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Abstract. We give a cryptographic analysis of the Bluetooth Secure Connections Protocol Suite.
Bluetooth supports several subprotocols, such as Numeric Comparison, Passkey Entry, and Just Works,
in order to match the devices’ different input/output capabilities.
Previous analyses (e.g., Lindell, CT-RSA’09, or Troncoso and Hale, NDSS’21) often considered (and
confirmed) the security of single subprotocols only. Recent practically verified attacks, however, such as
the Method Confusion Attack (von Tschirschnitz et al., S&P’21) against Bluetooth’s authentication and
key secrecy property, often exploit the bad interplay of different subprotocols. Even worse, some of these
attacks demonstrate that one cannot prove the Bluetooth protocol suite to be a secure authenticated
key exchange protocol.
We therefore aim at the best we can hope for and show that the protocol still matches the common key
secrecy requirements of a key exchange protocol if one assumes a trust-on-first-use (TOFU) relationship.
This means that the adversary needs to mount an active attack during the initial connection, otherwise
the subsequent reconnections remain secure.
Investigating the cryptographic strength of the Bluetooth protocol, we also look into the privacy mech-
anism of address randomization in Bluetooth (which is only available in the Low Energy version). We
show that the cryptography indeed provides a decent level of address privacy, although this does not
rule out identification of devices via other means, such as physical characteristics.
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1 Introduction
Bluetooth has become an omnipresent standard for short-range wireless communication. It is used in bil-
lions of products today: from powerful devices like computers and smartphones to more limited devices like
headsets. The standard is maintained by the Bluetooth Special Interest Group and its latest specification
of more than 3,000 pages describes version 5.3 [BT5.3].

The Bluetooth protocol comes in two major versions, the classical version (BR/EDR, for basic
rate/enhanced data rate) and the low-energy version (BLE).The BR/EDR variant is usually used for
connections with continuous data streams like headphones. In contrast, BLE is typically used when power
consumption is a concern and data is only transferred periodically, e.g., for fitness trackers. The modes
are not compatible but dual-mode devices are able to use both technologies.

1.1 Connecting Securely with Bluetooth

To transfer data between two Bluetooth devices securely and bidirectionally, they need to initially establish
the link on a physical and logical level. If this has happened, then both devices establish a cryptographic
key, called the link key in BR/EDR resp. long-term key in BLE. This key is used to derive an encryption
key for communication following the link establishment as well as to authenticate devices and derive a
new encryption key in later reconnections. In the latest version 5.3 of the standard [BT5.3], the strongest
method to establish such a key is the Secure Connections (for BR/EDR) resp. LE Secure Connections
(for BLE). Previous versions of (more or less secure) connection methods are nowadays called legacy
protocols.

We note that the main part of the Secure Connections protocol, so-called Secure Simple Pairing (SSP),
has been added to BR/EDR already with version 2.1. With version 4.1, the SSP protocol has been
upgraded to the Secure Connections protocol, using FIPS-approved cryptographic algorithms. BLE has
been introduced in version 4.0, and has not inherited the protocol (and security) from classical Bluetooth.
Only since version 4.2 BLE supports the Secure Connections pairing. The main difference between the
Secure Connections methods in BR/EDR and BLE in terms of cryptographic operations is that Secure
Connections for BR/EDR uses HMAC for message authentication and key derivation in the key exchange
part, whereas the LE version uses AES-CMAC. In the following high-level discussion we thus lump both
protocols together under the term Secure Connections.

The Secure Connections protocol itself is a protocol family, all members sharing an elliptic curve
Diffie-Hellman key exchange with key confirmation. Only the authentication stages differ, depending on
the input/output capabilities of the connecting devices. For example, some devices may be able to display
numbers, some only allow for a yes/no confirmation, and some may not support any interaction. Hence,
there are four connection modes, also called association models:

Numeric Comparison: The devices display a short 6-digit number which the user should compare and
confirm by pressing a button.

Passkey Entry: The user enters a 6-digit passkey on both devices (or, one device displays the passkey
and the user enters the value into the other device).

Out-of-Band: Some device data is exchanged via an alternative channel, e.g., via a separate NFC con-
nection between the two devices before the protocol execution.

Just Works: The devices connect without any further form of user involvement.

In the Bluetooth standard [BT5.3], the first three modes (NumCom, PasskeyEntry, and OOB) are
referred to as authenticated, whereas the JustWorks mode is called unauthenticated.
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1.2 A Short History of Attacks

The Bluetooth protocol family has been repeatedly shown to be vulnerable to attacks. We only discuss
here the most recent attacks, especially on the latest standards, which are also most relevant for our result.
One goal of the adversary is to fool the authentication property of Bluetooth, ideally also allowing to learn
the session key between the devices.

As pointed out by Zhang et al. [ZWD+20], the PasskeyEntry method is susceptible to man-in-the-
middle attacks. The attack displayed in Figure 1 is based on the different input/output capabilities of
devices. Here the user aims to connect a KeyboardOnly device (in this case, a keyboard) to a DisplayOnly
device (in this case, a screen), allowing the attacker to connect its own keyboard to the user’s screen,
without being detected. This means that PasskeyEntry does not allow to authenticate devices reliably.

Figure 1: Man-in-the-middle attack against authentication of devices, as presented in [ZWD+20]. The attacker is able to
connect its KeyboardOnly device to the user’s DisplayOnly device by relaying the information between the devices. Note
that, except for the passkey, the two Bluetooth connections are independent, enabling the adversary to know the long-term
key in the upper connection.

With the Bluetooth Impersonation AttacksS (BIAS) Antonioli et al. [ATR20a] have demonstrated
that an adversary can enforce a reconnection for classical Bluetooth to any of two parties sharing a link
key, without the adversary actually knowing the key. The attack exploits that legacy authentication of
BR/EDR does not enforce mutual authentication of partners and that the request to switch master and
slave role is not protected under the shared key. If this is the case, then the adversary can connect to any
of the two parties by asking one to switch roles and relaying the authentication information. For Secure
Connections, the attack works if the devices support downgrades to legacy security because the request is
not authenticated.

Another problem with the PasskeyEntry protocol has been pointed out by Troncoso and Hale [TH21].
They discuss that the initiator- or responder-generated passkey protocol allows a man-in-the-middle at-
tacker to make two devices connect with the help of the user, but such that the two devices are crypto-
graphically not partnered. For the user-generated PasskeyEntry case they discuss a “role confusion”
attack wherein both parties accept and believe to be the initiator of the connection.

The recent paper of von Tschirschnitz et al. [vTPFG21] introduced the Method Confusion Attack,
which allows the adversary to place itself in the middle between two devices (Figure 2). The adversary
establishes two connections with the devices by running the PasskeyEntry mode in one session and
the NumCom mode in the other one. Since it can ask the user in the first connection (PasskeyEntry
mode) to enter exactly the value used in the second connection (NumCom mode), the user(s) will confirm
both connections. Eventually, the devices are thus considered to be connected, although they are each
paired with the adversary. The attack is based on the fact that the passkeys both in NumCom and
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PasskeyEntry use the same length and alphabet, making it impossible for the user to distinguish the
two modes.

Figure 2: Man-in-the-middle attack connecting two devices, as presented in [vTPFG21]. The attacker is able to make the
passkey in the left connection match the numeric comparison value in the second one, prompting the user(s) to confirm pairing.
The adversary eventually knows the keys of both connections, what allows intercepting and relaying of the communication.

Another active attack on the initial connection using the PasskeyEntry subprotocol has been pre-
sented by Claverie and Lopes-Esteve [CL21] and is called BlueMirror. In this man-in-the-middle attack
the adversary reflects the data in the execution with the initiator to learn the passkey shared between two
devices. Then the adversary uses the learned passkey in the connection with the responder, eventually
making the responder believe to communicate with the original initiator. Still, the adversary holds the
key in the execution with the responder.

The bad interplay of Bluetooth BR/EDR and Bluetooth Low Energy has been exploited in the so-called
BLUR attack [ATRP20]. If the devices establish a key in the BR/EDR or in the Low Energy mode, then
they can convert it to another key for the complementary mode (cross-transport key derivation), enabling
a potential switch to the other architecture later. In [ATRP20], however, it has been demonstrated that an
adversary can use this feature to overwrite the securely established key by an unauthenticated just-works
key via the other connection mode.

The lack of authentication of the negotiation data enabled the “Key Negotiation of Bluetooth” (KNOB)
attack [ATR19, ATR20b] where the man-in-the-middle adversary modifies the requested key length. It
sets the entry to 1 byte (for session keys in BR/EDR) resp. 7 bytes for long-term keys in BLE, making the
devices use weak keys that can be recovered by exhaustive search. This attack, as most of the previously
mentioned ones, has also been demonstrated in practical scenarios.

Another downgrade attack is the Bluetooth LE Spoofing Attack (BLESA), described in [WNK+20].
The attack comes in two versions and has also been shown feasible in practice. One attack version of BLESA
is on reactive authentication and lets the adversary make the partner device switch to an encryption-free
transfer in reconnections. The other version is against proactive authentication, exploiting that some
implementations do not correctly close connections when being asked to downgrade the encryption level in
reconnections. The former is a shortcoming in the design of the protocol, the latter in the implementations.

We conclude this section by noting that, so far, the OOB mode has not displayed major vulnerabilities.
But this may have to do with the fact that any such attack, likewise any positive security result, would
need to make additional assumptions about the extra communication channel. Furthermore, this mode
seems to be also much less prominent than the other modes, as it requires additional communication means
like NFC or optical components to scan QR codes.

1.3 A Short History of Analyses

Despite the attacks above, the literature also reveals a number of affirmative security results. The mismatch
to the above attacks often relies on the fact that the attacks exploit vulnerabilities between different pairing
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modes (e.g., associating PasskeyEntry and NumCom in the Method Confusion Attack [vTPFG21]), or
between the BR/EDR and Low Energy cross-modes (like the BLUR attack [ATRP20]), or forcing the
devices to switch to weak legacy modes (like the BIAS attack [ATR20a]). In contrast, most cryptographic
analysis focus on a single mode only.

In [Lin09] Lindell studies Bluetooth’s Numeric Comparison protocol as a key exchange protocol (in
Bluetooth specification v2.1 but the cryptographic differences to the current version are minor). He shows
that the NumCom protocol—as a standalone protocol—is a secure (comparison-based) key exchange
protocol under the DDH assumption and further modest assumptions about the underlying primitives.
Noteworthy, the model somehow assumes that user confirmation of the comparison value also authenticates
the Bluetooth addresses, although these data are transmitted unprotected over the network and are not
displayed to the user.

Sun and Sun [SS19] extended the result of Lindell to BR/EDR in version v5.0, for NumCom and
OOB as standalone protocols. They reach the same conclusions in terms of security as [Lin09] for these
protocols. Yet, their security model is more restrictive (e.g., the adversary is not allowed to communicate
with parties after the test query).

We have already mentioned the analysis of Troncoso and Hale [TH21] in the attack section above.
Noting the insecurities in the PasskeyEntry sub protocol, they give a security proof for two modified
versions of PasskeyEntry, also as a standalone protocol. The first modification, secure hash modification,
includes more data in the hash computation. The other modification, the dual passkey entry, presumes
that both devices allow entering and displaying a passkey. Both versions are shown to be secure under the
DDH assumption, reasonable assumptions about the other cryptographic primitives, and a single-query
version of the PRF-ODH assumption [JKSS12].

1.4 Bluetooth as a TOFU Key Exchange Protocol

The starting point of our approach originates from the observation that known attacks show Bluetooth, as
a full protocol suite, does not provide authentication of keys. There is no chance to show security in the
common sense of authenticated key exchange. This either leaves us with analyzing a modified protocol (as
in [TH21])—and strictly speaking thus not giving any security guarantees for Bluetooth— or to switch to
the best security claim “we can hope for”. We decided for the latter.

We analyze Bluetooth as a trust-on-first-use (TOFU) authenticated key exchange protocol according
to a BR-like security model. This means we assume that the adversary is passive in the initial connection
and can only mount active attacks on devices that have been bonded before. Of course, the adversary may
on top bond arbitrarily with all the devices, but such interactions are, by definition, not protected since
no trust-relationship has been established. Besides capturing all possible pairing methods simultaneously,
we note that this also extends previous analyses by the reconnection step.

While the guarantees as a TOFU protocol appear to be quite weak, superficially viewed, it gives quite
assuring guarantee for “minimalistic” modes of operations. That is, suppose that one significantly reduces
attack vectors by turning off the compatibility features: specifically, no legacy protocols but only Secure
Connections, sufficient key lengths, no cross-transport key derivation between BR/EDR and BLE. Then
the TOFU result says that successful attacks against session keys can only be mounted if the adversary is
present when the devices are initially connecting.

Our analyses assumes to be “close to the standard”. For instance, the security analyses in [Lin09, SS19,
TH21] assume that the parties use a fresh Diffie-Hellman share in each execution. The Bluetooth v5.3
standard, however, allows the Diffie-Hellman key to be re-used in several executions [BT5.3, Vol 2, Part
H, Section 5.1]:

“...a device should change its private key after every pairing (successful or failed). Otherwise,
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it should change its private key whenever S + 3F > 8, where S is the number of successful
pairings and F the number of failed attempts since the key was last changed.”

Note that this explicitly refers to the Elliptic Curve Diffie-Hellman (ECDH) public-private key pair gen-
erated in the first step of the SSP protocol [BT5.3, Vol 2, Part H, Section 7.1]. In particular, in [Lin09]
Lindell identifies partnered sessions via the public Diffie-Hellman shares of the partners. Since two devices
may reuse their shares multiple times but choose different nonces in these initial connections (and thus
derive different keys), strictly speaking, Lindell’s result cannot even guarantee basic correctness properties
for the real Bluetooth protocol.

Another deviation from the standard is that the analyses in [Lin09, SS19] assume the entire Diffie-
Hellman curve point enters the protocol computations, whereas the standard only uses the x-coordinate
of the elliptic curve point. Being aware of the possibility to enable attacks by this mapping, such as the
fixed coordinate invalid curve attack [BN19], Troncoso and Hale [TH21] correctly use the x-coordinate in
their protocol description.

1.5 Privacy

Bluetooth Low Energy supports a privacy mechanism that should help to disguise the device’s Bluetooth
address BD_ADDR during discovery. Essentially, instead of sending the physical MAC address, BLE permits
to send a randomized address, either randomly generated only once during fabrication or each time when
powering up the device, or refreshed in short time intervals. The latter type are called non-resolvable
private random addresses. The protocol also has an advanced feature called resolvable private random
addresses where a previously bonded device can recognize the pseudorandom address and link it to a
physical address.

In contrast, classical Bluetooth does not support address randomization or any other privacy mech-
anism. According to [CGP+20], it was believed that tracking devices is hard, due to the larger number
of communication channels and highly frequent channel hopping. This belief has recently been shown
to be false in [CGP+20]. The authors demonstrate that one can track devices even over large distances.
Since the (de-)anonymization of BR/EDR devices escapes a cryptographic treatment, we focus here on
the privacy mechanisms in BLE.

We are interested in the address randomization technique and privacy on a protocol (i.e. transcript)
level. Sun et al. [SSY19] provide an analysis of the BLE protocol, pointing out correctly that re-using the
Diffie-Hellman key share in Secure Connections allows linking executions of different devices. They also
provide a cryptographic analysis of privacy guarantees on the protocol layer, under the assumption that a
fresh Diffie-Hellman value is used in each session. This analysis, however, neglects that other connection
data (such as transmitting the Bluetooth address) may also allow the adversary to link executions of the
same party. In particular, they do not consider BLE’s address resolution technique but focus on pairing
stage only.

Besides inspecting the payload, an attacker may be able to distinguish devices according to their
physical characteristics. This question recently gained attention in light of contact tracing via Bluetooth.
For instance, Ludant et al. [LVHNN21] showed that dual-mode devices supporting Bluetooth BR/EDR
(sending the plain address BD_ADDR) and BLE (potentially using randomized addresses) can be cross-
linked by their channel characteristics for each of the two modes with high accuracy. This implies that the
privacy mechanism of BLE effectively becomes void because of the lack of privacy for classical Bluetooth.
Countermeasures may be to temporarily turn off either of the two unused protocols or to reduce the
transmission power in order to limit the attack radius.

Jouans et al. [JVAF21] demonstrated that the address randomization technique itself can actually be
used against privacy: the frequency with which devices change their addresses can be used to differentiate
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them. Celosia and Cunche [CC19a] discuss that between 0.06% and 1.7% of devices using address ran-
domization nonetheless transmit linkable cleartext names of devices. Another often encountered entry in
the advertisement data is the Universally Unique Identifier (UUID) field to identify services and charac-
teristics of the device. These 16, 32 or 128-bit values are usually available in the generic attribute profile
(GATT) of the device and can be transmitted as part of the advertisement. Following similar attacks on
Wi-Fi [VMC+16] and BLE [BLS19], it has been pointed out in [CC19b] that the UUIDs can be used to
fingerprint devices and overcome privacy techniques with address randomization.

Our analysis does not aim to protect against attacks based on the physical characteristics, but only to
ensure that the cryptographic and privacy mechanisms do not support privacy breaches. The other distinc-
tive characteristics must be taken care of by different means, e.g., using identical address randomization
intervals on each device, or switching off clear name advertisements. We show that if the Diffie-Hellman
values are chosen afresh in each execution, then the cryptographic technique of address randomization
indeed provides the decent level of privacy.

1.6 Paper structure

The rest of the paper is organized as follows. We proceed with describing the Bluetooth protocol in Section
2. Starting with the high-level overview of the protocol, we give more details on its part called Secure
Simple Pairing. While in this section we focus on the Numeric Comparison subprotocol, we leave the other
sub protocols for Appendix A. The security model is given in Section 3, wherein we present the security
notions for TOFU authenticated key exchange. We apply the model to the Bluetooth protocol suite in
Section 4. We first present the underlying cryptographic assumptions and then show that, under these
assumptions, Bluetooth achieves Match Security and TOFU Key Secrecy. In Section 5 we investigate the
privacy mechanism in BLE. We first give the details on the data exchanged during the protocol flow,
which can be used to link the device. Then we present the definition of the outsider privacy and show
that Bluetooth achieves it with a decent level. To help the reader throughout the paper, we give the list
of acronyms, present the glossary, and describe the variables from the Bluetooth protocol in Appendix B.

2 Bluetooth
We start by giving an overview over the Bluetooth protocol along the standard [BT5.3]. The Bluetooth
protocol comes in several versions with minor differences. The most common protocols are Bluetooth Basic
Rate/Enhances Data Rate (BR/EDR), also called Bluetooth Classic, and Low Energy (BLE). From a
high-level cryptographic view point, the only differences are that in the pairing step BR/EDR uses HMAC-
SHA256 to compute the link key whereas BLE uses AES-CMAC for the respective computation of the
long-term key. In the reconnection step, however, the two protocols diverge in the way they derive the
session keys. Finally, BLE supports a privacy mechanism to hide the devices’ addresses. We discuss the
latter in Section 5.

We note that both protocols, BR/EDR and BLE, gradually converge to one protocol, while previous
versions (“legacy versions”) had major differences. For instance, earlier versions of BLE did not use elliptic
curve DH mechanisms. Both subprotocols are incompatible from a technological viewpoint, e.g., they use
a different number of communication channels. Dual-mode devices, which support both technologies
simultaneously, are becoming more and more ubiquitous.

2.1 High-Level Protocol Flow

The flow of two devices connecting in both versions, BR/EDR and BLE, is identical from an abstract
viewpoint but differs in the technological aspects. We give a description of the relevant protocol parts
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in Figure 3. Initially both devices need to connect physically and logically. This is done in an inquiry
or discovery phase and involves the devices exchange their Bluetooth addresses. The address itself is a
48-bit value. To distinguish cleartext addresses from randomized ones in BLE, the devices uses the TxAdd
and RxAdd (transmission/reception) flags which we discuss in more detail when investigating the privacy
feature.

Alice Bob

. . . . . . . . . . . . . . . . . Inquiry/Page . . . . . . . . . . . . . . . . .

Inquiry/Page(BD_ADDRA, . . . )

Inquiry/Page(BD_ADDRB , . . . )

. . . . . . . . . . . . . . . . IO Capabilities . . . . . . . . . . . . . . . .

IOCapReq(IOcapA,OOBa, . . . )

IOCapRes(IOcapB,OOBb, . . . )

. . . . . . .Secure Simple Pairing (BR/EDR) . . . . . . .

LK LK

. . . . . . . . Authentication and Encryption . . . . . . . .

kAES kAES

Alice Bob

. . . . . . . . . . . . . . . . . . . . .Discovery. . . . . . . . . . . . . . . . . . . . .

Adv(TxAddA, RxAddA, BD_ADDRA, . . . )

Adv(TxAddB , RxAddB , BD_ADDRB , . . . )

. . . . . . . . . . . . Pairing Feature Extraction . . . . . . . . . . . .

PairingReq(IOcapA,OOBa, . . . )

PairingResp(IOcapB,OOBb, . . . )

. . . . . . . . . . .Secure Simple Pairing (BLE) . . . . . . . . . . .

LTK LTK

. . . . . . . . . . . . . . . . . . . . Encryption . . . . . . . . . . . . . . . . . . . .

kAES kAES

Figure 3: Bluetooth Protocol Flow (left: BR/EDR, right: BLE).

Then the devices connect on the link layer and can start exchanging device-specific information, es-
pecially the input/output capabilities. We note that BR/EDR and BLE use different commands for
this, but we neglect these details here. In this step, the devices also exchange information about the
strength of the connection (e.g., the SC flag in the feature vector in BLE to request Secure Connections,
see Section 5.1). We assume that both devices only allow the strongest version called Secure Connections.

Based on the available IO capabilities, the devices decide on the subprotocol for Secure Simple Pairing
(SSP) protocol, also called the association model. These IO capabilities determine how the device is able
to interact with users. It can be either of the following five options: DisplayOnly (no input capability,
numeric output), DisplayYesNo (yes/no input and numeric output), KeyboardOnly (keyboard input,
no output), NoInputNoOutput (neither output nor input capabilities, or yes/no input and no output).
The BLE protocol also supports KeyboardDisplay (keyboard input, numeric output). We note that
one sometimes considers the exchange of the IO capabilities to be part of the SSP protocol, but this
distinction is irrelevant for us here. The combination of the capabilities of the two devices determines the
SSP subprotocol according to Table 1 (for Secure Connections only).

We note that either device may set the out-of-band (OOB) flag as part of the features. In BR/EDR
this is part of the IOcap structure, whereas in BLE this is a flag in the pairing features. If either devices
sets the OOB flag, then the parties use the OOB association model. We note that only one of the two
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Table 1: Mapping of IO capabilities to association models. The last column and row KeyboardDisplay is only available in
BLE.

Initiator
Responder DisplayOnly DisplayYesNo KeyboardOnly NoInputNoOutput KeyboardDisplay

DisplayOnly JustWorks JustWorks PasskeyEntry JustWorks PasskeyEntry
DisplayYesNo JustWorks NumCom PasskeyEntry JustWorks NumCom
KeyboardOnly PasskeyEntry PasskeyEntry PasskeyEntry JustWorks PasskeyEntry
NoInputNoOutput JustWorks JustWorks JustWorks JustWorks JustWorks
KeyboardDisplay PasskeyEntry NumCom PasskeyEntry JustWorks NumCom

devices may set this flag, in which case only this device transmit out-of-band information. The data in
the OOB association model contains the Bluetooth address of a device, commitments of the public keys,
and random values that are used in further execution.

Next, the two devices execute the SSP protocol in the corresponding association model to establish
a shared key. The steps are very similar and only differ in some cryptographic operations. We discuss
the details in Section 2.2. For BR/EDR the derived key is called a link key LK, for BLE it is called a
long-term key LTK. We note that both versions allow to convert the key for future use in the other type of
connection (cross-transport key derivation), but we do not consider this conversion here. This concludes
the initial connection procedure.

The final step is to derive the key for the authenticated encryption scheme. We note that this is also the
protocol that is executed if the devices have bonded and created a shared key (i.e. during reconnection),
and in this case they skip the SSP step. Here the two protocols differ, as BR/EDR involves an additional
authentication step. We discuss this part in more detail in Section 2.3.

2.2 Secure Simple Pairing

We next describe Secure Simple Pairing and its four variants: JustWorks, OOB, NumCom, and
PasskeyEntry. At this point the parties have already exchanged their 48-bit addresses A and B, their
IO capability values (leading to the agreement on the variant), and the elliptic curve to be used. In
BR/EDR, if both devices agree on the Secure Connections mode, then the devices use the P-256 elliptic
curve, else the P-192 curve. Both curves are FIPS-approved and defined in the Bluetooth standard. In
BLE, only P-256 elliptic curve is used (in Secure Connections mode). For the elliptic curve operations we
use the “simple” multiplicative presentation. That is, we write ga for the a-fold application of the group
operation to the generator g specified in the standard, without giving any further reference to the group.
When processing elliptic curve points in HMAC or CMAC in Authentication stage 1 of the SSP protocol,
the standard uses the x-coordinate, i.e., we write [ga]x for the x-coordinate of ga. This x-coordinate is a
256-bit value for Secure Connections.

Similarly, when computing the Diffie-Hellman key via the functions P192 resp. P256 in the specification,
only the x-coordinate of the resulting Diffie-Hellman value is used as a shared raw key [BT5.3, Vol 2, Part
H, Section 7.7.4]. We have to account for this by defining partnered sessions later via the x-coordinates of
the exchanged values ga and gb only. Note that for valid curve points1 these x-coordinates [ga]x and [gb]x
fully determine the x-coordinate [gab]x of the Diffie-Hellman key gab. The reason is that the x-coordinate
[ga]x of an elliptic curve point ga determines the y-coordinate up to the sign, and that this signs tells us if
the point is ga or its inverse g−a. Hence, given only [ga]x and [gb]x the potentially correct values are among
g±a and g±b. Since the actual Diffie-Hellman value is then either gab or g−ab—where these points again
share the same x-coordinate—any signs for g±a and g±b yield the same x-coordinate of the key share.

1Since each party checks that the received point is on the curve, one can in particular exclude the invalid curve attack
[BN19].
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To capture both versions of the SSP protocol for BR/EDR and BLE simultaneously, we use abstract
cryptographic procedures for computing the commitment value (Com), hashing (Hash), MAC key compu-
tation (MACKey), MAC computation (MAC), and link key/long-term key computation (KDF). Roughly,
for BR/EDR these algorithms are initialized by HMAC-SHA256 (except for Hash, which uses SHA256 di-
rectly), and for BLE one uses AES-CMAC. The different implementations of the primitives for BR/EDR
and BLE are displayed in Table 2. For the MAC key computation we note that in BR/EDR the Diffie-
Hellman value, here denoted W , can be used directly as a key in the HMAC computation MAC, since
HMAC is able to process large keys. For AES-CMAC in BLE, however, the MAC key is computed via
CMAC(Salt,W ) for a constant Salt and then used as a 128-bit key in the AES-CMAC computation of
MAC.

Table 2: Cryptographic operations of BR/EDR and BLE in SSP. Note that T = CMAC(Salt, W ) for a fixed constant Salt in
the standard; kIDBR/EDR = 0x62746C6B is a 4-octet representing the ASCII string ’btlk’; kIDBLE = 0x62746C65 is a 4-octet
representing the ASCII string ’btle’; for an address A in BLE the address A′ is A extended by another octet 0x01 for a
random address and 0x00 for a public address; the notation /2128 for BR/EDR means that one takes the leftmost 128 bits
of the SHA256 output.

Function BR/EDR BLE
Com(U, V,X, Y ) HMAC(X,U |V |Y )/2128 CMAC(X,U |V |Y )
Hash(U, V,X, Y ) SHA(U |V |X|Y ) CMAC(X,U |V |Y )
MACKey(W,N1, N2, A1, A2) W CMAC(T, 0x00|kIDBLE|N1|N2|A1′|A2′|0x0100)
MAC(W,N1, N2, R, I, A1, A2) HMAC(W,N1|N2|R|I|A1|A2)/2128 CMAC(W,N1|N2|I|A1′|A2′)
KDF(W,N1, N2, A1, A2) HMAC(W,N1|N2|kIDBR/EDR|A1|A2)/2128 CMAC(T, 0x01|kIDBLE|N1|N2|A1′|A2′|0x0100)

Figure 4 shows the Numeric Comparison protocol with the abstract operations. The NumCom protocol
starts with the devices exchanging the Diffie-Hellman values, where the secret values must be picked from
a restricted interval instead of Zq. Namely, the secret keys shall be picked between 1 and q/2. This is
followed by Authentication stage 1 wherein the parties exchange random nonces and involve the user to
confirm a 6-digit number Va resp. Vb. For this the device truncates the hash value over the (x-coordinates
of the) public key parts and the nonces to 32 bits and then converts this to a decimal number. The last
6 digits correspond to the check values. It is followed by Authentication stage 2 in which the parties
confirm the shared Diffie-Hellman key. Finally, both parties compute the link key (in BR/EDR) resp. the
long-term key (in BLE).

We give more details on the other association models in Appendix A. These protocols only differ in
the Authentication stage 1 of the SSP framework which turns out to be irrelevant for our TOFU security
analysis. We merely remark that all association models, among others, exchange random nonces Na and
Nb. We note that, technically, BLE computes the MAC key and long-term key in one step. We have moved
the computation of the long-term key to the end of the protocol in order to comply with the BR/EDR
step for computing the link key there.

2.3 Deriving the Encryption Key

The encryption key is derived differently in Bluetooth Classic and Low Energy. In the classical setting
it corresponds to a mutual challenge-response authentication protocol for the link key, which also enters
the derivation of the session key (usually called AES encryption key in the Bluetooth context, although
it serves as input to the AES-CCM authenticated encryption scheme). That is, the parties exchange the
128-bit random values (AU_RAND), and each party computes the so-called 32-bit signed response (SRES)
for authentication. In BLE instead one simply derives the session key from (concatenated) 64-bit nonces,
called session key diversifier (SKD), without further authentication.

BLE also uses AES-CCM for authenticated encryption of data. Both procedures also produce some
initial nonce offset of 64 bits for the encryption process, denoted as ACO in BR/EDR and IV in BLE.
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Alice (initiator) Bob (responder)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Public Key Exchange (q order of elliptic curve) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a←$Z(q+1)/2 \ {0} //or reuse a ga b←$Z(q+1)/2 \ {0} //or reuse b

gb

validate gb validate ga

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Authentication Stage 1 (NumCom) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Na←$ {0, 1}128 Nb←$ {0, 1}128

ra← rb← 0128 ra← rb← 0128

Cb Cb← Com([gb]x, [ga]x,Nb, 0x00)

Na

Nb

check Cb
Va← Hash([ga]x, [gb]x,Na,Nb) mod 232 Vb← Hash([ga]x, [gb]x,Na,Nb) mod 232

Proceed if user confirms Va Proceed if user confirms Vb

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Authentication Stage 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mk← MACKey([gab]x,Na,Nb,A,B) mk← MACKey([gab]x,Na,Nb,A,B)
Ea← MAC(mk,Na,Nb, rb,AuthReqA|OOBa|IOcapA,A,B) Eb← MAC(mk,Nb,Na, ra,AuthReqB|OOBb|IOcapB,B,A)

Ea check Ea

check Eb Eb

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Link Key/Long-Term Key Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

L(T)K← KDF([gab]x,Na,Nb,A,B) L(T)K← KDF([gab]x,Na,Nb,A,B)

Figure 4: Bluetooth Secure Simple Pairing in mode Numeric Comparison. The session identifier, here and in all other
association models, is given by sid = ([ga]x, [gb]x, A, B, Na, Nb).

In the latter case, the IV is given by the concatenation of the two random 32-bit values IV_C, IV_P,
chosen by either party. From a security viewpoint, while ACO is not transmitted in clear, the IV in BLE
is known by the adversary.

The steps for BR/EDR are described in Table 3 and Figure 5, and for BLE in Figure 6. We use the
common notation of Central and Peripheral since the devices may change roles for reconnections. We note
that in BLE the key derivation step and the data (SKD_C,IV_C resp. SKD_P,IV_P) are transmitted
as part of an encryption request and response message. In BR/EDR the sequence must be preceded
by an encryption_mode request and response. Noteworthy, in contrast to BLE, where the key length is
negotiated as part of the pairing feature extraction, the BR/EDR protocol may negotiate the key length
only here as well. We assume in the following that only the maximal key size is enforced by the devices,
in order to prevent attacks like the KNOB attack [ATR19, ATR20b].

3 Security Model
In this section we define our security model for TOFU key exchange protocols. Given the history of
successful attacks against Bluetooth, especially against authentication, we aim at very basic security of
key secrecy. Since Bluetooth does not achieve forward secrecy—if the link key resp. long-term key is
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Table 3: Secure Authentication and Computation of Encryption Key in BR/EDR Secure Connections. HMAC is HMAC
with SHA256; kIDDev = 0x6274646B is a 4-octet representing the ASCII string ’btdk’ (Bluetooth Device Key); kIDAES =
0x6274616B is a 4-octet representing the ASCII string ’btak’ (Bluetooth AES Key); SRES_C, SRES_P are 32 bits each,
and ACO (Authentication Ciphering Offset) is 64 bits; the notation /2128 means that one takes the leftmost 128 bits of the
SHA256 output.

Value Function
Device Key dk← HMAC(LK, kIDDev|BD_ADDRA|BD_ADDRB)/2128

Confirmation SRES_C|SRES_P|ACO← HMAC(dk,AU_RAND_C|AU_RAND_P)/2128

AES Key kAES ← HMAC(LK, kIDAES|BD_ADDRA|BD_ADDRB|ACO)/2128

Central Peripheral

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dk← dk←
HMAC(LK,′ btdk′|BD_ADDRA|BD_ADDRB)/2128 HMAC(LK,′ btdk′|BD_ADDRA|BD_ADDRB)/2128

AU_RAND_C←$ {0, 1}128 AU_RAND_C AU_RAND_P←$ {0, 1}128

AU_RAND_P

SRES_C|SRES_P|ACO← SRES_C|SRES_P|ACO←
HMAC(dk,AU_RAND_C|AU_RAND_P)/2128 HMAC(dk,AU_RAND_C|AU_RAND_P)/2128

check SRES_P SRES_P

SRES_C check SRES_C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AES Key Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

kAES ← kAES ←
HMAC(LK,′ btak′|BD_ADDRA|BD_ADDRB |ACO)/2128 HMAC(LK,′ btak′|BD_ADDRA|BD_ADDRB |ACO)/2128

(output also ACO as IV) (output also ACO as IV)

Figure 5: Bluetooth BR/EDR Secure Authentication and Encryption Key Derivation. The session identifier for this subpro-
tocol is given by sid = (AU_RAND_C, AU_RAND_P, A, B).

available then all previous connections become insecure—we do not incorporate this feature into our
model. We also note that it is convenient to model the initial connection step with the derivation of
the link key resp. long-term key as a separate session (creating an empty session key but initializing a
permanent connection key), even though usually computation of an encryption key would immediately
follow the initial connection. We let the adversary decide when and how often devices reconnect.

The TOFU property indicates if the session key should be considered to be secure. When initializing
a new session we declare this session to be not trustworthy, and only change this later if there is a honest
partner session to which the session here is connected to, i.e., if the adversary has been passive. All
subsequent reconnections of the session then inherit this flag. Overall, we thus have three flags for keys:
isTested for session keys which have been tested, isRevealed for session keys which have been revealed, and
isTOFU for session keys which have been derived from a trustworthy initialization step. The latter flags
refine the usual freshness condition for session keys.

3.1 Attack Model

We give a game-based security model in the Bellare-Rogaway style [BR94]. We assume that parties have
some identity. For Bluetooth this will be the 48-bits Bluetooth device address BD_ADDR of the device,
which can be either public or random. According to the Bluetooth protocol description we sometimes
denote the identities of connecting devices as A and B. Parties know their identity and also know the
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Central Peripheral
SKD_C←$ {0, 1}64, IV_C←$ {0, 1}32 SKD_P←$ {0, 1}64, IV_P←$ {0, 1}32

SKD_C, IV_C

SKD_P, IV_P

kAES ← AES(LTK,SKD_C|SKD_P) kAES ← AES(LTK,SKD_C|SKD_P)
(output also IV_C|IV_P as IV) (output also IV_C|IV_P as IV)

Figure 6: Bluetooth BLE Encryption Key Derivation. The session identifier is given as sid = (SKD_C, SKD_P).

intended partner’s id when the cryptographic protocol starts (via device discovery). We note that Bluetooth
addresses can be easily changed on a device and are usually not authenticated.

As explained in the introduction we are interested in the trust-on-first-use security of the protocol. We
model this by declaring a trustworthy relationship if two sessions of honest parties are partnered, indicating
that the adversary has been passive in the initial connection. From then on the (now active) adversary
can interact with either of the two parties. We note that the adversary can still start initial connections
with any party and actively participate in these connection. We do not aim to protect the session keys in
such connections but since parties may re-use secret information like the Diffie-Hellman shares in multiple
executions, we need to account for such attack vectors.

For the re-usable Diffie-Hellman key we assume that each party i, at the beginning of the game, is
initialized with a key pair (ski, pki) ← KGen(1λ). To model that the the key may or may not be used in
several sessions we grant the adversary access to a NextPK(i) oracle which renews the key pair of party i.
We note that the new key pair will only be used in future sessions, not in the currently running ones. This
means that each session is assigned a unique key pair. This is modeled by having a counter value pkctri,
initialized to 0, which is incremented with each key rolling.

Sessions. A protocol session lbl = (i, k) is given by a pair consisting of the k-th session in a protocol run
of party with identity i. When the adversary initiates a new session the game assigns the next available
integer k. Each such session lbl holds a set of entries:

• id is the identity i of the party.

• mode, either init or reconnect, describes if this is a new initial connection or a reconnection.

• aux denotes some auxiliary information like the association model JustWorks, PasskeyEntry,
NumCom or OOB which should be used, and further data like passkey ∈ {0, 1, . . . , 9}∗ ∪ {⊥} in the
passkey entry mode or information transmitted out of band.

• ConnectKey describes the connection key (called link key in Bluetooth Classic and long-term key in
Bluetooth Low Energy) which is set during the initial connection and used later to derive further
session keys when reconnecting. Initialized to ⊥.

• The variable state determines if the session is running, or has accepted or rejected.

• The Boolean variable isTested determines if the session key has been tested before. Initialized to
false.

• The Boolean variable isRevealed defines if the session has been revealed. Initialized to false.

• The Boolean variable isTOFU determines if the session key has been derived following a trustworthy
initial connection. Initialized to false.
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• pkctr denotes the counter value of key pair used by party i in the session. When performing protocol
steps the party always uses the key pair identified by this counter value. But the party may actually
use different keys in different sessions concurrently.

• key ∈ {0, 1}∗ ∪ {⊥} describes the session key, initialized to ⊥. Note that for a successful initial
connection in Bluetooth, the session key coincides with the connection key.

• sid ∈ {0, 1}∗ ∪ {⊥} is the session identifier, the initial value is ⊥. The session identifier is set only
once during an execution.

A central property in key exchange protocols is to define when two sessions belong to each other. We
use here the common approach to say that two (distinct) sessions are partnered if they hold the same
(non-trivial) session identifier:

Definition 3.1 (Partnered Sessions) We say that two sessions lbl, lbl′ are partnered if lbl 6= lbl′ and
lbl.sid = lbl′.sid 6= ⊥.

Note that sid 6= ⊥ presumes that the session has accepted.

Adversarial Queries. We consider an active adversary A interacting with the protocol. The adversary
has an access to the following oracle queries:

• InitSession(i, [aux]) establishes a new session at party i (with number k). Assigns the corresponding
values to the entries in lbl = (i, k), i.e., lbl.id ← i, the mode is set to lbl.mode ← init, and the
optional parameter [aux], if present, is stored in lbl.aux (and otherwise this entry is set to ⊥). We set
lbl.state ← running, lbl.pkctr ← pkctri, as well as lbl.isTested, lbl.isRevealed, lbl.isTOFU ← false, since
this establishes a new session in which the active adversary may interact with party i. Return lbl.

• Reconnect(lbl, [aux]) checks if there exists a session with label lbl with lbl.ConnectKey 6= ⊥. If
so it establishes a new session lbl′ = (i, k′) via calling InitSession(i, [aux]) but immediately over-
writes lbl′.mode ← reconnect. The new session inherits the TOFU characteristic of the preceding
session, that is, one sets lbl′.isTOFU ← lbl.isTOFU, and duplicates the previous connection key,
lbl′.ConnectKey← lbl.ConnectKey. Return lbl′.

• Send(lbl,m) sends a protocol message m to the session lbl. Returns ⊥ if the session does not exist
or is not established, and the party’s protocol reply otherwise. When executing the command, the
protocol party may set lbl.sid or change the state lbl.state to accepted or rejected. If lbl.state turns to
accepted then check the following:

– If lbl.mode = init and there exists a partnered session lbl′ to lbl then set lbl.isTOFU← true and
lbl′.isTOFU← true.

– If there exists a partnered session lbl′ with lbl′.isTested = true then set lbl.isTested← true. This
mirrors the property for partnered sessions.

– If there exists a partnered session lbl′ with lbl′.isRevealed = true then set lbl.isRevealed← true.

• NextPK(i) updates the key pair of party i. That is, increment pkctri and compute a new key pair
(ski[pkctri], pki[pkctri])← KGen(1λ).

• Reveal(lbl) returns the session key key of session lbl, or ⊥ if the session does not exist, or if lbl.state 6=
accepted, or if lbl.isRevealed = true. Sets lbl.isRevealed ← true and also lbl′.isRevealed ← true for all
partnered sessions lbl′ with lbl′.sid = lbl.sid.
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• Test(lbl) tests the session key key of the session lbl. If the session does not exist, or lbl.isRevealed =
true, or lbl.isTOFU = false, or key = ⊥, or lbl.state 6= accepted, or lbl.isTested = true, then immediately
returns ⊥. Else returns either the real key key or a random string of length |key|, depending on the
random bit b chosen by the challenger C. Sets lbl.isTested ← true to make sure that the adversary
potentially does not get another random key when testing this session again. For the same reason it
also sets lbl′.isTested← true for all partnered sessions lbl′ with lbl′.sid = lbl.sid.

When considering attacks against the Bluetooth protocol we assume a set I of admissible identities.
We denote by L the set of session labels lbl activated by the adversary.

3.2 Security Properties

We state the two common security properties of key exchange protocols. One is Match-security, covering
basic functional guarantees such as honest executions deriving the same session key, and that the partnering
condition is not “too loose”. The other one is key secrecy. We note that we often define the properties
in the asymptotic sense for sake of simplicity. But we give concrete security bounds when analyzing the
Bluetooth security suite.

In the definition we give the adversary access to the same oracles as for key secrecy, e.g., including a
Test oracle, albeit not oracles may be relevant for the attack. This is only to unify both attacks.

Match-Security. Intuitively, Match-security states that, if two sessions are partnered then they also
hold the same session key (1), and at most two sessions are partnered (2). For reconnections the former
should only hold for sessions which have been connected before and thus hold the same connection key. We
therefore stipulate that the ConnectKey-entry in both executions must be identical if one of the sessions is
in mode mode = reconnect, and split the first requirement into one for initial connections (if at least one
party is in mode mode = init) and one for reconnections.

Definition 3.2 (Match-Security) We say that a key exchange protocol Π provides Match-security if for
any PPT adversary A and identity set I we have

AdvMatch
A,Π,I(λ) := Pr

[
ExpMatch

A,Π,I(λ) = 1
]

is negligible, where

ExpMatch
A,Π,I(λ)

b←$ {0, 1}
forall i ∈ I do

pkctri ← 0
(ski[0], pki[0])←$ KGen(1λ)

AInitSession,Reconnect,Send,NextPK,Reveal,Test({(i, pki[0])}i∈I)
return 1 if
∃ pairwise distinct lbl, lbl′, lbl′′ ∈ L :

(1a) lbl.sid = lbl′.sid 6= ⊥ and lbl.mode = init and lbl.key 6= lbl′.key
(1b) lbl.sid = lbl′.sid 6= ⊥ and lbl.mode = reconnect and lbl.ConnectKey = lbl′.ConnectKey and lbl.key 6= lbl′.key
(2) lbl.sid = lbl′.sid = lbl′′.sid 6= ⊥
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Key Secrecy. Next we define what it means that a session key, derived after a trustworthy initialization
step, remains secret. This should hold even if the adversary mounts an active attack after the TOFU
step. We note that we only need to check eventually that no session has been tested and revealed (or
its partner session has been revealed). The TOFU property, that only keys which have been created in a
trustworthy way should be kept secret, is ensured by the attack model (e.g., the Test oracle immediately
rejects requests for session keys with isTOFU = false).

Definition 3.3 (Key Secrecy) We say that a key exchange protocol Π provides Secrecy if for any PPT
adversary A and identity set I we have

AdvSecrecyA,Π,I (λ) := Pr
[
ExpSecrecyA,Π,I (λ) = 1

]
− 1

2

is negligible, where

ExpSecrecyA,Π,I (λ)

b←$ {0, 1}
forall i ∈ I do

pkctri ← 0
(ski[0], pki[0])←$ KGen(1λ)

a←$AInitSession,Reconnect,Send,NextPK,Reveal,Test({(i, pki[0])}i∈I)
return 1 if
a = b and there are no sessions lbl, lbl′ ∈ L with

lbl.sid = lbl′.sid but lbl.isRevealed = false and lbl′.isTested = true

4 Security of Bluetooth
In this section we show that the Bluetooth protocol suite (for both BR/EDR and BLE) provides a secure
TOFU key exchange protocol. In the security statements below we usually refer to the Bluetooth protocol
Π, capturing either ΠBR/EDR or ΠBLE, and only refine the concrete security bounds with respect to the
specific protocol. We note that we view the initial pairing phase as creating a permanent key, equal
to the link key resp. long-term key, but formally no session key. Session keys are then derived via the
corresponding mechanisms in the protocol. This is valid since the model also allows empty session keys,
which trivially satisfy correctness and security properties.

4.1 Security Assumptions

For our security results we merely need two assumptions. One is the PRF-ODH assumption to draw
conclusions about the re-used Diffie-Hellman value in the SSP protocol, and the other one is the key
derivation in the reconnection steps.

PRF-ODH Assumption. The PRF-ODH assumption states that applying a pseudorandom function
PRF to a Diffie-Hellman key guv and an adversarial chosen string x∗ looks random, even if the adversary
learns related outputs of PRF. The only restriction is that the adversary cannot ask for PRF(guv, x∗)
directly. We work here with the so-called mm setting [BFGJ17] where the adversary can make multiple
queries for both Diffie-Hellman keys gu and gv. This is necessary since either Bluetooth device may reuse
the key in other sessions. We also assume that the adversary has access to both Diffie-Hellman parts and
oracles at the outset.
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We formulate the PRF-ODH assumption close to the deployment in Bluetooth. The Bluetooth specifi-
cation [BT5.3, Vol 2, Part H, Section 7.6] says that the secret exponents shall be picked between 1 and q/2.
This does not seem to violate the security of the PRF-ODH assumption, since the most significant bit of
the discrete logarithm is a hardcore bit [BM84, HN04]. Hence the adversary’s behavior should not change
significantly when given gu with u being in the range 1 and q/2, or in the range q/2 and q. Analogously
for v.

Further, the key derivation only uses the x-coordinate [gab]x of the Diffie-Hellman value shared by the
two parties. Note that this coordinate determines the entire value up to the sign of the y-coordinate, and
that the two options for the sign describe the value gab and its inverse (written as g−ab in multiplicative
form). We modify the PRF-ODH accordingly by using only the x-coordinate in the computations. This
causes us to be more restrictive when it comes to the queries to the related values, implemented via the
oracles ODHu and ODHv: we require that the adversary never queries these oracles about the challenge
value guv with label x∗, nor about g−uv with x∗ (because both values would yield the same output after
projection of guv resp. g−uv onto the same x-coordinate). We note that in the security proof for Bluetooth,
our reduction to the PRF-ODH problem will indeed only use different labels x 6= x∗ for ODH queries, such
that this is always satisfied.

Definition 4.1 (PRF-ODH Assumption) Let G be a cyclic group of prime order q = q(λ) generated
by g. Let PRF : G × {0, 1}∗ → {0, 1}∗ be a pseudorandom function, taking a key k ∈ G and a string s as
input, and producing a string PRF(k, s) as output. For a given w ∈ Zq let ODHw : G × {0, 1}∗ → {0, 1}∗
be the function which takes as input X ∈ G and string s and returns PRF([Xw]x, s).

We say that the PRF-ODH assumption holds relative to G if for any PPT adversary A we have

AdvPRF-ODH
A,PRF,G (λ) := Pr

[
ExpPRF-ODH

A,PRF,G

]
− 1

2

is negligible, where
ExpPRF-ODH

A,PRF,G

u, v←$Z(q+1)/2 \ {0}, b←$ {0, 1}
U ← gu, V ← gv

(x∗, st)←$AODHu(·,·),ODHv(·,·)(U, V )
y0 ← PRF([guv]x, x∗), y1 ← {0, 1}|y0|

a←$AODHu(·,·),ODHv(·,·)(st, V, yb)
return a = b

where we assume that A never makes a query (A, x) = (V ±1, x∗) to oracle ODHu resp. (B, x) = (U±1, x∗)
to ODHv.

We note that for Bluetooth Classic the pseudorandom function PRF(W,x) is HMAC(W,x). For BLE
it is a nested CMAC computation, PRF(W,x) = CMAC(CMAC(Salt,W ), x). It seems plausible to assume
that the PRF-ODH assumption holds for these instantiations. We also note that the PRF-ODH assumption
implicitly stipulates that the Diffie-Hellman problem is hard, i.e., small subgroup attacks such as in [BN19]
must be prevented. This is usually done by checking the validity of the curve points.

Pseudorandom Function. For the reconnection steps we require that the underlying function HMAC
in BR/EDR and AES in BLE, from which the encryption keys are derived, behave like pseudorandom
functions. For an adversary C let AdvPRFC,PRF(λ) denote the common security advantage of C distinguishing
a PRF(k, ·) oracle from a random function oracle, the choice which oracle is used made at a random.
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4.2 Match Security

We first argue Match-security of the Bluetooth protocol. Recall that we set the session identifiers to consist
of sid = ([ga]x, [gb]x, A,B,Na,Nb) for the initial connection, and sid = (AU_RAND_C,AU_RAND_P,A,B)
for BR/EDR reconnections resp. sid = (SKD_C,SKD_P) for BLE. Also note that the parties may reuse
their Diffie-Hellman secret across multiple executions; the nonces, however, are fresh 128-bit values, cho-
sen randomly in each session and present in each of the SSP subprotocols. Furthermore, recall that the
initial connection derives an empty session key and that the link key resp. long-term key is stored as the
permanent key in entry ConnectKey of the session.

Proposition 4.2 (Match-Security) The Bluetooth protocol Π provides Match-security. That is, for any
adversary A calling at most qs sessions we have

AdvMatch
A,Π,I(λ) ≤ q2

s · 2−|nonce|,

where |nonce| = 128 for BR/EDR and |nonce| = 64 for BLE.

The reason for having different bounds stems from the distinct key derivation when reconnecting.
Both protocol versions use 128-bit nonces for initial connection, but only BR/EDR uses 128 bit values
for reconnections; BLE instead uses the 64-bit session key diversifiers.

Proof. For the first properties, (1a) and (1b), that partnered sessions have the same session key, note
that the link/long-term key in an initial connection is computed as KDF([gab]x,Na,Nb, A,B) such that
the output of the (deterministic) key derivation matches for equal session identifiers. Recall that the x-
coordinates of ga and gb determine the one of gab. Also, session identifiers for the initial connection and
reconnections differ in length such that they cannot match the other type (in both BR/EDR and BLE).
For reconnections the session identifiers (AU_RAND_C,AU_RAND_P, A,B) resp. (SKD_C,SKD_P)
fully specify the derived session keys together with the same link/long-term key, implying a match as well.

For the second property note that if there were three sessions with the same session identifier sid, then
two of them must be in the role of Alice (or Bob). If we have at most qs sessions in total, there are at most q2

s

such pairs of two Alice- or Bob-sessions. The honest party picks a fresh nonce Na resp. Nb in each of these
two executions (for initial connections in either mode), and fresh values AU_RAND_C,AU_RAND_P
for reconnections in BR/EDR resp. 64-bit values SKD_C,SKD_P in BLE. it follows that each pairs
yields a nonce collision with probability at most 2−|nonce| = 2−128 in BR/EDR resp. ≤ 2−64 in BLE. The
overall threefold collision probability for session identifiers is thus at most q2

s · 2−|nonce| as stated. �

4.3 Key Secrecy

As it turns out, key secrecy does not depend on the Authentication stages 1 and 2 of the protocol. As
such the analysis easily works for all modes of the protocol simultaneously.

Proposition 4.3 (Key Secrecy) The Bluetooth protocol Π provides trust-on-first-use Secrecy. That is,
for any adversary A initiating at most qs sessions there exists adversaries B and C (with roughly the same
run time as A, and C making at most qs oracle queries) such that

AdvSecrecyA,Π,I (λ) ≤ q3
s ·AdvPRF-ODH

B,PRF,G (λ) + qs ·AdvPRF
C,PRF′(λ) + q2

s · 2−|nonce|.

where |nonce| = 128, and PRF in the PRF-ODH case is HMAC for BR/EDR resp. CMAC(CMAC(Salt, ·), ·)
for BLE, and PRF′ for reconnections is HMAC for BR/EDR resp. AES for BLE.
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We note that the reduction factor q3
s is indeed large but follows other analyses. A factor qs comes from

the multiple test queries which our model allows, and the quadratic term q2
s from the need to guess the

correct insertion points of the Diffie-Hellman keys. For instance, Troncoso and Hale [TH21] also have the
quadratic loss factor for the model with a single-test query. Tighter security bounds usually require other
techniques as used in Bluetooth [GJ18] or to use and program a random oracle [CCG+19, DJ20]. The
latter may nonetheless be a viable way to reduce the loss factor in Bluetooth as well. On the other hand,
since Bluetooth is a short-range technique mounting attacks with an extensive number of sessions seems
to be hard. Indeed, a factor q2

s would disappear if the adversary had to announce the target in advance.

Proof. The proof proceeds via game hopping. We start with the original attack on the Bluetooth protocol.
Then we gradually change the game till we reach the point where, independently of the challenge bit b, the
adversary only gets to see random keys. We denote by Pr[Gamej ] the probability that the adversary wins
in the corresponding game (over the guessing probability). In particular, Pr[Game0 ] = ExpSecrecyA,Π,I (λ)− 1

2 .
Game 0. Is the original attack on the protocol. We assume in the following without loss of generality
that the adversary never reveals or tests an empty session key of a session in mode mode = init.
Game 1. In Game1 we assume that there are no three sessions (in mode mode = init) with the same
session identifier.

It follows as in the case of Match-security that this happen with probability at most q2
s ·2−|nonce|. Note

that we here have |nonce| = 128 (and not 64) because both versions, BR/EDR and BLE, use 128-bit
nonces in the pairing step.
Game 2. In Game2 we replace the connection key ConnectKey in each session lbl in mode lbl.mode = init
upon acceptance as follows: If there is a partnered session lbl′ which has accepted before—there can be at
most one by the previous game hop—set lbl.ConnectKey ← lbl′.ConnectKey. Else, replace lbl.ConnectKey
by a random string of the same length.

Observe that the sessions where we replace keys are those which are considered to be trustworthy in
the sense that they completed an initial execution with a passive adversary (isTOFU = true). We note that
the former step in the replacement above only ensures consistency; in the protocol execution in Game1 the
parties would derive the same ConnectKey by construction.

We argue that Pr[Game1 ] ≤ Pr[Game2 ] + q3
s ·AdvPRF-ODH

B,PRF,G (λ). The argument is via an (interactive)
hybrid argument against the PRF-ODH assumption. That is, our adversary B picks a random index h
between 1 and qs and replaces (in a consistent way) the first h − 1 such keys randomly, for the h-th key
B uses the challenge value of the PRF-ODH game, and leaves the remaining keys untouched (unless it
overwrites them for consistency reasons). To map the at most qs Diffie-Hellman keys to the PRF-ODH
challenge values U, V our algorithm B try to guess the right indexes i, j of the insertion positions of U , V
as responses to NextPK calls. If the predictions for i or j turn out to be wrong we will output a random
guess instead, effectively reducing the distinguishing advantage against PRF-ODH by a factor of q2

s .
Adversary B runs A’s attack in Game1, simulating the protocol steps of the honest parties genuinely,

and with the replacement explained above according to the hybrid parameter h. Note that B can use its
oracles ODHu and ODHv to perform the key derivation and MAC key compute on behalf of the honest party
for other sessions involving the Diffie-Hellman parameters U, V , without knowing the discrete logarithms.
That is, for any received group element C and label x (specified by the Bluetooth protocol) in a protocol
execution for the party’s Diffie-Hellman share U or V , our adversary calls its oracle about (C, x) to compute
the correct value. We argue below that the queries also comply with the restriction on trivial queries to
ODHu and ODHv.

Our adversary B eventually replaces the first h − 1 connection keys by random values (but con-
sistently). For the h-th connection key, algorithm B calls its PRF-ODH challenge oracle about label
x∗ = Na|Nb|’btlk’|A|B resp. x∗ = 0x01|’btle’|Na|Nb|A|B|0x0100 according to the protocol description.
Algorithm B overwrites the connection key with the answer to the challenge (unless the key has already
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been overwritten for consistency reasons). The remaining connection keys remain unchanged, unless they
need to be adapted for consistency reasons.

We note that the nonces are unique in two sessions such that the label x∗ asked to the challenger in
the PRF-ODH game can only appear later again if the partnered session completes its execution. In this
case our algorithm B can simply copy the ConnectKey value. For any other label x 6= x∗ it can query its
oracles ODHu and ODHv to derive the same keys.

Adversary B eventually checks if A succeeds in attacking the game. If so, it outputs its guess 0, else 1
(or a random bit if the predictions for i or j have been wrong). A standard analysis of the hybrid method
shows that the difference between the probabilities in Game1 and Game2 is bounded by B’s advantage
against the PRF-ODH assumption (times the loss factor q3

s).
Game 3. In Game3 we can now replace all session keys in sessions lbl.mode = reconnect and lbl.isTOFU =
true by random values, ignoring any consistency requirement.

Note that such sessions are exactly those where we have replaced the connection key ConnectKey by a
fresh random value. Also observe that the security game ensures that the key of the partner session of a
revealed session key or any tested session key cannot be obtained again, such that we do not need to take
care of consistency here. It follows now via a straightforward reduction to the pseudorandomness of HMAC
resp. AES, with a hybrid argument over all at most qs connection keys, that this is indistinguishable from
the adversary’s point of view.

In game Game3 the adversary gets to see a random and independent session key in either of the two
cases of the challenge bit b. Hence, the probability of predicting b correctly is exactly 1

2 . The claim now
follows from collecting all probabilities. �

5 Privacy in Bluetooth LE
Bluetooth Low Energy supports address randomization technique to provide privacy. We show here that
this mechanism indeed achieves privacy (against outsiders) if one neglects other attack possibilities based
on physical features or other observable data.

5.1 Details on Privacy Mechanisms in Bluetooth Low Energy

For the BLE protocol we dive into the link establishment process to understand better the privacy mech-
anisms.

Types of Addresses. To support the privacy mechanism, the standard specifies four types of Bluetooth
addresses BD_ADDR (their relation is given in Figure 7) in LE:

Public Addresses: A globally unique device identifier MAC, consisting of a 24-bit vendor identifier and a
local identifier chosen by the vendor.

Static Random Address: A random address which is set once for the device’s lifetime or can be changed
upon reboots. Such addresses carry the most significant bit values ’11’, what allows distinguishing
them from the next two types.

Non-Resolvable Random Private Addresses: A frequently changed random address (with the most
significant bits set to ’00’). The standard recommends to renew random addresses, including this
type and the next one, at least every 15 minutes [BT5.3, Vol 3, Part C, App. A].

Resolvable Random Private Addresses: A random address wherefrom a trusted device can extract
the Public or Static Random Addresses. It consists of 24 bits prand that are set randomly—effectively
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only 22 random bits since the most significant bits correspond to ’01’— and the other 24 bits are
computed as a (pseudorandom) hash from prand for an Identity Resolving Keys (IRK). This Identity
Resolving Key must have been shared with the trusted device in a previous connection.

Bluetooth Device Address BD_ADDR

Public Address

Random

Static Random Address

Private

Resolvable Pri-
vate Address

Non-resolvable
Private Address

Identity Address

Figure 7: Types of the Bluetooth Device Addresses in BLE.

Generating Resolvable Random Private Addresses. The Identity Resolving Key IRK is a device-
specific 128-bit value. It can be assigned or generated randomly during manufacturing, but the standard
also allows any other methods to create the IRK. It can be also generated from a 128-bit Identity Root
IR as IRK ← AES(IR, 096|0x01|0x00). Noteworthy, unlike the IRK, the identity root IR is supposed to
have 128 bits of entropy according to the standard. In fact, if the IRK is all-zero, then the device does
not support resolvable private address. We assume in the following that the IRK is created randomly and
non-zero.

With an IRK, the device can generate a (pseudo)random address as follows:

BD_ADDR← [prand | AES(IRK, 0104|prand) mod 224],

where the 24-bit value prand consists of the 22 random bits and ’01’. In order to resolve the obtained
random private address BD_ADDR, the receiving device extracts prand out of the received address. Then
the device goes through its list of stored IRKs and for each entry checks whether the AES-computation
with that IRK for the (padded) value prand matches the BD_ADDR. If so, it can look up the actual address
of the device and the long-term key, stored together with the IRK. If the device does not find a matching
IRK in the list, then it ignores the PDU from the other party.

Devices achieve privacy only if they have bonded and exchanged the necessary keys, IRK and CSRK,
as well as the identities (either static random addresses or a public addresses). The exchange of these
data happens after the devices have performed the initial connection and enabled encryption. First the
Peripheral sends its IRK, address, and CSRK. Then the exchange is followed by the Central sending the
information in the same order. This means that both parties share their IRK with any other bonded
device, but the exchange is done over a secured communication channel. The specification also allows
IRKs to be pre-distributed. However, we do not consider this case here since it requires assumptions on
the channel during the pre-distribution procedure.

Discovery Phase. Link establishment starts with a discovery process. During this process, two devices
in proximity synchronize, by one device advertising and the other scanning for potential connections.
The link layer Central is called the initiator, and the link layer Peripheral is called the responder. The
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advertising protocol data unit (PDU) has the following format:

structure Header Payload
field PDUtype RFU ChSel TxAdd RxAdd Length AdvA AD1 AD2 . . .

bits 4 1 1 1 1 8 48 variable variable . . .

The important for privacy information contained in the packets are the Bluetooth addresses BD_ADDR in
the AdvA field in the payload, which can be one of the four aforementioned types. The flags TxAdd and
RxAdd in the header indicate whether the transmission address (TxAdd) resp. reception address (RxAdd) is
random (= 1) or public (= 0). The Payload may contain additional advertisement data (AD) elements,
like the AD type flag and AD data. The latter can be for example a human-readable “complete local
name”. We simply write AD1,AD2, . . . for these data elements.

The entries PDUtype contain the advertisement type, RFU is reserved for future use, ChSel determines
whether the device supports an alternative channel selection algorithm, Length describes the length of the
payload.

Pairing Feature Extraction. Once the devices have established the link, the pairing starts with the
pairing request and response. This information determines the features how the two devices can pair. The
pairing requests contain the following information:

field Code IOcap OOB AuthReq MaxEnc InitKey RespKey
sub BF MITM SC KP CT2 Rsrv LTK IRK CSRK LK Rsrv
bits 8 8 8 2 1 1 1 1 2 8 1 1 1 1 4 8

The most relevant for privacy entries here are SC: the bit that indicates whether the device supports
the “Secure Connections” mode. If both parties have this flag set, then the devices use the P-256 elliptic
curve, else they go for the legacy mode. Bit BF defines whether two pairing devices will create a bond
(i.e. store the security and identity information, such as LTK, IRK CSRK) or not. The other important
entry is the IOcap byte, which describes the input/output capabilities of the device.

The entry MaxEnc sets the number of octets for encryption keys. The lack of authentication of the
entries enabled the “Key Negotiation of Bluetooth” (KNOB) attack [ATR19, ATR20b] where the man-in-
the-middle adversary sets the entry to 7 bytes for long-term keys in BLE, making the devices use a weak
key. To prevent this downgrade attack, devices should only support 128-bit keys. We presume that this
countermeasure is in place.

The further entries are as follows: the entry Code determines whether this is a request or response, OOB
specifies whether OOB data is available; BF says whether the device supports bonding; MITM determines
whether the device requests to use man-in-the-middle protection (e.g., if neither OOB nor MITM are set
on the devices, then they revert to JustWorks connections; if the OOB flags are not set and at least
one device sets MITM, then they use IOcap to determine the connection method); KP is the keypress flag
used in the passkey entry mode, CT2 defines what is used as input to AES-CMAC for generation of an
intermediate key when conversing LTK to LK and the other way around.

The initiator and responder distribution key entries InitKey and RespKey contain information used
in the optional “Transport Specific Key Distribution” phase that determines the data exchanged when
bonding. For Secure Connections, the Central or the Peripheral can later send either of the following
information: the “Identity Resolving Key” IRK to resolve pseudorandom addresses when reconnecting;
the public, or static random address; and the “Connection Signature Resolving Key” CSRK to authenticate
(unencrypted) data. We stress that the flags here only indicate which keys should be distributed; the actual
data is exchanged later.
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We note that all these data are sent in clear. This potentially allows distinguishing devices based on
their features. This is inevitable, therefore we aim in the following to protect only devices with identical
features and focus only on the cryptographic transcript part.

5.2 Privacy Requirements

The Bluetooth protocol aims to hide a device’s identity if private address resolution is used and against
outsiders with which the private address resolution has not been established [BT5.3, Vol 3, Part H, Section
2.4.2.1]:

“The privacy concept only protects against devices that are not part of the set to which the
IRK has been given.”

Since any communication with the adversary controlling some device would reveal the IRK, we thus only
consider executions between devices in which the adversary is passive.

To capture this behavior, we give the adversary only a Test oracle which it can query about three devices.
One device serves as the communication partner with one of the other two devices, where the choice is
made at random according to some challenge bit b. The devices either start a new initial connection or
reconnect, and the adversary gets to learn the transcript of the communication. The task of the adversary
is to predict the bit b. To avoid trivial attacks, we assume that two devices in question either both share
an IRK with the other device or neither of them.

Formally, the Test oracle takes as input three identities i0, i1, j ∈ I of devices and a value mode,
either equal to init or to reconnect, and some auxiliary information aux (e.g., describing the requested SSP
protocol). The oracle, holding the random challenge bit b, runs an execution between device ib and j
according to the parameters and returns the transcript to the adversary.

As mentioned before, the distribution of IRK and BD_ADDR happens after the devices have enabled
encryption. Therefore, we extend the initial connection procedure by forcing the devices to enable encryp-
tion and perform the key distribution step. If this does not happen, the pairing step (and hence the initial
connection) fails and the devices are not considered bonded.

To strengthen the definition, we assume that the adversary learns all actual addresses of the devices
at the outset. We may for simplicity assume that the identity i of a device equals this address. For
initialization we also assume that a secret key, called IRK here as well, is generated at the beginning of
the security experiment.

Definition 5.1 (Outsider Privacy) The key exchange protocol Π provides outsider privacy if for any
PPT adversary A

AdvPrivacyA,Π (λ) := Pr
[
ExpPrivacyA,Π (λ) = 1

]
− 1

2
is negligible, where

ExpPrivacyA,Π,I (λ)

b←$ {0, 1}
forall i ∈ I do

IRK←$ {0, 1}128 \ {0}
a←$ATest(I)
return 1 if a = b
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5.3 Privacy Guarantees of BLE

We say that a device running BLE is in full privacy mode if it uses a non-resolvable random private address
when establishing an initial connection to some other device, and a resolvable one when reconnecting to
that device. Furthermore, we assume devices use a fresh Diffie-Hellman value in each SSP execution.

Proposition 5.2 (Outsider Privacy) The Bluetooth LE protocol ΠBLE in full privacy mode provides
outsider privacy. That is, for any adversary A calling at most qs test sessions, there exists an adversary
B (with roughly the same run time as A) such that

AdvPrivacyA,ΠBLE,I(λ) ≤ q2
s · 2−|prand|+2 + qs ·AdvPRF

B,AES(λ).

where |prand| = 24.

Note that two bits of prand are reserved to signal the address type such that prand only consists of
22 random bits. We remark that the bound is tight in the sense that there is an adversary that can
link a device (and thus predict the challenge bit) with probability q2

s · 2−|prand|+2. For this the adversary
considers one device (with identity j) and one target device (with identity t) and initializes qs other devices.
It connects each of the qs + 1 devices to j such that they all share an individual IRK with device j. Then
it calls the Test oracle to reconnect device j to either device t, or to the next unused additional device.
If at some point the same random address appears twice then the adversary concludes that the secret bit
b is 0 and the target device t is communicating. If no such collision occurs then the attacker outputs a
random bit.

For the analysis note that if the Test oracle always picks the device t with the same IRK, i.e., b = 0,
then a collision on prand implies a collision on the full address. Hence this happens with probability
roughly q2

s · 2−22. For different devices and fresh IRKs this happens rarely, with probability approximately
q2
s ·2−46, even if the prand values collide. The difference in probabilities is thus still in the order of q2

s ·2−22.
If neither case occurs, then our attacker succeeds with probability 1

2 by the random guess, such that the
overall advantage is close to q2

s · 2−22.

Proof (of Proposition 5.2). We proceed once more by a game-hopping argument. We denote again by
Pr[Gamej ] the probability that the adversary wins in the corresponding game (over the guessing proba-
bility).
Game 0. Game Game0 is the original attack on the privacy.
Game 1. We declare the adversary to lose if the prand parts of the initially transmitted resolvable
addresses in any pair of reconnection calls to Test collide.

Note that since each device chooses 22-bits of the value prand randomly the probability of such a
collision, independently of the question whether the test oracle uses the left or right device, is given by at
most q2

s · 2−22. Hence, Pr[Game0 ] ≤ Pr[Game1 ] + q2
s · 2−22.

Game 2. In Game2 we replace the most significant 24 pseudorandom bits in this resolvable private random
addresses transmitted or used in a reconnection step by independent random bits (chosen randomly once
but fixed in this execution). Internally, the receiving party of such a modified address will be told the
correct entry in the list.

Starting with Game1 we first replace the pseudorandom functions AES(IRK, ·) for each distinct IRK
by a random function (but using the same random function for re-appearing IRK’s). We can do this by
a hybrid argument among the (at most) qs different keys IRK, simulating the other game steps. Note
that we can identify re-appearing IRKs by looking at the identities of devices. This step occurs a loss of
qs ·AdvPRFB,AES(λ), where B is the game-simulating adversary. We now apply a random function to different
inputs, since all prand values are distinct by the previous game hop. This effectively means that all the
24-bit outputs are random. This corresponds now exactly to Game2.

25



We finally note that all the cryptographic parts in transcripts generated by the Test oracle are inde-
pendent of the device. In initial connections the device ib in a Test query uses a non-resolvable private
random address and a fresh Diffie-Hellman value, by the assumption about the full privacy mode of the
device. All other protocol steps of an SSP run are neither device-specific. (Note that the addresses used in
the protocol are the now updated values, and that we assume that the IO capablities of the devices i0, i1
in a Test query must be equal.)

In each reconnection step, the resolvable private random address is now purely random, and otherwise
the parties only exchange random values SKD_C, IV_C and SKD_P, IV_P. It follows that this step
does not depend on the device in question. Since each Test oracle query in the final game is therefore
independent of any device-specific data, the adversary cannot do better in the final game than guessing
the challenge bit b. �

6 Conclusion
Our results complement the long list of successful attacks on the Bluetooth protocol suite. These attacks
exploit dependencies between different subprotocols or even between the BR/EDR and BLE technology,
or the possibility to downgrade the data. We show that if one sticks to the strongest connection model,
then the only attack possibility against key secrecy is to be active during the initial connection step.
Otherwise the encryption keys are secret, albeit the role of the parties nor their identity is authenticated.

Based on our experience with the analysis of the Bluetooth standard, we would like to conclude that
the standard is hard to digest, both in terms of size as well as in terms of clarity. Especially when it comes
to the desired security properties, the standard is rather vague in the sense that the requirements are not
specified or subsumed under imprecise terms. To give an example, the term “authentication” is used in
several contexts with different meanings. It could be entity authentication in the sense that the devices’
identities are confirmed, or key authentication in the sense that only intended partner derive the session
key, or a form of protection against man-in-the-middle attacks. The Authentication stage 2 in the SSP
protocol rather seems to be a key confirmation step.
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A Other Subprotocols for Association Models in SSP
In this section we give the other subprotocols for the different association models used in the SSP protocol:
JustWorks, PasskeyEntry, and OOB. The execution of NumCom subprotocol is shown in Figure 4
in Section 2.2. We note that we only need to describe the Authentication stage 1 in SSP for the different
models since the other stages are identical for all association models (apart from OOB, wherein additional
step with pre-distribution of the information is needed, see A.3 for details).

The models are chosen based on the IO capabilities of the devices according to Table 1.

A.1 Just Works

The Authentication stage 1 association model JustWorks does not perform any checks involving the
user. It can be seen as a simplified version of NumCom without the user checking the 6-digit numbers.
The check and confirmation of the commitment is done hence automatically by the initiating device. The
protocol is displayed in Figure 8.

Alice (initiator) Bob (responder)

. . . . . . . . . . . . . . . . . . . Authentication Stage 1 (JustWorks) . . . . . . . . . . . . . . . . . . .

Na←$ {0, 1}128 Nb←$ {0, 1}128

ra← rb← 0128 ra← rb← 0128

Cb← Com([gb]x, [ga]x,Nb, 0x00)

Cb

Na

Nb

check Cb

Figure 8: Bluetooth Authentication stage 1 in Secure Simple Pairing in mode Just Works.

A.2 Passkey Entry

The Authentication stage 1 of the PasskeyEntry association model has the user enter (on both or just
one side) a 6-digit number. In the case of one-side entering, one device displays the digits that need to be
entered by a user on the other device. We define this by distribution of the passkey happening outside the
protocol, i.e. the devices simply inherit it, even if one device generates it randomly in order to display for
user.

This passkey value is transformed into a 20-bit string and then both parties run 20 check rounds, one
with the next bit (padded with 0b1000000 since the packet must contain at least one byte) of the 20-bit
passkey value. In each round, the parties pick fresh 128-bit nonces. The nonces in the final rounds are set
to be Na and Nb; and the passkey is padded with 0 to form a 128-bit long string. The protocol is displayed
in Figure 9.
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Alice (initiator) Bob (responder)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Authentication Stage 1 (PasskeyEntry) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

r ∈ {0, .., 9}6 r ∈ {0, .., 9}6

rb← ra← r ra← rb← r

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Repeat i=1...20 times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

rai ← i-th bit of ra rbi ← i-th bit of rb
Nai←$ {0, 1}128 Nbi←$ {0, 1}128

Cai ← Com([ga]x, [gb]x,Nai, 1000000|rai) Cbi ← Com([gb]x, [ga]x,Nbi, 1000000|rbi)

Cai

Cbi

Nai

Check Cai

Nbi

Check Cbi

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Repeat end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

rb← 0108|rb, ra← 0108|ra ra← 0108|ra, rb← 0108|rb
Na← Na20,Nb← Nb20 Nb← Nb20,Na← Na20

Figure 9: Bluetooth Authentication stage 1 in Secure Simple Pairing in mode Passkey Entry.

A.3 Out-of-Band

In OOB association model, the devices exchange some data via an alternative (out-of-band) channel. The
data includes the Bluetooth address of a device, commitments of the public keys, and random values that
are used in further execution. The out-of-band communication precedes the discovery of the devices and
protocol execution. The reversed order, when OOB communication happens during the protocol execution,
is not supported by Bluetooth [BT5.3, Vol 1, Part A, Section 5.2.4.3]. The Authentication stage 1 of the
OOB association model as well as OOB communication are displayed in Figure 10.

During the discovery and feature communication phase, the devices check whether they have received
the values from the other device throughout OOB communication and still have the information present.
If this is true, they set the OOB flag correspondingly. We note that the protocol allows the case of only one
device being able to transmit data via another channel. However, even in this case both devices exchange
the nonces during the Authentication stage 1.

If OOB pairing failed, the devices choose the other pairing method depending on their IO capabilities
and proceed immediately.
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Alice (initiator) Bob (responder)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . OOB Information Collection (OOB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ra←$ {0, 1}128 rb←$ {0, 1}128

Ca← Com([ga]x, [ga]x, ra, 0x00) Cb← Com([gb]x, [gb]x, rb, 0x00)

. . . . . . . . . . . . . . . . . . . . . . . . . . . .OOB Information Transfer (beginning) . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A, ra, Ca

B, rb, Cb

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OOB Information Transfer (end) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

... in-band protocol execution ...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Authentication Stage 1 (OOB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

check Cb check Ca

rb← 0128 , ra← 0128 ra← 0128 , rb← 0128

Na←$ {0, 1}128 Nb←$ {0, 1}128

Na

Nb

Figure 10: Bluetooth Authentication stage 1 in Secure Simple Pairing in mode Out-of-Band. Gray color indicates the steps
that are used in one-way data transmission only. Dashed steps stand for the case of A transmitting data resp. dotted for
B transmitting data.
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B Acronyms, Glossary, and Variables
In this section, we give three lists for easier navigation throughout the paper. The first list in B.1 consists
of acronyms that are used in the paper and the Core Specification [BT5.3]. The second list in B.2 contains
the terms from the Core Specification adapted to the paper. The last list in B.3 includes variables used in
the paper and the Core Specification.

B.1 Acronyms

BLE Bluetooth Low Energy
BR/EDR Basic Rate/Enhanced Data Rate
CSRK Connection Signature Resolving Key
DDH Decisional Diffie–Hellman
ECDH Elliptic Curve Diffie-Hellman
GATT Generic attribute profile
IO Input/Output
IRK Identity Resolving Key
IV Initialization vector
LK Link Key
LTK Long-term key
L(T)K Long-term and Link key
MAC Media Access Control or Message Authentication Code
MITM Monster in the Middle
ODH Oracle Diffie–Hellman
OOB Out of Band
PDU Protocol Data Unit
PPT Probabilistic Polynomial-time
PRF Pseudorandom Function
PRF-ODH Pseudorandom-function oracle-Diffie–Hellman
SSP Secure Simple Pairing
SC Secure Connections
TOFU Trust on the first use
UUID Universally Unique Identifier

B.2 Glossary

A

Association model is one of the four subprotocols (JustWorks, NumCom, OOB, PasskeyEntry)
in SSP protocol for nonce exchange. See more in [Vol 1, Part A, Section 5.2.4].

Authentication is a challenge-response procedure to authenticate bonded devices in BR/EDR. See
more in Section 2.3 or in [Vol 2, Part H, Section 5].

B

Bonded devices are the devices that had successful initial connection.

Bonding is an optional procedure of storing the connection key established during the pairing process.
Bonding is necessary to form long-term relationship between two devices. See more in [Vol 1, Part
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A, Section 5.1].

C

Connection key is a secret key derived during pairing. It corresponds to LK for BR/EDR and LTK for
BLE (SC). The connection key can be stored via bonding procedure for future reconnections.

Connection Signature Resolving Key (CSRK) is a 128-bit key used to sign data and verify signa-
tures on the receiving device [Vol 3, Part H, Section 2.4.1]. See more in [Vol 3, Part H, Section
2.4.2.2].

D

Dedicated Bonding is a bonding aiming for creation of the bond between two devices without accessing
any service. See more in [Vol 3, Part C, Section 6.5.3.2].

E

Encryption key (kAES) is an symmetric encryption key generated during the Session Key Agreement
procedure.

Encryption Key Generation is a procedure to generate an encryption key (AES key) kAES in BR/EDR.
See more in Section 2.3 or in [Vol 2, Part H, Section 3.2.5].

G

General Bonding is a necessary bonding done for consequential service accessing. See more in [Vol 3,
Part C, Section 6.5.3.1].

I

Identity Resolving Key (IRK) is a 128-bit key used to generate and resolve random addresses [Vol 3,
Part H, Section 2.4.1]. See more in Section 5.1 or in [Vol 3, Part H, Section 2.4.2].

Initial connection is a set of actions (radio link establishment, pairing, and bonding), necessary to
establish the bond between two devices.

L

Link Key (LK) is a connection key in BR/EDR.

Link Layer Encryption is a procedure to generate an encryption key (AES key) kAES in BLE. See
more in Section 2.3 and in [Vol 6, Part B, Section 5.1.3].

Long-term key (LTK) is a connection key in BLE SC.

P

Pairing is the process of establishing a connection key between two devices: LK for BR/EDR and LTK
for BLE (SC). In BLE Legacy, STK is used instead, which might be used for LTK distribution. See
more in [Vol 1, Part A, Section 5.1].

R
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Radio link establishment is a set of actions necessary to create and maintain a physical link between
the devices. We leave the details out of the scope of the paper, and refer to radio link establishment
mainly as inquiry, page, and IO capabilities exchange for BR/EDR; and as discovery and pairing
feature extraction for BLE.

Reconnection is a process of establishing the subsequent connection between two bonded devices. Re-
connection consists of radio link establishment or/and Session Key Agreement.

S

Session Key Agreement is a procedure to establish a shared encryption key to encrypt the commu-
nication. In BD/EDR, it consists of Authentication and Encryption Key Generation. In BLE, it
consists of Link Layer Encryption.
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B.3 Variables

Variable Name Size Value/Origin Used in References
A Identity of device A - No value or set to BD_ADDRA Device identification -
ACO Authentication Cipher-

ing Offset
64 bits 65-128 most significant bits from

HMAC(dk,AU_RAND_C|AU_RAND_P)
kAES generation in
BR/EDR

Section 2.3
[Vol 2, Part H, Section 5]

AU_RAND_C Central’s Authentication
Random Number

128 bits Randomly generated by a device (if Central)
or received from the other device (if Periph-
eral)

As Random input (chal-
lenge) in BR/EDR:
SRES_C, SRES_P, and
ACO generation

Section 2.3
[Vol 2, Part H, Section 3.2.2]

AU_RAND_P Peripheral’s Authentica-
tion Random Number

128 bits Randomly generated by a device (if Periph-
eral) or received from the other device (if
Central)

As Random input (chal-
lenge) in BR/EDR:
SRES_C, SRES_P, and
ACO generation

Section 2.3
[Vol 2, Part H, Section 3.2.2]

AuthReq Authentication Require-
ments flags

1 byte BR/EDR:
0x00: No MITM Protection Required – No
Bonding
0x01: MITM Protection Required – No Bond-
ing
0x02: No MITM Protection Required – Dedi-
cated Bonding
0x03: MITM Protection Required – Dedicated
Bonding
0x04: No MITM Protection Required – General
Bonding
0x05: MITM Protection Required – General
Bonding
BLE: concatenation of BF, MITM, SC, KP,
CT2, and 0b00

Determination of the as-
sociation model for pair-
ing

Section 5.1
[Vol 2, Part C, Section 5.2]
[Vol 3, Part H, Section 3.5.1]

B Identity of device B - No value or set to BD_ADDRB Device identification -
BD_ADDR Bluetooth Device Ad-

dress
48 bits BR/EDR:

manually assigned MAC address
BLE:
Public: manually assigned MAC address
Static: 0b11 concatenated with 46 randomly
generated bits
Resolvable private:
prand | AES(IRK, 0104|prand) mod 224

Non-resolvable private: 0b00 concatenated
with 46 randomly generated bits

Device identification Section 5.1
[Vol 6, Part B, Section 1.3]

BD_ADDRA Bluetooth Device Ad-
dress

48 bits Known by a device (if A) or received during
radio link establishment (if B)

Indication of BD_ADDR of
device A

Section 5.1
[Vol 6, Part B, Section 1.3]

BD_ADDRB Bluetooth Device Ad-
dress

48 bits Known by a device (if B) or received during
radio link establishment (if A)

Indication of BD_ADDR of
device B

Section 5.1
[Vol 6, Part B, Section 1.3]
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Variable Name Size Value/Origin Used in References
BF Bonding flags 2 bits 0b00: no bonding

0b01: bonding
As a part of AuthReq flag
in BLE

Section 5.1
[Vol 3, Part H, Section 3.5.1]

’btak’ String "Bluetooth AES
Key"

32 bits Fixed value 0x6274616B As kIDAES in kAES com-
putation

Table 3
[Vol 2, Part H, Section 7.7.6]

’btdk’ String "Bluetooth Device
Key"

32 bits Fixed value 0x6274646B As kIDDev in dk compu-
tation in BR/EDR

Table 3
[Vol 2, Part H, Section 7.7.7]

’btle’ String "Bluetooth Low
Energy"

32 bits Fixed value 0x62746C65 As kIDBLE in mk and
LTK computation

Table 2
[Vol 3, Part H, Section 2.2.7]

’btlk’ String "Bluetooth Link
Key"

32 bits Fixed value 0x62746C6B As kIDBR/EDR in LK
computation

Table 2
[Vol 2, Part H, Section 7.7.3]

Ca Commitment value from
device A

128 bits BR/EDR: 128 most significant bits from
HMAC([ga]x, [gb]x, Na, ra)
BLE: CMAC([ga]x, [gb]x, Na, ra)

Commitment of Na [Vol 2, Part H, Section 7.7.1]
[Vol 3, Part H, Section 2.2.6]

Cb Commitment value from
device B

128 bits BR/EDR: 128 most significant bits from
HMAC([gb]x, [ga]x, Nb, rb)
BLE: CMAC([gb]x, [ga]x, Nb, rb)

Commitment of Nb [Vol 2, Part H, Section 7.7.1]
[Vol 3, Part H, Section 2.2.6]

CT2 CT2 flag 1 bit 0: conversion function h7 is not supported
1: conversion function h7 is supported

As a part of AuthReq flag
in BLE: indicates what
input will be used for
generation of an interme-
diate key

Section 5.1
[Vol 3, Part H, Section 3.5.1]

dk Device Key
In [BT5.3]: also device
authentication key

128 bits 128 most significant bits from
HMAC(LK,’btdk’|BD_ADDRA|BD_ADDRB)

As key in response gen-
eration in BR/EDR Au-
thentication procedure

Table 3
[Vol 2, Part C, Section 4.2.1]

Ea Check value from device
A
In [BT5.3]: also confir-
mation value

128 bits BR/EDR: 128 most significant bits from
HMAC([gab]x, Na, Nb, rb, AuthReqA, OOBa,
IOcapA, BD_ADDRA, BD_ADDRB)
BLE: MAC(mk, Na, Nb, rb, AuthReqA, OOBa,
IOcapA, 07|TxAddA, BD_ADDRA, 07|TxAddB,
BD_ADDRB)

Confirmation of the
shared DHKey

Section 2.2
[Vol 2, Part H, Section 7.3]
[Vol 2, Part H, Section 7.7.4]
[Vol 3, Part H, Section 2.2.8]

Eb Check value from device
B
In [BT5.3]: also confir-
mation value

128 bits BR/EDR: 128 most significant bits from
HMAC([gab]x, Nb, Na, ra, AuthReqB, OOBb,
IOcapB, BD_ADDRB , BD_ADDRA)
BLE: MAC(mk, Nb, Na, ra, AuthReqB, OOBb,
IOcapB, 07|TxAddB, BD_ADDRB , 07|TxAddA,
BD_ADDRA)

Confirmation of the
shared DHKey

Section 2.2
[Vol 2, Part H, Section 7.3]
[Vol 2, Part H, Section 7.7.4]
[Vol 3, Part H, Section 2.2.8]

IOcap Input/Output Capabili-
ties

8 bits 0x00 - DisplayOnly
0x01 - DisplayYesNo
0x02 - KeyboardOnly
0x03 - NoInputNoOutput
0x04 - KeyboardDisplay (BLE only)

Selection of the associa-
tion model for pairing

Section 2.1
[Vol 3, Part C, Section 5.2.2.4]
[Vol 3, Part H, Section 2.3.2]

IOcapA Input/Output Capabili-
ties of device A

8 bits Known by a device (if A) or received upon
exchange of device-specific information (if
B)

Indication of IO capabil-
ities of device A

Section 2.1
[Vol 3, Part C, Section 5.2.2.4]
[Vol 3, Part H, Section 2.3.2]
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Variable Name Size Value/Origin Used in References
IOcapB Input/Output Capabili-

ties of device B
8 bits Known by a device (if B) or received upon

exchange of device-specific information (if
A)

Indication of IO capabil-
ities of device B

Section 2.1
[Vol 3, Part C, Section 5.2.2.4]
[Vol 3, Part H, Section 2.3.2]

IR Identity Root 128 bits Randomly generated Generation of IRK Section 5.1
[Vol 3, Part H, Appendix B.2]

IRK Identity Resolving Key 128 bits Derived from IR as:
AES(IR,096|0x0001|0x0000) or randomly
generated

Generation and resolu-
tion of Resolvable Pri-
vate Addresses BD_ADDR

Section 5.1
[Vol 3, Part H, Section 2.4.2]
[Vol 3, Part H, Appendix B.2.3]

IRKc Central’s Identity Re-
solving Key

128 bits Known by a device (if Central) or received
from the other device during Key Distribu-
tion (if Peripheral)

Generation and resolu-
tion of Resolvable Pri-
vate Addresses BD_ADDRA

Section 5.1
[Vol 3, Part H, Section 2.4.2]
[Vol 3, Part H, Appendix B.2.3]

IRKp Peripheral’s Identity Re-
solving Key

128 bits Known by a device (if Peripheral) or re-
ceived from the other device during Key Dis-
tribution (if Central)

Generation and resolu-
tion of Resolvable Pri-
vate Addresses BD_ADDRB

Section 5.1
[Vol 3, Part H, Section 2.4.2]
[Vol 3, Part H, Appendix B.2.3]

IV Initialization vector 64 bits BR/EDR: ACO
BLE: IV_C|IV_P

As initialization vector in
encryption

Section 2.3
[Vol 2, Part H, Section 9.1]
[Vol 6, Part B, Section 5.1.3.1]

IV_C Central’s part of the ini-
tialization vector

32 bits Randomly generated by a device (if Central)
or received from the other device (if Periph-
eral)

As a part of IV in BLE Section 2.3
[Vol 6, Part B, Section 5.1.3.1]

IV_P Peripheral’s part of the
initialization vector

32 bits Randomly generated by a device (if Periph-
eral) or received from the other device (if
Central)

As a part of IV in BLE Section 2.3
[Vol 6, Part B, Section 5.1.3.1]

kAES AES key 128 bits BR/EDR: 128 most significant bits from
HMAC(LK,kIDAES|BD_ADDRA|BD_ADDRB |ACO)
BLE: AES(LTK, SKD_C|SKD_P)

As encryption key for
message encryption

Section 2.3
[Vol 2, Part H, Section 7.7.6]
[Vol 6, Part B, Section 5.1.3.1]

KP Keypress flags 2 bits 0b00: no notifications
0b01: generation and sending of SMP Pair-
ing Keypress Notification PDUs

As a part of AuthReq flag
in BLE

Section 5.1
[Vol 3, Part H, Section 3.5.1]

LK Link key 128 bits 128 most significant bits from HMAC([gab]x,
Na, Nb, ’btlk’, BD_ADDRA, BD_ADDRB)

kAES computation
and authentication in
BR/EDR

Section 2.1
[Vol 2, Part H, Section 7.7.3]

LTK Long-term key 128 bits 128 least significant bits from
CMAC(CMAC(Salt, [gab]x), 0x01, ’btle’,
Na, Nb, 07|TxAddA, BD_ADDRA, 07|TxAddB,
BD_ADDRB , 0x0100)

kAES computation in
BLE

Section 2.1
[Vol 3, Part H, Section 2.2.7]

MITM MITM flag 1 bit 0: no MITM protection required
(JustWorks)
1: MITM protection required (NumCom,
OOB, PasskeyEntry)

As a part of AuthReq flag
in BLE

Section 5.1
[Vol 3, Part H, Section 3.5.1]

mk MacKey 128 bits BR/EDR: [gab]x
BLE: 128 most significant bits from
CMAC(CMAC(Salt, [gab]x), 0x00, ’btle’, Na,
Nb, 07|TxAddA, BD_ADDRA, 07|TxAddB, BD_ADDRB ,
0x0100)

kAES computation in
BLE

Section 2.2
[Vol 3, Part H, Section 2.2.7]
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Variable Name Size Value/Origin Used in References
Na Nonce (unique random

value) from device A
128 bits Randomly generated by a device (if Central)

or received from the other device (if Periph-
eral)

Variety of the input to
LTK and LK KDF

Section 2.2
[Vol 2, Part H, Section 7.2]

Nb Nonce (unique random
value) from device B

128 bits Randomly generated by a device (if Periph-
eral) or received from the other device (if
Central)

Variety of the input to
LTK and LK KDF

Section 2.2
[Vol 2, Part H, Section 7.2]

OOB OOB Authentication
Data Flag

1 byte 0x00: No OOB Authentication Data re-
ceived
0x01: OOB Authentication Data received

Determination of the as-
sociation model for pair-
ing

[Vol 2, Part C, Section 5.2]
[Vol 3, Part H, Section 3.5.1]

OOBa OOB Authentication
Data Flag of device A

1 byte Known by a device (if A) or received in pair-
ing packets (if B)

Indication whether A
has OOB data from B
present

[Vol 2, Part C, Section 5.2]
[Vol 3, Part H, Section 3.5.1]

OOBb OOB Authentication
Data Flag of device B

1 byte Known by a device (if B) or received in pair-
ing packets (if A)

Indication whether B
has OOB data from A
present

[Vol 2, Part C, Section 5.2]
[Vol 3, Part H, Section 3.5.1]

prand Random part of Resolv-
able Private Address

24 bit 0b01 concatenated with 22 randomly gener-
ated bits

As part of Resolvable
Private Address BD_ADDR
in BLE

Section 5.1
[Vol 6, Part B, Section 1.3.2]

RxAdd Reception Address Type 1 bit 0 if BD_ADDR is public, 1 if BD_ADDR is ran-
dom

Indication of the re-
ceiver’s address type in
BLE

Section 5.1
[Vol 6, Part B, Section 2.3]

Salt Salt 128 bits Fixed value 0x6C88 8391 AAF5 A538 6037
0BDB 5A60 83BE

Computation of mk and
LTK in BLE

Section 2.2
[Vol 3, Part H, Section 2.2.7]

SC Secure Connections flag 1 bit 0: BLE SC is not supported
1: BLE SC is supported

As a part of AuthReq flag
in BLE

Section 5.1
[Vol 3, Part H, Section 3.5.1]

SKD_C Central’s Session key di-
versifier

64 bits Randomly generated by a device (if Central)
or received from the other device (if Periph-
eral)

kAES generation in BLE Section 2.3
[Vol 6, Part B, Section 5.1.3.1]

SKD_P Peripheral’s Session key
diversifier

64 bits Randomly generated (own) / received from
the other device (partner’s)

kAES generation in BLE Section 2.3
[Vol 6, Part B, Section 5.1.3.1]

SRES_C Central’s Signed Re-
sponse

32 bits 32 most significant bits from
HMAC(dk,AU_RAND_C|AU_RAND_P)

As a response in the
challenge-response
scheme in BR/EDR
Authentication

Section 2.3
[Vol 2, Part H, Section 7.7.8]

SRES_P Peripheral’s Signed Re-
sponse

32 bits 33-64th most significant bits from
HMAC(dk,AU_RAND_C|AU_RAND_P)

As a response in the
challenge-response
scheme in BR/EDR
Authentication

Section 2.3
[Vol 2, Part H, Section 7.7.8]

TxAdd Transmission Address
Type

1 bit 0 if BD_ADDR is public, 1 if BD_ADDR is ran-
dom

Indication of the sender’s
address type in BLE

Section 5.1
[Vol 6, Part B, Section 2.3]

TxAddA Transmission Address
Type of device A

1 bit Known by a device (if A) or received during
radio link establishment (if B)

Indication of BD_ADDRA

address type in BLE
Section 5.1
[Vol 6, Part B, Section 2.3]

TxAddB Transmission Address
Type of device B

1 bit Known by a device (if B) or received during
radio link establishment (if A)

Indication of BD_ADDRB

address type in BLE
Section 5.1
[Vol 6, Part B, Section 2.3]
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Variable Name Size Value/Origin Used in References
Va Verification value on de-

vice A
In [BT5.3]: also confir-
mation value

32 bits 32 least significant bits from:
BR/EDR: SHA([ga]x, [gb]x, Na, Nb)
BLE: CMAC([ga]x, [gb]x, Na, Nb)

Displayed decimal digits
for a user to confirm in
NumCom

[Vol 2, Part H, Section 7.2.1]
[Vol 2, Part H, Section 7.7.2]
[Vol 3, Part H, Section 2.2.9]

Vb Verification value on de-
vice B
In [BT5.3]: also confir-
mation value

32 bits 32 least significant bits from:
BR/EDR: SHA([ga]x, [gb]x, Na, Nb)
BLE: CMAC([ga]x, [gb]x, Na, Nb)

Displayed decimal digits
for a user to confirm in
NumCom

[Vol 2, Part H, Section 7.2.1]
[Vol 2, Part H, Section 7.7.2]
[Vol 3, Part H, Section 2.2.9]
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