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Abstract. Power analysis attacks on ECC have been presented since
almost the very beginning of DPA itself, even before the standardization
of AES. Given that power analysis attacks against AES are well known
and have a large body of practical artifacts to demonstrate attacks on
both software and hardware implementations, it is surprising that these
artifacts are generally lacking for ECC. In this work we begin to remedy
this by providing a complete open-source ECDSA attack artifact, based
on a high-quality hardware ECDSA core from the CrypTech project. We
demonstrate an effective power analysis attack against an FPGA imple-
mentation of this core. As many recent secure boot solutions are using
ECDSA, efforts into building open-source artifacts to evaluate attacks on
ECDSA are highly relevant to ongoing academic and industrial research
programs. To demonstrate the value of this evaluation platform, we im-
plement several countermeasures and show that evaluating leakage on
hardware is critical to understand the effectiveness of a countermeasure.
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1 Introduction

Side-channel power analysis attacks against cryptographic implementations are
well-known in practice, starting with their seminal introduction in 1999 [16].
Since then, a considerable amount of work has been focused on symmetric al-
gorithms, and in particular AES. Power analysis against AES has been demon-
strated in real-life examples of software and hardware [21,22,28,18,25,8,32] at-
tacks, and a reader can refer to widely available material such as published
books [20], training courses, community driven tutorials such as part of the
ChipWhisperer project [24], and open-source implementations of AES power
analysis attacks are available as part of numerous open-source projects includ-
ing OpenSCA [26], ChipWhisperer [24], FOBOS2 [4], Side Channel Marvels [2,7],
LASCAR [29] and many others. While side-channel attacks on ECC apply the
same basic SPA and DPA techniques, we find that open-source tooling for ECC
remains more limited than that of AES.
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This may be surprising, as attacks and countermeasures have been discussed
since the initial demonstration of power analysis on ECC in 1999 [9]. Many ex-
amples of power analysis attacks on ECC are summarized in forward references
from [9], along with survey papers on ECC hardware attacks [3,10]. Complete
attacks on end-user ECC implementations—for example attacking the standard
libraries on mobile phones and computers [6,11] have demonstrated that these
attacks are highly practical. Many of these attacks target implementations run-
ning on a general-purpose processor, not a hardware accelerator.

As ECC becomes more popular in embedded devices, hardware accelerated
ECDSA implementations become increasingly important to evaluate. Work at-
tacking a light-weight ASIC implementation of ECDSA for RFIDs has been
shown previously [14]. A complete example of an attack on a “secure” hardware
security token with a ECDSA co-processor is given in [19]3. This security to-
ken is based on the NXP A7005 security IC, which claims to have a public-key
co-processor; however, details of its implementation are of course unknown.

For research and evaluation purposes, FPGA-based implementations are es-
pecially interesting due to our ability to modify them. The results of attacks on
FPGAs have been presented previously, but to our knowledge the implementa-
tions have not been released in a reusable manner [5,27,31]. These implementa-
tions may be designed primarily for side-channel analysis work, and thus are not
themselves usable by “end users” as-is.

1.1 Contributions

To understand the side-channel leakage of ECC implementations, we target
a high-quality open-source ECC hardware core developed for the CrypTech
project, which provides a unique opportunity to study both (a) the viability
of well known ECC attacks on hardware implementations and (b) the efficacy
of countermeasures against these attacks. While the targeted core claims no ex-
plicit side-channel countermeasures, its careful design clearly aims to keep the
surface of the secret-dependent logic to a minimum and gives it some intrinsic
side-channel attack resistance.

We first show that the target’s side-channel leakage is very localized in both
time and space. We then show how this small leakage can be exploited in two
different ways to get very close to a single-trace attack. The target’s limited
leakage surface provides the opportunity to reduce the side-channel leakage. We
first show how some approaches for mitigating the leakage can fail spectacularly,
which highlights that hiding leakage is not easy; we then show two effective
implementation countermeasures and compare their efficacy and cost.

In addition to the target being open-source thanks to the CrypTech project,
all of the attack code, tools and platform used for this work are also open-source.
All power measurements are done using the open-source ChipWhisperer capture
tools. The target is implemented on a ChipWhisperer CW305 FPGA target

3 Note that the attack is on the proprietary ‘Titan’ security key based on a NXP
security IC, which is not related to the OpenTitan project discussed later.
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board. Finally, all of the evaluation and attack code is available in the form of
Jupyter notebooks, including the example power traces which can be used to
recreate this work and all figures in this paper.

We wish for this paper to serve as a useful guide to practitioners in the field,
as a reminder that the smallest of leakages can be exploited, and that the adage
of trust but verify is critical. By releasing the all of the code associated with
this work, we hope to push forward the state of open-source evaluation tooling
in assisting future researchers recreating and extending such work.

1.2 Open Source RoT

Most secure boot solutions rely on some Root of Trust (RoT) as part of the boot
process, which may also be implemented as a Hardware Security Module (HSM)
or Secure Element (SE). Revelations around state-level interference in crypto-
graphic products by Edward Snowden led to a strong interest in open-source
hardware implementations, which was part of the push towards the formation
of the CrypTech project in 2015 [1].

CrypTech project is the first serious attempt at a fully open-source HSM or
RoT device. CrypTech targets a hardware board called the CrypTech Alpha,
which combines an FPGA, a microcontroller, and a noise source. In this way,
the open-source cryptographic algorithms can be loaded onto a hardware device
without requiring a complete ASIC implementation. Validation of the loaded
FPGA bitstream can also be performed using standard secure boot processes.

Several other root of trust projects in development will also benefit from this
analysis. Ongoing open-source RoT projects with available code include Open-
Titan (lowRISC) and Betrusted.io; other projects such as Tropic Square do not
yet have public code. The majority of these projects involve an FPGA imple-
mentation as part of the development (even if ultimately targeting an ASIC),
and thus the work in this paper on the CW305 board is highly reusable by many
current projects.

1.3 Paper Structure

The rest of this paper is structured as follows: in Section 2 we provide background
on the target implementation and the capture setup. Section 3 walks through
the process of identifying the leakage and building successful attacks which can
be applied in a real-world scenario. Section 4 studies the cost and efficacy of
several countermeasures aimed at mitigating attacks. Finally, Section 5 shows
how TVLA testing can be used for detection of leakage on this implementation,
but is too blunt a tool for recreating the work done in Section 3.

2 CrypTech and ECC Implementation

The CrypTech project has several elliptic curve algorithm implementations in-
cluding ECDHP, ECDSA, and EdDSA. In general the cores are designed to
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work on the CrypTech Alpha board, which contains a Xilinx Artix A200 FPGA
alongside a STM32F429 microcontroller and other features (noise source, key
memory, etc). The cores have minimal usage of device-specific features, making
porting of the cores to other platforms relatively straightforward. The cores from
the CrypTech.is project are available at https://trac.cryptech.is.

We have chosen to target the use of ECDSA curve P-256 due to its popularity
in current products, and thus make this work and artifact usable by both in-
dustrial and academic researchers. The CrypTech accelerator for ECDSA curve
P-256 can perform any of five basic operations: equality, copy, modular addi-
tion, modular subtraction, and modular multiplication. In addition, the core
contains several ‘microprograms’ that use those basic operations to implement
higher-level functions: a curve point doubling, addition of curve point to the base
point, and projective Jacobian coordinates to affine coordinate conversion (re-
quired by the previous two microprograms). These microprograms run entirely
within the core.

In this paper we study the leakage of the point multiplication operation;
the objective is to build an attack which retrieves the secret scalar multiplicand
k (which allows the private ECDSA key to be trivially calculated). While the
target implements a particular curve, the methods developed here should also
prove useful for different implementations of different curves.

2.1 Hardware Setup

We have implemented the ECDSA core on a Xilinx Artix A100 FPGA, the
FPGA being part of the ChipWhisperer CW305 target board4, which contains
a low-noise power supply and shunt resistor to provide power measurement,
and also provides a USB interface for FPGA configuration and communication.
The code (ported from the CrypTech project) is available at https://github.com/
newaetech/chipwhisperer/tree/develop/hardware/victims/cw305 artixtarget/fpga/
cryptosrc/cryptech/ecdsa256-v1. Other cores in the CrypTech project can be
similarly ported to our evaluation setup. For power measurement we use a Chip-
Whisperer CW1200 capture platform (the fully open-source ChipWhisperer-Lite
can also be used). The complete setup as used in this paper is shown in Figure 1.

The ChipWhisperer samples the power measurements synchronously to the
target device clock [24]; this allows reliable power analysis measurements with
low capture rates, and has been shown to outperform much higher asynchronous
sampling rates [23]. The target device is clocked at 10 MHz, and power mea-
surements are obtained at 10 MS/s (one sample per target clock cycle). The
target is instrumented with a “trigger” output pin which is used to synchronize
the collection of power samples with the start of the target operation. Both the
target and the capture device are controlled from a single Python program.

To build the attack, the target core is used in ways that would not normally
be allowed by an ECDSA core, such as using a known and repeated secret scalar

4 See https://rtfm.newae.com/Targets/CW305%20Artix%20FPGA/ for details of this
board.

https://trac.cryptech.is
https://github.com/newaetech/chipwhisperer/tree/develop/hardware/victims/cw305_artixtarget/fpga/cryptosrc/cryptech/ecdsa256-v1
https://github.com/newaetech/chipwhisperer/tree/develop/hardware/victims/cw305_artixtarget/fpga/cryptosrc/cryptech/ecdsa256-v1
https://github.com/newaetech/chipwhisperer/tree/develop/hardware/victims/cw305_artixtarget/fpga/cryptosrc/cryptech/ecdsa256-v1
https://rtfm.newae.com/Targets/CW305%20Artix%20FPGA/
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Fig. 1. ChipWhisperer CW305 target and CW1200 measurement tool.

multiplier k, to more easily find and identify the leakage. The final attack requires
no such tricks or abuse and can be run successfully on single-use unknown k.

3 Power Analysis of P-256 ECDSA

We focus exclusively on the point multiplication operation. We begin by explor-
ing the target characteristics, and then see how features can be identified to build
a distinguisher and complete the ECDSA attack. This attack will primarily use
classic “difference of means” (DoM) techniques, but this work can be extended
to use other feature selection and distinguisher methods that have shown to be
useful with non-profiled ECC attacks [27].

3.1 First Traces: Target Characteristics

The point multiply operation runs in constant-time and always takes exactly
1124157 clock cycles, independent of k or the base point P . Figure 2 shows the
first 20000 clock cycles of the point multiply power trace. The regular peaks in
this trace shows strong periodic elements to the target operation.

The first step towards building the attack is to identify when each bit of
k is processed. This information can be inferred from a power trace or it can
be obtained by simulating the Verilog source code and observing the internal
workings of the core. We do the latter, since having a simulation waveform will
be helpful later for understanding and addressing the leakage. The internal signal
U curve mul 256.bit counter identifies the bit index of k being processed. We
observe that the first bit is always processed 42 cycles after the “go” command
is given, and that each bit of k takes exactly 4204 cycles to process.

This gives us important clues about the implementation: constant-time ex-
ecution for both the full point multiply operation and each individual bit of k
suggests a “double-add-always” algorithm, and that leading zeros are not pro-
cessed any differently. This constant-time execution is a double-edged sword:
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Fig. 2. Raw power trace: beginning of point multiply operation.

while it prevents timing attacks, it also means that once we’ve learned when the
core processes each bit, we don’t have to do any further work to accurately find
the bit processing times associated with any power trace.

Figure 3 overlays the power trace segments for 4 bits of k (a mix of ones and
zeros). The peaks line up perfectly. This suggests that differences between ki = 1
and ki = 0 may not be large, and it motivates the next step: we capture a single
power trace for a known k and divide the per-bit power trace segments into two
bins: one for ki = 1, and one for ki = 0. We then compute the average power
trace segment for each bin, and plot the difference between these two average
power trace segments.

Figure 4 shows how a power trace for processing ki = 1 differs, on average,
from a power trace for processing ki = 0, for each clock cycle of a ki processing
event. We find two significant markers; zooming in, Figure 5 shows that the
largest differences occur at cycles 6, 7, 4202, and 4203. These results suggests
that we may be able to distinguish between ki = 1 and ki = 0 in the general case
using a DoM distinguisher. However we must keep in mind that the preceding
figures are obtained by averaging 128 bit processing events; for a practical attack
to be successful, individual ki bits must be distinguished from single power trace
segments, without the benefit of averaging.

We can get a first indication of whether the power measurements at these
clock cycles can serve as good distinguishers by measuring several power traces
with a fixed k (P is variable) and plotting a distinguisher metric for each bit of
k. We define a distinguisher metric D as follows:

Di = −pi6 + pi7 + pi4202 − pi4203, i = 0, . . . , 255 (1)

where pij is the power measurement for the jth clock cycle of the power trace
segment for the processing of ki.

We choose a k to be the concatenation of 128 ones followed by 128 zeros, so
that D can provide a clear visual representation of how well the distinguisher
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Fig. 3. Power trace segments for 4 bits of k.

Fig. 4. Difference between the average power trace for ki = 1 and the average power
trace for ki = 0.

works. Figure 6 shows D for a single trace on the left, and D averaged over 5
power traces on the right. With a single trace, while there is a clear statisti-
cal difference between the ones and zeros of k, several bits would be guessed
incorrectly; with 5 averaged traces, all bits of k could be correctly guessed.

3.2 Understanding the Leakage

We next choose a value of k which allows to see whether alternating ones and
zeros can be distinguished:

k = 0x0000ffffffffff000000000000ffff00aaaa0000cccc00001111000033330000

Figure 7 shows that the power measurements at each of the 4 previously
identified clock cycles of interest leak the secret k bits roughly equally well,
with some difference in how the leading zeros and the first one of k manifest
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Fig. 5. Zooming in on the significant differences between the average power trace for
processing ki = 1 and the average power trace for processing ki = 0.

Fig. 6. Distinguisher with one trace (left) and averaged over 5 traces (right).

themselves. Zooming in the area of quickly alternating values, the top two curves
(cycles 6 and 7) are offset from the bottom two (cycles 4202 and 4203) by one
clock cycle. We therefore adjust the distinguisher metric:

Di = −pi+1
6 + pi+1

7 + pi4202 − pi4203, i = 0, . . . , 254 (2)

At this point it is helpful and educational to learn what the target is doing
during these clock cycles. We don’t want or need a full understanding of the
point multiplication algorithm and its implementation; just enough to gain some
insight into why this leakage is occurring, how it may be leveraged for an attack,
and how it may be reduced.

Most of the point multiplication control logic is located in curve mul 256.v.
Following the k input shows that it uniquely drives a move inhibit signal which
is used to mask the write enable control line to a set of three memories: bram rx,
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Fig. 7. Distinguisher components for k with sequences of alternating bits, averaged
over 50 traces.

bram ry and bram rz. Returning to the earlier simulation of the Verilog source,
we observe that move inhibit is only ever active at cycles 4195–4202, which
coincides with the power trace differences observed at cycles 4202–4203. These
conditional memory writes are occurring at the very end of each k bit’s process-
ing time. This aligns with our earlier guess of a double-add-always algorithm;
move inhibit is almost certainly being used to selectively keep or discard the
result of the intermediate addition which is performed for each bit.

The other leakage was observed at cycles 6 and 7. Simulation shows that the
bram rz memory is being read around this time. This is occurring soon after
the memory writes that are controlled by k. Moreover, we find that bram rz is
written with an incrementing address but is read with a decrementing address,
meaning that the first read is for the same 32 bits that were written on the
last write; without knowing any details regarding the implementation of Xilinx
block RAM (BRAM) memory cells which implement bram rz, it is reasonable
to assume that reading what was last written to a BRAM has a power signature
which is different from the general case.

We now have a good understanding of the leakage we have observed. We can
also use what we have learnt to formulate a slightly different attack approach:
instead of using the DoM technique, we could look at the correlation between
the power measurements when bram r[x|y|z] are written and the power mea-
surements when each of the three memories are next read. Figure 8 shows these
correlations for the same k as that of Figure 7. The SNR for both sets of mea-
surements appears similar, suggesting that either approach may work equally
well. The only anomaly with the correlation approach is that correlation on the
Rz coordinate appears to only leak the position of the first one.
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Fig. 8. Using correlation between Rx,y,z reads and writes for k with sequences of al-
ternating bits, averaged over 50 traces, vertically shifted for better visual presentation.

3.3 Attack Results

Single-Trace Attack Margin We first examine how many traces are required
to fully recover k, where each trace employs the same k but a different base point
P . This is not a realistic attack scenario since proper use of ECDSA does not
allow repeated use of the same k; the goal of this test is to obtain a measure of
the target’s margin against a single-trace attack. We synthesize a single power
trace by averaging all the power traces. We then use the results of the previous
section to guess each bit of k. We repeat this for a decreasing number of averaged
traces and find that with the correlation attack, 9 traces must be averaged to
correctly guess all the bits, while with the DoM, only 6 traces are required.
Table 1 shows the complete results. Since the DoM distinguisher outperforms
the correlation distinguisher, we will focus on it in the following sections.

Number of bad guesses
Number of averaged traces Correlation DoM

9 0 0
8 1 0
7 1 0
6 3 0
5 5 1
4 10 5
3 16 3
2 28 10
1 38 22

Table 1. Number of guesses required.
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Hidden Number Problem Carrying out the previous attack with a single
trace, we find that on average only 29 bits are incorrectly guessed5. Not knowing
which bits are incorrect would prevent an attacker from going any further with
this. However, the distance of the leakage from decision threshold for each ki
can be used as a level of confidence for each ki and obtain partial single-trace
guesses for k; if these partial guesses are sufficiently accurate, we can turn this
into an instance of the Hidden Number Problem (HNP) and fully recover k.
With HNP, we collect several power traces, each for a different k, and for each
individual trace we make a partial guess for that k. With enough sufficiently
accurate partial guesses, the HNP can be successfully solved to retrieve one of
the k used.

HNP requires the known bits of k to be the most or least significant bits of
k. This may be a feasible approach here, however this would discard much of the
observed leakage. Instead, we turn to the Extended HNP (EHNP) [13], which
can make use of known bits anywhere in k, as long as the number of consecutive
known bits is sufficient. We follow the approach of [19], which retains traces
meeting at least one of the following conditions:

1. at least three runs of 3 consecutive bit guesses;
2. at least two runs of 4 consecutive bit guesses;
3. at least one run of 5 or more consecutive bit guesses

To obtain an approximate measure of the feasibility of solving the EHNP,
we heuristically adjust the threshold for accepting guesses such that, out of the
traces which are identified as having enough consecutive guesses (as per the
criteria above), all but one trace is completely free of incorrect guesses. We
collect 10000 individual traces (each with a different random k) and find that
we can make a partial k guess which satisfies the consecutive criteria for 7 traces
(of which 1 trace has one or more bit guesses which are actually wrong). In the
next section, we study countermeasures aimed at improving this figure.

4 Implementation Issues and Countermeasures

Countermeasures for software ECC implementations are well-known and numer-
ous. Many are not directly applicable to hardware implementations, as the source
of leakage can differ. Previous work on hardware countermeasures in [5] and [31]
is more relevant to our work. Some of these are for different curves; others make
different assumptions on the implementation making direct application impos-
sible (short of a complete redesign). Instead, we turn our attention to what has
been termed “implementation leakage” [10]. Since we have some understanding
of the origin of the leakage which enables our attack, are there modifications
to the existing implementation which can effectively mitigate our attack? This
approach can be relevant when improvements in side-channel resistance are re-
quired and a redesign is not practical.

5 In the previous section we were averaging traces; here we are averaging the success
rate of multiple single-trace attacks.
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4.1 Näıve Targeted Approach (Attempt 1)

Since the leakage that was exploited in the previous sections originates from the
conditional writing of intermediate results to memory, a näıve approach at hiding
this leakage is to somehow always write the intermediate results. This can be
done by doubling the memory space so that in the case where the intermediate
results should not be written, they can now be written to the newly created
“dummy” memory space.

Hardware synthesis tools are as sneaky as software compilers in their at-
tempts to eliminate functionally unnecessary logic, so care must be taken to
prevent the compiler from recognizing the expanded memory space as being not
functionally required. To ensure that the increased memory space has the same
properties as the original memory, we force the expanded target memories to be
implemented as Xilinx BRAM instances, just as they are in the original design.
This helps ensure that the increased storage is not implemented in a way that
leads to wildly different power consumption signatures.

Unfortunately, not only is this not an effective countermeasure, it actually
increases the leakage. There are two things to consider for evaluating the coun-
termeasure’s utility: (1) whether the leakage is harder to find; (2) whether the
attacks are harder to execute.

Is the Leakage Harder to Find? Figure 9 shows that the leakage markers get
slightly stronger with the countermeasure, which underscores how hard it can be
to “hide” leakage in practice. The leakage at cycles 6–7 is easiest to understand:
recall that we hypothesized that this leakage is due to reading the same data
that was last written to the memory; this hasn’t changed here. As for leakage
at cycles 4202–4203, our original hypothesis was that this leakage was due to
the act of writing (versus not writing) the target memory. These results suggest
that the leakage originates from the control logic for the writes, rather than the
writes themselves. The countermeasure did not eliminate the secret-dependent
write control logic; it merely altered it.

Are the Attacks Harder? Using the DoM metric, we find that guessing k
from a single power trace now gives on average 21 wrong bits per trace, compared
to 29 for the original target. When using multiple traces, the correct k is guessed
with 4 traces, compared to 6 for the original target. The correlation leakage also
remains. With the original target, we were computing the correlation between (a)
writing and reading the same data from memory, and (b) no write activity and
reading data from memory. Now, (a) remains unchanged, while (b) has changed
to writing “some data” and reading “different data” from memory. Intuitively,
we should not expect the delta between (a) and (b) to decrease.

4.2 Increasing our Näıvety (Attempt 2)

Next, we double down on our first approach to illustrate how misguided it really
is: instead of doubling the target memory space, we quadruple it. We take a
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Fig. 9. Differences between the average power trace for ki = 1 and ki = 0.

second shot at hiding the leakage at cycles 4202–4203 by further uncoupling the
memory write control logic from k. In the first attempt each half of the inter-
mediate result memories played a static role (one always held good intermediate
results, the other always held unused intermediate results). Now we quadruple
the target memory space and alter the write destination logic so that the good
intermediate results can go to any of the four memory sections, and ensure that
the destination memory changes at every bit of k, regardless of its value.

The results are no better: the leakage markers become stronger still at cycles
4202–4203. With the DoM based attack, the average number of wrong bit guesses
per trace goes down further to 15 bits per trace. Things are moving in the
wrong direction! These unsuccessful results are included here to better reveal
fundamental truths about the attacks and why they work. While it’s a handy
shorthand to refer to the leakage as originating from masked memory writes, it’s
crucial to understand that the leakage can be more complex than that.

4.3 Adding Noise (Attempt 3)

Instead of devising additional measures of increasing complexity to hide the leak-
age, we now take a completely different approach: adding “noise”. The earlier
improvements are abandoned—the k-dependent write logic and the target mem-
ories are returned to their original state. Instead, we add dummy logic which
operates in tandem with the original leaky logic; the objective of this new logic
is to add noise which hides the leakage.

We instantiate additional copies of the target memories. These copies are
exercised with the same control logic as the real target memories, except that an
LFSR is used to pseudo-randomly enable or disable the writes. The goal is for
the noise memories to be active at the same time of the leakage, but in a way
that does not depend on k. Experimentally, we find that adding a single “noise”
memory for each of the 3 target memories does not help much, so we crank the
noise up to 16 noise memories per target memory (48 in total).
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The initial finding of leakage times is essentially unaffected by this counter-
measure. When we look at the average between ones and zeros, we are comparing
the average power trace segment of two groups of 128 bits from the same trace.
This averaging over 128 bits allows the added noise to get “averaged out” quite
well. However, when we move to single-trace attacks, each bit of k is treated
individually and so no averaging is possible. Table 2 summarizes the results:
with sufficient noise memories, this countermeasure is effective. There is some
irregularity in the number of traces suitable for EHNP, stemming from the luck
of where and when incorrect guesses occur (or lack thereof).

Number of active Number of Number of wrong Number of
noise memories traces for full bit guesses per traces suitable

(per target memory) k recovery single trace for EHNP

1 5 26 6
8 6 39 18
16 15 68 2
Table 2. Attempt 3 results with 10000 traces.

4.4 Simple Balancing (Attempt 4)

In this final attempt we abandon attempts at small inexpensive changes: we go
big by instantiating a full second copy of the target which operates synchronously
with the original target. This second instance processes the bit-wise inverse of
k. In theory, this should completely eliminate the leakage; in practice, due to
variances in the physical placement of each instance’s logic, the two implemented
instances are not identical, and therefore their respective leakages cannot be
expected to fully cancel each other out.

The leakage markers are still present where we expect to find them, and they
remain fairly strong; however, Figure 10 shows that several stronger markers now
appear throughout the full length of the power trace segment. These new mark-
ers are coincident with the much weaker markers observed with the unmodified
target (Figure 4). Surprisingly, using these new markers as distinguisher com-
ponents, we obtain an extraordinarily strong DoM-based attack which identifies
the location of the most significant 1 and 0 of k. Figure 11 shows the result of
using a single trace with the following k:

k = 0x0000ffffffffff000000000000ffff00aaaa0000cccc00001111000033330000

The initial steep drop is due to the leading 1 of the inverse of k that is
processed by the duplicate core; the next steep drop is due to the leading 1 of k.
Other bits of k are not revealed by this marker; only the leading 1 and leading
0 are revealed (that the leading 0 is also revealed highlights how easy it can be
for countermeasures to have unintended effects!).
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This leakage is not unique to this particular countermeasure attempt. Re-
turning to the unmodified target implementation and using the newly found
markers, we find this leakage to be just as strong. In Section 3 we ignored those
markers because they are orders of magnitude weaker than the markers that
were chosen. But perhaps because these weak markers are so numerous, they
leak the leading 1 of k with a very high signal-to-noise ratio.

The source of this new leakage can be readily found with a quick look at a
simulation waveform: we find that intermediate results written to the bram rz

target memory are 256’d1 (255 zeros followed by a single 1) as long as the
target is processing leading zeros; when the first 1 is encountered, data written
to bram rz changes to random-looking data with a Hamming weight of around
128. This is not surprising: we can infer that the target converts the base point
from affine to projective space by setting z = 1. This could be easily addressed,
at very little cost, by randomizing the z coordinate (i.e. point blinding). While
these results suggest that an HNP attack using the most significant bits could
be highly effective, we don’t pursue it because this leakage is easy to fix.

Fig. 10. Differences between the average power trace for ki = 1 and the average power
trace for ki = 0, fourth attempt in blue, other attempts in different colours.

Returning to the DoM distinguisher based power attack used on the other
attempts, we find on average 50 wrong bit guesses per single trace, and 4 traces
out of 10000 have sufficient consecutive bit guesses for EHNP, which under per-
forms attempt 3. Table 3 summarizes the results obtained thus far, using the
DoM approach. Attempt 3 is the clear winner: it is both cheaper in resources
and more effective than attempt 4. In terms of FPGA resource costs, there is no
material difference between the original implementation and attempts 1 and 2.
Attempt 3 consumes 1.3 times more lookup tables and 2.8 times more BRAMs,
although these numbers are misleading because each noise memory is imple-
mented as a 36 kilobit BRAM, of which only 256 bits are needed; this could
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Fig. 11. A single trace reveals the location of the leading 1 and 0 of k.

be optimized without compromising the side-channel performance. Attempt 4
consumes 2 times more lookup tables and 1.8 times more BRAMs.

Number of wrong bits Number of traces
Implementation guesses per single trace suitable for EHNP

Original 29 7
Attempt 1 21 15
Attempt 2 15 30
Attempt 3 68 2
Attempt 4 50 4
Table 3. Summary of all results with 10000 traces.

5 Test Vector Leakage Assessment

Test Vector Leakage Assessment (TVLA) is a method for evaluating the feasibil-
ity of side-channel attacks on implementations of cryptographic algorithms [12,30].
The use of TVLA has also been standardized in ISO/IEC 17825 [15]; it is a front-
runner for usage as industry evaluation metric.

Since the purpose of TVLA is to detect secret-dependant points in the power
traces, we are curious to see how well TVLA can identify the leakage that was
used for our attacks. We carry out a TVLA test with P fixed and k variable. We
use the t-statistic threshold of 4.5 to indicate a statistically significant difference
between k being fixed or variable, and find that using a total of 10000 traces,
failures occur; Figure 12 shows the TVLA results for the first three bits of k.
The first failures occur around cycle 4210, which coincides with our DoM results.
Beyond that, strong failures abound, giving a very different picture than the
results of Figure 4. Results beyond the third bit of k resemble those of bit 3 and
are omitted for clarity. The numerous TVLA failures are not surprising since k is
directly used, unprotected, by the target, and power traces are perfectly aligned.
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Fig. 12. TVLA results for the first three bits of k. The black horizontal lines indicate
the failure threshold.

Figure 13 overlays the TVLA results for the second bit of k with the average
difference between zeros and ones from attempt 4, using absolute values and
scaling to better highlight their similarity. Whereas the peaks of the two curves
coincide strongly, the TVLA peaks are much more indistinct. In particular, using
t-test scores above 4.5 would not be useful at all for finding leakage in the source
code, since almost every clock cycle would qualify.

The use of TVLA is primarily designed as a pass/fail metric for simple eval-
uation of cryptographic implementations to detect any data-dependant leakage.
These results confirm that, as expected, TVLA does show data-dependant leak-
age, but other methods such as our DoM approach provide the fine-grained
information on the actual source of the leakage that can be used to either build
an attack, or mitigate the leakage.

Fig. 13. TVLA results for k2, and the difference between average power traces segments
for zeros and ones of attempt 4.
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6 Conclusions

Power analysis attacks on ECC are well known in both theory and practice [9,17,6,10,3].
Despite this long pedigree, the availability of open-source artifacts for hardware
cores is limited, especially when compared to examples for AES. Such artifacts
are useful for both academic and industrial research groups, and the security of
hardware implementations of ECDSA has become more critical to evaluate due
to the use of ECDSA in a variety of secure boot and RoT solutions.

In this work we used an existing open-source ECDSA implementation, and
demonstrated not only how a power analysis attack can be built, but also how
to connect the design information to the leakage to identify the source of the
leakage. Compared to previous work, we have made extensive documentation
and code available for recreating the entire attack chain in this paper. We ex-
plored several implementation-specific countermeasures and demonstrated how
the measured leakage compares to the assumptions made in the countermea-
sure design. Work to automatically identify and correct side-channel leakage in
hardware designs can also benefit from this artifact.

Several variants of this ECDSA core are available from CrypTech. Our anal-
ysis of the unprotected design variants shows similar leakage. Most recently
CrypTech has included a Montgomery ladder implementation, which is com-
monly cited as a protection against SPA. Our initial evaluation of this version
showed very similar leakage to what is shown in this paper, but the core is still
in development (our results are being relayed back to CrypTech developers for
their feedback).

Whether the side-channel results presented on our FPGA target maps to
ASIC targets is another area to be explored—for example the use of BRAMs
for small memories, which on an ASIC would likely be implemented in flip-flops.
The use of an open-source ECC design makes it possible for future researchers
and groups to compare their work to our results, whether they are implementing
the designs in FPGAs or ASICs.
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