2 d⋆2

1 usub16 t1, a, b 3 ∼ U(Zρ) 3 ∼ U(Zρ)
2 uadd16 a, a, b ∼ U(Zρ) 3 ∼ U(Zρ) 3
3 smulbb b, t1, τ 3 ∼ U(Zρ) 3 3
4 smultb t1, t1, τ 3 3 3 ∼ U(Zρ)
5.1 smulbt t2, b, −ρ−1 3 ̸∼ U(Zρ) 3 3
5.2 smlabb t2, ρ, t2, b 3 ̸∼ U(Zρ) 3 3
6.1 smulbt b, t1, −ρ−1 3 3 3 ̸∼ U(Zρ)
6.2 smlabb b, ρ, b, t1 3 3 3 ̸∼ U(Zρ)
7 pkhtb b, b, t2, asr#16 3 ∼ U(Zρ) 3 3

Clearly, the attacker is in a privileged position: for five out of nine instruction skips,
the faulted output coefficients are uniformly distributed, which is our ideal-case scenario.
The uniformity proofs are all instances of Example 3 and deferred to Appendix C.4. For
the first two instruction skips though, two output coefficients are disturbed, which implies

16 Roulette: A Diverse Family of Feasible Fault Attacks on Masked Kyber

that the attacker must perform more fault injections. For instructions 5.1 to 6.2 in Table 4,
a tractable closed-form expression for the distribution of the faulted coefficient d⋆ might
not exist. However, we took an empirical approach by measuring the distribution of d⋆
on the ARM Cortex-M4, where an instruction skip is trivially realized by removing that
particular instruction from the source code, and did not observe any non-uniformities that
would hinder the attack.

5.2.4 Blinded Hardware

For attacks on hardware components, spatially localized fault-injections methods such as
lasers beams or electromagnetic waves are of particular interest. A potential target is, for
example, a GS butterfly blinded according to Eq. (6) in the final INTT layer. As formalized
in Eq. (14), if the attacker flips an arbitrary set of bits in multiplicand (a + b), then the
faulted butterfly output c⋆ is uniformly distributed on a subset of Zρ with cardinality η,
given that ζ is the η-th root of unity. Contrary to Example 4, only η/ρ ≈ 7.7% of all
possible values are covered, but the attack succeeds considering that one or more values
around ∆c = ⌊ρ/4⌋ suffice.

(a+ b)⋆ ≜ (a+ b)⊕ e =⇒ ∆c ≜ c⋆ − c =

(⌊log2(ρ)⌋∑
n=0

e[n](−1)(a+b)[n]2n
)
ζi. (14)

Similarly, bit flips in multiplicand (a − b) cause butterfly output d to be uniformly
distributed on a subset of η elements in Zρ. Flipping bits in either a or b is possible too,
but then more injections must be performed because c and d are simultaneously faulted.

5.2.5 Countermeasures

As demonstrated in Sections 5.2.3 and 5.2.4, masking and blinding methods that random-
ize intermediate variables facilitate roulette attacks. Other off-the-shelf countermeasures
slow down the attack, albeit at a significant cost. For example, against a re-encryption
module in which polynomial coefficients are randomly permuted, the attacker must inject
faults until the chosen time of the injection eventually coincides with the manipulated
ciphertext coefficient v⋆ι . Alternatively, if the re-encryption and ciphertext comparison
are executed twice, the attacker needs two consecutive lucky spins of the roulette wheel.

6 Solving Systems of Linear Inequalities
Both Pessl and Prokop [PP21b] and Hermelink et al. [HPP21b] published source code for
solving systems of linear inequalities on GitHub, but we implement our own solver from
scratch in order to reduce the computation time and increase the error tolerance. Source
code is available in the following GitHub repository: https://github.com/Crypto-TII/
roulette.

The solver is entirely written in Python, but by mapping resource-intensive operations
to large NumPy arrays, the heavy lifting is actually done in C on contiguous memory.
Our code includes an implementation of Kyber, which uses symmetric primitives from
the PyCryptodome library. Test routines compare the private key kpriv, the public key
kpub, the ciphertext c, and the shared secret k against those from the NIST reference
implementation. To make all plots in this section reproducible, we include the methods
that generated their data points, besides the solver itself.

https://github.com/Crypto-TII/roulette
https://github.com/Crypto-TII/roulette

Jeroen Delvaux 17

6.1 Reduced Computation Time
The high computation time from previous solvers was already attributed to a single culprit,
i.e., Eq. (10). We accelerate Eq. (10) by replacing the exact approach with an approxi-
mation. Considering that a large number of variables, i.e., ψ − 1, is being summed, the
PMF of the sum can accurately be approximated by a normal distribution according to
the central limit theorem (CLT). In later iterations, the binomial distributions evolved
towards one-point distributions, and the approximation becomes less precise, but by then
the algorithm is already honed in on the solution anyway. The resulting computation in
Eq. (15) is light and straightforward. The summand 1/2 compensates for the fact that a
discrete distribution with step size 1 is approximated by a continuous distribution.

P[i, j, k] ≈ Fnorm

(A[i, j] (k − ϵ1) +
(∑

j′∈[0,ψ−1]\{j} A[i, j′] E
[
x[j′]

])
+ b[i] + 1

2√∑
j′∈[0,ψ−1]\{j} A[i, j′]2 Var

[
x[j′]

]
)
. (15)

Instead of the reported 15 minutes, a single-threaded Kyber768 iteration with ω =
7000 inequalities and ψ = 1536 unknowns now takes less than five seconds. These numbers
are obtained from different computers, but as our number comes from a laptop with
Python running in a virtual machine, we are unlikely to have a significant advantage. The
need for parallelizing computations through threading is removed. In the next section
on error tolerance, the benefit of the CLT-based acceleration increases, given that the
required number of inequalities ω increases with the error rate.

6.2 Increased Error Tolerance
Our error-tolerant solver is represented in Algorithm 9. Whilst observed decapsulation
successes are presumed to be 100% correct, observed decapsulation failures are only as-
sumed to be correct up to a probability that is estimated in Line 4. Regarding the CBD
in Line 3, we point out that the PMF of e ≜ e1 − e2 where e1, e2 ∼ B(ϵ1, 1/2) can simply
be evaluated as fbino(ϵ1 + e; 2ϵ1, 1/2), as proven in Appendix C.5. Not equally compact,
Hermelink [HPP21b] loops over all pairs (e1, e2) ∈ [0, ϵ1]2. As the probabilities P[i, j, k]
might be small, the product in Line 13 is realized through a sum of logarithms to avoid
underflow. Line 12 ensures that the logarithms do not receive inputs close to zero. The
stop criterion in Line 6 is met if a maximum of 16 iterations is reached, or if a fitness
value obtained from filling in x in the inequalities does not improve anymore.

∀i ∈ [0, ω − 1],pfail[i] ≜

Pr

(
ψ−1∑
j=0

A[i, j] x[j] + b[i] ≥ 0

)
≈ Fnorm

((∑ψ−1
j=0 A[i, j] E

[
x[j]

])
+ b[i] + 1

2√∑ψ−1
j=0 A[i, j]2 Var

[
x[j]

]
)
.

(16)

As noted in the IndoCrypt paper [HPP21a], correctly guessing ψ/2 out of ψ unknowns
suffices for key-recovery, because the remaining half can be recovered via the public key
kpub. The authors implemented several confidence measures to select ψ/2 coefficients in
every iteration, but we do not despite the reduction in the number of inequalities needed.

An alternative to our error-tolerant solver would be to leverage the asymmetric error
rates of the IndoCrypt attack [HPP21a] and our roulette attacks by only retaining inequal-
ities that correspond to an observed decapsulation success. However, discarding all other
inequalities would be a waste of experimental data, and cannot as reliably be applied to
the CHES attack [PP21a].

18 Roulette: A Diverse Family of Feasible Fault Attacks on Masked Kyber

Algorithm 9 Solver
Input: Matrix A with dimensions ω × ψ
Input: Vector b of length ω
Input: Observations r ∈ {0, 1}ω where r[i] = 1 if decapsulation fails and 0 otherwise
Output: Solution x ∈ [−ϵ1, ϵ1]ψ

1: for j ∈ [0, ψ − 1] do
2: for k ∈ [0, 2ϵ1] do
3: fx[j][k]← fbino(k; 2 ϵ1, 1/2) ▷ Initialize PMFs
4: pfail ← r ·min

(∑ω−1
i=0 pfail[i]/

∑ω−1
i=0 r[i], 1

)
using Eq. (16) ▷ CLT

5: x←
(
0 0 · · · 0

)
6: while StopCriterionFails(A,b, r,x, · · ·) do
7: for j ∈ [0, ψ − 1] do
8: for k ∈ [0, 2 ϵ1] do
9: for i ∈ [0, ω − 1] do

10: Compute P[i, j, k] in Eq. (15) ▷ CLT
11: P[i, j, k]← P[i, j, k] pfail[i] + (1−P[i, j, k])(1− pfail[i])
12: P[i, j, k]← max(P[i, j, k], 10−5)
13: f ′

x[j][k] = fx[j][k]
∏ω−1
i=0 P[i, j, k] ▷ Sum of logarithms

14: f ′
x[j] ← f ′

x[j]/
∑2 ϵ1
k=0 f

′
x[j][k] ▷ Normalization

15: x[j]← −ϵ1 + arg maxk∈[0,2 ϵ1] f
′
x[j] ▷ Largest mass

16: fx[j] ← f ′
x[j]

6.3 Experiments with Software-Simulated Faults

We perform three experiments where faults are simulated in software. Success is quantified
by estimating the probability that any coefficient of the guessed solution x is correct as
a function of the provided number of inequalities, ω. This estimate is an average over (i)
all ψ unknowns and (ii) 10 systems of inequalities that correspond to different key pairs
(kpub, kpriv). No runs are discarded, thereby demonstrating the stability of our solver.

In our first experiment, we revisit a filtering technique from Pessl and Prokop [PP21a]
where inequalities are selected such that coefficient b is small in absolute value. This way,
the probability of a decapsulation success (or failure) is approximately 50%. Hence, the
information or Shannon entropy carried by the inequality is maximized, and fewer faults
are needed for key recovery. Because the potential gains have not been quantified before,
we do so in Fig. 4. For the unfiltered curve, the faulted ciphertext index ι ∈ [0, η − 1]
is constant, and the result of a single encapsulation is unconditionally accepted. For the
filtered curve, a single encapsulation is still performed, but the faulted index ι is variable
and chosen such that |b| is minimized. Remark that in an attack with actual hardware, a
similar effect could be obtained by fixing ι and performing η encapsulations. Considering
that the gains are significant, we filter inequalities by default.

In our second experiment, all three security levels of Kyber are compared in Fig. 5.
The curves lie relatively close to one another, especially Kyber512 and Kyber768. This
is at least partially attributable to the followings effects cancelling out: Kyber768 has
more unknowns (1536 > 1024), whereas Kyber512 has more possible values per unknown
(7 > 5). More rigorously, the Shannon entropy of the secret x in Eq. (17) is roughly
2389, 3119, and 4159 bits for Kyber512, Kyber768, and Kyber1024 respectively, and
provides a lower bound on the number of inequalities needed for a 100% success rate.

Jeroen Delvaux 19

0 3k 6k 9k 12k 15k
0.2

0.4

0.6

0.8

1

Number of inequalities, ω

Su
cc

es
s

pr
ob

ab
ili

ty

Filtered
Unfiltered

Figure 4: Solving filtered and unfiltered in-
equalities for Kyber512.

0 3k 6k 9k 12k 15k
0.2

0.4

0.6

0.8

1

Number of inequalities, ω

Su
cc

es
s

pr
ob

ab
ili

ty

Kyber512
Kyber768
Kyber1024

Figure 5: Solving filtered inequalities for all
three security levels.

H[x] = −ψ
2ϵ1∑
k=0

fbino(k; 2ϵ1, 1/2) log2
(
fbino(k; 2ϵ1, 1/2)

)
. (17)

In our third experiment, inequalities are corrupted. Given ω otherwise correct in-
equalities, decapsulation successes are turned into decapsulation failures with probability
ps2f ∈ [0, 0.6], whereas decapsulation failures are untouched, which is in line with the work-
ing principles of the attack. Figure 6 shows that even with ps2f = 50%, the entire secret
can still be recovered. The overall error rate is approximately half of ps2f, resulting in an
error tolerance of 25%. This is a considerable improvement upon the 1% reported by Pessl
and Prokop [PP21a], and demands on the fault-injection setup are reduced accordingly.

0 5k 10k 15k 20k 25k 30k
0.2

0.4

0.6

0.8

1

Number of inequalities, ω

Su
cc

es
s

pr
ob

ab
ili

ty

0% 10%
20% 30%
40% 50%
60%

Figure 6: Solving corrupted inequalities for
Kyber512.

1 20 40 60 80 1000

0.2

0.4

0.6

0.8

1

Maximum number of fault injections, β

In
eq

ua
lit

y
er

ro
r

ra
te

Decapsulation successes
Successes and failures

Figure 7: Inequality error rates obtained
using a ChipWhisperer board.

20 Roulette: A Diverse Family of Feasible Fault Attacks on Masked Kyber

7 ChipWhisperer Experiments
We experiment with actual fault-injection equipment and target a masked software imple-
mentation of Kyber running on an ARM Cortex-M4. Upon discarding (i) the pqm4 imple-
mentation [KRSS] for being unprotected, (ii) the implementation of Bos et al. [BGR+21]
for being closed-source, (iii) the implementation of Heinz et al. [HKL+22] for masking
polynomial coefficients in Zρ by sampling from [0, 212 − 1] instead of [0, 3329 − 1] at the
time of writing this paper, and (iv) the implementation of Bronchain and Cassiers [BC22]
for storing the private key s and the symmetric key k in unmasked form at the time of
writing this paper, we opted for the implementation of Coron et al. [CGMZ22]. Because
the latter implementation is entirely written in plain C and thus unoptimized for the M4,
it runs too slow for bulk experiments yet fast enough to show that our attack works. We
build Kyber768 with first-order masking using GNU Compiler Collection (GCC) with
O3 optimization.

We use a ChipWhisperer board from NewAE Technology Inc. [O’F] to generate and
glitch a 24 MHz clock. Through a CW308 UFO Target Board, this clock is provided
to the M4 that is contained in an STM32F405RGT6 chip from STMicroelectronics, and
causes either instruction skips or instruction corruptions [TSW16]. The glitch is created
by XORing a single short pulse with an otherwise proper clock signal, and is configured
by three parameters: a global offset expressed as a number of clock cycles, a local offset
with respect to the clock edge, and the width of the pulse. The latter two parameters
jointly embody an intensity that must be carefully balanced for the given STM chip: if
too low, no data is faulted, and if too high, our target crashes. The former parameter
must be paired with a vulnerable spot of Kyber’s re-encryption and the given ciphertext
index ι ∈ [0, 255] that is manipulated, which can be considered as a fourth parameter.
Considering that we focused on the last layer of the INTT earlier-on, we mark this section
of the source code with a trigger signal. Through a series of grid searches within the
trigger window, four parameter values are selected. The selected ciphertext index ι = 130.
Remark that in a typical closed-source commercial product, a trigger cannot simply be
added to the source code but may be derived from SCA or communications with chip
peripherals such as external memory.

Upon selecting parameters, key recovery would be possible in a few hours up to a day
for a well-optimized implementation of Kyber, but as we had to settle for an unoptimized
target, it would take approximately five days. And ideally, multiple recoveries should be
performed. Therefore, our attack is showcased through faster but fairly equivalent means:
the ability to generate correct inequalities is measured. Based on 500 inequalities, Fig. 7
shows the probability of assigning the wrong sign to an inequality as a function of the
maximum number of fault injections, β. Recall that only decapsulation successes can
be misclassified and thus negatively contribute to the error rate. If, guided by Fig. 6,
we tolerate misclassifying approximately 50% of the decapsulation successes, it should
roughly hold that β ≥ 20. To conclude: even with a cheap setup and an SCA-protected
target, we can deliver a solvable system of inequalities.

8 Concluding Remarks
We overhauled a fault attack against Kyber proposed at IndoCrypt 2021 [HPP21a] such
that it becomes easier to perform and harder to defend against. Firstly, popular masking
techniques against SCA that originally favored the defender now favor the attacker. Sec-
ondly, more building blocks can be attacked, thereby increasing expenses for the defender.
Thirdly, defending against a nearly perfect laser setup is no longer enough because cheaper
methods such as voltage and clock glitching also suffice, even if they provide error-prone
inequalities. Because off-the-shelf countermeasures such as executing the re-encryption

Jeroen Delvaux 21

and ciphertext comparison twice merely decelerate our attack at a considerable cost, the
design of more effective and affordable countermeasures is a first suggestion for follow-up
work. In fact, Ravi et al. [RCB22] already responded with a custom countermeasure.

A second suggestion for follow-up work is the investigation of other PQC schemes.
The authors of the IndoCrypt paper [HPP21a] already conjectured that a similar attack
applies to Saber [BMD+20], which is another lattice-based KEM although not selected
for standardization by NIST. Similarly, we conjecture that our roulette attacks can be
mapped to Saber too. In the ideal case, a ciphertext coefficient cm ∈ {0, 1}τ , where τ
equals 3, 4, and 6 for LightSaber, Saber, and FireSaber respectively, is faulted such
that c⋆m is uniformly distributed on {0, 1}τ . Furthermore, c⋆m is the result of rounding
(pruning the least significant bits) and an addition, both of which are balanced functions
as defined in Definition 2, i.e., the attack surface is large once again.

References
[ABCG20] Erdem Alkim, Yusuf Alper Bilgin, Murat Cenk, and François Gérard. Cortex-

M4 optimizations for {R,M}LWE schemes. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems (TCHES), 2020(3):336–357, June
2020.

[ABD+20] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint,
Vadim Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and
Damien Stehlé. CRYSTALS-Kyber: Algorithm specifications and support-
ing documentation. Technical report, National Institute of Standards and
Technology (NIST), October 2020. https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions.

[ASMM18] Ravi Anand, Akhilesh Siddhanti, Subhamoy Maitra, and Sourav Mukhopad-
hyay. Differential fault attack on SIMON with very few faults. In Debrup
Chakraborty and Tetsu Iwata, editors, 19th International Conference on
Cryptology in India (INDOCRYPT 2018), volume 11356 of Lecture Notes
in Computer Science, pages 107–119. Springer, December 2018.

[BC22] Olivier Bronchain and Gaëtan Cassiers. Bitslicing arithmetic/boolean
masking conversions for fun and profit with application to lattice-based
KEMs. Cryptology ePrint Archive, Report 2022/158, 2022. https://
ia.cr/2022/158, https://github.com/uclcrypto/pqm4_masked, commit
ed6ab2f55f407332b36bee5c29c828778c1266c0.

[BGR+21] Joppe W. Bos, Marc Gourjon, Joost Renes, Tobias Schneider, and Chris-
tine van Vredendaal. Masking Kyber: First- and higher-order implementa-
tions. IACR Transactions on Cryptographic Hardware and Embedded Systems
(TCHES), 2021(4):173–214, August 2021.

[BH08] Arnaud Boscher and Helena Handschuh. Masking does not protect against
differential fault attacks. In Luca Breveglieri, Shay Gueron, Israel Koren,
David Naccache, and Jean-Pierre Seifert, editors, 5th Workshop on Fault
Diagnosis and Tolerance in Cryptography (FDTC 2008), pages 35–40. IEEE,
August 2008.

[BMD+20] Andrea Basso, Jose Maria Bermudo Mera, Jan-Pieter D’Anvers, Angshu-
man Karmakar, Sujoy Sinha Roy, Michiel Van Beirendonck, and Frederik
Vercauteren. SABER: Mod-LWR based KEM (round 3 submission). Techni-
cal report, National Institute of Standards and Technology (NIST), October

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://ia.cr/2022/158
https://ia.cr/2022/158
https://github.com/uclcrypto/pqm4_masked

22 Roulette: A Diverse Family of Feasible Fault Attacks on Masked Kyber

2020. https://csrc.nist.gov/projects/post-quantum-cryptography/
round-3-submissions.

[BMR21] Luk Bettale, Simon Montoya, and Guénaël Renault. Safe-error analysis of
post-quantum cryptography mechanisms. In 18th Workshop on Fault De-
tection and Tolerance in Cryptography (FDTC 2021), pages 39–44. IEEE,
September 2021.

[CGMZ22] Jean-Sébastien Coron, François Gérard, Simon Montoya, and Rina Zeitoun.
High-order polynomial comparison and masking lattice-based encryption.
GitHub repository, https://github.com/fragerar/HOTableConv, commit
5d493b68b0b7ac3d41d0908bb99a0705d13ce20c, January 2022.

[Cla07] Christophe Clavier. Secret external encodings do not prevent transient fault
analysis. In Pascal Paillier and Ingrid Verbauwhede, editors, 9th Workshop on
Cryptographic Hardware and Embedded Systems (CHES 2007), volume 4727
of Lecture Notes in Computer Science, pages 181–194. Springer, September
2007.

[DEG+18] Christoph Dobraunig, Maria Eichlseder, Hannes Groß, Stefan Mangard, Flo-
rian Mendel, and Robert Primas. Statistical ineffective fault attacks on
masked AES with fault countermeasures. In Thomas Peyrin and Steven D.
Galbraith, editors, Advances in Cryptology - ASIACRYPT 2018, volume
11273 of Lecture Notes in Computer Science, pages 315–342. Springer, De-
cember 2018.

[DEK+18] Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Stefan Mangard,
Florian Mendel, and Robert Primas. SIFA: exploiting ineffective fault in-
ductions on symmetric cryptography. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2018(3):547–572, August 2018.

[Del20] Jeroen Delvaux. Threshold implementations are not provably secure against
fault sensitivity analysis. Cryptology ePrint Archive, Report 2020/400, 2020.
https://ia.cr/2020/400.

[DMB19] Lauren De Meyer and Begül Bilgin. Classification of balanced quadratic
functions. IACR Transactions on Symmetric Cryptology, 2019(2):169–192,
2019.

[DTVV19] Jan-Pieter D’Anvers, Marcel Tiepelt, Frederik Vercauteren, and Ingrid Ver-
bauwhede. Timing attacks on error correcting codes in post-quantum schemes.
In Begül Bilgin, Svetla Petkova-Nikova, and Vincent Rijmen, editors, Pro-
ceedings of ACM Workshop on Theory of Implementation Security Workshop
(TIS@CCS 2019), pages 2–9. ACM, November 2019.

[HKL+22] Daniel Heinz, Matthias J. Kannwischer, Georg Land, Thomas Pöppelmann,
Peter Schwabe, and Daan Sprenkels. First-order masked Kyber on ARM
Cortex-M4. GitHub repository, https://github.com/masked-kyber-m4/
mkm4, commit b480a071459881531b6bf8b42410b99f94d637fe, January 2022.

[HPP21a] Julius Hermelink, Peter Pessl, and Thomas Pöppelmann. Fault-enabled
chosen-ciphertext attacks on Kyber. In Avishek Adhikari, Ralf Küsters, and
Bart Preneel, editors, Progress in Cryptology – INDOCRYPT 2021, volume
13143 of Lecture Notes in Computer Science, pages 311–334. Springer, De-
cember 2021.

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://github.com/fragerar/HOTableConv
https://ia.cr/2020/400
https://github.com/masked-kyber-m4/mkm4
https://github.com/masked-kyber-m4/mkm4

Jeroen Delvaux 23

[HPP21b] Julius Hermelink, Peter Pessl, and Thomas Pöppelmann. Fault-
enabled chosen-ciphertext attacks on Kyber. GitHub reposi-
tory, https://github.com/juliusjh/fault_enabled_cca, commit
f70b246dd45841251f3f63a55c084fd191380efb, December 2021.

[KRSS] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and
Ko Stoffelen. PQM4: Post-quantum crypto library for the
ARM Cortex-M4. https://github.com/mupq/pqm4, commit
8970d37a8c3055d9579007e954449d926c3583b4 (January 20, 2020).

[KWMK02] Ramesh Karri, Kaijie Wu, Piyush Mishra, and Yongkook Kim. Concurrent er-
ror detection schemes for fault-based side-channel cryptanalysis of symmetric
block ciphers. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 21(12):1509–1517, December 2002.

[LOS12] Yang Li, Kazuo Ohta, and Kazuo Sakiyama. New fault-based side-channel
attack using fault sensitivity. IEEE Transactions on Information Forensics
and Security, 7(1):88–97, February 2012.

[MMP+11] Amir Moradi, Oliver Mischke, Christof Paar, Yang Li, Kazuo Ohta, and
Kazuo Sakiyama. On the power of fault sensitivity analysis and collision
side-channel attacks in a combined setting. In Bart Preneel and Tsuyoshi
Takagi, editors, 13th Workshop on Cryptographic Hardware and Embedded
Systems (CHES 2011), volume 6917 of Lecture Notes in Computer Science,
pages 292–311. Springer, October 2011.

[O’F] Colin O’Flynn. NewAE Technology Inc. https://www.newae.com. Accessed:
June 14, 2022.

[OSPG18] Tobias Oder, Tobias Schneider, Thomas Pöppelmann, and Tim Güneysu.
Practical CCA2-secure and masked ring-LWE implementation. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems, 2018(1):142–174,
February 2018.

[PP21a] Peter Pessl and Lukás Prokop. Fault attacks on CCA-secure lattice KEMs.
IACR Transactions on Cryptographic Hardware and Embedded Systems
(TCHES), 2021(2):37–60, February 2021.

[PP21b] Peter Pessl and Lukás Prokop. Fault attacks on CCA-secure lat-
tice KEMs. GitHub repository, https://github.com/latticekemfaults/
latticekemfaults/, commit 85f78d87218e6fd4f5366c416b5db4a8ecfa65fb,
April 2021.

[RCB22] Prasanna Ravi, Anupam Chattopadhyay, and Anubhab Baksi. Side-channel
and fault-injection attacks over lattice-based post-quantum schemes (Ky-
ber, Dilithium): Survey and new results. Cryptology ePrint Archive, Paper
2022/737, June 2022. https://eprint.iacr.org/2022/737.

[RPBC20] Prasanna Ravi, Romain Poussier, Shivam Bhasin, and Anupam Chattopad-
hyay. On configurable SCA countermeasures against single trace attacks
for the NTT. In Lejla Batina, Stjepan Picek, and Mainack Mondal, editors,
10th Conference on Security, Privacy, and Applied Cryptography Engineering
(SPACE 2020), volume 12586 of Lecture Notes in Computer Science, pages
123–146. Springer, December 2020.

https://github.com/juliusjh/fault_enabled_cca
https://github.com/mupq/pqm4
https://www.newae.com
https://github.com/latticekemfaults/latticekemfaults/
https://github.com/latticekemfaults/latticekemfaults/
https://eprint.iacr.org/2022/737

24 Roulette: A Diverse Family of Feasible Fault Attacks on Masked Kyber

[RRB+19] Prasanna Ravi, Debapriya Basu Roy, Shivam Bhasin, Anupam Chattopad-
hyay, and Debdeep Mukhopadhyay. Number "not used" once - practical fault
attack on pqm4 implementations of NIST candidates. In Ilia Polian and
Marc Stöttinger, editors, 10th Workshop on Constructive Side-Channel Anal-
ysis and Secure Design (COSADE 2019), volume 11421 of Lecture Notes in
Computer Science, pages 232–250. Springer, April 2019.

[RRCB20] Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and Shivam
Bhasin. Generic side-channel attacks on CCA-secure lattice-based PKE and
KEMs. IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems (TCHES 2020), 2020(3):307–335, June 2020.

[Saa18] Markku-Juhani O. Saarinen. Arithmetic coding and blinding countermea-
sures for lattice signatures. Journal of Cryptographic Engineering, 8(1):71–84,
April 2018.

[SH07] Jörn-Marc Schmidt and Michael Hutter. Optical and EM fault-attacks on
CRT-based RSA. In 15th Austrian Workhop on Microelectronics (Austrochip
2007), pages 61–67. Technischen Universität Graz, October 2007.

[TSW16] Niek Timmers, Albert Spruyt, and Marc Witteman. Controlling PC on ARM
using fault injection. In 13th Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), pages 25–35. IEEE, August 2016.

[UXT+21] Rei Ueno, Keita Xagawa, Yutaro Tanaka, Akira Ito, Junko Takahashi, and
Naofumi Homma. Curse of re-encryption: A generic power/EM analysis on
post-quantum KEMs. IACR Transactions on Cryptographic Hardware and
Embedded Systems (TCHES 2022), 2022(1):296–322, November 2021.

[VOGR18] Felipe Valencia, Tobias Oder, Tim Güneysu, and Francesco Regazzoni. Ex-
ploring the vulnerability of R-LWE encryption to fault attacks. In John
Goodacre, Mikel Luján, Giovanni Agosta, Alessandro Barenghi, Israel Koren,
and Gerardo Pelosi, editors, Fifth Workshop on Cryptography and Security
in Computing Systems (CS2 2018), pages 7–12. ACM, January 2018.

[XIU+21] Keita Xagawa, Akira Ito, Rei Ueno, Junko Takahashi, and Naofumi Homma.
Fault-injection attacks against NIST’s post-quantum cryptography round 3
KEM candidates. In Advances in Cryptology – ASIACRYPT 2021, volume
13091 of Lecture Notes in Computer Science, pages 33–61. Springer, Decem-
ber 2021.

[YJ00] Sung-Ming Yen and Marc Joye. Checking before output may not be
enough against fault-based cryptanalysis. IEEE Transactions on Comput-
ers, 49(9):967–970, September 2000.

Jeroen Delvaux 25

A Omitting HD Constraint in Kyber1024

Table 5: Properties of the compressed ciphertext coefficients v ∈ [0, 2δ − 1] where δ = 5.
Original Manipulated

Bin Size First Last Center Bin Fault HD ∆m⋆

0 105 3277 52 0 8

01000 1 ∆m+ 832

1

104

53 156 104 9
2 157 260 208 10
3 261 364 312 11
4 365 468 416 12
5 469 572 520 13
6 573 676 624 14
7 677 780 728 15
8 781 884 832 16

11000 2 ∆m+ 833

9 885 988 936 17
10 989 1092 1040 18
11 1093 1196 1144 19
12 1197 1300 1248 20
13 1301 1404 1352 21
14 1405 1508 1456 22
15 1509 1612 1560 23
16 1613 1716 1665 24

01000 1 ∆m+ 832

17 1717 1820 1769 25
18 1821 1924 1873 26
19 1925 2028 1977 27
20 2029 2132 2081 28
21 2133 2236 2185 29
22 2237 2340 2289 30
23 2341 2444 2393 31
24 2445 2548 2497 0

11000 2 ∆m+ 833

25 2549 2652 2601 1
26 2653 2756 2705 2
27 2757 2860 2809 3
28 2861 2964 2913 4
29 2965 3068 3017 5
30 3069 3172 3121 6
31 3173 3276 3225 7

B Roulette Attack on Decryption Module
Section 5.2 specified a first roulette attack on Kyber’s decapsulation, in which the re-
encryption is faulted in order to recover the private key s. This appendix specifies a
second roulette attack on the decapsulation, but now the decryption is faulted in order
to recover the message m and the corresponding session key k. This second attack is
much more ‘academic’ because (i) the distribution of the faulted value must be known,
and (ii) millions of perfectly injected faults are required. Nevertheless, there is no harm
in reporting an exploit on building blocks that have not previously been faulted, even if it
only serves as a reminder that not only obvious targets such as the polynomial comparison

26 Roulette: A Diverse Family of Feasible Fault Attacks on Masked Kyber

should be protected.
The generic variable z ∈ Z in Fig. 2 is instantiated with an uncompressed message co-

efficient m ∈ [0, ρ−1]. Although practically any distribution of its faulted counterpart m⋆

enables the attack, at least if the distribution is known to the attacker, we again idealize
the case where m⋆ is uniformly distributed on [0, ρ−1]. Leveraging fault propagation, the
attack surface consists of Decompress(v; ρ, δv), a butterfly in the final layer of the INTT,
and a modular subtraction. Recall that the modular subtraction is balanced according
to Lemma 3, i.e., a uniformly distributed fault in the butterfly or decompression output
results in a uniformly distributed m⋆. Given that primes ρ are odd, the final decryption
step, i.e., m⋆ ← Compress(m⋆; ρ, 1) as defined in Eq. (4), is inherently biased. As illus-
trated in Fig. 8 for ρ = 7, the compression function maps ⌊ρ/2⌋ = 3 coefficients in [0, ρ−1]
to m⋆ = 0, whereas ⌈ρ/2⌉ = 4 coefficients map to m⋆ = 1.

m = 1 m = 0

Figure 8: Message coefficients m before and after compression according to Eq. (4) where
prime ρ = 7.

For the actual prime ρ = 3329 used in Kyber, the right and left semicircles contain
⌊ρ/2⌋ = 1664 and ⌈ρ/2⌉ = 1665 field elements respectively. Hence, the probability of
a failed decapsulation is 1665/3329 ≈ 50.015% if the original message bit m = 0 and
1664/3329 ≈ 49.985% otherwise. At least in theory, a measurement of this failure rate
suffices to recover m. For β = 18201189 perfectly faulted decapsulations, the recovery
succeeds with 90% certainty, as can be derived from the cumulative distribution function
(CDF) of a binomial distribution: Fbino(⌊β/2⌋;β, 1664/3329) ≥ 90% where n is odd.
Apart from the staggering number of faults, the attack is hampered in practice because
fault injections are unlikely to be perfect, and the probability that no fault is injected is
typically unknown.

C Proofs

C.1 Lemma 2

The case G : X → Y of Lemma 2 is proven in Eq. (18); the case G : X1×X2 → Y is proven
in Eq. (19).

Pr(y) =
∑

x∈X s.t.
G(x)=y

Pr(x) = |X |
|Y|
· 1
|X |

= 1
|Y|

. (18)

Jeroen Delvaux 27

Pr(y) =
∑

(x1,x2)∈X1×X2
s.t. G(x1,x2)=y

Pr(x1 ∧ x2) =
∑
x2∈X2

Pr(x2)
∑

x1∈X1 s.t.
G(x1,x2)=y

Pr(x1)

= |X1|
|Y|
· 1
|X1|

·
∑
x2∈X2

Pr(x2) = 1
|Y|

.

(19)

C.2 Lemma 3
Balancedness with respect to input x1 ∈ R in Lemma 3 is proven in Eq. (20) and follows
from the property that each element in a ring has an additive inverse. Balancedness with
respect to input x2 ∈ R is proven in an identical manner.

∀(x2, y) ∈ R2, |{x1 ∈ R | x1 + x2 = y}| = |{y − x2}| = 1. (20)

C.3 Lemma 4
Balancedness with respect to input x1 ∈ F in Lemma 4 is proven in Eq. (21) and follows
from the property that each element x2 ̸= 0 in a field has a multiplicative inverse.

∀(x2, y) ∈ F2, |{x1 ∈ F | x1 · x2 = y}| = |{y · x2
−1}| = 1. (21)

C.4 Instruction Skips in Double Butterflies on ARM Cortex M4
To prove uniformity, we start from the observation that for each out of λ shares, the
input to last INTT layer is uniformly distributed on Zηρ = Z256

ρ , which implies that all 256
finite-field elements are independent of one another. This follows from Lemma 1 and the
fact that every INTT layer is a permutation on Zηρ.

The proofs for instructions 2 to 4 in Table 4 are particularly straightforward and given
in Eqs. (22) to (24) respectively. Note that the faulty output shares are low in magnitude
even before being reduced by the Montgomery macro and cannot violate the margin for
lazy reductions in any building block following the double butterfly. Also, note that the
multiplications with τ , (τ + 1), or (1− τ) preserve uniformity according to Lemma 4.



(
c

(1)
1 , c

(1)
2
)⋆ =

(
a

(1)
1 , a

(1)
2
)
,(

c
(2)
1 , c

(2)
2
)

=
(
a

(2)
1 + b

(2)
1 , a

(2)
2 + b

(2)
2
)
,

...(
c

(λ)
1 , c

(λ)
2
)

=
(
a

(λ)
1 + b

(λ)
1 , a

(λ)
2 + b

(λ)
2
)
,

=⇒
(
c1, c2

)⋆ = (c1, c2)−
(
b

(1)
1 , b

(1)
2
)
∼ U(Z2

ρ).

(22)



(
d

(1)
1
)⋆ = b

(1)
1 ,

d
(2)
1 =

(
a

(2)
1 − b

(2)
1
)
τ,

...

d
(λ)
1 =

(
a

(λ)
1 − b(λ)

1
)
τ,

=⇒ d⋆1 = d1 +b(1)
1 (τ+1)−a(1)

1 τ ∼ U(Zρ). (23)

28 Roulette: A Diverse Family of Feasible Fault Attacks on Masked Kyber



(
d

(1)
2
)⋆ = a

(1)
2 − b

(1)
2 ,

d
(2)
2 =

(
a

(2)
2 − b

(2)
2
)
τ,

...

d
(λ)
2 =

(
a

(λ)
2 − b(λ)

2
)
τ

=⇒ d⋆2 = d2 +
(
a

(1)
2 − b

(1)
2
)
(1− τ) ∼ U(Zρ).

(24)

For instruction 1 in Table 4, the faulted output coefficients (d1, d2)⋆ are determined
by an uninitialized temporary variable t1, as formalized in Eq. (25). Following the INTT
implementation of the pqm4 library, each layer is completed before starting the next one,
and for the most part, t1 has last been set in another double butterfly in the last layer.
Hence, t1 is independent of the current double-butterfly inputs. As for instructions 2 to
4, the faulted output shares are reduced by the Montgomery macro.



(
d

(1)
1 , d

(1)
2
)⋆ = (t1[15 : 0], t1[31 : 16]) τ,(

d
(2)
1 , d

(2)
2
)

=
(
a

(2)
1 − b

(2)
1 , a

(2)
2 − b

(2)
2
)
τ,

...(
d

(λ)
1 , d

(λ)
2
)

=
(
a

(λ)
1 − b(λ)

1 , a
(λ)
2 − b(λ)

2
)
τ,

where t1 and(
a

(1)
1 , b

(1)
1 , a

(1)
2 , b

(1)
2
)

are independent,
(25a)

=⇒
(
d1, d2

)⋆ = (d1, d2) +
(
t1[15 : 0]− a(1)

1 + b
(1)
1 ,

t1[31 : 16]− a(1)
2 + b

(1)
2
)
τ ∼ U(Z2

ρ)
(25b)

For instruction 7 in Table 4, the faulty output coefficient d⋆1 is uniformly distributed on
Zρ in theory, but not necessarily in practice. The output of the function M is not properly
reduced, and the margin for lazy reduction may be violated in building blocks following
the double butterfly. Such violations may still produce the desired result in Eq. (12), but
are hard to analyze from a mathematical perspective and not further addressed here.



(
d

(1)
1
)⋆ = M

((
a

(1)
2 − b

(1)
2
)
τ
)
,

d
(2)
1 =

(
a

(2)
1 − b

(2)
1
)
τ,

...

d
(λ)
1 =

(
a

(λ)
1 − b(λ)

1
)
τ

=⇒
d⋆1 = d1 + M

((
a

(1)
2 − b

(1)
2
)
τ
)

−
(
a

(1)
1 − b

(1)
1
)
τ ∼ U(Zρ).

(26)

C.5 PMF of CBD
Let X be a random variable with a CBD, i.e., X ≜ X1 − X2 where X1, X2 ∼ B(ϵ, 1/2).
The PMF of X is derived in Eq. (27). Vandermonde’s identity is used in Eq. (27c) to
dispose of the summation operator.

Pr(X = i) = Pr(X = |i|) =
ϵ−|i|∑
j=0

Pr(X2 = j) Pr(X1 = |i|+ j) (27a)

=
ϵ−|i|∑
j=0

fbino(j; ϵ, 1/2) fbino(|i|+ j; ϵ, 1/2) =
ϵ−|i|∑
j=0

(
ϵ

j

)(
1
2

)ϵ(
ϵ

|i|+ j

)(
1
2

)ϵ
(27b)

Jeroen Delvaux 29

=
(

1
2

)2ϵ ϵ−|i|∑
j=0

(
ϵ

j

)(
ϵ

ϵ− |i| − j

)
=
(

1
2

)2ϵ(2ϵ
ϵ− |i|

)
= fbino(ϵ− i; 2ϵ, 1/2). (27c)

	Introduction
	Contributions
	Structure
	Notation

	Kyber
	Public-Key Encryption
	
	 Cortex-M4

	Side-Channel Analysis
	Masking
	Blinding

	Fault Attacks
	
	Ineffective Faults

	Roulette Attacks
	General Methodology
	Application to Kyber's Decapsulation

	Solving Systems of Linear Inequalities
	Reduced Computation Time
	Increased Error Tolerance
	Experiments with Software-Simulated Faults

	ChipWhisperer Experiments
	Concluding Remarks
	Omitting HD Constraint in Kyber1024
	Roulette Attack on Decryption Module
	Proofs
	
	
	
	Instruction Skips in Double Butterflies on ARM Cortex M4
	PMF of CBD

