
Zarcanum: A Proof-of-Stake Scheme for
Confidential Transactions with Hidden

Amounts

sowle1, koe2

1Zano project, val@zano.org
2Independent researcher, ukoe@protonmail.com

March 2022∗

Abstract

This article explores a Proof-of-Stake mining algorithm in an environment where amounts
are hidden with homomorphic commitments, in particular, using confidential transactions. Our
goal was to avoid revealing amounts and other sensitive information (like which output was used
to stake a given block) to blockchain observers when doing staking.

Our contribution is a Proof-of-Stake mining scheme that does not reveal amounts and is com-
patible with ring confidential transactions. We also present an extension to the Bulletproofs+
protocol that allows range proofs on double-blinded commitments, with corresponding security
statements.

1 Notation

Let G denote the main subgroup of the Ed25519 curve ([1]) and Zp denote a ring of integers
modulo p.

l is the order of G: l = #G = 2252 + 27742317777372353535851937790883648493.

For any set X, x
$← X means uniform sampling of x at random from X.

For any integers x, y,
⌊
x
y

⌋
denotes the integer part of integer arithmetic division.

2 Classic PoS scheme (open amounts)

In this section we describe how PoS mining was originally implemented in Zano1.

Suppose Alice has some unspent outputs and wants to mine a PoS block using one of them as
a stake. In such a scenario she acts as follows (Fig. 2.1):

∗Version 4.8. Last update: 2022-03-15. Check here for the latest version.
1This scheme is based on ideas from the PeerCoin project [5].

1

https://github.com/hyle-team/docs/tree/master/PoS/PoS_with_HA


1. Gets the hash identifier of the last PoW block in the blockchain, last pow id.

2. Gets the last PoS block in the blockchain and gets the stake kernel hash identifier from it,
last pos kernel id. Together with last pow id they are called the “stake modifier”. It changes
each time a new block is added to the blockchain.

3. Makes set T of all possible timestamps for the new PoS block:

T = {t : tmin ≤ t ≤ tmax, t ≡ 0 mod 15}

where tmin and tmax are bound to the current blockchain conditions. For the sake of simplicity
we can assume that

tmin = τ − T, tmax = τ + T

where T is a constant and τ is the current timestamp established in such a way that it is the
same across all the network’s nodes.

4. Makes set U of all her unspent transaction outputs (UTXO) that are eligible for staking (i.e.
not locked, mature enough, etc.). For each output u from U she also precalculates the key
image Iu.

5. Each pair (t, u) ∈ T × U is checked against the PoS winning condition as follows:

(a) For output u build stake kernel Ku as a concatenation:

Ku = last pow id ‖ last pos kernel id ‖ t ‖ Iu

where Iu is the key image of the stake output u;

(b) Calculate hash hu = cn fast hash(Ku)2;

(c) Finally, check the main condition:

huD

au

?
≤ 2256 (1)

where D is the current PoS difficulty, and au is the amount of the stake output u.

If inequality (1) holds then it means the success of PoS mining! A block with timestamp t and
a stake input spending output u can be constructed and broadcast to the network.

If for all pairs (t, u) inequality (1) does not hold, Alice needs to wait until one of the following
happens:

• a new block is added to the blockchain (this will change either last pow id
or last pos kernel id);

• some time passes (this will change tmin and tmax).

Once this happens, Alice can attempt mining again (items 1-5), as all Ku, and thus hu, will
have different values, giving new opportunities to meet the main condition.

We’d like to note the following important property of (1): as hu is the result of a cryptographic
hash function and can be considered as distributed evenly over the interval [0, 2256), the probability
of meeting the main condition is proportional to output amount au.

2cn fast hash is an alias for the Keccak-256 hash function, which is similar to SHA3-256 but differs in padding
bits.

2



Fig. 2.1. Scheme of the PoS mining process, as originally implemented in Zano

3 Hidden amounts: the problem and the solution

Consider a hidden amount scheme3, where amount a of an output is hidden using Pedersen4

commitment A:
A = aH + fG (a < 264, f 6= 0)

where H and G are generators in G for which DL relation is unknown, and f is a random hiding
mask.

It’s easy to see that (1) can’t be used by verifiers anymore because it requires a to be non-hidden.
Let’s see how the main inequality could be modified.

Suppose Alice has already prepared sets of timestamps (T ) and outputs (U) eligible for staking
as mentioned in Section 2. She then considers each pair (t, u) ∈ T × U against the PoS winning
condition. She calculates (this time using the hash function Hs, which produces scalars in Zl)

h = Hs(last pow id ‖ last pos kernel id ‖ t ‖ Iu)

The use of a hash function means h can be considered as uniform randomness distributed evenly
over Zl. Moreover, since the mask f is 6= 0 and fixed for the selected output u (i.e. defined before
h can be computed), the multiplication hf (mod l) can also be considered as uniform randomness
over Zl.

Taking this into account, Alice checks the slightly adjusted PoS winning condition:

hf mod l <

⌊
l

D

⌋
a (2)

where l is the order of the main subgroup. Here we moved from 2256 (used originally in (1)) to l, as
all scalar operations in all the following equations hold modulo l except the division

⌊
l
D

⌋
.

3E.g., Confidential Transactions (CT) by Gregory Maxwell [6].
4More information in the original paper by T.P. Pedersen [8].

3



Note that as soon as D ≥ 264 and a < 264, the right side of (2) never exceeds l.

Now we transform the inequality to equality:

hf mod l = da− ba , 1 ≤ d ≤
⌊
l

D

⌋
, ba < 264 (3)

Once (2) holds, Alice needs to calculate d and ba such that (3) holds. If she can convince verifiers
that she knows d and ba, and that those values are in the correct ranges, she can also convince them
that the PoS winning condition (2) holds5 for a particular h, and thus, for a pair (u, t) (assuming
she also convinces them that Iu is the key image of an output u that exists in the ledger).

In the following sections we construct such a proof in a NIZK-manner.

4 Criteria

Let us make a list of criteria for an ideal PoS mining scheme with hidden amounts to help
understand the differences between approaches.

1. (stake proportionality) The probability of meeting the winning condition is proportional to the
stake amount.

2. (resistantness) A miner is unable to tamper with the protocol for their benefit.

3. (amount privacy) Amounts are kept private; hence observers are not able to calculate amounts
from public data.

4. (sender-recipient anonymity) The original sender of an output cannot accurately guess when
a miner stakes that output and creates a new PoS block.

5. (untraceability) It is unreasonably difficult for observers to determine which output was really
used as a stake (e.g. when a ring of decoy outputs are used).

It is easy to see that the classic PoS scheme described above in Section 2 satisfies criteria 1, 2
and 5.6

5 Direct-spend PoS

In this section, for the sake of clarity, we show how to construct a proof for the winning condition
in the simplest case, when there are no decoy outputs, i.e., the stake output is directly referenced in
a mining transaction.

Suppose the stake output amount a is committed to in publicly known A = aH + fG.

5Except with negligible probability in the case when da < ba (see the discussion in Appendix C.2, setting z = 1).
6Criterion 5 could be met by using a ring signature to show the key image Iu corresponds to a real output u,

and also that a pseudo-output commitment corresponds to that output’s amount commitment. Then the prover can
open the pseudo-commitment to reveal the amount au, without needing to expose the blinding factor of the original
amount commitment (which would break Criterion 5).

4



Rewriting (3) slightly (all scalar equations hold modulo l):

(3) ⇔ hf − da+ ba = 0, 1 ≤ d ≤
⌊
l

D

⌋
, ba < 264 (4)

Let bf = df − ha. The following equality holds:

ha− df + bf = 0 (5)

Use (4) and (5) as scalar parts for scalar multiplication with H and G correspondingly:

(4), (5)⇒

{
hf − da+ ba = 0 | ×H
ha− df + bf = 0 | ×G

(6)

Considering commitments A′ = fH + aG, A = aH + fG, and B = baH + bfG, we can rewrite
(6) in terms of group element operations:

hA′ − dA+B = 0 (7)

where 0 is the identity element of G.

Now to satisfy range requirements in (3), Alice needs to reveal d and A′, prove that A′ is the
mirror commitment of A, and provide a range proof for B (i.e. show that ba < 264).

Proving the correctness of A′ can be done with a mirror commitment proof as shown in Appendix
A.1.

This approach satisfies stake proportionality, resistantness, and amount privacy from (4), but
the criteria of sender-recipient anonymity and untraceability are not met.

6 Ring-friendly PoS hidden amount scheme

If Alice would like to improve her mining anonymity and use a ring of decoy outputs to hide
her stake, she cannot use the approach in Section 5, because in a RingCT-like mining transaction
with a non-empty decoy set [7], the stake input would refer to a set of outputs, and thus a pseudo
output commitment would be used to represent the amount a in the input. Therefore, verifiers on
the network would not be able to check (7) as they don’t know which A from the set of outputs to
use.

This problem can be solved if Alice provides another commitment to the same stake amount
that verifiers can use in an equation similar to (7), but that can’t be used to link to any amount
commitment from the ledger.

6.1 Ring-friendly proof construction

Let (V, S) = (vG, sG) be Alice’s public address, where v and s are her view and spend secret
keys correspondingly.

Suppose Alice already went through steps 1-4 in Section 2 and found a pair (t, u) for which the
PoS winning condition (2) is met. Assume it was Bob who had previously sent output u to Alice.

5



Following the CryptoNote protocol, Bob calculated a one-time address P for output u:7

P = Hs(rV )G+ S

where r is the transaction’s secret key. Suppose that for each output Bob also computed group
element Q and made it public in addition to P :

Q = Hs(rV )V = qG, q = vHs(rV )

Note that only Alice and those who get secret view key v from her can calculate secret q, as
q = vHs(vR), where R is the transaction’s public key.

Recalling equation (3), suppose Alice has calculated d and ba such that the PoS winning equality
holds.

Also suppose that, following the standard procedure, she randomly selected a set of apparently
unspent decoy outputs {ui} from the blockchain and put her output, which met the PoS main
condition (2), at random index π of that set.

Let the i-th decoy output’s commitment be denoted Ai (and Aπ is the commitment to her own
output). Note that in general Alice doesn’t know amounts ai and masks fi for the outputs she
selected as decoys.

Let X be a generator in G for which the DL relations with G and H are unknown.

Consider extended commitment C to the same stake amount a:

C = xX + aH + (f + q)G, x
$← Zl (8)

Here x is a secret randomness chosen by Alice.

Extended commitment C can be linked to the stake commitment Aπ (without revealing index
π) by adding two additional layers8 to the main ring signature:9

1. a proof of knowing the DL x of C −Aπ −Qπ with respect to X;

2. a proof of knowing the DL q of Qπ with respect to G.

We can extend the ring signature by adding two group elements to the calculation of the non-
interactive challenge as follows:

cπ+1 = Hs(. . . , α0X, α1G)

ci+1 = Hs(. . . , r
0
iX + ci(C −Ai+1 −Qi+1), r1iG+ ciQi+1)

r0π = α0 − cπx
r1π = α1 − cπq

Note that using randomness x in (8) implies that an external observer would not be able to
easily link C with any of Ai, even if a and f are known (which is the case for the sender of Aπ).

7In CryptoNote, a one-time address is calculated as Pj = Hs(rV, j)G+S, where j is the index of an output. Here
we skip j in Hs(rV, j) for the sake of clarity.

8Here we’re using terminology and ideas from Multi-layered Linkable Spontaneous Anonymous Group signatures
proposed in [7].

9If Aπ has a range proof, as it required for confidential transaction amount commitments stored in a ledger, then,
taking into account these ring signature layers, observers can be confident that C is composed of the generators
X,H,G, and that the amount a in C equals the amount a in Aπ .

6



Consider the mirror extended commitment C ′:

C ′ = x′X + (f + q)H + aG, x′
$← Zl, x′ 6= x (9)

Let us introduce randomness x′′
$← Zl, x′′ 6= 0 which is freely chosen by Alice.

Let bx = x′′ − hx′ + dx. Then the following equation holds:

hx′ − dx+ bx = x′′ (10)

Use (4), (5), and (10) as scalar parts for scalar multiplication with H, G, and X correspondingly.
Note that we now use h(f + q) instead of hf for (4) and (5).10

(4), (5), (10)⇒


h(f + q)− da+ ba = 0 | ×H
ha− d(f + q) + bf = 0 | ×G

hx′ − dx+ bx = x′′ | ×X
(11)

Considering E = baH + bfG + bxX and equations for C and C ′ above, we can rewrite (11) in
terms of group element operations:

hC ′ − dC + E = x′′X = F (12)

To convince verifiers that (12) holds, Alice discloses C, C ′, and E, and provides a Schnorr proof
for F = x′′X. Disclosing C, C ′, and E is safe as each of them are guarded with its own randomness
x, x′, and x′′ respectively. Alice also needs to prove that C ′ is in fact the mirror commitment of C,
and provide a range proof for E to finish proving (12). Proving that (12) holds implies that (4) also
holds, and thus the PoS winning condition holds as well.

Let us consider these steps in detail.

1. Assume the correctness of C is proven by modification of the ring signature (see above).

2. For proving C ′ = x′X + (f + q)H + aG we use an extended mirror commitment proof, as
described in Appendix A.2.

3. A range proof for ba < 264 committed to in E = baH + bfG + bxX can be done directly
by extending an existing range proof protocol like Bulletproofs+[3] to support two blinding
factors in commitments. We provide such an extension for Bulletproofs+ in Appendix D.

However, this can also be achieved using a standard range proof if Alice provides a range proof

for commitment B = baH + eG on value ba, where e
$← Zl, and also proves that B and E are

commitments to the same value ba. The latter can be accomplished by proving that

E −B = k0G+ k1X

for some k0, k1 using a linear composition proof (A.3). Indeed: k0 = bf − e, k1 = bx.

10If we do not include q in h(f + q), and instead just have hf , then the staked output’s sender could check
inequality (3) for all staking events in the ledger (d and h are public knowledge, and an output’s sender knows f and
a): da − hf < 264 (mod l). The likelihood of that test succeeding yet a different output was staked is negligible, so
senders could trivially identify when their outputs are staked by recipients. Including the recipient’s secret value q
makes that test impossible, preserving sender-recipient anonymity.

7



Note that, if Alice needs to spend her stake output u in the same transaction, which is the case
for the PoS protocol used in Zano, she can construct a pseudo output commitment W = aH + wG

to the same value a (with w
$← Zl) and provide a linear composition proof for the fact that C−W =

k0G+ k1X for some k0 and k1.11

We believe this approach satisfies all criteria mentioned in Section 4 above.

6.2 Ring-friendly scheme outline

Let’s summarize the whole PoS mining process.

1. Alice prepares a set T of possible block timestamps and set U of outputs eligible for staking.

2. For each pair (t, u) she calculates h = Hs(. . . ) and q = vHs(vRu), and checks the slightly
adjusted winning condition (2), using h(f + q) instead of hf :

h(f + q) mod l <

⌊
l

D

⌋
a (13)

3. If (13) holds, she generates random non-zero x, x′, x′′ and e in Zl, and calculates:

d =

⌊
h(f + q) mod l

a

⌋
+ 1

ba = da− h(f + q)

bf = d(f + q)− ha
bx = x′′ − hx′ + dx

C = xX + aH + (f + q)G

C ′ = x′X + (f + q)H + aG

E = baH + bfG+ bxX

B = baH + eG

4. To prove correctness of C she adds a proof that C −Aπ −Qπ = xX and proof that Qπ = qG
as additional layers to the main ring signature.

5. To prove correctness of C ′ she generates two linear composition proofs (c, y0, y1), (c, y2, y3) for
the fact that C + C ′ = k0X + k1(H +G) and C − C ′ = k2X + k3(H −G) (Section A.3).

6. She generates a Schnorr proof (c, y4) with respect to base X for the fact that hC ′− dC +E =
x′′X.

7. She generates a range proof RB showing ba < 264 in commitment B.

8. She generates a linear composition proof (c, y5, y6) for the fact that E −B = k0G+ k1X.

11Such a linear composition proof would only show that W = aH + n1G + n2X, where n1, n2 ≥ 0. It is acceptable
for n2 > 0 to be true, because any amount balance proof involving W would have to show that a on generator H is
canceled out by any new amounts (in the case of a PoS mining transaction, the block reward plus staked output’s
amount), regardless of statements about values attached to other generators. In practice, setting n2 > 0 may be
either impossible (incompatible with balance proofs) or cause new outputs to be unspendable (incompatible with
range proofs).

8



9. She makes a PoS block with timestamp t, containing a mining transaction with stake output
u and extended ring signature, and adds the PoS signature σ to the block’s data:

σ = {d,C,C ′, E,B, (c, y0, y1, y2, y3, y4, y5, y6),RB} (14)

Note that all the discrete logarithm proofs can share a Fiat-Shamir challenge c.

Also note that using a range proof protocol with double-blinded commitments (like described in
Appendix D) allows us to get rid of B, y5, y6, which makes the PoS signature σ more compact:

σ = {d,C,C ′, E, (c, y0, y1, y2, y3, y4),ReB}

6.3 Verification of ring-friendly PoS scheme

Verifiers on the network check a PoS block as follows.

1. Check 0 < d ≤
⌊
l
D

⌋
.

2. Calculate h = Hs(. . . ) and F = hC ′ − dC + E.

3. Check the stake input’s ring signature, which has additional layers for C −Ai −Qi and Qi.

4. Check linear composition proofs (c, y0, y1, y2, y3) for the fact that C +C ′ = k0X + k1(H +G)
and C − C ′ = k2X + k3(H −G).

5. Check Schnorr signature (c, y4) for the fact that F = x′′X.

6. Check linear composition proof (c, y5, y6) for the fact E −B = k0G+ k1X.

7. Check range proof RB .

6.4 Limitations

The proposed scheme works only under the following conditions:

• Proof-of-stake difficulty: D > 264.

• Output’s amount: a < 264.

• Commitment’s mask: f 6= −q (in Appendix B we consider this in detail).

6.5 Optional sender-recipient anonymity

If the sender-recipient anonymity criterion mentioned in Section 4 is considered optional in a
particular implementation, the protocol can be simplified as follows:

• get rid of Q in outputs’ data;

• get rid of the additional layer for Qπ = qG in the ring signature;

• let q = 0 in all equations with q above.

9



This data-saving approach can also be used when sender-recipient anonymity is important but
it is ensured by other means. For instance, Alice could stake only outputs received from trusted
parties (e.g. herself), and make other outputs eligible for staking by sending them to herself using a
chain of trusted parties.

6.6 Size of ring-friendly PoS proof

Let’s estimate the size of the proof for n − 1 decoy outputs, where the total size of the
ring is n. Assume we’re using Bulletproofs+ for range proofing. According to [3] it requires
2 · dlog2(m) + log2(k)e + 3 elements in G and 3 elements in Zl, where m = 64 for range 264, and
k = 1 as we only need it for one element ba

12.

For the ring signature extension we need to store, presumably, only two extra Zl elements per
ring member (r0i , r

1
i ).

Additionally, we need to store 9 elements in Zl (d, c, y0, . . . , y6) and 4 elements in G (C,C ′, E,B)
per PoS signature, and one group element per each output in the blockchain (Q).

In total we have 19 group elements and 2n+ 12 field elements. If both field and group elements
have a compressed size of 32 bytes, which is the case for Ed25519 used in Zano, then the total size
of additional PoS data can be estimated as 2n + 31 elements per PoS signature and 1 element per
output, or 64n+ 992 bytes per PoS signature and 32 bytes per output.

If the sender-recipient anonymity is ensured by other means and the protocol is simplified as
explained in subsection 6.5, the total size of additional data is 19 group elements and n + 12 field
elements per PoS block. Or, in case of Ed25519, the total size is n + 31 elements or 32n + 992 per
PoS block.

Acknowledgment

The authors would like to thank Cypher Stack and Aaron Feickert (Sarang Noether) for review-
ing this work ([4]), for valuable comments, and especially for providing rigorous security proofs for
the sub-protocols in this paper.

References

[1] Daniel J. Bernstein et al. Ed25519: high-speed high-security signatures. https://ed25519.cr.yp.to.

[2] Suyash Bagad, Omer Shlomovits, and Claudio Orlandi. Monero Bulletproofs+ Security Audit.
https://suyash67.github.io/homepage/assets/pdfs/bulletproofs plus audit report v1.1.pdf.
2021.

[3] Heewon Chung et al. Bulletproofs+: Shorter Proofs for Privacy-Enhanced Distributed Ledger.
https://eprint.iacr.org/2020/735. 2020.

[4] Aaron Feickert. Zarcanum technical notes. https://github.com/cypherstack/zarcanum-review.
2021.

12In assumption that the mining transaction or the block has no other suitable Bulletproofs+ that could be aggre-
gated to reduce the size. If there are range proofs that can be aggregated, it is possible to save up to, per additional
aggregated proof, 15 elements in G and 3 elements in Zl.

10

https://ed25519.cr.yp.to
https://suyash67.github.io/homepage/assets/pdfs/bulletproofs_plus_audit_report_v1.1.pdf
https://eprint.iacr.org/2020/735
https://github.com/cypherstack/zarcanum-review


[5] Sunny King and Scott Nadal. PPCoin: Peer-to-Peer Crypto-Currency with Proof-of-Stake.
https://www.peercoin.net/whitepapers/peercoin-paper.pdf. 2012.

[6] Gregory Maxwell. Confidential Transactions. https://web.archive.org/web/20200502151159/
https://people.xiph.org/∼greg/confidential values.txt (Archived 2020-05-02). 2015.

[7] Shen Noether, Adam Mackenzie, and Monero Core Team. Ring Confidential Transactions,
MRL-0005. https://web.getmonero.org/resources/research-lab/pubs/MRL-0005.pdf. 2016.

[8] Torben Pryds Pedersen. Non-Interactive and Information-Theoretic Secure Verifiable Secret
Sharing. https://www.cs.cornell.edu/courses/cs754/2001fa/129.PDF. 1992.

[9] Andrey Sabelnikov. Zano whitepaper. https://zano.org/downloads/zano wp.pdf. 2019.

11

https://www.peercoin.net/whitepapers/peercoin-paper.pdf
https://web.archive.org/web/20200502151159/https://people.xiph.org/~greg/confidential_values.txt
https://web.archive.org/web/20200502151159/https://people.xiph.org/~greg/confidential_values.txt
https://web.getmonero.org/resources/research-lab/pubs/MRL-0005.pdf
https://www.cs.cornell.edu/courses/cs754/2001fa/129.PDF
https://zano.org/downloads/zano_wp.pdf


A Basic proofs

A.1 Mirror commitment proof

Suppose Prover (P) needs to convince a Verifier (V) that A′ = fH + aG is the mirror commit-
ment of public A = aH + fG without revealing a or f . We can construct a Schnorr-like proof as
follows.

Theorem 1. Let G be a finite cyclic group where the discrete logarithm problem is hard, and let
F be its scalar field. Let 0 6= G,H ∈ G be group elements with no efficiently-computable discrete
logarithm relation. We assume that G, G,H are implicit public parameters where needed. The
protocol presented in Fig. A.1 is complete, special sound, and special honest-verifier zero knowledge
as a sigma protocol for the relation R1.

R1 = {A,A′ ∈ G; f, a ∈ F : A = aH + fG, A′ = fH + aG}

P : r0, r1
$← F and computes:

R0 = r0(G+H)

R1 = r1(G−H)

P → V : R0, R1

V : c
$← F

V → P : c

P : computes:

y0 = r0 + c(a+ f)

y1 = r1 + c(a− f)

P → V : y0, y1

V : returns Accept if and only if the following hold:

y0(H +G)− c(A+A′)
?
= R0 (15)

y1(H −G)− c(A+A′)
?
= R1 (16)

Fig. A.1. Interactive protocol for mirror commitment proof

Proof. Completeness follows trivially by inspection.

We next show that the protocol is 2-special sound by a standard rewinding argument, where
we define an extractor that produces valid witness elements on accepting transcripts using distinct
verifier challenges. Fix an initial transcript (A,A′, R0, R1), and let c 6= c′ be distinct verifier chal-
lenges for this transcript, with corresponding responses (y0, y1) and (y′0, y

′
1). We apply Equations

(15) and (16) to these transcripts to obtain

(y0 − y′0)(H +G)− (c− c′)(A+A′) = 0

(y1 − y′1)(H −G)− (c− c′)(A−A′) = 0

12



and hence

y0 − y′0
c− c′

(H +G) = A+A′ (17)

y1 − y′1
c− c′

(H −G) = A−A′ (18)

Define α0 = (y0 − y′0)/(c− c′) and α1 = (y1 − y′1)/(c− c′), and note that both are well defined since
c 6= c′. Adding and subtracting Equations (17) and (18), we obtain the following expressions for A
and A′:

A =
α0 + α1

2
H +

α0 − α1

2
G

A′ =
α0 − α1

2
H +

α0 + α1

2
G

Hence we define

a =
α0 + α1

2

and

f =
α0 − α1

2

as the extracted witnesses, and the protocol is 2-special sound. Observe that a, f must be unique,
or this implies a nontrivial discrete logarithm relationship between G,H.

We finally show that the protocol is special honest-verifier zero knowledge. To do so, we define
a simulator that, on a valid statement and uniformly sampled verifier challenge, produces transcripts
indistinguishable from those of real proofs. Fix a valid prover statement (A,A′) and sample a nonzero
challenge c ∈ F. The simulator samples random y0, y1 ∈ F and defines R0, R1 using Equations (15)
and (16), respectively. The resulting simulated proof will be accepted by an honest verifier. Because
G,H are independent generators, such a simulated proof is distributed identically to a real proof,
and hence the protocol is special honest-verifier zero knowledge.

This completes the proof.

This protocol may be made non-interactive via the Fiat-Shamir technique, where the verifier
challenge is replaced by a suitable transcript hash. This technique further allows for binding an
arbitrary proof context into the transcript. Fig. A.2 shows an example non-interactive protocol.

R1 = {A,A′ ∈ G; f, a ∈ F : A = aH + fG, A′ = fH + aG}

P : r0, r1
$← Zl and computes:

R0 = r0(H +G), R1 = r1(H −G)

c = Hs(R0, R1, A
′, A)

y0 = r0 + c(a+ f), y1 = r1 + c(a− f)

P → V : (c, y0, y1)

V : accepts if and only if the following holds:

c
?
= Hs(y0(H +G)− c(A+A′), y1(H −G)− c(A−A′), A′, A)

Fig. A.2. Non-interactive protocol for mirror commitment proof

13



A.2 Extended mirror commitment proof

Suppose a prover (P) needs to convince a verifier (V) that C ′ = fH + aG + x′X is a blinded
mirror commitment to C = aH + fG + xX which is publicly known. We assume there are no
known nontrivial DL relations between generators G,H,X ∈ G, and expect that scalars a, f, x, x′

and un-blinded commitments C ′u = fH + aG and Cu = aH + fG should not be revealed. For this
purpose, we make the following construction.

Theorem 2. Let G be a finite cyclic group where the discrete logarithm problem is hard and let F
be its scalar field. Let 0 6= G,H,X ∈ G be group elements with no efficiently-computable discrete
logarithm relation. We assume that G, G,H,X are implicit public parameters where needed. The
protocol presented in Fig. A.3 is complete, special sound, and special honest-verifier zero knowledge
as a sigma protocol for the relation R2.

R2 = {C,C ′ ∈ G; f, a, x, x′ ∈ F : C = aH + fG+ xX, C ′ = fH + aG+ x′X}

P : r0, r1, s0, s1
$← F and computes:

R0 = r0(H +G) + s0X

R1 = r1(H −G) + s1X

P → V : R0, R1

V : c
$← F

V → P : c

P : computes:

y0 = r0 + c(a+ f)

y1 = r1 + c(a− f)

z0 = s0 + c(x+ x′)

z1 = s1 + c(x− x′)
P → V : y0, y1, z0, z1

V : returns Accept if and only if the following hold:

y0(H +G) + z0X − c(C + C ′)
?
= R0 (19)

y1(H −G) + z1X − c(C − C ′)
?
= R1 (20)

Fig. A.3. Interactive protocol for extended mirror commitment proof

Proof. Completeness follows trivially by inspection.

We next show that the protocol is 2-special sound by a standard rewinding argument, where
we define an extractor that produces valid witness elements on accepting transcripts using distinct
verifier challenges. Fix an initial transcript (C,C ′, R0, R1) and let c 6= c′ be distinct verifier chal-
lenges for this transcript, with corresponding responses (y0, y1, z0, z1) and (y′0, y

′
1, z
′
0, z
′
1). We apply

14



Equations (19) and (20) to these transcripts to obtain

(y0 − y′0)(H +G) + (z0 − z′0)X − (c− c′)(C + C ′) = 0 (21)

(y1 − y′1)(H −G) + (z1 − z′1)X − (c− c′)(C − C ′) = 0 (22)

and hence

y0 − y′0
c− c′

(H +G) +
z0 − z′0
c− c′

X = C + C ′ (23)

y1 − y′1
c− c′

(H −G) +
z1 − z′1
c− c′

X = C − C ′. (24)

Define the following:

α0 =
y0 − y′0
c− c′

α1 =
y1 − y′1
c− c′

β0 =
z0 − z′0
c− c′

β1 =
z1 − z′1
c− c′

Note that all are well defined since c 6= c′. Adding and subtracting Equations (23) and (24), we
obtain the following expressions for C and C ′:

C =
α0 + α1

2
H +

α0 − α1

2
G+

β0 + β1
2

X

C ′ =
α0 − α1

2
H +

α0 + α1

2
G+

β0 − β1
2

X

Hence we define

a =
α0 + α1

2

f =
α0 − α1

2

x =
β0 + β1

2

x′ =
β0 − β1

2

as the extracted witnesses, and the protocol is 2-special sound. Observe that a, f, x, x′ must be
unique, or this implies a nontrivial discrete logarithm relationship between G,H,X.

We finally show that the protocol is special honest-verifier zero knowledge. To do so, we
define a simulator that, on a valid statement and uniformly-sampled verifier challenge, produces
transcripts indistinguishable from those of real proofs. Fix a valid prover statement (C,C ′), and
sample a nonzero challenge c ∈ F. The simulator samples random y0, y1, z0, z1 ∈ F and defines R0, R1

using Equations (19) and (20), respectively. The resulting simulated proof will be accepted by an
honest verifier. Because G,H,X are independent generators, such a simulated proof is distributed
identically to a real proof, and hence the protocol is special honest-verifier zero knowledge.

This completes the proof.

15



As above, this protocol may be made non-interactive via the Fiat-Shamir technique, where
the verifier challenge is replaced by a suitable transcript hash. In Fig. A.4 such a non-interactive
protocol is shown as an example.

R2 = {C,C ′ ∈ G; f, a, x, x′ ∈ F : C = aH + fG+ xX, C ′ = fH + aG+ x′X}

P : r0, r1, s0, s1
$← Zl and computes:

R0 = r0(H +G) + s0X, R1 = r1(H −G) + s1X

c = Hs(R0, R1, C, C
′)

y0 = r0 + c(a+ f), y1 = r1 + c(a− f), z0 = s0 + c(x+x′), z1 = s1 + c(x−x′)
P → V : (c, y0, y1, z0, z1)

V : accepts if and only if the following holds:

c
?
= Hs(y0(H +G) + z0X − c(C +C ′), y1(H −G) + z1X − c(C −C ′), C, C ′)

Fig. A.4. Non-interactive protocol for extended mirror commitment proof

16



A.3 Linear composition proof

Suppose a prover (P) needs to convince a verifier (V) that C = aA + bB, where A,B ∈ G are
generators with no known nontrivial DL relations, and scalars a, b ∈ Zl should not be revealed. For
this purpose, we can construct a Schnorr-like proof as follows.

Theorem 3. Let G be a finite cyclic group where the discrete logarithm problem is hard, and let
F be its scalar field. Let 0 6= A,B ∈ G be group elements with no efficiently-computable discrete
logarithm relation. We assume that G, A,B are implicit public parameters where needed. The pro-
tocol presented in Fig. A.5 is complete, special sound, and special honest-verifier zero knowledge as
a sigma protocol for the relation R3.

R3 = {C ∈ G; a, b ∈ F : C = aA+ bB}

P : r0, r1
$← F and computes:

R = r0A+ r1B

P → V : R

V : c
$← F

V → P : c

P : computes:

y0 = r0 + ca

y1 = r1 + cb

P → V : y0, y1

V : returns Accept if and only if the following hold:

y0A+ y1B − cC
?
= R (25)

Fig. A.5. Interactive protocol for linear composition proof

Proof. Completeness follows trivially by inspection.

We next show that the protocol is 2-special sound by a standard rewinding argument, where
we define an extractor that produces valid witness elements on accepting transcript using distinct
verifier challenges. Fix an initial transcript (C,R), and let c 6= c′ be distinct verifier challenges for
this transcript, with corresponding responses (y0, y1) and (y′0, y

′
1). We apply Equation (25) to these

transcripts to obtain
(y0 − y′0)A+ (y1 − y′1)B − (c− c′)C = 0

and hence
y0 − y′0
c− c′

A+
y1 − y′1
c− c′

B = C.

Define

a =
y0 − y′0
c− c′

17



and

b =
y1 − y′1
c− c′

as the extracted witnesses, which are well defined since c 6= c′, and the protocol is 2-special sound.
Observe that a, b must be unique, or this implies a nontrivial discrete logarithm relationship between
A,B.

Finally, we show that the protocol is special honest-verifier zero knowledge. To do so, we define
a simulator that, on a valid statement and uniformly-sampled verifier challenge, produces transcripts
indistinguishable from those of real proofs. Fix a valid prover statement C and sample a nonzero
challenge c ∈ F. The simulator samples random y0, y1 ∈ F and defines R using Equation (25),
The resulting simulated proof will be accepted by an honest verifier. Because A,B are independent
generators, such a simulated proof is distributed identically to a real proof, and hence the protocol
is special honest-verifier zero knowledge.

This completes the proof.

This protocol may be made non-interactive via the Fiat-Shamir technique, where the verifier
challenge is replaced by a suitable transcript hash. This technique further allows for binding arbitrary
proof context into the transcript. In Fig. A.6 such a non-interactive protocol is shown as an example.

R3 = {C ∈ G; a, b ∈ F : C = aA+ bB}

P : r0, r1
$← F and computes:

R = r0A+ r1B

c = Hs(R,A,B,C)

y0 = r0 + ca, y1 = r1 + cb

P → V : (c, y0, y1)

V : accepts if and only if the following hold:

c
?
= Hs(y0A+ y1B − cC, A, B, C)

Fig. A.6. Non-interactive protocol for linear composition proof

18



B How to ensure f 6= −q

In subsection 6.4 we mentioned that the proposed PoS scheme works only under certain con-
ditions, and one of them is the sum f + q must be non-zero for all staking outputs. The reasoning
behind that is simple: suppose Alice prepared a UTXO with amount a committed in A with mask
f = −q: A = aH − qG. Such an output can be staked instantly as the winning condition is met
regardless of h:

hC ′ − dC + E = x′′X (12)
f=−q
=⇒ (ba − da)H + (bf + ha)G+ (hx′ − dx+ bx)X = x′′X

This implies that for any given h, Alice can pick arbitrary ba < 264, d, bf such that ba = da and
bf = −ha, and thus all conditions mentioned in subsection 6.3 will be satisfied.

Below we show two solutions for this problem: the blockchain-independent method by con-
structing a special proof and a blockchain-specific method.

B.1 Proof for f + q 6= 0

Here we construct a proof for f+q 6= 0 taking into account criteria from section 4. In particular,
sender-recipient anonymity must be preserved. We should not allow the sender, who knows a and
f , to identify the prover.

Consider the following:
C = xX + aH + (f + q)G

K = x−1(C − aH) = X + x−1(f + q)G

The idea of the proof is to show that k0C + k1H = kG+X for non-zero k.

The prover acts as follows:

1. Calculates K = x−1(C − aH).

2. Generates a linear composition proof (c, y0, y1) for the fact that K = k0C + k1H for some
k0, k1 ∈ Zl.

3. Generates a Schnorr proof (c, y2) for the fact that K −X = kG for some k ∈ Zl. Note that
f + q 6= 0 implies k 6= 0.

4. The proof is σ = {K, c, y0, y1, y2}.
Note that both discrete logarithm proofs can share a Fiat-Shamir challenge c.

Verifier acts as follows:

1. Checks K 6= X (this check ensures that C has a non-zero component of G).

2. Checks the Schnorr proof (c, y2).

3. Checks the linear composition proof (c, y0, y1).

The size of the proof can be estimated as 1 group element and 4 field elements. If both field and
group elements have a compressed size of 32 bytes, which is the case for Ed25519 used in Zano, then
the total size of additional data is 5 elements, or 160 bytes. Note that the Fiat-Shamir challenge
can be shared with other discrete logarithm proofs.

19



B.2 Blockchain-specific solution

Let’s require adding f ′H and f ′G to commitments C and C ′ respectively before using them
in the PoS protocol, where f ′ is a non-zero public constant that is unknown to a sender when he
generates hiding mask f for the output (so he has no way to define f such that f + q + f ′ = 0).

In the case of the Zano blockchain, which has a hybrid PoW/PoS consensus13, f ′ can be
calculated as f ′ = Hs(last pow id), where last pow id is the hash identifier of the last PoW block
in the blockchain14. That way, a malicious miner would have no chance to choose f for his benefit
by building an alternative PoS subchain.

Consequently, substituting f+q+f ′ for f+q in (2) we get this modified PoS winning condition:

h(f + q + f ′) mod l <

⌊
l

D

⌋
a

Doing the same for (11) we get:
h(f + q + f ′)− da+ ba = 0 | ×H
ha− d(f + q + f ′) + bf = 0 | ×G

hx′ − dx+ bx = x′′ | ×X

Now for (12) we obtain:

hC ′ − dC + E + f ′(hH − dG) = x′′X

With such a modification, neither Alice nor the staked output’s sender will be able to gain an
advantage when choosing f .

13More info in the Zano whitepaper [9].
14This would also require that the real output and all the decoy outputs in the staking ring signature to be

either older than, or the same age as, the most recent PoW block. Verifiers on the network can easily check such a
requirement. Note that last pow id is also used as part of the stake modifier as described in Section 2.

20



C Brute-force attack, its complexity, and mitigation

The weak point of the scheme proposed in Section 6 is the relation between public scalars d and
h, sender-known scalars a and f , and secret scalar q:

d =

⌊
h(f + q) mod l

a

⌋
+ 1

An adversarial sender can reveal secret q by guessing k ∈ [0; a− 1] as follows:

q = h−1((d− 1)a+ k)− f

And then reveal Alice’s secret view key: v = (Hs(rV ))−1q, where r is the transaction’s secret key
which is known to the sender.

C.1 Complexity

An adversarial sender would need to scan the blockchain and for each PoS block that is refer-
encing his output in the miner transaction, guess k and check Qj

?
= qG for each attempt. The most

expensive operation here is EC scalar multiplication, and each attempt would require one such op-
eration. The average number of attempts when testing an output that was staked is upper-bounded
at 1

2a.

Let us use the Zano blockchain as a reference for estimation. As the vast majority of PoS blocks
in Zano now have their stake value in [100 · 1012; 600 · 1015], the expected number of attempts can
be roughly estimated as 250 in practice, which arguably isn’t secure enough given that the reward
is Alice’s secret view key v.

Below we suggest two ways of mitigation: by increasing the complexity of the attack and by
eliminating all risk to secret v.

C.2 Solution 1: increasing complexity

We start with a modification of the direct-spend scheme (Section 5). Let z = const. Consider
the following modification to (4) and (7):

hf − dza+ ba = 0, 1 ≤ d ≤
⌊
l

zD

⌋
, ba < z264 (26)

hA′ − dzA+B = 0

As the range of ba is z times bigger, it would require the range proof for B to be extended
correspondingly.

For the ring-friendly scheme variant, equation (12) can be modified like this:

hC ′ − dzC + E = x′′X = F

and similarly B = baH + eG would require a wider range proof.

21



With this modification, the expected number of attempts to guess the correct q or v is z times
bigger. At the same time, z cannot be arbitrarily big, because the bigger z is, the more likely (26)
will hold without satisfying the main PoS condition (2) due to the rounding error15.

This approach is certainly a trade off. In the case of the Zano blockchain, values of 264 ≤ z ≤ 2106

look reasonable because the complexity of a brute force attack will rise up to 2114 . . . 2156 without
increasing rounding error too much16. If using Bulletproofs+ for range proofs, the additional data
for increasing the range’s upper boundary to 265 . . . 2128 is 2 group elements and for increasing it to
2129 . . . 2256 is only 4 group elements, comparing to the standard 264 range17.

C.3 Solution 2: eliminating all risk to secret key v

If secret key v shouldn’t be put even at negligible risk, the following solution can be used.

• All addresses are 3-key tuples: (V, S, T ) = (vG, sG, tG);

• Sender calculates Q for each output along with one-time address P :

Q = Hs(rV )T

Note that only Alice and those who get secret keys v and t from her can calculate secret
q = Hs(vR)t, where R is the transaction’s public key.

• Follow the rest of the protocol using the calculated q.

A brute force attack in this case would only reveal secret key t, which is not used in balance
calculation nor for transferring coins. If a sender exposes a recipient’s t using a staked output they
sent to that person, it would only allow them to identify when other outputs they sent to that person
are staked.

15From (26) we get:

(hf mod l + ba) mod l ≤
⌊

l

zD

⌋
za

Note that the right side never exceeds l. As ba can be arbitrary chosen in [0; z264), this inequality also holds for
hf mod l > l − z(264 − a) (if d = 1), resulting in an overall acceptable interval for hf (mod l) of[

0;

⌊
l

zD

⌋
za

]
∪
(
l − z(264 − a); l

)
Now we can estimate the relative increase in possible values of hf (mod l) that satisfy the PoS winning condition due
to this ‘rounding error’ as the ‘length’ of the rounding-zone compared to the ‘length’ of the intended PoS zone (note
real arithmetic division):

P% =
z(264 − a)− 1⌊

l
zD

⌋
za + 1

· 100%

16Assuming maximum difficulty D ≈ 270 for the Zano blockchain, and a� 264, we can approximate P%:

P% ≈
z

a
2−118 · 100%

For z = 2106 using the smallest possible stake amount of 1, we get a P% ≈ 2−12 · 100% ≈ 0.024% increase in the
probability of satisfying the PoS winning condition (compared to what we intend). However, meeting the PoS winning
condition for a = 1 and D ≈ 270 is already very unlikely, and for greater values of a the value of P% will be even
smaller. Therefore, if z / 2106, a < 264, and D / 270, then the rounding error will be negligible.

17According to [3], Bulletproofs+ requires 2 · dlog2(m) + log2(k)e+ 3 elements in G and 3 elements in Zl, where 2m

is the upper boundary, and k = 1 as we only need it for one element B.

22



D Bulletproofs+ with double-blinded commitments

D.1 Introduction

The original Bulletproofs+ protocol [3] uses the following group-based range relation18:

{(g,h ∈ Gn, g, h, V ∈ G, v, γ ∈ Zp) : V = gvhγ ∧ v ∈ [0, 2n − 1]}

which is only compatible with single-blinded commitments of the form V = gvhγ . Below we ex-
tend the Bulletproofs+ protocol to support double-blinded commitments using a group-based range
relation as follows:

{(g,h ∈ Gn, g, h1, h2, V ∈ G, v, γ1, γ2 ∈ Zp) : V = gvhγ11 h
γ2
2 ∧ v ∈ [0, 2n − 1]}

Instead of a single blinding mask generator h we introduce two generators h1, h2 ∈ G and corre-
sponding blinding masks γ1, γ2 ∈ Zp. It is assumed the discrete logarithm relation is unknown for
all used generators.

D.2 Zero knowledge argument for weighted inner product (WIP) relation

A WIP agrument protocol with double-blinded commitments support is shown in Fig. D.1. We
provide the security statement for the proposed updated zk-WIP protocol in Theorem 4. The proof
of Theorem 4 mostly corresponds to the original proof in Bulletproofs+ paper [3]. For the reader’s
convenience all changes are highlighted.

Theorem 4. Let y be a constant in Z∗p. The zero-knowledge argument for WIP presented in Fig.D.1
has perfect completeness, perfect honest verifier zero-knowledge, and computational witness-extended
emulation.

Proof. (perfect completeness) We show that the WIP argument has perfect completeness. First, we
assume that P = gahbga�ybhα1

1 hα2
2 and show that the case n = 1 satisfies perfect completeness.

That is, we show that the verification equation holds. It is sufficient to show that the following five
equalities hold (corresponding to bases g,h, g, h1, h2).

ae2 + re = (ae+ r)e = r′e ∈ Zp
be2 + se = (be+ s)e = s′e ∈ Zp

aybe2 + (ryb+ sya)e+ rys = (be+ s)(aye+ ry) = r′ �y s′ ∈ Zp
α1e

2 + δ1e+ η1 = δ′1 ∈ Zp
α2e

2 + δ2e+ η2 = δ′2 ∈ Zp

From the above five equalities, the perfect completeness for the case n = 1 is proven.

Next, we move to the case n > 1. At the end of every recursion, if the parameters (ĝ, ĥ, g,

h1, h2, P̂ ; â, b̂, α̂1, α̂2) that will be used for the next call satisfy the relation P̂ = ĝâĥb̂gâ�y b̂hα̂1
1 hα̂2

2

when P = gahbga�ybhα1
1 hα2

2 , then we can be sure that the protocol will end up with a correct input

18For clarity, we use original notation from the Bulletproofs+ [3] paper throughout this entire appendix.

23



Original Bulletproofs+ Extended Bulletproofs+

zk-WIP −−→
yn

(g,h, g, h, P ;a, b, α) zk-WIP −−→
yn

(g,h, g, h1, h2, P ;a, b, α1, α2)

Relation:
{(g,h ∈ Gn, g, h, P ∈ G;a, b ∈ Znp ,
α ∈ Zp) : P = gahbga�ybhα}

{(g,h ∈ Gn, g, h1, h2, P ∈ G;a, b ∈ Znp ,
α1, α2 ∈ Zp) : P = gahbga�ybhα2

1 hα2
2 }

P’s input:

(g,h, g, h, P ;a, b, α) (g,h, g, h1, h2, P ;a, b, α1, α2)

V’s input:

(g,h, g, h, P ) (g,h, g, h1, h2, P )

P’s output: none

V’s output: Accept or Reject

If n = 1 :

P : r, s, δ, η
$←− Zp and computes:

A = grhsgr�yb+s�yahδ ∈ G
B = gr�yshη ∈ G

P : r, s, δ1, δ2, η1, η2
$←− Zp and computes:

A = grhsgr�yb+s�yahδ11 h
δ2
2 ∈ G

B = gr�yshη11 h
η2
2 ∈ G

P → V : A,B

V : e
$←− Z∗p

P ← V : e

P : computes:
r′ = r + a · e ∈ Zp
s′ = s+ b · e ∈ Zp

δ′ = η + δ · e+ α · e2 ∈ Zp δ′1 = η1 + δ1 · e+ α1 · e2 ∈ Zp
δ′2 = η2 + δ2 · e+ α2 · e2 ∈ Zp

P → V : r′, s′, δ′ P → V : r′, s′, δ′1, δ
′
2

V : outputs Accept iff the following holds:

P e
2

AeB = gr
′·ehs

′·egr
′�ys

′
hδ
′ ∈ G

V : outputs Accept iff the following holds:

P e
2

AeB = gr
′·ehs

′·egr
′�ys

′
h
δ′1
1 h

δ′2
2 ∈ G

else (n > 1) :

Let n̂ = n
2 , a = (a1,a2), b = (b1, b2), g = (g1, g2), h = (h1,h2)

(where ai, bi, gi and hi are of the same length n̂)

P : dL, dR
$←− Zp and computes: P : d′L, d

′
R, d

′′
L, d
′′
R

$←− Zp and computes:

cL = a1 �y b2 ∈ Zp
cR = (yn̂ · a2)�y b1 ∈ Zp

L = g
(y−n̂·a1)
2 hb2

1 g
cLhdL ∈ G

R = g
(yn̂·a2)
1 hb1

2 g
cRhdR ∈ G

L = g
(y−n̂·a1)
2 hb2

1 g
cLh

d′L
1 h

d′′L
2 ∈ G

R = g
(yn̂·a2)
1 hb1

2 g
cRh

d′R
1 h

d′′R
2 ∈ G

P → V : L,R

V : e
$←− Z∗p

P ← V : e

P and V : compute:

ĝ = ge
−1

1 ◦ ge·y
−n̂

2 ∈ Gn̂

ĥ = he1 ◦ he
−1

2 ∈ Gn̂

P̂ = Le
2

PRe
−2 ∈ G

P : computes:
â = a1 · e+ (a2 · yn̂) · e−1 ∈ Zn̂p
b̂ = b1 · e−1 + b2 · e ∈ Zn̂p

α̂ = dL · e2 + α+ dR · e−2 ∈ Zp α̂1 = d′L · e2 + α1 + d′R · e−2 ∈ Zp
α̂2 = d′′L · e2 + α2 + d′′R · e−2 ∈ Zp

P and V : run:

zk-WIP−→y n̂(ĝ, ĥ, g, h, P̂ ; â, b̂, α̂)

P and V : run:

zk-WIP−→y n̂(ĝ, ĥ, g, h1, h2, P̂ ; â, b̂, α̂1, α̂2)

Fig. D.1. Zero Knowledge Argument for WIP relation

24



for the last step of n = 1. Therefore we show that if the input P is of the form gahbga�ybhα1
1 hα2

2

and P̂ , ĝ, ĥ, â, b̂ are computed as in the protocol, then P̂ has the desired form ĝâĥb̂gâ�y b̂hα̂1
1 hα̂2

2 .

Let P, P̂ , ĝ, ĥ, â, b̂ be the form in the protocol description for the case n > 1. If L and R are
computed as described in the protocol, then P̂ is computed as P̂ = Le

2

PRe
−2

and we can write P̂
according to the corresponding bases.

a1 + yn̂a2e
−2 = (a1e+ yn̂a2e

−1)e−1 = âe−1 ∈ Zp
y−n̂a1e

2 + a2 = (a1e+ yn̂a2e
−1)ey−n̂ = âey−n̂ ∈ Zp

b2e
2 + b1 = (b2e+ b1e

−1)e = b̂e ∈ Zp
b2 + b1e

−2 = (b2e+ b1e
−1)e−1 = b̂e−1 ∈ Zp

cLe
2 + a�y b+ cRe

−2 = a1 �y b2e2 + a�y b+ yn̂a2 �y b1e−2 ∈ Zp
d′Le

2 + α1 + d′Re
−2 = α̂1 ∈ Zp

d′′Le
2 + α2 + d′′Re

−2 = α̂1 ∈ Zp

Furthermore, from the definition of â and b̂, we see that

â�y b̂
= (a1e+ (a2y

n̂)e−1)�y (b1e
−1 + b2e)

= a1 �y b1 + a1 �y b2e2 + (yn̂a2)�y b1e−2 + (yn̂a2)�y b2
= a1 �y b2e2 + a�y b+ (yn̂a2)�y b1e−2 ∈ Zp,

which is equal to the g-base exponent of P̂ . Using the above observation, we can easily check that
the following holds.

P̂ = gâe
−1

1 gâey
−n̂

2 hb̂e
1 h

b̂e−1

2 gâ�y b̂hα̂1
1 hα̂2

2

= (ge
−1

1 gey
−n̂

2 )â(he1h
e−1

2 )b̂gâ�y b̂hα̂1
1 hα̂2

2

= ĝâĥb̂gâ�y b̂hα̂1
1 hα̂2

2 ∈ G

This completes the proof of perfect completeness.

(perfect SHVZK) To prove the argument system is perfect special honest verifier zero-knowledge,
we construct a simulator which, given only the public input, outputs a simulated transcript that is
identical to the valid transcript produced by the prover and verifier in the real interaction.

We first describe our simulator construction, and then analyze it. The simulator begins with
taking the statement and the randomness ρ of the verifier as input. Using ρ, the simulator can
generate all challenges whose distribution is identical to that of the real argument. We describe
how the simulator generates the non-challenge part. For each n > 1, the simulator chooses two

random group elements to be Ln, Rn. For the case of n = 1, the simulator chooses As
$←− G and

r′s, s
′
s, δ
′
1,s, δ

′
2,s

$←− Zp at random and computes

Bs = (P e
2

Aeg−r
′
s·eh−s

′
s·eg−r

′
s�ys

′
sh
−δ′1,s
1 h

−δ′2,s
2 )−1 ∈ G.

Next, we analyze the distribution of the simulated transcript for the non-challenge part ({(Li, Ri)}i,
As, Bs, r

′
s, s
′
s, δ
′
1,s, δ

′
2,s). In the protocol description, ∀i, (Li, Ri) are distributed uniformly and inde-

pendently due to blinding factors d′Li
, d′Ri

, d′′Li
, and d′′Ri

, and all (Li, Ri) contribute to generate the
point P used in the case n = 1. The simulator generates all (Li, Ri) uniformly at random so that
their distributions are identical to that of the real argument. From now, we analyze the distribution
of (As, Bs, r

′
s, s
′
s, δ
′
1,s, δ

′
2,s) for a given P in the case n = 1.

25



Before analyzing the simulated transcript (As, Bs, r
′
s, s
′
s, δ
′
1,s, δ

′
2,s), we first analyze the real

transcript (A,B, r′, s′, δ′1, δ
′
2) and then show the two distributions are identical.

Here, we focus on (A, r′, s′, δ′1, δ
′
2) and claim that it is uniformly distributed in G× Z4

p when
(r, s, δ1, δ2, η1, η2) is uniformly distributed in Z6

p. To this end, it is sufficient to prove the following
claim.

Claim: There exists a one-to-one correspondence between (r, s, δ1, δ2, η1, η2) and (A, r′, s′, δ′1, δ
′
2).

Proof: First, consider the following function mapping from (r, s, δ1, δ2, η1, η2) to (A, r′, s′, δ′1, δ
′
2).

A
r′

s′

δ′1
δ′2

 =


grhsgr�yb+s�yahδ11 h

δ2
2

r + a · e
s+ b · e

η1 + δ1 · e+ α1 · e2
η2 + δ2 · e+ α2 · e2

 ∈ G× Z4
P

Assume that there is another tuple (r̃, s̃, δ̃1, δ̃2, η̃1, η̃2) 6= (r, s, δ1, δ2, η1, η2) whose image via the above
function is also (A, r′, s′, δ′1, δ

′
2). Then, comparing the two function values we obtain

grhsgr�yb+s�yahδ11 h
δ2
2

r + a · e
s+ b · e

η1 + δ1 · e+ α1 · e2
η2 + δ2 · e+ α2 · e2

 =


gr̃hs̃gr̃�yb+s̃�yahδ̃11 h

δ̃2
2

r̃ + a · e
s̃+ b · e

η̃1 + δ̃1 · e+ α1 · e2
η̃2 + δ̃2 · e+ α2 · e2


From the second and third rows we get r = r̃ and s = s̃. This lets us simplify the first row:

grhsgr�yb+s�yahδ11 h
δ2
2 · (gr̃hs̃gr̃�yb+s̃�yahδ̃11 h

δ̃2
2 )−1 = 1G ⇒

hδ1−δ̃11 hδ2−δ̃22 = 1G

Using the discrete logarithm relation assumption for h1 and h2, we get

δ1 = δ̃1

δ2 = δ̃2

Using that, from the last two equations for η1 and η2 we finally obtain η1 = η̃1 and η2 = η̃2. Thus:

(r̃, s̃, δ̃1, δ̃2, η̃1, η̃2) = (r, s, δ1, δ2, η1, η2)

This contradiction concludes the proof of the claim. �

In the generation of the real transcript (A,B, r′, s′, δ′1, δ
′
2), only six random integers r, s, δ1, δ2, η1

and η2 are used. Therefore, the above result implies that the distribution of (A,B, r′, s′, δ′1, δ
′
2) is

identical to the distribution that (A, r′, s′, δ′1, δ
′
2) is uniformly distributed and B is uniquely defined

by the others and the verification equation. In fact, the latter process is exactly the same as the
simulated transcript. Therefore, the simulated transcript is identical to that of the real transcript
for given P in the case n = 1. This concludes our proof of the perfect special honest verifier
zero-knowledge.

(witness-extended emulation) For witness extended emulation, we construct an expected polynomial
time extractor χ that extracts a witness using a poly(λ)-bounded tree of accepting transcripts, in

26



order to meet the requirements of the general forking lemma. Consider the case n = 1. At the first
move, the prover sends A and B to the verifier. By rewinding the oracle 〈P∗,V〉 four times with
five distinct challenges e1, e2, e3, e4, and e5 while using the same A and B, the extractor obtains five
tuples (r′i, s

′
i, δ
′
1,i, δ

′
2,i) for i = 1, . . . , 5 satisfying the following verification equation.

P e
2
iAeiB = gr

′
i·eihs

′
i·eigr

′
i�ys

′
ih
δ′1,i
1 h

δ′2,i
2 for i = 1, . . . , 5 (27)

Using the first three challenges and the corresponding valid responses, we can interpret the exponents
as the product of a 3× 3 Vandermonde matrix (which is invertible in Z3×3

p since all ei’s are distinct):e21 e1 1
e22 e2 1
e23 e3 1

aP bP cP dP fP
aA bA cA dA fA
aB bB cB dB fB

 =

r′1e1 s′1e1 r′1 �y s′1 δ′1,1 δ′2,1
r′2e2 s′2e2 r′2 �y s′2 δ′1,2 δ′2,2
r′3e3 s′3e3 r′3 �y s′3 δ′1,3 δ′2,3


The other exponents in the right hand side of Eq. (27) are public as well. Thus, from those
three challenges and responses, we can obtain the exponents aP , bP , cP , dP , fP , aA, bA, cA, dA, fA,
aB , bB , cB , dB , fB such that

P = gaPhbP gcP hdP1 hfP2

A = gaAhbAgcAhdA1 hfA2

B = gaBhbBgcBhdB1 hfB2

Using the above three equations and the verification equation, we obtain for each ei ∈ {e1, . . . , e5},

gr
′
iei−aP e

2
i−aAei−aBhs

′
iei−bP e

2
i−bAei−bB

· gr
′
i�ys

′
i−cP e

2
i−cAei−cBh

δ′1,i−dP e
2
i−dAei−dB

1 h
δ′2,i−fP e

2
i−fAei−fB

2 = 1G.

Thus, under the discrete logarithm relation assumption, we have five equations of exponents accord-
ing to the bases g,h, g, h1, h2,

r′iei − aP e2i − aAei − aB = 0

s′iei − bP e2i − bAei − bB = 0

r′i �y s′i − cP e2i − cAei − cB = 0

δ′1,i − dP e2i − dAei − dB = 0

δ′2,i − fP e2i − fAei − fB = 0

and, equivalently,

r′i = aP ei + aA + aBe
−1
i (28)

s′i = bP ei + bA + bBe
−1
i (29)

r′i �y s′i = cP e
2
i + cAei + cB (30)

δ′1,i = dP e
2
i + dAei + dB

δ′2,i = fP e
2
i + fAei + fB

27



By eliminating r′i and s′i from Eq. (28), Eq. (29), and Eq. (30), we have for i ∈ {1, . . . , 5}

aP �y bP · e2i + (aP �y bA + bP �y aA) · ei
+ (aP �y bB + bP �y aB + aA �y bA) + (aA �y bB + bA �y aB) · e−1i
+ aB �y bB · e−2i
= cP e

2
i + cAei + cB ∈ Zp

(31)

This equation can be considered as an inner-product between (e2i , ei, 1, e
−1
i , e−2i ) and a constants vec-

tor. Since Eq. (31) holds for all five distinct challenges ei ∈ {e1, . . . , e5} and each (e2i , ei, 1, e
−1
i , e−2i )

tuple is linearly independent, each coefficient in the left hand side of Eq. (31) must be equal to the
corresponding coefficient in the right hand side of Eq. (31). As we intended, the extractor either
extracts a witness (aP , bP ) satisfying aP �y bP = cP , or a discrete logarithm relation between the
generators.

Next, we move to the case n > 1. We prove the case n > 1 recursively. That is, we construct an
extractor χ2k for the case n = 2k using an extractor χk and let χ1 be the extractor χ we constructed
for the case n = 1. We start with input (g,h, g, h2, h2, P ) for the case n = 2k. Assume that we
have the extractor χk for the case n = k. The extractor χ2k runs the prover to get L and R. At
this point, the extractor χ2k rewinds the oracle three times, using four distinct challenges ei for
i = 1, . . . , 4, and sets

ĝi = g
e−1
i

1 ◦ gei·y
−k

2 , ĥi = hei1 ◦ he
−1

2 , P̂i = Le
2
iPRe

−2
i ∈ G for i = 1, . . . , 4

Then, for each i, it feeds (ĝi, ĥi, g, h1, h2, P̂i) to χk and obtain the corresponding witness âi, b̂i, α̂1,i,
and α̂2,i that satisfy

Le
2
iPRe

−2
i = (ge

−1
i ◦ gei·y

−k

2 )âi(hei1 ◦ h
e−1
i

2 )b̂igâi�y b̂ih
α̂1,i

1 h
α̂2,i

2 , i ∈ [1, 4] (32)

For the first three challenges e1, e2, e3, the tuples (e2i , 1, e
−2
i ) are linearly independent and so compose

a 3×3 invertible matrix in Z3×3
p . We can see that all exponents are constants known to the extractor.

Thus, by applying elementary linear algebra to the public exponent of the first three equations of
Eq. (32), we can find the exponents aP , bP , cP , dP , fP ,aL, bL, cL, dL, fL,aR, bR, cR, dR, fR satisfying

P = gaPhbP gcP hdP1 hfP2 ∈ G ,

L = gaLhbLgcLhdL1 hfL2 ∈ G ,

R = gaRhbRgcRhdR1 hfR2 ∈ G .

Now we prove that those exponents satisfy the desired relation cP = aP �y bP . Putting the
above representations of P,L,R into Eq. (32) for each i, we have the following equations with bases
g,h, g, h1, h2 under the discrete logarithm relation assumption.

28



gaLe
2
i gaP gaRe

−2
i = (g

e−1
i

1 ◦ gei·y
−k

2 )âi (33)

hbLe
2
ihbPhbRe

−2
i = (hei1 ◦ h

e−1
i

2 )b̂i (34)

gcLe
2
i gcP gcRe

−2
i = gâi�y b̂i (35)

h
dLe

2
i

1 hdP1 h
dRe

−2
i

1 = h
α̂1,i

1

h
fLe

2
i

2 hfP2 h
fRe
−2
i

2 = h
α̂2,i

2

That is, Eq. (32) is separated into the above five equations according to the bases g,h, g, h1, h2. If we
find exponents satisfying Eq. (32) but not the above five equations, it directly implies a non-trivial
relation between the generators which breaks the discrete logarithm assumption. We use the above
five equations to prove aP �y bP = cP . To this end, we first find a relation between âi and aP with

Eq. (33), second find another relation between b̂i and bP with Eq. (34), and then finally use Eq. (35)
to show the desired relation between cP ,aP , and bP .

First, we show the relation between âi and aP with Eq. (33). By the discrete logarithm as-
sumption, it is infeasible to find a relation between g1 and g2, so Eq. (33) can be interpreted as two
equations on bases g1 and g2, as follows.

aL,1e
2
i + aP,1 + aR,1e

−2
i = e−1i âi

aL,2e
2
i + aP,2 + aR,2e

−2
i = y−keiâi ,

where aP = (aP,1,aP,2), aL = (aL,1,aL,2), aR = (aR,1,aR,2) ∈ Zkp × Zkp. By eliminating âi from
the above two equations, we obtain

aL,1e
3
i + aP,1ei + aR,1e

−1
i = aL,2y

kei + aP,2y
ke−1i + aR,2y

ke−3i (36)

Eq. (36) holds for all four challenges e1, . . . , e4 and there are four variable terms ei, e
3
i , e
−1
i , e−3i .

This implies that the following must hold.

aL,1 = 0 ∈ Zkp
aP,1 = aL,2y

k ∈ Zkp
aR,1 = aP,2y

k ∈ Zkp
aR,2 = 0 ∈ Zkp

Using the above result with Eq. (33), we see that the exponent of the base g1 in Eq. (33) is

aP,1 + aP,2y
ke−2i = e−1i âi ,

which means we have a relation between âi and aP ,

âi = aP,1ei + aP,2y
ke−1i (37)

Second, we show the relation between b̂i and bP with Eq. (34). Like with Eq. (33), we use the
discrete logarithm assumption to extract the exponents of the bases h1 and h2 from Eq. (34).

29



bL,1e
2
i + bP,1 + bR,1e

−2
i = eib̂i

bL,2e
2
i + bP,2 + bR,2e

−2
i = e−1i b̂i

where bP = (bP,1, bP,2), bL = (bL,1, bL,2), bR = (bR,1, bR,2) ∈ Zkp × Zkp. By eliminating b̂i from the
above two equations, we obtain

bL,1 · ei + bP,1 · e−1i + bR,1 · e−3i = bL,2y
k · e3i + bP,2 · ei + bR,2 · e−1i (38)

Eq. (38) holds for all four challenges e1, . . . e4 and there are four variable terms ei, e
3
i , e
−1
i , e−3i . This

implies that the following must hold.

bL,1 = bP,2 ∈ Zkp
bP,1 = bR,2 ∈ Zkp
bR,1 = 0 ∈ Zkp
bL,2 = 0 ∈ Zkp

Using the above result with Eq. (34), we see that the exponent of the base h1 in Eq. (34) is

bP,2e
2
i + bP,1 = eib̂i ,

which means we have a relation between b̂i and bP ,

b̂i = bP,2ei + bP,1e
−1
i (39)

Finally, we use Eq. (35) to show the relation between cP ,aP , and bP . Taking the WIP �y on
Eq. (37) and Eq. (39), we have

âi �y b̂i
= (aP,1 �y bP,2)e2i + (aP,1 �y bP,1 + aP,2 �y bP,2 · yk)

+(aP,2 �y bP,1 · yk)e−2i

Combining this result with Eq. (35), we have

(
aP,1 �y bP,2 − cL, aP,1 �y bP,1 + aP,2 �y bP,2yk − cP , aP,2 �y bP,1yk − cR

)
·

 e2i
1
e−2i

 = 0

The above equation holds for the first three distinct challenges e1, . . . , e3. Since the vectors (e2i , 1, e
−2
i )’s

are linearly independent, this implies that the following must hold.

aP �y bP = aP,1 �y bP,1 + aP,2 �y bP,2 · yk = cP

30



For each recursive step, the extractor χ2k uses 4 transcripts and χ1 uses 5 transcripts, so that
the final extractor χn uses 5 · 4log2(n) transcripts in total and this runs in expected polynomial time
in λ since n is polynomial in λ. Then, by the general forking lemma, we conclude that the proposed
WIP argument system has computational witness extended emulation.

31



D.3 Zero Knowledge Arguments for Range Proof and Aggregate Range
Proof

A range proof protocol with support for double-blinded commitments is shown on Fig. D.2 and
a corresponding aggregated range proof protocol is shown on Fig. D.3. We provide the security
statement for the proposed extended protocols in Theorem 6. The proof of Theorem 6 mostly
corresponds to the original proof in the Bulletproofs+ paper[3]. The WEE proof for Theorem 6
originally has a mistake, that was found and discussed in [2]. We provide a fixed WEE proof with
the exact equations. For the reader’s convenience all changes are highlighted.

As soon as Theorem 5 can be shown to be a particular case of Theorem 6, we, like in the original
paper, omit the proof of Theorem 5.

Original Bulletproofs+ Extended Bulletproofs+

Relation
{(g,h ∈ Gn, g, h, V ∈ G; v, γ ∈ Zp) :
V = gvhγ

∧
v ∈ [0, 2n − 1]}

P’s input: (g,h, g, h, V ; v, γ)
V’s input: (g,h, g, h, V )

Relation
{(g,h ∈ Gn, g, h1, h2, V ∈ G; v, γ1, γ2 ∈ Zp) :
V = gvhγ11 h

γ2
2

∧
v ∈ [0, 2n − 1]}

P’s input: (g,h, g, h1, h2, V ; v, γ1, γ2)
V’s input: (g,h, g, h1, h2, V )

P’s output: none
V’s output: Accept or Reject

P : α
$← Zp, sets aL ∈ {0, 1}n such that

〈aL,2n〉 = v and aR = aL − 1n ∈ Znp , and
computes A = gaLhaRhα ∈ G.

P : α1, α2
$← Zp, sets aL ∈ {0, 1}n such that

〈aL,2n〉 = v and aR = aL − 1n ∈ Znp , and
computes A = gaLhaRhα1

1 hα2
2 ∈ G.

P → V : A

V : y, z
$← Zp

V → P : y, z

P and V : compute

Â = A · g−1n·z · h2n◦←−y n+1n·z · V yn+1

·g〈1n,−→y n〉·z−〈1n,2n〉·yn+1z−〈1n,−→y n〉·z2 ∈ G
P : computes
âL = aL − 1n · z ∈ Znp
âR = aR + 2n ◦←−y n + 1n · z ∈ Znp

α̂ = α+ γ · yn+1 ∈ Zp α̂1 = α1 + γ1 · yn+1 ∈ Zp
α̂2 = α2 + γ2 · yn+1 ∈ Zp

P and V :

run zk-WIP−→y n(g,h, g, h, Â; âL, âR, α̂)

P and V :

run zk-WIP−→y n(g,h, g, h1, h2, Â; âL, âR, α̂1, α̂2)

Fig. D.2. Zero Knowledge Argument for Range Proof v ∈ [2n − 1]

32



Original Bulletproofs+ Extended Bulletproofs+

Relation
{(g,h ∈ Gm·n, g, h ∈ G,V ∈ Gm;v,γ ∈ Zmp ) :
Vj = gvjhγj

∧
vj ∈ [0, 2n − 1] for j ∈ [1,m]}

Relation
{(g,h ∈ Gm·n, g, h1, h2 ∈ G,V ∈ Gm;
v,γ1,γ2 ∈ Zmp ) : Vj = gvjh

γ1,j
1 h

γ2,j
2∧

vj ∈ [0, 2n − 1] for j ∈ [1,m]}

P’s input: (g,h, g, h,V ;v,γ)
V’s input: (g,h, g, h,V )

P’s input: (g,h, g, h1, h2,V ;v,γ1,γ2)
V’s input: (g,h, g, h1, h2,V )

P’s output: none
V’s output: Accept or Reject

P : for j ∈ [1,m], let dj := (0, . . . , 0︸ ︷︷ ︸
(j−1)·n

,2n, 0, . . . , 0︸ ︷︷ ︸
(m−j)·n

), sets aL ∈ {0, 1}m·n

such that 〈aL,dj〉 = vj and aR = aL − 1mn ∈ Zmnp
P : chooses α

$← Zp, and computes
A = gaLhaRhα ∈ G

P : chooses α1, α2
$← Zp, and computes

A = gaLhaRhα1
1 hα2

2 ∈ G

P → V : A

V : y, z
$← Z∗p

V → P : y, z

P and V : let d :=
m∑
j=1

z2j · dj , and compute

Â = A · g−1mn·z · hd◦←−y mn+1mn·z ·

(
m∏
j=1

V z
2j

j

)ymn+1

·g〈1mn,−→y mn〉·z−〈1mn,d〉·ymn+1z−〈1mn,−→y mn〉·z2 ∈ G
P : computes
âL = aL − 1mn · z ∈ Zmnp
âR = aR + d ◦←−y mn + 1mn · z ∈ Zmnp

α̂ = α+
∑m
j=1 z

2j · γj · ymn+1 ∈ Zp α̂1 = α1 +
∑m
j=1 z

2j · γ1,j · ymn+1 ∈ Zp
α̂2 = α2 +

∑m
j=1 z

2j · γ2,j · ymn+1 ∈ Zp
P and V :

run zk-WIP−→y n(g,h, g, h, Â; âL, âR, α̂)

P and V :

run zk-WIP−→y n(g,h, g, h1, h2, Â; âL, âR, α̂1, α̂2)

Fig. D.3. Zero Knowledge Argument for Aggregate Range Proof vj ∈ [2n − 1] for j ∈ [1;m]

Theorem 5. The zero-knowledge argument for range proof presented in Figure D.2 has perfect
completeness, perfect honest verifier zero-knowledge, and computational witness extended emulation.

Theorem 6. The zero-knowledge argument for range proof presented in Figure D.3 has perfect
completeness, perfect honest verifier zero-knowledge, and computational witness extended emulation.

Proof. (perfect completeness) Since the proposed range proof argument runs the WIP argument as
a subprotocol, we prove perfect completeness by showing that if A = gaLhaRhα1

1 hα2
2 is correctly

33



computed, then Â satisfies the WIP relation such that

Â = gâLhâRgâL�yâRhα̂1
1 hα̂2

2 ∈ G (40)

From the computation

Â = A · g−1
mn·zhd◦←−y mn+1mn·z

 m∏
j=1

V z
2j

j

ymn+1

g〈1
mn,−→y mn〉·z−〈1mn,d〉·ymn+1z−〈1mn,−→y mn〉·z2

one can easily check that the exponents of bases g,h, h1, and h2 are equal to âL, âL, α̂1 and α̂2

respectively. The only thing that remains is to confirm whether the exponent of the base g is equal
to âL �y âL. This can be checked as follows.

âL �y âR
= (aL − 1mn · z)�y (aR + d ◦←−y mn + 1mn · z)
= aL �y aR + aL �y (d ◦←−y mn) + aL �y 1mn · z − 1mn �y aR · z

− 1mn �y (d ◦←−y mn) · z − 1mn �y 1mn · z2

= 〈aL,d〉 · ymn+1 + 〈1mn,−→y mn〉 · z − 〈1mn,d〉 · z · ymn+1 − 〈1mn,−→y mn〉 · z2

(41)

The first component in the far right hand side in Eq. (41) is equal to

〈aL,
m∑
j=1

z2j · dj〉 · ymn+1 =

m∑
j=1

z2j · 〈aL,dj〉 · ymn+1 =

m∑
j=1

z2j · vj · ymn+1

which is the g-base exponent of (
∏m
j=1 V

z2j

j )y
mn+1

. This means Eq. (41) is exactly equal to the

g-base exponent of Â, so Eq. (40) holds. Since Eq. (40) has the format of a bilinear argument, we
can utilize the perfect completeness of the WIP argument, which lets us conclude that the proposed
aggregatable range proof argument has perfect completeness.

(perfect SHVZK) For perfect special honest verifier zero-knowledge, we construct a simulator. The

simulator samples A
$← G and sets the input of the WIP argument according to the description

of the range protocol. Then, the simulator runs the simulator from the perfect SHVZK proof in
the WIP argument as a subalgorithm. In the real transcript, A is uniformly distributed due to the
blinding factors α1, α2, and A, along with y and z, contributes to define the input of the bilinear
argument. In the simulated transcript, A is also uniformly generated, and for any fixed input of
the WIP argument we have already proved that the simulator for the perfect SHVZK proof in the
WIP argument can perfectly simulate the real transcript. Therefore, we conclude that the simulated
transcript’s distribution is identical to that of the real transcript.

(witness-extended emulation) We prove that the proposed protocol has witness-extended emulation.
To this end, we construct the extractor χR that extracts a witness of the range proof argument by
using 3n + 3 distinct y challenges and 2m + 2 distinct z challenges. In the proof, we first explain
how the extractor extracts openings vj of the Pedersen commitments and next prove that it satisfies
the desired relation vj ∈ [0, 2n − 1].

In order to extract openings of the Pedersen commitments, the extractor uses another extractor
χB for the bilinear arguments whose existence is already proved in the proof of Theorem 4. More
precisely, after fixing the first message A sent by the prover, χR rewinds the prover by using one

34



y challenge and m + 1 distinct z challenges, computes the corresponding Â, calls χB by giving
(g,h, g, h1, h2, Â) as input, and then obtains the corresponding values âL, âR, α̂1 and α̂2 such that

gâLhâRgâL�yâRhα̂1
1 hα̂2

2

= A · g−1
mn·zhd◦←−y mn+1mn·z

 m∏
j=1

V z
2j

j

ymn+1

g〈1
mn,−→y mn〉·z−〈1mn,d〉·ymn+1z−〈1mn,−→y mn〉·z2

(42)

Here, χR knows all exponents in Eq. (42), so we can efficiently perform any linear operations among
the exponents in Eq. (42). The tuple of exponents corresponding to A and each Vj in Eq. (42) is the
(m+1)-dimensional vector (1, ymn+1z2, . . . , ymn+1z2m). We know that a set of vectors (1, z2, ..., z2m)
for m+1 distinct z’s is linearly independent since it composes the Vandermonde matrix with distinct
rows. By multiplying the inverse of such a Vandermonde matrix to the exponents in Eq. (42), the

extractor can compute the decompositions of A and each V y
mn+1

j with respect to bases g,h, g,

h1 and h2, and so do Vj for j = 1, . . . ,m by exponentiation with y−mn−1. Therefore, now the
extractor χR has values aL,aR, α, β,vL,j ,vR,j , vj , γ1,j and γ2,j such that A = gaLhaRgβhα1

1 hα2
2

and Vj = gvL,jhvR,jgvjh
γ1,j
1 h

γ2,j
2 for j = 1, . . . ,m. In particular, we successfully extracted vj for

j = 1, . . . ,m openings of the Pedersen commitments.

Next, we show that the extracted values aL,aR,vL,vR, and vj for j = 1, . . . ,m satisfy
the desired relations vj ∈ [0, 2n − 1] and vL,j = vR,j = 0 for j = 1, . . . ,m. To this end, it is
sufficient to show that these values satisfy the five equations aR = aL − 1mn, aL ◦ aR = 0,
〈aL,dj〉 = vj , vL,j ◦ vR,j = 0, and vL,j + vR,j = 0 for j ∈ [1,m]. First, we consider Eq. (42). Al-
though âL, âR, α̂1, α̂2 are computed by using only the m+ 1 challenges zj , these are fixed exponents
for the commitments A and public Vj for j = 1, . . . ,m, regardless of challenges. That is, if we find
a challenge pair that does not satisfy Eq. (42), then we directly obtain a non-trivial discrete loga-
rithm relation between the 2mn+ 3 generators g,h, g, h1, h2 of G. If Eq. (42) holds for all challenge
pairs (y, z), again under the discrete logarithm relation assumption, we can change Eq. (42) with
the following five equations according to the bases g,h, g, h1 and h2.

α̂L = aL − 1mn · z + ymn+1 · uL ∈ Zmnp , where uL =

m∑
j=1

z2j · vL,j

α̂R = aR + d ◦←−y mn + 1mn · z + ymn+1 · uR ∈ Zmnp , where d =

m∑
j=1

z2j · dj , uR =

m∑
j=1

z2j · vR,j

α̂L �y α̂R = β +

m∑
j=1

vj · z2j · ymn+1 + 〈1mn,−→y mn〉 · z − 〈1mn,d〉 · ymn+1z − 〈1mn,−→y mn〉 · z2 ∈ Zp

α̂1= α1 +

m∑
j=1

γ1,j · z2j · ymn+1 ∈ Zp

α̂2= α2 +

m∑
j=1

γ2,j · z2j · ymn+1 ∈ Zp

The right hand sides of the above equations can be considered as polynomials in variables y and z.
By eliminating aL and aR in the left hand sides of the first three equations, we obtain the following

35



equation in y and z.

âL �y âR
= aL �y aR︸ ︷︷ ︸
y,...,ymn terms

+ ymn+1 · 〈aL,d〉︸ ︷︷ ︸
ymn+1z2,...,ymn+1z2m terms

+ z · aL �y 1mn︸ ︷︷ ︸
yz,...,ymnz terms

+ ymn+1 · aL �y uR︸ ︷︷ ︸
ymn+2z2,...,y2mn+1z2m terms

− z · 1mn �y aR︸ ︷︷ ︸
yz,...,ymnz terms

− ymn+1z · 〈1mn,d〉︸ ︷︷ ︸
ymn+1z2+1,...,ymn+1z2m+1 terms

− z2 · 1mn �y 1mn︸ ︷︷ ︸
yz2,...,ymnz2 terms

− ymn+1z · 1mn �y uR︸ ︷︷ ︸
ymn+2z3,...,y2mn+1z2m+1 terms

+ ymn+1 · uL �y aR︸ ︷︷ ︸
ymn+2z2,...,y2mn+1z2m terms

+ y2mn+2 · 〈uL,d〉︸ ︷︷ ︸
y2mn+2z4,...,y2mn+2z4m terms

+ ymn+1z · uL �y 1mn︸ ︷︷ ︸
ymn+2z3,...,y2mn+1z2m+1 terms

+ y2mn+2 · uL �y uR︸ ︷︷ ︸
y2mn+3z4,...,y3mn+2z4m terms

= β︸︷︷︸
constant term

+

m∑
j=1

vj · z2j · ymn+1

︸ ︷︷ ︸
ymn+1z2,...,ymn+1z2m terms

+ 〈1mn,−→y mn〉 · z︸ ︷︷ ︸
yz,...,ymnz terms

− 〈1mn,d〉 · ymn+1z︸ ︷︷ ︸
ymn+1z2+1,...,ymn+1z2m+1 terms

− 〈1mn,−→y mn〉 · z2︸ ︷︷ ︸
yz2,...,ymnz2 terms

(43)

The above equation holds for all y, z challenges, which are 3n+3 distinct y challenges and 2m+2
distinct z challenges, and thus the following equations must hold. (See Lemma 2 in Appendix B.2
in the original paper [3] for a rigorous proof for this argument.)

Variables in Eq. (43) Left Hand Side Right Hand Side

y, . . . , ymn aL �y aR = 0 ⇒ aL ◦ aR = 0

ymn+1z2, . . . , ymn+1z2m 〈aL,
m∑
j=1

z2jdj〉ymn+1 =
m∑
j=1

vjz
2jymn+1 ⇒ 〈aL,dj〉 = vj∀j

yz, . . . , ymnz z · aL �y 1mn − z · 1mn �y aR = 〈1mn,−→y mn〉z ⇒ aL − aR = 1mn

y2mn+3z4, . . . , y3mn+2z4m y2mn+2
m∑
j=1

z2jvL,j �y vR,j = 0 ⇒ vL,j ◦ vR,j = 0 ∀j

ymn+2z3, . . . , y2mn+1z2m+1 ymn+1z

m∑
j=1

z2j(vL,j − vR,j) �y 1mn= 0 ⇒ vL,j − vR,j = 0 ∀j

Therefore, the extracted values vj and γj satisfy the desired relations vj ∈ [0, 2n − 1] and Vj =
gvjh

γ1,j
1 h

γ2,j
2 for all j = 1, . . . ,m.

Finally, the extractor χR runs the prover with 3n+ 3 distinct y challenges and 2m+ 2 distinct
z challenges and also invokes χB on each of the transcripts, so that in total χR uses (3n+ 3) · (2m+
2) · (5 · 4log(n)) valid transcripts, which is polynomial in λ since both n and m are polynomial in
λ. The extractor χR rewinds the prover (3n + 3) · (2m + 2) · (5 · 4log(n)) times, so that it runs in
expected polynomial time in λ. Combining the result of the general forking lemma, we conclude
that the proposed protocol has witness-extended emulation.

36


	Notation
	Classic PoS scheme (open amounts)
	Hidden amounts: the problem and the solution
	Criteria
	Direct-spend PoS
	Ring-friendly PoS hidden amount scheme
	Ring-friendly proof construction
	Ring-friendly scheme outline
	Verification of ring-friendly PoS scheme
	Limitations
	Optional sender-recipient anonymity
	Size of ring-friendly PoS proof

	Basic proofs
	Mirror commitment proof
	Extended mirror commitment proof
	Linear composition proof

	How to ensure f != -q
	Proof for f + q != 0
	Blockchain-specific solution

	Brute-force attack, its complexity, and mitigation
	Complexity
	Solution 1: increasing complexity
	Solution 2: eliminating all risk to secret key v

	Bulletproofs+ with double-blinded commitments
	Introduction
	Zero knowledge argument for weighted inner product (WIP) relation
	Zero Knowledge Arguments for Range Proof and Aggregate Range Proof


