Aggregate Measurement via Oblivious Shuffling

Erik Anderson
Microsoft
erikan@microsoft.com

Melissa Chase
Microsoft
melissac@microsoft.com

Wei Dai
Microsoft
wei.dai@microsoft.com

F. Betül Durak
Microsoft
betuldurak@microsoft.com

Kim Laine
Microsoft
kim.laine@microsoft.com

Siddharth Sharma
Microsoft
siddhash@microsoft.com

Chenkai Weng
Northwestern University
ckweng@u.northwestern.edu

ABSTRACT

We introduce a new secure aggregation method for computing aggregate statistics over secret shared data in a client-server setting. Our protocol is particularly suitable for ad conversion measurement computations, where online advertisers and ad networks want to measure the performance of ad campaigns without requiring privacy-invasive techniques, such as third-party cookies. Our protocol has linear complexity in the number of data points and guarantees differentially private outputs. We formally analyze the security and privacy of our protocol and present a performance evaluation with comparison to other approaches proposed for a similar task.

1 INTRODUCTION

Privacy-Preserving Aggregation. Many software applications and services today collect statistical data about their use, for example, for optimizing user-experiences and performance. Collecting more descriptive statistics may yield better results, but also raises more privacy and regulatory compliance concerns. This privacy-utility trade-off has been an active area of research for a long time, including for smart meters [15, 27], private networks [10, 19, 26], and other measurements [21].

In this work, we focus on the problem of privacy-preserving aggregation, where a large number of clients each submit a data report. The goal is to compute aggregate statistics over the reports in a way that does not compromise privacy and deliver the results to a Reporting Origin. More precisely, we follow the model proposed in Prio [14], where each client secret shares it’s report and distributes the shares to a small number of servers. The servers then work together to compute aggregates over the reports in a way that guarantees differential privacy for each client report.

While similar systems have been used for other applications\(^1\), we focus on web privacy related applications and present a solution which is both more efficient and more flexible than other proposals.

Web Privacy and Ad Conversion Measurement. In today’s web, various entities perform cross-site tracking of people’s activity for multiple reasons, one of which is to derive insights about online marketing campaigns. This cross-site tracking is often accomplished by third-party cookies, where website A includes content getting and setting a cookie tied to website F. When website F is also loaded across multiple other websites, F is able to track people’s activities across these sites, raising significant privacy concerns [5].

Due to these concerns, browser vendors have started to greatly restrict when third-party cookies can be set. For instance, Apple Safari blocks all third-party cookies by default and Google Chrome’s Privacy Sandbox effort proposes to phase out third-party cookies as they exist today. All major browser vendors are taking steps in the same direction. Analytics built on top of third-party cookies, however, are a vital part of the current ad-funded web ecosystem that helps provide valuable services free of charge to everyone. In many measurement scenarios the most valuable information concerns trends rather than individual events, for example, how often an ad placement on an publisher’s site results in the visitor completing a purchase of the advertised item or service. These insights are currently derived by collecting information about individuals (web browser clients) and then computing preferred aggregates, with no guarantee that someone’s data would not be used for other, potentially more privacy-invasive, purposes. By instead switching to systems that provide only aggregate results with provable guarantees of user-level privacy, most measurement scenarios can still be enabled, while mitigating risks and concerns.

In this work, we propose a solution to this problem in the form of a privacy-preserving aggregate protocol based on secure multi-party computation and differential privacy.

1.1 Our Model

1.1.1 Parties and Trust assumptions. We consider a system as in Figure 1, which follows along the same basic structure as the Verifiable Distributed Aggregation Functions currently being formalized by the IETF [4]. The system includes the following parties:

(1) Clients, that each submit one data report. In the web setting, the reports would typically be submitted by web browser clients. As there is no way to limit how client software behaves, we need to ensure security against malicious clients.

(2) A Reporting Origin, that collects reports from the clients, sends them to the helper servers (see below), and chooses which aggregates to compute. In our motivating application, this could be an ad network wanting to measure the effectiveness of an ad campaign. Even a malicious Reporting
Origin should not learn anything about individual clients’ reports.

(3) Helper servers (aggregation servers), that work together to perform the aggregation. We want to provide privacy even when malicious helper servers collude with a Reporting Origin, as long as a majority of the helper servers is honest. One might also consider the stronger requirement, where correctness of the final result in the presence of adversarial helper servers is guaranteed. However, we leave this for future work.

1.1.2 Data reports. We assume that each report collected from a client is a bit string, encoding one or more predefined attributes, such as client information (age, gender, geographic region), device information (user-agent string, OS), or ad category. Each attribute is allocated a certain number of bits from the report. The bits reserved for an attribute thus encode the categorical attribute values.

We also consider numerical attributes over which one might want to compute sums, for example the dollar amount of ad conversion purchases. In a malicious client setting, this requires a non-trivial protocol. We propose a new method which is significantly better than Prio [14].

1.1.3 Flexible Aggregation. In non-private ad conversion measurement systems, each report contains many attributes about a client and analysts are able to view aggregate statistics about the ad campaign’s success, subdivided by a variety of different attributes [31]. For example, an analyst might first view the number of conversions and value of conversions segmented by ad campaign, then filter for a particular campaign, and group the results by specific attributes, such as age, geographic region, or a combination of attributes.

Filtering makes it possible to explore a sparse space. For example, the analyst could first partition by geographic region, then consider only those regions for which there has been conversion activity, then further partition by age, etc. This allows the analyst to identify combinations of attributes with a non-trivial number of conversions, without having to explore exponentially many possibilities.

In a privacy-preserving solution some restriction on the queries is necessary in order to guarantee differential privacy, but we want to maintain enough flexibility to such a dashboard, where an analyst can decide on-the-fly how they want to view the data. However, existing proposals cannot do this. The two main ideas under consideration for ad conversion measurement are based on Distributed Point Functions (DPFs) [8, 9, 22], incremental DPFs (iDPFs) [7], and Prio [1, 14]. iDPF is very similar to DPF; it adds support for longer reports and differential privacy.

In the (i)DPF approach, attributes are encoded in a bit string, as they are in our approach. However, the only kinds of aggregation functions supported are to count reports with a given prefix, so if the attribute bits encode to first a geographic location, then an age bracket, and then a device type, one could obtain counts for “east coast”, “east coast, 65+”, and “east coast, 65+, mobile”, but one could not obtain counts for “65+, mobile”, except by separately querying with each possible location. As the number of attributes included in reports increases, this becomes increasingly restrictive.

In Prio, data is encoded as vectors of values and the only aggregation functions that can be computed are those that can be expressed as sums of these values. For example, if we wanted to be able to count the number of reports corresponding to a combination of location, age, and device type, the client would have to encode their report into a vector with an entry for every possible (location, age, device type) combination. Clearly, as the number of attributes grows, this becomes infeasible.

1.2 Our Results

We propose an efficient (linear time and communication complexity in the number of reports) privacy-preserving aggregation system based on secure 3-party computation, where the Reporting Origin learns only differentially private aggregates for reports and does not learn any other data associated to a specific client. The architecture of our system is described in Figure 1. We refer to our aggregate protocol as Bucketization, as it can be seen as putting reports in buckets representing different attributes. Finally, we show that Bucketization provides better flexibility and performance than prior work.

1.2.1 Flexibility. We consider a report encoding multiple attributes. For example, a 16-bit report could represent two attributes: a 10-bit Ads Category and a 6-bit Customer Region (geographic region). Our protocol allows running a histogram query on any selected attributes encoded in the report in any order. This enables us to compute more complicated histogram queries. For example, the servers can run a histogram query on Ads Category attribute first. They can deliver the output at this point, or continue with building a histogram based on Customer Region, when Ads Category is equal to a specific value. This behaviour is depicted in Figure 11. In general, Bucketization allows the analyst to choose the aggregation attributes on the fly (from the collected list of attributes).

1.2.2 Cheap Sum Computation. Prio [14] describes an approach to compute sum on numerical secret values in the presence of malicious client. Their protocol needs a range proof from the client to be convinced that the client is not “poisoning” the computations with some huge values -this is easy to do for a malicious client because the shares of secret value will be presented in groups with large primes. In Section 3.3, we describe how to convert a secret value from a group with small order to a group with large order so that client can secret share its value within a small range. This means that we do not need the expensive range proofs from clients. The client shares its values within the given range by using a small group order and the servers run a conversion protocol that lifts secret shared values to a larger group to allow finalize the sum computation. We harmonize two techniques to achieve it: Quotient Transfer [28] and Oblivious Transfer (OT).

1.2.3 Security guarantees. We formally analyze the robustness and privacy guarantees of our protocol in a few different threat models.

- Bucketization provides robustness against malicious clients. We can guarantee that a malicious client cannot cause a report to be counted more than once.
- Bucketization utilizes differential privacy (Laplace mechanism) with parameter \(\epsilon \). This achieves \((\epsilon, \delta) = p(e^{-\epsilon}) \) -DP, with \(\epsilon = 0 \) and \(\delta \in [0, 1] \) with a very small \(p \). In other words, the reported histograms reveal only noisy aggregate counts.
We compare our security and privacy guarantees to most relevant prior work in Table 1.

1.2.4 Complexity. The time complexity of our histogram and sum protocol is \(O(C + BM) \), where \(C \) is the number of client reports, \(B \) is the number of buckets, and \(M \) is the average noise added to each bucket \(M = O\ (-(1/\epsilon)\ln \delta) \) to achieve \((0, \delta)\)-DP for histograms, \((\epsilon, 0)\)-DP for sum. The communication complexity is \(O(t(C+BM)) \), where \(t \) is the report length. The communication required from clients in their reports is only \(O(IC) \), with some encryption overhead. We compare our time and communication complexity to most relevant prior work in Table 2.

As shown, our protocol has linear time and communication complexity in the number of reports. When we consider the communication complexity of the aggregate system as the total communication required for an end-to-end execution, we must include the communication required from clients to servers as well. In that sense, the linear complexity in the number of clients is inevitable. In our protocol, server-to-server communication is also linear in the number of clients. However, our constants are small and the total communication ends up being smaller than for the other proposed protocols, as shown in Table 2.

1.2.5 Experiments. We run experiments to measure the performance of Bucketization on various sizes of reports for histograms. The results and analysis are shown in Section 5. We choose three test cases: (1) reports with 16-bit to 24-bit attributes, where we output full-domain histograms (i.e., output \(2^{16} \) to \(2^{24} \) noisy buckets); (2) very large reports, from 32 bits up to 512 bits, encoding multiple 16-bit attributes, where we perform histogram aggregation on an arbitrarily chosen 16-bit attribute, and (3) 256-bit reports, encoding multiple 16-bit attributes, where we compute heavy hitters comparing to the (i)DPF-based scheme in [7].

In all test cases, our protocol shows high efficiency and outperforms the protocols based on (i)DPF. (Prio for all these test cases would be so prohibitively slow that we were not able to run it.) Additionally, the experiment (2) shows extra flexibility in the case of a sparse domain, where multiple attributes are encoded in large reports and the servers are able to aggregate on arbitrarily selected attributes. This cannot be done by (i)DPF-based schemes.

1.3 Our Techniques

1.3.1 Strawman 1: Simple secret sharing. As a first strawman solution, consider the following. The clients will each secret share their reports bit-wise into two shares and encrypt each share for one of two helper servers. The servers will decrypt the encrypted shares as soon as they receive them. In order to evaluate a histogram query requiring filtering by a given attribute, they will exchange the shares of the corresponding bits of each client’s reports, which lets them compute the correct attribute for each client, and either reveal the resulting counts or subdivide further. Note that this satisfies the functionality we want: we can compactly represent a long string of attributes in the report and adaptively choose which of these attributes to filter by, and whether to further subdivide the results.

Unfortunately, this reveals the exact counts for each attribute value, so it cannot be differentially private. Additionally, if the helper servers know which client a report comes from, they will learn the attribute value for that client.

1.3.2 Strawman 2: Adding noise. The above issues make it clear that we need a way to add noise to the counts. Since the counts are computed by counting the number of reports with a given attribute, we need to add noise by somehow changing the number or reports with each attribute. It is easier to add reports with a given attribute than to remove them, we will do this by only adding additional reports. Specifically, for each possible value of the attribute we are partitioning by, each server will sample a non-zero random number and add as many dummy reports with the particular attribute set and all other attributes set to zero. We will then subtract an appropriate number from the final count so that the expected value remains correct. The server will secret share their augmented set of reports with the other server and perform the count as in Strawman 1, resulting now in noisy counts.

Unfortunately, the helper servers will know which report shares came from the initial set and which were added in the noise addition step. This means that once the attribute values are reconstructed, it will still be easy for each helper server to compute the exact counts.

1.3.3 Strawman 3: Mixnets. This brings us to the third component of our solution, where the helper servers will shuffle the reports so that neither of them knows which reports correspond to the initial data and which were added as noise. One way to do this would be to take a mixnet approach, where the reports are all shuffled first by one server and then by the other.

More precisely, the client would encrypt the shares in such a way that the first server could partially decrypt and shuffle the pairs of shares and then pass them to the next server, who would again partially decrypt and shuffle the pairs of shares. The result would be pairs of ciphertexts, the first being readable by the first server, the second being readable by the second server, but neither server knowing the permutation that was applied. This satisfies the privacy we want: the servers can encrypt their dummy reports just as the client would, and after both servers have shuffled the reports, neither server will be able to tell which reports are original client reports and which are dummy reports.
Table 1: Threat model and security guarantee comparison.

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Robustness against malicious clients</th>
<th>Semi-honest servers</th>
<th>Privacy against malicious server</th>
<th>Correctness against malicious server</th>
<th>DP</th>
<th># of servers</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPF [8, 9, 22]</td>
<td>Requires consistency check</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>2</td>
</tr>
<tr>
<td>iDPF [7]</td>
<td>Requires sketching protocol</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>2</td>
</tr>
<tr>
<td>Prio [1, 14]</td>
<td>Requires range proofs</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>2</td>
</tr>
<tr>
<td>Bucketization</td>
<td>No cost</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 2: Complexity comparisons of private histogram computation. \(t \) is the report length; \(t \) is the pruning threshold (\(t = 1 \) for full histogram); \(\log_2(p) \) is the size of the finite field; \(\lambda \) is the security parameter; \(C \) is the number of client reports; \(B \) is the number of buckets (\(B = 2^B \) for full histogram, but in some other cases \(B < 2^B \)); \(M \) is the noise added on average to each bucket in Bucketization. DPF row does not account the DP protection (our scheme without DP would mean \(M = 0 \)). Note that the time complexity of DPF.Eval is exponential in \(t \).

However, getting the full flexibility we want would be expensive. Recall that we want to encode many attributes and allow the analyst/reporting origin to partition by one attribute and recursively subdivide the resulting partitions based on other attributes. Each such subdivision would require a public-key decryption to be applied to each report, with layers of encryption also increasing the size of the ciphertexts. As described above, this would also require the client to know how many times each attribute must be shuffled, which would prevent the desired flexibility.

1.3.4 Final solution: 3-party shuffle. To address these issues, we replace the mixnet in the above solution with a secure honest-majority three-party oblivious shuffle protocol based on the permutation protocol from [32]. In this protocol, initially two parties have shares of a list of items. With the help of a third party, they perform an MPC protocol, at the end of which two parties each hold new shares of the same list of items, but permuted according to a random permutation that none of the individual servers knows. We assume that each pair of the servers are connected by a secure channel. The protocol is secure against semi-honest adversaries and it also preserves privacy in presence of at most one malicious server.

Thus, our final protocol proceeds as follows. The clients generate secret shares of reports for two servers. The two servers add dummy reports for each attribute, where the number of dummy reports is randomly sampled from an appropriate distribution. The original reports and dummy reports are permuted with the help of third server through an oblivious shuffling subroutine. Finally, shares of the appropriate bits are revealed for each report, the relevant attribute of each report is reconstructed and used to partition the reports. The partitions can be used to compute the histograms or further operations can be applied within the partition.

1.4 Related Work

There exists a big line of prior academic work to solve privacy-preserving aggregate systems for the web, and specifically for conversion measurement. The most intuitive ones are based on general purpose MPC [23, 38]; some utilize a new primitive called Distributed Point Function (DPF) [7–9, 22]; the rest have different flavors [1, 14]. We group the DPF solutions as regular DPF [8, 9, 22] and incremental DPF (iDPF) [7]. In this work, we mainly focus on iDPF [7] and Prio [14], as these approaches are currently being proposed for standardization by IETF [21, 35, 37]. We compare their complexities with our solution shortly and provide detailed descriptions of these proposals in Appendix D. Our approach overall comes with a time complexity advantage compared to both DPF/iDPF and Prio.

Prio defines a complete toolbox for secure and private aggregation. However, it comes with the cost of having clients encode their reports to help aggregation by the servers and creating proofs that their reports are well-formed. We explain further how Prio approaches to solve private aggregate protocols in Appendix D and will compare the Prio with our protocol in Section 5. We propose a new method in order to avoid client-side proof computations in Section 3.3.

DPF takes a completely orthogonal approach and introduces a high computational complexity linear to the size of the key space, while avoiding the linear communication complexity between servers. The iDPF-based protocol improves it to complexity quadratic to the number of clients but only for subset histograms. We give a detailed description of an existing proposal using DPF in Appendix D. We compare the performance of our protocol with iDPF [7] in Section 5.
Some prior works achieve secure aggregation based on multiparty shuffling protocols. Mazloom et al. propose a protocol for access pattern hiding secure graph computation, which can be applied for histogram aggregation [30]. The computation of histograms follow the same approach (adding dummies for DP, shuffling, and counting) as our work, but with less efficient building blocks, and without our layering techniques with optimizations. Note that layering is the main advantage of our proposal in histogram computations for large report sizes. More specifically, Mazloom et al. histogram protocol uses 2-server MPC with garbled circuits for shuffling and noise addition. Thus, the cost would be prohibitive when shuffling a large dataset. Instead, we use 3 servers and cheap operations to get a significant complexity advantage and lightweight MPC in the end. Moreover, our protocol enables computation of sum in addition to histograms (or with a combination of histograms in layered Bucketization) by using a new technique for modulo conversion in order to protect against malicious clients who may report large values to.

Similarly, 2-server mixnet-based protocols with verifiable shuffling incur prohibitive overhead for using public-key operations and zero-knowledge proofs [12, 34].

A private messaging scheme called Vuvuzela involving mixnets and differential privacy can potentially be used for simple histogram queries though it has not been explored [36]. However, this kind of shuffling protocol does not provide privacy guarantee against a malicious server. Its differential privacy is also undefined when used for secure aggregation.

There are also several works [6, 13] that propose differential privacy by shuffling. However, these works consider a slightly different trust model, namely, they assume each client will change their input with some small probability. These inputs are then shuffled with a permutation that the adversary does not know, which — combined with the noise added by all the clients — provides differential privacy with significantly less noise per client than simple local DP would require. However, this inherently requires that there are many honest clients: if the adversary can omit the noise in most of the inputs, then the shuffling cannot provide any additional privacy. This is a problem in our setting, where it may be that the Reporting Origin will be the one deciding which set of reports to submit for aggregation. The helper servers would have no way to verify that the reports came from legitimate clients.

Moreover, the histogram protocol from [13] requires that each client send 1 bit for each element in the domain. In our application the domain is the set of all length \(t \) bit strings, so the protocol in [13] would require \(2^t \) bits of communication per client. When we start considering larger strings, this clearly becomes infeasible. A layering approach might be possible, but it would require significantly smaller and thus more layers with that approach. Our layering protocol also allows us to remove the dummies added in the previous layers each time we do a new bucketization; it’s not clear how to correct errors in previous layers if using the approach from [13], so the errors would accumulate.

2 PRELIMINARIES

2.1 Notation

We consider a protocol where multiple clients (e.g., web browsers) each input a single data report. The protocol will perform a secure 3-party computation using three helper servers and output results to a Reporting Origin.

We denote the Reporting Origin as \(R \) and the three helper servers as \(S_1, S_2, S_3 \). We use \(b \in \{1, 2, 3\} \) to denote a server index. Unless explicitly stated otherwise, all indices start from 1.

\(D \) denotes the dataset of all reports, one from each client; we denote its size by \(C \). The report from client \(i \) is denoted by \(d_i \). Each client report is formed with \(\mu \) attributes. The value of the \(m \)-th attribute of \(d_i \) is \(d_i[m] \), where \(m \in [\mu] \). It is an element of a group \(G_m \). We assume that \(G_m \) includes a “dummy value” \(\perp \) and that \(d_i[m] \in G_m \setminus \{\perp\} \). The \(\perp \) value is reserved for internal use in our protocol.

There are several ways to implement the groups \(G_m \). For example, if the value of the \(m \)-th attribute, \(d_i[m] \), is an \(m \)-bit string and \(1 \ldots 1 \) is never used to report, we could set \(G_m = \mathbb{Z}_2^m \) and \(\perp = 1 \ldots 1 \) as well. For the rest of the paper, we will follow this notation, but our construction adapts to other groups as well.\(^2\) We let \(L_m \) be the order of \(G_m \) and let \(G = G_1 \times G_2 \times \cdots \times G_\mu \). Hence, \(d_i \) for \(i \in [C] \) is an element of \(G \). Finally, we allow some attributes to be “numerical” so that they can be summed. In that case, \(G_m = \mathbb{Z}_p \) for some odd prime \(p \).\(^3\)

In the case of binary representation, an \(t \)-bit \(d_i \) will have \(\mu \) different attributes, such that \(t = \sum_{m=1}^{\mu} f_m \), meaning each attribute \(m \) is \(f_m \) bits. When we bucketize for an attribute index \(m \) with \(f_m \) bits, we obtain \(L_m = 2^{f_m} \) buckets, which we represent as \(\{B_j\}_j \), for \(j \in G_m \). Among these buckets, one bucket is reserved for the dummy value. We denote the bucket of dummies by \(B_{\perp} \). We note that number of output buckets is not necessarily the same as the size of the report space. This is due to the fact that in practice, even though the report is represented with 32 bits, the values can be limited to a much smaller space. We will clarify when this is the case.

\(D_i^b \) denotes the server \(b \)'s share of the \(i \)-th report. We denote server \(b \)'s shares of the full dataset \(D \) by \(D^b \).

2.1.1 Example

Throughout the paper, we will describe the high-level idea of the protocol with a small example. We work with 10 client reports, where each report consists of three attributes: Gender (represented with 2 bits for "he/she/they/\perp"), Category (represented with 3 bits), and Age (represented within a range of \([0, 100]\)). In this example, we take \(G_1 = \mathbb{Z}_2^2 \) and \(G_2 = \mathbb{Z}_2^3 \), with group operation bit-wise XOR, \(G_3 = \mathbb{Z}_{101} \) with group operation modular addition. Since we have \(C = 10 \), \(D \) consists of 10 reports. Each report will have \(\mu = 3 \) attributes with 5 bits in total: \(d_i[1] = x_1x_2 \) and \(d_i[2] = y_1y_2y_3 \) as well as a secret value \(d_i[3] \) within a specified range. To build a histogram on attribute “Gender” (\(m = 1 \)), we will obtain \(L_m = 2^2 \) buckets: \(\{B_1, B_2, B_3, B_4\} \), where \(B_3 \) is reserved for dummy reports with \(d_i[1] = 11 \). An example of a corresponding dataset \(D \) (without considering any secret sharing yet) is given

\(^2\)If all \(f_m \)-bit strings must be used, we let \(G_m = \mathbb{Z}_{2^{f_m-1}} \) and \(\perp = 2^{f_m} \).

\(^3\)This group represents the final group where the secret shares of client values are lifted. See Section 3.3 for the details.
with a total of 5 bits and 1 of them is a numerical value.

Continuing with our example, we secret share the reports in Figure 2. Notice that there are no reports with $d_i[1] = 11$ or $d_i[2] = 111$, as these buckets are reserved for the dummy reports.

2.2 Secret Sharing

In the GMW protocol [23], a secret value is information-theoretically shared between multiple parties for secure multi-party computation. Let G denote a finite additive group. In the 2-party case, a client can share a secret value $k \in G$ to two servers by first uniformly sampling $r \leftarrow G$, sending r to one server, and $k - r$ to the other server. Neither share alone reveals any information about the value k. Such a scheme works for both Boolean circuits and arithmetic circuits; it requires no communication for the addition of two secret values, or addition or multiplication with public constant values.

Example. Continuing with our example, we secret share the reports in D for S_1 and S_2 as follows: $d_i[j] = d_i^1[j] \oplus d_i^2[j]$, for $i \in \{10\}, j \in \{1, 2\}$.

Let M be a randomized algorithm with domain \mathbb{N}^X and let $\hat{D}, \hat{D}' \in \mathbb{N}^X$ be two neighboring databases that differ on only two rows and have the same cardinality.

We say that a mechanism M is (ϵ, δ)-differentially private ((ϵ, δ)-DP) for parameters $\epsilon \geq 0$ and $\delta \in [0, 1]$, if for any $\hat{S} \subseteq \text{Range}(M)$ and any neighboring \hat{D} and \hat{D}',

$$\Pr[M(\hat{D}) \in \hat{S}] \leq e^\epsilon \Pr[M(\hat{D}') \in \hat{S}] + \delta$$

In our results, $\epsilon = 0$.

The property of differential privacy is maintained through post-processing. Informally, this means that once differential privacy is achieved for the output of a particular query, the data curator can make any computations with this output without violating the formal differential privacy guarantees.

To achieve (ϵ, δ)-DP for our protocol, we utilize the standard Laplace mechanism. In the Laplace mechanism, we add noise drawn from the Laplace distribution to the output of a statistical aggregate. The probability density function of Laplace distribution is $\text{Lap}(X, b) = (1/2b) \exp(-|X|/b)$; it has zero mean and standard deviation $\sigma = \sqrt{2b^2}$. The Laplace distribution we consider from now on is Lap $(X, 1/\epsilon)$. So, in our notation, ϵ denotes a parameter

![Figure 1: System Architecture.](image)

![Figure 2: A visualization of our small example: the dataset D with $C = 10$ reports with $\mu = 3$ attributes: 2 of them bitstring with total of 5 bits and 1 of them is a numerical value.](image)

<table>
<thead>
<tr>
<th>d_1</th>
<th>00 010 25</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_2</td>
<td>01 001 32</td>
</tr>
<tr>
<td>d_3</td>
<td>00 000 19</td>
</tr>
<tr>
<td>d_4</td>
<td>00 010 64</td>
</tr>
<tr>
<td>d_5</td>
<td>10 010 53</td>
</tr>
<tr>
<td>d_6</td>
<td>00 010 42</td>
</tr>
<tr>
<td>d_7</td>
<td>01 110 21</td>
</tr>
<tr>
<td>d_8</td>
<td>01 001 39</td>
</tr>
<tr>
<td>d_9</td>
<td>10 000 45</td>
</tr>
<tr>
<td>d_{10}</td>
<td>10 010 76</td>
</tr>
</tbody>
</table>

(a) Shares of S_1: D^1

<table>
<thead>
<tr>
<th>d_1^1</th>
<th>10 011 33</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_2^1</td>
<td>00 011 45</td>
</tr>
<tr>
<td>d_3^1</td>
<td>01 111 10</td>
</tr>
<tr>
<td>d_4^1</td>
<td>11 110 52</td>
</tr>
<tr>
<td>d_5^1</td>
<td>01 001 11</td>
</tr>
<tr>
<td>d_6^1</td>
<td>10 001 90</td>
</tr>
<tr>
<td>d_7^1</td>
<td>00 011 2</td>
</tr>
<tr>
<td>d_8^1</td>
<td>01 101 55</td>
</tr>
<tr>
<td>d_9^1</td>
<td>00 011 13</td>
</tr>
<tr>
<td>d_{10}^1</td>
<td>11 101 82</td>
</tr>
</tbody>
</table>

(b) Shares of S_2: D^2

![Figure 3: Secret shares of D held by S_1 and S_2.](image)
of the Laplace distribution, whereas ϵ is a privacy parameter of our protocol.

Finally, our sum protocol utilizes the standard Laplace mechanism where the noise is added by both servers and achieves $(\epsilon, 0)$-DP.

2.4 Oblivious Random Shuffling

We will make use of an oblivious shuffling protocol that runs between three servers. It inputs a dataset, initially secret shared between two servers, and outputs secret shares of a shuffled dataset. Obliviousness means that none of the servers learns the mapped positions before and after the shuffling for any element in the dataset.

Multiple oblivious shuffling protocols have been presented in prior work. Chase et al. [11] uses the idea of an oblivious permutation for 2-party oblivious random shuffling. However, for performance reasons, the 2-party approach is insufficient for our protocol. Instead, Mohassel et al. [32] proposed an oblivious permutation version of [32] in Section 3.2.

3 SUBROUTINES

Before we describe the details of our subroutines, we depict the data and computation flow of our protocol in Figure 4. Section 3.1 will describe how step 2 in Figure 4 is computed. Section 3.2 will describe how step 3 in Figure 4 is computed. The full protocol is described in Section 4.

3.1 Differential Privacy with Constraints For Histograms

To achieve differential privacy for histograms, we add noise to the counts for each bucket. Ideally, we would like to use the Laplace mechanism, which samples both positive or negative noise from the Laplace distribution. However, we regard dummy reports added to buckets as noise, and in our protocol we can only add dummy reports — not remove any reports. One solution would be to follow the proposal from Medina et al. [33] as a general framework for private optimization with non-negative constraints. Instead, we hope to still align with the standard Laplace mechanism, as it provides a better balance between privacy and utility and is simpler to analyze.

1. **Truncated and shifted Laplace mechanism.** As we stated before, our aim is to use the standard Laplace distribution in a way that leads us to generate discrete positive or negative noise.

 First, we define the truncation of Laplace. We sample a noise n from $\text{Lap}(X, 1/\epsilon)$: $n \leftarrow \text{Lap}(X, 1/\epsilon)$ (rounded to the closest integer), which could be negative. If $n < -M$, we sample again until $n \geq -M$. We obtain a PDF for n, where $\Pr(X) = 0$ if $X < -M - 1/2$ and $\Pr(X) = \text{Lap}(X, 1/\epsilon)/(1 - p)$ otherwise, with p defined as the resampling probability, which we will define shortly. Finally, we shift the output by adding M to n, which ensures that $n + M$ is always non-negative.

 In our application, we can use $n + M$ as the number of dummy reports to be added to a particular bucket and later subtract the value M (a public parameter) from each count, leaving the original Laplace noise n added to the buckets.

 Let $-M - 1/2$ define a truncation point in Laplace distribution. Given the PDF of the standard Laplace distribution, we define the resampling probability p as

 $$\Pr\left[X < -M - \frac{1}{2}\right] = \int_{-\infty}^{-M-1/2} \frac{1}{2}e^{-\epsilon|x + M + 1/2|} dx = \frac{1}{1 - p}\left(\frac{1}{\epsilon} + M + \frac{1}{2}\right),$$

 Solving for M, we obtain $M = -(1/\epsilon) \ln(2p) - 1/2$. As an example, if we want $p = 10^{-6}$, M becomes $M = [13.12/\epsilon - 0.5]$.

 3.1.2 Computation of average dummy reports. As described above, the noise added in each bucket consists of $n + M$ dummy reports, where n is sampled from the truncated Laplace distribution. Since

 $$\mathbb{E}(n) = \int_{-M-1/2}^{\infty} \frac{x \text{Lap}(x)}{1 - p} dx = \frac{p}{1 - p}\left(\frac{1}{\epsilon} + M + \frac{1}{2}\right),$$

 the expectation value of $n+M$ becomes $\bar{M} = M + \frac{p}{1 - p}(1/\epsilon + M + 1/2)$. As expected, this is very close to M.

 We provide a suggested way to implement noise sampling in Appendix A. The protocol for noise generation is shown in Figure 5.

 3.1.3 Example. We continue our example from previous Section 2.1.

 We want to build a histogram on the attribute “Gender” ($m = 1$) with $l_m = 4$ buckets (B_1, B_2, B_3, B_4). In our ΩNoiseGen protocol, Noise generation step will sample a number of dummy reports for each of these four buckets, with B_4 consisting entirely of dummy reports.

 Suppose the noise vector $\mathbf{N} = (2, 1, 1, 2)$ for S_1. This means that a total of $n^{(1)} = 5$ new reports will be added: two reports $d_{1,1}^1, d_{2,1}^1$ to B_1, one report $d_{1,2}^1$ to B_2, and two reports $d_{1,4}^1, d_{2,4}^1$ to B_4.

 In step Generating dummy reports, each dummy report for S_2 will have the form $d_{i,j}^1 = \lceil j/111 \rceil$, where j is represented in binary with 2 bits and other attribute is set to the reserved value 111. The same steps are repeated for S_2, with different total noise vector \mathbf{N}^2 and dummy report count $n^{(2)}$.

 Finally, in the step Appending shares to dummy reports, S_1 will append the $n^{(1)} = 5$ dummy reports, as well as $n^{(2)}$ fake reports with all bits filled with 0, to its true reports from 10 clients. This way, the only communication needed between S_1 and S_2 is the exchange of the numbers $n^{(1)}$ and $n^{(2)}$.

 Concretely, suppose the noise vector of S_2 be $\mathbf{N}^2 = (1, 0, 0, 1)$. We depict the noise addition following our example in Figure 6.

 In the servers now reveal the buckets for the first attribute, they can then organize the reports in buckets accordingly:

 $$B_1 = \{d_{1,1}^1, d_{1,3}^1, d_{4,1}^1, d_{6,1}^1, d_{12,1}^1, d_{16,1}^1\}, \quad B_2 = \{d_{2,1}^1, d_{2,7}^1, d_{8,1}^1, d_{15,1}^1\},$$

 $$B_3 = \{d_{2,2}^1, d_{10,1}^1\}, \quad B_4 = \{d_{14,1}, d_{15,1}^1, d_{17,1}^1\}.$$

 Finally, they reveal the requested histogram as the counts of the buckets B_1, B_2, B_3, ignoring the dummy bucket B_4.

Note that sampling such a noise vector is in practice unrealistic. Instead, we would expect to get noise values centered around our chosen shift parameter M. We use this small vector in this example for the sake of simplicity.
3.2 Oblivious Random Shuffling

In our work, we take the Mohassel et al. [32] protocol and modify it into an efficient honest-majority 3-party oblivious random shuffling protocol with linear complexity. The protocol is formally described in Figure 7 and illustrated in Figure 12 (in Appendix E).

In Initialize step, we allow each pair of servers to jointly sample a permutation and a vector of masks. In practice, the permutation and mask can both be sampled from random seeds so the communication cost is trivial. Compared to 2-party protocols, the presence of the third party leads to linear instead of linearithmic computational and communication overhead. During the Shuffling phase, each party needs to send only one message, resulting in a constant number of rounds of communication. We do not need commitments or interactions, because of the third server we introduced. More precisely, when one of the servers is malicious, the sampling from the (third) honest server is enough to create a uniform distribution for the permutation.

The formal privacy of the protocol in the semi-honest server model is proven in Theorem C.1 in Appendix C.1. Informally, what we prove when all three servers are semi-honest is that the views of any corrupt party can be perfectly simulated. At the initialization phase, each pair of parties jointly sample a random permutation and a random mask vector. These can be simulated by uniformly sampling and sending to the adversaries random permutations and mask vectors. The simulation of shuffling phase is done as follows.

1. **Corrupt \(S_1 \):** The only message that \(S_1 \) receives is \(A := \pi_{23}(\pi_{12}(D^2) + R_{12}) + R_{23} \) from \(S_2 \), where \(\pi_{23} \) and \(R_{23} \) are known to \(S_1 \). Since the random vector \(R_{23} \) masks the permuted shares, \(A \) is indistinguishable from a random vector from \(S_1 \)’s view. The simulator can replace it with a random vector of same size.

2. **Corrupt \(S_2 \):** \(S_2 \) receives no messages so there is nothing to simulate.

3. **Corrupt \(S_3 \):** The only message that \(S_3 \) receives is \(B \) from \(S_2 \). As is the same situation to \(S_1 \)’s, \(B \) is indistinguishable from a random vector from \(S_3 \)’s view, so the simulator can replace it with a random vector of the same size.

This informal analysis ignores the final output. In the formal treatment we will assume collusion between Reporting Origin and one of the servers. Reporting Origin learns the final output and we assume the leakage of \(A' \) and \(B' \), as well.

3.3 Secure Modulo Conversion for Sum

So far, we only worked with additively secret shared bitstring keys to build histograms. However, in our system, the reports are formed with real number values. It is more difficult to work with real numbers to compute the sum as opposed to the histograms: the clients may cheat during secret sharing and send some very large values to the reporting origin. Since the computations are done in MPC settings by secret sharing the reported values, it will not be caught and the end result will return as a meaningless sum.

Malicious Clients: There are two ways to enforce clients to secret share a value within a range: boolean secret share within a range and then lift it to a larger field to accommodate sums or arithmetic secret share with small modulo and lift it to a larger field. They are detailed below. Let the client value be \(d_i \) which is an \(\ell \)-bit string. Let \(p \) be an \(\ell \)-bit odd integer which determines the range of \(d_i \).

1. **Boolean-to-Arithmetic(B2A) Share Conversions:** This technique is used in [1] and stated that it is more efficient than the Arithmetic-to-Arithmetic(A2A) conversion. Each client secret shares its value such that \(d_i = d_i^b \oplus d_i^a \) where \(d_i^b \)'s are Boolean shares. Since the length of the shares are
Aggregate Measurement via Oblivious Shuffling

Protocol \(\Pi_{\text{NoiseGen}} \)

Parameters. An attribute index \(m \), \(k_m \) buckets. There are two parameters: \(\epsilon \) and \(M \). We use truncated Laplace distribution \(\frac{\text{Lap}(X,1/\epsilon)}{1-p} \) for \(X \geq -M - \frac{1}{2} \) with \(p = \frac{1}{2} e^{-\epsilon (M+\frac{1}{2})} \).

Input. Each server \(S_b \) inputs \((dp, D^b, m)\) where \(D^b \) is the full dataset share of the server \(b \) and \(m \) is the (queried) attribute index.

Noise generation. For each \(b \in \{1,2\} \), for each bucket \(j \in G_m \), \(S_b \) randomly samples noise [until it is larger than \(-M - \frac{1}{2}\) by rejection sampling] from the distribution \(\text{Lap}(X,1/\epsilon) \) and rounds it to the nearest integer. We call this rounded noise as \(n^b_j \). All the noise values are recorded as \(N^b = (n^b_j + M)_{j \in G_m} \).

Generating dummy reports. For each \(b \in \{1,2\} \) and each bucket \(j \in G_m \), \(S_b \) creates \(n^b_j + M \) dummy reports as follows:

For \(i \in [n^b_j + M] \), set \(d^b_{i,j}[v] = j \) and \(d^b_{i,j}[v] \leftarrow \perp (v \in G_v) \) (in the case of a numerical attribute for summing), \(d^b_{i,j}[v] \leftarrow 0 \) (in \(G_v \)) if \(v \) is an attribute to be summed).

All of \(n^b \) = \(\sum_{i \in G_m} (n^b_j + M) \) dummy reports \(d^b_{i,j} \) as \(D^b_{\text{dummy}} \).

Appending shares to dummy reports. \(S_1 \) and \(S_2 \) share the numbers \(n^{(1)} \) and \(n^{(2)} \) with each other. Set \(D^1_{\text{priv}} \) and \(D^2_{\text{priv}} \) as follows: \((D^1_{\text{priv}})_i = D^1_i \) for \(i < C \); \((D^1_{\text{priv}})_i = (D^1_{\text{dummy}})_i - C \) for \(C \leq i < C + n^{(1)} \); and \((D^1_{\text{priv}})_i = 0 \) for \(C + n^{(1)} \leq i < C + n^{(1)} + n^{(2)} \). \(S_2 \) computes similarly except that it puts all 0 reports before the dummy reports of \(S_1 \).

Output. Each server \(S_b \) outputs \(D^b_{\text{priv}} \).

Figure 5: The protocol of DP noise generation.

The OT in ABY construction requires pre-computations in an offline phase. Instead of OT, we could use bit-wise multiplication which also require pre-computations. However, generating the pre-computations can be omitted by

Figure 7: The protocol of oblivious random shuffling.
introducing a (honest and non-colluding) 3rd server which would generate the randomness.

(2) **Arithmetic-to-Arithmetic (A2A) Share Conversion:** Each client secret shares its value such that \(d = (d^1 + d^2) \mod p \) where the \(d^b \)'s are arithmetic shares modulo \(p \). This way, the servers can detect if a client sends a too large value which is bigger than \(p \). However, to compute the sum, we need to lift the shares to a larger domain and it is known as quite expensive. **However, we argue that it may not be the case.** We will use techniques from Quotient Transfer (QT) which is first introduced in [28] and leveraged in other works [29].

Let \(p' \) be an odd prime modulus that we like to convert the shares of \(d \) from modulus \(p \). Briefly, we will describe how to convert secret shares of a value (modulo a small odd integer \(p \)) into secret shares of the same value in a large odd prime \(p' \). We start with the following observation: \(d = (d^1 + d^2) \mod p \) implies that

\[
d = d^1 + d^2 - q \cdot p
\]

where \(q \in \{0, 1\} \) and if \(d \) is an even value, then we know that \(q \) is equal to the XOR of the least significant bit (lsb) of \(d^1 \) and \(d^2 \) as shown below:

\[
q = \text{lsb}(d^1) \oplus \text{lsb}(d^2) = \text{lsb}(d^1) + \text{lsb}(d^2) - 2 \cdot \text{lsb}(d^1) \cdot \text{lsb}(d^2)
\]

This observation suggests that if we know how to secret share \(q \) from the lsb of \(d^b \), then we can compute the modulo conversion easily. In other words, sharing the secret bit \(q \) into shares of \(p' \) is enough to lift the shares of \(d \) from modulus \(p \) into large odd prime \(p' \). This technique is called quotient transfer and first used in [28]. Let \(q^1 \) and \(q^2 \) be the shares of \(q \) modulo \(p' \). We want to obtain two shares \((d^1)' = (d^1 - q^1 \cdot p) \mod p' \) and \((d^2)' = (d^2 - q^2 \cdot p) \mod p' \) such that \(d = (d^1)' + (d^2)' \mod p' \). If we share the \(q \) between the servers, then the conversion of \(d \) to a larger field would be done locally. For that, we need a 2-party protocol which takes output \(q \) from \(S_1 \) and \(b = \text{lsb}(d^b) \) from \(S_2 \) and outputs the \(m^1 \) to \(S_1 \) and \(m^2 \) to \(S_2 \) such that \(m^1 + m^2 \mod p' = \text{lsb}(d^1) \cdot \text{lsb}(d^2) \): i.e. an OT protocol to multiply the least significant bits. Finally, each server \(b \) computes first \(q^b = \text{lsb}(d^b) - 2 \cdot m^b \) and then \((d^b)' = d^b - q^b \cdot p \mod \ell \). The total cost of this protocol is 1 OT per client input. It is a factor of \(\ell \) faster than the Prior+ proposal because it requires only one OT per record instead of \(\ell \) OTs where \(\ell \) is typically bigger than 64.

To address the requirement on \(d \) to be even, the servers can multiply \(d^b \) by 2 to make the reported values even after secret sharing. Then, the result of the conversion will be divided by 2 which is possible because \(p' \) is odd, i.e. 2 is invertible.

4 REPORT BUCKETIZATION

The goal of report bucketization is to arrange a set of reports \(D \) collected from \(C \) clients into buckets according to a subset of encoded attributes, while preserving privacy of the individual reports. For attribute \(m \) of \(m \cdot \ell \) bits, there are \(L_m = 2^m \) buckets in total. Our full protocol involves four parties: a Reporting Origin \(R \) and three helper servers \(\{S_1, S_2, S_3\} \).

<table>
<thead>
<tr>
<th>Protocol</th>
<th>$\Pi_{A2AConert}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants: Two helper servers S_1 and S_2. Note that this protocol utilizes an oblivious transfer (OT) protocol as a subroutine and our instantiations of such OT runs with three servers for better performance though it could run with two servers.</td>
<td></td>
</tr>
<tr>
<td>Initialize: S_1 and S_2 receive shares of records $D^1 := {d^1_{i}}{i \in [n]}$ and $D^2 := {d^2{i}}_{i \in [n]}$ respectively.</td>
<td></td>
</tr>
<tr>
<td>(1) Each server b checks if d^1_{b} is in modulo p. If not, they communicate to the counterpart to discard the reported value. The valid shares are multiplied by two so that it satisfies $2 \cdot d^1_{b} = (d^1_{b} + d^2_{b}) \mod p$.</td>
<td></td>
</tr>
<tr>
<td>(2) Each server b computes $\text{lsb}(d^b)$, then, they run an OT protocol (as described below in Figure 9) with their least significant bits to compute the shares of $\text{lsb}(d^1_{b}) = \text{lsb}(d^1_{b})$. At the end, S_1 obtains m^1_{b} and S_2 obtains m^2_{b} such that $m^1_{b} + m^2_{b} \mod p' = \text{lsb}(d^1_{b}) \cdot \text{lsb}(d^2_{b})$.</td>
<td></td>
</tr>
<tr>
<td>(3) Each server b computes $q^b = \text{lsb}(d^b) - 2 \cdot m^b \mod p'$.</td>
<td></td>
</tr>
<tr>
<td>(4) Each server b computes $(d^b)' = d^b - q^b \cdot p \mod p'$.</td>
<td></td>
</tr>
<tr>
<td>Output: S_1 and S_2 outputs shares of records $D^1 := {(d^1_{b})'}{i \in [n]}$ and $D^2 := {(d^2{b})'}{i \in [n]}$ respectively, which are lifted shares of $2 \cdot d^1{b}$ modulo p'. Thus, it satisfies that $d^1_{b} = (d^1_{b})' + (d^1_{b})' \mod p'$.</td>
<td></td>
</tr>
</tbody>
</table>

Figure 8: The pseudocode for secure modulo conversion which uses Quotient Transfer.

We assume that no two servers in the aggregation system collude, but R may collude with one of the servers. We build our system with three helper servers in a way that two of them, say S_1 and S_2, receive the secret shared inputs, and other two, say S_1 and S_3, output the results of the histogram computations. Internally, two of the servers run DP noise generation and all three run the oblivious random shuffling protocol.

The input to our full protocol is a dataset of reports $D = \{d_{i}\}_{i \in [C]}$, initially secret shared between two non-colluding servers. To ensure that the servers get the same ordering of reports, the clients may attach an ephemeral ID along with the encryption of the shared reports (under the public key of the servers), before passing them to the servers. This is equivalent to including a Leader server, which is a trusted entity whose only job is to maintain the order of the reports.\(^{7}\) At the end of the protocol, two servers obtain a new secret shared vector $D_{priv} = \{d_{i}\}_{i \in [C+n']}$, where all reports with the same attribute values (“buckets”) are stored consecutively in D_{priv}. Note that the size of D_{priv} becomes $C+n'$, where n' represents appended dummy reports, ensuring that the outputs revealed to the Reporting Origin and helper servers are differentially private.

\(^{7}\)This is aligned with the Internet-Draft [21].
We describe our Bucketization protocol as a full procedure $\text{Hist}_{\text{Bucketize}}$ in Figure 10. Let $D = (d_i \in G)_{i \in [C]}$ be the dataset of reports collected from clients. $\text{Hist}_{\text{Bucketize}}$ takes D and a query index m (to indicate on which attribute the histogram is built) as an input.

The procedure is triggered by R, with helper servers S_1 and S_2 receiving the shares of the reports as $D^1 = (d_i^1)_{i \in [C]}$ and $D^2 = (d_i^2)_{i \in [C]}$, such that $d_i = d_i^1 + d_i^2$ for all $i \in [C]$. After secret sharing the reports in D, the first step is to achieve differential privacy by S_1 and S_2 independently adding dummy reports as noise, which is done by invoking the noise generation subroutine, as defined in Figure 5. This step inputs the shares of the dataset and the query attribute index m, and outputs a new dataset with appended dummy reports $D_{\text{priv}} = (d_i)_{i \in [C+n']}$.

After generating D_{priv}, the servers S_1, S_2 and S_3 execute a 3-party oblivious random shuffling protocol, as defined in Figure 7. At the end of this step, the real reports and dummy reports will be mixed up by the random permutation so that none of the servers can trace back any report to the original report, nor can they distinguish between the authentic reports and dummy reports. The output will be a permuted dataset $D_{\text{priv, perm}} = (d_i')_{i \in [C+n']}$, secret shared between the helper servers S_1 and S_3.

For each $i \in [C + n']$, the servers reveal the selected attribute $d_i[m]$ and bucketize the reports into buckets $\{B_j\}$ for $j \in G_m$ according to the attribute value.

Finally, the buckets with size less than a pruning threshold t, as well as the dummy bucket B_L, are discarded. A value for t is typically decided based on the DP parameter ϵ, as t indicates the dummy reports added on average to each bucket. Since the output shares remain with S_1 and S_2, we apply an organizing step to put the shares back in place, i.e., reshare them to S_1 and S_2 to run the protocol again if needed (see below). While this resharing is not really necessary in implementations, we include it in the protocol description in order to be able to use $\text{Hist}_{\text{Bucketize}}$ repeatedly. The protocol outputs the counts for each bucket, shifted by the public parameter M described in Section 3.1.

We illustrate the procedures of dummy reports addition and oblivious shuffling in Figure 13 (in Appendix E).

4.1 Private Histogram Protocol Description

We describe our Bucketization protocol as a full procedure $\text{Hist}_{\text{Bucketize}}$ in Figure 10. Let $D = (d_i \in G)_{i \in [C]}$ be the dataset of reports collected from clients. $\text{Hist}_{\text{Bucketize}}$ takes D and a query index m (to indicate on which attribute the histogram is built) as an input.

The procedure is triggered by R, with helper servers S_1 and S_2 receiving the shares of the reports as $D^1 = (d_i^1)_{i \in [C]}$ and $D^2 = (d_i^2)_{i \in [C]}$, such that $d_i = d_i^1 + d_i^2$ for all $i \in [C]$. After secret sharing the reports in D, the first step is to achieve differential privacy by S_1 and S_2 independently adding dummy reports as noise, which is done by invoking the noise generation subroutine, as defined in Figure 5. This step inputs the shares of the dataset and the query attribute index m, and outputs a new dataset with appended dummy reports $D_{\text{priv}} = (d_i)_{i \in [C+n']}$. After generating D_{priv}, the servers S_1, S_2 and S_3 execute a 3-party oblivious random shuffling protocol, as defined in Figure 7. At the end of this step, the real reports and dummy reports will be mixed up by the random permutation so that none of the servers can trace back any report to the original report, nor can they distinguish between the authentic reports and dummy reports. The output will be a permuted dataset $D_{\text{priv, perm}} = (d_i')_{i \in [C+n']}$, secret shared between the helper servers S_1 and S_3.

For each $i \in [C + n']$, the servers reveal the selected attribute $d_i[m]$ and bucketize the reports into buckets $\{B_j\}$ for $j \in G_m$ according to the attribute value.

Finally, the buckets with size less than a pruning threshold t, as well as the dummy bucket B_L, are discarded. A value for t is typically decided based on the DP parameter ϵ, as t indicates the dummy reports added on average to each bucket. Since the output shares remain with S_1 and S_2, we apply an organizing step to put the shares back in place, i.e., reshare them to S_1 and S_2 to run the protocol again if needed (see below). While this resharing is not really necessary in implementations, we include it in the protocol description in order to be able to use $\text{Hist}_{\text{Bucketize}}$ repeatedly. The protocol outputs the counts for each bucket, shifted by the public parameter M described in Section 3.1.

We illustrate the procedures of dummy reports addition and oblivious shuffling in Figure 13 (in Appendix E).

4.2 Private Sum Computation

We described how to lift a secret shared value from a small modulus to larger one in Section 3.3. Servers run the modulus conversion for each record using modulus p' which is large enough so that the final sum added a Laplace noise is always between $-\frac{\epsilon}{2}$ and $\frac{\epsilon}{2}$. Then, each server locally adds the shares of every value to be summed to obtain sum of all shares. Each server adds a rounded Laplace noise with parameter ϵ (rounding done to the nearest integer). The local sums are revealed to compute the noise sum of numerical attribute values. This sum modulo p' gives a number between $-\frac{\epsilon}{2}$ and $\frac{\epsilon}{2}$ as the noisy aggregated sum. Using the same analysis as

Protocol $\Pi^\text{Hist}_\text{Bucketize}

Parameters. C as the total number of collected reports. Parameters ϵ and M for Π^NoiseGen.

Input. A query index i to indicate which attribute to bucketize on; shares of S_1 and S_2 as $D^1 = \{d^1_i\}_{i \in C}$ and $D^2 = \{d^2_i\}_{i \in C}$, such that $d^1_i = d^1_1 + d^2_i$; a threshold t.

Initialization. Each server receives and decrypts their share. They discard the shares if they are not in G.

Bucketization.

1. (Differential privacy) S_1 and S_2 invoke the protocol Π^NoiseGen from Figure 5 on input (dp, D^1, m) and (dp, D^2, m). For $b \in \{1,2\}$, S_b sends (dp, D^b, m) and updates D^b by the output of the protocol as $D^b_{\text{priv}} = \{d^b_i\}_{i \in C + n'}$ with appended n' dummy reports.

2. (Random shuffling) S_1, S_2, and S_3 invokes the protocol Π^RandShuf from Figure 7 on inputs $(shuffle, D^1_{\text{priv}})$, $(shuffle, D^2_{\text{priv}})$. It outputs $D^b_{\text{priv,perm}} = \{d^b_i\}_{i \in C + n'}$ to S_b for $b \in \{1,3\}$.

3. (Bucketizing) For $i \in [C + n']$, S_1 and S_3 reveal their shares of d^1_i in G_m. They allocate L_m empty buckets $\{B_j\}$, one for each $j \in G_m$. For $i \in [C + n']$, $b \in \{1,3\}$, S_b puts the report d^b_i into the corresponding bucket according to the value of d^1_i in G_m.

4. (Pruning and organizing) For each bucket revealed in previous step, discard the bucket B_j if $|B_j| < t$ which has small number of reports and the dummy buckets (indexed as $j = \perp$) along with all the reports in it. For the shares of noisy database from S_1 and S_3, S_3 generates two secret shares of $D^1_{\text{priv,perm}}$ and sends the shares to S_1 and S_2 respectively; S_1 combines the share he receives from S_3 with $D^1_{\text{priv,perm}}$ so that S_1 and S_2 have the new shares of the $D_{\text{priv,perm}}$.

Output. Output buckets which remain after pruning, their counts, and the attribute value of index m for each bucket. Servers keep a private output which shares datasets of reports for each bucket so that they can be used as input for further instance of the protocol.

Algorithm 1 Layered $\Pi^\text{Hist}_\text{Bucketize}$

Input: A list of attribute indices $M = \{m_1, \ldots, m_k\}$; a shared dataset D^1 and D^2 for S_1 and S_2, label and i are reserved for the recursion and set to \perp by default.

Output: Histogram on attributes in M.

1. **procedure** Layered(M, label, i, D^1, D^2)
2. 2. **if** ($\text{label, } i = (\perp, \perp)$) **then**
3. 3. **set** label = null, $i = 1$.
4. 4. **end if**
5. 5. **if** $i \leq \lambda$ **then**
6. 6. **Call** $\Pi^\text{Bucketize}$ with inputs (m_i, D^1, D^2).
7. 7. **for each** produced bucket B_j **do**
8. 8. **set** σ to the attribute value $d[m_j]$.
9. 9. **set** D^1 and D^2 to the shares of the bucket.
10. 10. **Call** Layered(M, label σ, $i + 1$, D^1, D^2).
11. 11. **end for**
12. 12. **else**
13. 13. **output** label.
14. 14. **Subtract** the parameter M (used in $\Pi^\text{Hist}_\text{Bucketize}$) from each value in count(D) and output the result.
15. 15. **end if**
16. **end procedure**

Concretely, when the first layer is done with m_1, only the corresponding bits are revealed. Then, the procedure bucketizes on the next attribute index m_2 by generating noisy reports, creating buckets for each possible value of m_2, and setting the values for other attributes to their dummy values.

We discuss the complexity of the layered protocol and further optimizations in Appendix B.

4.3 Layered Bucketization

In this section we will describe how our method provides flexible histogram aggregations. For reports with multiple attributes, our protocol supports aggregation on an arbitrary set of attributes by recursively invoking $\Pi^\text{Hist}_\text{Bucketize}$.

For example, our method enables running queries such as

```
SELECT COUNT(Category) FROM D
WHERE Gender = "She" GROUP BY Category
```

as long as there is enough data in the corresponding bucket. Moreover, such an approach enables a performance gain for attributes with large report sizes. For example, if an attribute has 32 bits, we can apply layered pruning to speed up the protocol. More importantly, if the domain of the attributes is sparse, say 2^{10} reports represented with 32 bits, layering Bucketization of the 32 bits reports into three (10, 10, and 12 bits) and pruning the buckets after each layer, allows us to run the protocol efficiently even for relatively large reports with sparse domains. A formal description of the layered algorithm is given in Algorithm 1.

![Figure 10: Our Histogram Protocol from Oblivious Shuffling.](image-url)

for histogram, from the viewpoint of a malicious server, the sum protocol is $(\epsilon, 0)$-DP.
number of reports below some threshold \(t \), \(B' = \{ B_1 : |B_1| \geq t \} \), and continue bucketization for the next attribute for each remaining bucket in \(B' \) in the next layer.

When we open the first attribute (i.e., only the first two bits), the bucket \(B_1 \) will contain
\[
\{00 010 25, 00 000 19, 00 010 42, 00 010 64, 00 111 0, 00 111 0, 00 111 0, 00 111 0 \},
\]
yielding 7 reports where the second and third attributes are still secret shared. Then, suppose the protocol goes to the second layer on \(B_1 \), where bucketization is run on the second attribute. For this example, we focus on the bucket \(B'_1 \) which counts the reports where \(d_1[1] = 00 \) and \(d_1[2] = 010 \). Suppose \(S_1 \) sampled 2 and \(S_2 \) sampled 1 to add in \(B'_1 \), then the output of that bucket will have 3 + 2 + 1 reports, where 3 comes from real reports (neither \(S_1 \) nor \(S_2 \) know these true report counts), and additional 2 and 1 come from the dummy reports. It means that the query that asks for counts, where first attribute is 00 and second attribute is 010, will output 6, instead of 3. Finally, in the second layer, more dummy reports are added with \(d_1[2] = 111 \) and then the second attribute values are revealed. After revealing, the bucket corresponding to 111 and the buckets with less than \(t \) counts will be discarded. 8

In an extreme case we consider every single bit of the report as an attribute, in which case our layered protocol runs as a (pruned) binary tree descent. We analyse the complexity of the layered protocol, as well as this extreme case, next.

4.4 Privacy Analysis of \(\Pi_{Hist}^{\text{Bucketize}} \) Protocol

4.4.1 Differential privacy

The \(\Pi_{Hist}^{\text{Bucketize}} \) protocol is \((\epsilon, \delta)\)-DP, with \(\delta = 2p \Delta e^{-1} \) for a failure probability \(p = \frac{1}{\epsilon} e^{-c(M+\frac{1}{2})} \), where \(c \) is the standard Laplace parameter. We prove the statement in Appendix C.2.

We can tune the parameters for our protocol quite nicely. If we want our protocol to achieve \((\epsilon = 0, \delta = 2^{-40})\)-DP, then we take \(\epsilon = 1 \) in Laplace distribution and \(M = 28 \), which implies \(p = 2^{-42} \). So, for each bucket, we add 28 dummy reports on average.

In our protocol, we provide privacy against a malicious server by having both servers add noise. A malicious server can subtract the dummy reports it added from the final histogram and learn the histogram with dummy reports only from the other server. Earlier, we computed the average number of dummy reports per bucket as 28 for \((\epsilon = 0, \delta = 2^{-40})\)-DP. This becomes better if all the participants are honest: it is enough for each honest server to add 14 dummy reports on average per bucket, because if both are honest, the total 28 is preserved.

These parameters change when we use layered Bucketization with \(\lambda \) layers. For example, for \(\epsilon = 1, \lambda = 16, (2\lambda - 1)\delta = 2^{-35}, \) i.e., \((\epsilon, (2\lambda - 1)\delta)\)-DP, we take \(p = 2^{-42} \), which implies \(M = 31 \) and \(\hat{M} = M + 2^{-37} \). The analysis is in Appendix C.5.

4.4.2 (Informal) Security analysis with malicious clients

In this section, we give the privacy bound against malicious clients. Note that the malicious behaviour of the client is to modify his reports in a way that it corresponds to a different bucket at the end of the protocol. This holds true because our protocol uses the length preserving secret sharing mechanism. A (malicious) client submits two shares of a report to two corresponding servers. Regardless of the authenticity of shares, the shares will belong to one bucket that an honest client could have submitted.

Informally, the \(\Pi_{Hist}^{\text{Bucketize}} \) protocol protects against a small subset of malicious clients. Since the shares of the attributes preserve the length of the original attribute size, a small subset of client can only secret-share a wrong report to be counted in another bucket. Since the aggregated results are already noisy, removing the report from the original bucket and increasing the count on another bucket only gives the affect of noise as long as only small set of clients are allowed to do that.

Formally, we prove the following result in Appendix C.3. Let \(N \) be the number of malicious clients. The \(L_1 \) distance between true histogram and the incorrect histogram output from \(\Pi_{Hist}^{\text{Bucketize}} \) protocol is bounded by \(2N \).

Other than the above MPC protocol, more measures can be taken to bound user contributions, e.g., browsers only upload one record per time period; records must be aggregated then dumped per time period; reports contain random nonce under CCA secure encryption so they can’t be duplicated.

4.4.3 (Informal) Privacy analysis with semi-honest servers

The cryptographic protocol \(\Pi_{Hist}^{\text{Bucketize}} \) is built upon a generic honest-majority three-party computation protocol and a specific three-party oblivious permutation protocol. Overall, it is under honest-majority assumption, which means that the system does not tolerate any collusion. As long as there is no collusion between any pairs of servers, true counts are hidden from each server as well as the reporting origin. We formally prove the privacy of random shuffling in Appendix C.1.

In the \(\text{Layered} \) protocol, the semi-honest server additionally learns the number of reports in the dummy bucket before discarding it. This bucket includes dummy reports from upper layers and newly added dummy reports. We take it into account in the analysis of the \(\text{Layered} \) protocol.

4.4.4 (Informal) Privacy analysis with a malicious server

Privacy against malicious server is formally analyzed in Appendix C.4 under a leakage function. This leakage function allows a malicious server to choose an offset vector \(\Delta \) and to learn the noisy histograms of \(D + \Delta \) instead of \(D \). The leakage function from the execution of protocol with semi-honest servers use \(\Delta = 0 \). Thus, the malicious server model is only introducing the ability to select a nonzero \(\Delta \) in the leakage function. Thus, we provide the same guarantee as in [7]: allows only additive attacks where a malicious server chooses an offset vector \(\Delta \) and computation is made on dataset \(D + \Delta \) instead of \(\Delta \).

We analyse the implication for differential privacy for \(\text{Layered} \) protocol in Appendix C.5.

5 PERFORMANCE EVALUATION

We implement our protocol and show its performance with several experiments. First, we demonstrate the efficiency of generating both full-domain and subset histograms. Meanwhile, their performance will also be compared with prior works. Second, we run micro-benchmarks to demonstrate the bottlenecks of our implementation.
We benchmark the performance of our protocols for generating full histograms from short reports.

<table>
<thead>
<tr>
<th>ℓ</th>
<th>16</th>
<th>18</th>
<th>20</th>
<th>22</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bucketization (seconds)</td>
<td>9.2</td>
<td>11.2</td>
<td>25.3</td>
<td>75</td>
<td>422</td>
</tr>
<tr>
<td>DPF [7, 8, 24] (days)</td>
<td>1.15</td>
<td>4.75</td>
<td>19</td>
<td>76</td>
<td>305</td>
</tr>
</tbody>
</table>

Table 3: Performance of constructing full-domain histograms.

5.3 Micro-Benchmarks

We report the micro-benchmarks of our protocol in Table 4. As an interactive 3-party protocol, Bucketization is susceptible to the restrictions of bandwidth and is slightly affected by high round-trip latency (60 ms) due to its constant number of rounds of communication. As we see in Table 4, performance is mainly limited by the 3-party random shuffling protocol, which has a communication complexity of $O((C + B)\ell)$. Revealing the noisy labels has a communication complexity of $O(C + B\ell)$.

In order to understand the effect of report sizes, we micro-benchmark the protocol $\Pi^\text{Hist\ Bucketize}$ with variable report length to demonstrate the performance of the three main components: adding dummy reports, random shuffling, and noisy label reveal. For each execution, $C = 10\,000\,000$ reports are sampled from a Zipf distribution with parameter 1.03. The length of the reports is from a list $\ell \in \{32, 64, 256, 512\}$ with $\lambda = 1$, meaning that we only run one layer and bucketize on only 16-bit attribute. The servers generate differentially private histograms from a domain size of $B = 2^{16}$ on any 16 bits encoded as attributes in the reports. The parameters for (ℓ, δ)-DP is $\ell = 0$, and $\delta = 2^{-40}$ and $M = 28$. The results are shown in Table 4.

<table>
<thead>
<tr>
<th>Report length ℓ (bits)</th>
<th>32</th>
<th>64</th>
<th>256</th>
<th>512</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add dummy reports</td>
<td>26 ms</td>
<td>47 ms</td>
<td>176 ms</td>
<td>355 ms</td>
</tr>
<tr>
<td>Random shuffling</td>
<td>3.91 s</td>
<td>5.86 s</td>
<td>20.1 s</td>
<td>38.4 s</td>
</tr>
<tr>
<td>Noisy labels reveal</td>
<td>2.41 s</td>
<td>2.86 s</td>
<td>6.73 s</td>
<td>10.92 s</td>
</tr>
</tbody>
</table>

Table 4: Micro-benchmark results for Bucketization.

5.4 Constructing a Subset-Histogram via Pruning

We conclude our experiments with benchmark of subset histogram aggregation. In the real world practice, generating a histogram of the whole domain is not always meaningful. The domain size can be large and the reports are usually not uniformly distributed. As in the setting of [7], the reports are sampled from a certain distribution and are encoded sparsely in a large domain. The data collector is only interested in popular reports and tends to ignore rarely appeared outliers. In histogram aggregation, a large number of buckets may be empty or only contain a small number of reports, when the reports have a large domain size or the input reports have a highly concentrated distribution. We demonstrate the performance of our protocol Algorithm 1 with following experiments. Note that the
We have presented an efficient 3-party protocol, Bucketization, with 32 virtual CPUs and utilizes a network with Appendix C.5, while we keep Aggregate Measurement via Oblivious Shuffling.

6 CONCLUSIONS

We also compare the performance of our protocol with the subset-histogram appearing in the end-to-end performance evaluation of [7]. In the experiment, C = 400 000 input reports are sampled from a Zipf distribution, with Zipf parameter 1.03 and support 10 000. The bit-length of input reports is 256. The prune threshold is set to t = C / M. The experiment of [7] is done between 2 servers with 32 virtual CPUs and utilizes a network with 61.9 ms round-trip latency. Their protocol takes around 53 minutes to generate a subset-histogram.

For our protocol, 3 helper servers run Algorithm 1 with λ = 16 and bucketize the reports on 16-bit attributes at each layer. It takes 122 seconds to generate the subset-histogram with 1635 output buckets, when we keep the privacy parameters (ε, δ) = (0, 2−40). In order to obtain (ε, (2λ − 1)δ) = (0, 2−40)−DP, we set the standard Laplace parameter ε = 1 and M = 31, with p = 2−44. It takes 74 seconds for our protocol to generate the histogram with 971 output buckets.

REFERENCES

To sample the noise following the description given in Section 3.1, we have two options:

(1) Naive rejection sampling:
 1. Sample \(n \) \(\leftarrow \text{Lap}(\frac{1}{2}) \)
 2. Sample \(x \) \(\leftarrow \text{Lap}(\frac{1}{2}) \)
 3. If \(n < -M + \frac{1}{2} \), go to step 2.
 4. Output \(x \).

(2) Directly inverting the CDF of truncated Laplace distribution:
 1. Sample \(u \) uniformly between 0 and 1.
 2. Set \(z = 2(1-p) \left(u - \frac{1-p}{2} \right) \).
 3. Set \(a = \frac{\ln(1-|z|)}{\epsilon} \).
 4. Set \(x = a \cdot \text{sign}(z) \).
 5. Output \(x \).

This follows from

\[
\text{CDF}(x) = \int_{-M}^{x} \frac{1}{1-p} \text{Lap}(\frac{1}{2}) dt
\]

\[
= \frac{1}{1-p} \int_{0}^{1} \frac{1}{1-p} \text{Lap}(\frac{1}{2}) dt
\]

\[
= \frac{1}{1-p} \int_{0}^{1} \frac{1}{1-p} \text{Lap}(\frac{1}{2}) dt
\]

The first method is not time-invariant. However, the number of rejections is independent from input \(u \) and output \(x \). Thus, the number of rejection does not leak any information to the adversary.

B. FURTHER DETAILS ON LAYERED BUCKETIZATION

B.1 Complexity of Algorithm 1

For each layer \(i = 1, \ldots, \lambda \), we consider a call to \(\text{Layered}() \). The average complexity is the size of the input dataset to this call, appended with \(L_i M \) dummy reports. The size of the input dataset is the size of a bucket at the previous \((i - 1)\)-th layer which is not pruned (larger than \(t \)) and not a dummy bucket. We analyze the complexity in two different cases.

First, consider \(t \) too low, i.e., \(t \leq M \) so that the number of non-pruned buckets is exponential. In this case, the number of selected buckets at layer \(i - 1 \) is upper-bounded by \(L_1 L_2 \ldots L_{i-1} \). The sum of the bucket sizes is \(C + L_1 \ldots L_{i-1} M \) on average. By summing over all layers, we obtain total complexity of \(O(\lambda C + ML_1 \ldots L_{\lambda}) \) (comparable to \(O(\lambda C + MB) \)). This is the complexity of the full histogram.

Next, consider \(t \) large enough \((t > M)\) to prune effectively. We consider every possible bucket \(B_1, \ldots, B_{L_1} \ldots, L_{\lambda} \), at layer \(i - 1 \). Denote by \(a_j \) the number of true reports in bucket \(B_j \) and by \(X_j = [M + Z_j] \), the number of dummy reports, where \(Z_j \) follows the truncated Laplace distribution. Finally, let \(Y_i \) be the number of dummy buckets added in \(B_j \) at layer \(i \). The complexity to treat \(B_j \) at layer \(i \) is bounded by \(a_j + X_j + Y_i \) if \(a_j + X_j \geq t \). Thus, the complexity to treat layer \(i \) is \(\sum_j(a_j + X_j + Y_i) \cdot 1_{a_j + X_j \geq t} \). Because \(\sum_j a_j \leq C \), this complexity is bounded by \(C + \sum_j(X_j + Y_i) \cdot 1_{a_j + X_j \geq t} \). The coins for \(X_j \) and \(Y_i \) are independent. Since we want to compute the average complexity, we can directly average \(Y_i \) and get a complexity of \(C + S \) with \(S = \sum_j \text{E} \left(X_j + L_i M \cdot 1_{a_j + X_j \geq t} \right) \). We can show that all buckets such that \(a_j < t - M \) have little influence on the sum: either there are a few with high \(a_j \), or \(a_j \) is so low that \(X_j \) has too little chance to exceed \(t - a_j \). The sum over buckets such that \(a_j \geq t - M \) has a number of terms bounded by \(\frac{C}{t - M} \) and is bounded by \((M + L_i M) \frac{C}{t - M} \). We sum over all layers and obtain \(\frac{\lambda C}{t - M} + \frac{L_i M}{t - M} \). In the extreme case, with \(\lambda = \frac{t}{3} \) and \(L_m = 2 \), this is \(O(\lambda C + \frac{C}{t - M}) \).

B.2 Reducing the Cost of Layered Bucketization

There are two potential problems with layered Bucketization: 1) the number of buckets can be exponential in the number of layers. This incurs an exponential number of round-trips of communication; 2) The amount of noise added to each layer is too large so it causes a memory blowup when bucketing multiple buckets in a batch. To address these issues, we make slight change to the layered Bucketization. The trick is to prune on each attribute independently before the layered Bucketization. This also provides the targeted output buckets of each layer so that the servers would know they do not need to add dummy reports to certain buckets because no real reports belong to those buckets. The steps are as follows:

(1) For a list of attributes indexed by \(\{m_1, \ldots, m_\lambda\} \), the servers invoke \(\Pi^{\text{Hist}_\text{Bucketize}} \) to bucketize on the attribute \(m_i \) for \(i \in [\lambda] \). For each invocation of the protocol, they prune the output buckets with pre-determined threshold and records the attribute values associated with output buckets. At last they merge all buckets into a new dataset that will be used for the Bucketization of the next attribute.

(2) The servers invoke Algorithm 1 to perform layered Bucketization on attributes indexed by \(\{m_1, \ldots, m_\lambda\} \). The operations are as described except that when adding the dummy reports, the servers only add dummy reports belonging

\[37\] IETF working group on Privacy Preserving Measurement. Privacy Preserving Measurement Protocol, May 2022. commit 3aa0e86a4261cd749f5fa0b2569f5a44f482f042.

to the output buckets of current layer. The list of output buckets is recorded at the last step. This method would maintain the constant round-trips of communication for the layered Bucketization. For the privacy, the new algorithm does not reveal more information to servers than Algorithm 1.

C ANALYSIS OF SECURITY AND PRIVACY

C.1 Privacy of Oblivious Random Shuffling In Honest-but-Curious Model

We allow that a malicious participant U colludes with the Reporting Origin to learn the final histogram. In the worst case, we assume that U learns A' and B' produced by the shuffling protocol based on which the final histogram is computed.

Theorem 1. Assume that all the participants follow the protocol and are non-colluding (honest but curious). For each participant of the protocol $\Pi_{RandShuf}$ described in Figure 7, there exists an efficient simulator $SimU_j$ such that the view of U in the protocol can be simulated from the final output (A', B').

Proof. The view of $U = S_1$ is that the received shares from each client D^i, the value $\pi_{12}, \pi_{13}, R_{12}$ and R_{13}, the value A, and the value B':

$$(D^i, \pi_{12}, \pi_{13}, R_{12}, R_{13}, A, B')$$

S_1 computes A' from (A, π_{13}, R_{13}). Then, its view is equivalent to

$$(D^i, \pi_{12}, \pi_{13}, R_{12}, R_{13}, A, A' + B')$$

where $A' + B' = \pi_{13}(\pi_{13}(D))$. Since π_{13} is known, the view of S_1 is equivalent to

$$(D^i, \pi_{12}, \pi_{13}, R_{12}, R_{13}, A, \pi_{23}(\pi_{12}(D)))$$

The first five terms: $D^i, \pi_{12}, \pi_{13}, R_{12}, R_{13}$ are independently sampled. The last term is a random permutation of D which is independent of the first five terms. The sixth term A is a function of D^i, R_{12}, R_{13} with an independent value R_{23}. Thus, the simulator for this view would independently sample the first six terms and would select an independent permutation of D which can be done from the output of the protocol.

The same procedure applies to $U = S_2$ and $U = S_3$ similarly. □

C.2 Differentially Private Protocol $\Pi_{HistBucketize}$

Theorem 2. The $\Pi_{HistBucketize}$ protocol given in Figure 10 is $(0, \delta)$-differentially private with $\delta = 2p \frac{e^{-\frac{1}{\epsilon}}}{1-p}$ for a failure probability $p = \frac{1}{2} e^{-e^{\frac{\epsilon}{2}}}$.

We consider what is learnt by S_1 (or S_2) as other participants will see noisy results. S_1 learns the final noisy histogram minus the noise it added himself; i.e. the true histogram plus the noise of his counterpart. As other participants will see more noise in data, we focus on S_1 and S_2 and prove the theorem as follows:

Proof. Let d and d' be two neighboring databases defined on \mathbb{N}^X. In what follows, we let i_s and i_l be the two indices such that

$$d_{i_s} - d'_{i_s} = 1, d_{i_l} - d'_{i_l} = -1, \text{and } d_j = d'_j \text{ for all } j \in \{1, \ldots, L\} \text{ except } j \in \{i_s, i_l\}. \text{ Let } M(\cdot) \text{ be the function with noisy output such that } M := \mathbb{N}^X \rightarrow \mathbb{R}^L.$$

For each bucket, protocol $\Pi_{NoiseGen}$ (given in Figure 5) iterates until the Laplace noise is larger than $-M + \frac{1}{2}$. Let P denote the PDF of the noise n as $P(n) = \frac{\text{Lap}(n, \frac{1}{\epsilon})}{1-p}$ if $n \geq -M - \frac{1}{2}$ and $P(n) = 0$ otherwise. Recall that $p = e^{-e^{\frac{\epsilon}{2}}}$.

Let $S \subseteq \mathbb{R}^L$ be an arbitrary set. We split S into two disjoint subsets S_{good} and S_{bad}. S_{good} has points $s \in S$ such that $(s_{i_s} - d_{i_s}) \geq -M - \frac{1}{2}$ and $(s_{i_l} - d'_{i_l}) \geq -M - \frac{1}{2}$. It means that we can obtain s from either d or d' (as far as the bucket i is concerned) because the noise to add is greater than or equal to $-M - \frac{1}{2}$. S_{bad} has points s such that $(s_{i_s} - d_{i_s}) < -M - \frac{1}{2}$ or $(s_{i_l} - d'_{i_l}) < -M - \frac{1}{2}$. It means that s is impossible to obtain from either d or d' (as far as the buckets i_s and i_l are concerned). We consider noise vectors n defined as $(s - d)$ (or $(s - d')$).

The property for s to be in S_{good} or S_{bad} depends on the two bucket indices i_s and i_l. We start computing the probability of $M(d)$ being in S_{good} for which the standard Laplace mechanism proof [18] works as it is:

$$\text{Pr}(M(d) \in S_{\text{good}}) = \int_{s \in S_{\text{good}}} \prod_j P(s_j - d_j) \quad (3)$$

$$= \int_{s \in S_{\text{good}}} \prod_j \frac{\text{Lap}(s_j - d_j)}{1-p} \prod_j P(s_j - d_j) \quad (4)$$

$$= \int_{s \in S_{\text{good}}} \prod_j \frac{\text{Lap}(s_j - d_j' + d_j - d_j')}{1-p} \prod_j P(s_j - d_j') \quad (5)$$

$$= \int_{s \in S_{\text{good}}} \prod_{j \in \{i_s, i_l\}} \frac{\text{Lap}(s_j - d_j')}{1-p} \prod_{j \notin \{i_s, i_l\}} P(s_j - d_j') \quad (6)$$

$$= \int_{S_{\text{good}}} \prod_j \text{Pr}(s_j - d_j') \quad (7)$$

$$\leq \text{Pr}(M(d') \in S_{\text{good}}) \quad (8)$$

$$\leq \text{Pr}(M(d') \in S) \quad (9)$$

where Equation (6) follows from

$$\text{Lap}(s_i - d_i' + d_i' - d_i) = \text{Lap}(s_i - d_i')e^{e(d_i' - d_i')} = \text{Lap}(s_i - d_i')e^\epsilon$$

and the two e^ϵ cancel.

Next, we compute the probability over S_{bad} which can be bounded as follows. Let the noise $n_i = \frac{1}{2} = s_i - d_i$. If $M(d)$ is in S_{bad}, it means that either $n_{i_s} < -M$ (which is not possible due to resampling) or $n_{i_l} + d_i - d'_{i_l} < -M + \frac{1}{2}$ or similarly that $n_{i_s} < -M + \frac{1}{2}$. To reach any $s \in S_{\text{bad}}$ from f, we must add a noise between $-M - \frac{1}{2}$ and $-M + \frac{1}{2}$ (this is a necessary but not sufficient condition). Thus,
We conclude that the protocol where (12) follows from with a dataset S.

C.3 Security Analysis for Malicious Clients

Theorem 3. Let N be the number of malicious clients. The L_1 distance between the true histogram and the incorrect histogram output from $\Pi_{\text{Bucketize}}$ protocol without noise described in Figure 10 is bounded by $2N$.

Proof. We start with one malicious client. Let rec_{auth} be the true report of a malicious client. Let a (resp. b) be the number of reports in the correct (resp. incorrect) bucket that rec_{auth} belongs to. The consequence of the malicious behaviour is that true bucket will have $a-1$ reports while incorrect bucket will have $b+1$. The L_1 distance between true histogram and the is defined as the sum (over all buckets) of the absolute values of the difference between two counts in both histograms. In the case of one malicious client, the L_1 distance is bounded by 2. By triangle inequality, the L_1 distance induced by N clients is bounded by $2N$.

C.4 Privacy Against a Malicious Server

We consider the following Leak game played by an adversary A with a dataset D as input.

$$\text{Leak}_{\text{A}}(D)$$

We let $\text{View}_S(D)$ be the view of S_1 when running the protocol with input dataset D.

Theorem 4. For a malicious server S_1, there exists an adversary A and a simulator Sim such that for any dataset D, $\text{Sim}(\text{Leak}_{\text{A}}(D)) \sim \text{View}_{S_1}(D)$.

Thus, a malicious S_1 does not learn more than what it would learn playing the Leak game.

Proof. The protocol from the viewpoint of S_1 is defined as follows: S_1 receives dataset D^1 and the total number $n^{(2)}$ of dummy reports S_2 wants to add. S_1 selects and outputs $n^{(1)}, n_{12}, n_{13}, n_{12}, R_{12}, R_{13}$. S_1 gets a vector A defined by $A = \pi_{23}(\pi_{12}((D - D^1)|D_{\text{dum}}^2) + R_{12}) + R_{23}$ with π_{23} and π_{23} uniform and D_{dum} the dummy shares by S_2. S_1 selects vectors A' and B. And, S_1 learns B' defined by $B' = \pi_{13}(\pi_{23}(B - R_{23}) + R_{13})$.

Until B' is obtained, the partial view of S_1 is $(\text{coins}, D^1, n^{(2)}, A)$ which is perfectly simulatable as the tuple elements are independent and follow a known distribution. However, the final B' is dependent on the rest of the tuple which leaks.

Let $\text{Out} = A + \pi_{13}(B' - R_{13})$. There is a 1-to-1 correspondence between the final view $(\text{coins}, D^1, n^{(2)}, A, B')$ and $(\text{coins}, D^1, n^{(2)}, A, \text{Out})$. Thus, instead of B', we consider the equivalent Out.

We have $\text{Out} = \pi_{23}(\pi_{12}((D - D^1)|D_{\text{dum}}^2) + R_{12})$. Let $A' = \pi_{12}((B + R_{12}) - D^1)|0^{(1)} + n^{(2)}$ so that $\text{Out} = \pi_{23}(\pi_{12}(D)|D_{\text{dum}}^2 + \lambda')$.

We assume that D_{dum}^2 is composed of the $n^{(2)}$ dummy reports created by S_2 and by $n^{(1)}$ slots of 0 shares (to be added to the dummy reports created by S_1). We accordingly split λ' as $\lambda' = \lambda + \lambda_0$ with λ_0 of size $n^{(1)}$ (to be added to the 0 slots). Hence, $\text{Out} = \pi_{23}(\pi_{12}((D)|D_{\text{dum}}^2 + \lambda))$ which is a random permutation of $(D)|D_{\text{dum}}^2 + \lambda))|\lambda_0$.

We construct A who plays the $\text{Leak}_{\text{A}}(D)$ game by using S_1 as follows:

Algorithm:

1. Generate D^1 uniformly of size c.
2. Run S_1 with input $(D^1, n^{(2)})$. Output $(n^{(1)}, \pi_{12}, \pi_{13}, R_{12}, R_{13})$.
3. Generate A uniformly of size $C + n^{(1)} + n^{(2)}$.
4. Continue to run S_1 with input A and output A' and B.
5. Compute $\lambda' = \pi_{12}((B + R_{12}) - D^1)|0^{(1)} + n^{(2)}$.
6. Split $\lambda' = \lambda + \lambda_0$.
7. Output λ.

All random processes are done using the random sequence of coins at the input of A so that they could be redone deterministically by Sim when needed.

In $\text{Leak}_{\text{A}}(D)$, we could create an arbitrary vector with the histogram hist, append it to λ_0, apply a random permutation π. We would obtain a view with same distribution as the view of S_1 in the protocol. We define Sim as follows.
aggregate measurement via oblivious shuffling

we first consider honest-but-curious server. given two neighbours, with appropriate change of variables, we can construct a view with the same distribution as the protocol for s_1. this produces a view with the same distribution as $\text{view}_{s_1}(d)$ in the protocol for s_1.

C.4.1 Discussions. the proof for malicious server s_2 is simpler. the view of the protocol for s_2 is: it receives dataset shares d^2 and the number $n^{(1)}$ of dummy reports that s_1 wants to add; it selects and outputs $(n^{(2)}, \pi_1, \pi_2, r_{12}, r_{23})$; it selects a vector a and learns vectors a' and b' where $a' = \pi_{13}(a) - r_{13}$ and

\[
b' = \pi_{13}(\pi_{23}(\pi_{12}(d^2) - r_{12}) - r_{23}) + r_{13}
\]

with π_{13} and r_{13} random. then, the view of s_2 is

\[
\text{view}_{s_2}(d) = (\text{coins}, d^2, n^{(1)}, a', b').
\]

the (a', b') pair is equivalent to $(\text{unif}, a' + b')$ with $a' + b'$ being a random permutation of

\[
(a + \pi_{23}(\pi_{12}(d^2) - r_{12}) - r_{23}).
\]

with appropriate change of variables, we can construct \mathcal{a} and sim for s_2 in a similar way.

the proof is even simpler for s_3 as the protocol leaks less to him. s_3 receives a total length $n = c + n^{(1)} + n^{(2)}$; it selects and outputs $\pi_{13}, r_{12}, r_{23}, r_{23}$. then, it receives b and a' such that $b = \pi_{12}(d^2) - r_{12}$ and

\[
a' = \pi_{13}(\pi_{23}(\pi_{12}(d^2) + r_{12}) - r_{23}) - r_{13}.
\]

the view of s_3 is

\[
\text{view}_{s_3}(d) = (\text{coins}, n, b, a').
\]

In a', s_3 can peel off $r_{13}, \pi_{13}, r_{23}, r_{23}$ and get $\pi_{12}(d^2) + r_{12}$ which added to b gives a random permutation of $d||d_{\text{dom}}$.

C.4.2 Collision Between Reporting Origin and a Helper Server. in the security analysis, we assume that a' and b' leak. the view of Reporting Origin is a deterministic function of a' and b'. therefore, the collision between a malicious server and the Reporting Origin is already implicitly covered.

C.5 Differential Privacy of Layered Protocol with Honest-but-Curious and Malicious Servers

we first consider honest-but-curious server. given two neighbouring datasets d and d' and a target s, the noise to select is either $s - d$ or $s - d'$. for every attribute of the unique report which was added or withdrawn between d and d', there is a corresponding noise which is changed by 1. moreover, the change in this noise induces a change in the following dummy bucket noise, as well. thus, the total number of affected sample noises is $2(2\lambda - 1)$.

In the proof of theorem 2, what changes is that we have one e^s appearing for each of the affected noise, but they eventually cancel. we also define s_good to hold for every affected noise. the consequence is that δ is multiplied by $(2\lambda - 1)$. hence, the layered protocol is $(0, (2\lambda - 1)\delta)$-DP.

with a malicious server, what changes is that the server can decide an offset δ at every execution of the bucketization protocol. this does not affect the proof.

D.1 Prio

Prio [14] is the first existing protocol to solve privacy preserving aggregate systems which is robust against malicious clients. it does not rely on any general purpose MPC. the protocol can be used for many different aggregates such as histograms, sum, average, heavy-hitter, and others with different techniques and, as a result, with different costs.

Prio uses two-party computations in order to compute the aggregates. each client secret shares (defined in Z_p for a prime p) their data to the servers. in order to provide robustness against malicious clients, Prio integrates a special range proof called SNIP and characterized by a valid predicate. each client gives each server a proof that the shared data satisfies this predicate. a data point x (shared by a client) is supposed to satisfy the valid predicate in order to prove the validity of the data point. the predicate is defined by an arithmetic circuit with n multiplications. even though constructing such proofs are efficient enough, the size of the proofs are $O(N)$ elements in Z_p. this implies a very expensive communication complexity from clients to servers. when the servers receive the proofs, they run the valid predicate which only requires 1 MPC multiplication per client no matter how large N is.

Prio encodes data x before sharing and this encoding depends on which aggregate function to compute and what type of proof is required. for example, to prove that x is made of ℓ bits, the client first encodes x as $\text{encode}(x) = (x, \beta_0, \ldots, \beta_{r-1})$ β_i represents bits. then, it generates a proof that $x = \sum \beta_i 2^i$ and that every bit β_i is a root of a polynomial $P(z) = z^{2^\ell} - z$. thus, what is shared and proved is $\text{encode}(x)$.

If Prio is used to compute the histograms (or frequency counts as the paper names it), then the encoding becomes a lot larger. the encoding is defined as $\text{encode}(x) = (\beta_0, \ldots, \beta_{B-1})$ where B is the number of the buckets ($B = 2^\ell$ for full histograms) and $\beta_0 = 1$ while $\beta_i = 0$ for $i \in \{0, \ldots, B - 1\} \setminus \{x\}$. valid predicate requires all β_i to be 0 or 1 as well as $\sum \beta_i = 1$. as it can be observed, such a method is inefficient for histogram computations. therefore, we also omit its performance analysis in our comparisons.

finally, Prio, as it is proposed, does not provide any differential privacy guarantees. however, as shown in some use-cases, it may be possible to add such guarantee under certain conditions [2]. for now, we are not aware of any effort put in that direction. instead, another proposal to solve specifically the heavy-hitter problem with differential privacy guarantees is proposed. this new proposal specifically aims to reduce the client-side communication complexity of Prio for heavy-hitter problem, as well as introducing
additional differential privacy guarantees. We will explain this new primitive next.

D.2 Distributed Point Functions

Recently, Google proposed an Attribute Reporting API with Aggregate Reports scheme, which strongly aligns with this problem [35]. A potential solution mentioned in their proposal relies on Distributed Point Functions (DPF): a two-party secure computation protocol [7, 22]. More precisely, DPF consists of two protocols: DPF.Gen and DPF.Eval. We pause here to explain the basic idea of DPF. Theoretically, the keys can be represented with a large vector of size of the key space. For an ℓ-bit key k, the key can be represented as a one-hot encoded vector of size 2^ℓ, with the k-th position set to 1 and other positions to 0. Then, this vector can be secret shared and sent to two servers to compute the aggregates. However, this naive approach requires too much communication. The beautiful idea DPF introduces is to generate the secret shares of this vector in a compact form and let the servers expand the keys to the full vectors by executing a series of cryptographic operations. The structure of this expansion is a tree structure, i.e., the expansion happens level by level. Essentially, DPF takes these vectors and treats them as functions, which are equivalent when the representation is a point function.

At the beginning of the data collection clients generate their secret shared reports by DPF.Gen. Then, two servers jointly execute DPF.Eval to generate noisy aggregates. Data users (e.g., advertisers) make queries to two servers and receive differentially private results. The aggregate queries DPF allows are histogram and sum on reported keys and values.

The most recent DPF construction is introduced as a solution to the private heavy hitters problem [7]. Particularly, Boneh et al. [7] describes three main protocols in their paper.

The first protocol is to build a private subset histogram from collected reports for a given set of keys. The set of keys may or may not be known to the servers. It requires $O(CB)$ DPF.Eval calls, where C is the number of reports and B is the set of keys to build the histogram on (without differential privacy).

The second protocol is to find the most popular keys, which appears with a threshold t (without differential privacy); this is called the t-heavy hitters problem. Boneh et al. defines a new DPF called incremental DPF (iDPF) to solve this problem more efficiently than with standard DPF. The complexity of the proposed protocol is $O(tC^2/t)$ DPF.Eval calls, where t is the (fixed) size of the keys collected from clients. The third protocol is simply to use the t-heavy hitters protocol with threshold $t = 1$. Then, the complexity becomes $O(tC^2)$ DPF.Eval calls.

These protocols can be made differentially private by applying the noise addition process at certain steps. The differential privacy parameters proposed in [7] use

$$\epsilon' = \epsilon \sqrt{2q \ln \frac{1}{\delta'}} + qe^{\epsilon-1},$$

with $q = tC/t$. They provide example parameters for an (ϵ',δ')-DP protocol, with $t = 256$, $\epsilon = 0.001$, $t = C/100$, and $\delta' = 2^{-40}$, resulting in $\epsilon' = 1.22$. However, the impact on the complexity and the accuracy is not analysed.

E DESCRIPTION OF FIGURES

We include some figures in this section to support the descriptions of the system design and protocols. The Figure 11 is a visualization of the layered bucketization process. The Figure 12 shows the data flows between three helper servers during the oblivious shuffling. The Figure 13 depicts the main subroutines of the bucketization. Specifically, how three helper servers add dummy reports to a secretly shared dataset and then randomly shuffle it.
Figure 11: An example demonstrating the flexible functionality of our attribute aggregation protocol. When the computations run with Bucketization, the outputs will be differentially private histogram counts, i.e., the size of each bucket plus a noise term.

\[
\begin{align*}
(D^2, \pi_{12}, \pi_{23}, R_{12}, R_{23}) & \\
A := \pi_{23}(\pi_{12}(D^2) + R_{12}) + R_{23} & \\
(D^1, \pi_{12}, \pi_{13}, R_{12}, R_{13}) & \\
B := \pi_{12}(D^1) - R_{12} & \\
A' := \pi_{13}(A) - R_{13} & \\
S_2 & \\
S_3 & \\
B' := \pi_{13}(\pi_{23}(B) - R_{23}) + R_{13} &
\end{align*}
\]

Figure 12: Illustration of Protocol Π_{RandShuf}. Gray tuples indicates the inputs known to each server.

Figure 13: The workflow of sub-routines in Bucketization starting with dummy report addition and oblivious shuffling. It omits the secret sharing and the generation of output buckets. The dummy reports are colored to show the shuffling, due to the XOR of random masks, they will not be traced. This flow will run with three servers, which carry the shares of the original reports.