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Sonia Beläıd1, Matthieu Rivain1, Abdul Rahman Taleb1,2, and Damien Vergnaud2,3

1 CryptoExperts, France
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Abstract. The masking countermeasure is widely used to protect cryptographic implementations
against side-channel attacks. While many masking schemes are shown to be secure in the widely
deployed probing model, the latter raised a number of concerns regarding its relevance in practice.
O↵ering the adversary the knowledge of a fixed number of intermediate variables, it does not capture
the so-called horizontal attacks which exploit the repeated manipulation of sensitive variables. There-
fore, recent works have focused on the random probing model in which each computed variable leaks
with some given probability p. This model benefits from fitting better the reality of the embedded de-
vices. In particular, Beläıd, Coron, Prou↵, Rivain, and Taleb (CRYPTO 2020) introduced a framework
to generate random probing circuits. Their compiler somehow extends base gadgets as soon as they sat-
isfy a notion called random probing expandability (RPE). A subsequent work from Beläıd, Rivain, and
Taleb (EUROCRYPT 2021) went a step forward with tighter properties and improved complexities.
In particular, their construction reaches a complexity of O(3.9), for a -bit security, while tolerating
a leakage probability of p = 2�7.5.
In this paper, we generalize the random probing expansion approach by considering a dynamic choice
of the base gadgets at each step in the expansion. This approach makes it possible to use gadgets with
high number of shares –which enjoy better asymptotic complexity in the expansion framework– while
still tolerating the best leakage rate usually obtained for small gadgets. We investigate strategies for
the choice of the sequence of compilers and show that it can reduce the complexity of an AES imple-
mentation by a factor 10. We also significantly improve the asymptotic complexity of the expanding
compiler by exhibiting new asymptotic gadget constructions. Specifically, we introduce RPE gadgets
for linear operations featuring a quasi-linear complexity as well as an RPE multiplication gadget with
linear number of multiplications. These new gadgets drop the complexity of the expanding compiler
from quadratic to quasi-linear.
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1 Introduction

Implementations of cryptographic algorithms may be vulnerable to the powerful side-channel at-
tacks. The latter exploit the power consumption, the electromagnetic radiations or the temperature
variations of the underlying device which may carry information on the manipulated data. Entire
secrets can be recovered within a short time interval using cheap equipment.

Among the several approaches investigated by the community to counteract side-channel at-
tacks, masking is one of the most deployed in practice. Simultaneously introduced by Chari, Jutla,
Rao, and Rohatgi [12] and by Goubin and Patarin [16] in 1999, it consists in splitting the sensitive
variables into n random shares, among which any combination of n� 1 shares does not reveal any
secret information. When the shares are combined by bitwise addition, the masking is said to be
Boolean. In this setting, the linear operations can be very easily implemented by applying on each



share individually. Nevertheless, non-linear operations require additional randomness to ensure that
any set of less than n intermediate variables is still independent from the original secret.

To reason on the security of masked implementations, the community has introduced so-called
leakage models. They aim to define the capabilities of the attacker to formally counteract the
subsequent side-channel attacks. Among them, the probing model introduced in 2003 by Ishai,
Sahai, and Wagner [18] is probably the most widely used. In a nutshell, it assumes that an adversary
is able to get the exact values of up to a certain number of intermediate variables. The idea is to
capture the di�culty of learning information from the combination of noisy variables. Despite
its wide use by the community [21, 20, 13, 7, 14], the probing model raised a number of concerns
regarding its relevance in practice [5, 17]. It actually fails to capture the huge amount of information
resulting from the leakage of all manipulated data. As an example, it typically ignores the repeated
manipulation of identical values which would average the noise and remove uncertainty on secret
variables (see horizontal attacks [5]). Another model, the noisy leakage model introduced by Prou↵
and Rivain and inspired from [12], o↵ers an opposite trade-o↵. Although it captures well the reality
of embedded devices by assuming that all the data leaks with some noise, it is not convenient to
build security proofs. To get the best from both worlds, Duc, Dziembowski, and Faust proved in
2014 that a scheme secure in the probing model is also secure in the noisy leakage model [15].
Nevertheless, the reduction is not very tight in the standard probing model (considering a constant
number of probes) since the security level decreases as the size of the circuit increases (i.e. a secure
circuit C in the probing model is also secure in the noisy model but loses at least a factor |C|,
where |C| is the number of operations in the circuit).

The reduction from [15] relies on an intermediate leakage model, referred to as random probing
model. The latter benefits from a tight reduction with the noisy leakage model which becomes
independent of the size of the circuit. In a nutshell, it assumes that every wire in the circuit leaks
with some constant leakage probability. This leakage probability is somehow related to the amount
of side-channel noise in practice. A masked circuit is secure in the random probing model whenever
its random probing leakage can be simulated without knowledge of the underlying secret data with
a negligible simulation failure. In addition to the attacks already captured by the probing model,
the random probing model further encompasses the powerful horizontal attacks which exploit the
repeated manipulations of variables in an implementation.

To the best of our knowledge, five constructions tolerate a constant leakage probability so far [1,
4, 3, 9, 10]. The two former ones [1, 4] use expander graphs and do not make their tolerated proba-
bility explicit. In the third construction [3], Ananth, Ishai, and Sahai develop an expansion strategy
on top of multi-party computation protocols. According to the authors of [9], their construction
tolerates a leakage probability of around 2�26 for a complexity of O(8.2) with respect to the se-
curity parameter . Finally, the two more recent constructions [9, 10] follow an expansion strategy
on top of masking gadgets achieving the so-called random probing expandability (RPE) notion. In
a nutshell, every gate in the original circuit is replaced by a corresponding gadget for some chosen
number of shares. The operation is repeated until the desired security level is achieved. The im-
proved gadgets of [10] make it possible to tolerate of leakage probability of 2�7.5 for a complexity
of O(3.9).

Our contributions. In this paper, we push the random probing expansion strategy one step further
by analyzing a dynamic choice of the base gadgets. While the expanding compiler considered in [9,
10] consists in applying a compiler CC composed of base RPE gadgets a given number of times, say
k, to the input circuit: bC = CC(k)(C), we consider a dynamic approach in which a new compiler
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is selected at each step of the expansion from a family of base compilers {CCi}i. This approach is
motivated by the generic gadget constructions introduced in [10] which achieve the RPE property for
any number of shares n. While the asymptotic complexity of the expanding compiler decreases with
n, the tolerated leakage probability p also gets smaller with n, which makes those constructions only
practical for small values of n. We show that using our dynamic approach we can get the best of both
worlds: our dynamic expanding compiler enjoys the best tolerated probability as well as the best
asymptotic complexity from the underlying family of RPE compilers {CCi}i. We further illustrate
how this approach can reduce the complexity of a random probing secure AES implementation by
a factor 10 using a dynamic choice of the gadgets from [10].

This first contribution further motivates the design of asymptotic RPE gadgets achieving better
complexity. While the asymptotic constructions introduced in [10] achieve a quadratic complexity,
we introduce new constructions achieving quasi-linear complexity. We obtain this result by show-
ing that the quasi-linear refresh gadget from Battistello, Coron, Prou↵, and Zeitoun [6] achieves a
strong random probing expandability (SRPE) which makes it a good building block for linear RPE
gadgets (addition, copy, multiplication by constant). We thus solve a first issue left open in [10].
With such linear gadgets, the complexity bottleneck of the expanding compiler becomes the number
of multiplications in the multiplication gadget, which is quadratic in known RPE constructions. We
then provide a new generic construction of RPE multiplication gadget featuring a linear number of
multiplications. We obtain this construction by tweaking the probing-secure multiplication gadget
from Beläıd, Benhamouda, Passelègue, Prou↵, Thillard, and Vergnaud [8]. As in the original con-
struction, our RPE gadget imposes some constraint on the underlying finite field. We demonstrate
that for any number of shares there exist a (possibly large) finite field on which our construction
can be instantiated and we provide some concrete instantiations for some (small) number of shares.

Using our new asymptotic gadget constructions with the dynamic expansion approach we obtain
random probing security for a leakage probability of 2�7.5 with asymptotic complexity of O(2).
Moreover, assuming that the constraint on the finite field from our multiplication gadget is satisfied,
we can make this asymptotic complexity arbitrary close to O() which is optimal. In practice, this
means that securing circuits defined on large field against random probing leakage can be achieved
at a sub-quadratic nearly-linear complexity.

2 Preliminaries

Along the paper, we shall use similar notations and formalism as [9]. In particular, K shall denote
a finite field. For any n 2 N, we shall denote [n] the integer set [n] = [1, n] \ Z. For any tuple
x = (x1, . . . , xn) 2 Kn and any set I ✓ [n], we shall denote x|I = (xi)i2I . Any two probability
distributions D1 and D2 are said "-close, denoted D1 ⇡" D2, if their statistical distance is upper
bounded by ", that is

SD(D1;D2) :=
1

2

X

x

|pD1(x)� pD2(x)|  " ,

where pD1(·) and pD1(·) denote the probability mass functions of D1 and D2.

2.1 Linear Sharing, Circuits, and Gadgets

In the following, the n-linear decoding mapping, denoted LinDec, refers to the function Kn
! K

defined as
LinDec : (x1, . . . , xn) 7! x1 + · · ·+ xn ,
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for every n 2 N and (x1, . . . , xn) 2 Kn. We shall further consider that, for every n, ` 2 N, on input
(bx1, . . . , bx`) 2 (Kn)` the n-linear decoding mapping acts as

LinDec : (bx1, . . . , bx`) 7! (LinDec(bx1), . . . , LinDec(bx`)) .

Definition 1 (Linear Sharing). Let n, ` 2 N. For any x 2 K, an n-linear sharing of x is a random
vector bx 2 Kn such that LinDec(bx) = x. It is said to be uniform if for any set I ✓ [n] with |I| < n

the tuple bx|I is uniformly distributed over K|I|. A n-linear encoding is a probabilistic algorithm
LinEnc which on input a tuple x = (x1, . . . , x`) 2 K` outputs a tuple bx = (bx1, . . . , bx`) 2 (Kn)` such
that bxi is a uniform n-sharing of xi for every i 2 [`].

An arithmetic circuit on a field K is a labeled directed acyclic graph whose edges are wires and
vertices are arithmetic gates processing operations on K. We consider circuits composed of gates
from some base B = {g : K`

! Km
}, e.g., addition gates, (x1, x2) 7! x1 + x2, multiplication gates,

(x1, x2) 7! x1 ·x2, and copy gates, x 7! (x, x). A randomized arithmetic circuit is equipped with an
additional random gate which outputs a fresh uniform random value of K.

In the following, we shall call an (n-share, `-to-m) gadget, a randomized arithmetic circuit
that maps an input bx 2 (Kn)` to an output by 2 (Kn)m such that x = LinDec(bx) 2 K` and
y = LinDec(by) 2 Km satisfy y = g(x) for some function g.

Definition 2 (Circuit Compiler). A circuit compiler is a triplet of algorithms (CC,Enc,Dec)
defined as follows:

– CC (circuit compilation) is a deterministic algorithm that takes as input an arithmetic circuit
C and outputs a randomized arithmetic circuit bC,

– Enc (input encoding) is a probabilistic algorithm that maps an input x 2 K` to an encoded input
bx 2 K`

0

,
– Dec (output decoding) is a deterministic algorithm that maps an encoded output by 2 Km

0

to a
plain output y 2 Km,

which satisfy the following properties:

– Correctness: For every arithmetic circuit C of input length `, and for every x 2 K`, we have

Pr
�
Dec

� bC(bx)
�
= C(x)

�� bx Enc(x)
�
= 1 , where bC = CC(C).

– E�ciency: For some security parameter  2 N, the running time of CC(C) is poly(, |C|), the
running time of Enc(x) is poly(, |x|) and the running time of Dec

�
by
�
is poly(, |by|), where

poly(, `) = O(e1`e2) for some constants e1, e2.

2.2 Random Probing Security

Let p 2 [0, 1] be some constant leakage probability parameter, a.k.a. the leakage rate. In the p-
random probing model, an evaluation of a circuit C leaks the value carried by each wire with a
probability p, all the wire leakage events being mutually independent.

As in [9], we formally define the random-probing leakage of a circuit from the two following
probabilistic algorithms:
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– The leaking-wires sampler takes as input a randomized arithmetic circuit C and a probability
p 2 [0, 1], and outputs a set W , denoted as

W  LeakingWires(C, p) ,

where W is constructed by including each wire label from the circuit C with probability p to
W (where all the probabilities are mutually independent).

– The assign-wires sampler takes as input a randomized arithmetic circuit C, a set of wire labels
W (subset of the wire labels of C), and an input x, and it outputs a |W |-tuple w 2 K|W |,
denoted as

w  AssignWires(C,W,x) ,

where w corresponds to the assignments of the wires of C with label in W for an evaluation on
input x.

Definition 3 (Random Probing Leakage). The p-random probing leakage of a randomized
arithmetic circuit C on input x is the distribution Lp(C,x) obtained by composing the leaking-wires
and assign-wires samplers as

Lp(C,x)
id
= AssignWires(C, LeakingWires(C, p),x) .

Definition 4 (Random Probing Security). A randomized arithmetic circuit C with ` · n 2 N
input gates is (p, ")-random probing secure with respect to encoding Enc if there exists a simulator
Sim such that for every x 2 K`:

Sim(C) ⇡" Lp(C,Enc(x)) . (1)

2.3 Random Probing Expansion

In [3], Ananth, Ishai and Sahai proposed an expansion approach to build a random-probing-secure
circuit compiler from a secure multi-party protocol. This approach was later revisited by Beläıd,
Coron, Prou↵, Rivain, and Taleb who formalize the notion of expanding compiler [9].

The principle of the expanding compiler is to recursively apply a base compiler, denoted CC
and which simply consists in replacing each gate of B in the input circuit by the corresponding
gadget. Assume we have n-share gadgets Gg for each gate g in B. The base compiler CC simply
consists in replacing each gate g in these gadgets by Gg and by replacing each wire by n wires
carrying a sharing of the value. We thus obtain n

2-share gadgets by simply applying CC to each

gadget: G(2)
g = CC(Gg). This process can be iterated an arbitrary number of times, say k, to an

input circuit C:

C
CC
���! bC1

CC
���! · · ·

CC
���! bCk .

The first output circuit bC1 is the original circuit in which each gate g is replaced by a base gadget
Gg. The second output circuit bC2 is the original circuit C in which each gate is replaced by an

n
2-share gadget G

(2)
g . Equivalently, bC2 is the circuit bC1 in which each gate is replaced by a base

gadget. In the end, the output circuit bCk is hence the original circuit C in which each gate has
been replaced by a k-expanded gadget and each wire has been replaced by n

k wires carrying an
(nk)-linear sharing of the original wire.

The expanding compiler achieves random probing security if the base gadgets verify a property
called random probing expandability [9]. We recall hereafter the original definition of the random
probing expandability (RPE) property for 2-to-1 gadgets.
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Definition 5 (Random Probing Expandability [9]). Let f : R! R. An n-share 2-to-1 gadget
G : Kn

⇥ Kn
! Kn is (t, f)-random probing expandable (RPE) if there exists a deterministic

algorithm SimG

1 and a probabilistic algorithm SimG

2 such that for every input (bx, by) 2 Kn
⇥Kn, for

every set J ✓ [n] and for every p 2 [0, 1], the random experiment

W  LeakingWires(G, p)

(I1, I2, J
0) SimG

1 (W,J)

out SimG

2 (W,J
0
, bx|I1 , by|I2)

ensures that

1. the failure events F1 ⌘
�
|I1| > t

�
and F2 ⌘

�
|I2| > t

�
verify

Pr(F1) = Pr(F2) = " and Pr(F1 ^ F2) = "
2 (2)

with " = f(p) (in particular F1 and F2 are mutually independent),

2. J
0 is such that J 0 = J if |J |  t and J

0
✓ [n] with |J

0
| = n� 1 otherwise,

3. the output distribution satisfies

out
id
=
�
AssignWires(G,W, (bx, by)) , bz|J 0

�
(3)

where bz = G(bx, by).

The RPE notion can be simply extended to gadgets with 2 outputs: the SimG

1 simulator takes
two sets J1 ✓ [n] and J2 ✓ [n] as input and produces two sets J

0
1 and J

0
2 satisfying the same

property as J
0 in the above definition (w.r.t. J1 and J2). The SimG

2 simulator must then produce
an output including bz1|J 0

1
and bz2|J 0

1
where bz1 and bz2 are the output sharings. The RPE notion can

also be simply extended to gadgets with a single input: the SimG

1 simulator produces a single set I
so that the failure event (|I| > t) occurs with probability " (and the SimG

2 simulator is then simply
given bx|I where bx is the single input sharing). We refer the reader to [9] for the formal definitions
of these variants.

Although the requirement of mutual independence for the failure events might seem strong, it
can be relaxed which leads to the notion of weak random probing expandability. It is shown in [9]
that this weaker notion actually implies the RPE notion for some " which is derivable from the
(joint) probability of the failure events.

The authors of [10] eventually introduced a tighter version the RPE security property, namely
the tight random probing expandability (TRPE). In this setting, the failure events are re-define
as Fj ⌘

�
|Ij | > min(t,W )

�
. Both RPE and TRPE notions can be split into two sub-notions (that

are jointly equivalent to the original one) corresponding to the two possible properties of J 0 in
Definition 5. Specifically, in (T)RPE1, the set J is constrained to satisfy |J |  t and J

0 = J , while
in (T)RPE2, J 0 is chosen by the simulator such that J 0

✓ [n] and |J
0
| = n� 1.

2.4 Complexity of the Expanding Compiler

Consider circuits with base of gates B = {g1, . . . , g�} for which we have n-share RPE gadgets
{Gg}g2B. Further denote Grandom the n-share random gadget which generates n independent ran-
dom values as a random n-sharing as well as CC the circuit compiler based from those gadgets. To
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each gadget a complexity vector is associated NG = (Ng1 , . . . , Ng�
, Nr)T where Ngi

stands for the
number of gates gi and Nr for the number of random gates in the gadget G. Then the compiler
complexity matrix MCC is the (� + 1)⇥ (� + 1) matrix defined as

MCC =
�
Ng1 | · · · | Ng�

| NGrandom

�
with NGrandom = (0, . . . , 0, n)T .

Given a circuit C with complexity vector NC (which is defined as the gate-count vector as for
gadgets), compiling it with the base gadgets gives a circuit bC of complexity vector N bC = MCC ·NC .
It follows that the kth power of the matrix M gives the gate counts for the level-k gadgets as:

M
k

CC = MCC · · ·MCC| {z }
k times

=
�
N

(k)
g1

| · · · | N
(k)
g�

| N
(k)
Grandom

�
with N

(k)
Grandom

=

0

BBB@

0
...
0
n
k

1

CCCA

where N
(k)
gi are the gate-count vectors for the level-k gadgets G(k)

gi . Let us denote the eigen decom-
position of MCC as MCC = Q · ⇤ ·Q

�1, we get

M
k

CC = Q · ⇤
k
·Q

�1 with ⇤
k =

0

B@
�
k
1
. . .

�
k

�+1

1

CA

where �i are the eigenvalues of MCC. We then obtain an asymptotic complexity of

| bC| = O
�
|C| ·

�+1X

i=1

|�i|
k
�
= O

�
|C| ·max(|�1|, . . . , |��+1|)

k
�

for a compiled circuit bC = CC
(k)(C).

The complexity of the expanding compiler can be further expressed in terms of the target
random probing security level . This complexity is related to the notion of amplification order
that we recall hereafter.

Definition 6 (Amplification Order).

– Let f : R! R which satisfies
f(p) = cd p

d +O(pd+")

as p tends to 0, for some cd > 0 and " > 0. Then d is called the amplification order of f .
– Let t > 0 and G a gadget. Let d be the maximal integer such that G achieves (t, f)-RPE for

f : R! R of amplification order d. Then d is called the amplification order of G (with respect
to t). We will sometimes denote fG as the function f corresponding to the gadget G for which
G achieves (t, fG)-RPE.

We stress that the amplification order of a gadget G is defined with respect to the RPE threshold
t. Namely, di↵erent RPE thresholds t are likely to yield di↵erent amplification orders d for G (or
equivalently d can be thought of as a function of t).

As shown in [9], the complexity of the expanding compiler relates to the (minimum) amplifica-
tion order of the gadgets composing the base compiler CC. If the latter achieve (t, f)-RPE with an
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amplification order d, the expanding compiler achieves (p, 2�)-random probing security with an
expansion level k such that f (k)(p)  2�, which yields a complexity blowup of

| bC| = O
�
|C| · 

e
�

with e =
logNmax

log d
(4)

where
Nmax = max |eigenvalues(MCC)| , (5)

where eigenvalues(·) returns the tuple of eigenvalues (or modules of eigenvalues in case of complex
numbers) of the input matrix.

Let us slightly explicit the complexity with the 3-gate base B = {add, mult, copy} as used in [9,
10]. Considering that multiplication gates are solely used in the multiplication gadget (NGadd,m =
NGcopy,m = 0) which is the case in the constructions of [9, 10], it can be checked that (up to some
permutation) the eigenvalues satisfy

(�1,�2) = eigenvalues(Mac) , �3 = NGmult,m and �4 = n

where Mac is the top left 2⇥ 2 block matrix of MCC

Mac =

✓
NGadd,a NGcopy,a

NGadd,c NGcopy,c

◆

where Nx,y denotes the number of gates x in a gadget y, with m for the multiplication, a for the
addition, and c for the copy. We finally get

| bC| = O
�
|C| ·N

k

max

�
with Nmax = max(|eigenvalues(Mac)|, NGmult,m, n) . (6)

As an illustration, the expanding compiler from [10] satisfies Nmax = 3n2
� 2n and d =

min(t+1,n�t)
2 which yields an asymptotic complexity of O(e) with

e =
log(3n2

� 2n)

log(b(n+ 1)/4c)

which tends to 2 as n grows. In comparison, in this work, we shall achieve a quasi-linear complexity,
i.e., Nmax = O(n log n).

2.5 Tolerated Leakage Rate

Finally, we recall the notion of tolerated leakage rate which corresponds to the maximum value p for
which we have f(p) < p. This happens to be a necessary and su�cient condition for the expansion
strategy to apply with (t, f)-RPE gadgets.

In practice, the tolerated leakage rate should be measured on concrete devices and fixed ac-
cordingly. Hence the motivation to exhibit gadgets which tolerate a high probability to cover any
setting. So far, the asymptotic constructions provide a trade-o↵ between tolerated leakage rate and
complexity. However, we only know how to compute the former for small numbers of shares and
the bounds for larger values are not tight.

As an illustration, the instantiation proposed in [9] tolerates a leakage probability up to 2�7.80,
while the instantiation of [?] tolerates 2�7.50, both for 3-share base gadgets.
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3 Dynamic Random Probing Expansion

As recalled in Section 2, the principle of the expanding compiler is to apply a base circuit compiler
CC which is composed of base gadgets –one per gate type in the circuit– several times, say k, to
the input circuit: bC = CC(k)(C). The level of expansion k is chosen in order to achieve a certain
desired security level  such that f (k)(p)  2�.

In this section, we generalize this approach to choose the circuit compiler dynamically at the
di↵erent steps of the expansion. Let {CCi}i be a family of circuit compilers, the dynamic expanding
compiler for this family with respect to the expansion sequence k1, . . . kµ, is defined as

bC = CC
kµ
µ � CC

kµ�1

µ�1 � . . . · · · � CC
k1
1 (C) . (7)

The idea behind this generalization is to make the most from a family of RPE compilers {CCi}i

which is defined with respect to the number of shares ni in the base gadgets. If we assume that
each compiler CCi with ni shares achieves the maximum amplification order di =

ni+1
2 , then the

benefit of using a compiler with higher number of shares is to increase the amplification order and
thus reduce the number of steps necessary to achieve the desired security level . On the other
hand, the tolerated leakage rate of existing constructions decreases with ni. As we show hereafter,
a dynamic increase of ni can ensure both, the tolerated leakage rate of a small ni and the better
complexity of a high ni.

3.1 Dynamic Expanding Compiler

We formally introduce the dynamic expanding compiler hereafter.

Definition 7 (RPE Compiler). Let B = {g : K`
! Km

} be an arithmetic circuit basis. Let
n, t 2 N, and let {Gg}g2B be a family of (t, fGg

)-RPE n-share gadgets for the gate functionalities in
B. The RPE compiler CC associated to {Gg}g2B is the circuit compiler which consists in replacing
each gate from a circuit over B by the corresponding gadget Gg. Moreover,

– the expanding function of CC is the function f defined as

f : p 7! max
g

fGg
(p)

– the amplification order of CC is the integer d defined as

d = min
g

dGg

where dGg
is the amplification order of fGg

,

– the gadget complexity of CC is the integer s defined as

s = max
g

|Gg|

where |Gg| denotes the number of wires in the gadget Gg,

– the tolerated leakage rate of CC is the real number q 2 [0, 1) such that f(p) < p for every p < q.
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In the following, we state the security and asymptotic complexity of the dynamic expanding
compiler. We will consider a family of di↵erent RPE compilers where each compiler is indexed by
an index i, i.e. a family of di↵erent RPE compilers is denoted as {CCi}i for di↵erent number of
shares {ni}i. We start with a formal definition of the dynamic compiler:

Definition 8 (Dynamic Expanding Compiler). Let {CCi}i be a family of RPE compilers with
numbers of shares {ni}i. The dynamic expanding compiler for {CCi}i with expansion levels k1,
. . . , kµ, is the circuit compiler (CC,Enc,Dec) where

1. The input encoding Enc is a
�Q

µ

i=1 n
ki

i

�
-linear encoding.

2. The output decoding Dec is the
�Q

µ

i=1 n
ki

i

�
-linear decoding mapping.

3. The circuit compilation is defined as

CC(·) = CC
kµ
µ � CC

kµ�1

µ�1 � . . . · · · � CC
k1
1 (·) .

The following theorem states the random probing security of the dynamic expanding compiler.
The proof of the theorem is very similar to the proof of RPE security (Theorem 2) from [9]. The
main di↵erence is that at each level of the expansion, we can use a di↵erent expanding compiler
with di↵erent sharing orders. Besides that, the proof follows the same baselines as in [9]. The proof
is provided in Appendix A.1.

Theorem 1 (Security). Let {CCi}i be a family of RPE compilers with expanding functions {fi}i.
The dynamic expanding compiler for {CCi}i with expansion levels k1, . . . , kµ is (p, ")-random
probing secure with

" = f
kµ
µ � · · · � f

k1
1 (p) .

We now state the asymptotic complexity of the dynamic expanding compiler in the next theo-
rem. The proof is given in Appendix A.2.

Theorem 2 (Asymptotic Complexity). Let {CCi}i be a family of circuit compilers with com-

plexity matrices {MCCi
}i. For any input circuit C, the output circuit bC = CC

kµ
µ � · · · · · · � CC

k1
1 (C)

is of size

| bC| = |C| · O

⇣ µY

i=1

|�i|
ki

⌘
with �i such that |�i| := max |eigenvalues(MCCi

)| . (8)

In the following, we shall call �i as defined above, the eigen-complexity of the compiler CCi. We
shall further call the product

Q
µ

i=1 |�i|
ki the complexity blowup of the dynamic expanding compiler.

We note that minimizing the complexity blowup is equivalent to minimizing the log complexity
blowup, which is

µX

i=1

ki · log2(|�i|) . (9)

3.2 General Bounds for Asymptotic Constructions

The following theorem introduces general bounds on the tolerated leakage rate and the expanding
function of an RPE compiler with respect to its amplification order and gadget complexity. The
proof of the theorem is given in the supplementary material (Appendix A.3).
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Theorem 3. Let CCi be an RPE circuit compiler of amplification order di and gadget complexity
si. The tolerated leakage rate qi of CCi is lower bounded by

qi � q̄i :=
1

e

✓
1

2 e

◆ 1
di�1

✓
di

si

◆1+ 1
di�1

(10)

For any p < q̄i, the expanding function fi of CCi is upper bounded by

fi(p)  2

✓
si

di

◆
p
di  2

✓
e · si
di

◆di

p
di . (11)

The lower bound q̄i on the tolerated leakage rate quickly converges to the ratio e�1
· di/si as di

grows. In other words, an RPE compiler family {CCi}i indexed by the number of shares ni of its
base gadgets tolerates a leakage probability which is linear in the ratio between its amplification
order di and its complexity si. For known families of RPE compilers from [10] this ratio is in
O(1/ni).

From Theorem 3, we obtain the following bound for the composition f
(k)
i

. The proof of the
corollary is given in the supplementary material (Appendix A.4).

Corollary 1. Let CCi be an RPE compiler of expanding function fi, amplification order di and
gadget complexity si. For any p < q̄i as defined in (10), we have

f
(k)
i

(p) 


2

✓
si

di

◆��1+ 1
di�1

�
d
k�1
i

p
d
k

i 

2

64

 
2

1
di esi
di

!
�
1+ 1

di�1

�

p

3

75

d
k

i

.

The following lemma gives an explicit lower bound on the expansion level {ki}i to reach some
arbitrary target probability pout = 2�out from a given input probability pin = 2�in by applying

CC(ki)
i

.

Lemma 1. Let pin = 2�in < qi and pout = 2�out 2 (0, 1]. For any integer ki satisfying

ki � logdi(out)� logdi(in ��i)

with

�i :=
⇣
1 +

1

di � 1

⌘✓ 1

di
+ log2

⇣esi
di

⌘◆

we have
f
(ki)
i

(pin)  pout = 2�out .

In the above lemma, �i represents a lower bound for in which matches the upper bound q̄i

of pin = 2�in . Assuming that si and di are both monotonically increasing with i, we get that the
threshold �i tends towards log2

�
esi
di

�
.

From Lemma 1, we further get that the cost induced by the choice of the compiler CCi to go
from an input probability pin to a target output probability pout is

ki · log2(|�i|) �
log2(|�i|)

log2(di)

�
log2(out)� log2(in ��i)

�
(12)

11



(in terms of the log complexity blowup (9)). Note that this lower bound is tight: it could be replaced
by an equality at the cost of ceiling the term between parentheses (i.e. the term corresponding to
ki). We further note that the above equation is consistent with the complexity analysis of the
expanding compiler provided in [9]. Indeed going from a constant leakage probability pin = p to
a target security level pout = 2� by applying ki times a single RPE compiler CCi, we retrieve a
complexity of O(e) with e = log2(|�i|)

log2(di)
.

Equation (12) shows that using CCi to go from input probability pin to output probability pout

induces a log complexity cost close to

log2(|�i|)

log2(di)

�
log2(out)� log2(in)

�

provided that in is su�ciently greater than �i. So given the latter informal condition, it appears
that the parameter i minimizing the ratio log2(|�i|)

log2(di)
gives the best complexity.

Application. For the asymptotic construction introduced in [10], the RPE compiler CCi features

– an amplification order di = O(ni),
– a gadget complexity si = O(n2

i
),

– an eigen-complexity |�i| = O(n2
i
).

For such a construction, the ratio log2(|�i|)
log2(di)

is decreasing and converging towards 2 as ni grows. On

the other hand, �i tends to log2(ni) which implies that CCi should only be applied to an input
probability lower than 1

ni
.

3.3 Selection of the Expansion Levels

In this section, we investigate the impact of the choice of the expansion levels ki on the complexity
of the dynamic expanding compiler. We first assess the asymptotic complexity obtained from a
simple approach and then provide some application results for some given gadgets.

In the following CC0 shall denote an RPE compiler with constant parameters while {CCi}i�1

shall denote a family of RPE compilers indexed by a parameter i. We do this distinction since the
goal of the CC0 compiler shall be to tolerate the highest leakage rate and to transit from a (possibly
high) leakage probability p to some lower failure probability pi which is in turn tolerated by at least
one compiler from {CCi}i.

A Simple Approach. We consider a simple approach in which the compiler CC0 is iterated k0

times and then a single compiler CCi is iterated ki times. The complexity blowup of this compiler
is |�0|

k0 |�i|
ki . The first expansion level k0 is chosen to ensure that the intermediate probability

pi := f
(k0)
0 (p) is lower than q̄i (the lower bound on the tolerated leakage rate of CCi from Theorem 3).

Then ki is chosen so that f (ki)
i
 2�.

Concretely, we set i := �i + 1 which, by Lemma 1, gives

k0 =
⌃
logd0(�i + 1)� logd0(log2(p)��0)

⌥
, (13)
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and
ki =

⌃
logdi()

⌥
= O

�
logdi()

�
. (14)

For some constant leakage probability p and some start compiler CC0 with constant parameters,
we get k0 = O

�
logd0(�i)

�
giving an asymptotic complexity blowup of

O
�
|�0|

k0 |�i|
ki
�
= O

�
�

e0
i

ei
�

with e0 =
log2(|�0|)

log2(d0)
and ei =

log2(|�i|)

log2(di)
. (15)

Then for any choice of i we get an asymptotic complexity blowup of O
�

ei
�
which is the same

asymptotic complexity as the standard expanding compiler with base compiler CCi. On the other

hand, our simple dynamic compiler CC(ki)
i
� CC(k0)

0 tolerates the same leakage rate as CC0.

Using this simple approach we hence get the best of both worlds:

– a possibly ine�cient RPE compiler CC0 tolerating a high leakage rate q0,

– a family of RPE compilers {CCi}i with complexity exponent ei =
log2(|�i|)
log2(di)

decreasing with i.

We stress that for monotonously increasing |�i| and di, the asymptotic complexity of our simple

approach is O(e) where e can be made arbitrary close to limi!1
log2(|�i|)
log2(di)

.

Application. To illustrate the benefits of our dynamic approach, we simply get back to the
experimentations on the AES implementation from [9]. The authors apply either a 3-share or 5-
share compiler repeatedly until they reach their targeted security level. While using the 5-share
compiler reduces the tolerated probability, we demonstrate that we can use both compilers to get
the best tolerated probability as well as a better complexity.

Figure 1 illustrates the trade-o↵s in terms of achieved security level and complexity of the
expansion strategy when using di↵erent compilers at each iteration of the expansion. Starting from
a tolerated leakage probability p (2�7.6 on the left and 2�9.5 on the right), the empty bullets (�)
give this trade-o↵ when only the 3-share compiler is iterated. In this case, the final security function

" from Theorem 1 is equal to f
(k3)
3 (p) if we consider f3 to be the failure function of the 3-share

compiler, for a certain number of iterations k3 which is written next to each empty bullet on
the figure. On the other hand, the black bullets (•) represent the trade-o↵s achieved in terms of
complexity and security levels while combining both compilers with di↵erent numbers of iterations.
In this case, we start the expansion with a certain number of iterations k3 of the 3-share compiler,
and then we continue with k5 iterations of the 5-share compiler of failure function f5, the final

compiled circuit is then random probing secure with " = f
(k5)
5 (f (k3)

3 (p)) for p 2 {2�7.6
, 2�9.5

}. The
number of iterations of the compilers is written next to each black bullet in the format k3-k5.

For instance, starting from the best tolerated probability 2�7.6, the static compiler from [9, 10]
requires 11 applications of the 3-share compiler to achieve a security level of at least 80 bits. This
e↵ort comes with an overall complexity of 1017.52. Using our dynamic approach, we can combine
the 3-share and the 5-share to achieve this 80 bits security level for the same tolerated probability
but with a complexity of 1016.04. That would require 7 iterations of the 3-share compiler and 2
iterations of the 5-share compiler. Starting from the same leakage probability, a security level of
at least 128 bits is achieved also with 11 applications of the 3-share compiler with a complexity
of 1017.52. In order to achieve at least the same security, we would need more iterations of both
compilers in the dynamic approach. With 7 iterations of the 3-share compiler and 3 iterations of
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Fig. 1: Complexity of random probing AES for di↵erent security levels for a tolerated probability
of 2�7.6 (left) or 2�9.5 (right).

the 5-share compiler, we get a complexity of 1017.62 which is very close to the complexity of the
3-share application alone, while achieving a security level of 231 bits. That is, we almost double the
security level achieved using 11 iterations of the 3-share compiler with an almost equal complexity.
For a tolerated probability of 2�7.6 and at least 128 bits of security, note that 11 applications of the
3-share compiler yield a security order of 2�135 while both other trade-o↵s directly yield security
orders of 2�242 (6 iterations of 3-share and 4 iterations of 5-share) and 2�231 (7 iterations of 3-share
and 3 iterations of 5-share), with one less iteration they would be below 128 bits, which explains
their more important complexity. The same behavior can be observed with a starting tolerated
leakage probability of 2�9.5 on the right.

The above results motivate the next contributions of this paper, namely finding RPE compilers
which achieve the maximal amplification orders and which benefit from good asymptotic complexity
(i.e. gadgets defined for any number of shares n with amplification order increasing with n) in order
to optimize the security-e�ciency trade-o↵ and to tolerate the best possible leakage probability. We
showed this far that the tolerated leakage probability decreases with an increasing number of shares
n. So if we want to tolerate the best leakage probability, we would start with a few iterations of a
compiler with a small number of shares and which tolerates a good leakage probability (which can
be computed for instance with the verification tool VRAPS [9]), typically a 3-share construction.
Meanwhile, after a few constant number of iterations, we can change to a di↵erent compiler which
benefits from a better asymptotic complexity (as explained above with our simple approach). In
the constructions from [10], the bottleneck in terms of asymptotic complexity was from the linear
gadgets (addition and copy). Thanks to the quasilinear refresh gadget we introduce later in this
paper, the bottleneck becomes the multiplication gadget (with n

2 multiplications), which we also
improve in the following sections under some conditions on the base field.

4 Linear Gadgets with Quasi-Linear Complexity

In a first attempt, we aim to reduce the complexity of the linear gadgets that are to be used in our
dynamic compiler.

In [10], the authors provide new constructions of generic addition and copy gadgets, using a
refresh gadget Grefresh as a building block. The construction works for any number of shares and
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the authors prove the RPE security of the gadgets based on the security of Grefresh. In a nutshell,
given a n-share refresh gadget Grefresh, the authors construct a copy gadget Gcopy which on input
sharing (a1, . . . , an), outputs the sharings

⇣
Grefresh(a1, . . . , an), Grefresh(a1, . . . , an)

⌘
(16)

with two independent executions of Grefresh. The authors also construct an addition gadget Gadd

which, on input sharings (a1, . . . , an) and (b1, . . . , bn), first refreshes the inputs separately, then
outputs the sharewise sum of the results

⇣
Grefresh(a1, . . . , an) +Grefresh(b1, . . . , bn)

⌘
. (17)

If the refresh gadget Grefresh is TRPE of amplification order d, the authors show that Gcopy is also
TRPE of amplification order d, and Gadd is TRPE of amplification order at least bd/2c.

While the copy gadgets from [10] achieve an optimal amplification order, this is not the case
yet for addition gadgets and we first aim to fill this gap. Precisely, we introduce a new property
which, when satisfied by its inherent refresh gadget Grefresh, makes the addition gadget TRPE with
the same amplification order as Grefresh. We then prove that this new property is actually satisfied
by the refresh gadget from [6] which has quasi-linear complexity O(n log n) in the sharing order
n. Using this refresh gadget as a building block, we obtain linear gadgets Gadd and Gcopy with
quasi-linear complexities.

Constructions of Linear Gadgets from a Stronger Building Block. We first define our new
property (as a variant of properties defined in [9, 10]) which proves to be a useful requirement for
refresh gadgets when used as a building block of linear gadgets.

Definition 9 (t-Strong TRPE2). Let G be an n-share 1-input gadget. Then G is t-Strong TRPE2
(abbreviated t-STRPE2) if and only if for any set J

0 of output shares indices and any set W of
internal wires of G such that |W | + |J

0
|  t, there exists a set J of output share indices such that

J
0
✓ J and |J | = n � 1 and such that the assignment of the wires indexed by W together with the

output shares indexed by J can be perfectly simulated from the input shares indexed by a set I of
cardinality satisfying |I|  |W |+ |J

0
|.

Remark 1. This new property directly implies the TRPE2 property with maximal amplification
order introduced in [10]. Recall that G is t-TRPE2 with maximal amplification order if and only
if for any set W of probed wires such that |W | < min(t + 1, n � t), there exists a set J of output
shares indices such that |J | = n � 1 and such that an assignment of the wires indexed by W and
the output shares indexed by J can be jointly perfectly simulated from input shares indexed in a
set I such that |I|  |W |.

Having a refresh gadget which satisfies the property from Definition 9 results in tighter con-
structions for generic addition gadgets as stated in Lemma 2. Its proof is given in Appendix A.6.

Lemma 2. Let Grefresh be an n-share refresh gadget and let Gadd be the addition gadget described
in Equation (17). Then if Grefresh is (t, f)-TRPE for any t  n � 1 of amplification order d �

min(t+1, n� t) and Grefresh is (n� 1)-STRPE2, then Gadd is (t, f 0)-RPE (resp. (t, f 0)-TRPE) for
any t  n� 1 for some f

0 of amplification order min(t+ 1, n� t).
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Instantiation of Linear Gadgets with Quasi-Linear Refresh Gadget. A refresh gadget with
O(n log n) complexity was introduced in [6]. In a nutshell, the idea is to add a linear number of
random values on the shares at each step, to split the shares in two sets to apply the recursion, and
then to add a linear number of random values again. For the sake of completeness, we provide the
algorithmic description of this refresh gadget in Appendix A.7. It was proven to be (n�1)-SNI in [6].
In Lemma 3, we show that this gadget is also (t, f)-TRPE of amplification order min(t+ 1, n� t)
and that it satisfies (n� 1)-STRPE2. The proof is given in Appendix A.8.

Lemma 3. Let Grefresh be the n-share refresh gadget described above from [6]. Then Grefresh is
(t, f)-TRPE for some function f : R ! R of amplification order d � min(t + 1, n � t). Grefresh is
additionally (n� 1)-STRPE2.

Hence, we can instantiate the generic copy and addition gadgets described in (16) and (17) using
the above refresh gadget as Grefresh. We thus obtain RPE gadgets Gadd and Gcopy enjoying optimal
amplification order in quasi-linear complexity O(n log n).

Regarding the asymptotic complexity of the expanding compiler, the eigenvalues �1,�2 from
Section 2 are hence now both in O(n log n). At this point, only the quadratic number of multipli-
cations in the multiplication gadget still separates us from a compiler of quasi-linear complexity.
We tackle this issue in the next section by constructing a generic multiplication gadget. We finally
end up with a full expanding compiler with quasi-linear asymptotic complexity.

5 Towards Optimal Multiplication Gadgets
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Fig. 2: n-share multiplication gadget Gmult from two subgadgets Gsubmult and Gcompress

In what follows we should distinguish two types of multiplication gates: regular two-operand
multiplications on K, that we shall call bilinear multiplications, and multiplications by constant (or
scalar multiplications) which have a single input operand and the constant scalar is considered as
part of the gate description.

In previous works [9, 10], the number of bilinear multiplications is the prominent term of the ex-
panding compiler’s complexity. While the most deployed multiplication gadgets (e.g., [18]) require
a quadratic number of bilinear multiplications in the masking order, the authors of [8] exhibited
a probing secure higher-order masking multiplication with only a linear number of bilinear multi-
plications. Their construction, which applies on larger fields, is built from the composition of two
subgadgets Gsubmult and Gcompress, as described in Figure 2. In a nutshell, on input sharings ba and
bb, the subgadget Gsubmult performs multiplications between the input shares of ba and bb as well
as linear combinations of these products and it outputs a m-sharing bc of the product a · b where
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m � n
5. Next, the compression gadget Gcompress compresses the m-sharing bc back into an n-sharing

bd of the product a · b.
The authors of [8] instantiate this construction with a sub-multiplication gadget which performs

only O(n) bilinear multiplications and with the compression gadget from [11]. In addition to bilinear
multiplications, their sub-multiplication gadget additionally requires a quadratic number of linear
operations (i.e., addition, copy, multiplications by a constant) and random generation gates.

In the following, we rely on the construction [8] with its gadget Gsubmult which o↵ers a linear
number of bilinear multiplications to build a more e�cient RPE multiplication gadget. In order
to use it in our expanding compiler, we integrate an additional gate for the multiplication by a
constant and discuss the resulting asymptotic complexity. We additionally demonstrate that the
compression gadget of [8] is not (n� 1)-SNI as claimed in the paper, and show that we can rely on
other simple and more e�cient compression gadgets which satisfy the expected properties.

5.1 Global Multiplication Gadget

We first define two new properties that Gsubmult and Gcompress will be expected to satisfy to form a
(t, f)-RPE multiplication gadget with the maximum amplification order from the construction [8].

Contrary to the usual simulation notions, the first partial -NI property distinguishes the number
of probes on the gadget, and the number of input shares that must be used to simulate them. It
additionally tolerates a simulation failure on at most one of the inputs (i.e., no limitation on the
number of shares for the simulation).

Definition 10 ((s, t)-partial NI). Let G be a gadget with two input sharings ba and bb. Then G is
(s, t)-partial NI if and only any the assignment of any t wires of G can be perfectly simulated from
shares (ai)i2I1 of ba and (bi)i2I2 of bb such that |I1|  s or |I2|  s.

The second property is a variant of the classical TRPE property that we refer to as comp-TRPE.

Definition 11 ((t, f)-comp-TRPE). Let G be a 1-to-1 gadget with m input shares and n output
shares such that m > n. Let t  n � 1 and d = min(t + 1, n � t). Then G is (t, f)-comp-TRPE if
and only if for all sets of internal wires W of G with |W |  2d� 1, we have:

1. 8 J, |J |  t a set of output share indices of G, the assignment of the wires indexed by W and the
output shares indexed by J can be jointly perfectly simulated from the input shares of G indexed
by a set I, such that |I|  |W |.

2. 9 J
0
, |J

0
| = n � 1 a set of output share indices of G, such that the assignment of the wires

indexed by W and the output shares indexed by J
0 can be jointly perfectly simulated from the

input shares of G indexed by a set I, such that |I|  |W |.

Similarly to what was done in [8] for the SNI property, we can prove that the composition of a
gadgetGsubmult andGcompress which satisfy well chosen properties results in an overall multiplication
gadget which is (t, f)-RPE specifically for any t  n�1 achieving the maximum amplification order
d = min(t+ 1, n� t). This is formally stated in Lemma 4 which proof is given in Appendix A.9.

Lemma 4. Consider the n-share multiplication gadget of Figure 2 formed by a 2-to-1 multiplication
subgadget Gsubmult of m output shares and a 1-to-1 compression gadget Gcompress of m input shares
such that m > n. Let t  n� 1 and d = min(t+ 1, n� t). If

5 In case of a sharewise multiplication for instance, we would have m = n
2.
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– Gsubmult is (d� 1)-NI and (d� 1, 2d� 1)-partial NI,
– Gcompress is (t, f)-comp-TRPE,

then the multiplication gadget Gmult is (t, f)-RPE of amplification order d.

5.2 Construction of Gcompress

In a first attempt, we analyze the compression function that was introduced in [11] and used to
build a multiplication gadget in [8]. As it turns out not to be SNI or meet our requirements for the
expanding compiler, we exhibit a new and also more e�cient construction in a second attempt.

Gcompress from [8, 11]. The authors of [8] use the [m : n]-compression gadget introduced in [11]
for any input sharing m, using a [2n : n]-compression subgadget as a building block. In a nutshell,
it first generates an ISW -refresh of the zero n-sharing (w1, . . . , wn). Then, these shares are added
to the input ones (c1, . . . , cn) to produce the sequence of output shares (c1 + w1, . . . , cn + wn).

The compression gadget is claimed to be (n � 1)-SNI in [8]. However, we demonstrate that it
is not with the following counterexample. Let n > 2 and i 2 [n]. We consider the set composed of
a single output share of the compression procedure J = {(ci + wi) + cn+i} and the set of probes
on the internal wires W = {wi}. For the compression to be 2-SNI, we must be able to perfectly
simulate both the wires in W and J with at most |W | = 1 share of the input bc. However, we can
easily observe that (ci +wi) + cn+i�wi = ci + ci+n requires the two input shares ci and ci+n to be
simulated, which does not satisfy the 2-SNI property. In conclusion, the above gadget is actually
not SNI, and interestingly it is not su�cient either for our construction, i.e. it does not satisfy
Definition 11. This observation motivates our need for a new compression gadget which satisfies
the necessary property for our construction.

New Construction for Gcompress. In Algorithm 1, we exhibit a new [m : n]-compression tech-
nique using an m-share refresh gadget Grefresh as a building block. We demonstrate in Lemma 5
that this new compression gadget satisfies the necessary properties for our construction as long as
m � 2n. The proof is given in Appendix A.10.

Algorithm 1: [m : n]-compression gadget
Input : (c1, . . . , cm) such that m � 2n, m-share refresh gadget Grefresh

Output: (d1, . . . , dn) such that
P

n

i=1 di =
P

m

i=1 ci

K  bm/nc;
(c01, . . . , c

0

m) Grefresh(c1, . . . , cm);
(d1, . . . , dn) (c01, . . . , c

0

n);
for i = 1 to K � 1 do

(d1, . . . , dn) (d1 + c
0

1+i·n, . . . , dn + c
0

n+i·n);
end

for i = 1 to m�K · n do

di  di + c
0

i+K·n;
end

return (d1, . . . , dn);
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Lemma 5. Let Gcompress be the [m : n]-compression gadget from Algorithm 1 such that m � 2n. If
Grefresh is (m� 1)-SNI and (m� 1)-STRPE2, then Gcompress is (t, f)-comp-TRPE (Definition 11).

As shown in Section 4, the refresh gadget from [5] is actually (m�1)-SNI and (m�1)-STRPE2 for
any sharing order m. This gadget can then be used as a building block for the [m : n]-compression
gadget, giving it a complexity of O(m logm) and satisfying the necessary properties. In addition,
this further provides an improvement over the complexity of the proposed gadget in [8] which has

a complexity of O(b
m

n
cn

2) (because it performs a n-share ISW-refreshing b
m

n
c times, see [8] for

more details on the algorithm).

5.3 Construction of Gsubmult

To complete the construction of the overall multiplication gadget, we now exhibit relevant con-
structions for Gsubmult. We first rely on the construction from [8] which happens to achieve the
desired goal in some settings. While all the cases are not covered by the state-of-the-art proposal,
we then slightly modify the construction to meet all our requirements. Both constructions rely on
linear multiplications that are not included yet on the expanding compiler. We thus start with a
construction for this additional linear gadget that we further denote Gcmult.

Construction for Gcmult. We give a natural construction for Gcmult in Algorithm 2 which sim-
ply multiplies each input share by the underlying constant value and then applies a (t, f)-RPE
refresh gadget Grefresh. Basically, with a (T)RPE refresh gadget Grefresh, we obtain a (T)RPE linear
multiplication gadget Gcmult as stated in Lemma 6. The proof is given in Appendix A.5.

Algorithm 2: n-share multiplication by a constant
Input : sharing (a1, . . . , an), constant value bc, n-share refresh gadget Grefresh

Output: sharing (d1, . . . , dn) such that d1 + · · ·+ dn = c.(a1 + . . .+ an)
(b1, . . . , bn) (c.a1, . . . , c.an);
(d1, . . . , dn) Grefresh((b1, . . . , bn));
return (d1, . . . , dn);

Lemma 6. Let Grefresh be a (t, f)-(T)RPE n-share refresh gadget of amplification order d. Then
Gcmult instantiated with Grefresh is (t, f 0)-(T)RPE of amplification order d.

Relying on an additional gate for the linear multiplication does not impact the security analysis
and the application of the compilation, but it modifies the complexity analysis of the expanding
compiler. From the analysis given in Section 2.4, a complexity vector is associated to each base
gadget NG = (Na, Nc, Ncm, Nm, Nr)T where Na, Nc, Ncm, Nm, Nr stand for the number of addition
gates, copy gates, constant multiplication gates, (bilinear) multiplication gates and random gates
respectively in the corresponding gadget. The matrix MCC is now a 5⇥ 5 square matrix defined as

M =
�
NGadd | NGcopy | NGcmult | NGmult | NGrandom

�
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including, for each vector, the number of linear multiplications. Five eigenvalues �1, �2, �3, �4, �5

are to be computed, i.e., one more compared to the expanding compiler in the original setting.
We can consider as before that bilinear multiplication gates are solely used in Gmult (NGadd,m =

NGcopy,m = NGcmult,m = 0) and that constant multiplication gates are eventually solely used in
Gcmult and Gmult (NGadd,cm = NGcopy,cm = 0) which is the case in the constructions we consider in
this paper. It can be checked that (up to some permutation) the eigenvalues satisfy

(�1,�2) = eigenvalues(Mac) , �3 = NGcmult,cm , �4 = NGmult,m and �5 = n

where Mac is the top left 2⇥ 2 block matrix of MCC

Mac =

✓
NGadd,a NGcopy,a

NGadd,c NGcopy,c

◆
.

We get two complexity expressions for the expansion strategy

| bC| = O
�
|C| ·N

k

max

�
(18)

with Nmax = max(|eigenvalues(Mac)|, NGcmult,cm, NGmult,m, n) and with the security parameter 

| bC| = O
�
|C| · 

e
�

with e =
logNmax

log d
.

Note that the exhibited construction for the linear multiplication gadget requires NGcmult,cm = n

linear multiplications. Hence �3 = NGcmult,cm = �5 = NGrandom,r = n and the global complexity (18)
can be rewritten as

| bC| = O
�
|C| ·N

k

max

�
with Nmax = max(|eigenvalues(Mac)|, NGmult,m)

if the number of multiplications is greater than n. The asymptotic complexity of the RPE compiler
is thus not a↵ected by our new base gadget Gcmult. We now describe our constructions of Gsubmult.

Gsubmult from [8]. The authors of [8] provide a (n�1)-NI construction for Gsubmult which outputs
2n � 1 shares while consuming only a linear number of bilinear multiplications in the masking
order. We first recall their construction which relies on two square matrices of (n� 1)2 coe�cients
in the working field. As shown in [8], these matrices are expected to satisfy some condition for
the compression gadget to be (n� 1)-NI. Since we additionally want the compression gadget to be
(d � 1, 2d � 1)-partial NI, we introduce a stronger condition and demonstrate the security of the
gadget in our setting.

Let Fq be the finite field with q elements. Let � = (�i,j)1i,j<n 2 F(n�1)⇥(n�1)
q be a constant

matrix, and let � = (�i,j)1i,j<n 2 F(n�1)⇥(n�1)
q be the matrix defined by �i,j = 1 � �j,i for all

1  i, j < n� 1. Gsubmult takes as input two n-sharings a and b and outputs a (2n� 1)-sharing c
such that:

• c1 =
⇣
a1 +

nP
i=2

(ri + ai)
⌘
·

⇣
b1 +

nP
i=2

(si + bi)
⌘

• ci = �ri ·
⇣
b1 +

nP
j=2

(�i�1,j�1sj + bj)
⌘
for i = 2, . . . , n
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• ci+n�1 = �si ·
⇣
a1 +

nP
j=2

(�i�1,j�1rj + aj)
⌘
for i = 2, . . . , n

where ri and si are randomly generated values for all 2  i  n. It can be easily checked that
Gsubmult performs 2n � 1 bilinear multiplications, and that it is correct, i.e.

P2n�1
i=1 ci =

P
n

i=1 ai ·P
n

i=1 bi.
In [8], the authors prove that a gadget is (n�1)-NI if one cannot compute a linear combination

of any set of n� 1 probes which can reveal all of the n secret shares of the inputs and which does
not include any random value in its algebraic expression. We refer to [8] for more details on this
result.

Based on this result, the authors demonstrate in [8], that Gsubmult is (n� 1)-NI if the matrices
� and � satisfy Condition 1 that we recall below.

Condition 1 (from [8]) Let ` = 2 · (n+ 1) · (n� 1) + 1. Let In�1 2 F(n�1)⇥(n�1)
q be the identity

matrix, 0x⇥y 2 Fx⇥y
q be a matrix of zeros (when y = 1, 0x⇥y is also written 0x), 1x⇥y 2 Fx⇥y

q

be a matrix of ones, D�,j 2 F(n�1)⇥(n�1)
q be the diagonal matrix such that D�,j,i,i = �j,i, T n�1 2

F(n�1)⇥(n�1)
q be the upper-triangular matrix with just ones, and T �,j 2 F(n�1)⇥(n�1)

q be the upper-
triangular matrix for which T�,j,i,k = �j,i for i  k:

In�1 =

0

BBB@

1 0 . . . 0
0 1 0
...

. . .
...

0 . . . 0 1

1

CCCA
D�,j =

0

BBB@

�j,1 0 . . . 0
0 �j,2 0
...

. . .
...

0 . . . 0 �j,n�1

1

CCCA

T n�1 =

0

BBB@

1 1 . . . 1
0 1 1
...

. . .
...

0 . . . 0 1

1

CCCA
T �,j =

0

BBB@

�j,1 �j,1 . . . �j,1

0 �j,2 �j,2
...

. . .
...

0 . . . 0 �j,n�1

1

CCCA

We define the following matrices (with n
0 = n� 1):

L =

 
1 01⇥n0 01⇥n0 01⇥n0 01⇥n0 . . . 01⇥n0 11⇥n0 11⇥n0 . . . 11⇥n0

0n0 In0 0n0⇥n0 In0 In0 . . . In0 T n0 T n0 . . . T n0

!

M =
�

0n0 0n0⇥n0 In0 In0 D�,1 . . . D�,n0 T n0 T �,1 . . . T �,n0

�

Condition 1 is satisfied for a matrix � if for any vector v 2 F`
q of Hamming weight hw(v)  n�1

such that L · v contains no coe�cient equal to 0 then M · v 6= 0n�1.

In the above condition, the matrices L and M represent the vectors of dependencies for each
possible probe. All the probes involving shares of ba for matrix � (and symmetrically shares of bb
for matrix �) are covered in the columns of L and M. Namely, the first column represents the
probe a1. As it does not involve any random, it results in a zero column in M. The next columns
represents the probes ai, then the probes ri. They are followed by columns for the probes (ai + ri),
then (ai + �j�1,i�1ri) (for 2  j  n), then a1 +

P
k

i=2(ri + ai) (for 2  k  n), and finally then

a1+
P

k

j=2(�i�1,j�1rj + aj) (for 2  i  n and 2  k  n). The above condition means that there is
no linear combination of (n� 1) probes which can include the expression of all of the input shares,
and no random variable.
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From this result and by the equivalence between non-interference and tight non-interference
developed in [8], we conclude that Gsubmult is (d� 1)-NI for d = min(t+1, n� t) for any t  n� 1.
Lemma 4 also requires Gsubmult to be (d�1, 2d�1)-partial NI to get an overall RPE multiplication
gadget. For Gsubmult to satisfy this second property, we need to rely on a stronger condition for
matrices � and � that we present in Condition 2.

Condition 2 Let z = 2 · (n+ 1) · (n� 1) + 1. Let In�1 2 F(n�1)⇥(n�1)
q , 0`⇥n 2 F`⇥n

q , 1`⇥n 2 F`⇥n
q ,

D�,j 2 F(n�1)⇥(n�1)
q , T n�1 2 F(n�1)⇥(n�1)

q , T �,j 2 F(n�1)⇥(n�1)
q and L and M the same matrices

as defined in Condition 1.
Condition 2 is satisfied for a matrix � if and only if for any vector v 2 Fz

q of Hamming weight
hw(v)  n � 1, and for any i1, . . . , iK 2 [z] such that vi1 6= 0, . . . , viK 6= 0 and the corresponding
columns i1, . . . , iK in L and in M have no zero coe�cient (i.e there are K probes of the form
a1 +

P
n

i=2(ri + ai) or a1 +
P

n

j=2(�i�1,j�1rj + aj) for any i 2 {2, . . . , n}), if M.v = 0, then we have
hw(L · v)  hw(v)�K.

Based on this new condition, we can prove our second property Gsubmult, as stated in Lemma 7.
The proof is given in Appendix A.11.

Lemma 7. Let t  n�1 such that either n is even or t 6= b
n� 1

2
c and let d = min(t+1, n� t). Let

Gsubmult the multiplication subgadget introduced in [8]. If both matrices � and � satisfy Condition 2,
then Gsubmult is (d� 1)-NI and (d� 1, 2d� 1)-partial NI.

The condition on t and n on Lemma 7 implies that the maximum amplification order for the
multiplication gadget cannot be achieved for an odd number of shares (since the maximum order

is reached when t = b
n� 1

2
c). This is not a proof artifact but a limitation of the gadget Gsubmult

with respect to the new (d � 1, 2d � 1)-partial NI property. We can easily show that under this
extreme conditions on t and n, we have 2d� 1 = n. If we consider the instantiation of Gsubmult for
n = 3 input shares, we obtain the following 2n� 1 = 5 output shares:

c1 = (a1 + (r2 + a2) + (r3 + a3)) · (b1 + (s2 + b2) + (s3 + b3))

c2 = �r2 · (b1 + (�1,1 · s2 + b2) + (�1,2 · s3 + b3))

c3 = �r3 · (b1 + (�2,1 · s2 + b2) + (�2,2 · s3 + b3))

c4 = �s2 · (a1 + (�1,1 · r2 + a2) + (�1,2 · r3 + a3))

c5 = �s3 · (a1 + (�2,1 · r2 + a2) + (�2,2 · r3 + a3))

To prove the (d�1, 2d�1)-partial NI property, we need to ensure that any set of at most 2d�1 = 3
probes can be perfectly simulated from at most d � 1 = 1 shares of one of the inputs and any
number of shares from the other one. However, the three probes on c1, c3, c4 reveal information
on each of their sub-product. In particular, (a1 + (r2 + a1) + (r3 + a3)) (from c1), r3 (from c3) and
(a1+(�1,1 · r2+ a2)+ (�1,2 · r3+ a3)) (from c4) would reveal ba. Similarly, (b1+(s2+ b2)+ (s3+ b3))

(from c1), (b1+(�2,1 · s2+ b2)+ (�2,2 · s3+ b3)) (from c3) and s2 (from c4) would reveal bb. Hence, the
gadget is not (d�1, 2d�1)-partial NI. This counterexample with 3 shares can be directly extended
to any odd number of shares.

This counterexample motivates a new construction for Gsubmult which would cover all values
for n and t. In the following, we slightly modify the construction from [8] to achieve the maximum
amplification order in any setting.
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Remark 2. The current construction of Gsubmult outputs m = 2n� 1 shares, which does not satisfy
the requirement m � 2n shares for the compression gadget. Nevertheless, it is enough to add an
artificial extra share c2n�1 equal to zero between both building blocks. In particular, the compression
gadget (and subsequently the refresh gadget) does not expect the input sharing to be uniform to
achieve the stated security properties.

New Construction for Gsubmult. As stated earlier, Lemma 7 does not hold for Gsubmult in
the case where n is odd and t = (n � 1)/2. In order to cover this case, we propose a slightly
modified version of Gsubmult with two extra random values r1 and s1. In this version, we let � =
(�i,j)1i,jn 2 Fn⇥n

q be a constant matrix, and let � 2 Fn⇥n
q be the matrix defined by �i,j = 1��i,j .

The sub-gadget Gsubmult outputs 2n+ 1 shares:

• c1 =
⇣ nP

i=1
(ri + ai)

⌘
·

⇣ nP
i=1

(si + bi)
⌘

• ci+1 = �ri ·
⇣ nP

j=1
(�i,jsj + bj)

⌘
for i = 1, . . . , n

• ci+n+1 = �si ·
⇣ nP

j=1
(�i,jrj + aj)

⌘
for i = 1, . . . , n

where ri and si are randomly generated values. It can be easily checked that Gsubmult now performs
2n+ 1 bilinear multiplications, and that it is correct, i.e.

P2n+1
i=1 ci =

P
n

i=1 ai ·
P

n

i=1 bi.
We now need the following slightly modified version of Condition 2 on � and on �, which instead

of considering a linear combination of at most n � 1 probes as in Condition 2, considers up to n

probes:

Condition 3 Let z = (2n + 4) · n. Let In 2 Fn⇥n
q be the identity matrix, 0`⇥n 2 F`⇥n

q be the

matrix of zeros, 1`⇥n 2 F`⇥n
q be the matrix of ones, D�,j 2 Fn⇥n

q be the diagonal matrix such that
D�,j,i,i = �j,i, T n 2 Fn⇥n

q be the upper triangular matrix with just ones, T �,j 2 Fn⇥n
q be the upper

triangular matrix such that T �,j,i,k = �j,i for i  k. We define the following matrices:

L =
⇥

In 0n⇥n In In . . . In T n T n . . . T n

⇤

M =
⇥
0n⇥n In In D�,1 . . . D�,n T n T �,1 . . . T �,n

⇤

Then we say that � satisfies Condition 3 if and only if

– for any vector v 2 Fz
q of Hamming weight hw(v)  n,

– for any i1, . . . , iK 2 [z] such that vi1 6= 0, . . . , viK 6= 0 and the corresponding columns i1, . . . , iK

in L and in M have no zero coe�cient (i.e there are K probes of the form
P

n

i=1(ri + ai) orP
n

j=1(�i,jrj + aj) for any i = 1, . . . , n),

if M · v = 0, then we have hw(L · v)  hw(v)�K.

Under this new condition, we obtain the following result.

Lemma 8. Let t  n�1 and d = min(t+1, n�t). Let Gsubmult as defined above with n-share inputs.
If both matrices � and � satisfy Condition 3, then Gsubmult is (d� 1)-NI and (d� 1, 2d� 1)-partial
NI.
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Proof. The proof of the Lemma is in fact the same as the proof of Lemma 7. The only di↵erence
is that in this lemma, we also cover the special case of an odd value for the number of shares n

and t = b
n� 1

2
c =

n� 1

2
. In the latter case, we consider in the proof up to n probes on the gadget

Gsubmult, while in Lemma 7, we could only have up to n�1 probes on the gadget. Since Condition 3
covers the case of having up to n probes on Gsubmult, then we can follow the exact same procedure
of the proof of Lemma 7 to prove the Lemma by considering the new condition. ⇤
Remark 3. The number of output shares m = 2n + 1 of Gsubmult satisfies the constraint required
by Gcompress in Algorithm 1 (m � 2n). We can thus use the compression gadget Gcompress exactly
as described in the algorithm on the input sharing (c1, . . . , c2n+1), instantiated with the O(n log n)
refresh gadget from Section 4. Since the multiplication sub-gadget Gsubmult requires O(n) ran-
dom values and Gcompress requires O(n log n) random values from the refresh gadget, the overall
multiplication gadget Gmult also requires a quasi-linear number of random values O(n log n).

5.4 Instantiations

We first state the existence of a matrix � which satisfies Condition 3 over any finite field Fq for
q large enough (with log(q) = ⌦(n log n))6. The proof technique follows closely the proof of [8,
Theorem 4.5] and makes use of the non-constructive “probabilistic method”. Specifically, it states

that if one chooses � uniformly at random in Fn logn
q , the probability that the matrix � satisfies

Condition 3 is strictly positive, when q is large enough. It is important to note that the proof relies
on probability but the existence of a matrix � which satisfies Condition 3 (for q large enough) is
guaranteed without any possible error.

Theorem 4. For any n � 1, for any prime power q, if � is chosen uniformly in Fn⇥n
q , then

Pr[� satisfies Condition 3 ] � 1� 2 · (12n)n · n · q
�1

.

In particular, for any n � 1, there exists an integer Q = O(n)n+1, such that for any prime power
q � Q, there exists a matrix � 2 Fq

n⇥n satisfying Condition 3.

As when � is uniformly random, so is �, Theorem 4 immediately follows from the following
proposition and the union bound.

Proposition 1. For any n � 1, for any prime power q, if � is chosen uniformly in Fn⇥n
q , then

Pr[� satisfies Condition 3 ] � 1� (12n)n · n · q
�1

.

In particular, for any n � 1, there exists an integer Q = O(n)n+1, such that for any prime power
q � Q, there exists a matrix � 2 Fn⇥n

q satisfying Condition 3.

The proof of this proposition is very technical but follows essentially the proof of the analogous [8,
Proposition 4.6]. It is provided in Appendix A.12.

In [8], Beläıd et al.. presented examples of matrices which satisfy their condition for 2 shares
and 3 shares. Karpman and Roche [19] proposed afterwards new explicit instantiations up to order
n = 6 over large finite fields and up to n = 4 over practically relevant fields such as F256. It is worth
mentioning that the matrices proposed in [19] are actually incorrect (due to a sign error) but this
can be easily fixed and we check that matrices obtained following [19] also achieve our Condition 3.
These matrices for 3, 4 and 5 shares are provided in Appendix A.13.
6 Such large finite fields may actually be useful to build e�cient symmetric primitives (see for instance MiMC [2]).
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6 Improved Asymptotic Complexity

In the previous sections, we exhibit the construction of a multiplication gadgetGmult which performs
a linear number of multiplications between variables, and a quadratic number of multiplications
by a constant operations. Using the results of Lemmas 5, 8 and 4, the constructed multiplication
gadget is RPE and achieves the maximum amplification order bn+1

2 c for any number of shares n.
Using the three linear gadgets proposed in Section 4 (Gadd, Gcopy, Gcmult) with the O(n log n)

refresh gadgets, and the proposed construction of the multiplication gadget Gmult, we get an ex-
panding compiler with a complexity matrix MCC of eigenvalues:

(�1,�2) = (n, 6n log(n)� 2n) , �3 = n , �4 = 2n+ 1 and �5 = n.

Hence we have Nmax = 6n log(n)� 2n = O(n log n).
Figure 3 illustrates the evolution of the complexity exponent with respect to the number of

shares n, for the best construction provided in [10] with quadratic complexity for an expanding
compiler (orange curve), and our new construction with quasi-linear complexity (pink curve). While
the best construction from [10] yields a complexity in O(|C| · 

e) for e close to 3 for reasonable
numbers of shares, the new expanding compiler quickly achieves a sub-quadratic complexity in the
same settings.
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Nmax = O(n2), d = (n + 1)/2

Nmax = O(n logn), d = (n + 1)/2

Fig. 3: Evolution of the complexity exponent e = log(Nmax)/ log(d) with respect to the number of
shares n. The orange curve matches the instantiation from[10] with quadratic asymptotic complex-
ity (Nmax = O(n2)); the pink curve matches the new construction with quasi-linear asymptotic
complexity (Nmax = O(n log n)).

7 Conclusion

In this paper we have put forward a dynamic expansion strategy for random probing security
which can make the most of di↵erent RPE gadgets in terms of tolerated leakage probability and
asymptotic complexity. We further introduce new generic constructions of gadgets achieving RPE
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for any number of shares n. When the base finite field of the circuit meets the requirement of
our multiplication gadget, the asymptotic complexity of the obtained expanding compiler becomes
arbitrary close to linear, which is optimal.

As for concrete instantiations, our small example on the AES demonstrates the benefits of
our dynamic approach. Namely, it provides the best tolerated probability (from the best suited
compiler) while optimizing the complexity using higher numbers of shares. Using two compilers
with 3 and 5 shares instead of a single one already reduces the complexity by a factor 10.

To go further in the concrete use of our expanding compiler, future works could exhibit explicit
constructions of matrices with (quasi)constant field size for our multiplication gadget. One could
also investigate further designs of RPE multiplication gadgets with linear number of multiplications
for arbitrary fields. Another interesting direction is to optimize the tolerated leakage probability
for a set of (possibly ine�cient) small gadgets to be used as starting point of the expansion in our
dynamic approach before switching to more (asymptotically) e�cient RPE gadgets.
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A Proofs

A.1 Proof of Theorem 1

We consider that we have ` compilers CC1, . . . , CC`, and we want to prove the following result:

Lemma 9. Let CC1, . . . , CC` RPE compilers with expanding functions f1, . . . , f`. The dynamic
expanding compiler for CC1, . . . , CC` ,which on input circuit C outputs the compiled circuit CC` �

· · · � CC1(C), is an RPE compiler with expanding function f such that

f = f` � · · · � f1.

It can be seen that proving Lemma 9 implies proving the result of Theorem 1. Indeed, we can
replace ` in the lemma by k1 + . . .+ kµ from Theorem 1 and consider the corresponding compilers
with their expansion levels. Thus, we will prove in this appendix Lemma 9 and the proof of the
Theorem will follow directly.

To prove the lemma, we first start by introducing some definitions from [9] for random probing
expandability of level-` with di↵erent sharing orders n1, . . . , n` gadgets. First, we introduce a gen-
eralized definition of adequate subsets of [n1 ⇥ . . .⇥ n`] as in [9]. For this, we define recursively a
family Sk 2 P([n1 ⇥ . . .⇥ nk]) for k  `, where P([n1 ⇥ . . .⇥ nk]) denotes the set of all subsets of
[n1 ⇥ . . .⇥ nk], as follows:

S1(n, t) ={I 2 [n], |I|  t}

Sk({ni}i2[k], {ti}i2[k]) ={(I1, . . . , Ink
) 2 (Sk�1({ni}i2[k�1], {ti}i2[k�1]) [ [n1 ⇥ . . . nk�1])

nk ,

Ij 2 Sk�1 8 j 2 [1, nk] except at most tk}

In other words, a subset I belongs to Sk if among the nk subset parts of I, at most tk of them
are full, while the other ones recursively belong to Sk�1. For simplicity, we will sometimes denote
Sk without the parameters ({ni}i2[k], {ti}i2[k]) which will be implicit in the notation. We will also
denote for simplicity Ni = n1 · . . . · ni for i 2 N.

Then we recall the generalized definition of RPE with Sk for level-k gadgets.

Definition 12 (Random Probing Expandability with {Sk}k2N). Let f : R ! R and k 2 N.
An Nk-share gadget G : KNk ⇥ KNk ! KNk is (Sk, f)-random probing expandable (RPE) if there
exists a deterministic algorithm SimG

1 and a probabilistic algorithm SimG

2 such that for every input
(bx, by) 2 KNk ⇥KNk , for every set J 2 Sk [ [Nk] and for every p 2 [0, 1], the random experiment

W  LeakingWires(G, p)

(I1, I2, J
0) SimG

1 (W,J)

out SimG

2 (W,J
0
, bx|I1 , by|I2)

ensures that

1. the failure events F1 ⌘
�
I1 /2 Sk

�
and F2 ⌘

�
I2 /2 Sk

�
verify

Pr(F1) = Pr(F2) = " and Pr(F1 ^ F2) = "
2 (19)

with " = f(p) (in particular F1 and F2 are mutually independent),
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2. the set J 0 is such that J 0 = J if J 2 Sk, and J
0 = [Nk] \ {j?} for some j

?
2 [Nk] otherwise,

3. the output distribution satisfies

out
id
=
�
AssignWires(G,W, (bx, by)) , bz|J 0

�
(20)

where bz = G(bx, by).
We are now ready to prove Lemma 9.

Proof (Lemma 9). We will prove the Lemma recursively. In other words, we will suppose that we
have RPE compilers CC1, . . . , CCk with expanding functions f1, . . . , fk and (ti, fi)-RPE gadgets
for each i  k, and we will prove that the gadgets of the expanding compiler CCk � · · · � CC1 are
(Sk, f)-RPE with f = fk � · · · � f1. This will imply that the expanding compiler CCk � · · · �CC1 is
RPE with expanding function f .

The base case is one of the theorem hypotheses, namely for k = 1, the level-1 gadgets are (t1, f1)-
RPE, which is equivalent to (S1, f1)-RPE. We must then show the induction step: assuming that the
level-k gadgets are (Sk, fk�· · ·�f1)-RPE, show that the level-(k+1) gadgets are (Sk+1, fk+1�· · ·�f1)-
RPE. For the sake of simplicity, we depict our proof by assuming that all the gadgets are 2-to-1
gadget (which is actually not the case for copy gadgets). The proof mechanism for the general case
(with 2-to-1 and 1-to-2 gadgets) is strictly similar but heavier on the form. We also denote in the
following

– "k = fk � · · · f1(p),
– G

CCk to be a gadget of the expanding compiler CCk,
– G

(k) to be the gadget resulting from applying CCk�1�. . .�CC1(GCCk), i.e. obtained by replacing
each gate of the base gadget G

CCk by the corresponding level-(k � 1) gadget G
(k�1) and by

replacing each wire of the base gadget by Nk�1 wires carrying a Nk�1-linear sharing of the
original wire.

In order to show that a gadget G
(k+1) is (Sk+1, "k+1)-RPE we must construct two simulators

SimG
(k+1)

1 and SimG
(k+1)

2 that satisfy the conditions of Definition 12 for the set of subsets Sk+1.

More precisely, we must construct two simulators SimG
(k+1)

1 and SimG
(k+1)

2 such that for every
(bx⇤, by⇤) 2 KNk+1 ⇥KNk+1 , and for every set J⇤

2 Sk+1 [ [Nk+1], the random experiment

W
⇤
 LeakingWires(G(k+1)

, p)

(I⇤1 , I
⇤
2 , J

⇤0) SimG
(k+1)

1 (W ⇤
, J

⇤)

out SimG
(k+1)

2 (W ⇤
, J

⇤
, bx⇤|I⇤1 , by

⇤
|I⇤2

)

ensures that

1. the failure events F⇤
1 ⌘

�
I
⇤
1 /2 Sk+1) and F

⇤
2 ⌘

�
I
⇤
2 /2 Sk+1) verify

Pr(F⇤
1 ) = Pr(F⇤

2 ) = "k+1 and Pr(F⇤
1 ^ F

⇤
2 ) = "

2
k+1 (21)

2. the set J⇤0 is such that J⇤0 = J
⇤ if J⇤

2 Sk+1 and J
⇤0 = [Nk+1] \ {j?} otherwise,

3. the output distribution satisfies

out
id
=
�
AssignWires(G(k+1)

,W, (bx, by)) , bz|J⇤0

�
(22)

where bz = G
(k+1)(bx, by).

We distinguish two cases: either J⇤
2 Sk+1 (normal case), or J⇤ = [Nk+1] (saturated case).
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Normal case: J⇤
2 Sk+1. By definition of the expanding compiler, we have that a level-(k + 1)

gadget G(k+1) is obtained by replacing each gate of the base gadget GCCk+1 of the compiler CCk+1

by the corresponding level-k gadget G(k) and by replacing each wire of the base gadget by Nk wires
carrying a Nk-linear sharing of the original wire. In particular G(k+1) has Nk+1 output wires which
can be split in nk+1 groups of Nk wires, each group being the output of a di↵erent G(k) gadget. We
split the set J⇤ accordingly so that J⇤ = J

⇤
1 [ · · ·[J

⇤
nk+1

, where each set J⇤
i
pertains to the ith group

of output wires. By definition of Sk, since J
⇤
2 Sk+1, we must have J

⇤
i
2 Sk for all 1  i  nk+1,

except at most tk+1 of them for which J
⇤
i
= [Nk]. We define Jbase as the set of indexes i such that

J
⇤
i
/2 Sk. Therefore we must have |Jbase|  tk+1.

We first describe the simulator SimG
(k+1)

1 that takes the leaking wires W ⇤ and the output wires
J
⇤
2 Sk+1 to be simulated and produce the sets I⇤1 ✓ [Nk+1] and I

⇤
2 ✓ [Nk+1] of required inputs. The

simulator SimG
(k+1)

1 starts by defining a set Wbase which is initialized to ;; this will correspond to
the set of leaking wires for the base gadget GCCk+1 . Then the simulation goes through all the level-k
gadgets composing G

(k+1) from bottom to top i.e. starting with the level-k gadgets producing the

output sharing up to the level-k gadgets processing the input sharings. Let us denote by {G
(k)
j

}j

these level-k gadgets. For each G
(k)
j

, one runs the simulator Sim1 from the (Sk, fk � . . . � f1)-RPE
property on input Wj and Jj defined as follows. The set of leaking wires Wj is defined as the subset

of W ⇤ corresponding to the wires of G(k)
j

. For the gadgets G
(k)
j

on the bottom layer, the set Jj is

set to one of the J
⇤
i
(with indices scaled to range in [Nk]). For all the other gadgets G

(k)
j

(which
are not on the bottom layer), the set J is defined as the set I1 or I2 output from Sim1 for the child

gadget G(k)
j0

(for which Sim1 has already been run).

Whenever a failure event occurs for a G
(k)
j

gadget, namely when the set I (either I1 or I2)
output from Sim1 is such that I /2 Sk, we add the index of the wire corresponding to this input
in the base gadget G

CCk+1 to the set Wbase. Once the Sim1 simulations have been run for all the

G
(k)
j

gadgets, ending with the top layers, we get the final sets I corresponding to the input shares.

Each of these sets corresponds to an Nk-sharing as input of a G
(k)
j

gadget, which corresponds to a
wire as input of the base gadget among the 2 · nk+1 wires carrying the two input nk+1-sharings of
the base gadget. We denote by I

⇤
1,1, . . . , I

⇤
1,nk+1

and I
⇤
2,1, . . . , I

⇤
2,nk+1

the corresponding sets so that
defining

I
⇤
1 = I

⇤
1,1 [ . . . [ I

⇤
1,nk+1

and I
⇤
2 = I

⇤
2,1 [ . . . [ I

⇤
2,nk+1

, (23)

the tuple bx⇤|I⇤1 and by⇤|I⇤2 contains the shares designated by the final I sets.

At the end of the SimG
(k+1)

1 simulation, the set Wbase contains all the labels of wires in the base

gadget GCCk+1 for which a failure event has occurred in the simulation of the corresponding G
(k)
j

gadget. Thanks to the (Sk, "k)-RPE property of these gadgets, the failure events happen (mutually
independently) with probability "k which implies

Wbase
id
= LeakingWires(GCCk+1 , "k) (24)

Recall that |Jbase|  tk+1. We can then run SimG
CCk+1

1 to obtain:

(I1,base, I2,base) = SimG
CCk+1

1 (Wbase, Jbase) . (25)
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For all 1  i  nk+1, if i 2 I1,base, we force I
⇤
1,i  [Nk], so that the corresponding i-th input

wire of the base gadget can be computed from the corresponding input wires in I
⇤
1,i. The simulator

SimG
(k+1)

1 then returns (I⇤1 , I
⇤
2 ) as output.

The (tk+1, fk+1)-RPE property of the base gadget GCCk+1 implies that the base failure events
|I1,base| = nk+1 and |I2,base| = nk+1 are "k+1-mutually unlikely, where "k+1 = fk+1("k). We argue
that for all 1  i  nk+1, I⇤1,i /2 Sk () i 2 I1,base. Namely if a failure event has occurred for a
set I

⇤
1,i (i.e. I

⇤
1,i /2 Sk) then we must have i 2 I1,base. Indeed, if a failure event has occurred for a

set I
⇤
1,i then the label of the ith input wire (for the first sharing) of the base gadget G

CCk+1 has

been added to Wbase and SimG
CCk+1

1 has no choice but to include this index to the set I1,base so

that SimG
CCk+1

2 can achieve a perfect simulation of the wire assignment (as required by the RPE
property of G

CCk+1). Moreover if i 2 I1,base then by construction we have set I
⇤
1,i = [Nk] and

therefore I
⇤
1,i /2 Sk. This implies that if |I1,base|  tk+1 then I

⇤
1 2 Sk+1 (and the same happens for

I
⇤
2 w.r.t. I2,base). We deduce that the failure events F⇤

1 and F
⇤
2 are also "k+1-mutually unlikely, as

required by the (Sk+1, "k+1)-RPE property of G(k+1).

We now describe the simulator SimG
(k+1)

2 that takes as input bx⇤|I⇤1 and by⇤|I⇤2 and produces a

perfect simulation of
�
AssignWires(G(k+1)

,W
⇤
, (bx⇤, by⇤)), bz|J⇤

�
where bz = G

(k+1)(bx, by). Let bxb and
byb denote the nk+1-linear sharings obtained by applying the linear decoding to each group of Nk

shares in bx⇤ and by⇤, so that the elements of bxb and byb correspond to the input wires in the base
gadget GCCk+1 . The assignment expansion property implies that a perfect assignment of the wires
of G(k+1) on input bx⇤ and by⇤ can be derived from an assignement of the wires of the base gadget
G

CCk+1 on input bxb and byb. The simulator makes use of this property by first running

outbase  SimG
CCk+1

2 (Wbase, Jbase, bxb|I1,base , by
b
|I2,base) , (26)

Note that the input values bxb|I1,base and byb|I2,base can be obtained from the corresponding shares in

I
⇤
1 and I

⇤
2 . Thanks to the (tk+1, fk+1)-RPE property of GCCk+1 and by construction of I1,base and

I2,base, this outputs a distribution satisfying

outbase
id
=
⇣
AssignWires(GCCk+1 ,Wbase, (bxb, byb)), bzb|Jbase

⌘
(27)

The simulator then goes through all the G
(k)
j

gadgets from input to output and for each of them
runs the simulator Sim2 of the RPE property on inputs Wj , Jj , bx|I1 and by|I2 where Wj and Jj are

the sets from the first phase of the simulation for the gadget G(k)
j

, I1 and I2 are the corresponding

sets produced by the Sim1 simulator for G(k)
j

, and bx and by are the inputs of G(k)
j

in the evaluation

of G(k+1)(bx⇤, by⇤). Provided that the partial inputs bx|I1 and by|I2 are perfectly simulated, this call

to Sim2 produces a perfect simulation of
�
AssignWires(G(k)

j
,Wj , (bx, by), bz|Jj

�
where bz = G

(k)
j

(bx, by).
In order to get perfect simulations of the partial inputs bx|I1 and by|I2 , the simulator proceeds as
follows. For the top layer of G(k) gadgets (the ones processing the input shares) the shares bx|I1 and
by|I2 can directly be taken from the inputs bx⇤|I⇤1 and by⇤|I⇤2 . For the next gadgets the shares bx|I1 and
by|I2 match the shares bz|J output from the call to Sim2 for a parent gadget. The only exception
occurs in case of a failure event.

In that case the simulation needs the full input bx = (x1, . . . , xNk
) (and/or by = (y1, . . . , yNk

)),
while we have set |I1| = Nk � 1 (and/or |I2| = (Nk � 1) to satisfy the RPE requirements of the
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parent gadget in the first simulation phase. Nevertheless, for such cases a perfect simulation of the
plain value x = LinDec(bx) (and/or y = LinDec(by)) is included to outbase by construction of Wbase.
We can therefore perfectly simulate the missing share from the Nk � 1 other shares and the plain

value x (or y). We thus get a perfect simulation of
�
AssignWires(G(k)

j
,Wj , (bx, by), bz|Jj

�
for all the

level-k gadgets G(k)
j

which gives us a perfect simulation of
�
AssignWires(G(k+1)

,W
⇤
, (bx⇤, by⇤)), bz|J⇤

�
.

Saturated case: J⇤
= [Nk+1]. The saturated case proceeds similarly. The di↵erence is that we

must simulate all Nk+1 output shares of the level-(k+1) gadget, except for one share index j
⇤ that

can be chosen by the simulator.

The simulator SimG
(k+1)

1 is defined as previously. Since J
⇤ = [Nk+1], we must define Jbase =

[1, nk+1]. Moreover we have J
⇤
i
= [Nk] for all 1  i  nk+1. This implies that for the gadgets G(k)

j

on the output layer, the sets Jj are all equal to [Nk] as well. The set Wbase is defined as previously,

and the simulator SimG
(k+1)

1 returns (I⇤1 , I
⇤
2 ) as previously. The failure events F

⇤
1 and F

⇤
2 are still

"k+1-mutually unlikely, as required by the (Sk+1, "k+1)-RPE property of G(k+1).

The simulator SimG
(k+1)

2 is defined as previously. In particular, from the running of the base

gadget simulator SimG
CCk+1

2 , we obtain a perfect simulation of the output wires bzb|J 0

base
for some J 0

base
with |J

0
base| = nk+1 � 1. Combined with the perfect simulation of the output wires corresponding

to the output sets J
0
j
from the gadgets G

(k)
j

on the output layer, with |J
0
j
| = Nk � 1, we obtain a

subset J 0 of output wires for our level-(k + 1) gadget with |J
0
| = Nk+1 � 1 as required. Eventually

this gives us a perfect simulation of
�
AssignWires(G(k+1)

,W
⇤
, (bx⇤, by⇤)), bz|J 0

�
. This terminates the

proof of Lemma 9. As stated earlier, proving Lemma 9 implies proving Theorem 1. Thus, this also
terminates the proof for the theorem. ⇤

A.2 Proof of Theorem 2

Proof. Let {CCi}i be a family of circuit compilers with complexity matrices {MCCi
}i. Given a circuit

C with its complexity vector NC as described in Section 2.4, it can be verified that the complexity

of the compiled circuit bC = CC
kµ
µ � · · · · · · � CC

k1
1 (C) satisfies

N bC = M
kµ

CCµ
· . . . ·M

k1
CC1

·NC

If we denote MCCi
= Qi · ⇤i ·Q

�1
i

to be the eigen decomposition of the matrix MCCi
, then we get

N bC = Qµ · ⇤
kµ
µ ·Q

�1
µ · . . . ·Q1 · ⇤

k1
1 ·Q

�1
1 ·NC (28)

We consider in the theorem that the expansion levels {ki}i are the main parameters. We can also
see from (28) that the complexity of the compiled circuit is expressed in terms of the eigen matrices
to the powers ki as ⇤

ki

i
. The parameters {ki}i do not a↵ect the matrices {Qi, Q

�1
i

}i. Then, if we
denote �i := max eigenvalues(MCCi

) i.e. the maximum of the eigenvalues in ⇤i, then we get that

in terms of the parameters {ki}i, the complexity of the compiled circuit bC can be expressed as

N bC = O

⇣
|�µ|

kµ · . . . · |�1|
k1

⌘
·NC

which gives

| bC| = |C| · O

⇣ µY

i=1

|�i|
ki

⌘

which concludes the proof of Theorem 2. ⇤
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A.3 Proof of Theorem 3

To prove Theorem 3, we introduce the following lemma.

Lemma 10. Let CCi be an RPE circuit compiler of amplification order di and complexity si. For
any probability

p 
1

2
·
di + 1

si � di
(29)

the expanding function fi of CCi is upper bounded by

fi(p)  2

✓
si

di

◆
p
di . (30)

Proof (Lemma 10). Let us first recall the following general bound on fi:

fi(p) 
siX

j=di

✓
si

j

◆
p
j
, (31)

for any p 2 [0, 1). From (29), for any j 2 [si], we get:
✓

si

j + 1

◆
p
j+1


1

2

✓
si

j

◆
p
j

which gives

fi(p) 
siX

j=di

✓
si

di

◆⇣1
2

⌘j�di

p
di =

✓
si

di

◆
p
di

si�diX

j=0

⇣1
2

⌘j
 2

✓
si

di

◆
p
di .

⇤

Proof (Theorem 3). We show that for every p satisfying

p <
1

e

✓
1

2 e

◆ 1
di�1

✓
di

si

◆1+ 1
di�1

(32)

we have fi(p) < p. Let us define

f̄i : p 7! 2

✓
si

di

◆
p
di .

(the upper bound on fi from Lemma 10). The equation f̄i(�) = � has the following solution

� =

 
1

2
�
si

di

�
! 1

di�1

which, from ✓
si

di

◆


⇣
si · exp(1)

di

⌘di
,

further satisfies

� �
1

e

✓
1

2 e

◆ 1
di�1

✓
di

si

◆1+ 1
di�1
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We deduce that (32) implies p < � which further implies f̄i(p) < p. Moreover (32) implies

p <
1

2

✓
di

si

◆1+ 1
di�1

<
1

2
·
di

si
<

1

2
·
di + 1

si � di
,

which, by Lemma 10, further implies fi(p)  f̄i(p). We hence deduce that (32) implies fi(p) < p

which concludes the proof. ⇤

A.4 Proof of Corollary 1

Proof (Corollary 1). For any function f(p) = c · p
d, we have

f
(k)(p) = c

(dk�1+d
k�2+···+1)

· p
d
k

 c

�
1+ 1

d�1

�
d
k�1

p
d
k

.

When ci = 2
�
si

di

�
, Equation (11) from Theorem 3 gives the first and the second inequalities. ⇤

A.5 Proof of Lemma 6

Proof. Gcmult has the exact same wires as the underlying Grefresh except for the extra input wires
{a1, . . . , an} (the wires multiplied by the constant i.e {c · a1, . . . , c · an} are the input wires to
Grefresh). So to simulate probes on Gcmult, we use the simulator of Grefresh. Each probe which is in
the set {a1, . . . , an} will be replaced by the corresponding input share multiplied by the constant c,
in the set of probes on Grefresh, which would lead to a probe on an input share of Grefresh of the form
c · ai. It is clear that if we can perfectly simulate c · ai in Grefresh, then we can perfectly simulate
the input share ai in Gcmult. Thus any set of probes on Gcmult is simulated using the simulator of
Grefresh with the exact same number of probes. Hence, if Grefresh is (t, f)-(T)RPE n-share refresh
gadget of amplification order d, then the gadget Gcmult is also (t, f 0)-(T)RPE of amplification order
d. This concludes the proof. ⇤

A.6 Proof of Lemma 2

Proof. Let Grefresh be a (t, f)-TRPE refresh gadget for any t  n � 1 with amplification order
d � min(t + 1, n � t) and which satisfies Definition 9. We will prove that the construction of
Gadd using Grefresh described in Section 4 is (t, f)-TRPE for any t  n � 1 of amplification order
min(t+ 1, n� t). This amounts to proving that:

1. Any set of leaking wires W such that |W | < min(t + 1, n � t) can be simulated together with
any set of outputs wires J ✓ [n] from sets of input wires I1 on a and I2 on b such that
|I1|  min(t, |W |) and |I2|  min(t, |W |).

2. Any set of leaking wires such that min(t+1, n� t)  |W | < 2min(t+1, n� t) can be simulated
together with any set of outputs wires J ✓ [n] from sets of input wires I1, I2 such that |I1| 

min(t, |W |) or |I2|  min(t, |W |) (because of the double failure, i.e failure on both inputs).

Indeed, this amplification order being the maximum one achievable by 2-input addition gadgets, it
would conclude the proof.

We will denote (e1, . . . , en) = Grefresh(a1, . . . , an) and (f1, . . . , fn) = Grefresh(b1, . . . , bn). Then
the gadget Gadd consists in the sharewise addition (e1 + f1, . . . , en + fn) as described in Section 4.
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We proceed by building the necessary simulators for Gadd from the simulators that already exist for
Grefresh. Concretely, we split each set W of leaking wires, into four subsets W = W

r
1 [W

a
1 [W

r
2 [W

a
2

where W r
1 (resp. W r

2 ) is the set of leaking wires during the computation of Grefresh(a1, . . . , an) (resp.
Grefresh(b1, . . . , bn)), and W

a
1 (resp. W a

2 ) is the set of leaking wires of (e1, . . . , en) (resp. (f1, . . . , fn)).
We can see that W

r
1 [W

a
1 (resp. W r

2 [W
a
2 ) contains only leaking wires during the computation

of Grefresh(a1, . . . , an) (resp. Grefresh(b1, . . . , bn)). We now demonstrate how we can simulate W

when the output set J is of size less that t ((T)RPE1) and when it is of size strictly more than t

((T)RPE2).

– if |J |  t ((T)RPE1): we prove both properties 1 and 2:
1. we assume that |W | < min(t + 1, n � t). We construct a new set of probes on (e1, . . . , en)

that we denote Je such that Je = W
a
1 [{ei | i 2 J}. Similarly, we construct the set of probes

on (f1, . . . , fn), Jf = W
a
2 [ {fi | i 2 J}. It is clear that if we can perfectly simulate W

r
1 ,

W
r
2 , Je and Jf , then we can perfectly simulate W , and J (for each i 2 J , we can perfectly

simulate ei in Je and fi in Jf so we can perfectly simulate ei + fi). We denote |W
a
1 | = m

and |W
a
2 | = m

0. We have

|W
r

1 |  min(t+ 1, n� t)� 1�m , |Je|  t+m

and
|W

r

2 |  min(t+ 1, n� t)� 1�m
0
, , |Jf |  t+m

0

From the (t, f)-TRPE property of Grefresh for any t  n � 1 and specifically for t0 = t +m

with amplification order at least d0 = min(t+ 1 +m,n� t�m), and since |W
r
1 |  min(t+

1, n � t) � 1 � m  d
0
� 1, then there exists an input set of shares of a I1 such that

|I1|  min(t+m, |W
r
1 |) = |W

r
1 |  |W | and I1 perfectly simulates W r

1 and Je.
Similarly, there exists an input set of shares of b I2 such that |I2|  min(t + m

0
, |W

r
2 |) =

|W
r
2 |  |W | and I2 perfectly simulates W r

2 and Jf .
From these definitions, I1 and I2 together perfectly simulate W and J and are both of size
less than min(t, |W |), which proves the first property in this scenario.

2. we now assume that min(t+1, n� t)  |W | < 2min(t+1, n� t). Without loss of generality,
let us consider that |W r

1 [W
a
1 | < min(t+ 1, n� t)  t (the proof is similar in the opposite

scenario). As in the first property, we construct a new set of probes on (e1, . . . , en) that we
denote Je such that Je = W

a
1 [{ei | i 2 J}. We fix the set of input shares I2 on b as I2 = [n],

so we can perfectly simulate all probes in W
r
2 and W

a
2 using the full input b. Next, we need

to prove that we can perfectly simulate all probes in W
r
1 and Je similarly as before. We

denote |W
a
1 | = m. We have

|W
r

1 |  min(t+ 1, n� t)� 1�m , |Je|  t+m

From the (t, f)-TRPE property of Grefresh for any t  n � 1 and specifically for t0 = t +m

with amplification order at least d0 = min(t+ 1 +m,n� t�m), and since |W
r
1 |  min(t+

1, n � t) � 1 � m  d
0
� 1, then there exists an input set of shares of a I1 such that

|I1|  min(t+m, |W
r
1 |) = |W

r
1 |  |W | and I1 perfectly simulates W r

1 and Je.
From these definitions, I1 and I2 together perfectly simulate W and J (J is simulated by
perfectly simulating each i 2 J by using ei in Je and simulating fi using the full input b),
and we only have a failure on at most one of the inputs (b in this case). This concludes the
proof for the second property.
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At this point, we proved that Gadd achieves an amplification order greater than or equal to
min(t+1, n�t) for TRPE1. Since this amplification order is the maximum achievable by 2-input
addition gadgets, then Gadd achieves an amplification order exactly equal to min(t+ 1, n� t).

– if |J | > t ((T)RPE2): we prove both properties 1 and 2:

1. we assume that |W | < min(t+1, n� t). As before, we split W as W = W
r
1 [W

a
1 [W

r
2 [W

a
2 .

We consider J
0 = {i | ei 2 W

a
1 } [ {i | fi 2 W

a
2 } so we have |J

0
|  |W

a
1 | + |W

a
2 |. We

also construct the set W
r which contains the set of leaking wires on the first instance of

Grefresh (on input a) in W
r
1 , and all the wires that are leaking within the second instance of

Grefresh in W
r
2 . Hence, we have that |W r

|  |W
r
1 [W

r
2 | < min(t+ 1, n� t). Hence, we have

|W
r
|+ |J

0
|  min(t+1, n� t)  n� 1, so by Definition 9 satisfied by Grefresh, there exists a

set of output shares indices J such that J 0
✓ J and |J | = n� 1 such that W r and J can be

perfectly simulated from a set of input shares indices I such that |I|  |W
r
|+ |J

0
|. Thus, we

can fix I1 on a and I2 on b such that I1 = I2 = I and we fix the set of n� 1 output shares
indices on Gadd as the same indices in J . Hence, we can perfectly simulate all wires in W

r

and J , so we can perfectly simulate all wires in W
r
1 and W

r
2 and W

a
1 and W

a
2 as well as n�1

output shares of Gadd using I1 and I2 such that |I1| = |I2|  |W
r
|+|J

0
|  |W | = min(t, |W |).

That concludes the proof for the first property.
2. we now assume that min(t+1, n� t)  |W | < 2min(t+1, n� t). Without loss of generality,

let us consider that |W
r
1 [ W

a
1 | < min(t + 1, n � t) (the proof is similar in the opposite

scenario).
We fix I2 = [n] on input b, which allows us to perfectly simulate all wires and output
shares on Grefresh instance with input sharing (b1, . . . , bn), including W

a
2 and W

r
2 . Next, we

set J
0 = {i | ei 2 W

a
1 }. Since |W

r
1 | + |J

0
|  n � 1, by Definition 9 satisfied by Grefresh,

there exists a set of output shares indices J such that J
0
✓ J and |J | = n � 1 such that

W
r
1 and J can be perfectly simulated from a set of input shares indices I1 on a such that

|I1|  |W
r
1 |+|J

0
|  |W

r
1 |+|W

a
1 |  |W |. Thus, we can fix the set of n�1 output shares indices

on Gadd as the same indices in J . We can perfectly simulate all output shares indexed in J

since for each i 2 J , we can perfectly simulate ei using I1 and fi using the full input b in I2,
so we can perfectly simulate ei + fi. Hence, we can perfectly simulate all wires in W as well
as n� 1 output shares of Gadd using I1 and I2 such that |I1|  |W

r
1 |+ |W

a
1 |  min(t, |W |)

and with a failure on input b with I2 = [n]. That concludes the proof for the second property.

We thus proved thatGadd achieves an amplification order greater than or equal to min(t+1, n�t)
for TRPE2. Since min(t + 1, n � t) is the maximum order achievable for TRPE2 for a 2-input
gadget, then Gadd achieves exactly the order min(t+ 1, n� t).

Since Gadd has an amplification order equal to min(t+1, n� t) for TRPE1 and TRPE2, then Gadd

is a (t, f 0)-TRPE addition gadget for some function f
0 of amplification order min(t+1, n�t), which

concludes the proof. ⇤

A.7 Algorithm for the O(n logn) Refresh Gadget

A.8 Proof of Lemma 3

Proof. We will prove that the gadget from Algorithm 3 is (t, f)-TRPE for any t  n� 1 of ampli-
fication order d � min(t+ 1, n� t). For this, we will prove both properties TRPE1 and TRPE2.
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Algorithm 3: QuasiLinearRefresh
Input : (a1, . . . , an) input sharing
Output: (d1, . . . , dn) such that d1 + · · ·+ dn = a1 + · · ·+ an

if n = 1 then return a1;
if n = 2 then

r  $;
return (a1 + r, a2 � r);

end

for i 1 to bn/2c do
r  $;
bi  ai + r;
bbn/2c+i  abn/2c+i � r;

end

if n mod 2 = 1 then bn  an;
(c1, . . . , cbn/2c) QuasiLinearRefresh(b1, . . . , bbn/2c);
(cbn/2c+1, . . . , cn) QuasiLinearRefresh(bbn/2c+1, . . . , bn);
for i 1 to bn/2c do

r  $;
di  ci + r;
dbn/2c+i  cbn/2c+i � r;

end

if n mod 2 = 1 then dn  cn;
return (d1, . . . , dn);

Proof for TRPE1

The gadget is proven to be (n � 1)-SNI in [5], thus it is (t, f)-TRPE1 of amplification order
d � min(t + 1, n � t) thanks to Lemma 6 from [10]. Note that we can find failure sets of wires
of size t + 1 which require the knowledge of t + 1 input shares (simply consider the leaking wires
{a1, . . . , at+1} on input a for instance), so d  t+ 1.

Proof for (n� 1)-STRPE2 (which implies TRPE2)

We will first start by recalling the result of Lemma 5 in [5] which will be useful for our proof.

Lemma 5 from [5]. Let a1, a2 2 K be inputs, and let r
$
 � K . Let V be a subset of the variables

{a1, a2, r} and O 2 {;, {a1+ r}}. Then the variables in V [O[ {a2� r} can be perfectly simulated
from I ⇢ {a1, a2}, with |I|  |V |+ 2 · |O|.

Proof of Lemma 5 from [5]. If |O| = 1 or |V | � 2, we can take I = {a1, a2}. If |O| = 0 and
|V | = 0, we can simulate a2 � r with a random value. If |O| = 0 and |V | = 1, if V = {a1} we let
I = {a1} and we can again simulate a2 � r with a random value; if V = {r} or V = {a2} then we
let I = {a2}. ⇤

We are now ready to prove our main result. For TRPE2, we will prove the slightly stronger
property (n�1)-STRPE2. We can clearly see that (n�1)-STRPE2 implies TRPE2 of amplification
order d = t+1 as shown in Remark 1. We will prove (n�1)-STRPE2 by recurrence on the number
of shares n � 2.
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Fig. 4: O(n log n) refresh gadget from [5]

The gadget in the base case (n = 2) gives the following output sharing:

d1  a1 + r

d2  a2 + r

The proof in this case is easy. Mainly, if J 0 = ;, it is easy to see that we can choose J of size 1 such
that we can perfectly simulate W and J from a set of input shares I on a such that |I|  |W |  1.
Otherwise, if |J 0

| = 1, then |W | = 0, and we choose J = J
0 and in this case we have |I| = 0, since

we can perfectly simulate any of the output shares alone by simply generating a freshly random
value. This concludes the proof for the base case.

Next we suppose that the gadget is (n0
� 1)-STRPE2 for any number of shares n0

< n, and we
prove the property for n shares.

To prove this, we split the gadget into four subgadgets as in Figure 4, where gadget LI corre-
sponds to the first loop in Algorithm 3 which adds bn/2c random values to the sharing, R1 and R2

gadgets correspond to the two recursive calls respectively, and LO gadget corresponds to the second
loop which also add bn/2c random values to the output sharing. We split any set of probes W on
Grefresh into W = V

0
[ V

1
[ V

2
[ V

3 on each of the subgadgets LI , R1, R2 and LO respectively.

The gadget R1 is a
j
n

2

k
-share gadget while R2 is

l
n

2

m
-share gadget. We consider that there are no

probes on the output shares of R1 and R2 as they can be probed through V
3. Similarly, we consider

no output probes on LI , since they can be probed through V
1 and V

2.
Let W bet the set of probes on Grefresh and J

0 be the set of output shares indices such that
|W | + |J

0
|  n � 1. We will construct the sets J

0
1 and J

0
2 for output shares of the gadgets R1 and

R2 as follows:

– for each i 2 J
0
\
⇥ jn

2

k ⇤
, add i to J

0
1

– for each i 2 J
0
\
⇥ jn

2

k
+ 1 : n

⇤
, add i to J

0
2

– for each i 2
⇥ jn

2

k ⇤
such that the input probe ci to LO is probed in V

3, add i to J
0
1

– for each i 2
⇥ jn

2

k
+ 1 : n

⇤
such that the input probe ci to LO is probed in V

3, add i to J
0
2
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It can be seen that if we can perfectly simulate J
0
1 and J

0
2, then we can perfectly simulate J

0 and
all probes in V

3 (V 3 is composed of input probes ci and random variables ri, since probes of the
form ci + rj are probed in J

0). Observe that we also have |J
0
1|+ |J

0
2|  |V

3
|+ |J

0
|.

In order for the recurrence hypothesis to hold, we need the following condition to hold for the
gadget R1:

|V
1
|+ |J

0
1| 

j
n

2

k
� 1 (33)

and the following for the gadget R2:

|V
2
|+ |J

0
2| 

l
n

2

m
� 1 (34)

We consider three cases based on the sizes of the sets of probes:

– |V
2
|+ |J

0
2| �

l
n

2

m
. Then we must have |V 1

|+ |J
0
1| 

j
n

2

k
�1, because we have that |W |+ |J

0
| 

n� 1 and |J
0
1|+ |J

0
2|  |V

3
|+ |J

0
|.

Since (33) holds, by the recurrence hypothesis on R1, we can choose a set J1 of size
j
n

2

k
� 1

such that J
0
1 ✓ J1 and we can perfectly simulate J1 and V

1 from a set of input shares I1

on (b1, . . . , bbn/2c) such that |I1|  |V
1
| + |J

0
1|. Since (34) does not hold for R2, we can set

J2 =
⇥ ln

2

m
: n
⇤
and I2 =

⇥ ln
2

m
: n
⇤
, and finally set J = J1 [ J2 of n � 1 output shares on

Grefresh. We can see that J
0
2 ✓ J2 and J2 and V

2 can be perfectly simulated from I2 trivially
(full input).
Next, we show how to perfectly simulate the sets I1, I2 on intermediate variable b, and V

0.
In fact, thanks to the properties of the LI gadget, we can apply Lemma 5 from [5] for all
1  i  bn/2c on each set of intermediate variables {ai, abn/2c+i, ri} and output variable bi =
ai + ri, where all output variables bbn/2c+i = abn/2c+i � ri must be simulated (since we fixed

I2 =
⇥ ln

2

m
: n
⇤
), and by summing the inequalities, we construct I ⇢ [n] on n-share input a to

perfectly simulate I1, I2 on intermediate variable b, and V
0 such that

|I|  |V
0
|+ 2|I1|+ (n mod 2)  |V

0
|+ 2(|V 1

|+ |J
0
1|) + (n mod 2)

where (n mod 2) comes from the fact that we need to perfectly simulate all shares of (bdn/2e, . . . , bn)
and if n mod 2 = 1, then bn = an by construction of the gadget LI .
From (33) which holds in this case, observe that we have

|V
1
|+ |J

0
1|+ (n mod 2) 

j
n

2

k


l
n

2

m
 |V

2
|+ |J

0
2|,

then we have

|I|  |V
0
|+ 2(|V 1

|+ |J
0
1|) + (n mod 2)  |V

0
|+ |V

1
|+ |J

0
1|+ |V

2
|+ |J

0
2|

which gives
|I|  |W |+ |J

0
|

and using the input shares in I, we can perfectly simulate probes in V
0, I1 and I2, and using

I1 and I2 we proved that we can perfectly simulate probes in V
1, V 2, J1 and J2, and so we can

also perfectly simulate the chosen set of n � 1 output shares J and probes in V
3. So we can

perfectly simulate all internal probes plus the chosen set J of n� 1 output shares from I. This
proves the recurrence step in this case.
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– |V
1
|+ |J

0
1| �

j
n

2

k
. Then we must have |V 2

|+ |J
0
2| 

l
n

2

m
�1, because we have that |W |+ |J

0
| 

n� 1 and |J
0
1|+ |J

0
2|  |V

3
|+ |J

0
|.

Since (34) holds, by the recurrence hypothesis on R2, we can choose a set J2 of size
l
n

2

m
� 1

such that J
0
2 ✓ J2 and we can perfectly simulate J2 and V

2 from a set of input shares I2

on (bdn/2e, . . . , bn) such that |I2|  |V
2
| + |J

0
2|. Since (33) does not hold for R1, we can set

J1 =
⇥ jn

2

k ⇤
and I1 =

⇥ jn
2

k ⇤
, and finally set J = J1 [J2 of n� 1 output shares on Grefresh. We

can see that J 0
1 ✓ J1 and J1 and V

1 can be perfectly simulated from I1 trivially (full input).
Next, we show how to perfectly simulate the sets I1, I2 on intermediate variable b, and V

0. In
fact, thanks to the properties of the LI gadget, we can apply Lemma 5 from [5] for all 1 
i  bn/2c on each set of intermediate variables {ai, abn/2c+i, ri} and output variable bbn/2c+i =
abn/2c+i � ri, where all output variables bi = ai + ri must be simulated (since we fixed I1 =
⇥ jn

2

k ⇤
), and by summing the inequalities, we construct I ⇢ [n] on n-share input a to perfectly

simulate I1, I2 on intermediate variable b, and V
0 such that

|I|  |V
0
|+ 2|I2|  |V

0
|+ 2(|V 2

|+ |J
0
2|)

(in this case, we don’t have the term (n mod 2) anymore because we do not need the full input
sharing (bdn/2e, . . . , bn) for the simulation as before). Since (34) holds and (33) does not hold,
we observe that

|V
2
|+ |J

0
2| 

l
n

2

m
� 1 

j
n

2

k
 |V

1
|+ |J

0
1|

so we get
|I|  |V

0
|+ 2(|V 2

|+ |J
0
2|)  |V

0
|+ |V

2
|+ |J

0
2|+ |V

1
|+ |J

0
1|

which gives
|I|  |W |+ |J

0
|

and using the input shares in I, we can perfectly simulate probes in V
0, I1 and I2, and using

I1 and I2 we proved that we can perfectly simulate probes in V
1, V 2, J1 and J2, and so we can

also perfectly simulate the chosen set of n � 1 output shares J and probes in V
3. So we can

perfectly simulate all internal probes plus the chosen set J of n� 1 output shares from I. This
proves the recurrence step in this case.

– |V
1
|+ |J

0
1| 

j
n

2

k
� 1 and |V

2
|+ |J

0
2| 

l
n

2

m
� 1. This case can be treated in the exact same

way as the above cases. Namely, if we have |V
1
|+ |J

0
1|+ (n mod 2)  |V

2
|+ |J

0
2|, then we can

consider the first case and treat it in the same way (by appyling the recursion hypothesis on

gadget R1 and setting J2 =
⇥ ln

2

m
: n
⇤
and I2 =

⇥ ln
2

m
: n
⇤
.

Otherwise, if we have |V 2
|+|J

0
2|  |V

1
|+|J

0
1|+(n mod 2), then we can consider the second case

and treat it in the same way (by appyling the recursion hypothesis on gadget R2 and setting

J1 =
⇥ jn

2

k ⇤
and I1 =

⇥ jn
2

k ⇤
.

This also concludes the proof in this case.

By treating all possible cases on the probed wires, we conclude the recursive proof. This proves
that for any n shares such that |W | + |J

0
|  n � 1, we can choose a set J of n � 1 output shares

such that J
0
✓ J and we can perfectly simulate J and W from a set of input shares I such that
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|I|  |W | + |J
0
|. Thus, we conclude that the gadget Grefresh is (n � 1)-STRPE2. Thus, it is also

(t, f)-TRPE2 of amplification order d = t+ 1. This concludes the proof. ⇤

A.9 Proof of Lemma 4

Proof. We will prove in this appendix Lemma 4, i.e that the constructed multiplication gadget from
the composition ofGsubmult satisfying (d�1)-NI and (d�1, 2d�1)-partial NI, andGcompress satisfying
(t, f 0)-comp-TRPE results in a (t, f)-RPE gadgetGmult with amplification order d = min(t+1, n�t).
First let us fix t  n � 1. We will be splitting a set of probe W on the multiplication gadget into
two sets of probes W = Wm [Wc where Wm are probes on Gsubmult (internal and output wires)
and Wc are probes Gcompress (on internal wires only).

We start by proving RPE1. Let J bet a set of output shares such that |J |  t.

– Let W be a set of probes on the multiplication gadget such that |W | = |Wm [Wc|  d� 1. We
know in particular from the comp-TRPE property on Gcompress that all wires in J and Wc can
be simulated from a set of input shares Ic on the intermediate result c such that |Ic|  |Wc|

(since |Wc|  d � 1 < 2d). Then, we have a set of probes W 0
m = Wm [ Ic on Gsubmult which is

of size |W
0
m|  |Wm| + |Ic|  |Wm| + |Wc|  d � 1, then from (d � 1)-NI property of Gsubmult

we know that all the probes in W
0
m can be simulated from sets of input shares Ia and Ib such

that |Ia|  d � 1  t and |Ib|  d � 1  t. This proves that we can simulate all probes in the
overall set of probes W and in J from at most t shares of a and t shares of b. this proves the
first property for RPE1.

– Next let W be a set of probes on the multiplication gadget such that d  |W | = |Wm [Wc| 

2d � 1. We need to show that we can simulate W and J with at most a failure on one of the
inputs a or b. We know in particular from the comp-TRPE property on Gcompress that all wires
in J and Wc can be simulated from a set of input shares Ic on the intermediate result c such that
|Ic|  |Wc| (since |Wc|  2d�1 < 2d). Then, we have a set of probes W 0

m = Wm[Ic on Gsubmult

which is of size |W
0
m|  |Wm|+ |Ic|  |Wm|+ |Wc|  2d� 1. Hence from (d� 1, 2d� 1)-partial

NI property of Gsubmult, all the probes in W
0
m can be simulated from sets of input shares Ia and

Ib such that |Ia|  d� 1 or |Ib|  d� 1  t. Since d = min(t+ 1, n� t), then this implies that
we have a failure on at most one of the inputs.
This proves that we can simulate all probes in the overall set of probes W and in J from at
most t shares of at least one of the inputs a or b (in other words, if we need more than t shares
of a, then we need at most t shares of b). This proves the second property for RPE1.

From the above two cases, we conclude that the multiplication gadget is (t, f1)-RPE1 with am-
plification order d = min(t+ 1, n� t).

Next we prove the property RPE2.

– Let W be a set of probes on the multiplication gadget such that |W | = |Wm [Wc|  d� 1. We
know in particular from the comp-TRPE property on Gcompress that there exists a set J of n�1
output shares such that all wires in Wc and J can be simulated from a set of input shares Ic on
the intermediate result c such that |Ic|  |Wc| (since |Wc|  d� 1 < 2d). Then, we have a set of
probes W 0

m = Wm [ Ic on Gsubmult which is of size |W
0
m|  |Wm|+ |Ic|  |Wm|+ |Wc|  d� 1,

then from (d� 1)-NI property of Gsubmult we know that all the probes in W
0
m can be simulated
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from sets of input shares Ia and Ib such that |Ia|  d� 1  t and |Ib|  d� 1  t. This proves
that there exists a set J of n � 1 output shares such that we can simulate all probes in the
overall set of probes W and in J from at most t shares of a and t shares of b. This proves the
first property for RPE2.

– Next let W be a set of probes on the multiplication gadget such that d  |W | = |Wm [Wc| 

2d � 1. We know in particular from the comp-TRPE property on Gcompress that there exists a
set J of n � 1 output shares such that all wires in Wc and J can be simulated from a set of
input shares Ic on the intermediate result c such that |Ic|  |Wc| (since |Wc|  2d � 1 < 2d).
Then, we have a set of probes W 0

m = Wm [ Ic on Gsubmult which is of size |W 0
m|  |Wm|+ |Ic| 

|Wm|+ |Wc|  2d� 1. Hence as for RPE1, from (d� 1, 2d� 1)-partial NI property of Gsubmult,
we have that all the probes in W

0
m can be simulated from sets of input shares Ia and Ib such

that |Ia|  d� 1 or |Ib|  d� 1  t. Since d = min(t+ 1, n� t), then this implies that we have
a failure on at most one of the inputs.
This proves that there exists a set J of n�1 output shares such that we can simulate all probes
in the overall set of probes W and in J from at most t shares of at least one of the inputs a or
b (in other words, if we need more than t shares of a, then we need at most t shares of b). This
proves the second property for RPE2.

From the above two cases, we conclude that the multiplication gadget is (t, f2)-RPE2 with am-
plification order d = min(t+ 1, n� t).

Combining both properties RPE1 and RPE2 with the same amplification order d, we conclude
that the multiplication gadget is (t, f)-RPE with f = max(f1, f2) and of amplification order d =
min(t+ 1, n� t). This concludes the proof of lemma 4. ⇤

A.10 Proof of Lemma 5

Proof. Let Gcompress be the [m : n]-compression gadget from Algorithm 1 such that m � 2n and let
Grefresh be the m-share refresh gadget such that Grefresh is (m� 1)-SNI and (m� 1)-STRPE2. We
will prove that Gcompress [m : n]-compression gadget constructed with such Grefresh is (t, f)-comp-

TRPE. Let us denote (c1, . . . , cm) the input shares of Gcompress, (d1, . . . , dn) its output shares,
and (c01, . . . , c

0
m) the refreshed shares of (c1, . . . , cm) using Grefresh. We write m as m = K.n + `

for K, ` 2 N such that K = bm/nc. For each 1  i  `, we have di = c
0
i
+ . . . + c

0
i+K.n

, and for
`+1  i  n, we have di = c

0
i
+ . . .+ c

0
i+(K�1).n. We will prove that Gcompress is (t, f)-comp-TRPE.

This amounts to proving that 8 W, |W |  2d� 1 a set of probes on the internal wires of Gcompress

where d = min(t+ 1, n� t):

1. 8 J, |J |  t a set of output shares of Gcompress, J and W can be simulated from a set of input
shares I of the input c of Gcompress, such that |I|  |W |.

2. 9 J 0
, |J

0
| = n� 1 a set of output shares of Gcompress, such that J 0 and W can be simulated from

a set of input shares I of the input c of Gcompress, such that |I|  |W |.

We will prove both points separately

1. Let J be a set of output shares indices on Gcompress such that |J |  t for a t  n � 1 and
let d = min(t + 1, n � t). Let W be a set of probes on Gcompress such that |W |  2d � 1. We
need to prove that we can perfectly simulate W and J from input shares indices in I such that
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|I|  |W |. For this, We will simulate W and J using probes on Grefresh. First let us consider J?

the set of probes such that J? = {i | c
0
i
2W \ {c

0
1, . . . , c

0
m}}.

We construct the set W 0 of probes on Grefresh as follows:

W
0 = {p | p 2W \ {c

0
1, . . . , c

0
m}} (35)

In addition, we construct the set J 0 of output shares on Grefresh as follows:

J
0 = J

?
[

[

i2J
i`

{i, . . . , i+K.n} [

[

i2J
i>`

{i, . . . , i+ (K � 1).n} (36)

It is easy to see that if we can perfectly simulate W
0 and J

0, then we can perfectly simulate W

and J since W = W
0
[ {c

0
i
| i 2 J

?
} and by perfectly simulating (c0

i
, . . . , c

0
i+K.n

) for i 2 J such
that i  `, then we can perfectly simulate di = c

0
i
+ . . . + c

0
i+K.n

and by perfectly simulating
(c0

i
, . . . , c

0
i+(K�1).n) for i 2 J such that i > `, then we can perfectly simulate di = c

0
i
+ . . . +

c
0
i+(K�1).n; thus all output shares in J are perfectly simulate using shares in J

0. Hence, we need

to prove that we can perfectly simulate W
0 and J

0 using the Grefresh m-share gadget.
Observe that since |J

?
|  |W \W

0
|, then

|J
0
|  |W \W

0
|+K.|J |+min(t, `)  K.t+min(t, `) (37)

where the term min(t, `) comes from the worst case where all output shares i 2 J are such that
i  `, because in this case we add to J

0 all the indices (i, . . . , i+K.n) instead of (i, . . . , i+(K�
1).n) according to (36). Also, according to (35), we have |W

0
|  |W |. Hence, we have

|W
0
|+|J

0
|  |W

0
|+|W \W

0
|+K.|J |+min(t, `)  |W |+K.|J |+min(t, `)  2d�1+K.t+min(t, `)

, so
|W

0
|+ |J

0
|  2min(t+ 1, n� t)� 1 +K.t+min(t, `)

, then
|W

0
|+ |J

0
|  2(n� t) +K.t+ `� 1  2n+ (K � 2).t+ `� 1

, and from t  n� 1 we get

|W
0
|+ |J

0
|  K.n+ `� 1� (K � 2) .

Since by hypothesis we have m � 2n, so K � 2 and (K � 2) � 0, hence

|W
0
|+ |J

0
|  K.n+ `� 1  m� 1

Then by the (m � 1)-SNI property of m-share Grefresh, we can perfectly simulate the set of
probes W 0 and output shares in J

0 from a set of input shares I such that |I|  |W
0
|, hence we

have
|I|  |W

0
|  |W |

which completes the proof for the first point of comp-TRPE on gadget Gcompress.
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2. Let t  n � 1 and let d = min(t + 1, n � t). Let W be a set of probes on Gcompress such that
|W |  2d� 1. We need to prove that we can perfectly simulate W and a chosen set J of n� 1
output shares from input shares indices in I such that |I|  |W |. For this, we will simulate W

and choose the set J using probes on Grefresh. First let us consider J
? the set of probes such

that J? = {i | c
0
i
2W \ {c

0
1, . . . , c

0
m}}.

We construct the set W 0 of probes on Grefresh as follows:

W
0 = {p | p 2W \ {c

0
1, . . . , c

0
m}} (38)

In addition, we construct the set J 0 of output shares on Grefresh as follows:

J
0 = J

? (39)

Observe that
|W

0
|+ |J

0
|  |W |  2d� 1  2min(t+ 1, n� t)� 1

, so
|W

0
|+ |J

0
|  2n� 1  m� 1

Then by the (m � 1)-STRPE2 property of m-share Grefresh, there exists a set J
00 such that

J
0
✓ J

00 and |J
00
| = m� 1 and W

0 and J
00 can be perfectly simulated from input shares indexed

in I such that |I|  |W
0
|+ |J

0
|. Since W = W

0
[ {c

0
i
| i 2 J

0
} then |I|  |W |.

By perfectly simulating W
0 and J

00, we can perfectly simulate W since W = W
0
[ {c

0
i
| i 2 J

0
}.

In addition, we choose the set J of n� 1 output shares on Gcompress as follows:

J = {i | i  ` and {i, . . . , i+K.n} ✓ J
00
} [ {i | i > ` and {i, . . . , i+ (K � 1).n} ✓ J

00
}

Since |J
00
| = m� 1, then we are sure that |J | = n� 1 since there is only 1 share of (c01, . . . , c

0
m)

missing from J
00. And since we can perfectly simulate J

00 then we can also perfectly simulate J

like before.
This proves that we can choose a set J of n� 1 output shares on Gcompress using probes on the
internal gadget Grefresh such that W and J can be perfectly simulated from input shares in I

such that |I|  |W
0
|+ |J

0
|  |W | for any |W |  2d� 1. This concludes the proof for the second

point of comp-TRPE on gadget Gcompress.

Thus, we proved that Gcompress from Algorithm 1 is (t, f)-STRPE2. This concludes the proof
for Lemma 5. ⇤

A.11 Proof of Lemma 7

Proof. Let t  n� 1 where n is the number of shares such that (n, t) 6= (2k+1, b
n� 1

2
c) for k 2 N

(i.e n is even or t 6= b
n� 1

2
c), and let d = min(t + 1, n � t). We will prove that if both matrices

� and � satisfy Condition 2, then Gsubmult from Lemma 7 is (d�1)-NI and (d�1, 2d�1)-partial NI.

Proof for (d� 1)-NI:

If the matrices � and � satisfy Condition 2, then they also sastisfy Condition 1, since Condition 2
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is stronger. Then, in [8], the authors prove that we have that if � and � satisfy Condition 1, then
the gadget Gsubmult is (n� 1)-NI. In addition, if Gsubmult is (n� 1)-NI, then in particular it is also
(d � 1)-NI for any t  n � 1 and d = min(t + 1, n � t). This implies that if the matrices satisfy
Condition 2, then the gadget Gsubmult is (d � 1)-NI thanks to the proof from [8]. This concludes
the proof for the first point of Lemma 7.

Proof for (d� 1, 2d� 1)-partial NI:

We need to prove that Gsubmult is (d � 1, 2d � 1)-partial NI where d = min(t + 1, n � t). In other
words, we need to consider a set of probes W of size |W |  2d � 1  n � 1 and show that W can
be simulated from inputs shares Ia and Ib such that |Ia|  d � 1 or |Ib|  d � 1. For this, we will
split the set W into 3 distinct subsets W = W1 [W2 [W3 with respect to the form of the probes
in W . In fact, The authors from [8] show that Gsubmult is (n� 1)-NI if the matrices � and � satisfy
certain conditions. In fact, all of the probes on the sub-gadget Gsubmult are of a form in one of the
following sets:

Set 1: a1, ai, ri, ri + ai, �j�1,i�1ri, �j�1,i�1ri + ai (for 2  i  n and 2  j  n)
Set 2: a1 +

P
k

i=2(ri + ai) (for 2  k  n)
Set 3: a1 +

P
k

i=2(�j�1,i�1ri + ai) (for 2  j  n and 2  k  n)
Set 4: b1, bi, si, si + bi, �j�1,i�1si, �j�1,i�1si + bi (for 2  i  n and 2  j  n)
Set 5: b1 +

P
k

i=2(si + bi) (for 2  k  n)
Set 6: b1 +

P
k

i=2(�j�1,i�1si + bi) (for 2  j  n and 2  k  n)
Set 7: �ri ⇥ (b1 +

P
n

j=2(�i�1,j�1sj + bj)) (for 2  i  n)
Set 8: �si ⇥ (a1 +

P
n

j=2(�i�1,j�1rj + aj)) (for 2  i  n)
Set 9: (a1 +

P
n

i=2(ri + ai))⇥ (b1 +
P

n

i=2(si + bi))

The matrix � would be related to probes of the form 1,2 and 3, while the matrix � is directly related
to probes of the form 4,5 and 6.
So we split the set W into W = W1 [W2 [W3 with respect to the form of each probe as follows:

– W1 contains probes of the forms in the sets 1, 2 and 3.
– W2 contains probes of the forms in the sets 4, 5 and 6.
– W3 contains probes of the forms in the sets 7, 8 and 9.

This split means that the set W1 only contains probes involving the input shares of a and the
randoms ri, while W2 only contains probes involving the input shares of b and the randoms si. W3

contains products of both of the probes of W1 and W2.
Next, we will construct two subsets of probes Wa and Wb from the set W and prove that we can
simulate all probes in W from Wa and Wb. In other terms, we start with Wa = W1 and Wb = W2.

Suppose first that W3 = ;. Then we consider the sets Wa = W1 and Wb = W2 as before.
Suppose that to simulate Wa, we need sets of input shares Ia such that |Ia| � d, and let M be the
number of probes of the form in sets 2 and 3 in the set of probes Wa. Then from condition 2 on
matrix � we know that |Ia|  |Wa| �M  |Wa| (because |Wa|  2d � 1  n � 1 since t  n � 1

such that
⇣
(n = 2k) _ (t 6=

n� 1

2
)
⌘
), then in order to have |Ia| � d, we must have:

d  |Ia|  |Wa|

Hence, since |W |  2d� 1, then we must have |Wb|  d� 1 (because |Wa| + |Wb|  2d� 1), then
from condition 2 on matrix �, we can perfectly simulate Wb from Ib such that |Ib|  |Wb| �M

0
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|Wb|  d� 1 where M
0 is the number of probes of the form in sets 5 and 6 in the set of probes Wb.

Thus we showed that we can perfectly simulate W with |W |  2d � 1  n � 1 from Wa and Wb

using Ia and Ib such that if |Ia| � d, then |Ib|  d� 1, so we have |Ia|  d� 1 or |Ib|  d� 1. This
concludes the proof in the case where W3 = ;.

Next, we suppose that W3 6= ; so there is at least one probe of one of the sets 7, 8 or 9 in W3.
We construct sets Wa and Wb as before starting with Wa = W1 and Wb = W2, and for each probe
in W3:

– If the probe is of the form �ri ⇥ (b1 +
P

n

j=2(�i�1,j�1sj + bj)), then we do Wa = Wa [ {�ri},

Wb = Wb [ {(b1 +
P

n

j=2(�i�1,j�1sj + bj))}. We denote the set of these probes in W3 as W 7
3 .

– If the probe is of the form �si ⇥ (a1 +
P

n

j=2(�i�1,j�1rj + aj)), then we do Wa = Wa [ {(a1 +P
n

j=2(�i�1,j�1rj + aj))}, Wb = Wb [ {�si}. We denote the set of these probes in W3 as W 8
3 .

– if the probe is of the form (a1 +
P

n

i=2(ri + ai)) ⇥ (b1 +
P

n

i=2(si + bi)), then we do Wa =
Wa [ {(a1 +

P
n

i=2(ri + ai))}, Wb = Wb [ {(b1 +
P

n

i=2(si + bi))}. We denote the set of these
probes in W3 as W 9

3 .

Suppose that in order to simulate Wa, we need the set Ia such that |Ia| � d. In addition, since

|Wa|  |W |  2d�1  n�1 (because t  n�1 such that
⇣
(n = 2k)_ (t 6=

n� 1

2
)
⌘
), then we know

from condition 2 on � that Wa can be perfectly simulated from Ia such that |Ia|  |Wa|�M where
M is the number of probes in Wa of the form (a1 +

P
n

j=2(�i�1,j�1rj + aj)) or (a1 +
P

n

i=2(ri + ai)).

Then, since probes in the sets W
8
3 and W

9
3 add to Wa probes of these forms, then we have |Ia| 

|Wa|� |W
8
3 |� |W

9
3 |. Hence, in order to have |Ia| � d, we must have

d  |Ia|  |Wa|� |W
8
3 |� |W

9
3 |  |W1|+ |W

7
3 |

Similarly, suppose that to simulate Wb we need |Ib| � d, then we also must have

d  |Ib|  |Wb|� |W
7
3 |� |W

9
3 |  |W2|+ |W

8
3 |

Hence, in order to have |Ia| � d and |Ib| � d at the same time, we must have

2d  |Ia|+ |Ib|  |W1|+ |W
7
3 |+ |W2|+ |W

8
3 |  |W |

which holds a contradiction with the fact that |W |  2d � 1. Hence, we cannot have at the same
time |Ia| � d and |Ib| � d. So Gsubmult is (d� 1, 2d� 1)-partial NI in the case where W3 6= ;.
Hence, we conclude that Gsubmult is (d � 1, 2d � 1)-partial NI after proving the property in both
cases W3 = ; and W3 6= ;.

We conclude that Gsubmult satisfies both (d�1)-NI and (d�1, 2d�1)-partial NI, which conludes
the proof for Lemma 7. ⇤

A.12 Proof of Proposition 1

We consider the following matrices

L =
⇥
In 0n⇥n In In . . . In Tn Tn . . . Tn

⇤

M =
⇥
0n⇥n In In D�,1 . . . D�,n Tn T�,1 . . . T�,n

⇤
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The matrices L andM have z = (2n+4)·n columns. We want to lower-bound the probability, for
� picked uniformly at random in Fn⇥n

q , that for any vector v 2 Fz
q of Hamming weight hw(v)  n,

and for any i1, . . . , iK 2 [z] such that vi1 6= 0, . . . , viK 6= 0 and the corresponding columns i1, . . . , iK
in L and in M have no zero coe�cient (i.e there are K probes of the form

P
n

i=1(ri + ai) orP
n

j=1(�i,jrj + aj) for any i = 1, . . . , n), if M.v = 0, then we have hw(L.v)  hw(v)�K.
For any set I ✓ {1, . . . , z}, we denote by LI the n⇥ |I| submatrix of L obtained by only keeping

the columns in L whose indices are in I and MI is the n ⇥ |I| submatrix of M obtained by only
keeping the columns in M whose indices are in I. We will lower-bound the probability that for
any set I ✓ {1, . . . , z} of cardinal n and any vector v 2 Fn

q , if hw(LI · v) � hw(v) �K + 1 then
MI · v 6= 0n.

We consider di↵erent cases (in order of increasing generality) which depend on the columns
selected with the set I:

1. I ✓ {(n + 4) · n + 1, . . . , z}, i.e., all columns in MI are taken from the matrices T�,i for
i 2 {1, . . . , n};

2. I ✓ {(n+3) ·n+1, . . . , z}, i.e., all columns in MI are taken from the matrix Tn or the matrices
T�,i for i 2 {1, . . . , n};

3. I ✓ {1, . . . , n + 1} [ {(n + 3) · n + 1, . . . , z}, i.e., all columns in MI are taken from the null
vectors, from the matrix Tn or the matrices T�,i for i 2 {1, . . . , n};

4. I ✓ {1, . . . , z}, i.e., the columns in MI can be taken arbitrarily.

Case 1. In order to analyze the probability in the first case, we recall the definition of a probability
distribution on structured matrices introduced in [8]. In this distribution of structured matrices, a
number of elements with known location are identically zero, and remaining elements are chosen
uniformly at random independently of each other.

Definition 13. Let n and m be two positive integers. Let ↵ = (↵1, . . . ,↵m) be a non-decreasing
finite sequence with 1  ↵1  ↵2  · · ·  ↵m  n.

– A matrix ⇥ = (✓i,j) 2 Fn⇥m
q is called a progressive patterned matrix with pattern ↵ if ✓i,j = 0

for all j 2 {1, . . . ,m} and all i /2 {↵j�1 + 1, . . . ,↵j} (where ↵0 = 0).
– The unitary progressive patterned matrix ⌥↵ = (ui,j) 2 Fn⇥m

q with pattern ↵ is defined by
ui,j = 0 for all j 2 {1, . . . ,m} and all i /2 {↵j�1 + 1, . . . ,↵j} and ui,j = 1 for all j 2 {1, . . . ,m}

and all i 2 {↵j�1 + 1, . . . ,↵j}.
– The distribution D↵ is the probability distribution on random progressive patterned matrix

S↵ = (si,j) 2 Fn⇥m
q whose elements si,j for (i, j) 2 {1, . . . , n}⇥{1, . . . ,m} are sampled uniformly

at random and independently according to:

Pr[si,j = s] =

8
><

>:

1 if s = 0 and ui,j = 0

0 if s 6= 0 and ui,j = 0

q
�1 for all s 2 Fq if ui,j = 1

where ⌥↵ = (ui,j) 2 Fn⇥m
q is the unitary progressive patterned matrix with pattern ↵.

A matrix ⇥ is thus a progressive patterned matrix with pattern ↵ = (↵1, . . . ,↵m) if it is of the
form described in Figure 5 where the symbol ? denotes an arbitrary value in Fq. For the unitary
progressive patterned matrix ⌥↵, this symbol ? is replaced by a 1 and for a random progressive
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patterned matrix S↵ each symbol ? is replaced by a value picked uniformly and independently
at random in Fq. Note that such a matrix can contain a null column (when ↵i = ↵i+1 for some
i 2 {1, . . . ,m� 1}).
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Fig. 5: Form of a progressive patterned matrix with pattern ↵ = (↵1, . . . ,↵m)

Beläıd et al. [8] also defined more generally block column matrices formed of progressive pat-
terned matrices.

Definition 14. Let n,m, t be three positive integers. Let m1, . . . ,mt be positive integers such that

m1+ · · ·+mt = m and let ↵(i) = (↵(i)
1 , . . . ,↵

(i)
mi

) be a non-decreasing finite sequence with 1  ↵
(i)
1 

↵
(i)
2  · · ·  ↵

(i)
mi
 n for all i 2 {1, . . . , t}. We suppose that there exists at least one j 2 {1, . . . , t}

such that ↵(j)
mj

= n.

– A matrix ⇥ 2 Fn⇥m
q is called a block progressive patterned matrix with pattern (↵(1)

, . . . ,↵(t))

if there exist progressive patterned matrices ⇥(i)
2 Fn⇥mi

q with pattern ↵(i) for all i 2 {1, . . . , t}

such that ⇥ = (⇥(1)
| . . . |⇥

(t)).
– The block unitary progressive patterned matrix ⌥↵(1),...,↵(t) 2 Fn⇥m

q with pattern (↵(1)
, . . . ,↵(t))

is ⌥↵(1),...,↵(t) = (⌥↵(1) | . . . |⌥↵(t)).
– The distribution D↵(1),...,↵(t) is the probability distribution on block random progressive pat-

terned matrix in Fn⇥m
q defined by

D↵(1),...,↵(t) = (D↵(1) | . . . |D↵(t)).

The main ingredient of the proof of Proposition 1 is the following technical lemma:

Lemma 11. Let n,m, t be three positive integers with m � n and let ↵(i) for i 2 {1, . . . , t} be
patterns for block progressive patterned matrix as in Definition 14. For a block random progressive
patterned matrix S drawn following the distribution D↵(1),...,↵(t), there exists a linear subspace of
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Fm
q of dimension m � n that contains {v 2 Fm

q s.t. hw(v) = m and Sv = 0}, with probability at
least 1�mq

�1.

Proof (Lemma 11). We will prove this lemma by induction on m.
For m = 1, since m � n � 1, Definition 14 implies that the matrix S consists simply in a single

entry s1,1 which is picked uniformly at random in Fq and this entry is null with probability q
�1.

The set {v 2 Fq s.t. hw(v) = 1 and S · v = 0} is therefore the empty set with probability at least
1� q

�1 and it is thus included in the subspace of dimension 0 with probability at least 1� q
�1.

We now consider m � 2 and we suppose Lemma 11 proven for all block random progressive
patterned matrix with strictly less than m columns.

We first assume that the matrix ⌥↵(1),...,↵(t) 2 Fn⇥m
q is the matrix of ones Un⇥m (i.e., does not

contain any zero). Then S is simply a matrix drawn from Fn⇥m
q with the uniform distribution.

It is well known that the number of full-rank n⇥m matrices over Fq (with m � n) is:

(qm � 1)(qm � q) · · · (qm � q
n�1)

and the probability that S is of full rank is thus equal to:

(1� q
�m)(1� q

�m+1) . . . (1� q
�m+n�1)

which is greater than

1�
mX

i=m�n+1

q
�i
� 1�

1X

i=m�n+1

q
�i = 1�

1

q�m+n�1(1� 1/q)
� 1� 2qn�m�1

.

The subspace {v 2 Fm
q s.t. S · v = 0} is therefore included in a linear subspace of dimension m� n

with probability at least 1� 2qn�m�1 and the result follows (since m � 2).

We now assume that the matrix ⌥↵(1),...,↵(t) 2 Fn⇥m
q contains some 0. By assumption, there

exists some j 2 {1, . . . , t} such that ↵(j)
mj

= n.

1. We first assume that mj > 1 (i.e. that the column of index m1+ · · ·+mj consists in ↵
(j)
mj�1 � 1

zeroes followed by ↵
(j)
mj
�↵

(j)
mj�1 = n�↵

(j)
mj�1 � 1 ones, see Figure 6). We consider the submatrix

of ⌥↵(1),...,↵(t) 2 Fn⇥m
q obtained by deleting the column of index m1 + · · ·+mj and the rows of

indices in the set {↵(j)
mj�1 + 1, . . . ,↵(j)

mj
}.

It is easy to see that this submatrix is a block unitary progressive patterned matrix with
n
0
 n� 1 rows and m� 1 columns, where some columns may possibly contain only zeroes (see

Figure 6). We can thus apply the induction hypothesis to the submatrix S
0 of S obtained by

deleting the same column and the same rows.
By induction hypothesis, we know that with probability at least 1� (m� 1)q�1, there exists a
linear subspace V 0

✓ Fm�1
q of dimension m�1�n0 that contains the set {v 2 Fm�1

q s.t. hw(v) =
m� 1 and S

0
· v = 0}.

If V 0 is of dimension 0, then {v 2 Fm�1
q s.t. hw(v) = m � 1 and S

0
· v = 0} ✓ {0m�1} and

this set is thus the empty set. We then have {v 2 Fm
q , hw(v) = m and S · v = 0} = ; with

probability at least 1 � (m � 1)q�1
� 1 � mq

�1, and so there exists a linear subspace V of
dimension m� n that contains this set.
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Fig. 6: Example of a matrix ⌥↵(1),...,↵(t) 2 Fn⇥m
q . The column and the rows highlighted in red are

deleted in order to apply the induction hypothesis.

If V 0 is of dimension m� 1� n
0
> 0, we can assume without loss of generality that the column

of S deleted to obtain S
0 was the last one (by permuting the blocks of the matrix). We have the

following block-decomposition of S

S =

✓
S
0
0n0⇥1

S
00

u

◆

where S00 is a (n�n
0)⇥ (m� 1) matrix and u a column vector of dimension (n�n

0). Note that
u is a random vector in Fn�n

0

q independent from S
0 and S

00. Let v 2 Fm
q such that hw(v) = m

and Sv = 0.

We write v =

✓
w
⌧

◆
where w 2 Fm�1

q and ⌧ 2 Fq is a scalar. We have hw(w) = m � 1 and

S
0w = 0, and therefore w 2 V

0. Since ⌧ 6= 0 by assumption, the vector u thus belongs to the
image W of V 0 by S

00 (with probability at least 1 � (m � 1)q�1). Moreover, W has dimension
at most max(m� 1� n

0
, n� n

0).

– If W is of dimension at most n � n
0
� 1, since u is independent of S0 and S

00 (and thus
of W ), u belongs to W with probability at most q

�1. Therefore, with probability at least
(1� q

�1) · (1� (m� 1)q�1) � 1�mq
�1, {v 2 Fm

q s.t. hw(v) = m and Sv = 0} = ;.

– If W is of dimension n�n
0, with probability 1�q

�(n�n
0)
� 1�q

�1 , we have u 6= 0(n�n0)⇥1

and we can construct a basis u1 = u, . . . , un�n0 of W .

All subspaces V 0
\ S

00�1(huii) are of dimension at least one and we have

V
0 =

n�n
0M

i=1

V
0
\ S

00�1(huii).

50



Therefore the linear subspace V defined as V = V
0
\ S

00�1(hu1i) satisfies

dim(V ) = dim(V 0)�
n�n

0X

i=2

dim
⇣
V

0
\ S

00�1(huii)
⌘

 m� 1� n
0
� (n� n

0
� 1)

= m� n.

Moreover, we have {v 2 Fm
q s.t. hw(v) = m and Sv = 0} ✓ V and since this occurs with

probability at least (1� q
�1)(1� (m� 1)q�1) � 1�mq

�1, the result follows.

2. We now assume that mi = 1 for all i such that ↵(i)
mi

= n (i.e. that all the columns with a one in
the last row consists only of ones, see Figure 7). Since the matrix ⌥↵(1),...,↵(t) 2 Fn⇥m

q contains
some 0, there exists some j 2 {1, . . . , t} such that mj > 1 and we consider such a j 2 {1, . . . , t}

for which ↵
(j)
1 is minimal (see Figure 7).

We consider the submatrix of ⌥↵(1),...,↵(t) 2 Fn⇥m
q obtained by deleting the column of index

m1 + · · · +mj�1 + 1 and the rows of indices in the set {1, . . . ,↵(j)
1 � 1}. It is easy to see that

this submatrix is a block unitary progressive patterned matrix with n
0
 n� 1 rows and m� 1

columns (see Figure 7). We can thus apply the induction hypothesis to the submatrix S
0 of S

obtained by deleting the same column and the same rows.
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Fig. 7: Example of a matrix ⌥↵(1),...,↵(t) 2 Fn⇥m
q . The column and the rows highlighted in red are

deleted in order to apply the induction hypothesis.

We know that with probability at least 1�(m�1)q�1, there exists a linear subspace V 0
✓ Fm�1

q

of dimension m� 1� n
0 that contains the set {v 2 Fm�1

q s.t. hw(v) = m� 1 and S
0v = 0}.

If V 0 is of dimension 0, then {v 2 Fm�1
q s.t. hw(v) = m� 1 and S

0v = 0} ✓ {0} and this set is
thus the empty set. We then have {v 2 Fm

q , hw(v) = m and Sv = 0} = ; with probability at
least 1� (m� 1)q�1

� 1�mq
�1, and so there exists a linear subspace V of dimension m� n

that contains this set.
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If V 0 is of dimension m� 1� n
0
> 0, we can assume without loss of generality that the column

of S deleted to obtain S
0 was the last one (by permuting the blocks of the matrix). We have the

following block-decomposition of S

S =

✓
S
00

u

S
0
0n0⇥1

◆

where S00 is a (n�n
0)⇥ (m� 1) matrix and u a column vector of dimension (n�n

0). Note that
u is a random vector in Fn�n

0

q independent from S
0 and S

00. Let v 2 Fm
q such that hw(v) = m

and Sv = 0.

We write v =

✓
⌧

w

◆
where w 2 Fm�1

q and ⌧ 2 Fq is a scalar. We have hw(w) = m � 1 and

S
0w = 0, and therefore w 2 V

0. Since ⌧ 6= 0 by assumption, the vector u thus belongs to the
image W of V 0 by S

00 (with probability at least 1 � (m � 1)q�1). Moreover, W has dimension
at most max(m� 1� n

0
, n� n

0).
– If W is of dimension at most n � n

0
� 1, since u is independent of S0 and S

00 (and thus
of W ), u belongs to W with probability at most q

�1. Therefore, with probability at least
(1� q

�1) · (1� (m� 1)q�1) � 1�mq
�1, {v 2 Fm

q s.t. hw(v) = m and Sv = 0} = ;.

– If W is of dimension n� n
0 then S

00 is invertible. With probability 1� q
�(n�n

0)
� 1� q

�1 ,
we have u 6= 0(n�n0)⇥1 and we can construct a basis u1 = u, . . . , un�n0 of W .

All subspaces V 0
\ S

00�1(huii) are of dimension at least one and we have

V
0 =

n�n
0M

i=1

V
0
\ S

00�1(huii).

Therefore the linear subspace V defined as V = V
0
\ S

00�1(hu1i) satisfies

dim(V ) = dim(V 0)�
n�n

0X

i=2

dim
⇣
V

0
\ S

00�1(huii)
⌘

 m� 1� n
0
� (n� n

0
� 1)

= m� n.

Moreover, we have {v 2 Fm
q s.t. hw(v) = m and Sv = 0} ✓ V and since this occurs with

probability at least (1� q
�1)(1� (m� 1)q�1) � 1�mq

�1, the result follows.

This concludes the proof of Lemma 11.

Recall that we want to lower-bound the probability over the � 2 Fn⇥n
q , that for a given set

I ✓ {(n + 4) · n + 1, . . . , z} of cardinal n, if hw(LI · v) � n �K then MI · v 6= 0n for any vector
v 2 Fn

q . where K denotes the number of coordinates i1, . . . , iK 2 [z] such that vi1 6= 0, . . . , viK 6= 0
and the corresponding columns i1, . . . , iK in L and in M have no zero coe�cient.

Remark that the non-zero coe�cients in the lower block of LI and in MI are at the same
positions. If K = 0, then the matrices MI and LI have a null row. In this case, we have readily
hw(LI · v)  n� 1 = n�K � 1 < n�K).

If K � 1, then the matrices MI and LI does not have a null row. The matrix MI (up to
some permutation of its columns) can be written as a block matrix where each block is of the form
described in Figure 8 (on the left).
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Fig. 8: Blocks appearing in matrices MI and M̃I

From this matrix, one can construct another matrix M̃I such that in each block, one substract
each column to the following columns (i.e., one substract iteratively the i-th column to the columns
of index in {i+ 1, . . . ,m} for i 2 {1, . . . ,m}). The blocks appearing in the matrix M̃I are given in
Figure 8 (on the right). Since we apply only elementary operations on the columns, if there exists
a vector v 2 Fn

q such that MIv = 0 then, there exists a vector v0
2 Fn

q such that M̃Iv0 = 0.
Since MI has no null row, we have ↵m = n in one of this block (with the notation from Figure 8)

and the matrix M̃I is thus a block random progressive patterned matrix as defined in Definition 14.
By Lemma 11, for each non-empty subset J of the n columns of M̃I , the probability over � that
there exists a vector v0

2 Fn
q with support J (i.e., set of non-zero coordinates) such that M̃Iv0 = 0

is upper bounded by n · q
�1. By the union bound over all supports, the probability over � that

there exists a vector v0
2 Fn

q such that M̃Iv0 = 0 is thus upper-bounded by 2n · n · q
�1.

For the sets I ✓ {(n+ 4) · n+ 1, . . . , z} of cardinal n, we have proved that with probability at
least 1� 2n · n · q

�1 (over the choice of � 2 Fn⇥n
q ), we have hw(LI · v) < n�K or MI · v 6= 0n for

any vector v 2 Fn
q .

Case 2. We now consider matrices MI were all columns are taken from the matrix Tn or the ma-
trices T�,i for i 2 {1, . . . , n} (i.e., I ✓ {(n+3) ·n+1, . . . , z}). With the notation from Definition 14,
we consider the modified distribution D̃↵(1),...,↵(t) defined as the following probability distribution
in Fn⇥m

q :

D̃↵(1),...,↵(t) = (⌥↵(1) |D↵(2),...,↵(t)) = (⌥↵(1) |D↵(2) | . . . |D↵(t))

(i.e., in which the first block is a fixed unitary progressive patterned matrix instead of being a
random progressive patterned matrix). We can easily extend Lemma 11 to this distribution:

Lemma 12. Let n,m, t be three positive integers with m � n and let ↵(i) for i 2 {1, . . . , t} be
patterns for block progressive patterned matrix as in Definition 14. For a block random progressive
patterned matrix matrix S drawn following the distribution D̃↵(1),...,↵(t), there exists a linear subspace
of Fm

q of dimension m� n that contains {v 2 Fm
q s.t. hw(v) = m and Sv = 0}, with probability at

least 1�mq
�1.
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Proof (Lemma 12). We will prove Lemma 12 by induction on m.
For m = 1, since m � n � 1, Definition 14 implies that the the matrix S either (1) consists

simply in a single entry s1,1 which is picked uniformly at random in Fq or (2) a constant non-
null vector. In the first case, this vector is null with probability q

�1 and in all cases the set {v 2
Fq s.t. hw(v) = 1 and Sv = 0} is therefore the empty set with probability at least 1 � q

�1. It is
thus included in the subspace of dimension 0 with probability at least 1� q

�1.
We now consider m � 2 and we assume Lemma 12 proven for all block random progressive

patterned matrix matrix drawn from a distribution D̃↵(1),...,↵(t) with strictly less than m columns.
We first assume that the matrix ⌥↵(1),...,↵(t) 2 Fn⇥m

q is the unitary matrix Un⇥m (i.e., does not

contain any zero). Then, by assumption, we have mi = 1 and ↵
(i) = n for i 2 {1, . . . , t}. The matrix

S is thus the concatenation of the vector 1n⇥1 and a matrix picked from Fn⇥m�1
q with the uniform

distribution. Using elementary operations on the columns of S, one can obtain a matrix of the form

✓
1 01⇥m�1

un�1 S
0

◆

where un�1 2 Fn�1
q is the all-one vector and S

0 is a matrix drawn from Fn�1⇥m�1
q with the uniform

distribution. As in the proof of Lemma 11, the matrix S
0 is of full rank n � 1 with probability at

least 1 � 2qn�m�2. The matrix S is thus of full rank n with probability at least 1 � 2qn�m�2 and
thus with probability at least 1�mq

�1.
We now assume that the matrix ⌥↵(1),...,↵(t) 2 Fn⇥m

q contains some 0. By assumption, there

exists j 2 {1, . . . , t} such that ↵(j)
mj

= n and in the following, it there exist two indices j 2 {1, . . . , t}

such that ↵(j)
mj

= n, we select one such index di↵erent from 1.

If j = 1, by assumption we have ↵
(i)
mi

< n for all i 2 {2, . . . , t} and the last row of the
matrix S has one coordinate equal to 1 and all other coordinates equal to 0. If v 2 Fq is of full
Hamming weight hw(v) = m, the last coordinate of the vector Sv is always non-null and the set
{v 2 Fq s.t. hw(v) = m and Sv = 0} is therefore the empty set. It is thus included in the subspace
of dimension 0 with probability at least 1 � 1�mq

�1. We therefore now assume that j > 1.

1. We first assume that mj > 1 (i.e. that the column of index m1+ · · ·+mj consists in ↵
(j)
mj�1 � 1

zeroes followed by ↵
(j)
mj
� ↵

(j)
mj�1 = n� ↵

(j)
mj�1 � 1 ones).

We consider the submatrix of ⌥↵(1),...,↵(t) 2 Fn⇥m
q obtained by deleting the column of index

m1 + · · · + mj and the rows of indices i in {↵
(j)
mj�1+1, . . . ,↵

(j)
mj

}. This submatrix is a block

unitary progressive patterned matrix with n
0
 n rows and m� 1 columns. We can thus apply

the induction hypothesis to the submatrix S
0 of S obtained by deleting the same column and

the same rows. We know that with probability 1� (m� 1)q�1, there exist a linear subspace V
0

of dimension m� 1� n
0 that contains the set {v 2 Fm�1

q s.t. hw(v) = m� 1 and S
0v = 0}.

If V 0 is of dimension 0, then {v 2 Fm�1
q s.t. hw(v) = m � 1 and S

0v = 0} ✓ {0} and the set
is the empty set. We thus have {v 2 Fm

q , hw(v) = m and Sv = 0} = ; and with probability
1� (m� 1)q�1

� 1�mq
�1, there exist a linear subspace V of dimension m� n that contains

this set.
If V 0 is of dimension m� 1� n

0
> 0, we can assume without loss of generality that the deleted

column of S to obtain S
0 was the last one in the last block (i.e., in a block where S is a random

progressive patterned matrix since j > 1).
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By permuting some rows and columns, we can write

S =

✓
S
0
0n0⇥1

S
00

u

◆

where S
0 is a (n � n

0) ⇥m � 1 matrix on which we can apply the induction hypothesis (since
mj > 1). Let v 2 Fm

q such that hw(v) = m and Sv = 0.

We write v =

✓
w
⌧

◆
where w 2 Fm�1

q and ⌧ 2 Fq is a scalar. We have hw(w) = m � 1 and

S
0w = 0, and therefore w 2 V

0. Since ⌧ 6= 0 by assumption, the vector u thus belongs to
the image W of V 0 by S

00 (with probability at least 1 � (m � 1)q�1). Since j > 1, note that
u is a random vector in Fn�n

0

q independent from S
0. We can then conclude as in the proof of

Lemma 11.
2. We now assume that mi = 1 for all i such that ↵

(i)
mi

= n for i 2 {1, . . . , t} (i.e. that all the
columns with a one in the last row consists only of ones).
Since the matrix ⌥↵(1),...,↵(t) 2 Fn⇥m

q contains some 0, there exists some j 2 {2, . . . , t} such

that mj > 1 and we consider such a j 2 {2, . . . , t} for which ↵
(j)
1 is minimal.

We consider the submatrix of ⌥↵(1),...,↵(t) 2 Fn⇥m
q obtained by deleting the column of index

m1 + · · · +mj�1 + 1 and the rows of indices in the set {1, . . . ,↵(j)
1 � 1}. It is easy to see that

this submatrix is a block unitary progressive patterned matrix with n
0
 n� 1 rows and m� 1

columns. We can thus apply the induction hypothesis to the submatrix S
0 of S obtained by

deleting the same column and the same rows.

We write v =

✓
w
⌧

◆
where w 2 Fm�1

q and ⌧ 2 Fq is a scalar. We have hw(w) = m � 1 and

S
0w = 0, and therefore w 2 V

0. Since ⌧ 6= 0 by assumption, the vector u thus belongs to
the image W of V 0 by S

00 (with probability at least 1 � (m � 1)q�1). Since j > 1, note that
u is a random vector in Fn�n

0

q independent from S
0. We can then conclude as in the proof of

Lemma 11.
We know that with probability at least 1�(m�1)q�1, there exists a linear subspace V 0

✓ Fm�1
q

of dimension m� 1� n
0 that contains the set {v 2 Fm�1

q s.t. hw(v) = m� 1 and S
0v = 0}.

If V 0 is of dimension 0, then {v 2 Fm�1
q s.t. hw(v) = m� 1 and S

0v = 0} ✓ {0} and this set is
thus the empty set. We then have {v 2 Fm

q , hw(v) = m and Sv = 0} = ; with probability at
least 1� (m� 1)q�1

� 1�mq
�1, and so there exists a linear subspace V of dimension m� n

that contains this set.
If V 0 is of dimension m� 1� n

0
> 0, we can assume without loss of generality that the column

of S deleted to obtain S
0 was the last one (by permuting the blocks of the matrix). We have the

following block-decomposition of S

S =

✓
S
00

u

S
0
0n0⇥1

◆

where S00 is a (n�n
0)⇥ (m� 1) matrix and u a column vector of dimension (n�n

0). Note that
u is a random vector in Fn�n

0

q independent from S
0 and S

00. Let v 2 Fm
q such that hw(v) = m

and Sv = 0. Since j > 1, note that u is a random vector in Fn�n
0

q independent from S
0. We can

then conclude as in the proof of Lemma 11.

This concludes the proof of the lemma. ut

55



Using the same arguments as above for Case 1 (but replacing Lemma 11 by Lemma 12), we
obtain that for any set I ✓ {1, . . . , z} of cardinal n such that MI has no identically zero column
vectors, with probability at least 1� 2n · n · q

�1 over the choice of �, we have hw(LI · v) < n�K

or MI · v 6= 0n for any vector v 2 Fn
q (where K denotes the number of coordinates i1, . . . , iK 2 [z]

such that vi1 6= 0, . . . , viK 6= 0 and the corresponding columns i1, . . . , iK in L and in M have no
zero coe�cient). .

Case 3. We now consider the sets I ✓ {1, . . . , n}[{(n+3) ·n+1, . . . , z} of cardinal n for which MI

has some identically zero column vectors (i.e., I \ {1, . . . , n} 6= ;). For each i 2 I \ {1, . . . , n} 6= ;,
the i-th column in L is the i-th vector in the canonical basis of Fn

q (i.e., it corresponds to a
probe of a value ai). We can consider the submatrix of MI and LI in which we delete for each
i 2 I \ {1, . . . , n} 6= ;, the i-th column and the i-th row. We denote ⇢ = #I \ {1, . . . , n} 6= ;.

Let us denote M
0
I
and L

0
I
the corresponding matrices (with m

0 = m � ⇢ columns). These
matrices are of the form handled in the previous Case 2 (with m

0
< m). The previous argument

shows therefore that with probability at least 1 � 2n · n · q
�1, we have hw(L0

I
· v) < n � ⇢ �K or

M
0
I
· v 6= 0n for any vector v 2 Fm

0

q (where K denotes the number of coordinates i1, . . . , iK 2 [z]
such that vi1 6= 0, . . . , viK 6= 0 and the corresponding columns i1, . . . , iK in L and in M have no
zero coe�cient).

Going back to the original matrices LI and MI we have shown for any set I ✓ {1, . . . , n}[{(n+
3) ·n+1, . . . , z} of cardinal n, with probability at least 1� 2n ·n · q

�1 over the choice of �, we have
hw(LI · v) < n�K or MI · v 6= 0n for any vector v 2 Fn

q (indeed a vector v satisfies MI · v = 0n

if an only if M0
I
· v0 = 0n where v0 denotes the restriction of v to the support I \ {1, . . . , n} and

the Hamming weight of hw(LI · v) is at smaller than hw(LI · v0) + ⇢ since at most ⇢ positions can
be set arbitrarily..

Case 4. We now consider all sets I ✓ {1, . . . , z} (with no restrictions). Without loss of generality,
we can assume that all not identically zero column vectors in MI are pairwise distinct. Indeed,
if two columns are equal, they come either from the two submatrices In of M, or from the first
column vectors of a submatrix In and the submatrix Tn, or from the first column vectors of a
submatrix D�,i for some i 2 {1, . . . , n} and the corresponding submatrix T�,i. In all these cases,
one can replace the index of the second vector in I by an index in {1, . . . , n� 1} (and modify the
vector accordingly ) in such a way that MI0 for the new set I

0 has a new null column vector for
each duplicate in the original matrix MI .

We can now delete the columns corresponding to the null vectors as in Case 3 (i.e., for each
i 2 I \ {1, . . . , n + 1} 6= ;, the i-th column and the i-th row in MI and LI). The only di↵erence
occurs if a column in MI is equal to the i-th vector in the canonical basis (for i � 2) or to the
scalar multiplication of this vector by some element of the matrix � 2 Fq (corresponding to the
cases I \ {n+ 1, . . . , 2n} 6= ; and I \ {2n+ 1, . . . , (n+ 3) · n+ 1} 6= ; respectively). As in Case 3,
we can delete the corresponding column and row in MI and LI (i.e., it corresponds to a probe of
a value ri, a value ai + ri or a value ai + �j,iri).

As above, if we denote M0
I
and L

0
I
the corresponding matrices (with m

0 columns and n
0
< n and

n
0+1 rows, respectively), the previous argument shows that with probability at least 1�2n ·n ·q�1,

we have hw(L0
I
·v) < n

0
�K or M0

I
·v 6= 0n for any vector v 2 Fm

0

q (where K denotes the number of
coordinates i1, . . . , iK 2 [z] such that vi1 6= 0, . . . , viK 6= 0 and the corresponding columns i1, . . . , iK
in L and in M have no zero coe�cient).
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Going back to the original matrices LI and MI we have shown for any set I ✓ {1, . . . , z} of
cardinal n, with probability at least 1�2n ·n · q�1 over the choice of �, we have hw(LI ·v) < n�K

or MI · v 6= 0n for any vector v 2 Fn
q

Conclusion . By the union on all such sets, we obtain that the probability that, for � picked
uniformly at random in Fn⇥n

q , the matrix M satisfies Condition 3, i.e., for any vector v 2 Fz
q of

Hamming weight hw(v)  n we have hw(L · v) < n�K or M · v 6= 0n is at least

1�

✓
z

n

◆
2n · n · q

�1 = 1�

✓
(2n+ 4) · n+ 1

n

◆
2n · n · q

�1
.

The binomial coe�cient in this lower-bound is always less than (6n)n (this can be checked by
hand for small values of n and it follows for large values using the classical upper-bound

�
r

s

�


((r · exp(1))/s)s). We thus obtain the claimed bounds and this concludes the proof. ⇤

A.13 Instantiations

In this paragraph, we present explicit matrices obtained following [19] that achieve our Condition 3
and can thus be used to instantiate our new multiplication gadget.

A first matrix for 3 shares can be used over the finite field F25 represented as F2[X]/(X5+X
2+1):

� =

0

@
X + 1 X X

2 + 1
X X

2 + 1 X + 1
X

2 + 1 X + 1 X

1

A

Another matrix for 3 shares (denoted in hexadecimal by evaluating each polynomial at X = 2 and
writing the result in base 16) can be used over the finite field F26 represented as F2[X]/(X6+X+1):

� =

0

@
36 30 1d

21 05 1a

35 31 1b

1

A

Another example for 4 shares can be instantiated using the following matrix (also denoted in
hexadecimal) over the (AES) finite field F28 represented as F2[X]/(X8 +X

4 +X
3 +X + 1):

� =

0

BB@

2d f5 2e 23

e1 c3 ac 30

bd f6 fa 8a

e6 4a 4d ab

1

CCA

Eventually, we present a matrix for 5 shares over the finite field F210 represented as F2[X]/(X10+
X

3 + 1):

� =

0

BBBB@

225 2a9 0d0 224 2dd

254 11b 325 3a6 219

3d2 2bc 2bf 3a2 2a1

2af 311 295 26b 11d

16c 124 158 319 0b8

1

CCCCA
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