
Communication-Efficient Proactive MPC
for Dynamic Groups with Dishonest Majorities

Karim Eldefrawy1, Tancrède Lepoint2⋆, and Antonin Leroux3,4,5

1 SRI International, karim.eldefrawy@sri.com
2 iacr@tancre.de

3 DGA
4 LIX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris

5 INRIA, antonin.leroux@polytechnique.org

Abstract. Secure multiparty computation (MPC) has recently been in-
creasingly adopted to secure cryptographic keys in enterprises, cloud in-
frastructure, and cryptocurrency and blockchain-related settings such as
wallets and exchanges. Using MPC in blockchains and other distributed
systems highlights the need to consider dynamic settings. In such dy-
namic settings, parties, and potentially even parameters of underlying
secret sharing and corruption tolerance thresholds of sub-protocols, may
change over the lifetime of the protocol. In particular, stronger threat
models – in which mobile adversaries control a changing set of parties
(up to t out of n involved parties at any instant), and may eventually cor-
rupt all n parties over the course of a protocol’s execution – are becoming
increasingly important for such real world deployments; secure protocols
designed for such models are known as Proactive MPC (PMPC).

In this work, we construct the first efficient PMPC protocol for dynamic
groups (where the set of parties changes over time) secure against a
dishonest majority of parties. Our PMPC protocol only requires O(n2)
(amortized) communication per secret, compared to existing PMPC pro-
tocols that require O(n4) and only consider static groups with dishonest
majorities. At the core of our PMPC protocol is a new efficient tech-
nique to perform multiplication of secret shared data (shared using a
bivariate scheme) with O(n

√
n) communication with security against a

dishonest majority without requiring pre-computation. We also develop
a new efficient bivariate batched proactive secret sharing (PSS) proto-
col for dishonest majorities, which may be of independent interest. This
protocol enables multiple dealers to contribute different secrets that are
efficiently shared together in one batch; previous batched PSS schemes
required all secrets to come from a single dealer.

1 Introduction

Dynamic MPC settings, where parties and parameters of the underlying se-
cret sharing and sub-protocols can change during the execution of the protocol,

⋆ Part of this work was performed while at SRI International and Google.



Table 1. Overview of features and limitations of proactive secret sharing (PSS) and
proactive MPC (PMPC) protocols.

Type Batching Dynamic Dishonest Fair Subprotocols
Groups Majority Reconstruct Communication

(amortized)

[BELO14] PMPC ✓ ✗ ✗ ✗ O(1)
[BELO15] PSS/PMPC ✓ ✓ ✗ ✗ O(1)
[DEL+16] PSS only ✗ ✗ ✓ ✓ O(n4)
[EOPY18] PMPC ✗ ✗ ✓ ✓ O(n4)
[ELL20] PSS only ✓ ✓ ✓ ✓ O(n2)

This work PMPC ✓ ✓ ✓ ✓ O(n2)

have attracted a lot of attention in the past years. Some of these settings con-
sider very powerful adversaries who can compromise dishonest majorities, i.e.,
active/malicious or passive/semi-honest parties that may add up to a majority.
Additionally, for long-lived computation and better security guarantees, stronger
threat models in which mobile adversaries [OY91,HJKY95] control a changing
set of parties (up to t out of the n parties at any instant), and may eventu-
ally corrupt all n parties over the course of a protocol’s execution or lifetime
of confidential inputs, are becoming increasingly attractive in the real world de-
ployments of MPC. MPC protocols withstanding such mobile adversaries are
typically called Proactive MPC (PMPC) [OY91,HJKY95].

Related work in proactive secret sharing (PSS) and PMPC, and the differ-
ent settings considered, is listed in Table 1. In the honest majority setting, the
early work of Baron, Eldefrawy, Lampkins, and Ostrovsky [BELO14] introduces
the framework to construct PMPC from PSS by computing the circuit layer by
layer and (proactively) redistributing the parties’ secret shares after each layer.
The PMPC protocol handles batching (i.e., the secret sharing contains many
secrets operated on in a coefficient-wise manner) and static groups in the honest
majority setting. In a follow-up work, Baron, Eldefrawy, Lampkins, and Ostro-
vsky [BELO15] consider then the setting of dynamic groups. The study of PSS
and PMPC in the dishonest majority setting starts with the work of Dolev, Elde-
frawy, Lampkins, Ostrovsky, and Yung [DEL+16], in which they present a PSS
scheme (without batching) for static groups. Feasibility of constructing PMPC
withstanding a dishonest majority of parties was then demonstrated by Elde-
frawy, Ostrovsky, Park, and Yung in [EOPY18]. The subprotocols in the last two
works have communication complexity O(n4), which significantly hinders their
practicality. The schemes from [DEL+16] and [EOPY18] have the additional
property of ensuring fair reconstruction with the gradual sharing model from
Hirt, Lucas and Maurer [HLM13]. The PSS scheme from [DEL+16] was later
revisited by Eldefrawy, Lepoint, and Leroux [ELL20]: they present an efficient
PSS scheme with batching, fair reconstruct with no complexity overhead and
dynamic groups, with security against mixed adversaries that can compromise

2



a majority of parties, but leave as future work to extend it to a full PMPC
protocol. This naturally brings us to formulate the following open problem:

Can we develop a communication-efficient PMPC protocol that han-
dles batching, with amortized communication O(n2) or less, for dynamic
groups, and with security against mixed adversaries that can compromise
a majority of parties?

1.1 Contributions

In this work, we affirmatively answer this question by constructing an efficient
PMPC protocol with four key properties: (i) batching, (ii) suitability for dynamic
groups (iii) security against a majority of active/malicious or passive/semi-
honest corruptions, and allowing (iv) fair reconstruct with no complexity over-
head in the mixed adversarial setting proposed by Hirt, Lucas, and Maurer [HLM13].
Our protocol achieves computational security and the efficiency is enabled by
only requiring O(n2) (amortized) communication per secret when batching O(n)
secrets. Our communication model assumes a broadcast channel and pairwise se-
cure channels. Concretely, we make the following contributions:

1. We develop the first efficient fair PMPC for dishonest majorities and dy-
namic groups, with O(n2) (amortized with batches of size ℓ = n−2) commu-
nication (in both broadcast and secure channels). Our new PMPC protocol
protects secrecy of the inputs when active and passive corruptions are less
than n− 3−

√
ℓ at any time of the protocol. Additionally, the computation

is fair if the number of active corruption is less than k and the number
of passive corruption is less than min(n − k −

√
ℓ, 2(n − k) − ℓ) during the

reconstruction, for 1 ≤ k ≤ n/3 (cf. Theorem 1).
2. We develop a new efficient bivariate batched proactive secret sharing (PSS)

Share protocol for dishonest majorities that enables multiple dealers to con-
tribute different secrets that are shared together in one batch. Previous
batched PSS schemes in the dishonest majority setting required all secrets
to come from one dealer.

3. At the core of the protocol is a new efficient sub-protocol for multiplying
secret-shared data (using a bivariate sharing of degree d = n−2 for batches of
size d) with O(n

√
n) amortized communication, and secure when the number

of corruptions (either active or passive) is less than n− 3−
√
n− 2 without

requiring pre-computation (cf. Theorem 2). The techniques developed to this
effect might be of independent interest.

1.2 Technical Overview

Previous PMPC protocols [EOPY18], proven secure in the dishonest majority
setting and for static groups, builds on top of the proactive secret sharing scheme
of [DEL+16] by augmenting it with protocols for adding and multiplying shares
to perform computation on the secret shares following the same (arithmetic)

3



PMPC blueprint as proposed in [BELO14]. While additions are computed lo-
cally, multiplications require using the standard GMW MPC protocol [GMW87],
so as to obtain a proactive secret sharing of the multiplication of two secrets.
The asymptotic communication efficiency of [EOPY18] is the same as that of
[DEL+16], i.e O(n4).

Similarly, we develop our new PMPC protocol for dynamic groups with dis-
honest majorities on top of a recent PSS protocol [ELL20] for the dishonest
majority setting. However, the PSS of [ELL20] differs significantly from that of
[DEL+16], and extending [ELL20] to an efficient PMPC protocol with (amor-
tized) communication O(n2) requires care and new techniques; the rest of this
section summarizes the main intuition behind our construction.

Let us briefly recall the PSS construction of [ELL20]. Secrets s1, . . . , sℓ are
secret shared among n participants P1, . . . , Pn by a dealer, which construct a
bivariate polynomial g such that:

– g(x, ·) and g(·, y) are of degree at most d ≤ n− 1;

– the secrets are embedded as g(βi, βi) = si for distinct βi’s;

– the secret share of party Pi is the polynomial g(αi, ·), for distinct αi’s.

This sharing naturally supports additions: party Pi will be able to locally add
its secret shares g(αi, ·) (where g is the bivariate polynomial for s1, . . . , sℓ) and
g′(αi, ·) (where g′ is the bivariate polynomial for s′1, . . . , s

′
ℓ) to obtain a secret

sharing of the sum of the secrets (s1+ s′1, . . . , sℓ+ s′ℓ). However, when extending
this PSS to a PMPC protocol in a layered manner as in [BELO14,BELO15], it
will be necessary to provide a Permute operation on secret shares, so that they
are in the correct order for performing the arithmetic operations for that layer.
In Appendix C, we adapt the protocols of [BELO14,BELO15] (inspired from
[Ben64,Wak68,GHS12]) to the PSS of [ELL20].

Contribution 1: Efficient multi-dealer batched sharing protocol. We point here
a subtle feature which was not present in [DEL+16,EOPY18] and that usually
does not manifest in the standard PSS functionality and was also lacking from
[ELL20]. Multi-dealer batched sharing allows us to use the batching techniques
(and the resulting improvement in communication complexity) for computations
where each participant has O(1) secrets, something impossible with single-dealer
sharing protocols because each participant has to do at least one sharing for
its secrets. We obtain this multi-dealer sharing with a simple adaptation of
techniques used in [ELL20]. It suffices that all the dealers generate a classical
Shamir sharing for each of their secrets and then a bivariate sharing for the whole
batch is obtained by combining these univariate polynomials into a bivariate
polynomial. Additionally, performing addition and multiplication on batch of
secrets require permuting the secrets between consecutive layers to align them.
Thus, the underlying PSS needs to be secure even when some of the shared
secrets have been leaked to the adversary.

4



Contribution 2: Efficient multiplication of shared secrets for groups with dis-
honest majorities. This protocol is at the core of our contributions enabling
the construction of our new communication-efficient PMPC protocol. In fact,
our Mult protocol achieves even better than the minimal requirement of O(n2)
with an amortized communication complexity of O(n

√
n) against up to approxi-

mately n−
√
n actively corrupted participant. This improvement of

√
n over the

standard quadratic complexity for multiplication without precomputation in the
dishonest majority setting may be of independent interest. It has the following
blueprint:

1. The participants have shares for two “bivariate” secret sharings g, g′ contain-
ing both ℓ secrets to be multiplied together. First, g is transformed into ℓ

1
2

“univariate” secret sharings f1(αi), . . . , f
ℓ
1
2
(αi), where each fj is of degree

d and contains ℓ
1
2 secrets (and similarly for g′). This step is done by each

party generating a random polynomial and using the Lagrange interpolation
formula to embed the secrets from g.

2. Then, ℓ
1
2 “blinding” bivariate polynomials hj of degree d such that hj(βi, βi) =

0, are generated. This step follows the classical approach of generating blind-
ing polynomials: each party generates a random polynomial evaluating in 0
in the βi’s.

3. Next, ℓ
1
2 bivariate polynomials g∗j = fj(x)f

′
j(y)+hj(x, y) are computed, and

party Pi learns g∗j (αi, ·). Note that hj “blinds” the product of the polyno-
mials fj and f ′

j (except in (βi, βi) where g∗j will evaluate into the product
of the secrets. This step uses the secure multiplication protocol introduced
in [LN18] in the context of threshold ECDSA.

4. Against active corruptions, correctness of the computation is verified using
additively homomorphic commitments. To verify the correctness of the mul-
tiplication operations involved in the computation of g∗j , the participants
reveal g∗j (randj , ·) for some random values randj . This reduces the security
threshold by one while preventing an adversary to deviate from the protocol
undetected.

5. Finally, all the ℓ
1
2 bivariate secret sharings g∗j (αi, ·) are recombined into a

single bivariate sharing g′′(αi, ·) that embeds the ℓ = ℓ
1
2 · ℓ 1

2 secrets.

1.3 Paper Outline

The rest of the paper is organized as follows. Section 2 overviews preliminaries
required for the paper. Section 3 revisits the PSS scheme of [ELL20] for the
setting of PMPC and introduces a new multi-dealer batched share sub-protocol.
Section 4 presents the ideal functionality and concrete instantiation of our new
PMPC protocol for dynamic groups with dishonest majorities. Section 5 focuses
on each subprotocols of the overall PMPC protocol and proves their security;
the formal security proofs for the PMPC protocol are provided in Appendix.

5



2 Preliminaries

Notation. Throughout the paper, we consider a set of n parties P = {P1, ..., Pn},
connected by pairwise synchronous secure channels and authenticated broadcast
channels. P want to securely perform computations over a finite field F = Zq for
a prime q.

For integers a, b, we denote [a, b] = {k : a ≤ k ≤ b} and [b] = [1, b].6 We
denote by Pk the set of polynomials of degree k exactly over F. When a variable
v is drawn randomly from a set S, we denote v ← S.

2.1 Adversary Model

In this section, we briefly recall the proactive security model and the mixed ad-
versary setting used in this work. For a more precise exposition, we refer the
reader to [EOPY18, Section 2]. The adversary in this model is considered to
be a mobile adversary that can adaptively decide which parties to (passively
or actively) corrupt between predefined “refresh phases” of the protocol. The
computation is thus divided into “operation phases”; for example, the circuit
representing the computation can be expressed as layers followed by “refresh
phases” in which a refresh protocol is performed to prevent the adversary from
learning too much information. The adversary can retain all the states of a cor-
rupted party, but once a party is uncorrupted the adversary cannot learn future
states of such a previously corrupted party unless it re-corrupts the party. At
any point in time, we assume that at any point during the execution protocol,
the adversary controls at most N parties (passively or actively); N is called the
corruption threshold, and when N ≥ n/2, we are in the dishonest majorities
setting. Finally, note that in the proactive security model, a party can be un-
corrupted either because the adversary willingly releases control of said party
to compromise another party while not violating the corruption threshold, or
because the party was proactively rebooted to a pristine state (hence the term
of proactive security); henceforth, the adversary loses control over the party. In
both cases, the uncorrupted party can recover its shares with the help of the
other parties using a recovery protocol, and can continue participating in the
computation.

2.2 Commitment Scheme

A commitment scheme [Ped91] is a classical cryptographic primitive. The com-
mitment to a message m ∈ Fp under randomness r ∈ Fp is written C(m, r).
The opening information o(m, r) can be revealed to enable a verifier to check
whether C(m, r) was indeed a valid commitment to m. A commitment scheme
is computationally hiding if C(m, r) does not reveal information to a computa-
tionally bounded attacker. It is perfectly binding if a commitment C(m1, r) can
never be opened with o(m2, r

′) when m1 ̸= m2.

6 In particular, if a > b, we have [a, b] = ∅.

6



In this paper, we use an additively homomorphic commitment scheme, i.e.,
there is an operation ⋆ such that C(m1, r1) ⋆ C(m2, r2) = C(m1 +m2, r1 + r2).
In particular, we instantiate our protocols with the computationally hiding and
perfectly binding commitment scheme (gmhr, gr) ∈ G2 where G is a group of
prime order p with generator g. This protocol is secure under the hardness of
the DDH problem. For any element (g1, g2) ∈ G2, there exists a unique value m
and randomness r such that (g1, g2) = C(m, r). This fact will help us simplify
some protocols and proofs.

Finally, we naturally extend the definition to commitments on polynomials
by providing a vector of commitments for the coefficients of the polynomial. For
a polynomial f , we denote by C(f,Rf ) the commitment to f .

2.3 Shares and Sharings

In the following, we will use two kinds of secret sharings: univariate and bivariate.
In both cases, the term sharing is used to denote a polynomial (either univariate
or bivariate). The secrets are stored in the evaluations of this sharing on publicly
known points. In this context, one share will always refer to the information held
by one participant (the evaluation of the sharing on one point in the univariate
setting, or a univariate polynomial in the bivariate setting). Hence, a univariate
share is a point, while a bivariate share is a univariate polynomial. With these
conventions and the notations of Section 2.2, the meaning of a commitment to
a share or to a sharing is clear.

More precisely, when talking about univariate sharing we refer to the classical
Shamir secret sharing. Thus, a sharing f of degree d for the batch of secrets
s1, . . . , sℓ between n participants is a univariate polynomial f of degree d that
satisfies f(βj) = sj for all j ∈ [ℓ] and each party Pr share is the evaluation f(αr)
for a set of public values β1, . . . , βℓ, α1, . . . , αn. In that case, it can be shown
that the corruption threshold for secrecy on the s1, . . . , sℓ is d+ 1− ℓ.

For the bivariate sharing, we use the construction introduced in [ELL20].
A bivariate sharing g of degree d is a bivariate polynomial of degree d in both
variables with g(βj , βj) = sj for j ∈ [ℓ]. In that case, the share of the participant
Pr is the univariate polynomial g(αr, ·). For efficiency reasons in the PSS from
[ELL20], it is also possible that Pr end up with the knowledge of the univariate
polynomial g(·, αr). It was shown in [ELL20] that the corruption threshold is
d+1−

√
ℓ for secrecy. Usually, we choose the biggest value possible for d. First, it

is clear from the way the sharings are distributed that d must be smaller or equal
to n−1. In the case of proactive secret sharing, we also require d ≤ n−2 because
the PSS functionality from [DEL+16,ELL20] requires to perform regularly a
Recover protocol where d + 1 participants will cooperate to recover the shares
of another party. Since, there are no other constraint we usually take d = n− 2.
In the rest of the article, we often use the fact that d ≈ n implicitly. When
concrete security thresholds are given, either we state the formula with d or
replace d by the value n− 2. In terms of the number of secrets ℓ, the PSS from
[ELL20] requires ℓ ≤ d and we keep this restriction in this paper.

7



2.4 Polynomials and Degrees of Freedom

In this section, we introduce the notion of degree of freedom with respect to a
set of equations for a polynomial. This definition will prove useful to clarify and
formalize some statements later. For the rest of this paragraph we fix f to be a
polynomial of degree d (either univariate or bivariate) over a field k. We define
an equation on f as an equality of the following form∑

x∈X

f(x) = C (1)

where X is a finite set of points (X ⊂ k if f is univariate and X ⊂ k2 if f
is bivariate) and C ∈ k. In the special case where X = {x}, we call this the
evaluation equation on x.

A system of equations on f is composed of several such equations as follows:

Definition 1. A system of equations E on f is a finite set of equations

E =
{ ∑

x∈Xi

f(x) = Ci

}
i∈I

where Xi ⊂ k and Ci ∈ k for all i ∈ I ⊂ N. When ∃i such that x ∈ Xi we write
f(x) ∈ E.

Since polynomials of given degree d are elements of a finite vector space, it
makes sense to talk about independent equations (in the classical sense). Hence,
the dimension of a system of equations is the number of independent equations
in that system. This is a terminology that we will use throughout this paper.

Definition 2. Let E be a system of equations as per Definition 1. The degree
of freedom of f with respect to E is the dimension of E subtracted from the
dimension of f and is denoted by df (E).

In Definition 2, by dimension of f , we mean the dimension of the space in which f
lives in (the dimension is d+1 for univariate polynomials of degree d and (d+1)2

for bivariate polynomials of degree d). Another definition of the dimension could
be the maximum size of an independent system of equations on f ; we note that
the degree of freedom is always a positive integer.

We now illustrate how this terminology helps formulate some security state-
ments. Let us consider a univariate sharing f of m secrets and a set of corrupted
parties {P1, · · · , Pt} by an adversary A. From the corruption, A learns the share
f(αr) of all corrupted parties Pr. This can be seen as a set of t equations on
f . Provided, that no other equations is leaked on f , the adversary has gathered
a system of t independent equations. Thus, the degree of freedom of f with re-
spect to the system of A is d+ 1− t. We have perfect secrecy on the m secrets
if m is smaller than this degree of freedom. Intuitively, this notion of degree of
freedom relates to the number of secrets that can be hidden inside a polynomial.
It comes especially handy when dealing with bivariate polynomials as we do in
this article.

8



3 Proactive Secret Sharing

Constructing MPC from PSS is a natural and well-established approach. In this
work, we build upon the PSS from [ELL20] to obtain efficient PMPC. Before
introducing our new generic PMPC protocol (see Section 4), we need to adapt
slightly the scheme from [ELL20].

In fact, the issue is not with the protocols from [ELL20] per se, but rather
with the proofs and security thresholds. In the PMPC framework, operations
are performed component-wise on batch of secrets, creating a sharing of s1 ⋆
t1, . . . , sℓ ⋆ tℓ from sharing of s1, . . . , sℓ and t1, . . . , tℓ (for the desired operation
⋆). In a generic arithmetic circuit, there is no guarantee that all the secrets
are aligned before each layer of computation. That is why it is standard to
use a Permute protocol to realign the secrets before each round. As a result,
the participants will produce some sharings where secrets coming from different
participants might end up in the same batch. This is why we need to ensure
secrecy in the setting of a batched sharing where some of the secrets are known
to the adversary. In [ELL20] where the Share is always performed by a single
dealer and the batch of secrets are not reorganized, this situation never happens.
Thus, the proofs from [ELL20] need to be updated to show that the protocols
retain the desired security in this case. The updated security statements and
proofs can be found in Appendix A.

In Protocol 1, we introduce an extension of the Share protocol to the case
of multiple dealers, allowing several participants to cooperate and generate a
common secret sharing of their secrets. To add more flexibility, we also make
possible to add secrets in an existing sharing when the threshold for the max-
imal number of secrets have not been reached. This extension is quite natural
given what we said above and allows us to obtain the improvement on the com-
munication complexity due to batching even in situations where each participant
has O(1) secrets (which would not be possible in a single-dealer setting since each
participant has to produce at least one sharing).

In the protocol below, when ℓ1 = 0, we assume that there is no bivariate
secret sharing g. We build our Share protocol upon the building-block Recover

which is part of the PSS from [ELL20]. It can be used by d + 1 participants
having shares for a bivariate sharing g of degree d to distribute a set of shares
for g to another participant.

The security for Protocol 1 is stated in Lemma 1. In all the protocols in this

work, we highlight the critical steps using boxes , as the full protocols includes

(standard) use of commitments and openings to resist against malicious/mixed
adversaries.

Protocol 1. Share protocol

INPUT: A subset of dealer participants PD ⊂ {P1, . . . , Pn}. A partition
∪Pr∈PD

Sr for {sℓ1+1, . . . , sℓ2} where each Pr knows the elements of Sr. A

9



bivariate secret sharing g with commitment C(g,Rg) for the batch of secrets
{s1, . . . , sℓ1}.
OUTPUT: Distributes a bivariate sharing g′ for the secrets {s1, . . . , sℓ2}.

1. For each Pr ∈ PD and each sj ∈ Sr, Pr samples gj , Rgj ← Pd such

that gj(βj) = sj and broadcasts the commitments C(gj , Rgj ).

2. For all r′ ∈ [d+1], and sj ∈ Sr each Pr ∈ PD sends o(gj(αr′), Rgj (αr′)) to Pr′ .

The receiver Pr′ broadcasts a bit indicating if the opening is correct.
For each share for which an irregularity was reported, Pr broadcasts the
opening. If the opening is correct, Pr′ accepts the value, otherwise Pr is
disqualified and added to the set of corrupted parties B. The protocols
aborts and each party outputs B.

3. Each Pr ∈ {P1, . . . , Pn} samples qr,j , Rqr,j ← Pd with qr,j(βj) = 0

for all j ∈ [ℓ1 + 1, ℓ2].

4. For all r ∈ [n], r′ ∈ [d+ 1], and sj ∈ Sr each Pr sends

o(qr,j(αr′), Rqr,j (αr′)) to Pr′ . The receiver Pr′ broadcasts a bit indi-

cating if the opening is correct. For each share for which an irregularity
was reported, Pr broadcasts the opening. If the opening is correct, Pr′

accepts the value, otherwise Pr is disqualified and added to the set of
corrupted parties B. The protocols aborts and each party outputs B.

5. Each Pr ∈ {P1, ..., Pd+1} samples gr, Rgr ← Pd such that

gr(βj) = gj(αr) +
∑n

u=1 qu,j(αr) for all j ∈ [ℓ1+1, ℓ2] and gr(βj) = g(αr, βj)

(and the same for Rgr with respect to the polynomials Rgj , Rqu,j
, Rg)

for all j ∈ [ℓ1]. Pr broadcasts the commitments gr, Rgr .
Note that this implicitly defines g′ a random bivariate polynomial of
degree d with g′(αr, ·) = gr(·).

6. For all r ∈ [d+ 1] and j ∈ Sr, each party locally compute the commit-
ments C(gr(βj), Rgr (βj)), C(gj(αr), Rgj (αr)) and C(qu,j(αr), Rqu,j

(αr))
for all u ∈ [n] before verifying the relation

C(gr(βj), Rgr (βj)) = C(gj(αr), Rgj (αr)) ⋆
n
u=1 C(qu,j(αr), Rqu,j

(αr)).

7. For r′ ∈ [d+ 2, n], {P1, . . . , Pd+1} ∪ {Pr′} perform Recover on g′ .

We write tP (resp. tA) for the number of passively (resp. actively) corrupted
participants. Lemma 1 informally summarizes the security of Protocol 1 but
should not be considered as a formal security statement. In Appendix B, we use
several such preliminary lemmas to formally prove Theorem 2.

Lemma 1. (Informal) Let g be a bivariate sharing for ℓ1 secrets s1, . . . , sℓ1
such that the adversary knows ℓ′1 ≤ ℓ1 of those shared secrets (and no other
information aside from the prescribed shares) and let sℓ1+1, . . . , sℓ2 be new secrets
among which ℓ′2−ℓ1 ≤ ℓ2−ℓ1 values are known to the adversary. When ℓ1+ℓ2 ≤ d

10



and tP , tA ≤ d+1−
√
ℓ, the Share protocol above is correct and preserves secrecy

of the (ℓ2 − ℓ′2) + (ℓ1 − ℓ′1) secrets unknown to the adversary under the hardness
of DDH. Additionally, apart from the shares of corrupted participants and the
secrets already known, the adversary does not learn any other evaluation of the
sharing g′.

A proof for Lemma 1 can be obtained with ideas similar to the ones used in
[ELL20] to prove security of their PSS scheme.

Communication Complexity : the above protocol requires O(dn(ℓ2−ℓ1)) commu-
nication. Thus, it yields an amortized communication complexity of O(n2) when
d ≈ n.

4 Communication-Efficient Proactive MPC (PMPC) for
Dynamic Groups with Dishonest Majorities

We follow the standard blueprint that develops PMPC based on PSS (e.g.,
[BELO14,EOPY18]) for arithmetic circuit. An arithmetic circuit can be divided
into consecutive layers (each consisting of additions or multiplications) such that
the outputs of a layer are only used once in the next layer.7

The outline of our PMPC protocol (Protocol 2) is similar to the one of
[EOPY18]. We provide a brief summary below and refer the reader to [EOPY18]
for more details. Our PMPC protocol consists of 8 sub-protocols listed below
with a quick summary of their purpose. We put the tag (PSS, denoting Proactive
Secret Sharing) to indicate protocols that are not introduced in this work; for
those we use the construction from [ELL20].

– Share: Takes a batch of secrets and produces a secret sharing. (Protocol 1)
– Refresh: Rerandomizes a secret sharing. (PSS)
– Recover: Produces a share of an existing sharing. (PSS)
– Redistribute: Changes the number of participants for a sharing. (PSS)
– Reconstruct: Takes shares of a secret sharing and recovers the secrets. (PSS)
– Add: Performs component-wise additions of two sharings.
– Mult: Performs component-wise multiplications of two sharings.
– Permute: Takes a set of secret sharings and applies a permutation on all the

secrets.

The main idea is to use secret sharings to keep the inputs private: several Share
are performed at the beginning to create secret sharings of the inputs and all
the remaining computations are performed using such secret sharings until the
last layer of the circuit where Reconstruct is used to compute the outputs.
Refresh and Recover are the two sub-protocols that make the scheme (proac-
tively) secure against mobile adversaries. In our adversarial model, we assume

7 Multiple uses can be handled easily by duplicating some sharings according to the
circuit’s requirement but we avoid them entirely to simplify the explanations

11



that the adversary can only change the set of corrupted participants during the
Refresh phase. Therefore, the frequency of Refresh executions can be adjusted
and provides a tradeoff between security and efficiency. For maximal security it
can be performed after every other sub-protocol. For simplicity in Protocol 2, we
refresh at every layer of the arithmetic circuit computation, and more precisely
we denote R the set of layers λ after which we perform a Refresh operation
(see Step 3e). Recover is used when parties are “decorrupted” and reset to a
pristine default state after which they need to obtain shares to participate in the
computation. The goal of Redistribute is to handle dynamic groups. These
five protocols constitutes the PSS from [ELL20]. We extend their PSS scheme
with Add and Mult protocols to evaluate the gates of the arithmetic circuits to be
computed over the secret sharings. Since our PMPC protocol works with batches
of secrets, we also introduce a Permute protocol that permutes the underlying
shared secrets to align them correctly to perform Add and Mult.

To handle dynamic groups, we assume for simplicity that the dynamic changes
are planned before the execution of the protocol. The Redistribute will be
performed between consecutive layers of computations. The set Lλ is the set of
leaving parties after the execution of layer λ. Similarly, Nλ is the set of new
parties after layer λ. Due to the batching, there is also a need to reorder the
secrets before performing the layer computation (see Appendix C). Sλ is the set
of secrets after execution of layer λ−1 (i.e., after the arrival of Nλ and departure
of Lλ) σλ is the permutation to be performed on Sλ before the computation of
layer λ. S1 is just the set of inputs and σ1 is the identity.

Protocol 2. PMPC for Dynamic Groups with Dishonest Majorities

INPUT: An arithmetic circuit C of depth dC that has inputs x1, . . . , xn

where each xi is a vector of mi values of input for the participant Pi. R is
the set of layers after which a refresh phase is to be performed.

OUTPUT: n + k values y1, . . . , yn+k for some k ∈ N where the total set of
parties participating in the computation of C is {P1, . . . , Pn+k}. Each yi is
either the output values of the circuit Y or a special symbol ⊥ indicating
that Pi do not receive any output. We denote O the set of parties with
non-⊥ output.

1. The participants label all the secrets involved in the computation and
group them in batches of size ℓ. Then, the participants perform several
execution of Share to distribute sharings of all the secrets. After this
point, all the values on the input wires of C that involves participant
P1, . . . , Pn are shared among all the other parties. In particular, all the
input wires of the first layer of C are shared.

2. Run the Refresh protocol. This corresponds to one refresh phase.
3. For each circuit layer λ = 1, . . . , dC :

12



(a) A permutation σλ of all the shared secrets is performed with the
protocol Permute to align the secrets involved in all the gates of the
layer λ.

(b) For each batch of addition or multiplication gates in layer λ: Com-
pute a sharing of a batch of outputs using Add or Mult.

(c) The set of leaving participant Lλ exits the execution of the protocol
using the Redistribute protocol. Then, the set of new parties Nλ

is introduced with a new execution of Redistribute.
(d) All the participants may perform multiple executions of Share so

that all the inputs of the gates of the layer λ+ 1 are shared among
the parties, possibly rewriting over the old secrets that will not be
reused during the rest of the computation.

(e) If λ ∈ R, run the Refresh protocol.
4. At the end of the previous step, the parties are supposed to have a

sharing for all the value in the output Y. We also assume that all the
parties Pi with yi ̸=⊥ are among the set of parties at this time of the
protocol. The parties in O perform a Permute protocol to regroup the
output values in a set of bivariate sharings.

5. The Reconstruct protocol is performed several times so that all the
values in Y are revealed to all Pr ∈ O.

6. Two special operations may be ran during the execution of the protocol.
– Upon receiving a message Help! from a party Pr, all the parties
execute several times Recover to provide Pr sharings of all the secret
values required for the later computations of the protocol. If the
procedure occurs after the sharing by Pr of the value ρr, the other
parties also reveal to Pr their share of the sharing so that Pr can
compute the value ρr for himself.

– If one of the participant exits the protocol without prior agreement,
the remaining parties perform Redistribute in the corrupted mode
to distribute all secrets between them with a proper sharing.

Remark 1. For easy of exposition, we assumed that all the outputs (represented
by the set Y ) are revealed to all the participants in O. In reality, the protocols
often require that each participant obtain a different output. We can apply stan-
dard techniques to modify Protocol 2 in order to handle this functionality. For
a given sharing containing several outputs that are to be revealed to different
participants it suffices that each of these participants generate a new sharing of
zeroes and a random value at the index of the desired output. Then, each of
these sharings can be added to the initial sharing with Add. Finally, the partic-
ipants perform Reconstruct on the sharing obtained after all the operations.
Thus, the participants will learn values s1 + ρ1, . . . , sℓ + ρℓ where the ρi are the
random values. The participants that is supposed to get the value si will be able
ρi since he was the one to generate it, but the other participants will not learn
anything on si.

13



In Appendix D, we prove Theorem 1, which shows that Protocol 2 securely
realizes the ideal functionality IDEALZ,S,FPMPC (defined in Appendix D). The
thresholds are computed by taking d = n − 2 (which is the maximum possible
value).

Theorem 1. For a circuit C where the minimum number of participants is
n0. When the size batch is ℓ = n0 − 2, and assuming the hardness of DDH,
the protocol ΠPMPC introduced in Protocol 2 securely realizes the ideal process
IDEALZ,S,FPMPC

unfair against any adversary bounded at any given time by the multi-

threshold T (ℓ) =
{
(n−3−

√
ℓ, n−3−

√
ℓ)
}
with n the number of participants at

that time. Additionally, when the adversary is also bounded by the multi-threshold
Tf (ℓ) = {(k,min(n−k−

√
ℓ, 2(n−k)−ℓ, 1 ≤ k ≤ n/3}, ΠPMPC securely realizes

IDEALZ,S,FPMPC
fair .

5 Subprotocols for PMPC

In Sections 5.1 to 5.4, we introduce the sub-protocols used in the Mult protocol
described at a high level in Section 1.2. Next, we introduce the full multiplication
protocol in Section 5.5. We defer the treatment of reordering the secrets in
Appendix C as it follows essentially from previous work. The security statements
can be found in the Appendix.

5.1 Bivariate to Univariate Sharing

The subprotocol from this section efficiently transforms a (bivariate) secret shar-
ing of a batch of ℓ secrets s1, . . . , sℓ into several univariate sharings of smaller
size. For simplicity, we treat the case where ℓ = vm and construct v univariate
sharings of m secrets each. This procedure is described in Protocol 3.

We denote g the bivariate sharing of degree d and (fk)k∈[v] the univariate
sharings of degree d. We write Ik = [(k − 1)m + 1, km] and each fk will be a
sharing for sj for all j ∈ Ik. We also denote Πr(x) =

∏
u∈[d+1]

u̸=r

x−αu

αr−αu
for the

Lagrange polynomial.

Protocol 3. ReshareBivariateToUnivariate

INPUT: A set P = {P1, . . . , Pn} holding a bivariate sharing for a batch of
ℓ = mv secrets s1 = g(β1, β1), . . . , sℓ = g(βℓ, βℓ) and the commitment to
this sharing C(g,Rg).

OUTPUT: For all k ∈ [v], each party Pr holds its share of the univariate shar-
ing for the batch of secrets {sj}j∈Ik along with a commitment C(fk, Rfk)
to that sharing.

1. For k ∈ [v] :

14



(a) For r ∈ [d+ 1], Pr samples polynomials qr, Rqr ← Pd such that

g(αr, βj)Πr(βj) = qr(βj) , Rg(αr, βj)Πr(βj) = Rqr (βj) , ∀j ∈ Ik .

Pr broadcast C(qr, Rqr ).
(b) For all j ∈ Ik, each participant computes locally C(qr(βj), Rqr (βj))

and C(g(αr, βj), Rg(αr, βj)) and verifies that

C(qr(βj), Rqr (βj)) = Πr(βj) · C(g(αr, βj), Rg(αr, βj))

If the verification fails, Pr is added to the list of corrupted partici-
pant B. The protocol aborts and each participant outputs B.

(c) For r ∈ [d + 1] and r′ ∈ [n], Pr sends o(qr(αr′), Rqr (αr′)) to Pr′ .

The receiver Pr′ broadcasts a bit indicating if the opening is correct.
For each share for which an irregularity was reported, Pr broadcasts
the opening. If the opening is correct, Pr′ accepts the value, other-
wise Pr is disqualified and added to the set of corrupted parties B.
The protocols aborts and each party outputs B.

(d) Each party Pr sets its share as fk(αr) =
∑d+1

u=1 qu(αr) and locally

compute the commitment to fk.

5.2 Blinding Bivariate Mask Generation

The goal of the BlindingBivariateGeneration protocol is for the participants
to share and generate a bivariate sharing h of the m values 0, . . . , 0. Hence, it
will verify h(βj , βj) = 0 for j ∈ I, where I ⊂ [ℓ] has size m (typically the Ik
defined for Protocol 3). This sharing will be used to blind some values during
the multiplication protocol and that is why we will sometimes call this sharing a
blinding mask. As this protocol is designed to be used during the multiplication,
we need that h verifies some very specific conditions on its values and their
distribution to the participants. This condition depends on some threshold t
and is very ad hoc but will allow us to quantify the ”amount of randomness”
we need from the blinding mask. We write Cmult(t) this condition. For a subset
T ⊂ [n], we write ET the biggest system of independent equations gathered by
an adversary A corrupting each Pr for r ∈ T . The condition Cmult(t) can be
expressed as follows:

Definition 3. A bivariate sharing h of degree d for m secrets is said to satisfy
the condition Cmult(t) for t ≤ n if for every subset T ⊂ [n] of size t:

– For any u ̸∈ T , the degree of freedom of h(αu, ·) with respect to the adver-
sary’s knowledge is d+ 2−m.

– For a system of equation E on h, let us write XE = {x, ∃y such that h(x, y) ∈
E}. For any u ̸∈ T , any value z and any system of equations E such that
#XE ≤ d− t and αu ̸∈ XE, the evaluation equation of h(αu, z) is indepen-
dent of E ∪ ET .

15



Protocol 4. BlindingBivariateGeneration

INPUT: A set of index I ⊂ [ℓ] of size m.

OUTPUT: A bivariate sharing of 0, . . . , 0 at the points (βj)j∈I is distributed
to the parties along with the commitment to this sharing.

1. For r ∈ [n], Pr samples qr, Rqr ← Pd such that qr(βj) = 0 for j ∈ I and

broadcast the commitment C(qr, Rqr ).
2. For j ∈ I, each Pr broadcasts the openings o(0, Rqr (βj)). If one of the

opening is not correct, the corresponding participant is added to the list
of corrupted participant B.

3. For r ∈ [n], r′ ∈ [n], Pr sends to Pr′ the opening o(qr(αr′), Rqr (αr)) .

If the opening is not correct, the corresponding participant is added to
the list of corrupted participant B.

4. For r′ ∈ [n], Pr′ computes q(αr′) =
∑n

r=1 qr(αr′),Rq(αr′) =
∑n

r=1 Rqr (αr′),
and locally compute the commitment C(q,Rq).

5. For r ∈ [d+ 1], Pr samples h(αr, ·), Rh(αr, ·)← Pd such that

h(αr, βj) = q(αr), Rh(αr, βj) = Rq(αr) and broadcast the commitment

C(h(αr, ·), Rh(αr, ·)).
(Note that this implicitly defines random bivariate polynomials h,Rh of
degree d.)

6. For j ∈ I and r ∈ [d+1], parties locally compute C(h(αr, βj), Rh(αr, βj)),
C(q(αr), Rq(αr)) and check if C(h(αr, βj), Rh(αr, βj)) = C(q(αr), Rq(αr)).
If one commitment does not satisfy the equation, the corresponding par-
ticipant is added to the list of corrupted participant B.

7. For r′ ∈ [d+ 2, n], {P1, . . . , Pd+1} ∪ {Pr′} perform Recover on h .

5.3 Bivariate Product

The BivariateProduct protocol aims at creating a bivariate sharing g⋆ for the
multiplication of the secrets contained in two univariate sharings f, f ′ under the
blinding bivariate mask h. To distribute g⋆(x, y) = f(x)f ′(y) + h(x, y), each
pair of participants is going to interact. The core of this exchange is a zero-
knowledge multiplication protocol, denoted ZK-Mult, described in Appendix E.1
and based on [LN18, Section 6.2]. When composed with the key generation
KeyGen of the Paillier encryption, this protocol ZK-mult securely realizes the
Fprod functionality (see Fig. 1). The protocol is performed by two participants
P1, P2 where the input for P1 is a key pair for the Paillier encryption scheme and
a value x while P2 has input the corresponding public key and two values y, δ.
At the end of the protocol, P1 learns x · y+ δ. This subprotocol will be repeated
to compute product of polynomials.

16



Figure 1. Functionality Fprod

Fprod interacts with two parties P1 and P2.
Upon reception of x from P1 and y, δ from P2, Fprod sends xy+ δ to P1 and
the special symbol ⊥ to P2.

Protocol 5. BivariateProduct

INPUT: A set I of indices of size m and a set P = {P1, . . . , Pn} of partici-
pants holding two univariate sharings f, f ′ to batches (si)i∈I , (s

′
i)i∈I of m

secrets and one bivariate sharing h to m zeroes and the commitments to
these sharings C(f,Rf ), C(f ′, Rf ′), C(h,Rh).

OUTPUT: The bivariate sharing of g⋆(x, y) = f(x)f ′(y) + h(y, x) and the
commitment C(g⋆, Rg⋆) (with Rg⋆(x, y) = f(x)Rf ′(y) +Rh(y, x)).

1. For all r ∈ [n] and r′ ∈ [d+ 1],
(a) Pr samples (pkr, skr), (pkr,R, skr,R)← KeyGen, produces two NIZK

proofs of key generation and broadcasts all the public keys and
corresponding proofs.

(b) Pr′ verifies the proofs and if one of the verification fails, Pr is added
to the set of corrupted participants.

(c) Pr and Pr′ perform ZK-Mult on inputs pkr, skr, f(αr) for Pr and

pkr, f
′(αr′), h(αr′ , αr) for Pr′ . Pr obtains output g⋆(αr, αr′) .

(d) Pr and Pr′ perform ZK-Mult on inputs pkr,R, skr,R, f(αr) for Pr

and pkr,R, Rf ′(αr′), Rh(αr′ , αr) for Pr′ . Pr obtains output Rg⋆(αr, αr′) .

(e) Pr computes locally the commitments C(f ′(αr′), Rf ′(αr′)) and
C(h(αr′ , αr), Rh(αr′ , αr)) and checks that

C(g⋆(αr, αr′), Rg⋆(αr, αr′)) =(
f(αr) · C(f ′(αr′ , Rf ′(αr′))

)
⋆ C(h(αr′ , αr), Rh(αr′ , αr))

If the verification fails, Pr′ is added to the list of corrupted partici-
pants B.

2. Pr broadcast the commitment C(g⋆(αr, ·), Rg⋆(αr, ·)) for all r ∈ [d+

1].

5.4 Random Evaluation for Commitment Verification

The goal of Protocol 6 is to generate a random value rand used to ensure cor-
rectness of the shared commitments in Protocol 5 by revealing f(rand) in clear.

17



Protocol 6. CommitmentVerification

INPUT: Two univariate sharings f, f ′ and one bivariate sharings h dis-
tributed among a set P = {P1, . . . , Pn}.Another bivariate sharing g⋆(x, y) =
f(x)f ′(y) + h(y, x) distributed among the participant along with the com-
mitment C(g,Rg) for some bivariate polynomials g,Rg

OUTPUT: A bit b ∈ {0, 1}.

1. For r ∈ [n], Pr samples vr, Rvr ← F and broadcast C(vr, Rvr).

2. For r ∈ [n], Pr broadcasts o(vr, Rvr ) . If the verification fails, Pr is

added to the list of corrupted participant B.

Then, every party computes rand =
∑n

u=1 vu . If rand is any values of

the protocol (αr or βj), go back to step 1.

3. For r ∈ [n], Pr samples f̂r, Rf̂r
← Pd such that f̂r(rand) = 0 and

broadcasts C(f̂r, Rf̂r
).

4. For r ∈ [n], Pr sends to all Pr′ the opening to o(f̂r(αr′), Rf̂r
(αr′)) .

The receiver Pr broadcasts a bit indicating if the opening is correct.
For each share for which an irregularity was reported,Pr broadcasts the
opening. If the opening is correct, Pr′ accepts the value, otherwise Pr is
disqualified and added to the set of corrupted parties B. The protocols
aborts and each party outputs B.

5. Each Pr broadcasts the openings o(0, Rf̂r
(rand)). If one of the open-

ing is not correct, the corresponding participant is added to the list of
corrupted participant B.

6. Set f̂ = f +
∑n

u=1 f̂u and Rf̂ = Rf +
∑n

u=1 Rf̂u
. For r ∈ [n],

Pr broadcasts the opening o(f̂(αr), Rf̂ (αr)) .

7. For all r ∈ [n], each party computes locally C(f̂(αr), Rf̂ (αr)) and ver-
ifies that the opening is correct. If the verification fails, Pr is added to
the list of corrupted participant B.

8. Each party computes the values f̂(rand) by interpolation .

9. For all r′ ∈ [d+1], each participants computes locally the commitments
C(f ′(αr′ , Rf ′(αr′), C(h(αr′ , αr), Rh(αr′ , αr)) and
C(g(rand, αr′), Rg(rand, αr′)) and checks that

C(g(rand, αr′), Rg(rand, αr′)) =(
f(rand) · C(f ′(αr′ , Rf ′(αr′))

)
⋆ C(h(αr′ , αr), Rh(αr′ , αr))

If one of the verifications fails the participants broadcasts a 0, otherwise
it broadcasts a 1.

18



10. If one 0 was broadcasted in the previous step, the protocols outputs
b = 0, otherwise it outputs b = 1.

5.5 The Multiplication Protocol

We are now ready to introduce the whole protocol performing the multiplication
of two bivariate sharings g, g′ containing ℓ secrets each. The output g′′ is a bivari-
ate sharing for the ℓ pair-wise products of secrets in g, g′. We have also a value
m which must respect the bound m ≤ d − tP to obtain security. For simplicity
we assume that ℓ = mv. The generalization for any ℓ is straightforward.

Protocol 7. Mult

INPUT: A set P = {P1, . . . , Pn} holding two bivariate sharings g, g′ for two
batches of ℓ = mv secrets s1, . . . , sℓ and s′1, . . . , s

′
ℓ and the commitment to

these sharings C(g,Rg), C(g′, Rg′).

OUTPUT: Each party holds its shares for the bivariate sharing g′′ for the
batch of ℓ secrets s1s

′
1, . . . , sℓs

′
ℓ along with the commitment C(g′′, Rg′′)

1. The participants perform ReshareBivariateToUnivariate on g and

g′ . We write (fk)k∈[v] and (f ′
k)k∈[v] the outputs of the two executions.

2. For k ∈ [v],

(a) Set Ik = [1+(k−1)m, km] and execute BlindingBivariateGeneration

on input Ik. We write hk the bivariate sharing obtained in output.
(b) Participants perform BivariateProduct on the sharings fk, f

′
k, hk

and set Ik to obtain g⋆k a bivariate sharing with a bivariate commit-
ment C(gk, Rgk).

(c) Participants execute CommitmentVerfication on sharings fk, f
′
k, hk, g

⋆
k.

If the output is 0, the protocol aborts and each party outputs B the
set of corrupted participants.

(d) Pr interpolates g⋆k(αr, βj) for j ∈ Ik.

3. For r ∈ [d+ 1], Pr samples g′′(αr, ·), Rg′′(αr, ·)← Pd with

g′′(αr, βj) = g⋆k(αr, βj) and Rg′′(αr, βj) = Rg⋆
k
(αr, βj) for all k ∈ [v]

and j ∈ Ik and broadcast the commitment C(g′′, Rg′′).
(Note that this implicitly defines a bivariate polynomial g′′ of degree d.)

4. For all r ∈ [d+1], each participant Pr′ computes C(gk(αr, βj), Rgk(αr, βj))
and C(g′′(αr, βj), Rg′′(αr, βj)) and checks equality for all k ∈ [v] and
j ∈ Ik. If one of the verification fails for index r, Pr is added to the set
of corrupted participants B. The protocol aborts and each participant
outputs B.

5. For r′ ∈ [d+ 2, n], {P1, . . . , Pd+1} ∪ {Pr′} perform Recover on g′′ .

Communication complexity: The complexity of ReshareBivariateToUnivariate
is O(n2v) and O(n2) for BlindingBivariateGeneration, BivariateProduct

19



and CommitmentVerification. Thus, the overall complexity of the two first
steps is O(n2v). The final Recover step is performed in O(n2) when n−d = O(1).
Overall, this is O(n2v) and O(n2/m) amortized. When ℓ = n− 2 and m ≈

√
ℓ,

we obtain the claimed amortized complexity of O(n
√
n).

Theorem 2. When ℓ ≤ d and m = ⌈
√
ℓ⌉ and assuming the hardness of DDH,

the protocol ΠMULT introduced in Protocol 7 securely realizes the ideal process

IDEAL
Z,S,FMULT,ℓ

mixed against any adversary bounded by the multi-threshold T (ℓ)

where we have T (ℓ) =
{
(d− 1−

√
ℓ, d− 1−

√
ℓ)
}
.

The ideal functionality IDEAL
Z,S,FMULT,ℓ

mixed and the proof of Theorem 2 can
be found in Appendix B.

References

BELO14. Joshua Baron, Karim Eldefrawy, Joshua Lampkins, and Rafail Ostrovsky.
How to withstand mobile virus attacks, revisited. In PODC, pages 293–302.
ACM, 2014.

BELO15. Joshua Baron, Karim Eldefrawy, Joshua Lampkins, and Rafail Ostrovsky.
Communication-optimal proactive secret sharing for dynamic groups. In
ACNS, volume 9092 of LNCS, pages 23–41. Springer, 2015.

Ben64. Václav E. Beneš. Optimal rearrangeable multistage connecting networks.
The Bell System Technical Journal, 43(4):1641–1656, July, 1964.

BGRS18. F Baldimtsi, S Goldberg, L Reyzin, and O Sagga. Certifying rsa public keys
with an efficient nizk. Cryptology ePrint Archive, Report 2018/057, 2018.

DEL+16. Shlomi Dolev, Karim Eldefrawy, Joshua Lampkins, Rafail Ostrovsky, and
Moti Yung. Proactive secret sharing with a dishonest majority. In SCN,
volume 9841 of LNCS, pages 529–548. Springer, 2016.

ELL20. Karim Eldefrawy, Tancrède Lepoint, and Antonin Leroux. Communication-
efficient proactive secret sharing for dynamic groups with dishonest majori-
ties. In ACNS (1), volume 12146 of Lecture Notes in Computer Science,
pages 3–23. Springer, 2020.

EOPY18. Karim Eldefrawy, Rafail Ostrovsky, Sunoo Park, and Moti Yung. Proactive
secure multiparty computation with a dishonest majority. In SCN, volume
11035 of LNCS, pages 200–215. Springer, 2018.

GHS12. Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryp-
tion with polylog overhead. In EUROCRYPT, pages 465–482, 2012.

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or a completeness theorem for protocols with honest majority. In
Alfred V. Aho, editor, STOC, pages 218–229. ACM, 1987.

HJKY95. Amir Herzberg, Stanislaw Jarecki, Hugo Krawczyk, and Moti Yung. Proac-
tive secret sharing or: How to cope with perpetual leakage. In CRYPTO,
pages 339–352, 1995.

HLM13. Martin Hirt, Christoph Lucas, and Ueli Maurer. A dynamic tradeoff be-
tween active and passive corruptions in secure multi-party computation. In
CRYPTO (2), volume 8043 of LNCS, pages 203–219. Springer, 2013.

LN18. Yehuda Lindell and Ariel Nof. Fast secure multiparty ECDSA with practical
distributed key generation and applications to cryptocurrency custody. In
ACM Conference on Computer and Communications Security, pages 1837–
1854. ACM, 2018.

20



OY91. Rafail Ostrovsky and Moti Yung. How to withstand mobile virus attacks
(extended abstract). In PODC, pages 51–59. ACM, 1991.

Ped91. Torben P. Pedersen. Non-interactive and information-theoretic secure veri-
fiable secret sharing. In CRYPTO, pages 129–140, 1991.

Wak68. Abraham Waksman. A permutation network. J. ACM, 15(1):159–163, 1968.

21



A Proofs of PSS

In this section, we present the updated proofs for the sub-protocols introduced
in [ELL20] in the setting where the adversary might know some of the secrets
given in the sharing.

A.1 Recover

Protocol 8. Recover

INPUT: A set P = {P1, . . . , Pd+1} with respective shares {g(αr, αr′)}r′∈[d+1]

and a recovering party PrC .

OUTPUT: Each party Pr for r ∈ [d+1]∪{rC} obtains {g′(αr, αr′)}r′∈[d+1],
where g′(βj , βj) = g(βj , βj) for all j ∈ [ℓ].

1. For r ∈ [d+ 1], Pr broadcasts the commitments to {g(αr, αr′)}r′∈[d+1].
Each broadcast commitment consistency is locally verified; if consis-
tency fails, Pr broadcasts a complaining bit and the protocol aborts.

2. For r ∈ [d + 1], Pr samples fr ← Pd such that fr(αrC ) = 0 , then

broadcasts commitments of fr(αr′) for all r
′ ∈ [d+1], and then sends

an opening to the commitment of fr(αr′) to each Pr′ .

3. Each party verifies that fr′(αrC ) opens to 0 for every r′ ∈ [d+1]. When
the opening fails, Pr′ is disqualified and added to the set of corrupted
parties B, and the protocol aborts and each party outputs B.

4. For r ∈ [d + 1], Pr locally computes fr′(αr), r
′ ∈ [d+ 1] and broad-

casts a complaining bit indicating if the opening is correct. For each
share fr′(αr), for which an irregularity was reported, Pr′ broadcasts
the opening. If the opening is correct, Pr accepts the value, otherwise
Pr′ is disqualified and added to the set of corrupted parties B. The
protocols aborts and each party outputs B.

5. For r ∈ [d+ 1], Pr sends to PrC openings to the values

g(αr, αr′) + fr′(αr) for all r′ ∈ [d+1]. PrC is able to compute locally a

commitment to the values g(αr, αr′)+fr′(αr) and for each r′ broadcasts
a bit indicating if the opening was correct.

6. For each share g(αr, αr′) + fr′(αr), for which an irregularity was re-
ported, Pr broadcasts the opening. If the opening is correct, PrC accepts
the value, otherwise Pr is disqualified and added to the set of corrupted
parties B. The protocols aborts and each party outputs B.

7. PrC locally interpolates g(αrC , αr′) for all r′ ∈ [d+ 1].

Lemma 2. (Informal) When ℓ ≤ d and the adversary knows ℓ′ ≤ ℓ secrets in
the sharing g in input, Recover preserves secrecy on the ℓ − ℓ′ secrets when
(tP , tA) ≤ {(d + 1 −

√
ℓ, d + 1 −

√
ℓ)}. The only information obtained by the

22



adversary on the sharing are the shares of the corrupted participants and the
leaked secrets.

Proof. As can easily be seen, the critical case is when PrC is corrupted. We set
T = [tP − 1], wlog we can assume the set of indices of the corrupted parties
is obtained as {rC} ∪ T . As part of the bivariate sharing distribution, we can
assume that the adversary already knows g(αr, ·), g(·, αr) for corrupted Pr and
g(βj , βj) for j ∈ [ℓ′]. In this setting, we know from the proofs of the original
PSS in [ELL20] that we have information theoretic security on the ℓ − ℓ′ other
secrets.

We need to verify that the equations g(αr, αu)+fu(αr) seen by the adversary
for r, u ∈ [d+ 1]2 are not sufficient to learn any new evaluations of g.

When either r or u is in T , the adversary already knows both g(αr, αu) and
fu(αr). This is also true for g(αrC , αu) and fu(αrC ) = 0. We write E0 the set
of all these evaluation equations. For the adversary, the set of new interesting
equations are the g(αr, αu) + fu(αr) where both Pr and Pu are honest. Let us
write E this set of (d+ 2− tP )

2 equations.
For each u, the interpolation formula allows to express g(αrC , αu)+fu(αrC ) =∑d+1

r=1 Πr(αrC )(g(αr, αu)+ fu(αr)). Rewriting this equation gives g(αd+1, αu)+

fu(αd+1) =
1

Πd+1(αrC
(g(αrC , αu)+fu(αrC )−

∑d
r=1 Πr(αrC )(g(αr, αu)+fu(αr))).

This proves that for all u ∈ [tP , d+1], the evaluation equation on g(αd+1, αu)+
fu(αd+1) can be derived from the equations in E0 and the other equations in E.
Thus, we can reduce the set of independent equations inside E to be g(αr, αu)+
fu(αr) with u ∈ [tP , d+1] and r ∈ [tP , d]. The degree of freedom of each fu with
respect to E0 is d+1− (tP −1)−1 for u ∈ [tP , d+1]. With that, we get that the
degree of freedom of g(αr, ·) is d+ 1− tP for r ∈ [tP , d] with respect to E0 ∪E.

In the end, if we take the d + 1 participants {P1, . . . , Pd} ∪ {PrC}, we see
that we obtain the usual distribution of a bivariate secret sharing between d+1
parties among which tP are corrupted. In this case, we know there is information
theoretic security on the ℓ− ℓ′ secrets previously unknown to the adversary.

A.2 Reconstruct

Up to this point, we have shown that the additional information of several se-
crets leaked to the adversary was not a threat to the security of our scheme.
Unfortunately that is not the case of the fairness of the Reconstruct protocol.
Fairness is the property that the adversary cannot deny the output to the honest
participants and still compute the output for himself. Against active adversary,
it was shown that fairness cannot be obtained in dishonest majority. However,
Hirt, Lucas, and Maurer [HLM13] introduced the gradual sharing setting where
fairness is obtained when tA ≤ n/2 and tP ≤ n − tA. In [ELL20], this idea was
adapted to their bivariate sharing to obtain a gradual threshold of tA ≤ n/2 and
tP ≤ n−

√
ell − tA. In Lemma 3, we show that the gradual threshold is further

decreased to tP ≤ min(n− tA−
√
ℓ, 2(n− tA)− ℓ). Usually we have n ≈ ℓ and so

the threshold becomes tP ≤ min(n− tA −
√
n, n− 2tA). Since tA ≤ tP we must

23



have tA ≤ n − 2tA ⇒ tA ≤ n/3. While this reduces the range of threshold we
can tolerate, this is only affecting the fairness threshold (for which we couldn’t
handle an active majority anyway).

Protocol 9. Reconstruct

INPUT: A set P = {P1, . . . , Pn} with respective shares {g(αr, αr′)}r′∈[d+1].
A (public) set of nonzero values (λk)1≤k≤d such that λ1 + · · ·+ λd = 0 and
λ1 + . . .+ λi ̸= 0 for all i < d.

OUTPUT: Values sj = g(βj , βj) for j ∈ [ℓ] to all parties in P.

1. Initialization: Set B = ∅,i = d and the number of remaining parties as

N = n. Each party in P sets locally sj = 0 for all j ∈ [ℓ] .

2. First step (i = d):
(a) Without loss of generality, assume P = {P1, . . . , PN}.

For r ∈ [d], Pr samples Qd−1(αr, ·)← Pd−1 and broadcast com-

mitments to {Qd−1(αr, αr′)}r′∈[d].
Note that this implicitly defines Qd−1 a random bivariate polynomial
of degree d− 1.

(b) Using Recover, P1, . . . , Pd reveal {Qd−1(αd+1, αr′)}r′∈[d+1] to Pd+1.

If Recover aborts with output B′, sets B = B ∪ B′, N = N − |B′|
and P = P \ B′. If N > d, go to step (a), otherwise the protocol
aborts and outputs B.

(c) Denote gd = g + λdQd−1 . For r ∈ [d + 1], Pr locally updates

their shares to {gd(αr, αr′)}r′∈[d+1] using the Qd−1(αr, αr′)’s, and

broadcasts commitments thereof.
3. Gradual Reconstruction: While i ≥ 2 :

(a) Wlog, assume P = {P1, . . . , PN}. For r ∈ [i + 1], Pr broadcasts

openings to {gi(αr, αr′)}r′∈[i+1] , and all parties locally verify the

openings. Let B′ denote the parties with incorrect openings. Each
party sets B = B ∪B′, N = N − |B′| and P = P \B′. If N > i, go
the step (b), otherwise the protocol aborts and outputs B.

(b) For r ∈ [i+ 1, N ], Pr interpolates its shares {gi(αr, αr′)}r′∈[i+1].

Then, computes the values {Qi−1(αr, αr′)}r′∈[i].
Note that we have the invariant gi+· · ·+gd = g+(λd+· · ·+λi)Qi−1.

(c) All parties interpolate gi and update sj ← sj + gi(βj , βj) .

Set i← i− 1.

(d) If i = 1, sets Q0 = 0 and go to Step (f).

Else, for r ∈ [i], Pr samples Qi−1(αr, ·)← Pi−1 and broadcast

commitments to {Qi−1(αr, αr′)}r′∈[i+1].

24



Note that this implicitly defines Qi−1 a random bivariate polynomial
of degree i− 1.

(e) Using Recover , P1, . . . , Pi enable Pi+1 to obtain

evaluations of {Qi−1(αr, αr′)}r′∈[i+1] . If Recover aborts with out-

put B′, sets B = B ∪ B′, N = N − |B′| and P = P \ B′. If N > i,
go to step (d), otherwise the protocol aborts and outputs B.

(f) Denote gi = λiQi +
(∑i−1

k=1 λk

)
· (Qi −Qi−1) . For r ∈ [i + 1], Pr

locally updates its shares to {gi(αr, αr′)}r′∈[i+1] and broadcast

commitments to these values.
4. Last Step (i = 1):

Wlog, assume P = {P1, . . . , PN}. Each party Pr ∈ P broadcasts open-

ings to g1(αr, α1) and g1(αr, α2) . If there are at least 2 correct

set of openings, all parties compute g1(βj , βj) for all j ∈ [ℓ] and set

sj ← sj + g1(βj , βj) ; otherwise the protocol aborts.

Lemma 3. (Informal) If ℓ ≤ d and tP ≤ min(n− tA −
√
ℓ, 2(n− tA)− ℓ), then

the Reconstruct protocol provides information theoretic security on the ℓ − ℓ′

secrets unknown to the adversary when the protocol aborts.

Proof. Fairness
First, we stress that B is contained in the set of actively corrupted partic-

ipants. Thus, we have |B| ≤ tA and tP ≤ min(n − tA −
√
ℓ, 2(n − tA) − ℓ) ≤

min(n − |B| − ℓ, 2(n − |B|) − ℓ). The correctness of Reconstruct relies on the
invariant gi + · · ·+ gd = g+(λd + · · ·+λi)Qi−1. At any given index i0, the eval-
uations gi(βj , βj) have been reveled for i0 ≤ i ≤ d and the value sj = g(βj , βj)
is protected by the value Qi0−1(βj , βj). The fairness of Reconstruct, which was
proven in [ELL20], follows from the fact that if the protocol aborts at index i0 we
have the bound n−|B| < i0 which implies tP < i0−

√
ℓ when tP ≤ n−|B|−

√
ℓ.

This is the usual threshold for a bivariate sharing of degree i0 − 1 and so the
values of Qi0−1(βj , βj) are information theoretically hidden.

We now want to assess what changes are introduced by the fact that the
adversary knows some of the secrets sj . From the equation above we see that
the knowledge of sj will ensure that the adversary will learn the additional
evaluations Qi(βj , βj) for all i0 − 1 ≤ i ≤ d. Thus, for each i, the adversary will
learn ℓ′ additional evaluations on each Qi, the problem is that this quantity is
independant of each i. Thus, there is necessarily a moment where these ℓ′ values
will be enough for the adversary to break information theoretic security on the
remaining ℓ − ℓ′ secrets. In particular, the concern comes from the diagonal
polynomial Qi0−1(x, x). The degree of this polynomial is 2i0. If we write ti0P
the number of corrupted participants among P1, . . . , Pi0 , we get that the degree
of freedom of this polynomial is 2 ∗ i0 + 1 − (ti0P + ℓ′). The usual bound tP ≤
n− |B| −

√
ℓ is not enough to ensure information theoretic security on the ℓ− ℓ′

25



secrets. This is why we need the new bound tP ≤ 2(n−|B|)−ℓ. Then, we see that
the degree of freedom of Qi0−1(x, x) can be lower bounded by ℓ− ℓ′. When the
degree of freedom of Qi0−1(x, x) is big enough, the usual proof of secrecy for the
bivariate sharing can be applied to Qi0−1 in order to show that the ℓ− ℓ′ secrets
are information theoretically hidden when tP ≤ min(n−|B|−

√
ℓ, 2(n−|B|)−ℓ).

⊓⊔

A.3 Refresh

Protocol 10. Refresh

INPUT: A set P = {P1, . . . , Pn} with respective shares {g(αr, αr′)}r′∈[d+1].

OUTPUT: Each party Pr ∈ P obtains {g′(αr, αr′)}r′∈[d+1], where g
′(βj , βj) =

g(βj , βj) for all j ∈ [ℓ].

1. For r ∈ [d], Pr samples R(αr, ·)← Pd−1 and broadcasts homomorphic

commitments to the values {R(αr, αr′)}r′∈[d].
Note that this implicitely defines a bivariate polynomial R(x, y) of degree
d− 1.

2. For i ∈ {d + 1, ..., n}, {Pi} ∪ {P1, ..., Pd} perform Recover to provide

Pi with the shares R(αi, αr′) for r
′ ∈ [d] .

Note that the first step of Recover is unnecessary since each Pi already
knows the homomorphic commitments to R.

3. For r ∈ [n], Pr samples hr ← Pd , and broadcasts commitments to the

coefficients of hr(αr′) for all r′ ∈ [d + 1]. Pr sends to Pr′ an opening

of the commitment to hr(αr′) for all r′ ∈ [d+ 1].

4. For r ∈ [n], Pr locally verifies the commitments and for each r′ broad-
casts a bit indicating if the opening was correct. For every irregularity
on hr′(αr), Pr′ broadcasts the opening. If the opening is correct, Pr

accepts the value, otherwise Pr′ is disqualified and added to the set of
corrupted parties B. The protocols aborts and each party outputs B.

5. For r ∈ [n], Pr computes h(αr) =
∑n

r′=1 hr′(αr) .

6. For r ∈ [n], for all r′ ∈ [d+ 1], Pr computes

g′(αr, αr′) = g(αr, αr′) + (αr − αr′) ·R(αr, αr′) + h(αr) ·
∏

j∈[ℓ](αr′ − βj) .

Lemma 4. (Informal) Refresh operates correctly to refresh the bivariate shar-
ing of ℓ ≤ d secrets among which ℓ′ are known to the adversary without revealing
the ℓ − ℓ′ secrets when the bound tP ≤ d + 1 −

√
ℓ is verified at all times. The

only information obtained by the adversary on the new sharings are the shares
of the corrupted participants and the leaked secrets.

Proof. From the Refresh protocol, we see that g(x, y) is replaced by g′(x, y) =
g(x, y)+(x−y)R(x, y)+h(x)

∏
j∈[ℓ](y−βj). Both R and h are completely random

26



polynomials. In the proof of Refresh provided in [ELL20], it was shown that
Refresh provided information theoretic security on the ℓ values g(βj , βj) for
j ∈ [ℓ]. From the formula g′(x, y) = g(x, y)+(x−y)R(x, y)+h(x)

∏
j∈[ℓ](y−βj)

it is clear that the additional evaluation equations g(βj , βj) for j ∈ [ℓ′] will not
help the adversary discover new evaluations of either g or g′.

A.4 Redistribute

We now treat the case of Redistribute. This protocol modifies the number of
participants involved in a sharing given in input. At the beginning the set of
participant is {P1, ..., Pn(ω)} and at the end the set is {P1, ..., Pn(ω+1)}. We index
every parameters (d, tP ...) with the phases ω, ω + 1 to make the distinction.

Protocol 11. Redistribute

INPUT: A set P = {P1, ..., Pn(ω)} with respective shares {g(αr, αr′)}r′∈[d+1]

of degree d

OUTPUT: A set P ′ = {P1, ..., Pn(ω+1)} of parties with respective shares
{g′(αr, αr′)}r′∈[d′+1] of degree d′

1. For j ∈ [ℓ] :

(a) Each Pr ∈ P sets fj(αr) = g(αr, βj) .

(b) If PLC
̸= ∅: PL ∪ P∩ perform DecreaseCorrupt . The output is

evaluations of f1
j a polynomial of degree d− 1.

(c) PL and P∩ uses Decrease to share f2
j a polynomial of degree d−

|PL| − |PLC
| among the participants in P∩.

(d) P∩ and PN perform Increase to produce shares of f3
j a polyno-

mial of degree d′ = d−|PL|− |PLC
|+ |PN | among every participant

in P ′.
2. Each Pr ∈ {P1, ..., Pd′+1} ⊂ P ′ samples g′(αr, .)← Pd′ such that

∀j ∈ [ℓ], g′(αr, βj) = f3
j (αr) and broadcasts the associated homomor-

phic commitments.
Note that this implicitly defines a bivariate polynomial g′ of degree d′.

3. Each Pr ∈ P ′ verifies that the commitments to g′ were constructed
consistently from the commitments to the f3

j polynomials. For each
party r′, Pr broadcasts a bit indicating if the commitments are correct.
Each failing Pr′ is disqualified and added to the set of corrupted parties
B. The protocol aborts and each party outputs B.

4. {P1, ..., Pd′+1} uses Recover to share g′ to {Pd′+2, . . . , Pn(ω+1)} .

Lemma 5. (Informal) Redistribute transforms a sharing of ℓ secrets between
n(ω) participants into a sharing between n(ω+1) participants. If ℓ ≤ min(d(ω), d(ω+1))

27



and ℓ′ secret are known to the adversary, then the adversary cannot find any

information on the ℓ − ℓ′ remaining secrets when t
(ω)
P ≤ d(ω) + 1 −

√
ℓ and

t
(ω+1)
P ≤ d(ω+1)+1−

√
ℓ. The only information obtained by the adversary on the

new sharings are the shares of the corrupted participants and the leaked secrets.

Proof. The protocol Redistributemakes use of the three sub-protocols Increase,
Decrease, DecreaseCorrupt on univariate sharings and works by applying suc-
cessively these three protocols on each fj(·) = g(·, βj). It is clear from there that
knowing g(βj , βj) for j∈ [ℓ′] will not help learning any new evaluation of g′.

B Security Proof of the Multiplication Protocol

In this section we are going to prove that the protocol Mult introduced in Proto-
col 7 is secure against a mixed malicious adversary (see Theorem 2). We start by
proving a series of informal lemmas on the protocols of Section 5, culminating in
a proof of Lemma 11 on the security of the Mult protocol. As for Lemma 1. The
goal of these lemmas and their proofs is to summarize the important technical
ideals behind the security. It can be seen as a preliminary to the full simulator-
based proof of Theorem 2 that follows.

Lemma 6. (Informal) When ℓ = mv ≤ d, the ReshareBivariateToUnivariate
protocol computes a correct resharing from a bivariate sharing of ℓ secrets to v
univariate sharing of m secrets. When (tP , tA) ≤ (d + 1 −max(m,

√
ℓ), d + 1 −

max(m,
√
ℓ), the degree of freedom of each new sharing fk with respect to the

adversary’s knowledge is d+1− tP −mk where mk ≤ m is the number of secrets
already known to the adversary before the protocol. The privacy of all the m−mk

remaining secrets is preserved under the hardness of DDH.

Lemma 6 can be easily be proven using the ideas from [ELL20].

Lemma 7. (Informal) The protocol BlindingBivariateGeneration success-
fully distribute a bivariate sharing of m zeroes to the participants. When m ≤ d
and tP ≤ d+1−m, the resulting bivariate sharing h (and the associted random-
ness Rh) satisfies Cmult(tP ) under the hardness of DDH.

Proof. For simplicity of notations we assume that I = [m] in this proof. First, let
us prove that the protocol correctly distributes a sharing of m zeroes. It is clear
from the construction that q(βj) = 0 for all j ∈ I. Any participant Pr trying to
share a polynomial qr not having all the βj as roots would be caught due to the
homomorphic commitments. For the same reason, all the participants are able
to compute correct commitments to the coefficient of a bivariate sharing h of m
zeroes at the points (βj , βj) for j ∈ I.

The more difficult issue, here, is to prove that h verifies the Cmult(tP ) condi-
tion (the same reasoning applies to prove the condition is also verified by Rh). Let
us start by enumerating the equations in ET . Wlog we can assume that T = [tP ].
First, each corrupted participant Pr knows h(αr, ·) by construction of the shar-
ing. This provides tP (d + 1) independent evaluation equations to ET . Since

28



every participant Pr with r ∈ [d + 1] generates independently its own h(αr, ·),
any new independent equation can only come from the way h is constructed in
BlindingBivariateGeneration. Hence, A knows that h(x, βj) = q(x) for all
x and j ∈ I. This is a maximum of (d + 1)m new equations, but in fact some
of them are not independent with the equations A already has. Indeed, when
x = αr with r ∈ [tP ], this equation can be obtained from the knowledge of
h(αr, ·). This leaves at most m(d+1− tP ) new independant equations. The fact
that q(βj) = 0 provide m2 new free evaluation equations by replacing x with all
the βj for j ∈ I. Removing these from the (d+1− tP )m equalities, we have still
(d+ 1− tP −m)m to take into account. Since, d+ 1− tP ≥ m, this number is
positive. From the construction of q, we see that its degree of freedom is exactly
d+ 1− t−m with respect to the system constituted of evaluation equations on
αr and βj for r ∈ T and j ∈ I. So the evaluations of q on d+1− tP −m distinct
values x (different from αr with r ∈ [tP ] or βj with j ∈ I) are completely un-
known to A. For these values x, the equalities h(x, βj) = q(x) are not equations
on h as defined in Section 2.4 (since q(x) is unknown). However, eliminating
q(x) by pairing these equations two by two, we obtain the equivalent system
h(x, βj)−h(x, βj+1) = 0 for j ∈ [m−1]. Thus, we obtain (m−1)(d+1− tP −m)
new independent equations. Since our polynomials are of degree d, we cannot
extract any new independent equations.

We are now ready to prove that h verifies Cmult(tP ). We start by the first
item. Since the honest Pu generates all the h(αu, ·) independently of the other
participants, we can obtain dh(αu,·)(ET ) by counting the number of equations in
ET involving h(αu, ·). We saw that there were only m− 1 such equations which
proves that dh(αu,·)(ET ) = d+ 2−m.

The second item is going to hold for the same reason. First, let us point that
when E = ∅, the result is clear. Indeed, we cannot use the m − 1 equations
h(αu, βj) − h(αu, βj+1) = 0 for j ∈ [m − 1] to express the evaluation equation
on (αu, z). Similarly, adding any system of equations E with #XE ≤ d− tP and
αu ̸∈ E will not help. Indeed, since #XE ≤ d− tP , the additional knowledge of
E will only help learn information on at most d− tP new h(x, ·) . We remind the
reader that the adversary knows the tP polynomial h(x, ·) for x = αr when r ∈ T .
In total this is a total of at most t+ d− t different x. Since tP + d− tP < d+1,
this is not enough to obtain meaningful information on h(αu, ·) by the bivariate

polynomial structure of h. Indeed, we can write h(x, y) =
∑d+1

r=1 Πr(x)h(αr, y)
with the interpolation formula (we can replace α1, . . . , αd+1 by any set of d+ 1
points). This formula implies that h(αu, ·) is independent of any other d poly-
nomials h(x, ·). Thus, h(αu, z) remains information theoretically hidden with
respect to E ∪ ET . This finishes to prove that our bivariate sharing verifies
Cmult(tP ).

Remark 2. Proving the correctness of the Protocol 5 is a bit tricky. Indeed, un-
like all the other protocols, correctness cannot be ensured from the additively
homomorphic commitments because of the multiplications. In all the interac-
tions between pairs Pr and Pr′ , the receiver Pr is going to be able to check
correctness of the values g⋆(αr, αr′) and Rg⋆(αr,αr′ )

with the commitments since

29



he knows f(αr) in the clear. However, it is impossible for every other partic-
ipant to compute this commitment. That is why we need the last step where
Pr broadcasts C(g⋆(αr, ·), Rg⋆(αr, ·)). There is no way for the participants to
verify the correctness of this commitment without further interactions and that
is why we cannot prove correctness directly. This is the purpose of Protocol 6.
In Lemma 8, we only treat secrecy. In Lemma 9, we formulate the correctness
statement for Protocol 5.

Lemma 8. (Informal) When m < d, the adversary knows m1 < m of the se-
crets shared in f , m′

1 < m of the secrets shared in f ′ (and no other informa-
tion), the corruption threshold satisfies the inequality tP , tA ≤ (d + 1 −m), the
bivariate sharing h (along with the commitment randomness Rh) in input sat-
isfies Cmult(tP ) (as defined in Definition 3) and the composition of KeyGen with
ZK-Mult privately realizes Fprod, the protocol BivariateProduct does not leak
information about the (sj)j∈I , (s

′
j)j∈I and (sjs

′
j)j∈I which the adversary did not

already know under the hardness of DDH.

Proof. By the security of ZK-Mult during the exchange between Pr and Pr′ ,
the receiver Pr learns g⋆(αr, αr′) and only that value, while Pr′ does not learn
anything even when one of the two is maliciously corrupted. The same holds for
Rg⋆ . From this and the outline of the protocol, we need to focus on the recovery
of the secrets in f ′. Indeed, from the exchange between each Pr and Pr′ , the
receiver Pr learns a value g⋆(αr, αr′) involving f ′(αr′) and that’s it. Thus, no
information is leaked about the secrets in f .

Let us now focus on f ′. Before the execution of BivariateProduct, the
degree of freedom of f ′ with respect to the adversary’s knowledge is d+1− tP −
m′

1 ≥ m−m′
1. Without loss of generality, we can assume that the set of corrupted

indices is T = [tP ]. We are going to see the information received by the corrupted
parties during BivariateProduct as a system of linear equations (here the term
equation refer to classical equations and not equations on a polynomial as defined
in Section 2.4). The unknowns will be f ′(αr′) for r′ ∈ [tP + 1, d + 1 −m′

1] and
some evaluations of h. Above all, we want to keep the evaluations of f ′ secret.
More precisely, the adversary learns tP (d + 1 − tP ) equations g⋆(αr, αr′) =
f(αr)f

′(αr′) + h(αr′ , αr) for all corrupted Pr and honest Pr′ .
We are going to show that we have information theoretic secrecy on our

secrets for any subsystem of these tP (d+1−tP ) equations. Write E such a system
of e ≤ tP (d+1−tP ) equations. If i is the number of f ′ secret evaluations involved
in E , we are going to show that the difference∆ between the number of unknowns
in E and e is bigger than min(i, d+1−tP−m′

1). If this holds for any subsystem, it
proves our point. In fact, we are going to prove that ∆ = min(i, d+1− tP −m′

1).
We are going to show this equality by induction. We start by looking at the

case i = 1, where 1 ≤ e ≤ tP . Wlog we can assume that the e equations are
g⋆(αr, αtP+1) for r ∈ [e]. The unknowns of E are f ′(αtP+1) and h(αtP+1, αr) for
r ∈ [e], but we need to check that the adversary cannot add some equations to
the system with his knowledge on h. By the first item of Cmult, the degree of
freedom of h(αtP+1, ·) with respect to the adversary’s knowledge is d + 2 −m.

30



Since, e ≤ d + 1 −m ≤ d + 2 −m, the e evaluations of h are independent and
this proves that ∆ = e+ 1− e = 1. We now assume that the equality holds for
i and we show that this imply the inequality for i+ 1 ≤ d+ 1− tP −m′

1. Wlog,
we say that the i + 1 values involved are αtP+1, . . . , αtP+i+1. We decompose
E = Ei ∪ Ei+1 where Ei+1 is the set of equations involving f ′(αtP+i+1) and
Ei is the set of remaining equations. We write ei+b = #Ei+b for b ∈ {0, 1}
and we have e = ei + ei+1. By applying the second item of Cmult to Ei (with
i+1 ≤ d+1−tP we have that #XEi

≤ d−tP ) and u = αtP+i+1, we see that any
value of h(αtP+1+i, ·) is independent of Ei ∪ET . This proves that the unknowns
of Ei+1 are independent of those of Ei. Thus, the number of unknowns in E
is the sum of the number of unknowns in Ei and Ei+1. By applying the case
i = 1, we see that the number of unknowns of Ei+1 is 1 + ei+1. By applying
our induction hypothesis on Ei we see that the number of unknowns in this
system is i+ ei. Thus, the number of unknowns in E is 1 + ei + i+ ei+1, which
shows that ∆ = i + 1 + (ei + ei+1) − e = i + 1. Finally, we show the result for
d+1−tP −m′

1 < i+1 ≤ d+1−tP . In this case, the i+1−(d+1−tP −m′
1) values

f ′(αj) for d + 1 − tP −m′
1 < j ≤ i + 1 can be seen as equations involving the

d+1− tP −m′
1 secret evaluation of f ′. Following the reasoning for our induction

step when i+1 ≤ d+1− tP −m′
1, we can still divide E in two sets of equations

Ei and Ei+1 of sizes ei and ei+1. Applying the first item of Cmult we can show
that there are ei+1 + d+ 1− tP −m′

1 unknowns in Ei+1 and ei + d1 − tP −m′
1

unknowns in Ei by the induction hypothesis. Putting the two systems together,
we can remove the common unknowns (which are the d + 1 − tP − m′

1 secret
evaluations of f ′) and see that ∆ = ei + ei+1 + d+ 1− tP −m′

1.
The same reasoning applies to Rg⋆ with the condition verified by Rh. So

the random Rf ′ has the same level of secrecy as f ′ and the homomorphic
commitments preserve the secrecy with the hiding property of the commit-
ment scheme. This finishes to prove that privacy of (s′j)j∈I is preserved during
BivariateProduct. Finally, we want to show the same thing for (sjs

′
j)j∈I . All

the values g⋆(αr, αr′) for honest Pr and Pr′ are unknown to the adversary. This
is the usual bivariate sharing setting. There are more than m blinding terms un-
known to the adversary that are protecting the secrets in g⋆. Additionally, the
same holds for the evaluations of Rg⋆ and the hiding property of the commitment
scheme preserves secrecy of the commitments.

Lemma 9. (Informal) If the protocol BivariateProduct executes without any
abort, every honest participant Pr got the correct polynomials g⋆(αr, ·) and Rg⋆(αr, ·).

Proof. We need to prove that every participant can check the consistency of
its exchange with Pr′ for all r′ ∈ [d + 1]. The value f(αr), that is known to
Pr, is enough to locally compute the commitment f(αr) · C(f ′(αr′), Rf ′(αr′)) ⋆
C(h(αr′ , αr), Rh(αr′ , αr)) = C(f(αr)f

′(αr′)+h(αr′ , αr)), f(αr)Rf ′(αr′)+Rh(αr′ , αr)).
Thus, by the perfectly binding property of the commitment scheme, the values
g⋆(αr, αr′) and Rg⋆(αr, αr′) are correct.

Lemma 10. (Informal) If m < d and tP , tA ≤ d−m The protocol CommitmentVerification
preserves the secrecy of the batch of m secrets (si) shared in f under the hard-

31



ness of DDH. If the output is 1, the set of commitments C(g(·, βj), Rg(·, βj))
is equal to C(g⋆, Rg⋆) (where g⋆(x, y) = f(x)f ′(y) + h(y, x) and Rg⋆(x, y) =
f(x)Rf ′(y) +Rh(y, x) with probability bigger than 1− d/q.

Proof. For secrecy, note that during the protocol, the value f(rand) will be
revealed to all parties; henceforth information theoretic secrecy of the si’s can
only hold when tP ≤ d−m. The technique from steps 1–8 used to reveal the latter
value follows that of [DEL+16]. By construction, we have f̂ = f +

∑
u∈[n] f̂u.

Assume tP ≥ 1. For every honest Pu, f̂u has a degree of liberty of d −m ≥ 1
with respect to the adversary’s knowledge, and there are at least d+1− tP > m
such polynomials. Henceforth, the m values f̂(βj) are distributed as uniformly
random values for the adversary. Finally, the hiding property of the commitment
scheme guarantees computational secrecy.

We are now going to show that when the protocol outputs 1, the commit-
ment C(g,Rg) cannot be different anything else than C(g⋆, Rg⋆) with probability
higher than d/q. We can see g,Rg as equal to g⋆ +∆,Rg⋆ +R∆ for some bivari-
ate error polynomials ∆,R∆. We want to show that the probability of ∆ ̸= 0 is
smaller than d/q.

First, the homomorphic property ensures that the parties obtain the correct
value f(rand) as it allows the participants to check every operation performed

leading to this computation. Since each f̂u(rand) = 0, we have f̂(rand) =
f(rand). Thus, the adversary needs that ∆(rand, ·) = 0 as the commitment
scheme is perfectly binding. This implies that ∆(x, y) = (x− rand)∆′

(x, y). The
adversary can ensure that ∆ ̸= 0 verifies this equation for at most d values rand.
Thus, the value rand being uniformly distributed in Zq, the adversary has at
most probability d/q to cheat successfully.

We conclude with Lemma 11 by combining all the above results.

Lemma 11. (Informal) If ℓ = mv ≤ d and tP , tA ≤ min(d−m, d+1−
√
ℓ), then

when ℓ1 secrets are leaked in the sharing g and ℓ′1 secrets are leaked in the shar-
ing g′, the protocol Mult preserves secrecy of the secrets (si)i∈[ℓ−ℓ1], (s

′
i)i∈[ℓ−ℓ′1]

under the hardness of DDH. The protocol distributes a bivariate a sharing g′′

of (sis
′
i)i∈[ℓ]. Additionally, the adversary only learns the shares of the corrupted

parties for g′′ along with the values g′′(βj , βj) where both sj and s′j are leaked
secrets. In the end of the protocol, when the protocol, has not aborted, the par-
ticipants hold a valid sharing of the secrets s1s

′
1, . . . , sℓs

′
ℓ with overwhelming

probabilities.

Proof. (Lemma 11) Since tP , tA ≤ d + 1 −
√
ℓ, no information is leaked on

the secret through the various bivariate sharings. Wlog we can assume that
P1, . . . , PtP are the corrupted participants as the adversary has clearly nothing
to gain by corrupting Pr when r ∈ [d + 2, n]. The secrecy on all the si, s

′
i, sis

′
i

is preserved throughout the executions of ReshareBivariateToUnivariate ,
BlindingBivariateGeneration,
BivariateProduct and CommitmentVerification because of Lemmas 6 to 8

32



and 10. Then, the generation of g′′ is performed locally. The distribution of their
shares to the remaining participants Pr with r ∈ [d+2, n] is made with Recover,
does not reveal anything to the adversary by secrecy of Recover. The same if
true for the execution of Refresh. Hence, secrecy is preserved. We also need to
verify that no other evaluation of g′′ is leaked. This is the purpose of the Refresh
step at the end. Indeed, after step 3, we have g′′(·, βj) = fk(·)f ′

k(βj) + h(βj , ·).
The security properties on h proven in Lemma 7 are not enough to prove the
result and in practice if we look at the concrete Protocol 4, it is quite clear that
the result does not hold. With Refresh, we replace g′′(x, y) by g′′(x, y) + (x −
y)R′(x, y) + h(x)

∏
j∈[ℓ(y − βj) where h and R are random polynomials. From

there, it is easy to see that every value of g′′ is replaced by a new random value
except at (βj , βj) for j ∈ [ℓ]. Thus, it proves that the adversary will know his
shares g(αr, ·) for corrupted participants and the secrets g′′(βj , βj) for leaked sj ,
s′j and nothing else.

For correctness, the executions of ReshareBivariateToUnivariate,
BlindingBivariateGeneration, BivariateProduct are correct due to Lem-
mas 6, 7 and 9. After the execution of these 3 steps, the participants have
obtained a bivariate sharing g⋆k and randomness Rg⋆

k
along with the commit-

ments C(gk, Rgk) to some bivariate polynomial gk under randomness Rgk for all
k. If we assume that CommitmentVerification passes, we know that gk(·, βj) =
f(·)f ′(βj) + h(βj ·) with probability higher than 1− d/q (that we consider over-
whelming) by Lemma 10. Thus, g′′(βj , βj) = f(βj)f

′(βj) = sjs
′
j for all j ∈ [ℓ]

with overwhelming probability.

Let us first define the ideal process for the mixed-adversary model for the mul-
tiplication.

Figure 2. Ideal Process for the Extended Multiplication protocol in the
mixed adversary model.

In this ideal process, the environment Z will provide the parties and an ideal
adversary S with inputs of its choice. Throughout the protocol the parties
will interact with an ideal functionality FMULT,ℓ that will play the role of
a trusted third party that will compute new shares for the multiplication.
Upon reception of the parties’ inputs that are the sharings of two batches of
secrets s1, . . . , sℓ and s′1, . . . , s

′
ℓ, the functionality will output a new sharing

of s1s
′
1, . . . , sℓs

′
ℓ.

The ideal process.
INITIALIZATION
1. Z invokes the adversary S with an auxiliary input z along with the sets
of actively and passively corrupted parties PA and PP .
2. Z invokes the parties Pr and their inputs xr, x

′
r.

INPUTS
3. Each party sends his input to the ideal functionality.

33



INPUT CORRUPTION
4. FMULT,ℓ sends xr, x

′
r to S when Pr ∈ PP .

COMPUTATION
5. FMULT,ℓ evaluates the shares to find the batches of secrets s1, . . . , sℓ and
s′1, . . . , s

′
ℓ. Then, it computes s1s

′
1, . . . , sℓs

′
ℓ and produces a new bivariate

sharing for which the share for participant Pr is yr.
OUTPUT DISTRIBUTION
6. FMULT,ℓ sends the output yr for corrupted participants Pr to S.
7. S sends either abort to FMULT,ℓ and FMULT,ℓ aborts and outputs ⊥ or
continue and the functionality proceeds to the next step.

8. FMULT,ℓ sends yi to each party Pi.

Outputs. Each honest party outputs whatever they received from FMULT .
The adversary outputs a value vS that may be arbitrarily computed from
the information he obtained during the execution of the protocol. After
observing the outputs of all parties and of the adversary, the environment
outputs a bit bZ .

For simplicity, in the theorem below we assume that ℓ is a perfect square so
that we can take the parameter m to be the exact square root of ℓ (recall that
we assumed the factorization ℓ = mv for Protocol 7). The extension for a generic
ℓ is easy.

Theorem 2. When ℓ ≤ d and m = ⌈
√
ℓ⌉ and assuming the hardness of DDH,

the protocol ΠMULT introduced in Protocol 7 securely realizes the ideal process

IDEAL
Z,S,FMULT,ℓ

mixed against any adversary bounded by the multi-threshold T (ℓ)

where we have T (ℓ) =
{
(d− 1−

√
ℓ, d− 1−

√
ℓ)
}
.

We are going to construct a simulator S that will emulate the view of an
adversary A in the real execution of Protocol 7. In the following, when we say
S inputs abort to FMULT,ℓ it refers to Step 6 of the ideal process.

In the Simulator described in Fig. 3, we recall that the set of actively (resp.
passively) corrupted parties is PA (resp. PP ) and that PA ⊂ PP . The set of
honest participant is denoted H.

Figure 3. Simulator for the Multiplication a malicious adversary

1. S receives the inputs xr and new shares yr for all the corrupted parties
Pr ∈ PP from FMULT,ℓ.

2. S generates random shares for the set of honest xr, x
′
r for all honest

parties Pr ∈ H..
3. The simulator initialize A commitments to the shares of all the par-

ticipants and opening of these commitments for shares belonging to
corrupted participants.

34



4. S perform the mult protocol withA on behalf of the honest parties using
the shares and commitments it generated during the previous steps.

5. If at any point during the execution, the protocol aborts, S sends abort
to FMULT,ℓ.

6. At the end of the protocol, if no abort was sent, the simulator sends
continue.

7. S sends continue to FMULT,ℓ and outputs whatever A outputs.
8. S outputs whatever A outputs.

Proof. We want to show that the output sent by S to FMULT,ℓ is indistinguish-
able from the one produced by the adversary in the real execution of the proto-
col. Since S forwards to the ideal functionality whatever A outputs, it suffices
to show that the simulator’s execution of the protocol on behalf’s of the honest
parties is indistinguishable from the real executions. First, it is clear that the
initialization step is performed correctly since S simply transmits the shares ob-
tained from FMULT,ℓ. Then, S generates random shares on behalf of the honest
parties and from then behaves as the honest participants would. By Lemma 11,
there is computational secrecy on the secrets during the execution of Protocol 7
under the DDH assumption underlying the hiding property of the commitment
scheme. Thus, the adversary cannot distinguish between the real execution and
the simulated one where the honest parties shares have been replaced by random
values. This concludes the proof that the output of the adversary is correctly
distributed. Due to the correctness of the protocol (also showed in Lemma 11),
we have that either the protocol aborts or the participants end up with a correct
sharing of the batch of secrets s1s

′
1, . . . , sℓ, s

′
ℓ. Finally, due to the execution of

Refresh (see [ELL20] for more details on this protocol and its security) at the
end of Protocol 7, the output shares are indistinguishable from a random shar-
ing of s1s

′
1, . . . , sℓs

′
ℓ. This shows that the honest parties outputs are similarly

distributed in both the real and ideal executions. Hence, we have shown indis-
tinguishability of all the elements sent to the environment in both the ideal and
real executions. Thus, the output bZ are also indistinguishable.

C Permuting Packed Secrets

In this section, we present a Permute (Protocol 14) protocol that allows to
perform any permutation π on a given set of secrets s1, . . . , sL divided in several
batches of size ℓ. This protocol uses two sub-protocol PermuteBetweenBlocks
(Protocol 12) and PermuteWithinBlock (Protocol 13). We are going to adapt
protocols from [BELO15] which were inspired from the works of [Ben64] and
[Wak68] on networks and relied on results proved in [GHS12]. Let us suppose
that we have a total of L = aℓ secrets that are shared in a bivariate polynomials(
gm

)
for all m ∈ [a] after the computation of some layers of an arithmetic circuit

C. To apply a given permutation on these secrets, we rely on the following lemma.

35



Lemma 12. Let π be a permutation on L elements, where L is a power of two.
Each element is given a index written with a binary representation of size log(L).
Then π can be decomposed as π = π1 ◦ π2 ◦ . . . ◦ π2log(L)−1. ∀ 1 ≤ k ≤ log(L),
πk only swaps elements with indexes whose only difference is in the k-th bit,
∀ log(L) ≤ k ≤ 2log(L) − 1, πk only swaps elements with indexes whose only
difference is in the 2log(L)− kth bit.

The sub-permutations πk are composed of transpositions that swaps 2 elements
that have always the same distance, denoted δ(πk), a power of 2. In all the fol-
lowing we are going to consider that ℓ and L are powers of 2. That is fine since
we can always extend the number of secret to a power of two by adding random
secrets. If we write the L secrets s11, . . . , s

1
ℓ , . . . , s

a
1 , . . . , s

a
ℓ then if δ(πk) < ℓ, πk is

a permutation within a block and if ℓ ≤ δ(πk) then πk is a permutation between
blocks. In the following we introduce two protocols PermuteWithinBlocks (Pro-
tocol 13) and PermuteBetweenBlocks (Protocol 12) treating these two cases.
Then, we will introduce a Permute protocol (Protocol 14) that performs the
whole permutation on the aℓ secrets.

Permutation between blocks We present a protocol that performs a permutation
between blocks π of the form we introduced earlier. Such a permutation swaps

elements having the same index between all pairs of blocks (b, b+ δ(π)
ℓ ) mod a

for all b ∈ [a]. To do that, we will use our Mult protocol. For J ⊂ [ℓ] we denote
as shJ a bivariate sharing of the batch of values

(
1j∈J

)
j∈[ℓ]

. In practice we

assume that for each J ⊂ [ℓ], the parties know such a bivariate polynomial shJ ,
it is known by every participant and can follow any generic construction from
J . For a given m ∈ [a], we denote Jm the set of elements j ∈ [ℓ] such that the

transposition (b+ j, b+ δ(π)
ℓ + j) is contained in πk. The idea is that the updated

bivariate polynomial gb is obtained by adding the bivariate polynomials obtained
from the multiplication of the batches in gb and in shJC

b
and the multiplication of

the batches in g
b+

δ(π)
ℓ

and in shJb
. The updated g

b+
δ(π)

ℓ
is obtained by swapping

gb and g
b+

δ(π)
ℓ

in the previous sentence.

Protocol 12. PermuteBetweenBlocks

INPUT: The set of parties have (gb)b∈[a], bivariate sharings of a batches of ℓ
secrets and the associated commitments C(gb, Rgb)b∈[a]. A permutation π of

the aℓ secrets, swapping pairs of secrets in sharings distant by δ(π)
ℓ mod a.

OUTPUT: The set of parties have (gπb )b∈[a], bivariate sharings of the a
batches of ℓ secrets permuted by π along with the commitments C(gπb , Rgπ

b
)b∈[a].

1. For each b ∈ [a] such that the δ(π)-th bit in the binary representation
of b− 1 is zero:
(a) The parties perform the Mult protocol on the 4 pairs of bivari-

ate sharing (gb, shJb
), (g

b+
δ(π)

ℓ
, shC

Jb
), (gb, sh

C
Jb
), (g

b+
δ(π)

ℓ
, shJb

) to

36



obtain the four bivariate sharings g1, g2, g3, g4 along with commit-
ments to these sharings.

(b) Using the Add protocol, the parties compute the updating sharings
gπb = g3 + g4 and gπ

b+
δ(π)

ℓ

= g1 + g2 and the corresponding bivariate

commitments.

Lemma 13. (Informal) When ℓ = mv ≤ d and tP , tA ≤ min(d−m, d+1−
√
ℓ),

the PermuteBetweenBlocks protocol is correct and the adversary cannot learn
any of the aℓ secrets that he didn’t know before the execution of the protocol.

Proof. The correctness of our protocols Mult ensures that g1, g2, g3, g4 are correct
sharings. Then, we just need to verify that the formulae for gπb and gπ

b+
δ(π)

ℓ

are

correct. If an index j is in Jb, then by definition the secrets of index j shared

in gb and gb+ δ(π)
ℓ must be swapped. In this case, the secret of index j in g3

is 0 and the secret of same index in g4 is the j-th secret of g
b+

δ(π)
ℓ
. Thus, the

j-th secret stored in g3+g4 is indeed the correct value. Conversely, when j ̸∈ Jb,
the secret stored in g3 + g4 is the j-th secret of gb. Similarly, we can show the
correctness of the updated gπ

b+
δ(π)

ℓ

.

The secrecy follows directly from the secrecy property of the Add and Mult

protocols. The fact that half of the sharing is known for shJm does not change
anything, it can be easily verified. ⊓⊔

Communication complexity: The communication complexity is the same as the
Mult protocol multiplied by the number of blocks so it is O(an2v). Amortized
by the number of secrets, we obtain O(n2/m) as in Mult.

Permutation within blocks. This paragraph presents a protocol to perform per-
mutations π with δ(π) < ℓ, theses permutations can be decomposed as several
permutations operating on one block. We give below a protocol that perform
such a permutation of the secrets on one block shared by one bivariate polyno-
mial g. This protocol will take as input a permutation π of [ℓ] and a sharing
of a batch of secret s1, . . . , sℓ and will output a sharing for the batch of se-
crets sπ(1), . . . , sπ(ℓ). The idea is that, it is easy for a set of d+ 1 participant to
transform a sharing of s1, . . . , sℓ to a sharing of sπ(1), . . . , sπ(ℓ). If we note gπ

this new bivariate sharing, the relations gπ(αr, βj) = g(αr, βπ(j))
Πr(βπ(j)

Πr(βj)
for all

r ∈ [d+ 1] ensures the correctness of the computation. We remind the notation
Πu(x) =

∏
1≤v≤d+1,v ̸=u

x−αv

αu−αv
for u ∈ [d+ 1].

Protocol 13. PermuteWithinBlock

INPUT: The set of parties have the shares of g a bivariate sharing of a batch
of ℓ secrets s1, . . . , sℓ along with the commitment C(g,Rg). A permutation
π of the ℓ secrets.

OUTPUT:A bivariate sharing gπ for the permuted batch of secrets sπ(1), . . . , sπ(ℓ)
together with the commitment C(gπ, Rgπ ).

37



1. For r ∈ [d+1], Pr samples gπ(αr, ·), Rgπ (αr, ·)← Pd verifying g
π(αr, βj) =

g(αr, βπ(j))
Πr(βπ(j)

Πr(βj)
and Rgπ (αr, βj)) = Rg(αr, βπ(j))

Πr(βπ(j)

Πr(βj)
for all j ∈

[ℓ]. Pr broadcasts the commitment C(gπ(αr, ·), Rgπ (αr, ·)).
2. For u ∈ [n] and r ∈ [d + 1], Pu computes locally the commitments

C(g(αr, βπ(j)), Rg(αr, βπ(j))), C(gπ(αr, βj), Rgπ (αr, βj)) and checks the
equality

Πr(βπ(j)

Πr(βj)
· C(g(αr, βπ(j)), Rg(αr, βπ(j))) = C(gπ(αr, βj), Rgπ (αr, βj)).

If one of the verification fails for index r, Pr is added to the set of cor-
rupted participants B. The protocol aborts and each participant outputs
B.

3. For all r′ ∈ [d+ 2, n], {P1, . . . , Pd+1} ∪ {Pr′} perform Recover on gπ.

Lemma 14. (Informal) When ℓ ≤ d a,d tP , tA ≤ d + 1 −
√
ℓ and ℓ′ secrets

are leaked to the adversary, the PermuteWithinBlocks protocol is correct and
the adversary cannot learn anythin of the ℓ − ℓ′ secrets still unknown to the
adversary.

Proof. We need to check that gπ is a correct sharing of sπ(1), . . . , sπ(ℓ). Let us
look at the values gπ(βj , βj) for j ∈ [ℓ]. From Lagrange’s interpolation formula
we have

gπ(βj , βj) =

d+1∑
u=1

qπ(αu, βj)Πu(βj)

=

d+1∑
u=1

Πu(βπ(j))

Πu(βj)
g(αu, βπ(j))Πu(βj)

= sπ(j) .

This proves the correctness of the formula. The fact that P1, . . . , Pd+1 follow a
similar equation to produce Rgπ ensures that each participant Pu can compute
locally valid commitments to C(gπ(·, βj), Rgπ (·, βj)) for all j ∈ [ℓ]. The transfor-
mation is linear and the computationally binding property of the commitment
guarantees that no misbehavior can go undetected.

Apart from commitments, the only communication happens during the exe-
cution Recover and the secrecy for PermuteWithinBlock follows from Recover’s
security (see Lemma 2). The communication complexity if O(n2) or O(n2/ℓ)
amortized.

⊓⊔

Performing an arbitrary permutation. In this paragraph, we introduce a Permute
protocol that performs a permutation π on L = aℓ values divided in a batches
of ℓ secrets. Without loss of generality, we assume that A, a and ℓ are pow-
ers of 2. Using the decomposition of π with Lemma 12, we perform several
PermuteBetweenBlocks and PermuteWithinBlock.

38



Protocol 14. Permute

INPUT: The set of parties have (gb)b∈[a], bivariate sharings of a batches of
ℓ secrets and the associated commitments C(gb, Rgb)b∈[a]. A permutation π
of the aℓ secrets decomposed as π = π1 ◦ π2 ◦ . . . ◦ π2log(L)−1.

OUTPUT: The set of parties have (gπb )b∈[a] and the associated commitments
C(gπb , Rgπ

b
)b∈[a], bivariate sharings of the a batches of ℓ secrets permuted by

π.

1. For i = 2log(A)− 1 down to i = 1:
(a) If δ(πi) < ℓ replace each sharing gb and the corresponding com-

mitments by the result of PermuteWithinBlock on gb under the
permutation πi.

(b) If ℓ ≤ δ(πi), execute PermuteBetweenBlocks with the permutation
πi and replace the set of sharings (gb)b∈[a] and associated commit-
ments by the output of the protocol.

Communication complexity: The overall complexity amortized complexity is the
same as PermuteBetweenBlocks so O(n2/m) or O(n

√
n) when m =≈

√
n.

D Proof for the Full PMPC Protocol

We finally prove the security of Protocol 2 that we denote PMPC. For simplicity
of explanations, we do not provide a full step-by-step description of the simulator
in the proof, but rather a sketch of proof to argue why all our secure sub-protocols
can be safely composed to constitute Protocol 2.

We start by presenting the full Dynamic PMPC ideal functionality for generic
computation of a function f . To take into consideration the Dynamic groups
property we are going to assume that f takes n inputs x1, . . . , xn and produces
n+ k outputs y1, . . . , yn+k for k ∈ N. When f is randomized, the input includes
a random seed r as well. The initial set of participant is P0 = {P1, . . . , Pn}
and the total set of parties involved, at any time, in the computation is P1 =
{P1, . . . , Pn+k}. In fact, we present two flavours for our ideal functionality, one
with fairness and one without. We write IDEALZ,S,FPMPC

xxx for this ideal func-
tionality where xxx = fair for the former and unfair for the latter.

Figure 4. Ideal Process IDEALZ,S,FPMPC
xxx for the Generic Dynamic

PMPC in the Mixed Adversary Model.

In this ideal process, the environment Z will provide the parties and an ideal
adversary S with inputs of its choice. Throughout the protocol the parties
and the adversary S will interact with an ideal functionality FPMPC that
will play the role of a trusted third party that will compute the evaluation
of f on the desired input and output it to the parties. When xxx = unfair,

39



the adversary S has the additional ability to decide if the honest parties
obtain an output.

The ideal process:

1. INITIALIZATION: Z invokes the adversary S with an auxiliary input
z.

2. Z invokes the parties Pr and their inputs xr.
3. F initializes the sets of passively (resp. actively) corrupted parties PP =
∅ (resp. PA = ∅) and sets tP = tA = 0.

4. INPUTS : Each party sends his input to the ideal functionality.
5. INPUT CORRUPTION: S sends to F a message (τ, i) where τ ∈
{passive,active,} and i ∈ [n] ∪ {⊥}.

6. If i ̸=⊥ and (tP , tA) ≤ Ts :
– F sends Yes to S.
– If τ ∈ {passive,active}: Update PP = PP ∪{Pi} and tP = tP +1.
F sends xi to S.

– If τ ∈ {active}: Update PA = PA ∪ {Pi} and tA = tA + 1.
– Go back to the beginning of the INPUT CORRUPTION phase.

7. Else, if i ̸=⊥ then F sends No to S. Go back to the beginning of INPUT
CORRUPTION.

8. F samples a random bit-string r of appropriate length.
9. COMPUTATION : F computes (y1, . . . , yn+k) = f(x1, . . . , xn) if f is

deterministic, and (y1, . . . , yn+k) = f(x1, . . . , xn; r) otherwise.
10. OUTPUT CORRUPTION : S sends message StartOutputPhase to F

that resets PP = ∅ and PA = ∅ and tP = tA = 0.
11. S sends to F a message (τ, i) where τ ∈ {passive,active} and i ∈

[n+ k] ∪ {⊥}.
12. If i ̸=⊥ and (tP , tA) ≤ Ts :

– F sends Yes to S.
– If τ ∈ {passive,active}: Update PP = PP ∪{Pi} and tP = tP +1.
F sends yi to S.

– If τ ∈ {active}: Update PA = PA ∪ {Pi} and tA = tA + 1.
– Go back to the beginning of the OUTPUT CORRUPTION phase.

13. Else, if i ̸=⊥ then F sends No to S. Go back to the beginning of OUT-
PUT CORRUPTION.

14. OUTPUTS: S sends either abort to F and F aborts and outputs ⊥ or
continue and the functionality proceeds to the next step.

15. For each Pr ∈ PP , F sends the output yr to F .
16. If xxx= unfair, F sends the message fair? to S, who answers with

Yes or No. In the affirmative case, the functionality proceeds to the next
step. Otherwise, F aborts and outputs ⊥.

17. F sends its output yr to each participant Pr for r ∈ [1, n+ k].

40



Outputs. Each honest party outputs whatever they received from F . The
adversary outputs a value vS that may be arbitrarily computed from the
information he obtained during the execution of the protocol. After observ-
ing the outputs of all parties and of the adversary, the environment outputs
a bit bZ .

Theorem 1. For a circuit C where the minimum number of participants is
n0. When the size batch is ℓ = n0 − 2, and assuming the hardness of DDH,
the protocol ΠPMPC introduced in Protocol 2 securely realizes the ideal process
IDEALZ,S,FPMPC

unfair against any adversary bounded at any given time by the multi-

threshold T (ℓ) =
{
(n−3−

√
ℓ, n−3−

√
ℓ)
}
with n the number of participants at

that time. Additionally, when the adversary is also bounded by the multi-threshold
Tf (ℓ) = {(k,min(n−k−

√
ℓ, 2(n−k)−ℓ, 1 ≤ k ≤ n/3}, ΠPMPC securely realizes

IDEALZ,S,FPMPC
fair .

Proof. (Sketch) The Generic PMPC protocol is essentially a sequential execu-
tion of a mix of Share, Refresh, Recover, Redistribute, Mult, Add, Permute
and Reconstruct. All of those protocols were proven secure when the adversary
is bounded by Ts(ℓ), Tc(ℓ) (see Lemma 1 and Theorem 2 and the ideal func-
tionalities and theorems in [ELL20]). We also remind the reader that the Add

protocol can be performed locally and is secure. So we just need to verify that
the composition of all these sub-protocols is not breaking the security. First,
note that by definition, the set of corrupted parties is assumed to change only
during the Refresh phase (see [ELL20,DEL+16] for the corruption model). By
definition of the Refresh ideal functionality, the protocol is producing a new ran-
dom sharing of the batch of secrets and distributes it to the participants. More
generally, in Mult, Redistribute, Permute we showed (and it was proven for
Refresh,Recover in [ELL20]) that the sharings produced were indistinguish-
able from new random sharings of the desired secrets. Thus, the correctness and
secrecy of each of these sub-protocols are preserved throughout the execution.
We have also verified in Appendix A that all our protocols were secure even
when some of the secrets were known. Thus, the composition with Permute is
not problematic.

By composing the simulators of Share, Resfresh, Recover, Redistribute,

Permute, Add, Mult we can simulate ΠPMPC up to the last Reconstruct step.
To deal with this final step, we need to make a distinction between the fair

and unfair ideal functionalities. In any case, it was proven in [ELL20] that
Reconstruct is correct when Tc(ℓ) is respected ( secrecy is irrelevant at that

point). Thus, we can prove that ΠPMPC securely realizes IDEALZ,S,FPMPC
unfair .

When the additional fairness threshold Tf (ℓ) is respected, it was shown in

[ELL20] that we have also fairness. Thus, we can show that IDEALZ,S,FPMPC
fair

is securely realized by our generic PMPC protocol when the adversary is also
bounded by the fairness threshold.

41



E Sub-protocols for the multiplication from the literature

In this section, we introduce the protocols from [LN18] that we use in Protocol 7.

E.1 Zero Knowledge Multiplication

The goal of this section is to introduce the ZK-Mult protocol that is used in the
Mult protocol against malicious adversary. It relies on several Zero-Knowledge
Proofs that are going to be given afterwards in Appendix E.2. The ZK-Mult pro-
tocol is a small adaptation of the multiplication protocol of [LN18]. It introduces
the interaction between a pair of parties Pi, Pj . Part of the public key provided
by Pi is a value Ni, in this case the plaintext space for the paillier encryption
scheme The Zero-knwoledge proofs can be found in [LN18]. The protocol relies
on parameter t, l, s that can be tailored depending on the required level of secu-
rity and on the size of q and Ni (see [LN18]). We assume that these parameters
are fixed and known by both participants.

Protocol 15. ZK-Mult

INPUT: Pi inputs xi,pki,ski. Pj inputs yj , δj→i, pki

OUTPUT: Pi obtains xiyj + δj→i mod q

1. Pi computes ci = Encpki
(xi).

2. Pi prepares a non-interactive-zero-knowledge range proof πi→j proving
that xi ∈ Zq

with soundness as long as xi ∈ [−2t+l · q, 2t+l · q]
3. Pi sends ci, πi→j to Pj

4. Pj receives ci, πi→j and verifies πi→j .
5. Pj samples a random ∆j→i ∈ Zq22t+l+s such that ∆j→i = δj→i mod q.
6. Pj computes cj→j = (ci ⊕ 2t+l · q)⊙ yj ⊕∆j→i = Encpki

(xi · yj + 2t+l ·
qẏj +∆j→i).

7. Pj prepares a non-interactive-zero-knowledge proof πj→i for the pair
cj→i, ∆j→i proving that yj ∈ Zq, ∆j→i ∈ Zq22t+l+s and cj→j = (ci ⊕
2t+l · q)⊙ yj ⊕∆j→i

with soundness as long as yj ∈ [−2t+l ·q, 2t+l ·q] and ∆j→j ∈ [−22t+2l+s ·
q2, 22t+2l+s · q2]

8. Pj sends cj→i, πj→i to Pi

9. Pi verifies πj→i

10. Pi decrypts cj→i and adds (xi +2t+l · q)2t+l · q+22t+2l+s · q2 mod N to
obtain a value zi

11. Pi outputs zi mod q

E.2 Zero-Knowledge Proofs

In this section we give the Zero-Knowledge Proofs used in Protocol 15. These
proofs are exactly the ones given in [LN18] and are only presented here for
completeness.

42



Proof of correct Paillier generation. The proof used to prove that the paillier
keys were generated correctly is the one described in [BGRS18].

Proof of ZK equality for Paillier and Pedersen. Efficient range proofs are based
on commitments, the first step of the proof is to show that the committed value
is the one encrypted under paillier. As for every commitments in this paper we
use Pedersen commitment scheme. The sigma protocol is for the relation :

Req =
{(

(C, C̃,N, Ñ , g, h), (x, r, ρ)
)∣∣∣ C = (1+N)xrN mod N2 ∧ C̃ = gxhρ mod Ñ

}
where g, h ∈ Z⋆

Ñ
are elements involved in the commitments C̃,N is the parameter

for paillier encryption, x ∈ Zq is the message encrypted under C and r, ρ are the
randomness for the encryption and the commitment respectively. The following
has security parameters t, l. The following sigma protocol can be transformed
into a ZKP using Fiat-Shamir transform (this will be the case for all the sigma
protocol presented below). The prover is P and the verifier is V .

1. Prover’s P first message: P chooses random α ∈ Zq2t+ℓ , β ∈ ZN and

γ ∈ ZÑ . Then, P computes A = (1+N)αβN mod N2 and β = gαhγ mod Ñ ,
and sends (A,B) to V .

2. Verifier V’s challenge: V chooses a random e ∈ {0, 1}2t and sends it to
P .

3. P’s second message: P computes z1 = α + ex (over the integers), z2 =
βre mod N , and z3 = γ + ρe. P sends (z1, z2, z3) to V .

4. V’s verification: V accepts if and only if the following equations hold

(1 +N)z1zN2 = ACe mod N2 and gz1hz3 = BC̃e mod Ñ

Range proof for Pedersen with Slack For this proof, there are 3 security pa-
rameters t, l, s (t, l are the same as before). We take the same notation for the
elements involved in the Pedersen Commitments. The goal of this proof is to
show that the committed value x lies in Zq. We describe a Sigma protocol for
the relation

RPedRange =
{(

(C̃, Ñ , g, h), (x, ρ)
)∣∣∣ C̃ = gxhρ mod Ñ ∧ x ∈ Zq

}
In fact the soundness of the protocol can only force that x ∈ [−2t+lq, 2t+lq], and
that is why the protocol is called slack.

1. P’s first message: P chooses samples a → Z2t+lq and α → ZÑ and com-

putes the commitment A = gahα mod Ñ and sends it to V .
2. V’s challenge: V chooses a random e→ Z2t and sends it to P .
3. P’s second message: P computes z1 = a + xe (over the integers) and

z2 = α+ eρ. P sends (z1, z2) to V .
4. V’s verification: V verifies that z1 ∈ [2tq, 2t+lq) and that gz1hz2 = AC̃e mod Ñ .

43



Range proof for Paillier with Slack As described above, the range proof for
Paillier combines the two previous proofs. First, the prover generates a Pedersen
commitment to the encrypted value x. Then, after proving to the verifier that
the committed value is indeed x using the proof of equality, the prover generates
the Range proof for Pedersen with Slack that is described above.

ZK Proof of Pailler-Pedersen Range-Bounded Affine Operation Here, we de-
scribe the Sigma protocol for showing that a value D was generated by carrying
on a ciphertext C a homomorphic affine operation using values y, δ such that
when x was encrypted in C, D carries the encryption of xy+ δ. The proof works
similarly to the proofs we described earlier and involves Pedersen Commitment’s
The relation we consider is

RAffineRange =
{(

(C,D,N), (y, δ)
)∣∣∣ D = Cy(1+N)δ mod N2∧y ∈ Zq∧δ ∈ Zq22t+l+s

}
1. Verifier first message: The verifier sends the prover P parameteres Ñ , g, h

for Pedersen commitments.
2. First prover message: P samples α→ Zq2t+l , β → Zq222t+2l+s , ρ1, ρ2, ρ3, ρ4 →

ZÑ . Then, P computesA = Cα(1+N)β mod N2 along withB1 = gαhρ
1 mod Ñ ,

B2 = gβhρ
2 mod Ñ ,B3 = gyhρ

3 mod Ñ ,B4 = gδhρ
4 mod Ñ . P sends (A,B1, B2, B3, B4)

to V .
3. Verifier challenge : V sends the prover a random e ∈ Zt.
4. Second prover message : P computes z1 = α + ey, z2 = β + eδ, z3 =

ρ1 + eρ3, z4 = ρ2 + eρ4 and sends (z1, z2, z3, z4) to the verifier.
5. Proof Verification: V verifies that

(a) z1 ∈ [2tq, 2t+lq).
(b) z2 ∈ [q223t+l+s, q223t+2l+s)
(c) Cz1(1 +N)z2 = ADe mod N2

(d) gz1hz3 = B1B
e
3 mod Ñ

(e) gz2hz4 = B2B
e
4 mod Ñ

44


	Communication-Efficient Proactive MPC for Dynamic Groups with Dishonest Majorities

