
Precio: Private Aggregate Measurement via Oblivious Shuffling
F. Betül Durak

Microsoft

United States

Chenkai Weng

North Western University

United States

Erik Anderson

Microsoft

United States

Kim Laine

Microsoft

United States

Melissa Chase

Microsoft

United States

ABSTRACT
We introduce Precio, a new secure aggregation method for com-

puting layered histograms and sums over secret shared data in a

client-server setting. Precio is motivated by ad conversion measure-

ment scenarios, where online advertisers and ad networks want

to measure the performance of ad campaigns without requiring

privacy-invasive techniques, such as third-party cookies.

Precio has linear (time and communication) complexity in the

number of data points and guarantees differentially private outputs.

We formally analyze its security and privacy and present a thor-

ough performance evaluation. The protocol supports much larger

domains than Prio. It supports much more flexible aggregates than

the DPF-based solution and in some settings has up to four orders

of magnitude better performance.

1 INTRODUCTION
Privacy-Preserving Aggregation. Numerous applications and

services collect statistics about their use, raising privacy and regula-

tory compliance concerns. The privacy-utility trade-off in collecting

less or more information is an active area of research, including

for smart meters [16, 32], private networks [10, 20, 31], and other

measurements [22].

We focus on privacy-preserving aggregation, where a large num-

ber of clients each submit a data report. The goal is to compute

aggregate statistics over the reports and deliver the results to a

Reporting Origin, without compromising the clients’ privacy. We

follow the model in Prio [15], where clients secret share their re-

ports and distribute the shares to a small number of servers. The

servers compute aggregates over the reports in a way that guaran-

tees differential privacy for each client report. Such systems have

in the past been used for telemetry [21] and contact tracing [2].

We focus on the use-case of private ad conversion measurement,

presenting a solution which is both more efficient and more flex-

ible than prior solutions, at the cost of somewhat stronger trust

assumptions.

Web Privacy and Ad Conversion Measurement. People’s ac-

tivities are constantly tracked across websites to gather insights

about online marketing campaigns. This is typically achieved using

third-party cookies: a website𝐴 can drop a cookie linked to website

𝐹 , which, when loaded on other sites, can subsequently track the

user’s activities [5]. Due to privacy issues, some browser vendors

are strictly limiting third-party cookies, with Safari blocking them

and Chrome planning to phase them out with the Privacy Sandbox
initiative [25]. Yet, information gathering is essential for advertisers

who ultimately fund many “free” valuable web services consumers

rely on.

Today, consumer (web browser) data is collected with no guaran-

tees that the data is not used for other purposes. The good news is

that many analytics scenarios only require simple aggregates, such

as computing how often an ad placement results in completing

a related purchase. If there was a way to only ever reveal such

aggregate results, it would mitigate privacy risks while retaining

necessary measurement capabilities for advertisers. In this paper

we suggest a privacy-focused aggregate protocol using secure multi-

party computation and differential privacy.

1.1 Our Model
Parties and Trust Assumptions. We consider a system as in

Figure 1, which follows along the same basic structure as the Verifi-

able Distributed Aggregation Functions currently being formalized

by the IETF [4]. The system includes the following parties:

• Clients, that each submit one data report. As there is no way to

limit how client software (e.g., web browsers) behaves, we need
security against malicious clients.

Discussion: Of course this means that one cannot ensure that each

client submits accurate inputs. Instead, the goal is to limit the

amount of influence any one (or few) clients can have on the final

result. That way even if a few malicious clients manage to evade

detection, they cannot affect the results too much. In particular,

we cannot tolerate a scheme in which a single malicious client

could completely obscure the aggregate result.

• Helper servers, that together perform the aggregation. In our

work we will assume 3 semi-honest non-colluding helper servers.

Discussion: We assume these will be run by entities with strong

reputations – either large tech companies or non-profit organiza-

tions. These entities may also be audited to ensure correct code

and processes are used.

• A Reporting Origin (RO), that collects reports from the clients,

encrypted under the helper servers’ keys. It sends them to the

helper servers, and chooses which aggregates to compute, and

receives the final results. This could be an ad network measuring

the effectiveness of an ad campaign. A malicious RO should not

learn anything about individual clients’ reports.

Discussion: To be adopted in the ad measurement context, and

avoid concerns of unfairness to smaller players, such a system

would have to be available to a wide range of ad networks, even

those without a strong reputation for privacy. This means it is

essential that we not place any trust for privacy in the RO. On

1

Full version, May 22, 2024 F. Betül Durak, Chenkai Weng, Erik Anderson, Kim Laine, and Melissa Chase

the other hand, accuracy depends on the RO honestly submitting

the reports; in our model the RO is the one who wants the results,

so this is not a limitation. The RO may also perform (imperfect)

client vetting to limit the number of malicious reports.

Our protocol provides privacy against semi-honest helpers collud-

ing with an RO, as long as a majority of the helpers remain honest.

In our security analysis, this means that we provide privacy even

when the reports are maliciously generated, as the RO’s role is sim-

ply to choose and distribute the reports to helper servers. We leave

the stronger guarantees of privacy/correctness in the presence of

malicious helper servers for future work.

Data Reports. Reports from clients are bit strings representing

predefined categorical or numerical attributes. Each attribute takes

up to a specified number of bits in the report to denote its attribute
value. Categorical attributes may indicate client age, gender, or

device info, while a numerical attribute may indicate a dollar value

of purchases after seeing an ad. Categorical attributes are used

to form histograms and numerical attributes to compute sums.

Our goal is to compute complex histograms and histogram-sums

over these reports, e.g., “How many conversions were there for ad

campaign A for mobile phone users in North America?” or “what

was the total dollar value of all conversions from users in Europe

age 65+?”

Repeated Partitioning and Filtering. In a non-private ad con-

version measurement system [36], an analyst might start out by

partitioning the reports according to an ad campaign identifier.

Next, they might partition the reports by geographic region, filter-

ing out regions with no relevant conversion activity, followed by

partitioning by age, gender, or other attributes. Repeated partition-

ing and filtering is essential, as it allows the analyst to explore a

sparse space of reports, without having to explore exponentially

many combinations of attribute values.

No prior privacy-preserving ad conversion measurement so-

lution allowed such on-the-fly partitioning and filtering. Specif-

ically, prior solutions were based on Distributed Point Functions
(DPF) [8, 9, 23], incremental DPF (iDPF) [7], and Prio [1, 15]. iDPF
is very similar to DPF; it adds support for longer reports and differ-

ential privacy.

In the iDPF approach, attribute values are encoded as bit strings

into reports, but histograms can only be computed for prefixes of the

entire report. For example, if the report encodes first a geographic

location, then an age bracket, and then a device type, one can obtain

counts for “east coast”, “east coast, 65+”, and “east coast, 65+, mobile”,

but not for “65+, mobile” except by separately querying with each

possible location. This becomes infeasible when the number of

attributes increases.

In Prio, data is encoded as vectors of values and the only sta-

tistics that can be computed are those that can be expressed as

sums of these values. For example, to count the number of reports

corresponding to a combination of location, age, and device type,

the client would have to encode its report into a vector with an

entry for every possible (location, age, device type) combination.

This is again infeasible when the number of attributes increases.

1.2 Our Results
Precio. We propose a privacy-preserving aggregation protocol,

Precio, based on secure 3-party computation, with time and commu-

nication complexity linear in the number of reports. The RO learns

only differentially private aggregates and no per-client information.

The high-level design of Precio is depicted in Figure 1.

Unlike prior proposals, Precio supports privacy-preserving on-

the-fly partitioning and filtering of reports. Attributes can be of

any length and partitioning can be done on any set of attributes

– in any order. Histograms (for categorical attributes) and sums

(for numerical attributes) can be computed at any point, enabling

remarkable flexibility for a data analyst, without compromising

clients’ privacy.

Cheap Sums. Prio [15] enables sum computation on private val-

ues but is vulnerable to malicious clients providing unrealistic in-

puts, requiring costly range proofs as a mitigation. Prio+ [1] miti-

gates this using limited size domains and Boolean secret sharing,

but requires an expensive share conversion protocol.

Precio, however, allows clients to secret share in a small cyclic

group, then converts these to a larger group for the sum. This

process (Section 3.3) uses Quotient Transfer [33] and Oblivious

Transfer (OT); it avoids Prio’s costly range proofs and is more

efficient than Prio+’s share conversion.

Privacy and SecurityGuarantees. Weprovide robustness against

malicious clients: a malicious client cannot cause a report to be

counted more than once (for categorical attributes) and its impact

on the results of sums (for numerical attributes) is only slightly

more than the impact it can have by simply choosing a different

value in the range of the numerical attribute.

We provide differential privacy (with a Gaussian mechanism)

with parameter 𝜖 . This achieves (𝜖, 𝛿)-DP (for no layering) with a

very small 𝛿 for histograms. In other words, the reported histograms

reveal only noisy aggregate counts. We prove privacy against semi-

honest non-colluding helper servers. The RO’s role in our protocol

is simply to choose and distribute the reports to helper servers. To

capture the case of a malicious RO, our privacy guarantees must

hold even when the reports are maliciously generated.

We note that Precio focuses on obtaining differential privacy for

histograms and sums. The related works (DPF, iDPF, Prio) do not

natively provide DP, but can be augmented to provide it. Instead,

they provide MPC-type guarantees which say that only aggregates

are revealed.

The privacy and security guarantees of Precio are summarized

in Table 1, along with a comparison to related works.

Complexity. The time complexity of our histogram and sum

protocol is 𝑂 (𝐶 + 𝐵𝑀), where 𝐶 is the number of client reports,

𝐵 is the number of buckets, and 𝑀 is the average noise added to

each bucket.
1
The communication complexity between servers is

𝑂 (ℓ (𝐶 + 𝐵𝑀)), where ℓ is the report length. The communication

required from each client is only 2ℓ , with some encryption overhead.

The detailed analysis is in Appendix B.

As the report size ℓ grows, the number of possible buckets 𝐵 = 2
ℓ

grows exponentially. We resolve this problem by introducing a

layering technique, breaking the report into smaller attributes and

1𝑀 = 𝑂 (ln (1/𝛿)) to achieve (Ω (1), 𝛿)-DP.
2

Precio: Private Aggregate Measurement via Oblivious Shuffling Full version, May 22, 2024

exploring those attributes one after another. By pruning away entire

reports when some of their attributes fall into uninteresting (e.g.,
small) buckets, we can create histograms only for buckets with

more than 𝑡 reports with complexity 𝑂
(
ℓ𝐶 + ℓ𝑀 𝐶

𝑡−𝑀
)
.

When we consider the communication complexity of the aggre-

gate system as the total communication required for an end-to-

end execution, we must include the communication required from

clients to servers as well. In that sense, the linear complexity in the

number of clients is inevitable, even in systems like those based on

iDPF, where the server-to-server complexity is much lower. In our

system both client-to-server and server-to-server communication

are linear in the number of clients.

The complexity of Precio is summarized in Table 2, along with a

comparison to related works.

Experiments. We run experiments to measure the performance

of Precio on various sizes of reports for histograms. The results and

analysis are shown in Section 5.

We explore five distinct test scenarios: 1) constructing a full

histogram (without pruning) on a single attribute up to 22 bits; 2)

constructing subset-histograms (with pruning) for different pairs

of attribute sizes and data distributions; 3) constructing a subset-

histogram (with pruning) for up to 10M reports with a large 32-bit

attribute by breaking the attribute into two 16-bit chunks; 4) finding

heavy-hitters in a set of Zipf-distributed very large 256-bit attribute

values broken into 16 16-bit chunks (compared to the iDPF-based
scheme in [7]); 5) a sum protocol on numerical attributes in 10M

reports.

In each scenario where a comparison is meaningful, we signifi-

cantly outperform DPF-based solutions. We omit a direct compari-

son to Prio, as it cannot perform such large and complex histograms

at all. In particular, the experiments demonstrating a histogram

on a large 32-bit attribute show the power of our layering tech-

nique. This would be prohibitively expensive with any other known

approach.

1.3 Our Techniques
Base Protocol. To begin with, suppose we only want to compute

a single histogram. We begin with the proposal of Mazloom and

Gordon [35], where a histogram is built over a single categorical

attribute. Clients securely send Boolean secret shares of their re-

ports to two helper servers. To achieve differential privacy, for each

possible attribute value a number is sampled from a (rounded, trun-

cated, and shifted) Gaussian and this determines how many dummy
reports with that particular attribute value are added. Each server

obtains secret shares of these additional reports.

Next, the servers run a 2PC protocol to shuffle the reports, hiding

which are original and which are noise. This results in a new set

of shares randomly permuted. The servers then reveal these new

shares and construct a histogram on the values. For cases with an

additional numerical attribute, we can use linearity of the secret

sharing to add the numerical values for each category.

Optimizing Building Blocks. The Mazloom and Gordon proto-

col contains three costly steps: 1) The two servers use costly generic

2PC to jointly generate dummy reports; 2) they shuffle the shares,

again using a generic 2PC; 3) a costly 2PC is used to add numerical

values in a way that prevents malicious clients from submitting

arbitrarily large inputs.

We optimize each step. In Mazloom and Gordon’s proposal, the

sampling and generation of the dummy reports happens within a

2PC. In Precio, two helpers independently sample noise and gen-

erate dummy reports, removing the need for generic 2PC at the

cost of doubling the noise. Moreover, to avoid revealing how many

dummy reports are added, they must pad the number of dummies;

in more detail, they use a noise distribution, which is truncated at

some maximum value and pad the number of dummies for each

attribute up to this maximum. In Precio, we take advantage of the

fact that in our setting the adversary (RO or semi-honest helper)

already knows the total number of real (non-dummy) reports, so

we can use a variant of DP which takes this into account (see [42,

pp. 12] for discussion). This means, in particular, that we can afford

to reveal the total number of dummy reports added, although of

course not how many are added for each attribute, and omit the

additional padding that Mazloom and Gordon require.

Next, we optimize the shuffle protocol. There are two existing

approaches to shuffling data according to a hidden random permu-

tation. The first is that taken by Mazloom and Gordon: use a 2PC

to evaluate a sorting network, hiding the bits used to control each

swap gate, as in [30, 38]. This allows for efficient symmetric key

operations, but, since sorting networks require 𝑛 log𝑛 gates to sort

𝑛 items, this implies adding an overhead factor of log𝐶 for us.

The other approach is to have one party encrypt the data with a

public key rerandomizable encryption and have another party shuf-

fle and rerandomize the ciphertexts.
2
In our context, the helpers

would also need to rerandomize the shares, which requires ho-

momorphic encryption, and moreover we need the shares to be

compatible with the rest of our protocol. In particular, we need

to be able to separately reveal the shares of each attribute. To do

this with known PKE schemes would require separately encrypting

each attribute in the user’s report; as public key ciphertexts are

at least 500 bits, and our attributes on the order of 1–10 bits, this

would be an order of magnitude increase. Using FHE schemes that

typically natively provide message packing capabilities is an option,

but comes with a significant overhead.

Instead, we introduce an additional helper party and use a 3-

party permutation protocol corresponding roughly to two rounds

of the protocol of [37]. The result is a protocol entirely based on

symmetric operations, where two of the three parties each send

one message of size𝐶ℓ (the size of the initial set of reports) and the

third sends nothing.

Finally, we combine the Quotient Transfer idea from [33] with a

three-party OT to get secure addition of numerical attributes. This

results in a lightweight protocol for building a histogram on cate-

gorical attributes and subsequently computing sums of numerical

attributes.

Layered Queries. The base protocol above allows an analyst to

pick on the fly which (categorical) attribute to partition and filter

by. Unfortunately, re-running the protocol for subcategories does

not work, as dummy reports at each iteration would accumulate

and degrade both accuracy and efficiency.

2
Repeat twice to get a permutation that is hidden from both parties.

3

Full version, May 22, 2024 F. Betül Durak, Chenkai Weng, Erik Anderson, Kim Laine, and Melissa Chase

For example, consider the second experiment in Section 5.3,

in which we have 10 000 000 reports, each 256 bits. We want to

find heavy hitter: bit strings that occur most frequently. While

the domain is enormous, if we partition repeatedly for each 16-bit

chunk, pruning partitions with very few reports, we can hope to

efficiently build a histogram for all elements that occur sufficiently

often.

Doing this naively with the base protocol would result in dummy

reports being added for each of the 2
16

values of an attribute at

each of the 16 layers. These dummies mean a factor of 16 increase

in the noise of the final results. Moreover, they will significantly

increase the cost of running the protocol since we will have many

more reports to work with. As we will see later, for practical 𝜖

and dataset sizes, the dummies in a single level already form a

non-trivial fraction of the total reports (sometimes a vast majority).

Finally, the additional noise will have a significant effect on the

efficacy of pruning: either we will end up pruning more of the

results that we’d like to keep, or we will prune many fewer buckets

and end up with a significant loss in efficiency.

To solve this, dummy reports are added in a specific manner so

they are automatically cleaned up in the next partitioning. This

creates a layered histogram protocol where DP noise in interme-

diate layers only affects communication cost, while DP noise in the

last layer impacts accuracy.

One more issue is that, since we are essentially computing 16

histograms (one for each level), we have to be very careful to opti-

mize our use of the DP budget, to make sure that we can get both

good utility and achieve DP with a reasonable total 𝜖 . This involves

(1) careful DP budget management, so that we use less budget on

parts of the protocol that don’t directly affect the accuracy of the

result (2) use of Gaussian noise, which is more complex to analyze

but has better tail bounds and allows for better tradeoffs in our

setting, and (3) a tight accounting of the budget being used when

we combine the information revealed across all levels - we get this

by using the privacy accountant of [28].

1.4 Related Work
There exist many prior work in privacy-preserving aggregation,

based on general purpose MPC [24, 45], Distributed Point Functions

(DPF) [7–9, 23], or a variety of techniques [1, 11, 15, 46, 47].

iDPF and Prio. The closest in terms of functionality are the

DPF-based solutions: regular DPF [8, 9, 23] and incremental DPF
(iDPF) [7]. Both iDPF and Prio [15] are currently being proposed

for standardization by IETF [22, 41, 44].

The DPF solution has a very high time complexity, which iDPF
improves, still resulting in complexity quadratic in the number of

clients. The communication complexity is linear in the number of

clients. We compare iDPF with our protocol in Section 5.

Prio provides a complete toolbox for secure and private aggrega-

tion. It requires clients creating proofs that their reports are well-

formed. For histograms, Prio encodes each attribute in a one-hot

vector and generates the histogram from the vectors using generic

MPC protocols. However, Prio, natively, does not provide DP [15]

and does not support layered histograms. To imitate layered his-

tograms, one would need to encode the report into a massive vector

of the size of the entire attribute space, which is completely imprac-

tical for almost all of our experiments. Due to these differences, we

do not compare performance with Prio in Section 5.

It is worth noting that Precio differs from the DPF-based proto-

cols and Prio on the trust assumption. All three, Prio, iDPF, and
Precio provide robustness of computations only if all the servers

are honest. However, Precio does not protect client privacy against

malicious server, whereas Prio and iDPF do, if at least one of the

servers is honest.

For malicious clients, Prio defines robustness as follows: “when

all servers are honest, a set of malicious clients cannot influence the

final aggregate, beyond their ability to choose arbitrary valid inputs.”
iDPF can provide robustness against malicious clients, but this

requires an expensive sketching process. Precio is robust against

malicious clients, namely, a malicious client can have an effect

equivalent to contributing two maliciously chosen inputs instead

of one. For more details, see Section 4.3.

The privacy and security guarantees of Prio, iDPF, and the Ma-

zloom and Gordon protocol are presented alongside Precio in Ta-

ble 1. The time and communication complexities are in Table 2.

Mixnets. Mixnet-based 2-server protocols with verifiable shuf-

fling would incur prohibitive overhead for using public-key oper-

ations and zero-knowledge proofs [13, 40]. A private messaging

scheme called Vuvuzela [43] employs mixnets and differential pri-

vacy, and can potentially be used for simple histogram queries.

However, its differential privacy guarantees are undefined for se-

cure aggregation.

Shuffling. Several works [6, 14] propose differential privacy by

shuffling. However, they consider a different trust model, where

each client changes their input with a small probability. These

inputs are shuffled with a permutation that the adversary does not

know, which – combined with the noise added by all the clients –

provides differential privacy with significantly less noise per client

than simple local DP would require. This approach requires many

honest clients: if the adversary can omit the noise in most of the

inputs, then the shuffling provides no additional privacy. Thismakes

these protocols a bad fit for our application, since the (potentially

malicious) RO will decide which reports to submit for aggregation

and the helper servers have no way to verify that the reports came

from legitimate clients.

IPA. Another proposal for distributed aggregation in the ads pri-

vacy space is the IPA protocol[11]. The proposal has the difference

that the aggregation follows a step of attributing conversions (e.g.,
purchase) to impressions (e.g., display). This inherently makes the

problem more challenging and solutions much more complex.

2 PRELIMINARIES
2.1 Notation
We consider a protocol where multiple clients (e.g., web browsers)
each input a single data report. The protocol performs a secure

3-party computation using three helper servers S1,S2,S3, and out-

puts results to a Reporting Origin R. We use b ∈ {1, 2, 3} to denote

a server index. Unless explicitly stated otherwise, all indices start

from 1.

4

Precio: Private Aggregate Measurement via Oblivious Shuffling Full version, May 22, 2024

Protocol Prio [15] iDPF [7] M&G [35] Precio

client privacy (DP) w/ non-colluding semi-honest servers possible possible yes yes

client privacy (DP) w/ one malicious server possible possible no (ext.) no

client privacy (DP) w/ malicious clients (hist.) possible possible yes yes

client privacy (DP) w/ malicious clients (sum) possible possible yes yes

robustness w/ one malicious server (hist. and sum) no no no (ext.) no

robustness w/ malicious clients (hist.) yes (range proofs) yes (sketching) yes yes (no extra cost)

robustness w/ malicious clients (sum) yes (range proofs) yes (sketching) yes yes* (quotient transfer)

of servers 2 2 2 3

Table 1: Threat model and security guarantee comparison for different histogram and sum protocols. “Possible” privacy means
that the protocol reveals only the aggregate being accumulated but can be strengthened by DP in a straightforward way with a
complexity overhead. “ext.” indicates that the protocol can be extended to provide this property, but the extension is non-trivial.
The asterisk (*) indicates that a malicious client can have a bounded (small) impact on the result. Mazloom and Gordon do not
explicitly discuss malicious clients, but their protocol seems to protect against them, assuming the inputs are shared in a way
that limits the maximum value.

Protocol Prio [15] (no DP) iDPF [7] (no DP, no sketching) Precio

server time complexity (histogram) 𝑂 (ℓ log(ℓ)𝐶) multiplications 𝑂 (ℓ𝐶2)-PRG calls 𝑂 (𝐶 + 𝐵𝑀̄)
server time complexity (heavy-hitter) N/A 𝑂 (ℓ𝐶2/𝑡)-PRG calls 𝑂

(
ℓ𝐶 + ℓ𝑀 𝐶

𝑡−𝑀
)

server-to-server communication (histogram) 𝑂 (𝐶 log
2
(𝑝)) 𝑂 (ℓ𝐶 log

2
(𝑝)) 𝑂 (ℓ (𝐶 + 𝐵𝑀̄))

client time complexity 𝑂 (ℓ log(ℓ)) multiplications 𝑂 (ℓ)-PRG calls 𝑂 (1)
client-to-server communication ℓ log

2
(𝑝) 𝑂 (𝜅ℓ) ℓ

Table 2: Complexity comparisons of private histogram computation. ℓ is the report length; 𝑡 is the pruning threshold (𝑡 = 1

for full histogram); 𝜅 is the security parameter; log
2
(𝑝) ≥ 𝜅 is the size of the finite field elements; 𝐶 is the number of client

reports; 𝐵 is the number of buckets (𝐵 = 2
ℓ for full histogram, but in some other cases 𝐵 ≪ 2

ℓ); 𝑀̄ is the noise added on average
to each bucket in Precio. DPF row does not account the DP protection (our scheme without DP would mean 𝑀̄ = 0). We give real
time performance results for Precio and iDPF for different ℓ in Table 4. Note that, as described above, there are differences
in the expressive power of each of the schemes: Prio reports encode attributes as one-hot vectors and does not allow for
histograms/sums over combinations of attributes; iDPF only allows for histograms/sums over prefixes of the report.

Figure 1: System Architecture.

𝐷 denotes the dataset of all reports 𝑑𝑖 , one from each client; we

denote its size by 𝐶 . Each report consists of 𝜇 attributes. The value

of the m-th attribute of 𝑑𝑖 is 𝑑𝑖 [m], where m ∈ [𝜇]. The attribute
value is an element of a group 𝐺m. We assume that 𝐺m includes

a “dummy value” ⊥ and that 𝑑𝑖 [m] ∈ 𝐺m \ {⊥}. The ⊥ value is

reserved for internal use in our protocol.

There are several ways to implement the groups𝐺m, depending

on the type of the attribute m. We consider two types of attributes:

categorical and numerical. Our protocol partitions the reports and
computes histograms over the categorical attributes, and subse-

quently computes sums over the numerical attributes. If a desired

categorical attribute m requires ℓm bits, we set 𝐺m = Zℓm
2

and

⊥ = 1 . . . 1. To represent a numerical attributem, we use𝐺m = Z𝑝m
for a large enough odd integer 𝑝m which is set to a value larger

than twice the maximum numerical attribute size which will be

summed. Sums over numerical attributes are computed by first

converting the values to a larger field Z𝑝′m (see Section 3.3), where

an odd integer 𝑝′m ≫ 𝑝m is large enough to be able to represent

(twice) the sum.

We let 𝐿m be the order of 𝐺m and let 𝐺 = 𝐺1 × 𝐺2 × · · · ×𝐺𝜇 .
Hence, reports 𝑑𝑖 , for 𝑖 ∈ [𝐶], are elements of 𝐺 .

An ℓ-bit report 𝑑𝑖 represents 𝜇 different attributes, such that ℓ =∑𝜇

m=1
ℓm, meaning each attribute m requires ℓm bits. A categorical

attribute m with ℓm bits can hold 𝐿m = 2
ℓm

values. For a selected

categorical attribute m, our protocol partitions the set of reports

into buckets B𝑗 , for 𝑗 ∈ 𝐺m. We denote B⊥ a bucket reserved for

the dummy value, which will be used internally by the protocol.

We note that the number of non-empty buckets for a categorical

attribute m may be much smaller than 𝐿m, depending on how the

values are distributed.

5

Full version, May 22, 2024 F. Betül Durak, Chenkai Weng, Erik Anderson, Kim Laine, and Melissa Chase

𝑑1 = 00 010 25

𝑑2 = 01 001 32

𝑑3 = 00 000 19

𝑑4 = 00 010 64

𝑑5 = 10 010 53

Figure 2: A visualization of our small example: the dataset
𝐷 with 𝐶 = 5 reports with 𝜇 = 3 attributes: two categorical (2
and 3 bits) and one numerical in the range [0, 100].

𝑑
(1)
1

= 10 011 78

𝑑
(1)
2

= 00 011 45

𝑑
(1)
3

= 01 111 100

𝑑
(1)
4

= 11 110 52

𝑑
(1)
5

= 01 001 11

(a) Shares of S1: 𝐷 (1)

𝑑
(2)
1

= 10 001 148

𝑑
(2)
2

= 01 010 188

𝑑
(2)
3

= 01 111 120

𝑑
(2)
4

= 11 100 12

𝑑
(2)
5

= 11 011 42

(b) Shares of S2: 𝐷 (2)

Figure 3: Secret shares of 𝐷 held by S1 and S2.

𝐷
(b)
𝑖

denotes server b’s share of the 𝑖-th report. We denote server

b’s shares of the full dataset 𝐷 by 𝐷 (b) .

Example. We will use a small running example to demonstrate

how the protocol works. Suppose we have 5 client reports, where

each report consists of two categorical and one numerical attribute:

Gender (represented with 2 bits for “he/she/they/⊥”), Ads Category
(represented with 3 bits), and Dollars Spent (represented by an

integer in [0, 100]). In this example, we take 𝐺1 = Z2

2
and 𝐺2 = Z3

2
,

with group operation bit-wise XOR,𝐺3 = Z201 with group operation

modular addition. Since we have𝐶 = 5,𝐷 consists of 5 reports. Each

report will have 𝜇 = 3 attributes with 12 bits in total: 𝑑𝑖 [1] = x1x2

and 𝑑𝑖 [2] = y1y2y3 as well as a secret value 𝑑𝑖 [3] modulo 201 (8

bits). To build a histogram on attribute “Gender” (m = 1), we will

obtain 𝐿m = 2
2
buckets: {B1,B2,B3,B4}, where B4 is reserved for

dummy reports with 𝑑𝑖 [1] = 11. An example of a corresponding

dataset 𝐷 (without considering any secret sharing yet) is given

in Figure 2. Notice that there are no reports with 𝑑𝑖 [1] = 11 or

𝑑𝑖 [2] = 111, as these buckets are reserved for the dummy reports.

2.2 Secret Sharing
In theGMWprotocol [24], a secret value is information-theoretically

shared betweenmultiple parties for securemulti-party computation.

Let𝐺 denote a finite additive group. In the 2-party case, a client can

share a secret value 𝑘 ∈ 𝐺 to 2 servers by first uniformly sampling

𝑟 ← 𝐺 , sending 𝑟 to one server, and 𝑘 − 𝑟 to the other server. Nei-

ther share alone reveals any information about the value 𝑘 . Such a

scheme works for both Boolean circuits and arithmetic circuits; it

requires no communication for the addition of two secret values,

or addition or multiplication with public constant values.

Example. Continuing with our example, we secret share the

reports in 𝐷 for S1 and S2 as follows: 𝑑𝑖 [𝑗] = 𝑑 (1)𝑖 [𝑗] ⊕ 𝑑
(2)
𝑖
[𝑗],

for 𝑖 ∈ [5], 𝑗 ∈ {1, 2} and 𝑑𝑖 [3] = 𝑑 (1)𝑖 [3] + 𝑑
(2)
𝑖
[3] mod 201. We

depict the shares in Figure 3.

2.3 Differential Privacy
Differential privacy [18, 19] is well studied technique to protects the

privacy of individual rows in a database. For each (ordered) database

𝐷 ∈ 𝜒𝐶 with 𝐷 (𝑖) = 𝑑𝑖 , we define an (unordered) database 𝐷 ∈ N𝜒
by 𝐷 (𝑗) = #{𝑖 : 𝑑𝑖 = 𝑗}.

Let M be a randomized algorithm with domain N𝜒 and let

𝐷,𝐷′ ∈ N𝜒 be two neighboring databases that differ on only one

row and have the same cardinality.

We say that a mechanismM is (𝜖, 𝛿)-differentially private ((𝜖, 𝛿)-
DP) for parameters 𝜖 ≥ 0 and 𝛿 ∈ [0, 1], if for any 𝑆 ⊆ Range(M)
and any neighboring 𝐷 and 𝐷′,

Pr[M(𝐷) ∈ 𝑆] ≤ 𝑒𝜖Pr[M(𝐷′) ∈ 𝑆] + 𝛿 .

This variant of DP is well-known and suitable for situations where

the adversary knows the exact size of the database before noise is

added [42, pp. 12]. This is natural, because the adversary collects

the reports anyway and therefore knows the exact number of real

reports.

The property of differential privacy is maintained through post-
processing. Informally, this means that once differential privacy

is achieved for the output of a particular query, the data curator

can make any computations with this output without violating the

formal differential privacy guarantees.

To achieve (𝜖, 𝛿)-DP for our protocol, we utilize the Gaussian
mechanism, where noise is drawn from N(0, 𝜎2) with PDF𝜎 (𝑥) =

1

𝜎
√

2𝜋
𝑒
−𝑥2

2𝜎2
and added to the output of a statistical aggregate. This

distribution has zero mean and standard deviation 𝜎 . In Section

Section 4.5, we explain how we set the distribution parameters by

using the techniques to compute privacy random variables [27, 28].

In our protocol, noise is added by both servers independently.

2.4 Oblivious Random Shuffling
We will make use of an oblivious shuffling protocol that runs be-

tween three servers. It inputs a dataset, initially secret shared be-

tween two servers, and outputs secret shares of a shuffled dataset.

Obliviousness means that none of the servers learns the mapped po-

sitions before and after the shuffling for any element in the dataset.

For our application we need the secret sharing scheme to be com-

patible with the way that we encode our attributes; in particular

we need a bitwise encoding for categorical attributes and a sharing

in an appropriate sized field for numerical attributes.

Multiple oblivious shuffling protocols have been presented in

prior work. Chase et al. [12] uses the idea of an oblivious permuta-

tion for 2-party oblivious random shuffling. However, for perfor-

mance reasons, the 2-party approach is insufficient for our protocol.

Instead, Mohassel et al. [37] proposed an oblivious permutation

protocol in the honest majority 3-party setting, with linear com-

putation and communication cost. We will instantiate a modified

version of [37] in Section 3.2.

3 SUBROUTINES
3.1 Differential Privacy with Constraints For

Histograms
To ensure differential privacy in histograms, we introduce noise

to each bucket’s counts. While the standard Gaussian mechanism

6

Precio: Private Aggregate Measurement via Oblivious Shuffling Full version, May 22, 2024

is our preferred choice, it poses a challenge: positive noise indi-

cates dummy report additions but negative implies report removals

we cannot do. Medina et al. [39] suggest a solution for such non-

negative constraints, but we prefer to stick with the Gaussian mech-

anism for its optimal privacy-utility balance and its compatibility

with numerical composition [28].

Rounded Shifted Truncated Gaussian Mechanism. First, we

define the truncation of the Gaussian. We sample a noise following

N(0, 𝜎2) and we resample it until its value becomes larger than

−𝑀 − 1/2. We call this noise 𝑋 and we let 𝑛 be its rounding to the

nearest integer. We obtain the rounded truncated Gaussian noise

with Pr[𝑛] =
∫ 𝑛+1/2
𝑛−1/2 PDF𝜎 (𝑥)/(1−p) for 𝑛 ≥ −𝑀 , and 0 otherwise,

where p defined as the resampling probability, which we will define

shortly. Finally, we shift the output by adding𝑀 to 𝑛, which ensures

that 𝑛 +𝑀 is always non-negative.

In our application, we use 𝑛+𝑀 as the number of dummy reports

to be added to a particular bucket and later subtract the value𝑀 (a

public parameter) from each count, leaving a Gaussian-like noise 𝑛

added to the buckets.

Let 𝑋 follow the truncated Gaussian distribution of point −𝑀 −
1/2. Given the PDF of the standard Gaussian, we define the resam-

pling probability p as p =
∫ −𝑀−1/2
−∞ PDF𝜎 (𝑥). As an example, if we

want p ≈ 2−40,𝑀 becomes𝑀 = ⌈7.05𝜎 − 0.5⌉.
As described above, the noise added in each bucket consists of

𝑛 +𝑀 dummy reports. Let PDF𝑋 (𝑥) = PDF𝜎 (𝑥)
1−p . Since

E[𝑋] =
∞∫

−𝑀−1/2

𝑥 PDF𝑋 (𝑥) 𝑑𝑥 = 𝜎2PDF𝑋 (−𝑀 − 1/2)

the expected value of𝑋 +𝑀 becomes 𝑀̄ = 𝑀 +𝜎2PDF𝑋 (−𝑀 − 1/2),
which is very close to𝑀 .

3

The protocol for noise generation is shown in Figure 4.

Example. We continue our example from previous Section 2.1. We

want to build a histogram on the attribute “Gender” (m = 1) with

𝐿m = 4 buckets {B1,B2,B3,B4}. In our ΠNoiseGen protocol, the

Noise generation step will sample a number of dummy reports for

each of these four buckets, with B4 consisting entirely of dummy

reports.

Suppose the noise vector N (1) = (2, 1, 0, 2) for S1.
4
This means

that a total of 𝑛 (1) = 5 new reports will be added: two reports

𝑑
(1)
1,1
, 𝑑
(1)
2,1

to B1, one report 𝑑
(1)
1,2

to B2, and two reports 𝑑
(1)
1,4
, 𝑑
(1)
2,4

to B4.

In step Generating dummy reports, each dummy report (for S1)

will have the form 𝑑
(1)
𝑖, 𝑗

= [𝑗 |111|0201], where 𝑗 is represented in

binary with 2 bits, the second (categorical) attribute is set to the

reserved value 111, and the last 7-bit (numerical) attribute is set to

0 ∈ Z201. The same steps are repeated for S2, with different total

noise vector N (2) and dummy report count 𝑛 (2) .
Finally, in the step Appending shares to dummy reports, S1 will

append the 𝑛 (1) = 5 dummy reports, as well as 𝑛 (2) fake reports
with all bits filled with 0, to its true reports from 5 clients. Thus, the

3
The computation can be found in Section B.1.

4
Note that sampling such a noise vector is in practice unrealistic. Instead, we would

expect to get noise values centered around our chosen shift parameter𝑀 . We use this

small vector in this example for the sake of simplicity.

Protocol ΠNoiseGen
Parameters. An attribute index m. 𝐿m buckets. There are

four parameters: 𝜎buckets, 𝑀buckets and 𝜎flush, 𝑀flush which

describe the noise distributions used for the attribute buckets

and the dummy value bucket, respectively. We use discrete

truncated Gaussian distribution with parameter 𝜎 which is

either 𝜎buckets (for attribute buckets) or 𝜎flush (for the

dummy value buckets) and𝑀 is either𝑀buckets or𝑀flush.

Input. Each server Sb inputs (dp, 𝐷 (b) ,m), where 𝐷 (b) is the
full dataset share of the server b and m is the attribute index.

Noise generation. For each b ∈ {1, 2}, for each attribute

bucket 𝑗 ∈ 𝐺m \ ⊥, Sb randomly samples noise (until it is

larger than −𝑀buckets − 1

2
by rejection sampling) from the

distribution N(0, 𝜎2

buckets) and rounds it to the nearest

integer. We call this rounded noise 𝑛
(b)
𝑗

. For the dummy

value bucket 𝑗 = ⊥, each server does the same using𝑀flush
and 𝜎flush. All the noise values are recorded as

N (b) = (𝑛 (b)
𝑗
+𝑀buckets) 𝑗∈𝐺m\⊥ | | (𝑛

(b)
⊥ +𝑀flush).

Generating dummy reports. For each b ∈ {1, 2} and each

bucket 𝑗 ∈ 𝐺m, Sb creates N (b) [𝑚] dummy reports as

follows: for noise index 𝑖 ∈ [𝑛 (b)
𝑗
+𝑀], set 𝑑 (b)

𝑖, 𝑗
[m] = 𝑗 and

𝑑
(b)
𝑖, 𝑗
[𝑣] ← ⊥(∈ 𝐺𝑣) for 𝑣 ∈ [𝜇] \ {m} which form one

dummy report 𝑑
(b)
𝑖, 𝑗

(in the case of a numerical attribute for

summing, 𝑑
(b)
𝑖, 𝑗
[𝑣] ← 0 (∈ 𝐺𝑣) for 𝑣 the attribute to be

summed). Sb forms all of

𝑛 (b) =
(∑︁
𝑗∈𝐺m\⊥

𝑛
(b)
𝑗
+𝑀buckets

)
+ (𝑛 (b)⊥ +𝑀flush)

dummy 𝑑
(b)
𝑖, 𝑗

reports as 𝐷
(b)
dum. Each server b shuffles 𝐷

(b)
dum.

Appending shares to dummy reports. S1 and S2 share the

numbers 𝑛 (1) and 𝑛 (2) with each other. Set 𝐷
(1)
priv and 𝐷

(2)
priv as

follows: (𝐷 (1)priv)𝑖 = 𝐷
(1)
𝑖

for 𝑖 < 𝐶; (𝐷 (1)priv)𝑖 = (𝐷
(1)
dum)𝑖−𝐶 for

𝐶 < 𝑖 ≤ 𝐶 + 𝑛 (1) ; and (𝐷 (1)priv)𝑖 = 0 for

𝐶 + 𝑛 (1) < 𝑖 ≤ 𝐶 + 𝑛 (1) + 𝑛 (2) . S2 computes similarly except

that it puts all 0 reports before the dummy reports of S1.

Output. Each server Sb outputs 𝐷
(b)
priv.

Figure 4: The protocol of DP noise generation.

only communication needed between S1 and S2 is the exchange of

the numbers 𝑛 (1) and 𝑛 (2) .
Concretely, suppose the noise vector of S2 be N (2) = (1, 0, 0, 1).

We depict the noise addition following our example in Figure 5.

If the servers now reveal the buckets for the first attribute, they

can then organize the reports in buckets accordingly:

B1 = {𝑑 (b)
1
, 𝑑
(b)
3
, 𝑑
(b)
4
, 𝑑
(b)
6
, 𝑑
(b)
7
, 𝑑
(b)
11
} , B2 = {𝑑 (b)

2
, 𝑑
(b)
8
} ,

7

Full version, May 22, 2024 F. Betül Durak, Chenkai Weng, Erik Anderson, Kim Laine, and Melissa Chase

𝑑
(1)
1

= 10 011 78

𝑑
(1)
2

= 00 011 45

𝑑
(1)
3

= 01 111 100

𝑑
(1)
4

= 11 110 52

𝑑
(1)
5

= 01 001 11

𝑑
(1)
6

= 00 111 0

𝑑
(1)
7

= 00 111 0

𝑑
(1)
8

= 01 111 0

𝑑
(1)
9

= 11 111 0

𝑑
(1)
10

= 11 111 0

𝑑
(1)
11

= 00 000 0

𝑑
(1)
12

= 00 000 0

(a) 𝐷 (1)priv

𝑑
(2)
1

= 10 001 148

𝑑
(2)
2

= 01 010 188

𝑑
(2)
3

= 01 111 120

𝑑
(2)
4

= 11 100 12

𝑑
(2)
5

= 11 011 42

𝑑
(2)
6

= 00 000 0

𝑑
(2)
7

= 00 000 0

𝑑
(2)
8

= 00 000 0

𝑑
(2)
9

= 00 000 0

𝑑
(2)
10

= 00 000 0

𝑑
(2)
11

= 00 111 0

𝑑
(2)
12

= 11 111 0

(b) 𝐷 (2)priv

Figure 5: Output of ΠNoiseGen on small example dataset 𝐷 .
Last 7 entries in 𝐷priv are dummy reports; 5 of them were are
added by S1 and 2 by S2.

B3 = {𝑑 (b)
5
}, B4 = {𝑑 (b)

9
, 𝑑
(b)
10
, 𝑑
(b)
12
} .

Finally, they reveal the requested histogram as the counts of the

buckets B1,B2,B3, ignoring the dummy bucket B4.

3.2 Oblivious Random Shuffling
We modify the Mohassel et al. [37] protocol into an efficient honest-

majority 3-party oblivious random shuffling protocol with linear

complexity (Figure 6). Compared to 2-party protocols, the presence

of the third party leads to linear instead of logarithmic computa-

tional and communication overhead. During the Shuffling phase,

each party sends only one message, resulting in a constant num-

ber of rounds of communication. We do not need commitments or

interaction because of the third server, because when one of the

servers is corrupted the randomness from the (third) honest server

is enough to create a uniform distribution for the permutation.

The formal privacy of the protocol in the semi-honest server

model is proven in Section C.1. Informally, what we prove is that

the views of any one semi-honest party can be perfectly simulated.

At the initialization phase, each pair of parties jointly samples a

random permutation and a random mask vector. These can be

simulated by uniformly sampling and sending to the adversaries

random permutations and mask vectors. The simulation of shuffling

phase is done as follows:

• Corrupt S1: The only message that S1 receives is

𝐴 := 𝜋23 (𝜋12 (𝐷 (2)) + 𝑅12) + 𝑅23

from S2, where 𝜋23 and 𝑅23 are not known to 𝑆1. Since the ran-

dom vector𝑅23 masks the permuted shares,𝐴 is indistinguishable

from a random vector from 𝑆1’s view. The simulator can replace

it with a random vector of same size.

• Corrupt S2: S2 receives no messages simulation is trivial.

• Corrupt S3: The only message that S3 receives is 𝐵 from S2.

As is the same situation to S1’s, 𝐵 is indistinguishable from a

Protocol ΠRandShuf
Notation. When the operators {+,−} are applied to vectors,

they mean element-wise addition and subtraction.

Permutations 𝜋 are on the index set [𝐶] and 𝜋 (𝐷) is defined
by 𝜋 (𝐷)𝜋 (𝑖) = 𝐷𝑖
Input. For b ∈ {1, 2}, 𝑆b inputs (shuffle, 𝐷 (b)) where
𝐷 (b) := (𝑑 (b)

𝑖
)𝑖∈[𝐶] , with 𝑑

(b)
𝑖
∈ 𝐺 (𝐺 is defined as a product

group: 𝐺 = 𝐺1 × . . . ×𝐺𝜇).
Initialize. For (b1, b2) ∈ {(1, 2), (2, 3), (1, 3)}, 𝑆b1

and 𝑆b2

jointly sample (only one of the corresponding server samples

and sends privately to the other server) a permutation 𝜋𝑏1𝑏2

and a random vector 𝑅𝑏1𝑏2
∈ 𝐺𝐶 .

Shuffling.
(1) S2 computes 𝐴 := 𝜋23 (𝜋12 (𝐷 (2)) + 𝑅12) + 𝑅23 and

sends 𝐴 to S1.

(2) S1 computes 𝐵 := 𝜋12 (𝐷 (1)) − 𝑅12 and sends 𝐵 to S3.

It also computes 𝐴′ := 𝜋13 (𝐴) − 𝑅13.

(3) S3 computes 𝐵′ := 𝜋13 (𝜋23 (𝐵) − 𝑅23) + 𝑅13.

Output. S1 outputs 𝐴′ and 𝑆3 outputs 𝐵′.

Figure 6: The protocol of oblivious random shuffling.

random vector from S3’s view, so the simulator can replace it

with a random vector of the same size.

3.3 Secure Modulo Conversion for Sum
When computing sums over numerical attributes, the main chal-

lenge is preventing out-of-range inputs being secret shared. To

address this with minimal client overhead, clients can share values

in a small domain that servers can “lift” to a larger field for addition.

The secret inputs can be either (1) Boolean secret shares with fixed

length or (2) arithmetic secret shares in a small field.

Boolean-to-Arithmetic (B2A) Conversion. Prio+ [1] employs

B2A conversion, with clients secret sharing values as 𝑑𝑖 = 𝑑
(1)
𝑖
⊕

𝑑
(2)
𝑖

. The shares are capped at ℓ bits, inherently restricting client

inputs. To calculate sums, a lift to high-precision arithmetic is

essential due to the high costs of sum protocols over Boolean shares.

The most efficient B2A technique in a 2PC semi-honest setting

is due to ABY [17]. To convert ℓ-bit Boolean shares, Prio+ [1, pp.

14–18] uses ℓ instances of OT, each communicating
ℓ+1
2

bits on

average. Hence, the total communication complexity is 𝑂 (ℓ2). The
OT approach requires pre-computations in an offline phase; alter-

natively, one could use bit-wise multiplication, which also require

pre-computations. The pre-computations can be entirely omitted

with a third honest and non-colluding randomness generator server.

Arithmetic-to-Arithmetic (A2A) Conversion. Let 𝑝 be an odd

integer such that the client’s value 𝑑 is between 0 and
𝑝−1

2
. Each

client secret shares 𝑑 as 𝑑 = 𝑑 (1) + 𝑑 (2) mod 𝑝 . In this case, the

modulus 𝑝 limits the clients’ inputs to a desired range. To compute

the sum, the shares need to first be lifted to a larger domain, which

we show to be efficient using Quotient Transfer [33, 34].

8

Precio: Private Aggregate Measurement via Oblivious Shuffling Full version, May 22, 2024

Suppose we want to convert shares of 𝑑 modulo a small odd

integer 𝑝 into shares modulo a large odd integer 𝑝′. First, suppose
the client submits shares of 𝑑 = 𝑑 (1) + 𝑑 (2) mod 𝑝 , where 𝑑 < 𝑝/2.
The servers can deduce shares 𝑥 (b) = 2𝑑 (b) mod 𝑝 , such that 2𝑑 =

𝑥 (1) + 𝑥 (2) mod 𝑝 . This implies

2𝑑 = 𝑥 (1) + 𝑥 (2) − 𝑞 · 𝑝 , (1)

where 𝑞 ∈ {0, 1}. Since 2𝑑 is even, 𝑞 is equal to the XOR of the least

significant bits (lsb) of 𝑥 (1) and 𝑥 (2) :

𝑞 = lsb(𝑥 (1)) ⊕ lsb(𝑥 (2))

= lsb(𝑥 (1)) + lsb(𝑥 (2)) − 2 · lsb(𝑥 (1)) · lsb(𝑥 (2)) .
(2)

Therefore, if we can compute secret shares mod 𝑝′ of 𝑞 using the
lsb of𝑥 (b) , then lifting the shares of𝑑 to 𝑝′ becomes straightforward.

This is known as Quotient Transfer [33].

Let 𝑞 (1) and 𝑞 (2) be the shares of 𝑞 modulo 𝑝′. We want to obtain

two shares (𝑑 (b))′ = 𝑥 (b)−𝑞 (b)𝑝
2

mod 𝑝′ such that 𝑑 = (𝑑 (1))′ +
(𝑑 (2))′ mod 𝑝′. If we share 𝑞 between the servers using modulus 𝑝′,
then the conversion of 𝑑 to the larger field can be done locally. For

that, we need a 2-party protocol that multiplies the least-significant

bits, i.e., takes 𝑎 = lsb(𝑥 (1)) from S1 and 𝑏 = lsb(𝑥 (2)) from S2

and outputs𝑚 (1) to S1 and𝑚 (2) to S2, where𝑚
(1) +𝑚 (2) mod

𝑝′ = lsb(𝑥 (1)) · lsb(𝑥 (2)). Finally, each server b computes 𝑞 (b) =

lsb(𝑑 (b)) − 2 ·𝑚 (b) mod 𝑝′ and (𝑑 (b))′ = 𝑥 (b)−𝑞 (b)𝑝
2

mod 𝑝′.
We recall that the input 𝑑 is required to be in [0, 𝑝/2). As shown

in Section 4.3, a malicious client, who does not respect this range,

can submit a value between (−𝑝/2, 0) or [𝑝/2, 𝑝). However, the
impact of this deviation is bounded by twice as much as in Prio.

The total cost of this protocol is a single OT per client input. It

is a factor of ℓ faster than the Prio+ proposal, because it requires

only one OT per report instead of ℓ OTs, where ℓ could be large, for

example, 10–20. We describe our 3-party OT protocol in Figure 11.

4 PRECIO
The Precio protocol involves four parties: a Reporting Origin R
and three helper servers {S1,S2,S3}. The goal is to arrange a set

of reports 𝐷 collected from 𝐶 clients into buckets according to a

subset of encoded attributes while preserving privacy of individual

reports.

We assume that no two helper servers collude. Two servers, say

S1 and S2, receive secret shared inputs and another two, say S1

and S3, output a histogram of the bucket sizes. Internally, two of

the servers run DP noise generation and all three run the oblivious

random shuffling protocol.

The input to Precio is a dataset of reports 𝐷 = (𝑑𝑖)𝑖∈[𝐶] , initially
secret shared between two servers. To ensure that the servers get

the same ordering of reports, each clients may attach an ephemeral

ID along with the encryption of their shared report (under the

public key of the servers), before passing them to the servers. This

is equivalent to including a Leader server, which is a trusted (for

correctness) entity whose only job is to maintain the order of the

reports as in the Internet-Draft [22]. At the end of the protocol,

another two servers output a vector 𝐷priv = (𝑑𝑖)𝑖∈[𝐶+𝑛′] , where
the values for an agreed-upon attribute are revealed. Note that

the size of 𝐷priv is 𝐶 + 𝑛′, where 𝑛′ represents appended dummy

Protocol ΠA2A Convert
Participants. Two helper servers S1 and S2. Note that this

protocol utilizes an oblivious transfer (OT) protocol as a

subroutine and our instantiations of such OT runs with three
servers for better performance, even though it could in

theory run with two servers.

Initialize. S1 and S2 receive shares of reports

𝐷 (1) := {𝑑 (1)
𝑖
}𝑖∈[𝑛] and 𝐷 (2) := {𝑑 (2)

𝑖
}𝑖∈[𝑛] , resp.

(1) Each server b obtains 𝑑
(b)
𝑖

in {0, . . . , 𝑝 − 1}. Compute

𝑥
(b)
𝑖

= 2𝑑
(b)
𝑖

mod 𝑝 so that it satisfies

2𝑑𝑖 = 𝑥
(1)
𝑖
+ 𝑥 (2)

𝑖
mod 𝑝 .

(2) Each server b computes lsb(𝑥 (b)
𝑖
). Then, they run an

OT protocol (Figure 11) with their least significant bits

to compute the shares mod 𝑝′ of lsb(𝑥 (1)
𝑖
) · lsb(𝑥 (2)

𝑖
).

At the end, S1 obtains𝑚
(1)
𝑖

and S2 obtains𝑚
(2)
𝑖

such

that𝑚
(1)
𝑖
+𝑚 (2)

𝑖
mod 𝑝′ = lsb(𝑥 (1)

𝑖
) · lsb(𝑥 (2)

𝑖
).

(3) Each server b computes

𝑞
(b)
𝑖

= lsb(𝑥 (b)
𝑖
) − 2𝑚

(b)
𝑖

mod 𝑝′.

(4) Each server b computes (𝑑 (b)
𝑖
)′ = 𝑥

(b)
𝑖
−𝑞 (b)

𝑖
𝑝

2
mod 𝑝′.

Output. S1 and S2 output record shares

𝐷 (1) := {(𝑑 (1)
𝑖
)′}𝑖∈[𝑛] and 𝐷 (2) := {(𝑑 (2)

𝑖
)′}𝑖∈[𝑛] ,

respectively, which are lifted shares of 𝑑𝑖 modulo 𝑝′.

Figure 7: Secure modulo conversion with Quotient Transfer.

reports, ensuring that the outputs revealed to the S𝑖 and R and

helper servers are differentially private.

4.1 Private Histogram Protocol Description
We describe our Precio protocol ΠHist

Precio in Figure 8. It takes the

reports collected from clients 𝐷 = (𝑑𝑖 ∈ 𝐺)𝑖∈[𝐶] and a query index

m, indicating which attribute the histogram is built for, as inputs.

The procedure is triggered by R, with helper servers S1 and

S2 receiving the shares of the reports as 𝐷 (1) =
(
𝑑
(1)
𝑖

)
𝑖∈[𝐶] and

𝐷 (2) =
(
𝑑
(2)
𝑖

)
𝑖∈[𝐶] , such that 𝑑𝑖 = 𝑑

(1)
𝑖
+ 𝑑 (2)

𝑖
for all 𝑖 ∈ [𝐶].

After secret sharing the reports in 𝐷 , the first step is to achieve

differential privacy by S1 and S2 independently adding dummy

reports as noise, which is done by invoking the noise generation

subroutine (Figure 4). This step inputs the shares of the dataset

and the query index m and outputs a new dataset with appended

dummy reports 𝐷priv = (𝑑𝑖)𝑖∈[𝐶+𝑛′] .
Next,S1,S2 andS3 execute a 3-party oblivious random shuffling

protocol (Figure 6) that mixes up real and dummy reports so that

none of the servers can trace back any report to the original set

or distinguish between real reports and dummy reports. In other

words, it outputs a permuted dataset 𝐷priv_perm =
(
𝑑′
𝑖

)
𝑖∈[𝐶+𝑛′]

secret shared between S1 and S3.

For each 𝑖 ∈ [𝐶 + 𝑛′], the servers reveal the selected attribute

𝑑𝑖 [m] and bucketize the reports into buckets {B𝑗 } for 𝑗 ∈ 𝐺m
according to the attribute value.

9

Full version, May 22, 2024 F. Betül Durak, Chenkai Weng, Erik Anderson, Kim Laine, and Melissa Chase

We then execute a pruning step, discarding the dummy bucket

B⊥ and buckets with fewer than a threshold 𝑡 reports. The details

are discussed in Section 4.5). After pruning, we reorganize output

shares from S1 and S3 back to S1 and S2, enabling repeated use of

ΠHist
Precio.

5

The protocol outputs the counts for each bucket, shifted by the

public parameter 2𝑀 as described in Section 3.1.

4.2 Security and Privacy Analysis of ΠHist
Precio

(Informal) Robustness Analysis with Malicious Clients. In

this section, we give a robustness bound against malicious clients.

Note that the worst a malicious client can do is input inauthentic

attribute values within the valid range in its reports, because Precio

uses a length-preserving secret sharing mechanism.

Informally, the ΠHist
Precio protocol protects against a small subset

of malicious clients. Since the shares of the attributes preserve the

length of the original attribute size, a small subset of clients can only

secret-share a wrong report to be counted in another bucket. Since

the aggregated results are already noisy, removing the report from

the original bucket and increasing the count on another bucket

only gives the effect of noise as long as only small set of clients are

allowed to do that.

Formally, we prove the following.

Theorem 1. Let N be the number of malicious clients. The 𝐿1

distance between a true histogram and an incorrect histogram output
by ΠHist

Precio (Figure 8) without noise is bounded by 2N.

Proof. We start with one malicious client. Let recauth be the

true report of a malicious client. Let a (resp. b) be the number of

reports in the correct (resp. incorrect) bucket that recauth belongs

to. The consequence of the malicious behaviour is that the true

bucket will have a − 1 reports while the incorrect bucket will have

b+ 1. The 𝐿1 distance between the true histogram and the incorrect

histogram is the sum over all buckets of the absolute values of the

difference between the two counts (from the two histograms). In

the case of one malicious client, the 𝐿1 distance is bounded by 2. By

triangle inequality, the 𝐿1 distance induced by N clients is bounded

by 2N. □

(Informal) Privacy Analysis with Semi-Honest Servers. The

cryptographic protocolΠHist
Precio is built upon a generic honest-majority

three-party computation protocol and a specific three-party obliv-

ious permutation protocol. Overall, it is under honest-majority

assumption, which means that the system does not tolerate any

collusion. As long as there is no collusion between any pairs of

servers, true counts are hidden from each server as well as from the

reporting origin. We formally prove the privacy of random shuffling

in Section C.1.

As we will describe shortly, in the layered protocol (Algorithm 1)

the semi-honest server additionally learns the number of reports

in the dummy bucket before discarding it. This bucket includes

dummy reports from upper layers and newly added dummy reports.

We take this into account in the privacy analysis in Section 4.5.

5
This reorganizing is not crucial for functionality or security but streamlines presenta-

tion. Alternatively, the next layer could run with reversed roles for 𝑆2 and 𝑆3 .

Protocol ΠHist
Precio

Parameters. 𝐶 as the total number of collected reports.

Pruning threshold 𝑡 . Parameters

𝜖buckets, 𝜖flush, 𝑀buckets, 𝑀flush for ΠNoiseGen. For a single

layer and for the last layer of multiple attributes histogram,

𝜖flush will be set to 0.

Input. A query index m to indicate which attribute to

bucketize on; shares of S1 and S2 as 𝐷 (1) =
(
𝑑
(1)
𝑖

)
𝑖∈[𝐶] and

𝐷 (2) =
(
𝑑
(2)
𝑖

)
𝑖∈[𝐶] , such that 𝑑𝑖 = 𝑑

(1)
𝑖
+ 𝑑 (2)

𝑖
; a threshold 𝑡 .

Initialization. Each server receives and decrypts their share.

They discard the shares if they are not in 𝐺 .

Precio.
(1) (Differential privacy) S1 and S2 invoke the protocol

ΠNoiseGen [𝜖buckets, 𝜖flush, 𝑀buckets, 𝑀flush] from
Figure 4 on input (dp, 𝐷 (1) ,m) and (dp, 𝐷 (2) ,m) to
get shares of the datasets with 𝑛′ dummy reports

added, 𝐷
(1)
priv =

(
𝑑
(1)
𝑖

)
𝑖∈[𝐶+𝑛′] and

𝐷
(2)
priv =

(
𝑑
(2)
𝑖

)
𝑖∈[𝐶+𝑛′] respectively.

(2) (Random shuffling) S1, S2 and S3 invoke the

protocol ΠRandShuf from Figure 6 on inputs

(shuffle, 𝐷 (1)priv), (shuffle, 𝐷
(2)
priv). It outputs

𝐷𝑏priv_perm =
(
𝑑′
𝑖
𝑏)
𝑖∈[𝐶+𝑛′] to Sb for 𝑏 ∈ {1, 3} .

(3) (Bucketizing) For 𝑖 ∈ [𝐶 + 𝑛′], S1 and S3 reveal their

shares of 𝑑′
𝑖
[m]. They allocate 𝐿m empty buckets

{B𝑗 }, one for each 𝑗 ∈ 𝐺m. For 𝑖 ∈ [𝐶 + 𝑛′], b ∈ {1, 3},
S𝑏 puts the report 𝑑′

𝑖
𝑏
into the corresponding bucket

according to 𝑑′
𝑖
[m].

(4) (Pruning and organizing) Discard the dummy

bucket B⊥ and each bucket B𝑗 revealed in previous

step with |B𝑗 | < 𝑡 , along with all the reports in them.

For the shares of noisy datasets from S1 and S3, S3

generates two secret shares of 𝐷3

priv_perm and sends

the shares to S1 and S2, respectively; S1 combines the

share it receives from S3 with 𝐷
(1)
priv_perm so that S1

and S2 have the new shares of the 𝐷priv_perm (see

footnote 5).

Output. Output the attribute value of index m for each

remaining bucket. Servers keep the remaining dataset shares

as private output for use as inputs in further executions of

the protocol.

Figure 8: Our Histogram Protocol from Oblivious Shuffling.

4.3 Private Sum Computation
We described how to lift a secret shared value from a small modulus

to a larger one in Section 3.3. The helper servers run the modulus

conversion for each report using modulus 𝑝′. Then, each server

locally adds the shares of every value to be summed to obtain

sum of all shares. Each server adds Gaussian noise modulo 𝑝′ with
10

Precio: Private Aggregate Measurement via Oblivious Shuffling Full version, May 22, 2024

parameter 𝜎sum (rounded to the nearest integer). The local sums

are revealed to compute the noisy sum of the numerical attribute

value modulo 𝑝′. We require that 𝑝′ ≥ 2𝑝𝐶 + 2𝑀sum to make sure

that the computed sum is always between −𝑝′/2 and 𝑝/′2. The
lower bound on 𝑝′ allows us to guarantee that the computation of

the sum modulo 𝑝′ does not overflow.
Our valid values are in [0, 𝑝/2). In the worst case, a malicious

client can change 𝑝/2 into −𝑝/2, so cheat by −𝑝 or change 0 to 𝑝 , so

cheat by 𝑝 . Thus, the potential error from cheating is [−𝑝, 𝑝]. This is
roughly equivalent to a client submitting two adversarially chosen

inputs in the range of the numerical attribute. In comparison, Prio

restricts clients to submit a single value in the valid range.

In the end, the computed sum is in (−𝑝𝐶/2−𝑀sum, 𝑝𝐶 +𝑀sum),
where 𝑀sum is a bound on the noise added by the helper servers.

As for robustness, we show in our full analysis that if the number

of malicious clients is bounded by 𝑁 , then the difference between

true sum and the obtained sum is in (−𝑁𝑝, 𝑁𝑝).
Malicious Clients. As explained above, after the helper servers

run the protocol in Figure 7 for each report, each server locally

sums

(
𝑑
(b)
𝑖

)′
modulo 𝑝′ reduced in the interval (−𝑝′/2, 𝑝′/2) and

reveals the results. This means that what matters is, for each report,

the value of 𝑑′(1) + 𝑑′(2) mod 𝑝′ reduced into (−𝑝′/2, 𝑝′/2) which
we denoted as 𝑑 . Honest clients make the computation of 𝑑 into

[0, 𝑝/2). However, malicious clients can share 𝑑 out of range in two

specific intervals:

(1) 𝑑 ∈
(
− 𝑝

2
,−1

]
and (2) 𝑑 ∈

(𝑝
2
, 𝑝 − 1

]
. We let 𝑥 = 2𝑑 mod 𝑝 .

Then, we observe that

(1) 𝑥 = 2𝑑 + 𝑝 ∈
(
0, 𝑝 − 2

]
is odd. In this case, we let 𝑞 = 1.

(2) 𝑥 = 2𝑑 −𝑝 ∈ (0, 𝑝 − 2] is odd again. In this case, we let 𝑞 = 0.

In all cases, we have 𝑑 =
𝑥+(−1)𝑞

2
with 𝑥 odd. When the client

wants to inject a negative report by following (1) or inject a positive

out of range report by following (2), it sets 𝑥 and 𝑞 accordingly,

computes the shares of 𝑥 such that 𝑞 = lsb(𝑥 (1)) ⊕ lsb(𝑥 (2)), and
prepares the shares of 𝑑 for the helper servers as follows: 𝑑 (1) =
𝑥 (1)

2
mod 𝑝 and 𝑑 (2) = 𝑥 (2)

2
mod 𝑝 .

When the helper servers receive 𝑑 (b) , they both compute 𝑥 (b) to
share 𝑥 , mutually compute 𝑞, and 𝑥 ′ = 𝑥 (1) + 𝑥 (2) − 𝑞𝑝 . However,
we now have 𝑥 = 𝑥 (1) + 𝑥 (2) − (1−𝑞) × 𝑝 , because 𝑞 = lsb(𝑥 (1)) ⊕
lsb(𝑥 (2)) and 𝑥 is odd. We use 1 − 𝑞 = 𝑞 + (−1)𝑞 . Then, 𝑥 = 𝑥 (1) +
𝑥 (2) − (1−𝑞) ×𝑝 = 𝑥 = 𝑥 (1) +𝑥 (2) − (𝑞+ (−1)𝑞) ×𝑝 = 𝑥 ′− (−1)𝑞×𝑝
which is different than 𝑥 ′ servers obtained: 𝑥 ′ = 𝑥 + (−1)𝑞𝑝 = 2𝑑 .

When the servers compute

(
𝑑 (b)

)′
=
𝑥 (b)−𝑞 (b)𝑝

2
mod 𝑝′ in the

last step of arithmetic conversion in Figure 7, this yields a sum(
𝑑 (1)

)′ + (𝑑 (2))′ = 𝑥 ′

2

= 𝑑 (mod 𝑝)′ .

The adversary succeeds to add 𝑑 ∈
(
− 𝑝

2
, 𝑝
)
to the total sum.

It is easy to show that (1) and (2) are the only possible malicious

injection out of range 𝑑 by a malicious client. Indeed, what matters

is 𝑥 = 𝑥 (1) + 𝑥 (2) − 𝑞 × 𝑝 with 𝑥 (1) , 𝑥 (2) ∈ [0, 𝑝) and 𝑞 ∈ {0, 1}
chosen by the client.

Example. Let 𝑝 = 201 and the range of authentic reports be 𝑑 ∈
{0, . . . , 100}. Amalicious client can share a report𝑑 ∈ {101, . . . , 200}
with a 𝑞 that will be computed by the servers from the least sig-

nificant bits of shares 𝑥 (1) and 𝑥 (2) . If the client can make 𝑞 = 0,

it will add a report which is outside of the range. If the client can

make 𝑞 = 1, it will add a negative value to the sum bounded by
−𝑝
2
.

So, the client can decide to report 𝑑 = 190 (which is outside range)

which will end up with adding -11 to the sum if 𝑥 is shared with

𝑞 = 1, or it will add 190 to the sum if 𝑥 is shared with 𝑞 = 0.

A malicious client can decide to cheat by sharing a report 𝑑 ∈
{−100, . . . ,−1}. Let 𝑑 = −11. Notice that −11 and 190 are equal

to 𝑑 = 190 in modulo 𝑝 , but they differ depending on how they

are shared in modulo 𝑝′. The client “anticipates” the shares of the
servers 𝑥 (b) by inverting what the servers do: divide 𝑑 by the 2
modulo 𝑝 .

The client computes an 𝑥 such that 𝑑 =
𝑥+(−1)𝑞𝑝

2
. For 𝑑 = −11,

𝑥 = 179 with 𝑞 = 1 following from 𝑥 = 2𝑑 + 𝑝 . Now, the client

“prepares” the shares of 𝑥 such that lsb(𝑥 (1)) ⊕ lsb(𝑥 (2)) = 𝑞.
We let 𝑥 (1) = 70 which makes 𝑥 (2) = 109. Notice that 𝑞 = 1, we

need 𝑥 = 𝑥 (1) + 𝑥 (2) , the shares of 𝑥 can’t be bigger than 𝑥 itself.

Then, the adversary shares 𝑑 modulo 𝑝 as

𝑑 (1) =
𝑥 (1)

2

= 35 mod 𝑝 , 𝑑 (2) =
𝑥 (2) + 𝑝

2

= 155 mod 𝑝 .

The adversary succeeds to add 𝑑 = −11 to the total sum which

would be interpreted as 𝑝′−11 if the final sum were not represented
in

(
− 𝑝

2
,
𝑝
2

)
.

The sum with malicious clients reports is in

(
− 𝐶𝑝

2
,𝐶𝑝

)
, where𝐶

is the number of clients. Thus, we require that 𝑝′ ≥ 2𝑝𝐶 +2𝑀sum to

make sure that the absolute value of the noisy sum does not exceed

𝑝′/2 so that its representation in

(
− 𝑝′

2
,
𝑝′

2

)
is the correct sum.

A malicious client can inject a value in the sum which is in

[𝑑 − 𝑝 + 1, 𝑑 + 𝑝 − 1], where 𝑑 is the true value. If the number of

malicious clients are bounded by 𝑁 , the difference between the

true sum and the obtained sum is in [−𝑁 (𝑝 − 1), 𝑁 (𝑝 − 1)], thus 𝑁
malicious clients cannot make the result more than 𝑁𝑝 off
from the true sum.

4.4 Layered Protocol
Our protocol can aggregate reports with multiple attributes by

recursively invoking ΠHist
Precio, allowing queries like

SELECT COUNT(Ads Category) FROM D

WHERE Gender = “She" GROUP BY Ads Category

provided sufficient data in the bucket. This also offers performance

gains for handling large attributes with sparse domains. For exam-

ple, if we have 2
16

reports with an attribute of 32 bits, we can divide

the attribute into three smaller ones and prune after each layer.

Details on the layered algorithm are in Algorithm 1 and complexity

analysis in Appendix B.

The layered protocol works so that after it has processed the first

attribute m1, only the bits corresponding to m1 are revealed. Then,

it proceed to the next attribute m2 by generating noisy reports,

creating buckets for each possible value of m2, and setting the

values for other attributes to dummy values. This is repeated until

all desired attributes are processed.

Example. We continue with our toy example. The reports consist

of 5 bits representing two attributes with 2 and 3 bits, respectively.

We bucketize with respect to the first attribute, ‘Gender’ (2 bits),

11

Full version, May 22, 2024 F. Betül Durak, Chenkai Weng, Erik Anderson, Kim Laine, and Melissa Chase

Algorithm 1 Layered ΠHist
Precio

Input: A list of attribute indicesM = {m1, . . . ,m𝜆}; a shared
dataset 𝐷 (1) and 𝐷 (2) for S1 and S2. label and 𝑖 are reserved for

the recursion and set to ⊥ by default.

Output: Histogram on attributes inM.

1: procedure Layered(M, label , 𝑖, 𝐷 (1) , 𝐷 (2))
2: if (label, 𝑖) = (⊥,⊥) then
3: Set label = null, 𝑖 = 1.

4: end if
5: if 𝑖 ≤ 𝜆 then
6: Call ΠHist

Precio with inputs (m𝑖 , 𝐷 (1) , 𝐷 (2)).
7: for each produced bucket B𝑗 do
8: Set 𝑣 to the attribute value B𝑗 .
9: Set 𝐷 (1) and 𝐷 (2) to the shares of the bucket.

10: Call Layered(M, label | 𝑣, 𝑖 + 1, 𝐷 (1) , 𝐷 (2)).
11: end for
12: else
13: Output label.
14: Subtract the parameter 2𝑀 (used in ΠHist

Precio) from the

number of reports in 𝐷 (1) and output the result.

15: end if
16: end procedure

into 3 buckets 𝐵 = {B1,B2,B3} after discarding the dummy bucket,

prune the buckets which have number of reports below some thresh-

old 𝑡 , 𝐵′ = {B𝑖 : |B𝑖 | ≥ 𝑡}, and continue bucketization for the next

attribute for each remaining bucket in 𝐵′. We will detail the mean-

ing and computation of the threshold shortly in Section 4.5.

When we open the first attribute (i.e., only the first two bits),

the bucket B1 contains {00 010 25, 00 000 19, 00 010 64, 00 111 0,

00 111 0, 00 111 0},
yielding 6 reports where the second and third attributes are still

secret shared.

Next, suppose the protocol goes to the second layer onB1, where

bucketization is run on the second attribute. For this example, we

focus on the bucket B′
3
, which counts the reports where 𝑑𝑖 [1] = 00

and 𝑑𝑖 [2] = 010. Suppose S1 sampled 2 and S2 sampled 1 to add in

B′
3
, then the output of that bucket will have 3+2+1 reports, where 3

comes from real reports (neither S1 nor S2 know these true report

counts), and additional 2 and 1 come from the dummy reports. In

this case a query that asks for counts, where first attribute is 00

and second attribute is 010, will output 6, instead of 3. Finally, in

the second layer, more dummy reports are added with 𝑑𝑖 [2] = 111

and the reports are shuffled and the second attribute values are

revealed. After revealing, the bucket corresponding to 111 and the

buckets with less than 𝑡 counts will be discarded.6

4.5 Differential Privacy and Pruning
The protocol in Algorithm 1 performs depth-first exploration of

buckets layer by layer. Layers are based on logically separate at-

tributes or smaller subdivisions of large attributes. The algorithm

outputs noisy histograms per layer or when the algorithm ends.

6
Note that in practice we would need to subtract the shift parameter 2𝑀 from the

bucket counts, but we omit it here for simplicity. For details, refer back to Section 3.1.

Analysts can prune smaller buckets at each layer, which is vital due

to long-tailed attribute value distributions.

Differential Privacy Parameters. Our histogram protocol uses

DP in two ways: 1) dummy reports are added for each (non-dummy)

bucket at each layer to provide (𝜎buckets, 𝛿buckets)-DP for bucket

counts; 2) dummy reports are added to the dummy bucket to pro-

vide (𝜎flush, 𝛿flush)-DP for the total number of dummies added. All

reports in the dummy bucket are flushed before moving to the next

layer. This separation into two sets of DP parameters improves

both efficiency and privacy. Because the flush noise has no im-

pact on accuracy, we can use less privacy budget for that. The two

sets of DP parameters together determine the total DP parameters

(𝜖, 𝛿). We use the work of Gopi et al. from [27–29] for accurate DP

composition.

Let us work through some examples. Our goal is to reach (𝜖, 𝛿)-
DP for the layered protocol.We start with a single attribute, running

only one layer. No dummies are needed for the dummy bucket B⊥
(flush noise) because no original report falls in it, so we only need

parameters for (𝜎buckets, 𝛿buckets). Two datasets are neighbors (ac-

cording to our DP definition) when they differ in one report having

a different attribute value. Thus, we have non-dummy buckets

that differ in counts and both contribute to 𝜖 equally. To achieve

(𝜖, 𝛿) = (2, 2−40), we use (𝜎buckets = 4.75, 𝛿buckets = 2
−40), and

𝑀buckets = 35.

For two layers, we will need two attributes. Again, our neighbor-

ing notion means that one report is replaced with another report.

If the reports differ in both attributes, in the first layer two regular

buckets are impacted and the sensitivity will be 2. We reveal noisy

counts for both buckets.

In the second layer, noisy counts for each attribute bucket and the

dummy bucket are revealed. For the attribute buckets the sensitivity

is again 2, as for the first. Analyzing the privacy impact of the

dummy bucket is trickier, as it is not directly affected by either

of the reports. Let 𝑚1,𝑚2 be the chosen attributes for the first

and second layer. For each 𝑖 ∈ 𝐺𝑚1
, let the noisy count for the

corresponding bucket B𝑖 be 𝑐𝑖 and the exact count 𝑒𝑖 . The exact

dummy count is 𝑐𝑖 −𝑒𝑖 , which is a function of the dataset depending
on the previous result 𝑐𝑖 . The exact dummy counts 𝑐𝑖 − 𝑒𝑖 differ
in at most two of the buckets B𝑖 , so sensitivity of the count in the

dummy bucket in the second layer is again 2.

So, we have two queries of sensitivity 2, which we compute

using (𝜎buckets, 𝛿buckets)-DP and one query of sensitivity 2, which

we compute using (𝜎flush, 𝛿flush)-DP. Thus, if we want to achieve

(𝜖, 𝛿) = (2, 2−40), we use 𝜎buckets = 6.8 and 𝜎flush = 20 computed

with private accountant tools [27]. Then, we set𝑀buckets = 50 and

𝑀flush = 250.

If we have 𝜆 layers, we have (𝜖, 𝛿)-DP coming composition of

𝜆 sensitivity 2 queries evaluated using (𝜎buckets, 𝛿buckets)-DP and

(𝜆 − 1) sensitivity 2 queries evaluated using (𝜎flush, 𝛿flush)-DP. See
sample parameters in Table 3 and detailed analysis in Section C.2.

Pruning Parameters. The analyst maywant to say that with high

probability buckets with a sufficiently high real report count (i.e.,
not dummies) will not be pruned. Unfortunately, it is not straight-

forward how to make such a statement based on a chosen pruning

threshold 𝑡 .

12

Precio: Private Aggregate Measurement via Oblivious Shuffling Full version, May 22, 2024

(𝜎buckets, 𝑀buckets) (𝜎flush, 𝑀flush) 𝑡

𝜆 = 1 (4.75, 35) N/A 0

𝜆 = 2 (6.8, 50) (20, 250) 1053

𝜆 = 3 (8.75, 65) (20, 250) 1069

𝜆 = 4 (9.75, 72) (40, 300) 1079

𝜆 = 16 (19, 146) (150, 1125) 1150

Table 3: Example parameters for an analyst who needs 𝜆
layers, (𝜖, 𝛿) = (2, 2−40)-DP, 𝐶 = 10

7, 𝑡true = 1000, and error
threshold 𝑞 = 1%.

To address this, we introduce a reparameterization 𝑡true of the

pruning threshold 𝑡 . The analyst chooses 𝑡true as a threshold as well

as a maximum error probability 𝑞, such that no buckets with less

than 𝑡true real reports are pruned, except with probability ≤ 𝑞.
Note that the analyst’s query parameters, including 𝑡true, are not

private and can be known to all parties.

To choose 𝑡 accordingly, let 𝑛 be a Gaussian noise so that𝑀 + 𝑛
dummy reports are added to a bucket. Note that if we have𝐶 reports,

there can be at most 𝐶/𝑡true buckets that we need to retain. Set

𝑞 =
𝜆𝐶

𝑡true
Pr

[
𝑡true + 2𝑀 + 𝑛 (1) + 𝑛 (2) < 𝑡

]
Let 𝑠 = 𝑡 − 𝑡true − 2𝑀 . We know that 𝑛 (1) ∼ N(0, 𝜎2) and 𝑛 (2) ∼
N(0, 𝜎2), which means 𝑛 (1) + 𝑛 (2) ∼ N(0, 2𝜎2) and

𝑞 =
𝜆𝐶

𝑡true
Pr[𝑛 (1) + 𝑛 (2) < 𝑠] = 𝜆𝐶

𝑡true
CDF

𝜎
√

2
(𝑠) .

Thus, 𝑡 = ⌊(𝑡true + 2𝑀 + 𝜎
√

2 invCDF

(
𝑞 𝑡true
𝜆𝐶

)
⌉.

Given this formula, the analyst could query all buckets with

𝐶 = 10
7, 𝜆 = 8, and pruning threshold 𝑡true = 1000 for true counts

with 1% error, i.e., 𝑞 = 0.01. For 𝜎 = 13.5, we obtain 𝑀 = 101 and

𝑡 = 1104. We use 𝑡 to prune the noisy buckets (before correcting

the result by 2𝑀). This implies that 𝑠 = −98 and the probability that

𝑛 (1) + 𝑛 (2) < −98 is 0.01 with the Gaussian distribution.

We can observe that the number of layers 𝜆 has very little effect

on 𝑡 . Indeed, for 𝜆 from 1 to 32 (and the rest of the parameters fixed),

the value of 𝑡 goes from 1112 down to 1099. Similarly, for 𝐶 from

10
3
to 10

9
, 𝑡 goes from 1145 to 1089.

Example. Consider a scenario where an analyst has a collection

of 𝐶 = 10
7
128-bit reports and wants to investigate where their ad

revenue is coming from. The analyst is interested in four attributes:

a location identifier (8 bits), a product identifier (12 bits), an age

bracket (3 bits), and the number of dollars spent (numerical attribute

with 16 bits). They tell the helpers they want a 4-layer query (𝜆 = 4)

and the helpers set the DP parameters accordingly. The analyst

wants to find demographics that have fairly large impact so they

set 𝑡true = 1000. They set 𝑞 = 0.01 as the maximum error.
7

The analyst chooses to first partition by product identifier, be-

cause they want to investigate which products are most successful.

They choose to further explore the top 10 products. For each, they

7
The helper servers would impose limits on 𝜖, 𝛿, 𝑡true and 𝑞, or charge more for values

that make the query more costly.

filter by location identifier and next by age bracket.
8
They compute

the dollars spent per each combination of (product, location, age).

The next day, the analyst can take the next set of 10
7
reports and

decide to examine other combinations of attributes, e.g., (location,
device type, browser vendor/version). This would not require push-

ing any change to the clients, as it would not require any change

in the format of the reports.

5 PERFORMANCE EVALUATION
We implement layered Precio in Rust. To demonstrate its perfor-

mance, we run experiments with both full-domain and subset-

histograms comparing the results with prior works when possible.

The implementation is available at GitHub.com/Microsoft/Precio.

We run all three helper servers S1,S2,S3 on a single Azure

Standard E16ads v5 VM with 16 vCPUs (2.45 GHz) and 128 GB

RAM. Our experiments didn’t exactly use this machine to its full

extent. Namely, despite the many available vCPUs, all of our helper
servers run on a single thread. We do not benchmark the client’s

computation (secret sharing a single report) or the client-to-server

communication (sending the shares to S1 and S2).

5.1 Existing Proposals
The existing proposals for web conversion measurements include

DPF-based protocols [7, 8] and Prio [1, 15]. They are further dis-

cussed in Appendix E. We will compare our work with the DPF-
based protocol for full-domain histograms and the iDPF-based pro-

tocol for subset histograms. Note that full-domain histograms get

no benefit from iDPF over DPF.

5.2 Constructing a Full Histogram
We benchmark the performance of our protocols for generating dif-

ferentially private full histograms for report size ℓ ∈ {16, 18, 20, 22}
with 𝜆 = 1 parameters from Table 3. For each execution, 𝐶 = 10

7

reports are generated from a Zipf-distribution with parameter 1.03.

The helper servers output a full histogram consisting of 2
ℓ
buckets.

We compare Precio with the iDPF code from [26], which is non-

interactive and produces a full histogram. The benchmarks in [26]

measure the average processing times for one report on one server;

multiplying by 𝐶 = 10
7
gives their total runtime.

9
The results are

shown in Table 4. For ℓ ∈ {16, 18, 20, 22}, our protocol is at least
four orders of magnitude more efficient than the iDPF protocol
for generating full histograms from short reports.

5.3 Constructing a Subset-Histogram via
Pruning

We benchmark a subset histogram aggregation. We tested Precio

on two layers with Zipf-distribution parameter ranging from 1.0

to 1.5; the results are in Figure 9 and Figure 10. As anticipated, the

attribute value distribution greatly affects performance in layered

histograms. Clearly full domain histograms may not be practical for

large domain sizes if the report distribution is too close to uniform.

8
Alternatively, they can combine the age bracket and location identifier into a single

11-bit attribute. Note that this would not require any change to the reports.

9
[26] provide no communication measurement, however running times are so much

longer than ours that the communication cost would hardly make a difference.

13

https://GitHub.com/Microsoft/Precio

Full version, May 22, 2024 F. Betül Durak, Chenkai Weng, Erik Anderson, Kim Laine, and Melissa Chase

ℓ 16 18 20 22

Precio time (seconds) 6.46 16.9 64.28 310.80

Precio comm. (MB) 233 453 1334 4857

iDPF [8, 26] time (days) 1.15 4.75 19 76

iDPF comm. (MB) 2560 2880 3200 3520

Table 4: Running times (single thread) and communication
for Precio compared to iDPF. 𝐶 = 10

7 reports are generated
from a Zipf-distribution with parameter 1.03. iDPF’s com-
munication complexity is estimated based on the server-to-
server asymptotic complexity (full histograms) in Table 2.

1 1.1 1.2 1.3 1.4 1.5
0

100

200

300

400

500

600

700

800

Zipf-parameter

R
u
n
n
i
n
g
t
i
m
e
(
s
e
c
)

12-12

13-13

14-14

15-15

Figure 9: Running time of 2-layer Precio for different distri-
butions of 𝐶 = 10

7 reports. The privacy parameters are from
Table 3 with 𝜆 = 2 and the threshold set to 1053.

32-bit Attributes. We sample a sparse set of large 32-bit logical

attributes from a Zipf-distributionwith parameter 1.03 (as set in [7]).

This results in many (near) empty buckets and mimics a setting

where the RO is only interested in popular values ignoring outliers.

We demonstrate the performance of Precio in this scenario as

follows. The parameters for (𝜖, 𝛿)-DP are chosen according to the

analysis in Section 4.5. We first synthesize a dataset of 32-bit reports

with various𝐶 and pruning thresholds 552 and 1053 (obtained from

our analysis in Section 4.5 with 𝑡true = {500, 1000}). Running Algo-

rithm 1 with 2-layer Precio (𝜆 = 2) yields the results in Table 5. This

shows how even large 32-bit attributes can be explored by breaking

them down into smaller chunks with layering. Larger 𝜆 results in

smaller time complexity (Appendix B), but larger communication

complexity due to dummy reports being communicated.

5.4 Heavy-Hitters
Here we compare Precio with the subset-histogram in the end-to-

end performance evaluation of iDPF [7]. We chose the experiment

parameters to be the same as in [7] to make a fair comparison.

1 1.1 1.2 1.3 1.4 1.5
0

10

20

30

40

50

Zipf-parameter

C
o
m
m
u
n
i
c
a
t
i
o
n
(
G
B
)

12-12

13-13

14-14

15-15

Figure 10: Server-to-server communication for 2-layer Precio
for different distributions of 𝐶 = 10

7 reports. Privacy param-
eters are from Table 3 with 𝜆 = 2 and threshold 1053.

𝐶 = 400K 𝐶 = 1M 𝐶 = 10M

𝑡 Time Comm. Time Comm. Time Comm.

1053 39.7 2.3 93.95 5.4 966 55

552 72.13 4.2 175.64 10 1912 111

Table 5: Performance of building histograms on 32-bit logical
attributes by splitting into two 16-bit physical attributes (𝜆 =

2) with different pruning thresholds. The times are in seconds
and the communication in GB.

In their experiment,𝐶 = 400 000 input reports are sampled from a

Zipf-distribution with parameter 1.03 and support limited to 10 000.

Their report bit-length is 256 and prune threshold 𝑡 = 𝐶
1000

.

The experiment in [7] is done with two servers (32 vCPUs each)

and 61.9ms round-trip latency. Their protocol (as reported in [7])

takes around 53 minutes to generate a subset-histogram. For Precio,

we use 𝜆 = 16 with parameters from Table 3 and bucketize the

reports on 16-bit attributes at each layer. It takes only 251 seconds

to generate the subset-histogram with 12847 output buckets, when

we keep the privacy parameters as (𝜖, 𝛿) = (2, 2−40).

5.5 Sums
We benchmark sums for numerical attributes with different 𝐶 and

input modulus 𝑝 , which defines the upper bound for the inputs.

For 14-bit modulus 𝑝 and 10
7
reports, Precio takes 43 seconds (on a

single thread) and 540 MB of server-to-server communication. The

running time increases linearly in the number of reports. In the

same setting but 100 000 000 reports, Precio takes 440 seconds and

requires 5.4 GB of communication.

14

Precio: Private Aggregate Measurement via Oblivious Shuffling Full version, May 22, 2024

6 CONCLUSIONS
We present an efficient 3-party protocol, Precio, for computing

privacy-preserving histogram queries. We believe our approach

presents a viablemethod for enablingweb advertisers to obtain valu-

able information about their ad campaigns, while still preserving

people’s privacy with state-of-the-art cryptography and differential

privacy. Our protocol is simpler than prior work and outperforms

prior work in many practical scenarios.

Acknowledgements. We thank SivakanthGopi and Sergey Yekhanin

for their very helpful and insightful discussions on differential pri-

vacy. We thank Wei Dai and Siddharth Sharma for their help with

an early-stage prototype. We thank Esha Ghosh for participating in

the early discussions on this work. We also thank the anonymous

reviewers who reviewed earlier versions of this work and provided

helpful comments.

REFERENCES
[1] Surya Addanki, Kevin Garbe, Eli Jaffe, Rafail Ostrovsky, and Antigoni Poly-

chroniadou. Prio+: Privacy Preserving Aggregate Statistics via Boolean Shares.

Cryptology ePrint Archive, 2021.
[2] Apple and Google. Exposure Notification Privacy-preserving Analytics (ENPA)

White Paper, Apr 2021.

[3] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More

Efficient Oblivious Transfer and Extensions for Faster Secure Computation. In

Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security, pages 535–548, 2013.

[4] Richard L. Barnes, Christopher Patton, and Phillipp Schoppmann. Verifiable

Distributed Aggregation Functions, Aug 2023.

[5] Muhammad Ahmad Bashir and Christo Wilson. Diffusion of User Tracking Data

in the Online Advertising Ecosystem. Proc. Priv. Enhancing Technol., 2018(4):85–
103, 2018.

[6] Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth Raghu-

nathan, David Lie, Mitch Rudominer, Ushasree Kode, Julien Tinnes, and Bernhard

Seefeld. Prochlo: Strong Privacy for Analytics in the Crowd. In Proceedings of the
26th Symposium on Operating Systems Principles, SOSP ’17, page 441–459, New

York, NY, USA, 2017. ACM.

[7] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai.

Lightweight Techniques for Private Heavy Hitters. In 2021 IEEE Symposium on
Security and Privacy (SP), pages 762–776. IEEE, 2021.

[8] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function Secret Sharing. In Annual
international conference on the theory and applications of cryptographic techniques,
pages 337–367. Springer, 2015.

[9] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function Secret Sharing: Improvements

and Extensions. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pages 1292–1303, 2016.

[10] Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas Dimitropoulos.

Sepia: Privacy-Preserving Aggregation of Multi-Domain Network Events and

Statistics. In Proceedings of the 19th USENIX Conference on Security, USENIX
Security’10. USENIX Association, 2010.

[11] Benjamin Case, Richa Jain, Alex Koshelev, Andy Leiserson, Daniel Masny,

Thurston Sandberg, Ben Savage, Erik Taubeneck, Martin Thomson, and Taiki

Yamaguchi. Interoperable Private Attribution: A Distributed Attribution and

Aggregation Protocol. Cryptology ePrint Archive, Paper 2023/437.

[12] Melissa Chase, Esha Ghosh, and Oxana Poburinnaya. Secret-Shared Shuffle.

In International Conference on the Theory and Application of Cryptology and
Information Security, pages 342–372. Springer, 2020.

[13] David L Chaum. Untraceable Electronic Mail, Return Addresses, and Digital

Pseudonyms. Communications of the ACM, 24(2):84–90, 1981.

[14] Albert Cheu, Adam Smith, Jonathan Ullman, David Zeber, and Maxim Zhilyaev.

Distributed Differential Privacy via Shuffling. In Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, pages 375–403.
Springer, 2019.

[15] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, Robust, and Scalable Com-

putation of Aggregate Statistics. In Proceedings of the 14th USENIX Conference on
Networked Systems Design and Implementation, NSDI’17, page 259–282. USENIX
Association, 2017.

[16] George Danezis, Cédric Fournet, Markulf Kohlweiss, and Santiago Zanella-

Béguelin. Smart Meter Aggregation via Secret-Sharing. In Proceedings of the first
ACM workshop on Smart energy grid security, pages 75–80, 2013.

[17] Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY-A Framework

for Efficient Mixed-Protocol Secure Two-Party Computation. In NDSS, 2015.

[18] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating

Noise to Sensitivity in Private Data Analysis. In Theory of cryptography conference,
pages 265–284. Springer, 2006.

[19] Cynthia Dwork, Aaron Roth, et al. The Algorithmic Foundations of Differential

Privacy. Found. Trends Theor. Comput. Sci., 9(3-4):211–407, 2014.
[20] Tariq Elahi, George Danezis, and Ian Goldberg. Privex: Private Collection of

Traffic Statistics for Anonymous Communication Networks. In Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications Security, CCS
’14. ACM, 2014.

[21] Steven Englehardt. Next Steps in Privacy-Preserving Telemetry with Prio, jun

2019.

[22] Tim Geoghegan, Christopher Patton, Eric Rescorla, and Christopher Wood. Pri-

vacy Preserving Measurement, April 2022.

[23] Niv Gilboa and Yuval Ishai. Distributed Point Functions and Their Applications. In

Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 640–658. Springer, 2014.

[24] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to Play Any Mental

Game, or a Completeness Theorem for Protocols with Honest Majority. In

Providing Sound Foundations for Cryptography: On the Work of Shafi Goldwasser
and Silvio Micali, pages 307–328, 2019.

[25] Google. Protecting your privacy online. https://privacysandbox.com. (accessed:

October 7, 2023).

[26] Google. An Implementation of Incremental Distributed Point Functions in C++,

Feb 2022. commit 88c73a78cd61dacba6d8258f13d0f5dc5f1fb0d2.

[27] Sivakanth Gopi, Yin Tat Lee, and Lukas Wutschitz. Privacy Random Variable

(PRV) Accountant. https://github.com/microsoft/prv_accountant. (accessed: Oc-

tober 7, 2023).

[28] Sivakanth Gopi, Yin Tat Lee, and Lukas Wutschitz. Numerical Composition of

Differential Privacy. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and

J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems,
volume 34, pages 11631–11642, 2021.

[29] Sivakanth Gopi, Yin Tat Lee, and Lukas Wutschitz. Numerical composition of

differential privacy, 2021.

[30] Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are garbled

circuits better than custom protocols? In NDSS, 2012.
[31] Rob Jansen and Aaron Johnson. Safely Measuring Tor. In Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communications Security, CCS ’16.

Association for Computing Machinery, 2016.

[32] Marek Jawurek and Florian Kerschbaum. Fault-Tolerant Privacy-Preserving Sta-

tistics. In International Symposium on Privacy Enhancing Technologies Symposium,

pages 221–238. Springer, 2012.

[33] Ryo Kikuchi, Dai Ikarashi, Takahiro Matsuda, Koki Hamada, and Koji Chida.

Efficient Bit-Decomposition and Modulus-Conversion Protocols with an Honest

Majority. In Australasian Conference on Information Security and Privacy, pages
64–82. Springer, 2018.

[34] Yi Lu, Keisuke Hara, Kazuma Ohara, Jacob Schuldt, and Keisuke Tanaka. Efficient

Two-Party Exponentiation from Quotient Transfer. In Applied Cryptography
and Network Security: 20th International Conference, ACNS 2022, Rome, Italy, June
20–23, 2022, Proceedings, page 643–662. Springer-Verlag, 2022.

[35] Sahar Mazloom and S Dov Gordon. Secure Computation with Differentially

Private Access Patterns. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pages 490–507, 2018.

[36] Meta. Make smarter business decisions with actionable insights. https://www.

facebook.com/business/measurement. (accessed: October 7, 2023).

[37] Payman Mohassel, Peter Rindal, and Mike Rosulek. Fast Database Joins and PSI

for Secret Shared Data. In Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, pages 1271–1287, 2020.

[38] Payman Mohassel and Saeed Sadeghian. How to hide circuits in mpc an efficient

framework for private function evaluation. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques, pages 557–574. Springer,
2013.

[39] AndrésMuñozMedina, Umar Syed, Sergei Vassilvtiskii, and Ellen Vitercik. Private

Optimization without Constraint Violations. In International Conference on
Artificial Intelligence and Statistics, pages 2557–2565. PMLR, 2021.

[40] C Andrew Neff. A Verifiable Secret Shuffle and its Application to E-Voting. In

Proceedings of the 8th ACM conference on Computer and Communications Security,
pages 116–125, 2001.

[41] Web Platform Incubator Community Group. Attribution Re-

porting API with Aggregatable Reports, May 2022. commit

fd75741c4e5c047de7536c02c20cbc903645aa17.

[42] Salil Vadhan. The complexity of differential privacy. https://privacytools.seas.

harvard.edu/files/privacytools/files/complexityprivacy_1.pdf.

[43] Jelle Van Den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich. Vu-

vuzela: Scalable Private Messaging Resistant to Traffic Analysis. In Proceedings
of the 25th Symposium on Operating Systems Principles, pages 137–152, 2015.

[44] IETF working group on Privacy Preserving Measurement. Pri-

vacy Preserving Measurement Protocol, May 2022. commit

3aa0e86a4261cd749f5fa0b2569f5a44f482f042.

15

https://privacysandbox.com
https://github.com/microsoft/prv_accountant
https://www.facebook.com/business/measurement
https://www.facebook.com/business/measurement
https://privacytools.seas.harvard.edu/files/privacytools/files/complexityprivacy_1.pdf
https://privacytools.seas.harvard.edu/files/privacytools/files/complexityprivacy_1.pdf

Full version, May 22, 2024 F. Betül Durak, Chenkai Weng, Erik Anderson, Kim Laine, and Melissa Chase

[45] Andrew Chi-Chih Yao. How to Generate and Exchange Secrets. In 27th Annual
Symposium on Foundations of Computer Science, FOCS’86, page 162–167. IEEE
Computer Society, 1986.

[46] Ke Zhong, Yiping Ma, and Sebastian Angel. Ibex: Privacy-preserving ad conver-

sion tracking and bidding. In Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’22, page 3223–3237, 2022.

[47] Ke Zhong, Yiping Ma, Yifeng Mao, and Sebastian Angel. Addax: A fast, private,

and accountable ad exchange infrastructure. In 20th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 23), pages 825–848. USENIX
Association, 2023.

A ERRATA
The DP analysis in an earlier version of this work was flawed in

computing the (𝜖, 𝛿)-DP parameters for a Laplace mechanism. In

this new version we switched to the Gaussian mechanismwith com-

putations using Privacy Loss RandomVariables for DP-composition.

Our set of experiments has been updated and uses a new imple-

mentation written in Rust.

B COMPLEXITY OF LAYERED PROTOCOL
In this section we analyze the complexity of Algorithm 1.

For each layer 𝑖 = 1, . . . , 𝜆, we consider a call to Layered(·, ·, 𝑖, ·, ·).
The average complexity is the size of the input dataset to this call,

appended with (𝐿𝑖 − 1)𝑀buckets +𝑀flush dummy reports. The size

of the input dataset is the size of a bucket at the previous (𝑖 − 1)-th
layer which is not pruned (larger than 𝑡att) and not a dummy bucket.

We analyze the complexity in two different cases.

First, consider 𝑡att too low, i.e., 𝑡 ≤ 𝑀 so that the number of non-

pruned buckets is exponential. In this case, the number of selected

buckets at layer 𝑖−1 is upper-bounded by (𝐿1−1) (𝐿2−1) . . . (𝐿𝑖−1−
1). By summing over all layers, we obtain total complexity of

𝑂 (𝜆𝐶 + (𝐿1 − 1) . . . (𝐿𝜆 − 1)𝑀buckets + (𝐿1 − 1) . . . (𝐿𝜆−1
− 1)𝑀flush)

(comparable to 𝑂 (ℓ𝐶 + 𝑀̄𝐵)). This is the complexity of the full

histogram.

Next, consider 𝑡 large enough (𝑡 > 𝑀) to prune effectively. We

consider every possible bucket B1, . . . ,B𝐿1𝐿2 ...𝐿𝑖−1
at layer 𝑖 − 1.

Denote by 𝑎 𝑗 the number of true reports in bucket B𝑗 and by 𝑋 𝑗 =

⌊𝑀 + 𝑍 𝑗 ⌉, the number of added dummy reports, where 𝑍 𝑗 follows

the truncated Gauss distribution. Finally, let 𝑌𝑗 be the number of

dummy buckets added inB𝑗 at layer 𝑖 . The complexity to treatB𝑗 at
layer 𝑖 is bounded by 𝑎 𝑗 +𝑋 𝑗 +𝑌𝑗 if 𝑎 𝑗 +𝑋 𝑗 ≥ 𝑡 . Thus, the complexity

to treat layer 𝑖 is
∑
𝑗 (𝑎 𝑗 +𝑋 𝑗 +𝑌𝑗) ·1𝑎 𝑗+𝑋 𝑗 ≥𝑡 . Because

∑
𝑗 𝑎 𝑗 = 𝐶 , this

complexity is bounded by𝐶 +∑𝑗 (𝑋 𝑗 +𝑌𝑗) · 1𝑎 𝑗+𝑋 𝑗 ≥𝑡 . The coins for
𝑋 𝑗 and 𝑌𝑗 are independent. Since we want to compute the average

complexity, we can directly average𝑌𝑗 and get a complexity of𝐶 +𝑆
with 𝑆 =

∑
𝑗 E

[
(𝑋 𝑗 + (𝐿𝑖 − 1)𝑀buckets +𝑀flush) · 1𝑎 𝑗 ≥𝑡−𝑋 𝑗

]
. We can

show that all buckets such that 𝑎 𝑗 < 𝑡 −𝑀 have little influence on

the sum: either there are a few with high 𝑎 𝑗 , or 𝑎 𝑗 is so low that 𝑋 𝑗
has too little chance to exceed 𝑡−𝑎 𝑗 . The sum over buckets such that

𝑎 𝑗 ≥ 𝑡 −𝑀 has a number of terms bounded by
𝐶
𝑡−𝑀 and is bounded

by

(
𝑀̄ + (𝐿𝑖 − 1)𝑀buckets +𝑀flush

)
𝐶
𝑡−𝑀 . We sum over all layers

and obtain𝑂
(
ℓ𝐶+(𝐿1+· · ·+𝐿𝜆)𝑀buckets+𝜆𝑀flush

𝐶
𝑡−𝑀

)
. Having 𝐿𝑖 =

2
ℓ/𝜆

for all 𝑖 , the formula becomes 𝑂
(
ℓ𝐶 + 𝜆𝑀2

ℓ/𝜆 + 𝜆𝑀 𝐶
𝑡−𝑀

)
. We

can see the effect of layering, with optimality reached for 𝜆 ≈ ℓ ln 2.

In the extreme case, with 𝜆 = ℓ and 𝐿𝑖 = 2, this is 𝑂
(
ℓ𝐶 + ℓ𝑀 𝐶

𝑡−𝑀
)
.

B.1 Expected Value of Noise

E[𝑋] =
∞∫

−𝑀−1/2

𝑥 PDF𝑋 (𝑥) 𝑑𝑥

=
1

1 − p

∞∫
−𝑀−1/2

𝑥

𝜎
√

2𝜋
𝑒
− 𝑥2

2𝜎2 𝑑𝑥

=
1

1 − p

∞∫
−𝑀−1/2

1

𝜎
√

2𝜋

[
− 𝑒−

𝑥2

2𝜎2

] ′
𝑑𝑥

=
1

1 − p
𝜎
√

2𝜋
𝑒
− (−𝑀−1/2)2

2𝜎2

=
𝜎2

1 − pPDF𝜎 (−𝑀 − 1/2)

= 𝜎2PDF𝑋 (−𝑀 − 1/2)

(3)

C ANALYSIS OF SECURITY AND PRIVACY
C.1 Privacy of Oblivious Random Shuffling in

Honest-but-Curious Model
We allow that a malicious participant𝑈 colludes with the Reporting

Origin to learn the final histogram. In the worst case, we assume

that𝑈 learns 𝐴′ and 𝐵′ produced by the shuffling protocol based

on which the final histogram is computed.

Theorem 2. Assume that all the participants follow the protocol
and are non-colluding (honest but curious). For each participant of the
protocol ΠRandShuf described in Figure 6, there exists an efficient sim-
ulator Sim𝑈 such that the view of𝑈 in the protocol can be simulated
from the final output (𝐴′, 𝐵′).

Proof. The view of 𝑈 = S1 is that the received shares from

each client 𝐷1
, the value 𝜋12, 𝜋13, 𝑅12 and 𝑅13, the value 𝐴, and the

value 𝐵′:

(𝐷1, 𝜋12, 𝜋13, 𝑅12, 𝑅13, 𝐴, 𝐵
′)

S1 computes 𝐴′ from (𝐴, 𝜋13, 𝑅13). Then, its view is equivalent

to

(𝐷1, 𝜋12, 𝜋13, 𝑅12, 𝑅13, 𝐴,𝐴
′ + 𝐵′)

where𝐴′ +𝐵′ = 𝜋13 (𝜋23 (𝜋12 (𝐷))). Since 𝜋13 is known, the view of

S1 is equivalent to

(𝐷1, 𝜋12, 𝜋13, 𝑅12, 𝑅13, 𝐴, 𝜋23 (𝜋12 (𝐷)))

The first five terms: 𝐷1, 𝜋12, 𝜋13, 𝑅12, 𝑅13 are independently sam-

pled. The last term is a random permutation of 𝐷 which is inde-

pendent of the first five terms. The sixth term 𝐴 is a function of

𝐷2, 𝑅12, 𝑅23 with an independent value 𝑅23. Thus, the simulator for

this view would independently sample the first six terms and would

select an independent permutation of 𝐷 which can be done from

the output of the protocol.

The same procedure applies to𝑈 = S2 and𝑈 = S3 similarly. □

16

Precio: Private Aggregate Measurement via Oblivious Shuffling Full version, May 22, 2024

C.2 Privacy Loss Random Variable of Truncated
Gaussian Mechanism

Given two neighbouring datasets 𝐷 and 𝐷′, we have 2𝜆 regular

buckets which differ by 1 and 2(𝜆 − 1) dummy buckets which differ

by 1. We add 𝑀 + 𝑋 reports to each of these buckets, where 𝑋

represents the truncated Gaussian and𝑀 is the shift (Section 3.1),

so 𝑋 = N(𝜇𝑁 , 𝜎2

𝑁
) with truncation point 𝑡𝑁 = −𝑀 − 1/2.

We sample from 𝑋 the number of dummy reports to be added in

the bucket with 1 less report. For each of these buckets, it means

we compare samples from 𝑋 + 1 and 𝑋 . The differential privacy

boils down to the composition of 𝜆 (𝑋 + 1, 𝑋) pairs with “buckets”

parameters and (𝜆 − 1) (𝑋 + 1, 𝑋) pairs with “flush” parameters

(Section 4.5). We have (𝜎,𝑀) = (𝜎buckets, 𝑀buckets) composed 2𝜆

times and (𝜎,𝑀) = (𝜎flush, 𝑀flush) composed 2(𝜆 − 1) times.

Given a truncated N(𝜇, 𝜎2) Gaussian distribution with trunca-

tion point 𝑡 ,

PDF𝜇,𝜎,𝑡 (𝑥) =
PDF𝜎 (𝑥 − 𝜇)

1 − CDF𝜎 (𝑡 − 𝜇)
for 𝑥 ≥ 𝑡

where PDF𝜎 is the PDF of N(0, 𝜎2). PDF of 𝑁 is PDF0,𝜎,𝑡 while

PDF of 𝑁 + 1 is PDF1,𝜎,𝑡+1.
We follow the methods from Gopi et al. [28]. We compute the

Privacy Loss Random Variable (PRV) (denoted as 𝑌) of 𝑋 , deduce

the PRV of the composition (denoted as 𝑌all) as the sum of the

components of the composed distribution, use the convolution to

compute the CDF of 𝑌all, and finally compute the privacy curve of

our mechanism. That is, for each 𝜖 , we can compute a 𝛿 such that

our mechanism is (𝜖, 𝛿)-DP.
Gopi et al. compute the PRV of the Gaussian mechanism in [29,

Proposition B.1]. We generalize their computation to a truncated

Gaussian noise. By [28, Theorem 3.2],

𝑌 = ln

(
PDF𝑋 (𝑋)
PDF𝑋+1 (𝑋)

)
= ln

(
PDF𝜎 (𝑋)

PDF𝜎 (𝑋 − 1)

)
=

{
− 2𝑋−1

2𝜎2
if 𝑋 > 𝑡 + 1

+∞ if 𝑡 < 𝑋 < 𝑡 + 1

𝑌 follows a truncated (on 𝑡𝑌 to +∞) Gaussian distribution with

an extra value at +∞ with the following parameters (ignoring the

infinite region):

p = CDF𝜎 (t); 𝜇Y =
1

2𝜎2
; 𝜎Y =

1
𝜎

; tY = 𝜇Y −
t + 1
𝜎2

PDF𝑌 (𝑥) =
PDF𝜎𝑌 (𝑥 − 𝜇𝑌)
CDF𝜎𝑌 (𝑡𝑌 − 𝜇𝑌)

for 𝑥 < 𝑡𝑌 ;

Pr[𝑌 = +∞] = CDF𝜎 (𝑡 + 1) − p
1 − p .

We compute the PRV of 𝑌 ′ of (𝑋,𝑋 + 1) as we have to take

the worst of 𝑌 and 𝑌 ′ for the privacy computation. By similar

computation, we obtain a random variable 𝑌 ′ such that

PDF𝑌 ′ (𝑥) =
{ PDF𝜎𝑌 (𝑦−𝜇𝑌)

1−p if 𝑥 > 𝑡 ′
𝑌

0 otherwise

with the same p, 𝜇Y, 𝜎Y, but different 𝑡 ′𝑌 = 𝜇𝑌 + 𝑡
𝜎2
. There is no

infinity case.

Experimentally, we verified that using 𝑌 (rather than 𝑌 ′) results
in the bigger privacy loss. The PRV of the composition is 𝑌

all
=∑

𝑖 𝑌𝑖 , where each 𝑌𝑖 is the PRV of a component in the composition.

Finally, [28, Theorem 3.3] gives the privacy curve as

𝛿 (𝜖) =
∞∫
𝜖

(1 − 𝑒𝜖−𝑥)PDF𝑌all (𝑥) + Pr[𝑌all = ∞] .

We compute the 𝛿 for 𝜖 = 2 this way and adjust the parameters

to get 𝛿 low enough. To reach 𝛿 = 2
−40

, we observe that we roughly

need𝑀 = 7.5𝜎 to have Pr[𝑌all = ∞] < 2
−40

.

D COMPUTING SUMS
D.1 3-Party Oblivious Transfer
We depict the multiplication of least significant bit for the sum

protocol is given in Figure 11.

E EXISTING PROPOSALS
Even though there are many different proposals to solve secure

aggregate problems, in this section, we focus on two specific pro-

posals: Prio [15] and Distributed Point Functions (DPF) [7].

E.1 Prio
Prio [15] is the first existing protocol to solve privacy preserving

aggregate systems which is robust against malicious clients. It does

not rely on any general purpose MPC. The protocol can be used

for many different aggregates such as histograms, sum, average,

heavy-hitter, and others with different techniques and, as a result,

with different costs.

Prio uses two-party computations in order to compute the ag-

gregates. Each client secret shares (defined in Z𝑝 for a prime 𝑝)

their data to the servers. In order to provide robustness against

malicious clients, Prio integrates a special range proof called SNIP

and characterized by a Valid predicate. Each client gives each server
a proof that the shared data satisfies this predicate. A data point

𝑥 (shared by a client) is supposed to satisfy the Valid predicate in

order to prove the validity of the data point. The predicate is de-

fined by an arithmetic circuit with 𝑁 multiplications. Even though

constructing such proofs are efficient enough, the size of the proofs

are 𝑂 (𝑁) elements in Z𝑝 . This implies a very expensive communi-

cation complexity from clients to servers. When the servers receive

the proofs, they run the Valid predicate which only requires 1 MPC

multiplication per client no matter how large 𝑁 is.

Prio encodes data 𝑥 before sharing and this encoding depends

on which aggregate function to compute and what type of proof is

required. For example, to prove that 𝑥 is made of ℓ bits, the client

first encodes 𝑥 as Encode(𝑥) = (𝑥, 𝛽0, . . . , 𝛽ℓ−1) 𝛽𝑖 represents bits.
Then, it generates a proof that 𝑥 =

∑
𝑖
𝛽𝑖2

𝑖
and that every bit 𝛽𝑖 is a

root of a polynomial 𝑃 (𝑧) = 𝑧2−𝑧. Thus, what is shared and proved
is Encode(𝑥).

If Prio is used to compute the histograms (or frequency counts

as the paper names it), then the encoding becomes a lot larger. The

encoding is defined as Encode(𝑥) = (𝛽0, . . . , 𝛽𝐵−1) where 𝐵 is the

17

Full version, May 22, 2024 F. Betül Durak, Chenkai Weng, Erik Anderson, Kim Laine, and Melissa Chase

S1 S3 S2

input : 𝑎 ∈ {0, 1} input : 𝑖 input : 𝑏 ∈ {0, 1}and an index 𝑖

output :𝑚 (1) ∈ Z𝑝′ output :𝑚 (2) ∈ Z𝑝′

𝐾 ←
$
{0, 1}𝜆

𝑐 ←
$
{0, 1}

seed𝑐 = PRF𝐾 (𝑖, 𝑐)

(c,seed𝑐) K

𝑟𝑐 = PRG(seed𝑐) seed0 = PRF𝐾 (𝑖, 0)
𝑥 = 𝑎 ⊕ 𝑐 seed1 = PRF𝐾 (𝑖, 1)

𝑟0 = PRG(seed0)
𝑟1 = PRG(seed1)

𝑥
−−−→

𝑚 (2) ←
$
Z𝑝′

𝑦0 = 𝑏 · 𝑥 − 𝑟0 −𝑚 (2) ∈ Z𝑝′

𝑦1 = 𝑏 · (𝑥 ⊕ 1) − 𝑟1 −𝑚 (2) ∈ Z𝑝′

𝑚 (1) = 𝑦𝑐 + 𝑟𝑐 ∈ Z𝑝′
(𝑦0, 𝑦1)

←−−−

output :𝑚 (1) output :𝑚 (2)

Figure 11: 3-party Oblivious Transfer to compute the arithmetic shares of multiplication of two bits 𝑎 and 𝑏 (adapted
from ABY[3]). S3 inputs only the index number 𝑖 for the 𝑖-th iteration. This protocol is run with the same 𝐾 for each re-
port in parallel. The communication complexity is 𝜆 + 2 bits (𝜆 bits for seed𝑐 and 2 bits for 𝑐 and 𝑥) and 2 group elements in Z𝑝′ ,
𝑦0 and 𝑦1.

number of the buckets (𝐵 = 2
ℓ
for full histograms) and 𝛽𝑥 = 1 while

𝛽𝑖 = 0 for 𝑖 ∈ {0, . . . , 𝐵 − 1} \ {𝑥}. Valid predicate requires all 𝛽𝑖 to

be 0 or 1 as well as

∑
𝑖 𝛽𝑖 = 1. As it can be observed, such a method

is inefficient for histogram computations. Therefore, we also omit

its performance analysis in our comparisons.

Finally, Prio, as it is proposed, does not provide any differential

privacy guarantees. However, as shown in some use-cases, it may

be possible to add such guarantee under certain conditions [2]. For

now, we are not aware of any effort put in that direction. Instead,

another proposal to solve specifically the heavy-hitter problem

with differential privacy guarantees is proposed. This new pro-

posal specifically aims to reduce the client-side communication

complexity of Prio for heavy-hitter problem, as well as introducing

additional differential privacy guarantees. We will explain this new

primitive next.

E.2 Distributed Point Functions
Recently, Google proposed an Attribute Reporting API with Aggre-

gate Reports scheme, which strongly aligns with this problem [41].

A potential solution mentioned in their proposal relies on Dis-

tributed Point Functions (DPF): a two-party secure computation

protocol [7, 23]. More precisely, DPF consists of two protocols:

DPF.𝐺𝑒𝑛 and DPF.𝐸𝑣𝑎𝑙 . We pause here to explain the basic idea

of DPF. Theoretically, the keys can be represented with a large

vector of size of the key space. For an ℓ-bit key 𝑘 , the key can be

represented as a one-hot encoded vector of size 2
ℓ
, with the 𝑘-th

position set to 1 and other positions to 0. Then, this vector can be

secret shared and sent to two servers to compute the aggregates.

However, this naive approach requires too much communication.

The beautiful idea DPF introduces is to generate the secret shares

of this vector in a compact form and let the servers expand the

keys to the full vectors by executing a series of cryptographic op-

erations. The structure of this expansion is a tree structure, i.e.,
the expansion happens level by level. Essentially, DPF takes these

vectors and treats them as functions, which are equivalent when

the representation is a point function.

At the beginning of the data collection clients generate their se-

cret shared reports by DPF.𝐺𝑒𝑛. Then, two servers jointly execute

DPF.𝐸𝑣𝑎𝑙 to generate noisy aggregates. Data users (e.g., advertis-
ers) make queries to two servers and receive differentially private

results. The aggregate queries DPF allows are histogram and sum

on reported keys and values.

The most recent DPF construction is introduced as a solution to

the private heavy hitters problem [7]. Particularly, Boneh et al. [7]
describes three main protocols in their paper.

The first protocol is to build a private subset histogram from

collected reports for a given set of keys. The set of keys may or

may not be known to the servers. It requires𝑂 (𝐶𝐵) DPF.𝐸𝑣𝑎𝑙 calls,
where 𝐶 is the number of reports and 𝐵 is the set of keys to build

the histogram on (without differential privacy).
10

10
Note that the complexity of DPF.𝐸𝑣𝑎𝑙 is exponential in the size of the keys.

18

Precio: Private Aggregate Measurement via Oblivious Shuffling Full version, May 22, 2024

The second protocol is to find the most popular keys, which

appears with a threshold 𝑡 (without differential privacy); this is

called the 𝑡-heavy hitters problem. Boneh et al. defines a new DPF
called incremental DPF (iDPF) to solve this problem more efficiently

than with standard DPF. The complexity of the proposed protocol

is 𝑂 (ℓ𝐶2/𝑡) DPF.𝐸𝑣𝑎𝑙 calls, where ℓ is the (fixed) size of the keys
collected from clients. The third protocol is simply to use the 𝑡-

heavy hitters protocol with threshold 𝑡 = 1. Then, the complexity

becomes 𝑂 (ℓ𝐶2) DPF.𝐸𝑣𝑎𝑙 calls.

These protocols can be made differentially private by applying

the noise addition process at certain steps. The differential privacy

parameters proposed in [7] use

𝜖′ = 𝜖

√︂
2𝑞 ln

1

𝛿 ′
+ 𝜖𝑞𝑒𝜖−1 ,

with 𝑞 = ℓ𝐶/𝑡 . They provide example parameters for an (𝜖′, 𝛿 ′)-
DP protocol, with ℓ = 256, 𝜖 = 0.001, 𝑡 = 𝐶/100, and 𝛿 ′ = 2

−40
,

resulting in 𝜖′ = 1.22. However, the impact on the complexity and

the accuracy is not analysed.

19

	Abstract
	1 Introduction
	1.1 Our Model
	1.2 Our Results
	1.3 Our Techniques
	1.4 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Secret Sharing
	2.3 Differential Privacy
	2.4 Oblivious Random Shuffling

	3 Subroutines
	3.1 Differential Privacy with Constraints For Histograms
	3.2 Oblivious Random Shuffling
	3.3 Secure Modulo Conversion for Sum

	4 Precio
	4.1 Private Histogram Protocol Description
	4.2 Security and Privacy Analysis of Precio
	4.3 Private Sum Computation
	4.4 Layered Protocol
	4.5 Differential Privacy and Pruning

	5 Performance Evaluation
	5.1 Existing Proposals
	5.2 Constructing a Full Histogram
	5.3 Constructing a Subset-Histogram via Pruning
	5.4 Heavy-Hitters
	5.5 Sums

	6 Conclusions
	References
	A Errata
	B Complexity of layered protocol
	B.1 Expected Value of Noise

	C Analysis of Security and Privacy
	C.1 Privacy of Oblivious Random Shuffling in Honest-but-Curious Model
	C.2 Privacy Loss Random Variable of Truncated Gaussian Mechanism

	D Computing Sums
	D.1 3-Party Oblivious Transfer

	E Existing Proposals
	E.1 Prio
	E.2 Distributed Point Functions

