Dynamic Random Probing Expansion with Quasi Linear
Asymptotic Complexity

Sonia Bela®t, Matthieu Rivain !, Abdul Rahman Taleb'?, and Damien Vergnaud3

! CryptoExperts, France
2 Sorbonne Université, CNRS, LIP6, F-75005 Paris, France
3 Institut Universitaire de France, France

{'sonia.belaid,matthieu.rivain,abdul.taleb } @cryptoexperts.com
4 damien.vergnaud@lip6.fr

Abstract. The masking countermeasure is widely used to protect cryptographic implementations
against side-channel attacks. While many masking schemes are shown to be secure in the widely
deployed probing model, the latter raised a number of concerns regarding its relevance in practice.
Olering the adversary the knowledge of a fixed number of intermediate variables, it does not capture
the so-called horizontal attacks which exploit the repeated manipulation of sensitive variables. There-
fore, recent works have focused on the random probing model in which each computed variable leaks
with some given probability p. This model benefits from fitting better the reality of the embedded de-
vices. In particular, Belaid, Coron, Prou!, Rivain, and Taleb (CRYPTO 2020) introduced a framework
to generate random probing circuits. Their compiler somehow extends base gadgets as soon as they sat-
isfy a notion called random probing expandability (RPE). A subsequent work from Belaid, Rivain, and
Taleb (EUROCRYPT 2021) went a step forward with tighter properties and improved complexities.
In particular, their construction reaches a complexity of O(! 3°), for a ! -bit security, while tolerating
a leakage probability of p=2' 75,

In this paper, we generalize the random probing expansion approach by considering a dynamic choice
of the base gadgets at each step in the expansion. This approach makes it possible to use gadgets with
high number of shares —which enjoy better asymptotic complexity in the expansion framework— while
still tolerating the best leakage rate usually obtained for small gadgets. We investigate strategies for
the choice of the sequence of compilers and show that it can reduce the complexity of an AES imple-
mentation by a factor 10. We also significantly improve the asymptotic complexity of the expanding
compiler by exhibiting new asymptotic gadget constructions. Specifically, we introduce RPE gadgets
for linear operations featuring a quasi-linear complexity as well as an RPE multiplication gadget with
linear number of multiplications. These new gadgets drop the complexity of the expanding compiler
from quadratic to quasi-linear.

Keywords: Random probing model, masking, side-channel security, RPE

1 Introduction

Implementations of cryptographic algorithms may be vulnerable to the powerful side-channel at-
tacks. The latter exploit the power consumption, the electromagnetic radiations or the temperature
variations of the underlying device which may carry information on the manipulated data. Entire
secrets can be recovered within a short time interval using cheap equipment.

Among the several approaches investigated by the community to counteract side-channel at-
tacks, masking is one of the most deployed in practice. Simultaneously introduced by Chari, Jutla,
Rao, and Rohatgi [12] and by Goubin and Patarin [16] in 1999, it consists in splitting the sensitive
variables into n random shares, among which any combination of: — 1 shares does not reveal any
secret information. When the shares are combined by bitwise addition, the masking is said to be
Boolean. In this setting, the linear operations can be very easily implemented by applying on each

share individually. Nevertheless, non-linear operations require additional randomness to ensure that
any set of less thann intermediate variables is still independent from the original secret.

To reason on the security of masked implementations, the community has introduced so-called
leakage models. They aim to dePne the capabilities of the attacker to formally counteract the
subsequent side-channel attacks. Among them, theprobing model introduced in 2003 by Ishai,
Sahai, and Wagner [18] is probably the most widely used. In a nutshell, it assumes that an adversary
is able to get the exact values of up to a certain number of intermediate variables. The idea is to
capture the dilculty of learning information from the combination of noisy variables. Despite
its wide use by the community [21, 20, 13,7, 14], the probing model raised a number of concerns
regarding its relevance in practice [5, 17]. It actually fails to capture the huge amount of information
resulting from the leakage of all manipulated data. As an example, it typically ignores the repeated
manipulation of identical values which would average the noise and remove uncertainty on secret
variables (see horizontal attacks [5]). Another model, thenoisy leakage model introduced by Prou"
and Rivain and inspired from [12], 0"ers an opposite trade-0". Although it captures well the reality
of embedded devices by assuming that all the data leaks with some noise, it is not convenient to
build security proofs. To get the best from both worlds, Duc, Dziembowski, and Faust proved in
2014 that a scheme secure in the probing model is also secure in the noisy leakage model [15].
Nevertheless, the reduction is not very tight in the standard probing model (considering a constant
number of probes) since the security level decreases as the size of the circuit increasés. @ secure
circuit C' in the probing model is also secure in the noisy model but loses at least a factdc’|,
where |C| is the number of operations in the circuit).

The reduction from [15] relies on an intermediate leakage model, referred to asindom probing
model. The latter benebts from a tight reduction with the noisy leakage model which becomes
independent of the size of the circuit. In a nutshell, it assumes that every wire in the circuit leaks
with some constant leakage probability. This leakage probability is somehow related to the amount
of side-channel noise in practice. A masked circuit is secure in the random probing model whenever
its random probing leakage can be simulated without knowledge of the underlying secret data with
a negligible simulation failure. In addition to the attacks already captured by the probing model,
the random probing model further encompasses the powerfutorizontal attacks which exploit the
repeated manipulations of variables in an implementation.

To the best of our knowledge, bve constructions tolerate a constant leakage probability so far [1,
4,3,9,10]. The two former ones [1, 4] use expander graphs and do not make their tolerated proba-
bility explicit. In the third construction [3], Ananth, Ishai, and Sahai develop an expansion strategy
on top of multi-party computation protocols. According to the authors of [9], their construction
tolerates a leakage probability of around 22° for a complexity of O(x82?) with respect to the se-
curity parameter «. Finally, the two more recent constructions [9, 10] follow an expansion strategy
on top of masking gadgets achieving the so-calledandom probing expandability (RPE) notion. In
a nutshell, every gate in the original circuit is replaced by a corresponding gadget for some chosen
number of shares. The operation is repeated until the desired security level is achieved. The im-
proved gadgets of [10] make it possible to tolerate of leakage probability of 2-° for a complexity
of O(k39).

Our contributions. In this paper, we push the random probing expansion strategy one step further
by analyzing a dynamic choice of the base gadgets. While the expanding compiler considered in [9,
10] consists in applying a compilerCC composed of base RPE gadgets a given number of times, say
k, to the input circuit: C = cc (), we consider a dynamic approach in which a new compiler

is selected at each step of the expansion from a family of base compilef€C; };. This approach is
motivated by the generic gadget constructions introduced in [10] which achieve the RPE property for
any number of sharesn. While the asymptotic complexity of the expanding compiler decreases with
n, the tolerated leakage probability p also gets smaller withn, which makes those constructions only
practical for small values ofn. We show that using our dynamic approach we can get the best of both
worlds: our dynamic expanding compiler enjoys the best tolerated probability as well as the best
asymptotic complexity from the underlying family of RPE compilers {CC;};. We further illustrate
how this approach can reduce the complexity of a random probing secure AES implementation by
a factor 10 using a dynamic choice of the gadgets from [10].

This prst contribution further motivates the design of asymptotic RPE gadgets achieving better
complexity. While the asymptotic constructions introduced in [10] achieve a quadratic complexity,
we introduce new constructions achieving quasi-linear complexity. We obtain this result by show-
ing that the quasi-linear refresh gadget from Battistello, Coron, Prou”, and Zeitoun [6] achieves a
strong random probing expandability (SRPE) which makes it a good building block for linear RPE
gadgets (addition, copy, multiplication by constant). We thus solve a brst issue left open in [10].
With such linear gadgets, the complexity bottleneck of the expanding compiler becomes the number
of multiplications in the multiplication gadget, which is quadratic in known RPE constructions. We
then provide a new generic construction of RPE multiplication gadget featuring a linear number of
multiplications. We obtain this construction by tweaking the probing-secure multiplication gadget
from Bela®d, Benhamouda, Passekgue, Prou", Thillard, and Vergnaud [8]. As in the original con-
struction, our RPE gadget imposes some constraint on the underlying Pnite peld. We demonstrate
that for any number of shares there exist a (possibly large) Pnite Peld on which our construction
can be instantiated and we provide some concrete instantiations for some (small) number of shares.

Using our new asymptotic gadget constructions with the dynamic expansion approach we obtain
random probing security for a leakage probability of 2-7> with asymptotic complexity of O(x?).
Moreover, assuming that the constraint on the Pnite Peld from our multiplication gadget is satisbed,
we can make this asymptotic complexity arbitrary close to O(x) which is optimal. In practice, this
means that securing circuits dePned on large Peld against random probing leakage can be achieved
at a sub-quadratic nearly-linear complexity.

2 Preliminaries

Along the paper, we shall use similar notations and formalism as [9]. In particularK shall denote
a bnite beld. For anyn € N, we shall denote {] the integer set o] = [1,n] N Z. For any tuple
x = (z1,...,2n) € K" and any set C [n], we shall denotex|, = (zi)ici. Any two probability

distributions D1 and D, are said ec-close, denoted D; = Do, if their statistical distance is upper
bounded by e, that is

SD(D3;D2) 1= 5 3" 1o, (+) ~ poy ()| < <

where pp, (-) and pp, (-) denote the probability mass functions of D1 and D».

2.1 Linear Sharing, Circuits, and Gadgets

In the following, the n-linear decoding mapping, denoted LinDec, refers to the function K" — K
debned as
LinDec: (21,...,2n) —m 21+ -+ -+ 2 ,

3

for everyn € N and (x1,...,zn) € K". We shall further consider that, for every n,¢ € N, on input
(Z1,...,2) € (K")" the n-linear decoding mapping acts as

LinDec : (71,...,7") — (LinDec(z1),.. ., LinDec(z)) .

Definition 1 (Linear Sharing). Letn,¢ € N. For any x € K, an n-linear sharing of z is a random
vector T € K" such that LinDec(Z) = z. It is said to be uniform if for any set I C [n] with |I| <n
the tuple Z|| is uniformly distributed over KI'l. A n-linear encoding is a probabilistic algorithm
LinEnc which on input a tuple © = (x1,...,2+) € K outputs a tuple T = (Z1,...,2+) € (K")" such
that Ti is a uniform n-sharing of i for every i € [4].

An arithmetic circuit on a beldK is a labeled directed acyclic graph whose edges at@res and
vertices are arithmetic gates processing operations oriK. We consider circuits composed of gates
from some baseB = {g: K — K™}, e.g., addition gates, (v1,z2) — x1 + x», multiplication gates,
(x1,x2) — x1- 22, and copy gates,z — (x, x). A randomized arithmetic circuit is equipped with an
additional random gate which outputs a fresh uniform random value ofK.

In the following, we shall call an (n-share, £-to-m) gadget, a randomized arithmetic circuit
that maps an input 2 € (K")" to an output y € (K")™ such that = LinDec(z) € K and
y = LinDec(y) € K™ satisfy y = g(x) for some function g.

Definition 2 (Circuit Compiler). A circuit compiler is a triplet of algorithms (CC, Enc, Dec)
defined as follows:

— CC (circuit compilation) is a deterministic algorithm that takes as input an arithmetic circuit
C' and outputs a randomized arithmetic circuit 6,

— Enc (ir%put encoding) is a probabilistic algorithm that maps an input x € K" to an encoded input
zecK,

— Dec (output decoding) is a deterministic algorithm that maps an encoded output y € K™ to a
plain output y € K™,

which satisfy the following properties:

— Correctness: For every arithmetic circuit C of input length €, and for every = € K', we have
Pr (Dec(C(&)) = C(x) | @ + Enc(x)) =1 , where C = CC(C).

— Elciency: For some security parameter k € N, the running time of CC(C) is poly(k, |C]), the
running time of Enc(x) is poly(x, |x[) and the running time of Dec(y) is poly(x, |g|), where
poly(k,£) = O(k®£%2) for some constants e1, ez.

2.2 Random Probing Security

Let p € [0,1] be some constant leakage probability parameter, a.k.a. théeakage rate. In the p-
random probing model, an evaluation of a circuit C' leaks the value carried by each wire with a
probability p, all the wire leakage events being mutually independent.

As in [9], we formally dePne the random-probing leakage of a circuit from the two following
probabilistic algorithms:

— The leaking-wires sampler takes as input a randomized arithmetic circuit C and a probability
p € [0, 1], and outputs a setW, denoted as

W <« LeakingWires(C, p) ,

where W is constructed by including each wire label from the circuit C' with probability p to
W (where all the probabilities are mutually independent).

— The assign-wires sampler takes as input a randomized arithmetic circuit C, a set of wire labels
W (subset of the wire labels ofC), and an input «, and it outputs a |W|-tuple w € KWI,
denoted as

w < AssignWires(C, W, x) |

where w corresponds to the assignments of the wires af' with label in T/ for an evaluation on
input .

Definition 3 (Random Probing Leakage). The p-random probing leakage of a randomized
arithmetic circuit C' on input x is the distribution Lo(C,x) obtained by composing the leaking-wires
and assign-wires samplers as

Lp(C,x) i AssignWires(C', LeakingWires(C, p), x) .

Definition 4 (Random Probing Security). A randomized arithmetic circuit C with £ -n € N
mput gates is (p,)-random probing securewith respect to encoding Enc if there exists a simulator
Sim such that for every x € K :

Sim(C) =1 Lp(C, Enc(x)) . Q)

2.3 Random Probing Expansion

In [3], Ananth, Ishai and Sahai proposed anezpansion approach to build a random-probing-secure
circuit compiler from a secure multi-party protocol. This approach was later revisited by Bela®d,
Coron, Prou", Rivain, and Taleb who formalize the notion of ezpanding compiler [9].

The principle of the expanding compiler is to recursively apply a base compiler, denoted C
and which simply consists in replacing each gate oB in the input circuit by the corresponding
gadget. Assume we haven-share gadgetsGy for each gateg in B. The base compilerCC simply
consists in replacing each gate in these gadgets byGy and by replacing each wire byn wires
carrying a sharing of the value. We thus obtain n2-share gadgets by simply applyingCC to each
gadget: ng) = CC(Gy). This process can be iterated an arbitrary number of times, sayk, to an
input circuit C":

CC CC CC

C C1 Ck -

The Pbrst output circuit Cy is the original circuit in which each gate g is replaced by a base gadget
Gg. The second output circuit C, is the original circuit C' in which each gate is replaced by an
n?-share gadgetGéz). Equivalently, C, is the circuit C; in which each gate is replaced by a base
gadget. In the end, the output circuit Ck is hence the original circuit C' in which each gate has
been replaced by ak-expanded gadget and each wire has been replaced by wires carrying an
(n¥)-linear sharing of the original wire.

The expanding compiler achieves random probing security if the base gadgets verify a property
called random probing expandability [9]. We recall hereafter the original debnition of the random
probing expandability (RPE) property for 2-to-1 gadgets.

5

Definition 5 (Random Probing Expandability [9]). Let f : R — R. An n-share 2-to-1 gadget
G : K" x K" — K" is (¢, f)-random probing expandable (RPE) if there exists a deterministic
algorithm Sim§$ and a probabilistic algorithm SimS such that for every input (%,7) € K" x K", for
every set J C [n] and for every p € [0, 1], the random experiment

W < LeakingWires(G, p)
(I, I, J') < SimE (W, J)
out +— Simg(T/V, I 20, 9l,)

ensures that

1. the failure events F1 = (|I1] > t) and Fo = (|I2| > t) verify
Pr(F1)=Pr(F2)= ¢ and PH(FiAF)= & ()

with € = f(p) (in particular F1 and F2 are mutually independent),
2. J is such that J' = J if |J| <t and J C [n] with |J'| = n — 1 otherwise,
8. the output distribution satisfies

out & (AssignWires(G, W, (Z,7)) , Z|s") ®)

where z = G(Z,7).

The RPE notion can be simply extended to gadgets with 2 outputs: theSim‘l3 simulator takes
two sets J; C [r] and J> C [n] as input and produces two setsJ; and J; satisfying the same
property as J' in the above debnition (w.r.t. J; and J). The Sim$ simulator must then produce
an output including z1/;: and Z3[;; wherez; and z; are the output sharings. The RPE notion can
also be simply extended to gadgets with a single input: theSim(f simulator produces a single set/
so that the failure event (|| > ¢) occurs with probability ¢ (and the Simg simulator is then simply
given z|; whereZ is the single input sharing). We refer the reader to [9] for the formal dePnitions
of these variants.

Although the requirement of mutual independence for the failure events might seem strong, it
can be relaxed which leads to the notion ofweak random probing expandability. It is shown in [9]
that this weaker notion actually implies the RPE notion for some ¢ which is derivable from the
(joint) probability of the failure events.

The authors of [10] eventually introduced a tighter version the RPE security property, namely
the tight random probing expandability (TRPE). In this setting, the failure events are re-debne
asfj = (|Ij | > min(t, W)). Both RPE and TRPE notions can be split into two sub-notions (that
are jointly equivalent to the original one) corresponding to the two possible properties ofJ’ in
Debpnition 5. Specibcally, in (T)RPEL, the set.J is constrained to satisfy|J| <t and J' = J, while
in (T)RPE2, J' is chosen by the simulator such thatJ’ C [n] and |J'| = n — 1.

2.4 Complexity of the Expanding Compiler

Consider circuits with base of gatesB = {g1,...,9#} for which we have n-share RPE gadgets
{Ggy}ger. Further denote Grandom the n-share random gadget which generates independent ran-
dom values as a randomr-sharing as well asCC the circuit compiler based from those gadgets. To

each gadget a complexity vector is associatedVg = (Ng,, ..., Ng , Nr)T where Ny stands for the
number of gatesg; and N, for the number of random gates in the gadgetG. Then the compiler
complexity matriz Mcc is the (6+1) x (8 + 1) matrix dePned as

MCC = (Ngl | o | Ng! ‘ NGrandom) Wlth NGrandom = (O 70 07 n)T N

Given a circuit C' with complexity vector Nc (which is debPned as the gate-count vector as for
gadgets), compiling it with the base gadgets gives a circuit’ of complexity vector N = Mcc - Nc.
It follows that the kth power of the matrix M gives the gate counts for the levelk gadgets as:

0

MEc = Mcc---Mcc= (N |-+ | N |N((3k)) with Nék) =
N , 01 e] random random 0
k times nk

where N are the gate-count vectors for the levelk gadgetngf). Let us denote the eigen decom-

position of Mcc asMcc= Q- A-Q~1, we get
M
MEc=Q - A-Q71 with 4=
M1

where); are the eigenvalues ofV/cc. We then obtain an asymptotic complexity of

#+1
ICl=o(lc]- Y Inlf) = o(lc] - max(|Al, .. . [Awsa ¥)
i=1

for a compiled circuit C = CC®(C).

The complexity of the expanding compiler can be further expressed in terms of the target
random probing security level k. This complexity is related to the notion of amplification order
that we recall hereafter.

Definition 6 (Amplification Order).

— Let f: R — R which satisfies
fp)= cap’+ O™")

as p tends to 0, for some c¢q > 0 and € > 0. Then d is called the amplification order of f.

— Lett > 0 and G a gadget. Let d be the maximal integer such that G achieves (t, f)-RPE for
f R = R of amplification order d. Then d is called the amplification order of G (with respect
to t). We will sometimes denote fg as the function f corresponding to the gadget G for which
G achieves (t, fg)-RPE.

We stress that the amplibcation order of a gadget; is debned with respect to the RPE threshold
t. Namely, di"erent RPE thresholds t are likely to yield di"erent amplibcation orders d for G (or
equivalently d can be thought of as a function oft).

As shown in [9], the complexity of the expanding compiler relates to the (minimum) amplibca-
tion order of the gadgets composing the base compiletC. If the latter achieve (¢, f)-RPE with an

amplibcation order d, the expanding compiler achieves j, 2~%)-random probing security with an
expansion levelk such that f(K)(p) < 2%, which yields a complexity blowup of

ot . |Og Nmax
= . e = —_—
ICl= O(|C|- k%) with e logd (4)
where
Nmax = max |eigenvalues(Mcc)| , 5)

where eigenvalues(-) returns the tuple of eigenvalues (or modules of eigenvalues in case of complex
numbers) of the input matrix.

Let us slightly explicit the complexity with the 3-gate base B = {add, mult, copy} as used in [9,
10]. Considering that multiplication gates are solely used in the multiplication gadget (Ng,,, ,m =
NGy, .m = 0) which is the case in the constructions of [9, 10], it can be checked that (up to some
permutation) the eigenvalues satisfy

(A1, A2) = eigenvalues(Mac) , A3= Ng,,, .m and Xg=n

where M is the top left 2 x 2 block matrix of Mcc

Mac - NGadd a NGcopy ,a
NGadd ,C NGcopy ,C

where Ny, denotes the number of gatese in a gadgety, with m for the multiplication, «a for the
addition, and ¢ for the copy. We bnally get

|6| = (’)(|C| . N,l;ax) with Nmax = max(|eigenvalues(Mac)|, NGy ms™) - (6)

~ As an illustration, the expanding compiler from [10] satisPesNmax = 3n? —2n and d =
min (t+1.0-Y \which yields an asymptotic complexity of O(x®) with

o= log(3n? — 2n)
log([(n +1) /4])

which tends to 2 asn grows. In comparison, in this work, we shall achieve a quasi-linear complexity,
i.e., Nmax = O(nlogn).

2.5 Tolerated Leakage Rate

Finally, we recall the notion of tolerated leakage rate which corresponds to the maximum valuep for
which we have f(p) < p. This happens to be a necessary and sul!cient condition for the expansion
strategy to apply with (¢, f)-RPE gadgets.

In practice, the tolerated leakage rate should be measured on concrete devices and bxed ac-
cordingly. Hence the motivation to exhibit gadgets which tolerate a high probability to cover any
setting. So far, the asymptotic constructions provide a trade-o0" between tolerated leakage rate and
complexity. However, we only know how to compute the former for small numbers of shares and
the bounds for larger values are not tight.

As an illustration, the instantiation proposed in [9] tolerates a leakage probability up to 2789,
while the instantiation of [?] tolerates 2750, both for 3-share base gadgets.

8

3 Dynamic Random Probing Expansion

As recalled in Section 2, the principle of the expanding compiler is to apply a base circuit compiler
CC which is composed of base gadgets Bone per gate type in the circuitb several times, ayo
the input circuit: C = cc®(C). The level of expansionk is chosen in order to achieve a certain
desired security levels such that £ (p) < 2%,

In this section, we generalize this approach to choose the circuit compiler dynamically at the
di"erent steps of the expansion. Let{CC;}; be a family of circuit compilers, the dynamic expanding
compiler for this family with respect to the expansion sequenceéky, ... ky, is debned as

C=CqffoCC o, .o 0CCi(O) . ©)

The idea behind this generalization is to make the most from a family of RPE compilers CC; };
which is debned with respect to the number of shares; in the base gadgets. If we assume that
each compilerCC; with n; shares achieves the maximum amplibcation orded; = ”igl, then the
benebt of using a compiler with higher number of shares is to increase the amplibcation order and
thus reduce the number of steps necessary to achieve the desired security level On the other
hand, the tolerated leakage rate of existing constructions decreases with;. As we show hereafter,
a dynamic increase ofn; can ensure both, the tolerated leakage rate of a smalh; and the better

complexity of a high n;.

3.1 Dynamic Expanding Compiler

We formally introduce the dynamic expanding compiler hereafter.
Definition 7 (RPE Compiler). Let B = {g : K — K™} be an arithmetic circuit basis. Let
n,t € N, and let {Gg}gep be a family of (t, fo,)-RPE n-share gadgets for the gate functionalities in

B. The RPE compiler CC associated to {Gg}ger is the circuit compiler which consists in replacing
each gate from a circuit over B by the corresponding gadget Gg. Moreover,

— the expanding function of CC is the function f defined as
fip— mgleeg(P)
— the amplibcation order of CC is the integer d defined as
d= mgn dg,

where dg, is the amplification order of fg,,
— the gadget complexity of CC is the integer s defined as
s= mgx |Gyl

where |Gy| denotes the number of wires in the gadget Gg,
— the tolerated leakage rateof CC is the real number q € [0, 1) such that f(p) < p for every p < q.

In the following, we state the security and asymptotic complexity of the dynamic expanding
compiler. We will consider a family of di"erent RPE compilers where each compiler is indexed by
an index i, i.e. a family of di"erent RPE compilers is denoted as {CC;}; for di"erent number of
shares{n; };. We start with a formal dePnition of the dynamic compiler:

Definition 8 (Dynamic Expanding Compiler). Let {CC;}i be a family of RPE compilers with
numbers of shares {nj}i. The dynamic expanding compiler for {CC;}; with expansion levelsks,
, ky, is the circuit compiler (CC, Enc, Dec) where

1. The input encoding Enc is a (H| 1 n) linear encoding.

2. The output decoding Dec is the (, 1M) linear decoding mapping.
8. The circuit compilation is defined as

CC() = CCh“ o CCE“_lll 0., .0 Cclil(.) '

The following theorem states the random probing security of the dynamic expanding compiler.
The proof of the theorem is very similar to the proof of RPE security (Theorem 2) from [9]. The
main di"erence is that at each level of the expansion, we can use a di"erent expanding compiler
with di"erent sharing orders. Besides that, the proof follows the same baselines as in [9]. The proof
is provided in Appendix A.1.

Theorem 1 (Security). Let {CC;}i be a family of RPE compilers with expanding functions { fi }i.
The dynamic expanding compiler for {CCi}i with expansion levels ki, ..., ky is (p,€)-random
probing secure with

k
5: ful’lo...o i(l(p) .

We now state the asymptotic complexity of the dynamic expanding compiler in the next theo-
rem. The proof is given in Appendix A.2.

Theorem 2 (Asymptotic Complexity). Let {CCi}i be a family of circuit compzlers with com-
plezity matrices {Mcc, }i. For any input circuit C, the output circuit C = CC ~~~~~~ o CCkl(C)
is of size

u
\5\:|C|-O(H|)\i|ki) with N such that |\i| = max |eigenvalues(Mcc)| . (8)
i=1

In the following, we shall call \j as debPned above, theigen-complexity of the compiler CC;. We
shall further call the product H DY ki the complexity blowup of the dynamic expanding compiler.
We note that minimizing the complexity blowup is equivalent to minimizing the log complexity
blowup, which is

=

> ki -logy(|Ail) - 9)
i=1
3.2 General Bounds for Asymptotic Constructions

The following theorem introduces general bounds on the tolerated leakage rate and the expanding
function of an RPE compiler with respect to its amplipcation order and gadget complexity. The
proof of the theorem is given in the supplementary material (Appendix A.3).

10

Theorem 3. Let CCj be an RPE circuit compiler of amplification order d; and gadget complezity
si. The tolerated leakage rate qi of CC is lower bounded by

1/ 1\arT /g\Yars
. > : —_ - : 7| a
“=a e<2e> <Si> (10)
For any p < @, the expanding function fi of CC; is upper bounded by
Si e s\
I B | X
fip) < 2<d,>p“' < 2(p) P (11)
| 1

The lower bound @ on the tolerated leakage rate quickly converges to the ratio et - d; /s asd;
grows. In other words, an RPE compiler family {CC;}; indexed by the number of sharesy; of its
base gadgets tolerates a leakage probability which is linear in the ratio between its amplibcation
order d; and its complexity s;j. For known families of RPE compilers from [10] this ratio is in
O(1/ni).

From Theorem 3, we obtain the following bound for the compositionfi(k). The proof of the
corollary is given in the supplementary material (Appendix A.4).

Corollary 1. Let CCi be an RPE compiler of expanding function fi, amplification order d; and
gadget complexity si. For any p < @ as defined in (10), we have

1 4kt 1 1 (1+ﬁ)
; I+ g1)d K di @c: i
oo < ()] e < | ()

The following lemma gives an explicit lower bound on the expansion leve{k;}i to reach some
arbitrary target probability poy = 2 % from a given input probability pi, = 2% by applying
e,

dk

Lemma 1. Let pin =2 %0 < ¢ and pout = 2% € (0,1]. For any integer k; satisfying

ki > logg; (Kout) — 109y, (Kin — Ai)

2 () (3o ()

ki — 2 —doul
fi()(pin)gpout—z $ou .

In the above lemma, A; represents a lower bound forki, which matches the upper boundgg
of pin =2~ %n . Assuming that s; and d; are both monotonically increasing with 7, we get that the
threshold 4; tends towards log (§*).

with

we have

From Lemma 1, we further get that the cost induced by the choice of the compilerCC; to go
from an input probability pi, to a target output probability poyt is

loga(|Ai])

ki -logy(|Ai]) > log,(dh)

(1002(Kout) — 10Go(Kin — Ai)) (12)

11

(in terms of the log complexity blowup (9)). Note that this lower bound is tight: it could be replaced
by an equality at the cost of ceiling the term between parenthesesi(e. the term corresponding to
ki). We further note that the above equation is consistent with the complexity analysis of the
expanding compiler provided in [9]. Indeed going from a constant leakage probabilitp;, = p to
a target security level poyt = 2|*$(|t}yl)applying ki times a single RPE compilerCC;, we retrieve a
i €\ wi — logy (1%

complexity of O(x®) with e = m.

Equation (12) shows that using CC; to go from input probability pin, to output probability pout
induces a log complexity cost close to

log,(|Ai])

ol 2 (loga(r) ~ 1082 (n)
provided that ki, is sulciently greater than A;. So given the latter informal condition, it appears
that the parameter i minimizing the ratio % gives the best complexity.

Application. For the asymptotic construction introduced in [10], the RPE compiler CC; features

— an amplibcation order d; = O(n;),
— a gadget complexity s = O(n?),
— an eigen-complexity | \i| = O(n?).

For such a construction, the ratio 'f(?éz((lff)‘) is decreasing and converging towards 2 ag; grows. On

the other hand, 4; tends to log,(n;i) which implies that CC; should only be applied to an input

probability lower than -

3.3 Selection of the Expansion Levels

In this section, we investigate the impact of the choice of the expansion levelg on the complexity
of the dynamic expanding compiler. We brst assess the asymptotic complexity obtained from a
simple approach and then provide some application results for some given gadgets.

In the following CCq shall denote an RPE compiler with constant parameters while{CC; }i>1
shall denote a family of RPE compilers indexed by a parametes. We do this distinction since the
goal of the CCy compiler shall be to tolerate the highest leakage rate and to transit from a (possibly
high) leakage probability p to some lower failure probability p; which is in turn tolerated by at least
one compiler from {CG; };.

A Simple Approach. We consider a simple approach in which the compileiCCy is iterated kg
times and then a single compilerCC; is iterated k; times. The complexity blowup of this compiler
is |Ao|“°|\i[Ki. The brst expansion levelkq is chosen to ensure that the intermediate probability

pi = fékO)(p) is lower than g (the lower bound on the tolerated leakage rate ofCC; from Theorem 3).
Then k; is chosen so thatfi(k‘) <278,
Concretely, we setx; := 4; +1 which, by Lemma 1, gives

ko = [logy,(Ai +1) —logg, (loga(p) — Qo)] , (13)

12

and
ki = [logg (k)] = O(logg, (x)) - (14)

For some constant leakage probabilityp and some start compilerCCq with constant parameters,
we getko = O(logy,(4i)) giving an asymptotic complexity blowup of

: A - log,(|Aol) log, (| Ai])
koy. (ki - € .6 - 2 .= 2
O(|Xo] N [) = O(AFK%) with g log,(do) and e log,(d) (15)

Then for any choice ofi we get an asymptotic complexity blowup ofO(/-sei) which is the same
asymptotic complexity as the standard expanding compiler with base compilerCC;. On the other
hand, our simple dynamic compilerCCi(k‘) o CCf)kO) tolerates the same leakage rate a€Cp.

Using this simple approach we hence get the best of both worlds:

— a possibly inelcient RPE compiler CCgy tolerating a high leakage rateqy,

— a family of RPE compilers {CC;}; with complexity exponent ¢; = '?féz((lif)‘) decreasing withi.

We stress that for monotonously increasing|\i| and d;, the asymptotic complexity of our simple

approach is O(x®) where e can be made arbitrary close to lim_, 'fg;z((‘m)

Application. To illustrate the benebts of our dynamic approach, we simply get back to the
experimentations on the AES implementation from [9]. The authors apply either a 3-share or 5-
share compiler repeatedly until they reach their targeted security level. While using the 5-share
compiler reduces the tolerated probability, we demonstrate that we can use both compilers to get
the best tolerated probability as well as a better complexity.

Figure 1 illustrates the trade-o"s in terms of achieved security level and complexity of the
expansion strategy when using di"erent compilers at each iteration of the expansion. Starting from
a tolerated leakage probability p (276 on the left and 2-%° on the right), the empty bullets (o)
give this trade-o0" when only the 3-share compiler is iterated. In this case, the Pnal security function
¢ from Theorem 1 is equal to f§k3)(p) if we consider f3 to be the failure function of the 3-share
compiler, for a certain number of iterations k3 which is written next to each empty bullet on
the Pgure. On the other hand, the black bullets ¥) represent the trade-0"s achieved in terms of
complexity and security levels while combining both compilers with di"erent numbers of iterations.
In this case, we start the expansion with a certain number of iterationsks of the 3-share compiler,
and then we continue with ks iterations of the 5-share compiler of failure function fs, the bnal
compiled circuit is then random probing secure withe = £ (£{)(p)) for p € {276,295}, The
number of iterations of the compilers is written next to each black bullet in the format k3-ks.

For instance, starting from the best tolerated probability 276, the static compiler from [9, 10]
requires 11 applications of the 3-share compiler to achieve a security level of at least 80 bits. This
e"ort comes with an overall complexity of 101”52, Using our dynamic approach, we can combine
the 3-share and the 5-share to achieve this 80 bits security level for the same tolerated probability
but with a complexity of 101694, That would require 7 iterations of the 3-share compiler and 2
iterations of the 5-share compiler. Starting from the same leakage probability, a security level of
at least 128 bits is achieved also with 11 applications of the 3-share compiler with a complexity
of 101752, In order to achieve at least the same security, we would need more iterations of both
compilers in the dynamic approach. With 7 iterations of the 3-share compiler and 3 iterations of

13

complexity complexity

RPN S U SOUUN SEUU BURATRR RPN S U SN SR SO PR
10 P 10 A
N N N N N : : : : : : 14 :
;..1018. essesegrescsaguannnng ssesuan 6;4 N ;..1012. essesegrescsaguannnng ssesuan I N
: : : : : : : : : : : ‘e : :
; R I 5 S =
F A P F L S R AP
: 0 3 : : : : : : 0 1-3 : : : :
10|§.3 : 5! e
SO B SUUUUUURUU SRR SRR OO ESPYSTN EURRNE SO U U SR S
: 7:2 : : : : : : T : : : : :
- - . . security L security
2! 530 2! 5123 2! 5176 2! 52211 2! 5272 : : 2! 550 2! 5123 2! 5176 2! gzzA 2! 5272 :

Fig. 1: Complexity of random probing AES for di"erent security levels for a tolerated probability
of 2776 (left) or 2725 (right).

the 5-share compiler, we get a complexity of 18562 which is very close to the complexity of the
3-share application alone, while achieving a security level of 231 bits. That is, we almost double the
security level achieved using 11 iterations of the 3-share compiler with an almost equal complexity.
For a tolerated probability of 2 /-6 and at least 128 bits of security, note that 11 applications of the
3-share compiler yield a security order of 2135 while both other trade-o"s directly yield security
orders of 27242 (6 iterations of 3-share and 4 iterations of 5-share) and 2231 (7 iterations of 3-share
and 3 iterations of 5-share), with one less iteration they would be below 128 bits, which explains
their more important complexity. The same behavior can be observed with a starting tolerated
leakage probability of 2725 on the right.

The above results motivate the next contributions of this paper, namely bPnding RPE compilers
which achieve the maximal amplibcation orders and which benebt from good asymptotic complexity
(i.e. gadgets debned for any number of shares with amplibcation order increasing with n) in order
to optimize the security-elciency trade-0" and to tolerate the best possible leakage probability. We
showed this far that the tolerated leakage probability decreases with an increasing number of shares
n. So if we want to tolerate the best leakage probability, we would start with a few iterations of a
compiler with a small number of shares and which tolerates a good leakage probability (which can
be computed for instance with the veribcation tool VRAPS [9]), typically a 3-share construction.
Meanwhile, after a few constant number of iterations, we can change to a di"erent compiler which
benebts from a better asymptotic complexity (as explained above with our simple approach). In
the constructions from [10], the bottleneck in terms of asymptotic complexity was from the linear
gadgets (addition and copy). Thanks to the quasilinear refresh gadget we introduce later in this
paper, the bottleneck becomes the multiplication gadget (with »? multiplications), which we also
improve in the following sections under some conditions on the base pbeld.

4 Linear Gadgets with Quasi-Linear Complexity

In a brst attempt, we aim to reduce the complexity of the linear gadgets that are to be used in our
dynamic compiler.

In [10], the authors provide new constructions of generic addition and copy gadgets, using a
refresh gadgetG efresh @s a building block. The construction works for any number of shares and

14

the authors prove the RPE security of the gadgets based on the security offefresh. IN @ nutshell,
given an-share refresh gadgetGieresh, the authors construct a copy gadgetGeopy Which on input
sharing (a1, ..., an), outputs the sharings

(Grefresh(ala s 7an)7 Grefresh(ala s 7an)) (16)

with two independent executions of Grefresh- The authors also construct an addition gadgetGagq
which, on input sharings (as,...,an) and (b1,...,by), Prst refreshes the inputs separately, then
outputs the sharewise sum of the results

<Grefresh(ala e 7an) + Grefresh(bla e 7bn)>~ (17)

If the refresh gadgetGierresh is TRPE of amplibcation order d, the authors show that Gopy is also
TRPE of amplibcation order d, and Gaqq is TRPE of amplipcation order at least |d/2].

While the copy gadgets from [10] achieve an optimal amplibcation order, this is not the case
yet for addition gadgets and we brst aim to Pll this gap. Precisely, we introduce a new property
which, when satisped by its inherent refresh gadget efresh, makes the addition gadget TRPE with
the same amplibcation order a7 efresh. We then prove that this new property is actually satisbed
by the refresh gadget from [6] which has quasi-linear complexityO(nlogn) in the sharing order
n. Using this refresh gadget as a building block, we obtain linear gadget§i/agg and Geopy With
quasi-linear complexities.

Constructions of Linear Gadgets from a Stronger Building Block. We brst debne our new
property (as a variant of properties debned in [9, 10]) which proves to be a useful requirement for
refresh gadgets when used as a building block of linear gadgets.

Definition 9 (t-Strong TRPE2). Let G be an n-share 1-input gadget. Then G is t-Strong TRPE2
(abbreviated t-STRPE2) if and only if for any set J' of output shares indices and any set W of
internal wires of G such that |W|+ |J'| <'t, there exists a set J of output share indices such that
J' C J and |J| = n— 1 and such that the assignment of the wires indexed by W together with the
output shares indexed by J can be perfectly simulated from the input shares indexed by a set I of
cardinality satisfying |I| < |W |+ |J'].

Remark 1. This new property directly implies the TRPE2 property with maximal amplibcation
order introduced in [10]. Recall that G is t-TRPE2 with maximal amplibcation order if and only
if for any set W of probed wires such that|W| < min(t + 1,n — t), there exists a set.J of output
shares indices such that.J| = n — 1 and such that an assignment of the wires indexed by} and
the output shares indexed byJ can be jointly perfectly simulated from input shares indexed in a
set I such that |I| < |W|.

Having a refresh gadget which satisbes the property from DebPnition 9 results in tighter con-
structions for generic addition gadgets as stated in Lemma 2. Its proof is given in Appendix A.6.

Lemma 2. Let G refresn, be an n-share refresh gadget and let G aqq be the addition gadget described
in Equation (17). Then if Grefresn is (t, f)-TRPE for any t < n — 1 of amplification order d >
min(t+1,n —t) and Grefresh is (n — 1)-STRPE2, then G 44 is (t, f')-RPE (resp. (t, f')-TRPE) for
any t <n —1 for some f' of amplification order min(t+1,n —t).

15

Instantiation of Linear Gadgets with Quasi-Linear Refresh Gadget. A refresh gadget with
O(nlogn) complexity was introduced in [6]. In a nutshell, the idea is to add a linear number of
random values on the shares at each step, to split the shares in two sets to apply the recursion, and
then to add a linear number of random values again. For the sake of completeness, we provide the
algorithmic description of this refresh gadget in Appendix A.7. It was proven to be (2—1)-SNI in [6].

In Lemma 3, we show that this gadget is also {, f)-TRPE of amplibcation order min(t +1,n — t)
and that it satisbes (n — 1)-STRPE2. The proof is given in Appendix A.8.

Lemma 3. Let Grefresn, be the n-share refresh gadget described above from [6]. Then G refresh is
(t, f)-TRPE for some function f : R — R of amplification order d > min(t +1,n —t). Grefresh 15
additionally (n — 1)-STRPE2.

Hence, we can instantiate the generic copy and addition gadgets described in (16) and (17) using
the above refresh gadget ass efresn. We thus obtain RPE gadgets Gaqq and Geopy €njoying optimal
amplibcation order in quasi-linear complexity O(n logn).

Regarding the asymptotic complexity of the expanding compiler, the eigenvalues\;, A, from
Section 2 are hence now both inD(nlogn). At this point, only the quadratic number of multipli-
cations in the multiplication gadget still separates us from a compiler of quasi-linear complexity.
We tackle this issue in the next section by constructing a generic multiplication gadget. We Pnally
end up with a full expanding compiler with quasi-linear asymptotic complexity.

5 Towards Optimal Multiplication Gadgets

3
or
3
; sseudLuo:)o ;
=]
O

unwans oy

Fig. 2: n-share multiplication gadget Gyt from two subgadgetsGsybmur and Geompress

In what follows we should distinguish two types of multiplication gates: regular two-operand
multiplications on K, that we shall call bilinear multiplications, and multiplications by constant (or
scalar multiplications) which have a single input operand and the constant scalar is considered as
part of the gate description.

In previous works [9, 10], the number of bilinear multiplications is the prominent term of the ex-
panding compilerOs complexity. While the most deployed multiplication gadgetse(g., [18]) require
a quadratic number of bilinear multiplications in the masking order, the authors of [8] exhibited
a probing secure higher-order masking multiplication with only a linear number of bilinear multi-
plications. Their construction, which applies on larger Pelds, is built from the composition of two
subgadgetsGsypmut @and Geompress, @s described in Figure 2. In a nutshell, on input sharings: and
B, the subgadget Gsupmurr performs multiplications between the input shares ofa and b as well
as linear combinations of these products and it outputs am-sharing ¢ of the product « - b where

16

m > n °. Next, the compression gadgetGcompress cOmpresses then-sharing ¢ back into an n-sharing
d of the product a - b.

The authors of [8] instantiate this construction with a sub-multiplication gadget which performs
only O(n) bilinear multiplications and with the compression gadget from [11]. In addition to bilinear
multiplications, their sub-multiplication gadget additionally requires a quadratic number of linear
operations (i.e., addition, copy, multiplications by a constant) and random generation gates.

In the following, we rely on the construction [8] with its gadget Gsypmuir Which o"ers a linear
number of bilinear multiplications to build a more elcient RPE multiplication gadget. In order
to use it in our expanding compiler, we integrate an additional gate for the multiplication by a
constant and discuss the resulting asymptotic complexity. We additionally demonstrate that the
compression gadget of [8] is noti{ — 1)-SNI as claimed in the paper, and show that we can rely on
other simple and more e!cient compression gadgets which satisfy the expected properties.

5.1 Global Multiplication Gadget

We Prst debPne two new properties thatGsypmur and Geompress Will be expected to satisfy to form a
(¢, /)-RPE multiplication gadget with the maximum amplibcation order from the construction [8].

Contrary to the usual simulation notions, the brst partial-NI property distinguishes the number
of probes on the gadget, and the number of input shares that must be used to simulate them. It
additionally tolerates a simulation failure on at most one of the inputs (i.e., no limitation on the
number of shares for the simulation).

Definition 10 ((s,t)-partial NI). Let G be a gadget with two input sharings a and b. Then G is
(s,t)-partial NI if and only any the assignment of any t wires of G can be perfectly simulated from
shares (ai)ier, of @ and (b)ic1, of b such that |I1| < s or |I3| <s.

The second property is a variant of the classical TRPE property that we refer to ascomp-TRPE.

Definition 11 ((¢, f)-comp-TRPE). Let G be a 1-to-1 gadget with m input shares and n output
shares such that m >n. Lett <n—1and d=min(t+1.,n—1t). Then G is (t, f)-comp-TRPE if
and only if for all sets of internal wires W of G with |[W| < 2d — 1, we have:

1. ¥V J,|J| <t a set of output share indices of G, the assignment of the wires indexed by W and the
output shares indexed by J can be jointly perfectly simulated from the input shares of G indexed
by a set I, such that |I| < |W]|.

2.3 J|J| = n—1 a set of output share indices of G, such that the assignment of the wires
indexed by W and the output shares indexed by J' can be jointly perfectly simulated from the
input shares of G indexed by a set I, such that |I| < |W|.

Similarly to what was done in [8] for the SNI property, we can prove that the composition of a
gadgetGsybmut and Geompress Which satisfy well chosen properties results in an overall multiplication
gadget which is (¢, f)-RPE specibcally for anyt < n— 1 achieving the maximum amplibcation order
d=min(t+1,n—t). This is formally stated in Lemma 4 which proof is given in Appendix A.9.

Lemma 4. Consider the n-share multiplication gadget of Figure 2 formed by a 2-to-1 multiplication
subgadget G sypmuie of m output shares and a 1-to-1 compression gadget G compress 0f m input shares
such that m >n. Let t <m—1andd=min(t+1,n—t). If

5 In case of a sharewise multiplication for instance, we would have m = n2.

17

— Goubmuit %5 (d — 1)-NI and (d — 1, 2d — 1)-partial NI,
- Gcompress is (t; f)'COmp-TRPE,

then the multiplication gadget Gy s (t, f)-RPE of amplification order d.

5.2 Construction of Gcompress

In a brst attempt, we analyze the compression function that was introduced in [11] and used to
build a multiplication gadget in [8]. As it turns out not to be SNI or meet our requirements for the
expanding compiler, we exhibit a new and also more elcient construction in a second attempt.

Gcompress from [8,11]. The authors of [8] use the {n : n]-compression gadget introduced in [11]
for any input sharing m, using a [2: : n]-compression subgadget as a building block. In a nutshell,
it Prst generates anISW -refresh of the zeron-sharing (w1, ..., wn). Then, these shares are added
to the input ones (ci,...,cn) to produce the sequence of output sharescf + wq,...,cn + wp).

The compression gadget is claimed to ber{ — 1)-SNI in [8]. However, we demonstrate that it
is not with the following counterexample. Let n > 2 and ¢ € [n]. We consider the set composed of
a single output share of the compression procedurd = {(¢ + wi) + cn+i} and the set of probes
on the internal wires W = {w;}. For the compression to be 2-SNI, we must be able to perfectly
simulate both the wires in W and J with at most |[IW| = 1 share of the input ¢. However, we can
easily observe that ¢ + wi) + cn+i —wi = ¢ + ci+n requires the two input sharesc; and ¢+, to be
simulated, which does not satisfy the 2-SNI property. In conclusion, the above gadget is actually
not SNI, and interestingly it is not sulcient either for our construction, i.e. it does not satisfy
Debnition 11. This observation motivates our need for a new compression gadget which satisbes
the necessary property for our construction.

New Construction for Geompress- IN Algorithm 1, we exhibit a new [m : n]-compression tech-
nique using anm-share refresh gadgeG efresh as a building block. We demonstrate in Lemma 5
that this new compression gadget satisbes the necessary properties for our construction as long as
m > 2n. The proof is given in Appendix A.10.

Algorithm 1: [m : n]-compression gadget

Input : (C1,...,Cm) such that m " 2n, mashare refresh gadget Grefresh
Output: (di,...,dn)suchthat ', d = T ¢

K#$mn%

(Cliy ce Cm) # Grefresh (C.l’ ..., Cm);

(di,...,dn)# (ci,...,Ch);
fori=1to K &1do))
‘ (di,...,dn)# (i +Crims--- 0n FCrsrim);

end

fori=1to m&K an do
‘ di # di+C}'+K{ﬂ;
end

return (di,...,dn);

18

Lemma 5. Let G ompress be the [m : n]-compression gadget from Algorithm 1 such that m > 2n. If
Glrefresh 15 (m —1)-SNI and (m — 1)-STRPE2, then G compress 5 (t, f)-comp-TRPE (Definition 11).

As shown in Section 4, the refresh gadget from [5] is actuallyr¢ — 1)-SNI and (m — 1)-STRPEZ2 for

any sharing orderm. This gadget can then be used as a building block for therf : n]-compression
gadget, giving it a complexity of O(mlogm) and satisfying the necessary properties. In addition,
this further provides an improvement over the complexity of the proposed gadget in [8] which has

a complexity of O(L%an) (because it performs an-share ISW—refreshingL%J times, see [8] for
more details on the algorithm).

5.3 Construction of Gsyupmult

To complete the construction of the overall multiplication gadget, we now exhibit relevant con-
structions for Gsupmuit - We Prst rely on the construction from [8] which happens to achieve the
desired goal in some settings. While all the cases are not covered by the state-of-the-art proposal,
we then slightly modify the construction to meet all our requirements. Both constructions rely on
linear multiplications that are not included yet on the expanding compiler. We thus start with a
construction for this additional linear gadget that we further denote Ggmy -

Construction for Gepnuic. We give a natural construction for Gemyre in Algorithm 2 which sim-
ply multiplies each input share by the underlying constant value and then applies a {, f)-RPE
refresh gadgetG eqresh. Basically, with a (T)RPE refresh gadget Grefresh, We obtain a (T)RPE linear
multiplication gadget Gy @s stated in Lemma 6. The proof is given in Appendix A.5.

Algorithm 2: n-share multiplication by a constant

Input : sharing (as,..., an), constant value t, n-share refresh gadget Giefresh
Output: sharing (di,..., dn) such that d; +adéad, =c.(a; +... +an)

(b, ..., b)) # (cas,..., C.an);

(dl ----- dn) # Grefresh ((bl ----- bn)),

return (di,..., dn);

Lemma 6. Let Grefresn be a (t, f)-(T)RPE n-share refresh gadget of amplification order d. Then
G emuir instantiated with Gregresy, is (t, f')-(T)RPE of amplification order d.

Relying on an additional gate for the linear multiplication does not impact the security analysis
and the application of the compilation, but it modipes the complexity analysis of the expanding
compiler. From the analysis given in Section 2.4, a complexity vector is associated to each base
gadget Ng = (Na, N¢, Nem, Nm, N;) T where Na, Ne, Nem, Nm, N, stand for the number of addition
gates, copy gates, constant multiplication gates, (bilinear) multiplication gates and random gates
respectively in the corresponding gadget. The matrixMcc is now a 5x 5 square matrix debPned as

M = (NGadd |NGC0py |NGcmuIt | NGmuIt ‘ NGrandom)

19

including, for each vector, the number of linear multiplications. Five eigenvaluesii, A2, A3, A4, A5
are to be computed,i.e., one more compared to the expanding compiler in the original setting.

We can consider as before that bilinear multiplication gates are solely used i/mutr (NG, 4q.m =
NGepy . m = Nogye . m = 0) and that constant multiplication gates are eventually solely used in
Gemut @nd Gruit (NG,gg .cm = N, .cm = 0) Which is the case in the constructions we consider in
this paper. It can be checked that (up to some permutation) the eigenvalues satisfy

(A1, A2) = eigenvalues(Mac) , A3 = Nggpy cm » M= Ng,y.m and As=n

where M is the top left 2 x 2 block matrix of Mcc

Mac - NGadd a NGcopy ,a
NGadd ,C NGcopy ,C

We get two complexity expressions for the expansion strategy
ICl= O(ICI - Nax) (18)
With Nmax = max(|eigenvalues(Mac)|, NG .cm> NG ,m») @and with the security parameter «

o B IOgNmaX
= . k€ = =
ICl= O(|C|-k®%) with e ogd

Note that the exhibited construction for the linear multiplication gadget requires Ng_,,,, .cm = 7
linear multiplications. Hence A3 = Ng,, cm = A5 = NG u0m + = 7 @nd the global complexity (18)
can be rewritten as

IC| = o(|c|- N,ITﬂaX) with Nmax = max(|eigenvalues(Mac)|, NGy .m)

if the number of multiplications is greater than n. The asymptotic complexity of the RPE compiler
is thus not a"ected by our new base gadgetGmui . We now describe our constructions ofzsypmult -

Gsubmult from [8]. The authors of [8] provide a ¢ — 1)-NI construction for Gsypmuit Which outputs
2n — 1 shares while consuming only a linear number of bilinear multiplications in the masking
order. We brst recall their construction which relies on two square matrices of/{ — 1)? coelcients
in the working Peld. As shown in [8], these matrices are expected to satisfy some condition for
the compression gadget to bes{ — 1)-NI. Since we additionally want the compression gadget to be
(d —1,2d — 1)-partial NI, we introduce a stronger condition and demonstrate the security of the
gadget in our setting.

Let Fq be the Pnite Peld with ¢ elements. Lety = (7ij)i<ij<n € Fé”_l)x(”_l) be a constant
matrix, and let & = (4ij)1<ijen € Fé”fl)x(”fl) be the matrix debned by §; = 1 —4;; for all
1<i,j <n—1 Gsymurr takes as input two n-sharingsa and b and outputs a (2n — 1)-sharing ¢
such that:

¥ = (a1+ é;(ri + ai)) . (b1+ é;(si + bi))

n
=2

20

n
¥ Ci+n_1= —sij- (al + _Zz(’Yifl,j 1y + aj)) fori=2,...,n
i=
where r; and s; are randomly generated values for all 2< i < n. It can be easily checked that
Gsubmuit Performs 2n — 1 bilinear multiplications, and that it is correct, i.e. Y2 ¢ = S, a; -
Yok bis
In [8], the authors prove that a gadget is (» — 1)-NI if one cannot compute a linear combination
of any set ofn — 1 probes which can reveal all of then secret shares of the inputs and which does
not include any random value in its algebraic expression. We refer to [8] for more details on this
result.
Based on this result, the authors demonstrate in [8], thatGsuypmuit iS (n — 1)-NI if the matrices
~ and § satisfy Condition 1 that we recall below.

(n—1)x(n—1)

Condition 1 (from [8]) Let/=2-(n+1) -(n—1)+1. Let In_1 € Fy be the identity
matriz, Oxxy € Féxy be a matriz of zeros (when y = 1, Oxxy is also written Ox), lxxy € JF)é‘Xy
be a matriz of ones, D j € F&n_l)x(n_l) be the diagonal matriz such that Dy jii = i, Th-1 €

anfl)x(nfl) be the upper-triangular matriz with just ones, and T j € anfl)x(nfl) be the upper-
triangular matrixz for which Ti jix = 7 fori < k:

10...0 %10 ... 0
In 1= Ol 0 D ;= (,),ijz, O
0..01 0 ... O"yj,n‘,l
11...1 N1V il
_— 01 1 T - (.)’Yj,z. 2
0. 01 0 ... 0 s

We define the following matrices (with n’ = n —1):

L= 1 |01xn"|01xn"|O1xn"|O1xn O1xn"|1axn" [L1xn” Lixn
On Iy [Opxnt Ine Iy I, Ty | Ty Ty
M= (Oy Owun] In | In |Dya| .. |Dyw| T |Tra| - | Ty o)

Condition 1 is satisbed for a matrix~ if for any vector v € IFq of Hamming weight hw(v) < n—1
such that L - v contains no coefficient equal to O then M - v Z Op_1.

In the above condition, the matrices L. and M represent the vectors of dependencies for each
possible probe. All the probes involving shares ofi for matrix ~ (and symmetrically shares ofb
for matrix §) are covered in the columns of. and M. Namely, the brst column represents the
probe a;. As it does not involve any random, it results in a zero column inM. The next columns
represents the probess;, then the probesr;. They are followed by columns for the probes ¢; +),
then (ai + 7j—1,i—17i) (for 2 < j < n), then ag + ZF:z (ri + aj) (for 2 < k < n), and Pnally then
ap+ Z}‘:Z (Yi—yj—1rj + aj) (for 2 <7 <nand 2< k < n). The above condition means that there is
no linear combination of (n — 1) probes which can include the expression of all of the input shares,
and no random variable.

21

From this result and by the equivalence between non-interference and tight non-interference
developed in [8], we conclude thalGsypmuit iS (d —1)-Nl for d =min(t+1,n—t) forany t <n— 1.
Lemma 4 also requireSGsypmuit 10 be (d — 1, 2d — 1)-partial NI to get an overall RPE multiplication
gadget. For Gsypmulir to satisfy this second property, we need to rely on a stronger condition for
matrices v and é that we present in Condition 2.

Condition 2 Let z=2-(n+1) - (n—1)+1. Let In_y € Fy V"D 00y € X, 1o,y € B,
Dg € anfl)x(n*l), T, 1€ anfl)x(n*l) ,Tgj € anfl)x(n*l) and L and M the same matrices
as defined in Condition 1.

Condition 2 is satisfied for a matriz «y if and only if for any vector v € F§ of Hamming weight
hw(v) < n —1, and for any i1,...,ik € [z] such that vi; Z0,...,vi, 70 and the corresponding
columns i1, ...,ik i L and in M have no zero coefficient (i.e there are K probes of the form
a1+ YL, (ri + aj) orag+ Zjnzz (Vi—1j—17 + ;) foranyi€ {2,...,n}), if M.v =0, then we have
hw(L - v) < hw(v) — K.

Based on this new condition, we can prove our second propertfsupmult , @S Stated in Lemma 7.
The proof is given in Appendix A.11.

-1 .
Lemma 7. Lett < n—1 such that either n is even ort % LnTJ and letd=min(t+1,n—t). Let

G submuit the multiplication subgadget introduced in [8]. If both matrices vy and & satisfy Condition 2,
then G gupmuie 18 (d — 1)-NI and (d — 1,2d — 1)-partial NI.

The condition on ¢t and n on Lemma 7 implies that the maximum amplipcation order for the

multiplication gadget cannot be achieved for an odd number of shares (since the maximum order
n—1

is reached whent = | |). This is not a proof artifact but a limitation of the gadget Gsupmuit

with respect to the new (d — 1,2d — 1)-partial NI property. We can easily show that under this
extreme conditions on¢ and n, we have 2/ — 1 = n. If we consider the instantiation of Ggypmuir for
n = 3 input shares, we obtain the following 2n — 1 = 5 output shares:

c1=(ar+(r2+ az) +(7r3+ ag)) - (br +(s2+ b2) + (53 + b3))

c2= —r2-(br+(d1,1-52+ b2)+(01,253+ b3))
3= —13-(br+ (021 52+ b2)+(2253+ b3))
c4= —s2-(ar+(y1-m2+ az) +(v1,2-r3+ az))
5= —s3-(ar+ (21 12+ az) + (72,2 r3+ az))

To prove the (d—1, 2d — 1)-partial NI property, we need to ensure that any set of at most 21—1 =3
probes can be perfectly simulated from at mostd — 1 = 1 shares of one of the inputs and any
number of shares from the other one. However, the three probes on, c3, ¢4 reveal information
on each of their sub-product. In particular, (a1 + (72 + a1) + (r3+ a3z)) (from c1), r3 (from ¢3) and
(a1+(y11-7r2+ a2)+(y12-r3+ agz)) (from c4) would reveal a. Similarly, (b1 + (so+ b2) +(s3+ b3))
(from c1), (b1+(02152+ b2)+(d22-s3+ b3g)) (from c3) and s, (from ¢4) would reveal b. Hence, the
gadget is not (d — 1, 2d — 1)-partial NI. This counterexample with 3 shares can be directly extended
to any odd number of shares.

This counterexample motivates a new construction forGsypmurr Which would cover all values
for n and ¢. In the following, we slightly modify the construction from [8] to achieve the maximum
amplibcation order in any setting.

22

Remark 2. The current construction of Ggypmuit OUtputs m = 2n — 1 shares, which does not satisfy
the requirement m > 2n shares for the compression gadget. Nevertheless, it is enough to add an
artibcial extra share ¢, 1 equal to zero between both building blocks. In particular, the compression
gadget (and subsequently the refresh gadget) does not expect the input sharing to be uniform to
achieve the stated security properties.

New Construction for Ggupmuit- AS Stated earlier, Lemma 7 does not hold forGsypmui in
the case wheren is odd andt = (n — 1)/2. In order to cover this case, we propose a slightly
modibed version ofGgupmuir With two extra random values r1 and s;. In this version, we let v =
(7ij)1<ij <n € IFSX” be a constant matrix, and let § €]FQX” be the matrix dePned bydi; =1 —~;; .
The sub-gadgetGgupmuc OUtputs 2n + 1 shares:

¥c= (é(?‘i + ai)) : (i:il(Si + bi))
¥ ¢y = -1 - ('i(éi,j sj + bj)) fori=1,...,n
j=1

n
¥ Cisn+l = —Sj - (Z('Yi,j rj + aj)> fori=1,...,n
j=1

wherer; and s; are randomly generated values. It can be easily checked thaf s pmyr Now performs
2n + 1 bilinear multiplications, and that it is correct, i.e. 2% ¢ = S ai - SO0, by

We now need the following slightly modibed version of Condltlon 2 ony and on 4, which instead
of considering a linear combination of at mostn — 1 probes as in Condition 2, considers up tou
probes:

Condition 3 Let 2 = (2n +4) - n. Let In € Fg*" be the identity matriz, Onxn € IF:JX” be the
matriz of zeros, lvyn € IF:JX” be the matriz of ones, Dgj € Fg*" be the diagonal matriz such that
Dgjii = i, Tn € Fg*" be the upper triangular matriz with just ones, Tej € Fg*" be the upper
triangular matriz such that T jix = ;i for 1 < k. We define the following matrices:

L=] In [Onun| In | In | ... | In | Tn | Tn | ... | Tn |
M= [Onxn| In | In |Dga| ... |Den| Tn |Taa]| - |Tan |

Then we say that v satisfies Condition 3 if and only if

— for any vector v € FZ of Hamming weight hw(v) < n,
— for any i1,...,ik € [z] such that vi; Z0,...,vi, Z0 and the corresponding columns i1, ...,iK
in L and in M have no zero coefficient (z e there are K probes of the form YL, (ri + ai) or

Sy (g i+ @) for anyi=1,....n),
if M -v =0, then we have hw(L - v) < hw(v) —
Under this new condition, we obtain the following result.

Lemma 8. Lett <n—21andd=min(t+1,n—t). Let Ggpmur as defined above with n-share inputs.
If both matrices v and & satisfy Condition 3, then Ggypmui 15 (d — 1)-NI and (d — 1, 2d — 1)-partial
NI

23

Proof. The proof of the Lemma is in fact the same as the proof of Lemma 7. The only di"erence
is that in this lemma, we also cover the special case of an odd value for the number of shares

-1 -1 A
and ¢ = Ln 5 | = n . In the latter case, we consider in the proof up ton probes on the gadget

Gsubmult » While in Lemma 7, we could only have up ton — 1 probes on the gadget. Since Condition 3
covers the case of having up tow probes onGsypmutit » then we can follow the exact same procedure
of the proof of Lemma 7 to prove the Lemma by considering the new condition!

Remark 3. The number of output sharesm = 2n + 1 of Gsupmut Satisbpes the constraint required
by Gcompress in Algorithm 1 ('m > 2n). We can thus use the compression gadgeticompress €xactly
as described in the algorithm on the input sharing €1, . . ., con+1), instantiated with the O(nlogn)
refresh gadget from Section 4. Since the multiplication sub-gadgetGsypmuir requires O(n) ran-
dom values and G'compress requires O(nlogn) random values from the refresh gadget, the overall
multiplication gadget Gy also requires a quasi-linear number of random value®(n logn).

5.4 Instantiations

We Prst state the existence of a matrixy which satispes Condition 3 over any Pnite beld’ for

q large enough (with log(g) = £2(nlogn))®. The proof technique follows closely the proof of [8,
Theorem 4.5] and makes use of the non-constructive Oprobabilistic methodO. Specibcally, it states
that if one chooses~ uniformly at random in Fj'°", the probability that the matrix ~ satisbes
Condition 3 is strictly positive, when ¢ is large enough. It is important to note that the proof relies

on probability but the existence of a matrix v which satisbes Condition 3 (forq large enough) is

guaranteed without any possible error.
Theorem 4. For any n > 1, for any prime power q, if v is chosen uniformly in FQX“, then

Prly satisfies Condition 3] >1—2-(A2n)" -n-¢ 1 .

n+1

In particular, for any n > 1, there exists an integer Q@ = O(n)" "~ , such that for any prime power

q > Q, there exists a matriz v € Fq"*" satisfying Condition 3.

As when ~ is uniformly random, so is §, Theorem 4 immediately follows from the following
proposition and the union bound.

Proposition 1. For any n > 1, for any prime power q, if v is chosen uniformly in ngn, then

Prlvy satisfies Condition 3] > 1— (12n)" -n-¢7 1 .

n+l

In particular, for any n > 1, there exists an integer Q = O(n)" ", such that for any prime power

q > Q, there exists a matriz v € Fg*" satisfying Condition 3.

The proof of this proposition is very technical but follows essentially the proof of the analogous [8,
Proposition 4.6]. It is provided in Appendix A.12.

In [8], Bela®det al.. presented examples of matrices which satisfy their condition for 2 shares
and 3 shares. Karpman and Roche [19] proposed afterwards new explicit instantiations up to order
n = 6 over large Pnite bPelds and up ton = 4 over practically relevant Pelds such adF,sg. It is worth
mentioning that the matrices proposed in [19] are actually incorrect (due to a sign error) but this
can be easily bxed and we check that matrices obtained following [19] also achieve our Condition 3.
These matrices for 3, 4 and 5 shares are provided in Appendix A.13.

6 Such large finite fields may actually be useful to build e"cient symmetric primitives (see for instance MiMC [2]).

24

6 Improved Asymptotic Complexity

In the previous sections, we exhibit the construction of a multiplication gadgetGmy; which performs
a linear number of multiplications between variables, and a quadratic number of multiplications
by a constant operations. Using the results of Lemmas 5, 8 and 4, the constructed multiplication
gadget is RPE and achieves the maximum amplibcation ordet%J for any number of sharesn.

Using the three linear gadgets proposed in Section 4(add, Geopy: Gemurt) With the O(nlogn)
refresh gadgets, and the proposed construction of the multiplication gadgetGm,;, we get an ex-
panding compiler with a complexity matrix Mcc of eigenvalues:

(A, A2) =(n,6nlog(n) —2n) , A\3=n, M=2n+1 and Is= n.

Hence we haveNnyax = 6nlog(n) — 2n = O(nlogn).

Figure 3 illustrates the evolution of the complexity exponent with respect to the number of
sharesn, for the best construction provided in [10] with quadratic complexity for an expanding
compiler (orange curve), and our new construction with quasi-linear complexity (pink curve). While
the best construction from [10] yields a complexity in O(|C| - k®) for e close to 3 for reasonable
numbers of shares, the new expanding compiler quickly achieves a sub-quadratic complexity in the
same settings.

Nmax = O(n?), d=(n+1)/2
Nmax = O(n log n), d=(n+1)/2

Exponent e

277\

0 2}0 410 Gb

Number of shares n
Fig. 3: Evolution of the complexity exponent e = log(Nmax)/ l0g(d) with respect to the number of
sharesn. The orange curve matches the instantiation from[10] with quadratic asymptotic complex-

ity (Nmax = O(n?)); the pink curve matches the new construction with quasi-linear asymptotic
complexity (Nmax = O(nlogn)).

7 Conclusion
In this paper we have put forward a dynamic expansion strategy for random probing security

which can make the most of di"erent RPE gadgets in terms of tolerated leakage probability and
asymptotic complexity. We further introduce new generic constructions of gadgets achieving RPE

25

for any number of sharesn. When the base Pnite beld of the circuit meets the requirement of
our multiplication gadget, the asymptotic complexity of the obtained expanding compiler becomes
arbitrary close to linear, which is optimal.

As for concrete instantiations, our small example on the AES demonstrates the benebts of
our dynamic approach. Namely, it provides the best tolerated probability (from the best suited
compiler) while optimizing the complexity using higher numbers of shares. Using two compilers
with 3 and 5 shares instead of a single one already reduces the complexity by a factor 10.

To go further in the concrete use of our expanding compiler, future works could exhibit explicit
constructions of matrices with (quasi)constant Peld size for our multiplication gadget. One could
also investigate further designs of RPE multiplication gadgets with linear number of multiplications
for arbitrary Pelds. Another interesting direction is to optimize the tolerated leakage probability
for a set of (possibly ine!cient) small gadgets to be used as starting point of the expansion in our
dynamic approach before switching to more (asymptotically) e!cient RPE gadgets.

References

1. Mikldés Ajtai. Secure computation with information leaking to an adversary. In Lance Fortnow and Salil P.
Vadhan, editors, 43rd ACM STOC , pages 715-724. ACM Press, June 2011.

2. Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge Tiessen. MiMC: E"cient en-
cryption and cryptographic hashing with minimal multiplicative complexity. In Jung Hee Cheon and Tsuyoshi
Takagi, editors, ASIACRYPT 2016, Part | , volume 10031 of LNCS, pages 191-219. Springer, Heidelberg, De-
cember 2016.

3. Prabhanjan Ananth, Yuval Ishai, and Amit Sahai. Private circuits: A modular approach. In Hovav Shacham
and Alexandra Boldyreva, editors, CRYPTO 2018, Part Ill , volume 10993 of LNCS, pages 427-455. Springer,
Heidelberg, August 2018.

4. Marcin Andrychowicz, Stefan Dziembowski, and Sebastian Faust. Circuit compilers with O(1/ log(n)) leakage
rate. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part Il , volume 9666 of LNCS,
pages 586-615. Springer, Heidelberg, May 2016.

5. Alberto Battistello, Jean-Sébastien Coron, Emmanuel Prou!, and Rina Zeitoun. Horizontal side-channel attacks
and countermeasures on the ISW masking scheme. In Benedikt Gierlichs and Axel Y. Poschmann, editors,
CHES 2016, volume 9813 of LNCS, pages 23-39. Springer, Heidelberg, August 2016.

6. Alberto Battistello, Jean-Sebastien Coron, Emmanuel Prou!, and Rina Zeitoun. Horizontal side-channel attacks
and countermeasures on the ISW masking scheme. Cryptology ePrint Archive, Report 2016/540, 2016. https:
/leprint.iacr.org/2016/540

7. Sonia Belard, Fabrice Benhamouda, Alain Passelégue, Emmanuel Prou!, Adrian Thillard, and Damien Vergnaud.
Randomness complexity of private circuits for multiplication. In Marc Fischlin and Jean-Sébastien Coron, editors,
EUROCRYPT 2016, Part Il , volume 9666 of LNCS, pages 616—648. Springer, Heidelberg, May 2016.

8. Sonia Belard, Fabrice Benhamouda, Alain Passelégue, Emmanuel Prou!, Adrian Thillard, and Damien Vergnaud.
Private multiplication over finite fields. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part lll ,
volume 10403 of LNCS, pages 397-426. Springer, Heidelberg, August 2017.

9. Sonia Beldrd, Jean-Sébastien Coron, Emmanuel Prou!, Matthieu Rivain, and Abdul Rahman Taleb. Random
probing security: Verification, composition, expansion and new constructions. In Daniele Micciancio and Thomas
Ristenpart, editors, CRYPTO 2020, Part | , volume 12170 of LNCS, pages 339-368. Springer, Heidelberg, August
2020.

10. Sonia Belard, Matthieu Rivain, and Abdul Rahman Taleb. On the power of expansion: More e"cient constructions
in the random probing model. IACR Cryptol. ePrint Arch. , 2021:434, 2021.

11. Claude Carlet, Emmanuel Prou!, Matthieu Rivain, and Thomas Roche. Algebraic decomposition for probing
security. Cryptology ePrint Archive, Report 2016/321, 2016. https://eprint.iacr.org/2016/321

12. Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards sound approaches to counteract
power-analysis attacks. In Michael J. Wiener, editor, CRYPTOH99 volume 1666 of LNCS, pages 398-412.
Springer, Heidelberg, August 1999.

13. Jean-Sébastien Coron, Emmanuel Prou!, Matthieu Rivain, and Thomas Roche. Higher-order side channel secu-
rity and mask refreshing. In Shiho Moriai, editor, FSE 2013, volume 8424 of LNCS, pages 410-424. Springer,
Heidelberg, March 2014.

26

14.

15.

16.

17.

18.

19.

20.

21.

Jean-Sebastien Coron, Franck Rondepierre, and Rina Zeitoun. High order masking of look-up tables with common
shares. Cryptology ePrint Archive, Report 2017/271, 2017. https://eprint.iacr.org/2017/271

Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leakage models: From probing attacks to
noisy leakage. In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014 , volume 8441 of LNCS,
pages 423-440. Springer, Heidelberg, May 2014.

Louis Goubin and Jacques Patarin. DES and dilerential power analysis (the “duplication” method). In Cetin
Kaya Kog and Christof Paar, editors, CHESO99 volume 1717 of LNCS, pages 158-172. Springer, Heidelberg,
August 1999.

Hannes Grol3, Ko Stolelen, Lauren De Meyer, Martin Krenn, and Stefan Mangard. First-order masking with
only two random bits. In Begul Bilgin, Svetla Petkova-Nikova, and Vincent Rijmen, editors, Proceedings of ACM
Workshop on Theory of Implementation Security Workshop, TIS@CCS 2019, London, UK, November 11, 2019,
pages 10-23. ACM, 2019.

Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware against probing attacks. In
Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 463-481. Springer, Heidelberg, August 2003.
Pierre Karpman and Daniel S. Roche. New instantiations of the CRYPTO 2017 masking schemes. In Thomas
Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part Il , volume 11273 of LNCS, pages 285-314.
Springer, Heidelberg, December 2018.

Matthieu Rivain and Emmanuel Prou!. Provably secure higher-order masking of AES. In Stefan Mangard and
Francgois-Xavier Standaert, editors, CHES 2010, volume 6225 of LNCS, pages 413-427. Springer, Heidelberg,
August 2010.

Kai Schramm and Christof Paar. Higher order masking of the AES. In David Pointcheval, editor, CT-RSA 2006,
volume 3860 of LNCS, pages 208-225. Springer, Heidelberg, February 2006.

27

A Proofs

A.1 Proof of Theorem 1
We consider that we have/ compilers CC4,...,CC-, and we want to prove the following result:

Lemma 9. Let CC1,...,CC+ RPE compilers with expanding functions f1,...,f+. The dynamic
expanding compiler for CC1,...,CC+ ,which on input circuit C outputs the compiled circuit CCh o
-0 CC1(C), is an RPE compiler with expanding function f such that

f= frowofi

It can be seen that proving Lemma 9 implies proving the result of Theorem 1. Indeed, we can
replace/ in the lemma by k1 + ...+ ky from Theorem 1 and consider the corresponding compilers
with their expansion levels. Thus, we will prove in this appendix Lemma 9 and the proof of the
Theorem will follow directly.

To prove the lemma, we Prst start by introducing some depbnitions from [9] for random probing
expandability of level-¢ with di"erent sharing orders nj,...,n- gadgets. First, we introduce a gen-
eralized dePnition of adequate subsets of [n1 x ... x n»] as in [9]. For this, we debne recursively a
family Sk € P([n1 x ... x ng]) for k£ < ¢, where P([n1 x ... x ng]) denotes the set of all subsets of
[n1 X ... x ng], as follows:

Si(n,t) ={I € [n], [I| <t}
Sk({ni Yiemp {ti Yiewn) = {1, - -+, Iny) € (Sk—1({ni Yiep—1p; {ti Yiew—1p) Ulna x . ..nk—1])™,
I € Sk—1V j € [1,nk] except at most ¢y }
In other words, a subset belongs to Sk if among the ny subset parts of I, at most ¢ of them
are full, while the other ones recursively belong toSk_1. For simplicity, we will sometimes denote
Sk without the parameters ({n }ic[, {ti }ieg) Which will be implicit in the notation. We will also

denote for simplicity Nj = ny-...-n; fori € N,
Then we recall the generalized debnition of RPE withSy for level-k gadgets.

Definition 12 (Random Probing Expandability with {Sk}ken). Let f : R — R and k € N.

An Ny-share gadget G : KNk x KNk — KNk s (S, f)-random probing expandable (RPE) if there

exists a deterministic algorithm Sim? and a probabilistic algorithm Simg such that for every input

(z,79) € KNe x KNk | for every set J € Sk U[Ni] and for every p € [0,1], the random experiment

W < LeakingWires(G, p)
(I, I, J') « Sim$ (W, J)
out +— Sim?(W, J 2, 7h,)

ensures that

1. the failure events F1 = (Il ¢ Sk) and Fo = (Iz ¢ Sk) verify
Pr(F1) =Pr(F2) = ¢ and Pr(FiAFo) = &2 (19)

with € = f(p) (in particular F1 and Fy are mutually independent),

28

2. the set J' is such that J' = J if J € Sk, and J' =[N]\ {j } for some j € [Ng] otherwise,
8. the output distribution satisfies

out ¥ (AssignWires(G, W, (Z,7)) , Zl3") (20)
where Z = G(Z, 7).
We are now ready to prove Lemma 9.

Proof (Lemma 9). We will prove the Lemma recursively. In other words, we will suppose that we
have RPE compilers CC1,...,CCy with expanding functions fi,..., fx and (&, fi)-RPE gadgets
for eachi < k, and we will prove that the gadgets of the expanding compilerCCk o --- o CC1 are
(Sk, f)-RPE with f = fi o---o f1. This will imply that the expanding compiler CCixo---o0CCy is
RPE with expanding function f.

The base case is one of the theorem hypotheses, namely for 1, the level-1 gadgets are (1, f1)-
RPE, which is equivalent to (S1, f1)-RPE. We must then show the induction step: assuming that the
level-k gadgets are Gk, fko- - -0 f1)-RPE, show that the level-(k+1) gadgets are (Sk+1 , fk+1 ©- - -0 f1)-
RPE. For the sake of simplicity, we depict our proof by assuming that all the gadgets are 2-to-1
gadget (which is actually not the case for copy gadgets). The proof mechanism for the general case
(with 2-to-1 and 1-to-2 gadgets) is strictly similar but heavier on the form. We also denote in the
following

— & = fko--- fi(p),

— G¢C« to be a gadget of the expanding compiletCCy,

— GWM) to be the gadget resulting from applyingC'Cy_10. ..oCC1(GCC), i.e. obtained by replacing
each gate of the base gadgeG©C« by the corresponding level-¢ — 1) gadget G~ and by
replacing each wire of the base gadget byVy_; wires carrying a Ny_i-linear sharing of the
original wire.

In order to show that a gadget G&*1D is (Sk+1,ex+1)-RPE we must construct two simulators
Sim‘f(kﬂ) and Simg(m) that satisfy the conditions of Debnition 12 for the set of subsetsSk. .

More precisely, we must construct two simulators Simf(kﬂ) and Simg(m) such that for every
(z*, %) € KNk KN+ | and for every setJ* € Sics1 U [Ni+1], the random experiment

W* « LeakingWires(GK*D p)

(I3, 13, 7)< Sim&“™ (w*, J7)

out Sim§"™ (W*, %, 7 1#,5*12)
ensures that
1. the failure events 7 = (I3 ¢ Sk+1) and F5 = (15 ¢ Sk+1) verify
Pr(F;) =Pr(F3) = exs1 and Pr(F; AF3) = eiyy (21)

2. the set J*' is such that J*' = J* if J* € Sk+1 and J* =[Ng+1]\ {j } otherwise,
3. the output distribution satisbes

out 8 (AssignWires(G(k+1) S W(Z,9)) 5 Zly#) (22)

wherez = G (z 7).
We distinguish two cases: eitherJ* € Sk+1 (hormal case), or J* = [Ni+1] (saturated case).

29

Normal case: J* € Sk41. By debnition of the expanding compiler, we have that a level-f + 1)
gadget G s obtained by replacing each gate of the base gadg&t“C«+ of the compiler CCi1
by the corresponding levelk gadgetG(K) and by replacing each wire of the base gadget by, wires
carrying a Ni-linear sharing of the original wire. In particular G(*1) has Ny1 output wires which
can be split in nx+1 groups of Ny wires, each group being the output of a di"erentG(K) gadget. We
split the set J* accordingly so that J* = JyU---UJy; ., where each set/;" pertains to the ith group
of output wires. By dePnition of Sk, since J* € Sk+1, we must have J € S for all 1 < i < g1,
except at most tx+q of them for which J* = [Nx]. We dePneJpase as the set of indexes such that

Ji ¢ Sk. Therefore we must have|Jpase| < ti+1 -

We Prst describe the simulatorSim(f(kﬂ) that takes the leaking wires W* and the output wires

J* € Sk+1 to be simulated and produce the setd; C [Ny+1]and I3 C [Ni+1] of required inputs. The
simulator Sim%(kﬂ) starts by debning a setWpase Which is initialized to (; this will correspond to
the set of leaking wires for the base gadgef©C+1 . Then the simulation goes through all the level%
gadgets composingZ®*1) from bottom to top i.e. starting with the level- & gadgets producing the

output sharing up to the level-k gadgets processing the input sharings. Let us denote b\]Gj(k) H
these level4 gadgets. For eacth(k), one runs the simulator Sim; from the (Sk, fk o ... o f1)-RPE
property on input W and J; dePned as follows. The set of leaking wire®/; is dePned as the subset
of W* corresponding to the wires ofGJ-(k). For the gadgetst(k) on the bottom layer, the set J; is
set to one of the J* (with indices scaled to range in [Vi]). For all the other gadgets Gj(k) (which
are not on the bottom layer), the set J is debPned as the sef; or I» output from Sim, for the child
gadgeth('f) (for which Sim; has already been run).

Whenever a failure event occurs for aGJ-(k) gadget, namely when the setl (either I or Iy)
output from Sim; is such that I ¢ S, we add the index of the wire corresponding to this input
in the base gadgetGCC«+1 to the set Whase. ONce the Sim; simulations have been run for all the

Gj(k) gadgets, ending with the top layers, we get the bnal set$ corresponding to the input shares.

Each of these sets corresponds to afvg-sharing as input of an(k) gadget, which corresponds to a
wire as input of the base gadget among the 2ny+; wires carrying the two input ng+1 -sharings of
the base gadget. We denote byy,, ..., I, ., and I7,, ..., I3, . the corresponding sets so that
debning

IT=1,U...Ul{,, and IT=1,U...Ulz, (23)

the tuple z*|;# and y*|;# contains the shares designated by the bPnal sets.

At the end of the Sim(f(kﬂ) simulation, the set Wyase contains all the labels of wires in the base

gadget GCCx+1 for which a failure event has occurred in the simulation of the correspondingﬂj(k)
gadget. Thanks to the (Sk, ek)-RPE property of these gadgets, the failure events happen (mutually
independently) with probability ex which implies

Whase u LeakingWires(GCC‘<+3L L EK) (24)
Recall that |Jpase| < tk+1 . We can then run Simfcck+l to obtain:
(I1,pases 12,pase) = Sim?CCkﬂ (Whase, Jpase) - (25)

30

For all 1 < i < ngsq, If @ € Iy pase, We force I7; < [Ni], so that the correspondingi-th input
wire of the base gadget can be computed from the corresponding input wires if ;. The simulator

Sim&“™ then returns (1%, I3) as output.

The (tk+1, frs1)-RPE property of the base gadgetGCCx+ implies that the base failure events
|11 pase] = nk+1 and |Izpasel = nk+1 are ex+1 -mutually unlikely, where ex+1 = frs1 (ex). We argue
that for all 1 <7 < ng+1, I7; ¢ Sk <= i € I1pase. Namely if a failure event has occurred for a
set I7; (i.e. IT; ¢ Sk) then we must havei € I pase- Indeed, if a failure event has occurred for a
set I7; then the label of the ith input wire (for the Prst sharing) of the base gadget GCCx1 has

CC 4 . . .
been added toWj,se and Sim? ! has no choice but to include this index to the set]1 pase SO

that Sim‘zBCCk+l can achieve a perfect simulation of the wire assignment (as required by the RPE
property of GCCx+1). Moreover if i € I pase then by construction we have setly; = [Ny] and
therefore I7; ¢ Sk. This implies that if |I1pase| < tk+1 then I € Sk+1 (and the same happens for
I35 w.r.t. Ippase)- We deduce that the failure events 7} and F; are alsoesy+1 -mutually unlikely, as
required by the (Sk+1, ex+1)-RPE property of G+

We now describe the simulatorSimg(kﬂ) that takes as input z*|;# and y*|;s and produces a

perfect simulation of (AssignWires(G&*D W, (z*,7%)),2]3#) where z = G&*D (z,7). Let z° and
7P denote the ny.1 -linear sharings obtained by applying the linear decoding to each group ofV
shares inz* and 7*, so that the elements ofzZ” and 3 correspond to the input wires in the base
gadget GCCx+1 | The assignment expansion property implies that a perfect assignment of the wires
of GK&*D) on input z* and 7* can be derived from an assignement of the wires of the base gadget
GCCx+1 on input zP and 3P. The simulator makes use of this property by brst running

CCk+1

Outpase < Simg (Wbase7 Jbase; §b|l 1.base ? ?/J\b’I 2,base)) (26)

Note that the input values z°);, ... and §°|;, ... can be obtained from the corresponding shares in
I; and I;. Thanks to the (tk+1, fk+1)-RPE property of G¢C«+1 and by construction of I1 pase and
I> pase, this outputs a distribution satisfying

Outpase d (ASSignV\/i"eS(GCCMl , Whase, (i/fba gb))) gb|Jbase> (27)

The simulator then goes through all the Gj(k) gadgets from input to output and for each of them
runs the simulator Sim, of the RPE property on inputs Wj, Jj, z|;, and y|;, where W; and J; are

the sets from the brst phase of the simulation for the gadgeGj(k), I; and I, are the corresponding

sets produced by theSim; simulator for Gj(k), and z and y are the inputs of Gj(k) in the evaluation
of G&*1) (z*,). Provided that the partial inputs Z|;, and 7|, are perfectly simulated, this call
to Sim, produces a perfect simulation Of(AssignWires(Gj(k),W ,(Z, g),?bj) where z = Gj(k)(?f, v)-
In order to get perfect simulations of the partial inputs z|;, and y|,,, the simulator proceeds as
follows. For the top layer of G(K) gadgets (the ones processing the input shares) the sharé§, and
y|i, can directly be taken from the inputs z*|;# and |, ;. For the next gadgets the sharesz|;, and
yli, match the sharesz|; output from the call to Sim, for a parent gadget. The only exception
occurs in case of a failure event.

In that case the simulation needs the full inputz = (z1,...,2zn,) (@nd/or ¥ = (y1,...,9n,)),
while we have set|I;| = N¢ — 1 (and/or |I] = (Nk — 1) to satisfy the RPE requirements of the

31

parent gadget in the prst simulation phase. Nevertheless, for such cases a perfect simulation of the
plain value x = LinDec(Z) (and/or y = LinDec(y)) is included to outpase by construction of Wyase.
We can therefore perfectly simulate the missing share from theVy — 1 other shares and the plain
value z (or y). We thus get a perfect simulation of (AssignWires(Gj(k),W ,(Z,79),7]y,) for all the

level-k gadgetst(k) which gives us a perfect simulation of(AssignWires(G®*D W™, (z*,5%)), 2|3+).

Saturated case: J* = [Niyt1]. The saturated case proceeds similarly. The di"erence is that we
must simulate all Ng+1 output shares of the level-¢ + 1) gadget, except for one share index* that
can be chosen by the simulator.

The simulator Sim(f(kﬂ) is debPned as previously. Since/* = [Ng+1], we must dePneJpase =

[1, nk+1]. Moreover we haveJ; = [Ni] for all 1 < i < ni+1. This implies that for the gadgets Gj(k)
on the output layer, the sets J; are all equal to [Vk] as well. The setWpase is dePned as previously,
and the simulator Sim?(kﬂ) returns (I, I5) as previously. The failure events 7} and F; are still
ex+1 -mutually unlikely, as required by the (Sk+1 ,ek+1)-RPE property of G+ |

The simulator Simg(k”) is debned as previously. In particular, from the running of the base
gadget simulatorSim§CC ", we obtain a perfect simulation of the output Wire32b|Jg for someJ{ e
with [Jj.cel = nk+1 — 1. Combined with the perfect simulation of the output wires corresponding
to the output sets Jj’ from the gadgetst(k) on the output layer, with |Jj’\ = Ny — 1, we obtain a
subset.J’ of output wires for our level-(k + 1) gadget with |.J’| = Ny+1 — 1 as required. Eventually
this gives us a perfect simulation of (AssignWires(G**D W* (z*,5%)),%|;"). This terminates the
proof of Lemma 9. As stated earlier, proving Lemma 9 implies proving Theorem 1. Thus, this also
terminates the proof for the theorem. !

A.2 Proof of Theorem 2

Proof. Let {CC;}i be afamily of circuit compilers with complexity matrices { Mcc; }i. Given a circuit
C with its complexity vector N¢ as described in Section 2.4, it can be veribed that the complexity

of the compiled circuit C= CCﬁ“ ERREES o CC'f(C) satispes
— 2K k
Ng = Mcg“ ..o Mee, - Nc

If we denote Mcc, = Qi - A - Qi‘l to be the eigen decomposition of the matrixMcc,, then we get

Ne = Qu- A -Qpt-...-Qu- A% Q- Ne (28)

We consider in the theorem that the expansion levelgk;}; are the main parameters. We can also
see from (28) that the complexity of the compiled circuit is expressed in terms of the eigen matrices
to the powers k; as A:‘i. The parameters {k;}; do not a"ect the matrices {Qi,Qi‘l}i. Then, if we
denote)\ := max eigenvalues(Mcc;) i.e. the maximum of the eigenvalues inA;, then we get that
in terms of the parameters{k; }i, the complexity of the compiled circuit C can be expressed as

= (i)
which gives
U
Cl = |cl-o(TTInl)
i=1

which concludes the proof of Theorem 2. !

32

A.3 Proof of Theorem 3

To prove Theorem 3, we introduce the following lemma.

Lemma 10. Let CC; be an RPE circuit compiler of amplification order di and complexity si. For
any probability

1 di+1
< Z. 29
b= 2 s —dj (29)
the expanding function fi of CC; is upper bounded by
si\ g
hw <2) (30)
|

Proof (Lemma 10). Let us brst recall the following general bound onf;:

EES (j)ﬂ , (31)

j=di

for any p € [0,1). From (29), for any j € [s;], we get:

(a)r =20

=22 (3)) = (B 5 G =2(3)

which gives

Proof (Theorem 3). We show that for every p satisfying

1/1\a1 /g \ e -
<7 - _
p e(2e> <5i> (32)

ﬁ’:p»—>2<2:>pi)

we have fi(p) < p. Let us debne

(the upper bound on f; from Lemma 10). The equation £(v) = ~ has the following solution

(Si : <;>i<|0(1))di 7

which, from

N

RSICS

~——
IN

further satisbes

We deduce that (32) impliesp < ~ which further implies f(p) < p. Moreover (32) implies

_1(d d.f1<}ﬂ<} 4 +1
P 2 S 2 s 2 s —d’

which, by Lemma 10, further implies fi(p) < f(p). We hence deduce that (32) impliesfi(p) < p
which concludes the proof.

A.4 Proof of Corollary 1

Proof (Corollary 1). For any function f(p) = c- p%, we have

FRI(p) = (0 Tk 2any a1 gty)d b

When ¢ =2 (3'.) Equation (11) from Theorem 3 gives the brst and the second inequalities. !

A.5 Proof of Lemma 6

Proof. Gemuit has the exact same wires as the underlying+efresh €xcept for the extra input wires
{a1,...,an} (the wires multiplied by the constant i.e {c- a1,...,c-an} are the input wires to
Ghefresh)- SO to simulate probes onGemuie , We use the simulator of Grefresh. Each probe which is in
the set{a1,...,an} will be replaced by the corresponding input share multiplied by the constantc,
in the set of probes onGefresh, Which would lead to a probe on an input share 0fG efesh Of the form
c-aj. It is clear that if we can perfectly simulate ¢ - a; in Grefresh, then we can perfectly simulate
the input share a; in Ge¢mye - Thus any set of probes onGemyie is simulated using the simulator of
Grefresh With the exact same number of probes. Hence, it efresh IS (¢, f)-(T)RPE n-share refresh
gadget of amplibcation orderd, then the gadgetGemy is also ¢, f/)-(T)RPE of amplibcation order

d. This concludes the proof. !

A.6 Proof of Lemma 2

Proof. Let Grefresh be a (¢, f)-TRPE refresh gadget for any t < n — 1 with amplipcation order
d > min(t + 1,n — t) and which satisbes Debnition 9. We will prove that the construction of
Gadd Using Grefresh described in Section 4 is {, f)-TRPE for any ¢ < n — 1 of amplibcation order
min(t +1,n — t). This amounts to proving that:

1. Any set of leaking wires W such that |IW| < min(t +1,n — t) can be simulated together with
any set of outputs wires J C [n] from sets of input wires I; on ¢ and I on b such that
|1a] < min(t, [W]) and |Iz| < min(t, [W]).

2. Any set of leaking wires such that min¢+1,n—t) < |W| < 2min(t+1,n —t) can be simulated
together with any set of outputs wires J C [n] from sets of input wires I1, I> such that |I;| <
min(¢, |W|) or |I2| < min(t, |W|) (because of the double failure,i.e failure on both inputs).

Indeed, this amplibcation order being the maximum one achievable by 2-input addition gadgets, it
would conclude the proof.

We will denote (e1,...,en) = Grefresh(a1,...,an) and (f1,..., fn) = Grefresh(b1,...,bn). Then
the gadget G,qq consists in the sharewise addition €1 + f1,...,en + fn) as described in Section 4.

34

We proceed by building the necessary simulators fo5qq from the simulators that already exist for
Ghrefresh- Concretely, we split each setV of leaking wires, into four subsetsW = W] UW2UW; UW2
where W] (resp. W3) is the set of leaking wires during the computation ofGiefresh(as, - - - , an) (resp.
Ghrefresh(b1, - - ., b)), and W3 (resp. W3) is the set of leaking wires of €1, ..., en) (resp. (f1, ..., fn))-
We can see thatW] U W3 (resp. W3 U W3) contains only leaking wires during the computation
of Grefresh(ai, ..., an) (resp. Grefresh(b1,...,bn)). We now demonstrate how we can simulatelV
when the output set J is of size less thatt ((T)RPE1) and when it is of size strictly more than ¢
((MRPEZ2).

— if |J| <t ((T)RPE1): we prove both properties 1 and 2:

1. we assume that|W| < min(t + 1,n — t). We construct a new set of probes onds,...,en)
that we denote Je such that Je = W2U{e; | i € J}. Similarly, we construct the set of probes
on (fi,...,fn), Js = WS U{fi | i € J}. Itis clear that if we can perfectly simulate W7,
W5, Je and J;, then we can perfectly simulateW, and J (for eachi € J, we can perfectly
simulate ¢; in Je and f; in J; so we can perfectly simulatee; + f;). We denote [W2| = m
and |W§| = m/. We have

Wil <min(t+1,n—t)—1—-m , |Jo| <t+m

and
Wil <min(t+1,n—t)—1-m/, |, |J|<t+m

From the (¢, f)-TRPE property of Giefresh for any t < n — 1 and specibcally fort’ = t + m
with amplibcation order at least & = min(t+1+ m,n — ¢ —m), and since |W] | < min(¢ +

1n—t)—1—-—m < d — 1, then there exists an input set of shares ofu I; such that
|I1] < min(t+ m,|W{|) = |[W]| < |W]| and I; perfectly simulates W] and Je.

Similarly, there exists an input set of shares ofb I such that |I| < min(¢t + m/, |[W5]) =

|W5| < |W| and I, perfectly simulates W3 and J; .

From these dePnitions,/; and I, together perfectly simulate W and J and are both of size
less than min(t, |WV[), which proves the brst property in this scenario.

2. we now assume that min¢+1,n—t) < |W| < 2min(¢t+1,n —t). Without loss of generality,
let us consider that [W] UWZ3| < min(t+1,n —t) <t (the proof is similar in the opposite
scenario). As in the brst property, we construct a new set of probes oreg, ..., ey) that we
denote Je such that Jo = W2U{e; | i € J}. We bx the set of input sharesl; onb asI, = [n],
so we can perfectly simulate all probes iV} and W% using the full input b. Next, we need
to prove that we can perfectly simulate all probes inWj and Je similarly as before. We
denote |IW2| = m. We have

Wil<min(t+1,n—t)—1-m , |Jo|<t+m

From the (¢, f)-TRPE property of Gefresh for any ¢ < n — 1 and specibcally fort’ = ¢t + m

with amplibcation order at least & = min(t+1+ m,n — ¢ —m), and since |[W] | < min(¢ +

1n—t)—1-—m < d — 1, then there exists an input set of shares ofu I; such that

[I1] < min(t+ m,|W]|) = |Wj| < |W]| and I, perfectly simulates W] and Je.

From these debnitions,/; and I» together perfectly simulate W and J (J is simulated by
perfectly simulating each: € J by using ¢; in Je and simulating f; using the full input b),

and we only have a failure on at most one of the inputs § in this case). This concludes the
proof for the second property.

35

At this point, we proved that Gaqq achieves an amplipcation order greater than or equal to

min(t+1,n—t) for TRPEL. Since this amplibcation order is the maximum achievable by 2-input

addition gadgets, then G4qq achieves an amplibcation order exactly equal to min(+1,n — t).
— if |J| >t ((T)RPE2): we prove both properties 1 and 2:

1. we assume that|WW| < min(t+1,n—t). As before, we splitW asW = W] UWfUW; UW3.
We consider J' = {i | ¢ € W2} U{i | fi € W5} so we have|J'| < |WP|+ |[W§|. We
also construct the setW" which contains the set of leaking wires on the Prst instance of
Grefresh (ON input @) in W7, and all the wires that are leaking within the second instance of
Grefresh IN W35 . Hence, we have that|W'| < |W] UWJ| < min(t+ 1,n — t). Hence, we have
[W'+ |J'| <min(t+1,n—t) <n—1, so by Debnition 9 satisbed byG efresh, there exists a
set of output shares indices/ such that J' C J and |J| = n — 1 such that W" and J can be
perfectly simulated from a set of input shares indiced such that |I| < [W'|+ |J'|. Thus, we
can bxI; ona and I; on b such that I; = I, = I and we bx the set ofn — 1 output shares
indices onGaqq as the same indices inJ. Hence, we can perfectly simulate all wires ini/’’
and J, so we can perfectly simulate all wires ini/] and W3 and W and W3 as well asn — 1
output shares of Gaqq Using I1 and I such that [I1] = || < [W'|+ |J'| < |W|=min(t,|[W]).
That concludes the proof for the brst property.

2. we now assume that min¢+1,n—t) < |W| < 2min(¢t+1,n —t). Without loss of generality,
let us consider that |W] U W| < min(t +1,n — t) (the proof is similar in the opposite

scenario).
We bx I, = [n] on input b, which allows us to perfectly simulate all wires and output
shares onGefresh instance with input sharing (b1, . .., bn), including W3 and W3. Next, we

setJ' = {i | ¢ € W{}. Since |Wj|+ |J'| < n — 1, by Debnition 9 satisPed byG/efresh,
there exists a set of output shares indices/ such that J' C J and |J| = n — 1 such that
W1 and J can be perfectly simulated from a set of input shares indiced; on a such that
|I] < [WT|+ || < |W]|+|W2| < |W|. Thus, we can bx the set of—1 output shares indices
on Gagq as the same indices inJ. We can perfectly simulate all output shares indexed inJ
since for eachi € J, we can perfectly simulatee; using I; and f; using the full input b in I,
so we can perfectly simulatee; + fi. Hence, we can perfectly simulate all wires i/ as well
asn — 1 output shares of Gaqq USing I1 and I> such that |I;| < |[W{ |+ |[W{| < min(t,|W])
and with a failure on input b with I, =[n]. That concludes the proof for the second property.

We thus proved that G,4q achieves an amplibcation order greater than or equal to min1, n—t)
for TRPE2. Since min(t + 1,n — t) is the maximum order achievable for TRPE2 for a 2-input
gadget, then G4qq achieves exactly the order min¢+1,n — t).

Since Gaqq has an amplibcation order equal to minf+1,n —t) for TRPEL1 and TRPE2, then Gaqq
is a (¢, f/)-TRPE addition gadget for some function f’ of amplibcation order min(t+1,n —t), which
concludes the proof. !
A.7 Algorithm for the O(nlogn) Refresh Gadget

A.8 Proof of Lemma 3

Proof. We will prove that the gadget from Algorithm 3 is (¢, f)-TRPE for any ¢t <n — 1 of ampli-
Pcation orderd > min(¢ + 1,n — t). For this, we will prove both properties TRPE1 and TRPE2.

36

Algorithm 3: QuasilLinearRefresh

Input : (aa,..., an) input sharing

Output: (dq,..., dn) such that d; + a4é& dy, =a; +4aé& a,
if n=1then return a;

if n=2then

r#$;

return (ap +r,az; & r);

end

for i # 1to $n/2%do

r# $;

b # a +r;

sy 206 i # Qg 2061 & T

end
if n mod2=1then b # an;
c,. .., Csn/ 2990 # QuasiLinearRefresh(by, ..., bers 209);
(CPI I Cn) # QuasilLinearRefresh(bsn 2061 5« - » bn);
for i # 1to $n/ 2%do
r# $;
d# ¢ +r;
g/ 206 i # Csns 2061 & 15
end
if n mod2=1then d, # cn;
return (di,..., dn);

Proof for TRPE1

The gadget is proven to be @ — 1)-SNI in [5], thus it is (t, f)-TRPE1 of amplibcation order
d > min(t +1,n — t) thanks to Lemma 6 from [10]. Note that we can bnd failure sets of wires
of sizet + 1 which require the knowledge oft¢ + 1 input shares (simply consider the leaking wires
{a1,...,at+1 } on input a for instance), sod <t +1.

Proof for (n — 1)-STRPE2 (which implies TRPE2)
We will brst start by recalling the result of Lemma 5 in [5] which will be useful for our proof.

Lemma 5 from [5]. Let a1,a2 € K be inputs, and let r & K . Let V be a subset of the variables
{a1,az,7} and O € {0, {a1+ r}}. Then the variables in V UO U{a2—r} can be perfectly simulated
from I C {a1, a2}, with |I| < |V|+2 -|0]|.

Proof of Lemma 5 from [5]. If |O] = 1 or |V| > 2, we can takel = {as,a2}. If |O] = 0 and
|[V| = 0, we can simulate a; — r with a random value. If |O| =0 and |V| =1, if V = {a1} we let
I = {a1} and we can again simulatea; — r with a random value; if V' = {r} or V = {a2} then we
let 7 = {az}. !

We are now ready to prove our main result. For TRPE2, we will prove the slightly stronger
property (n—1)-STRPEZ2. We can clearly see that ¢ — 1)-STRPEZ2 implies TRPE2 of amplibcation
order d = t+1 as shown in Remark 1. We will prove (» — 1)-STRPEZ2 by recurrence on the number
of sharesn > 2.

37

%

%

VO by Vi c V3
) g : & — % : &
b 2 Cn/ 2
R1
1
" % % B
Pyt "L) Cyon
— L ﬁ . /ﬁg Lo ——
bn Cn
R2
P}
) D —)
V2

Fig. 4: O(nlogn) refresh gadget from [5]

The gadget in the base caser(= 2) gives the following output sharing:

di<+ a1+ r
dp—az+r

The proof in this case is easy. Mainly, ifJ’ = (), it is easy to see that we can choosé of size 1 such
that we can perfectly simulate W and J from a set of input shares! on a such that |I| < |W]| < 1.
Otherwise, if |J’| =1, then |W| =0, and we chooseJ = J’ and in this case we havell| = 0, since
we can perfectly simulate any of the output shares alone by simply generating a freshly random
value. This concludes the proof for the base case.

Next we suppose that the gadget is ¢’ — 1)-STRPE2 for any number of sharesn’ < n, and we
prove the property for n shares.

To prove this, we split the gadget into four subgadgets as in Figure 4, where gadgel, corre-
sponds to the Prst loop in Algorithm 3 which adds|n /2] random values to the sharing,R; and R;
gadgets correspond to the two recursive calls respectively, anfio gadget corresponds to the second
loop which also add|n/2] random values to the output sharing. We split any set of probesi” on
Ghrefresh iNto W = VO U VT U V2U V2 on each of the subgadgetd,,, R1, R> and Lo respectively.

The gadgetR; is a gJ—share gadget whileRy is [g}share gadget. We consider that there are no

probes on the output shares ofR; and R, as they can be probed throughi/3. Similarly, we consider
no output probes on L;, since they can be probed throughV'! and V2.

Let W bet the set of probes onGiefresh and J' be the set of output shares indices such that
W1+ |J'| <n—1. We will construct the sets J; and .J; for output shares of the gadgetsR; and
R, as follows:

— foreachic J'N | {%J |, add i to Jj
— foreachic J'N | {%J +1:n],addito J;
— for eachi € | L%J | such that the input probe ¢; to Lo is probed in V3, add i to J;

— for eachi € [L%J +1: n] such that the input probe ¢; to Lo is probed in V3, add i to .J}

38

It can be seen that if we can perfectly simulateJ; and .J5, then we can perfectly simulate.J’ and

all probes in V3 (V3 is composed of input probes; and random variablesr;, since probes of the
form ¢ + r; are probed in J’). Observe that we also have|.J;| + |J5| < [V3| + |]'].

In order for the recurrence hypothesis to hold, we need the following condition to hold for the
gadget Ry:

1 I < E _
Vs A< 5] -1 (33)
and the following for the gadget R»:
2 / n
< |Z] =
V3 |l < 5] -1 (34)

We consider three cases based on the sizes of the sets of probes:

— V2] + T4 > EW Then we must have| V1| + | J]| < g
n—1and|Jj|+ |J5 <|V3]+ ||
Since (33) holds, by the recurrence hypothesis omk;, we can choose a sef/; of size {%J -1

J —1, because we have thafWW |+ |.J'| <

such that J; C J; and we can perfectly simulate./; and V! from a set of input shares I
on (b1, ..., b 2)) such that |I;| < V1| + |J;|. Since (34) does not hold forR,, we can set

Jp = W%W :n] and I = M%W : n], and pnally setJ = J; U J, of n — 1 output shares on

Grefresh- We can see that.J, C J, and J, and V2 can be perfectly simulated from I, trivially
(full input).

Next, we show how to perfectly simulate the setsl;, I> on intermediate variable b, and Vo,
In fact, thanks to the properties of the L, gadget, we can apply Lemma 5 from [5] for all
1 <i < |n/2] on each set of intermediate variables{ai,atn, 2J+i,ri} and output variable b =
ai + i, where all output variables by 2)+i = a|n2)+i — ri must be simulated (since we bxed

I = [{gw : n]), and by summing the inequalities, we construct/ C [n] on n-share input a to

perfectly simulate 11, I> on intermediate variable b, and V9 such that
11| < VO +2|L1] + (nmod 2) < |VO| +2(|V+ |J1])+ (n mod 2)

where (» mod 2) comes from the fact that we need to perfectly simulate all shares obfy, 2, .. ., bn)
and if n mod 2 =1, then b, = an by construction of the gadget L, .
From (33) which holds in this case, observe that we have

VA + i+ (nmod 2) < | 2] < [5] < V2l + 13,

then we have
(I < VO +2([VH + [Ji)) + (n mod 2) < [VO + [V + |Jj| + [VZ] + |T3|
which gives
Il < [W[+|J'|
and using the input shares inI, we can perfectly simulate probes inV’°, I; and I», and using
I and I, we proved that we can perfectly simulate probes inV1, V2, J; and .J», and so we can
also perfectly simulate the chosen set ofi — 1 output shares J and probes in V3. So we can

perfectly simulate all internal probes plus the chosen set/ of n — 1 output shares from . This
proves the recurrence step in this case.

39

— [V + 3| > EJ Then we must have|V?2|+ |J3| < [21 —1, because we have thatiV|+ |J/| <
n—21and|Jj|+ |J5 < V3] + |J|.
Since (34) holds, by the recurrence hypothesis oRR,, we can choose a sefl, of size gw -1

such that J; C J, and we can perfectly simulate ., and V2 from a set of input shares I»
on (b 2],---,bn) such that || < |V2| + |J]. Since (33) does not hold forR;, we can set

Ji=] {%J Jand I = | {%J |, and Pnally setJ = JyU.J> of n— 1 output shares onGiefresh. We

can see that.J; C J; and J; and V! can be perfectly simulated from I3 trivially (full input).

Next, we show how to perfectly simulate the setsl1, I on intermediate variable b, and V°. In
fact, thanks to the properties of the L, gadget, we can apply Lemma 5 from [5] for all 1<
i < [n/2] on each set of intermediate variables{ai, a|n 2j+i,7i} and output variable by, i+ =
ain 2)+i — i, where all output variables b = aj + i must be simulated (since we bxed =

[{%J]), and by summing the inequalities, we construct! C [r] on n-share input a to perfectly
simulate I, I» on intermediate variable b, and V° such that

[T < [VO| +2|I| < |VO[+2(|V?|+ |J5))

(in this case, we donOt have the termn{ mod 2) anymore because we do not need the full input
sharing (b 21, - - -, bn) for the simulation as before). Since (34) holds and (33) does not hold,
we observe that n n
2 N |l 1< |2 < 1 /
V2 + 5l < [5] -1 5] < vH+ 1Al

so we get
1] < VO 2|V + | J3]) < [VO + V2 + | J] + [V + |y

which gives
Il < [W]+|J'|

and using the input shares inI, we can perfectly simulate probes inV’°, I; and I», and using
I, and I, we proved that we can perfectly simulate probes inv1, V2, J; and .J», and so we can
also perfectly simulate the chosen set ofi — 1 output shares J and probes in V3. So we can
perfectly simulate all internal probes plus the chosen set/ of n — 1 output shares fromI. This

proves the recurrence step in this case.

— Vi + 134 < EJ —1land |[V2]+ |J5| < EW — 1. This case can be treated in the exact same

way as the above cases. Namely, if we havy@’t| + |J;| +(n mod 2) < |[V2|+ |J}], then we can
consider the prst case and treat it in the same way (by appyling the recursion hypothesis on

gadget R, and setting J> = | [gw n] and L = | %W ‘n].
Otherwise, if we have|V?|+ |.J5| < |[V|+ |J;|+(n mod 2), then we can consider the second case

and treat it in the same way (by appyling the recursion hypothesis on gadgetR, and setting
n

n
n=[|5|landn=[[Z]].
This also concludes the proof in this case.
By treating all possible cases on the probed wires, we conclude the recursive proof. This proves
that for any n shares such that|W| + |J'| < n — 1, we can choose a sef of n — 1 output shares
such that J' C J and we can perfectly simulateJ and W from a set of input shares such that

40

|[I| < |W|+ |J'|. Thus, we conclude that the gadgetGiefresh IS (n — 1)-STRPE2. Thus, it is also
(t, f)-TRPEZ2 of amplibcation order d = ¢+ 1. This concludes the proof. !

A.9 Proof of Lemma 4

Proof. We will prove in this appendix Lemma 4, i.e that the constructed multiplication gadget from
the composition of Gsypmurt satisfying (d—1)-Nland (d—1, 2d—1)-partial NI, and Gcompress Satisfying
(t, f')-comp-TRPE results in a (¢, f)-RPE gadget Gy with amplibcation order d = min(t+1,n—t).
First let us bPx t < n — 1. We will be splitting a set of probe W on the multiplication gadget into
two sets of probesW = W, U W, where Wy, are probes onGgpmuit (internal and output wires)
and W are probesGcompress (0N internal wires only).

We start by proving RPEL. Let J bet a set of output shares such that|.J| < ¢.

— Let W be a set of probes on the multiplication gadget such thaiW| = |Wy, UW| < d—1. We
know in particular from the comp-TRPE property on Gcompress that all wires in J and W, can
be simulated from a set of input sharesi; on the intermediate result ¢ such that |Ic| < |[W¢|
(since [W¢| < d — 1 < 2d). Then, we have a set of probedV}, = Wy U I on Gsypmuit Which is
of size|Wi| < [Wml|+ |Ic| < [Wmn|+ [We| < d— 1, then from (d — 1)-NI property of Gsupmuit
we know that all the probes in W}, can be simulated from sets of input shared, and I,, such
that [I3] <d—1<tand|ly <d— 1<t This proves that we can simulate all probes in the
overall set of probesW and in J from at most ¢ shares ofa and ¢ shares ofb. this proves the
prst property for RPEL.

— Next let W be a set of probes on the multiplication gadget such thatd < |W| = |Wyn U W¢| <
2d — 1. We need to show that we can simulatel’’ and J with at most a failure on one of the
inputs a or b. We know in particular from the comp-TRPE property on Gcompress that all wires
in J and W, can be simulated from a set of input shared, on the intermediate result ¢ such that
|Ic| < |[We| (since|We| < 2d—1 < 2d). Then, we have a set of probesV}, = Wi, UI; on Gsypmult
which is of size|W}, | < |[Wm|+ |Ic| < [Wm|+ |[W¢| < 2d — 1. Hence from ¢ — 1,2d — 1)-partial
NI property of Gsypmurt , @ll the probes in Wy, can be simulated from sets of input shared, and
Iy such that |I;| <d—1or|ly <d-—1<t Sinced=min(t+1,n —t), then this implies that
we have a failure on at most one of the inputs.

This proves that we can simulate all probes in the overall set of probes$¥ and in J from at
most ¢t shares of at least one of the inputs: or b (in other words, if we need more thant shares
of a, then we need at mostt shares ofb). This proves the second property for RPE1.

From the above two cases, we conclude that the multiplication gadget is#(f1)-RPE1 with am-
plipcation order d = min(¢+1,n —t).

Next we prove the property RPE2.

— Let W be a set of probes on the multiplication gadget such thaiW| = |Wy, UTW| < d—1. We
know in particular from the comp-TRPE property on Gcompress that there exists a set.J of n—1
output shares such that all wires in W, and J can be simulated from a set of input shared; on
the intermediate result ¢ such that |I¢| < |W¢| (since [W¢| < d—1 < 2d). Then, we have a set of
probes Wy, = Wy U Ic on Gsypmuir Which is of size|W,| < [Wm|+ [Lc] < [Wn|+ [We| <d -1,
then from (d — 1)-NI property of Gsupmuit We know that all the probes in W}, can be simulated

41

from sets of input sharesI, and I, such that |I3] <d — 1<t and |I,| < d— 1< t. This proves
that there exists a setJ of n — 1 output shares such that we can simulate all probes in the
overall set of probesiW and in J from at most ¢ shares ofa and ¢ shares ofb. This proves the
prst property for RPE2.

— Next let W be a set of probes on the multiplication gadget such thatd < |W| = |[Wn U W¢| <
2d — 1. We know in particular from the comp-TRPE property on Gcompress that there exists a
set J of n — 1 output shares such that all wires in W, and J can be simulated from a set of
input shares I; on the intermediate result ¢ such that |Ic| < |W¢| (since [W;| < 2d — 1 < 2d).
Then, we have a set of probedV;, = Wy UI; on Gsypmurr Which is of size|W,,| < [Wn|+ |Ic] <
[Wm|+ |[W¢| < 2d — 1. Hence as for RPE1L, from { — 1, 2d — 1)-partial NI property of Gsubmuit »
we have that all the probes in W/, can be simulated from sets of input shared, and I, such
that |I4] <d—1or |l <d—1<t. Sinced=min(t+1,n—t), then this implies that we have
a failure on at most one of the inputs.

This proves that there exists a setJ of n — 1 output shares such that we can simulate all probes
in the overall set of probesW and in J from at most ¢ shares of at least one of the inputs: or
b (in other words, if we need more thant shares ofa, then we need at mostt shares ofb). This
proves the second property for RPE2.

From the above two cases, we conclude that the multiplication gadget is#(, f)-RPE2 with am-
plibcation order d =min(t+1,n — t).

Combining both properties RPE1 and RPE2 with the same amplibcation orderd, we conclude
that the multiplication gadget is (¢, f)-RPE with f = max(f1, f2) and of amplibcation order d =
min(t + 1,n — t). This concludes the proof of lemma 4. !

A.10 Proof of Lemma 5

Proof. Let Geompress be the [m : n]-compression gadget from Algorithm 1 such thatm > 2n and let
Ghrefresh be the m-share refresh gadget such thatG efresh is (m — 1)-SNI and (m — 1)-STRPE2. We
will prove that Gcompress [: n]-compression gadget constructed with sucltriefresn is (¢, f)-comp-
TRPE. Let us denote (c1,...,cm) the input shares of Geompress, (da1,--.,dn) its output shares,
and (cj,...,cn) the refreshed shares of di, ..., cm) using Grefresh- We write m asm = Kn+ (¢
for K,/ € N such that K = |m/n]. For each 1< i < ¢, we haved; = ¢ + ...+ ¢, ¢, and for
(+1 <i<n,wehavedi = ¢+ ...+ ci’+(K —1)n- We will prove that Gcompress is (¢, f)-comp-TRPE.
This amounts to proving that vV W, |IW| < 2d — 1 a set of probes on the internal wires oficompress
whered =min(t+1,n —t):

1. V J,|J| <t a set of output shares ofGcompress: / and W can be simulated from a set of input
shares! of the input ¢ of Gcompress, Such that || < |W].

2. 3J',|J'| = n—1 a set of output shares ofGcompress, Such that J’ and W can be simulated from
a set of input shares! of the input ¢ of Gcompress, Such that || < |W].

We will prove both points separately

1. Let J be a set of output shares indices orGcompress such that |J| < ¢ forat < n —1 and
let d = min(t+1,n—t). Let W be a set of probes onG'compress Such that |[W| < 2d — 1. We
need to prove that we can perfectly simulateW and J from input shares indices in/ such that

42

|I| < |W]|. For this, We will simulate W and J using probes onGiefresh- First let us consider J
the set of probes such that) = {i | ¢/ e Wn{c},...,cn}}-
We construct the set W’ of probes onGefresh as follows:

W'={plpeW\{c,....cn}} (35)

In addition, we construct the set J’ of output shares onGhefresh as follows:

J=7 ol i+ Knpu Ui, i+ (K= 1)} (36)
ie) 1)

It is easy to see that if we can perfectly simulatel’’’ and J/, then we can perfectly simulate’V

and J sinceW = W/ u{c | i € J } and by perfectly simulating (c/,...,c,) for i € J such
that ¢ < ¢, then we can perfectly simulated; = ¢/ + ... + ¢/, ,, and by perfectly simulating
(d,... ’Ci/+(K—l).n) for ¢ € J such that i > ¢, then we can perfectly simulated; = ¢ + ...+

cla(k _1).ns thus all output shares in J are perfectly simulate using shares in/’. Hence, we need

to prove that we can perfectly simulate W’ and J’ using the G efresh m-share gadget.
Observe that since|J | < |[W \ W'[, then

|| < W\ W|+ K.|J|+min(t,¢) < K.t+min(t,/) (37)

where the term min(¢, /) comes from the worst case where all output shares < .J are such that
i < ¢, because in this case we add td’ all the indices (i,...,i+ K.n) instead of (i,...,i+(K —
1).n) according to (36). Also, according to (35), we havellW’| < |W|. Hence, we have

W'+ |J'| < W+ [W\W|+ K.|J|+min(t,£) < |[W|+ K.|J|+min(t,f) < 2d—1+ K.t+min(t,{)

, SO
W'+ |J'| <2min(t+1,n —t) — 1+ K.t +min(¢, £)

, then
W[+ |J|<2(n—t)+ Kt+(—1<2n+(K—-2)t+ (-1

,and fromt¢ <n —1 we get
W'+ |J|<Kn+/{-1—(K-2).
Since by hypothesis we haven > 2n, so K > 2 and (K — 2) > 0, hence
W+ |J|<Kn+{—-1<m-1

Then by the (m — 1)-SNI property of m-share Gyefresh, We can perfectly simulate the set of
probes W’ and output shares in.J’ from a set of input sharesI such that |I| < |W’|, hence we
have

I < W' < [W]

which completes the proof for the brst point of comp-TRPE on gadgetGcompress.

43

2. lett<n—-1andletd=min(t+1,n —t). Let W be a set of probes onGcompress Such that
|[W| < 2d — 1. We need to prove that we can perfectly simulatel’’ and a chosen set/ of n — 1
output shares from input shares indices in/ such that || < |W|. For this, we will simulate W
and choose the setJ using probes onGiefresh. First let us consider J the set of probes such
that J = {i | e Wn{c,...,cn}}

We construct the set W' of probes onGiefresh as follows:

Wi ={p|peW\{d,...,cm}} (38)
In addition, we construct the set J’ of output shares onGiefesh as follows:
J=J (39)

Observe that
W+ |J|<|W|<2d—1<2min(t+1,n—t) -1

, SO
W)+ || <2n—1<m—1

Then by the (m — 1)-STRPE2 property of m-share Giefresh, there exists a set.J” such that
J'CJ"and|J" = m—1and W’ and J” can be perfectly simulated from input shares indexed
in I such that |I| < |W'|+ |J/|. SinceW = W/ U{¢ | i e J'} then |I| < |W|.

By perfectly simulating W’ and J”, we can perfectly simulateW sinceW = W/ U{¢ |i e J'}.
In addition, we choose the setJ of n — 1 output shares onGeompress as follows:

J={ili<tland {i,...,i+ Kn} CJ"}u{i|i>¢and {i,...,i+(K —1).n} C J"}

Since|J”| = m — 1, then we are sure that|.J| = n — 1 since there is only 1 share ofdj, ...,)
missing from J”. And since we can perfectly simulateJ” then we can also perfectly simulateJ
like before.

This proves that we can choose a sef of n — 1 output shares onGcompress USiNg probes on the
internal gadget Grefresh Such that W and J can be perfectly simulated from input shares in/
such that |I| < |[W'|+ |J'| < |W| for any [W| < 2d — 1. This concludes the proof for the second
point of comp-TRPE on gadget Geompress:-

Thus, we proved that Gcompress from Algorithm 1 is (¢, f)-STRPEZ2. This concludes the proof
for Lemma 5. !

A.11 Proof of Lemma 7

Proof. Let t < n — 1 wheren is the number of shares such that ¢,t) # 2k +1, Ln;lj) for ke N

2
. . -1 . . . :
(i.e n is even ort # LnTJ), and let d = min(¢t+1,n — t). We will prove that if both matrices

~ and ¢ satisfy Condition 2, then Ggypmuir from Lemma 7 is (d— 1)-NI and (d— 1, 2d — 1)-partial NI.

Proof for (d — 1)-NI:
If the matrices v and § satisfy Condition 2, then they also sastisfy Condition 1, since Condition 2

44

is stronger. Then, in [8], the authors prove that we have that if v and § satisfy Condition 1, then
the gadget Gsypmuit 1S (n — 1)-NL. In addition, if Gsupmurt iS (n — 1)-NI, then in particular it is also

(d—=1)-Nlforany t <n—1andd=min(t+1,n — t). This implies that if the matrices satisfy
Condition 2, then the gadget Gsupmuie 1S (d — 1)-NI thanks to the proof from [8]. This concludes
the proof for the Pprst point of Lemma 7.

Proof for (d — 1,2d — 1)-partial NI:

We need to prove that Gsypmui is (d — 1,2d — 1)-partial NI where d = min(t+ 1,n — t). In other
words, we need to consider a set of probeld” of size|IW| < 2d — 1 < n — 1 and show that W can
be simulated from inputs sharesl, and I such that |I3| < d —1 or |Ip| < d — 1. For this, we will
split the set W into 3 distinct subsets W = Wi U W> U W3 with respect to the form of the probes
in W. In fact, The authors from [8] show that Gsypmuit IS (n — 1)-NI if the matrices v and ¢ satisfy
certain conditions. In fact, all of the probes on the sub-gadgetGsupmuir are of a form in one of the
following sets:

Set 1: ay,ai,ri,7i + ai,Vj—1i-17i,% -1i-17i + ai (for 2 <i<nand2<j <n)
Set 2: a1 + Z:‘ZZ (ri + aj) (for 2 < k <n)

Set 3: a1 + Z:‘zz (Yj—vi-1mi + ai) (for2 < j<nand 2<k <n)

Set 4: by, bi, si,si + b, 0 _1i—15i,0j—1,i—15i + bi (for2<i<nand2<j<n)
Set 5: by + Y1, (si + by) (for 2 < k < n)

Set 6: by + >, (6 1 181 + b)) (for 2 < j<nand 2< k <n)

Set 7: —ri x (by + Zjn:2 (6i—1j—15i + b)) (for 2 <i < n)

Set 8: —sj x (a1 + Zjnzz (Yic1j—1m *+ @;)) (for 2 < i <n)

Set 9: (a1 + YL, (ri + ai)) x (b1 + D(L, (si + b))

The matrix ~ would be related to probes of the form 1,2 and 3, while the matrixd is directly related
to probes of the form 4,5 and 6.
So we split the setW into W = Wy U W, U W3 with respect to the form of each probe as follows:

— W1 contains probes of the forms in the sets 1, 2 and 3.
— W5 contains probes of the forms in the sets 4, 5 and 6.
— W3 contains probes of the forms in the sets 7, 8 and 9.

This split means that the set W only contains probes involving the input shares ofa and the
randoms r;, while W5 only contains probes involving the input shares ofb and the randomss;. W3
contains products of both of the probes oflt; and Wa.
Next, we will construct two subsets of probesWW, and W, from the set W and prove that we can
simulate all probes in W from W, and W}, In other terms, we start with W, = W1 and W, = Wh.
Suppose brst thatWW3 = (. Then we consider the setsiVy, = W; and W, = W, as before.
Suppose that to simulate W,, we need sets of input shared, such that |I;| > d, and let M be the
number of probes of the form in sets 2 and 3 in the set of probe®/’,. Then from condition 2 on
matrix v we know that |I3] < |[Wa| — M < |W,| (because|W,a| <2d—1<n-—1sincet<n-1

such that ((n =2V (tE " >

))), then in order to have |I| > d, we must have:
d < |Ia] < |Wa

Hence, sincellW| < 2d — 1, then we must have|W,| < d — 1 (because|Ws| + |Wy| < 2d — 1), then
from condition 2 on matrix ¢, we can perfectly simulateW}, from I, such that |Ip| < [Wp| — M’ <

45

|Wp| < d— 1 where M’ is the number of probes of the form in sets 5 and 6 in the set of probed/,.
Thus we showed that we can perfectly simulatelV” with |[W| < 2d — 1 < n — 1 from W, and W}
using Iz and Iy, such that if |I3| > d, then |Ip] < d — 1, so we havellz| < d—1or |l <d—1. This
concludes the proof in the case wherélz = (.

Next, we suppose thatWWs Z () so there is at least one probe of one of the sets 7, 8 or 9 Ii3.
We construct setsW, and W, as before starting with W, = W1 and W, = W>, and for each probe
in Wa:

— If the probe is of the form —r; x (by + ZJ” 5 (Si—1j—18) + b)), then we do Wa = Wa U {—ri},

Wy = WpU{(b1 + ZJ —> (di—1j—15; + b)) }. We denote the set of these probes iV as wo.

— If the probe is of the form —s; x (a1 + /-y (vi—1j 17 + @j)), then we do Wa = Wa U {(a1 +

ZJ = (vi—1j—17m + ;) }, Wo = WpU {—s;}. We denote the set of these probes iz as W3

— if the probe is of the form (a1 + Y7L, (ri + ai)) x (b1 + DL, (si + bi)), then we do W, =

WaU{(a1+ S\ (ri + ai))}, Wo = WoU {(b1+ DL, (si + bi))}. We denote the set of these

probes in W3 as W73.

Suppose that in order to simulate W5, we need the setl, such that |I| > d. In addition, since
-1

|[Wa| < [W] <2d—1<n-—1(becausef < n—1 such that ((n =2k)V(t+F nT))), then we know

from condition 2 on v that W, can be perfectly simulated fromI, such that || < |Wa| — M where

M is the number of probes inW, of the form (a; + Zjnzz (i—1j—17j + @j)) or (ax+ D\, (i + ai)).

Then, since probes in the setd¥8 and W3 add to W, probes of these forms, then we havel,| <

|Wa| — |[W§| — [W3)|. Hence, in order to have|I,| > d, we must have

d < |La| < |Wal| = [W5| = [W3| < [Wa|+ [WS]|
Similarly, suppose that to simulate W}, we need|Iy| > d, then we also must have
d < |Io| < [Wh| — [W5]| — [W3| < [Wa| + W3]
Hence, in order to have|I,| > d and |Ip| > d at the same time, we must have
24 < |La| + |Io| < Wil + [WH|+ [Wa| + [WE| < W]

which holds a contradiction with the fact that |W| < 2d — 1. Hence, we cannot have at the same
time |I3| > d and |Ip| > d. SO Gsypmuit 1S (d — 1,2d — 1)-partial NI in the case where W3 #).
Hence, we conclude thatGgypmur IS (d — 1,2d — 1)-partial NI after proving the property in both
casesWWs = () and W3 # ().

We conclude that Ggypmuir Satisbes both ¢ —1)-NI and (d— 1, 2d — 1)-partial NI, which conludes
the proof for Lemma 7. I

A.12 Proof of Proposition 1

We consider the following matrices
L = [I1|0nxn |In|TIn|- . |Tn|Tn|Th|. ..|Th |

M = [Onxn ‘In ‘In ‘D&’l‘. . .‘D&,n‘Tn ‘T&’l‘. . .‘T&’n]

46

The matricesL and M have z = (2 n+4) -n columns. We want to lower-bound the probability, for
~ picked uniformly at random in IFHX”, that for any vector v € Fg of Hamming weight hw(v) < n,
and for any i1, ...,ik € [z] suchthatv, Z0,...,v, 70 and the corresponding columnsiy, ...,k
in L and in M have no zero coelcient (i.e there are K probes of the form >, (ri + ;) or
Zjnzl (vijrj + aj) forany ¢ =1,...,n), if M.v =0, then we have hw(L.v) < hw(v) — K.

Forany set] C {1,...,z}, we denote byL, the n x |I| submatrix of L obtained by only keeping
the columns in L whose indices are inl and M, is the n x |I| submatrix of M obtained by only
keeping the columns inM whose indices are inI. We will lower-bound the probability that for
any setl C {1,...,z} of cardinal n and any vector v € F, if hw(L, - v) > hw(v) — K + 1 then
M| % }/ On.

We consider di"erent cases (in order of increasing generality) which depend on the columns
selected with the set[:

1.7 C{(n+4) -n+1l,. ..z} ie, all columns in M, are taken from the matrices T, ; for
ie{l,....,n};

2. 1C{(n+3)-n+1,...,z},i.e., all columns in M, are taken from the matrix Ty or the matrices
T i forie{l,...,n};

3.IC{l,....n+1}U{(n+3) -n+1,...,z}, i.e, all columns in M, are taken from the null

vectors, from the matrix T, or the matrices T, j for i € {1,...,n};
4. 1 C{1,...,z}, i.e, the columns in M, can be taken arbitrarily.

Case 1. In order to analyze the probability in the brst case, we recall the debnition of a probability
distribution on structured matrices introduced in [8]. In this distribution of structured matrices, a
number of elements with known location are identically zero, and remaining elements are chosen
uniformly at random independently of each other.

Definition 13. Let n and m be two positive integers. Let o = (aa,...,am) be a non-decreasing
finite sequence with 1 < a1 < az < - < am < n.

— A matriz © = (0;j) € Fg*™ is called a progressive patterned matrix with pattern o« if 6;j =0
forallje{l,....,m} and alli ¢ {oj_1+1,...,0j} (where ag=0).

— The unitary progressive patterned matrix Y- = (ujj) € Fg*™ with pattern « is defined by
uij =0 forallje{l,....,m}andalli ¢ {oj_1+1,...,0§} andwij =1 forallje{l,...,m}
and alli € {aj_1+1,...,05}.

— The distribution D+ is the probability distribution on random progressive patterned matrix
S+ = (sij) € Fg*™ whose elements sij for (i,j) € {1,...,n}x{1,...,m} are sampled uniformly
at random and independently according to:

1 if s=0 and ujj =0
Prlsij = s]= <0 if s 70 and uij =0
gt forallse Fqifuij =1
where X = (wujj) €]ngm is the unitary progressive patterned matriz with pattern «.

A matrix © is thus a progressive patterned matriz with pattern o« = (aa,...,am) if it is of the
form described in Figure 5 where the symbok denotes an arbitrary value in Fq. For the unitary
progressive patterned matrix Y- , this symbol x is replaced by a 1 and for a random progressive

a7

patterned matrix S+ each symbolx is replaced by a value picked uniformly and independently
at random in Fq. Note that such a matrix can contain a null column (when «; = «j+1 for some
ied{l,...,m—1}).

m columns
&
" 000 0 0
R" 0 0 0 0 o
2" 0 0 0 0 0!
2 0 00 0 o
£0 " 00 0 o
2 0 0 0 0 0.
0 0 0 " 0 0.
20 0 0 0 0
£0 0 0 0 0 o (MO
20 0 0 0 0
0000 0o "
0.0 .00 0"
0000 0 0.

: ¢
0000 0 0

Fig.5: Form of a progressive patterned matrix with pattern o = (aa,...,am)

Belafidet al. [8] also debPned more generally block column matrices formed of progressive pat-
terned matrices.

Definition 14. Let n,m,t be three positive integers. Let my,...,mt be positive integers such that
my+ -+ my = m and let o) = (a(ll), . ,aﬁ'ﬂ) be a non-decreasing finite sequence with 1 < a(ll) <
oz(zl) <. < Oz%)i <n forallie{1,...,t}. We suppose that there exists at least one j € {1,...,t}

such that 0491]-) = n.

— A matriz © € F§*™ is called a block progressive patterned matrix with pattern (¥, ..., o)
if there exist progressive patterned matrices @) ¢ Fg ™ with pattern o forallic{1,...,t}
such that ® = (OW|...|©@WM).

— The block unitary progressive patterned matrix Y. o) .« € F§*™ with pattern (a® ..., o)
isTow v = (Lol . [Lom).
— The distribution Du g) s the probability distribution on block random progressive pat-

.....

Digy v =(Duql...|Duw).

The main ingredient of the proof of Proposition 1 is the following technical lemma:

Lemma 11. Let n,m,t be three positive integers with m > n and let a® fori e {1,...,t} be
patterns for block progressive patterned matriz as in Definition 14. For a block random progressive
patterned matriz S drawn following the distribution D. q .«), there exists a linear subspace of

48

Fg of dimension m —n that contains {v € Fg' s.t. hw(v) = m and Sv = 0}, with probability at
1

least 1 — mq™".
Proof (Lemma 11). We will prove this lemma by induction on m.

For m =1, since m > n > 1, Debnition 14 implies that the matrix S consists simply in a single
entry s1,1 which is picked uniformly at random in Fq and this entry is null with probability ¢~*.
The set {v € Fg s.t. hw(v) =1 and S-v = 0} is therefore the empty set with probability at least
1— ¢! and it is thus included in the subspace of dimension 0 with probability at least 1— ¢ .

We now considerm > 2 and we suppose Lemma 11 proven for all block random progressive
patterned matrix with strictly less than m columns.
We brst assume that the matrix Y. @y . € IFQX”‘ is the matrix of ones Uy, xm (i.e., does not

contain any zero). ThenS is simply a matrix drawn from Fg*™ with the uniform distribution.
It is well known that the number of full-rank n x m matrices overFq (with m > n) is:

(@" =" - (" ="
and the probability that S is of full rank is thus equal to:
L-¢™ML-g ™). .Q-g ™"
which is greater than

B i 1 1
1__ Z q'Zl—- Z q l_l_q—m+n—1(l_1/q)21_2qn me

The subspace{v € F§' s.t. S-v =0} is therefore included in a linear subspace of dimensiom —n
with probability at least 1 — 2¢"~™~1 and the result follows (sincem > 2).

We now assume that the matrix Y. g « @ € ngm contains some 0. By assumption, there

exists somej € {1,...,t} such that a%j) = n.
1. We brst assume thatm; > 1 (i.e. that the column of index m1+ -- -+ m; consists inag?_l >1

zeroes followed byaﬁrj]j) —agj)_l = n—oszj”)_l > 1 ones, see Figure 6). We consider the submatrix

of Yuw .+ €Fg*™ obtained by deleting the column of indexma + ---+ m; and the rows of

indices in the set{a%?_l +1,... ,aﬁ’qj) }.

It is easy to see that this submatrix is a block unitary progressive patterned matrix with
n’ < n—1rows andm — 1 columns, where some columns may possibly contain only zeroes (see
Figure 6). We can thus apply the induction hypothesis to the submatrix S’ of S obtained by
deleting the same column and the same rows.

By induction hypothesis, we know that with probability at least 1 — (m — 1)¢~ 1, there exists a
linear subspacel’’ C Fg‘—l of dimensionm —1—n' that contains the set {v € Fq’“—l s.t. hw(v) =
m—1landS -v=0}.

If V' is of dimension 0, then{v € Fy' "' s.t. hw(v) = m —1andS'-v =0} C {Oy_1} and
this set is thus the empty set. We then have{v € F', hw(v) = mandS-v =0} = (with
probability at least 1 — (m — 1)¢~* > 1 — mg~%, and so there exists a linear subspac& of
dimensionm — n that contains this set.

49

3
S
3
3

- - &
1000100 100 1.0 0 0,
1000100 100 1 0 0 O
1000100 010 01 0 o
0100100 010 010 O
0100100 010 010 O
0010010 010 001 O
0001001 010 0 0 1 O
0001001 010 0 0 1 O
000 O0O0TO 0O 010 00 1 0
000 O0O0TO 0O 010 00 0 1
%0 0 0 0 0 0 O 0 0 1 0 0 0 1¢
0 00O0O0TO 00O 0 0 1 0 00O
Fig. 6: Example of a matrix Y. o . € Fg*™. The column and the rows highlighted in red are

deleted in order to apply the induction hypothesis.

If V' is of dimensionm —1—n’ > 0, we can assume without loss of generality that the column
of S deleted to obtain S’ was the last one (by permuting the blocks of the matrix). We have the
following block-decomposition of S

whereS" is a (n —n') x (m — 1) matrix and u a column vector of dimension ¢ —»’). Note that
u is a random vector inFg~" independent from S’ and S”. Let v € Fg such that hw(v) = m
and Sv = 0.

We write v = (t’) where w € Fg‘*l and 7 € Fq is a scalar. We havehw(w) = m — 1 and

S’w = 0, and therefore w € V'. Sincer # 0 by assumption, the vector u thus belongs to the
image W of V/ by S” (with probability at least 1 — (m — 1)¢1). Moreover, W has dimension
at most max(m — 1 —n',n —n').

— If W is of dimension at mostn — n’ — 1, sincew is independent of S’ and S” (and thus
of W), u belongs to W with probability at most ¢~*. Therefore, with probability at least
A-—q¢H-AL-m-DgH>1-mg L {ve Fg s.t. hw(v) = mand Sv =0} = 0.

— If W is of dimensionn —n/, with probability 1 —¢=("~") > 1—¢~, we haveu # 0y _nt)x1
and we can construct a basisu; = u, ..., u,_, of W.

All subspacesV’ N S”’1(<ui)) are of dimension at least one and we have

V' = @ VN S//_l(<’u,i).
i=1

50

Therefore the linear subspaceé/ debned asl/ = V' N S”‘l((ul)) satisbes

dim(V) = dim(V') — i dim (v' NS"Y((u; >))
i=2
<m-1-n"—(n-n"-1)

= m-—-—n.

Moreover, we have{v € Fal“ s.t. hw(v) = m and Sv =0} C V and since this occurs with
probability at least (1 — ¢ 1)(1 — (m — 1)g~1) > 1 —mq~ %, the result follows.

2. We now assume thatm; = 1 for all ¢ such that aﬁ'q)i = n (i.e. that all the columns with a one in

the last row consists only of ones, see Figure 7). Since the matriX. @) . €]ngm contains

some O, there exists somg € {1,...,t} such that m; > 1 and we consider such g € {1,...,t}
for which a(l” is minimal (see Figure 7).
We consider the submatrix of Y. o . € Fg*™ obtained by deleting the column of index

my+ -+ mj_1 +1 and the rows of indices in the set{1, ... ,a(lj) — 1}. It is easy to see that

this submatrix is a block unitary progressive patterned matrix with »’ <n —1 rows andm — 1
columns (see Figure 7). We can thus apply the induction hypothesis to the submatrixS’ of S
obtained by deleting the same column and the same rows.

my ms ms mi m
#—_ - R
10001100 1000 10
10001100 1000 10
10001100 0100 10
01001100 0100 10
01001100 0100 0 1
00101010 0 010 0 1
00011001 0 010 0 1
00011001 0 010 0 1
00001000 0 010 00
00001000 0 001 0
%0 0 0 0 1 0 0 O 0 001 0 0¢
00001000 0 00O 00

Fig.7: Example of a matrix Y. @) . € ngm. The column and the rows highlighted in red are

deleted in order to apply the induction hypothesis.

We know that with probability at least 1 — (m —1)¢~?1, there exists a linear subspacé’”’ C Iqu*1
of dimensionm — 1 —n’ that contains the set {v € Ff' ! s.t. hw(v) = m —1 and S'v = 0}.

If V" is of dimension 0, then{v € F§'~* s.t. hw(v) = m —1 and S'v =0} C {0} and this set is
thus the empty set. We then have{v € F7', hw(v) = m and Sv = 0} = () with probability at
least 1— (m — 1)¢~t > 1 —mq~?, and so there exists a linear subspac& of dimensionm — n
that contains this set.

51

If V' is of dimensionm — 1 —n/ > 0, we can assume without loss of generality that the column
of S deleted to obtain S’ was the last one (by permuting the blocks of the matrix). We have the
following block-decomposition of S
_ S// u
5= (S, 0r1"><1>

whereS" is a (n —n') x (m — 1) matrix and u a column vector of dimension ¢ —»’). Note that
u is a random vector in[Fg™" independent from S’ and S”. Let v € F§' such that hw(v) = m
and Sv = 0.

We write v = (;) where w € Fg“l and 7 € Fq is a scalar. We havehw(w) = m — 1 and
S’w = 0, and therefore w € V'. Sincer # 0 by assumption, the vector u thus belongs to the
image W of V/ by S” (with probability at least 1 — (m — 1)¢—1). Moreover, W has dimension
at most max(m — 1 —n/,n —n/).

— If W is of dimension at mostn — n’ — 1, sincew is independent of S’ and S” (and thus
of W), u belongs to W with probability at most ¢~*. Therefore, with probability at least
QA-—qgH-Q@-m-DgH>1-mqg?t {ve Fy s.t. hw(v) = mand Sv =0} = (.

— If W is of dimensionn — n’ then S” is invertible. With probability 1 — ¢=("=") >1—¢=1
we haveu 7 0, _n'yx1 and we can construct a basisu = u, ..., uy ' of W.

All subspacesV’ N'S”*((u;)) are of dimension at least one and we have

n—n
V= @V ns T ((w)).
i=1
Therefore the linear subspace/ debned asv’ = V' N S” *((u,)) satisbes

dim(V) = dim(V') — i dim (V’ NS"Y((u; >))
i=2

Moreover, we have{v € IF?]; s.t. hw(v) = mand Sv =0} C V and since this occurs with
probability at least (1 — ¢ 1)(1 — (m — 1)¢~1) > 1 — mq~1, the result follows.

This concludes the proof of Lemma 11.

Recall that we want to lower-bound the probability over the v € Fg*", that for a given set

IC{(n+4) -n+1,...,z} of cardinal n, if hw(L; - v) > n — K then M, - v ¥ 0, for any vector
ve IFg. where K denotes the number of coordinatesy, ... ik € [z] such that v;; Z0,..., v, 70
and the corresponding columnsiy, ..., ik in L and in M have no zero coelcient.

Remark that the non-zero coel!cients in the lower block of L, and in M, are at the same

positions. If K = 0, then the matrices M, and L, have a null row. In this case, we have readily
hw(Ly -v) <n—-1=n—K—-1<n— K).

If K > 1, then the matrices M, and L, does not have a null row. The matrix M, (up to

some permutation of its columns) can be written as a block matrix where each block is of the form
described in Figure 8 (on the left).

52

“iay daq e i,y e U deq e 0 0
0 "iag+1 " dagtl oo Ui a1 0 "iagtl - 0
0 iy e dyag e " ian 0 "ieg e 0
0 0 iyog41 - i,an+1 0 0 "i.a],_1+1 0
0 0 iy i 0 0 "iag 0
0 0 0 o Tiagt 0 0 [0
0 o 0 " a1 0 0 0
0 . . 0 " o _1+1 0 0 St |
0 0 . 0 0 " iam
’ 9 ham 0 0 m
0 0 0 0

Fig. 8: Blocks appearing in matricesM, and M,

From this matrix, one can construct another matrix M, such that in each block, one substract
each column to the following columns (i.e., one substract iteratively thei-th column to the columns
of indexin {i+1,...,m} fori e {1,...,m}). The blocks appearing in the matrix M, are given in
Figure 8 (on the right). Since we apply only elementary operations on the columns, if there exists
a vector v € Fg such that M, v = 0 then, there exists a vector v’ € Fg such that M, v’ = 0.

SinceM, has no null row, we havea,, = n in one of this block (with the notation from Figure 8)
and the matrix M, is thus a block random progressive patterned matrix as dePned in Debnition 14.
By Lemma 11, for each non-empty subset/ of the n columns of M, the probability over ~ that
there exists a vectorv’ € IF§ with support J (i.e., set of non-zero coordinates) such thatVi; v/ =0
is upper bounded byn - ¢—1. By the union bound over all supports, the probability over ~ that
there exists a vectorv’ € Fg such that M, v’ = 0 is thus upper-bounded by 2" - n - ¢~

For the setsI C {(n+4) -n+1,...,z} of cardinal n, we have proved that with probability at
least 1— 2" - n- ¢ 1 (over the choice ofy Fg "), we have hw(L, - v) <n— K or M, -v # 0y for
any vector v € Fg.

Case 2. We now consider matricesM, were all columns are taken from the matrix T, or the ma-
tricesT, j fori e {1,...,n} (i.e., I C {(n+3) -n+1,...,z}). With the notation from DepPnition 14,
we consider the modibed distribution?. 4y . () debPned as the following probability distribution
inFpxm:

..... o) = (Lo [Dal... D)

(i.e., in which the brst block is a bxed unitary progressive patterned matrix instead of being a
random progressive patterned matrix). We can easily extend Lemma 11 to this distribution:

.....

Lemma 12. Let n,m,t be three positive integers with m > n and let oV for i € {1,...,t} be
patterns for block progressive patterned matrix as in Definition 14. For a block random progressive
patterned matriz matriz S drawn following the distribution D. oy« v, there exists a linear subspace

of F§' of dimension m — n that contains {v € Fg' s.t. hw(v) = m and Sv =0}, with probability at
least 1 —mq~1.

53

Proof (Lemma 12). We will prove Lemma 12 by induction on m.

For m = 1, since m > n > 1, Debnition 14 implies that the the matrix S either (1) consists
simply in a single entry s11 which is picked uniformly at random in Fq or (2) a constant non-
null vector. In the Prst case, this vector is null with probability ¢~* and in all cases the set{v ¢
Fq s.t. hw(v) = 1 and Sv = 0} is therefore the empty set with probability at least 1 — ¢~ 2. It is
thus included in the subspace of dimension 0 with probability at least 1— ¢—*.

We now considerm > 2 and we assume Lemma 12 proven for all block random progressive
patterned matrix matrix drawn from a distribution D. 1) . with strictly less than m columns.

We Prst assume that the matrix Y. o) .« € Fg*™ is the unitary matrix Upym (i.e., does not

contain any zero). Then, by assumption, we haven; =1 and o(") = n fori € {1,...,t}. The matrix
S is thus the concatenation of the vectorl, 1 and a matrix picked from ngm—l with the uniform
distribution. Using elementary operations on the columns ofS, one can obtain a matrix of the form

1 Oixm-1
Un —1 S/

whereun _1 €]Fg*1 is the all-one vector andS’ is a matrix drawn from]Fg*“m*1 with the uniform
distribution. As in the proof of Lemma 11, the matrix S’ is of full rank n — 1 with probability at
least 1— 2¢"~™~2, The matrix S is thus of full rank n with probability at least 1 — 2¢"~™~2 and
thus with probability at least 1 — mqg~1.

We now assume that the matrix .. ¢y . € ngm contains some 0. By assumption, there

existsj € {1,...,t} such that a%j) = n and in the following, it there exist two indices j € {1,...,t}
such that aﬁ‘qj) = n, we select one such index di"erent from 1.

If 7 = 1, by assumption we have aﬁ'q)i < n forall i € {2,...,t} and the last row of the
matrix S has one coordinate equal to 1 and all other coordinates equal to 0. I6 € Fq is of full
Hamming weight hw(v) = m, the last coordinate of the vector Sv is always non-null and the set
{v € Fg s.t. hw(v) = m and Sv = 0} is therefore the empty set. It is thus included in the subspace

of dimension 0 with probability at least 1 > 1 — mq~!. We therefore now assume thatj > 1.

1. We brst assume thatm; > 1 (i.e. that the column of index m+ ---+ m; consists inag?_l >1
zeroes followed bya%j) - aﬂ,j)_l =n-— a%?_l > 1 ones).
We consider the submatrix of Y. oy () € ngm obtained by deleting the column of index

my + ---+ m;j and the rows of indices: in {a,(%j)! 1+1,...,a,(1jq1)}. This submatrix is a block

unitary progressive patterned matrix with n’ < n rows andm — 1 columns. We can thus apply
the induction hypothesis to the submatrix S’ of S obtained by deleting the same column and
the same rows. We know that with probability 1 — (m — 1)¢~1, there exist a linear subspace/’
of dimensionm — 1 —n' that contains the set {v € Ff' ! s.t. hw(v) = m —1 and S'v =0}.

If V" is of dimension 0, then{v € F'~* s.t. hw(v) = m — 1 and S'v = 0} C {0} and the set
is the empty set. We thus have{v € Fy', hw(v) = m and Sv = 0} = () and with probability
1—(m—1)g ! >1—mqg 1, there exist a linear subspacé’ of dimensionm — n that contains
this set.

If V' is of dimensionm — 1 —n' > 0, we can assume without loss of generality that the deleted
column of S to obtain S’ was the last one in the last block (i.e., in a block whereS is a random
progressive patterned matrix sincej > 1).

54

By permuting some rows and columns, we can write

where S’ is a (n — n’) x m — 1 matrix on which we can apply the induction hypothesis (since
mj > 1). Let v € Fg' such that hw(v) = m and Sv = 0.

We write v = (f) where w € Iqu—l and 7 € Fq is a scalar. We havehw(w) = m — 1 and

S’w = 0, and therefore w € V’. Since r # 0 by assumption, the vector u thus belongs to
the image W of V’ by S” (with probability at least 1 — (m — 1)¢~1). Since j > 1, note that
u is a random vector in Fg~" independent from S’. We can then conclude as in the proof of
Lemma 11. _

2. We now assume thatm; = 1 for all i such that aﬁ'])i = nfori e {1,...,t} (i.e. that all the
columns with a one in the last row consists only of ones).
Since the matrix Y. @ .« € Fg*™ contains some 0, there exists somg € {2,...,t} such

that m; > 1 and we consider such g € {2,...,t} for which a(lj) is minimal.

We consider the submatrix of Y. o . € Fg*™ obtained by deleting the column of index

mq+ -+ mj_1 +1 and the rows of indices in the set{1,... ,a(lj) — 1}. It is easy to see that

this submatrix is a block unitary progressive patterned matrix with »’ <n —1 rows andm — 1
columns. We can thus apply the induction hypothesis to the submatrix S’ of S obtained by
deleting the same column and the same rows.

We write v = (f) where w € Fa"*l and 7 € Fq is a scalar. We havehw(w) = m — 1 and

S’w = 0, and therefore w € V’. Since r # 0 by assumption, the vector u thus belongs to
the image W of V' by S§” (with probability at least 1 — (m — 1)¢~1). Since j > 1, note that
u is a random vector in Fg~" independent from S'. We can then conclude as in the proof of
Lemma 11.
We know that with probability at least 1 — (m —1)¢ ™1, there exists a linear subspacé’’ C Fg‘—l
of dimensionm — 1 — n’ that contains the set {v € Ff' ! s.t. hw(v) = m — 1 and S'v = 0}.
If V" is of dimension 0, then{v € F§ ~* s.t. hw(v) = m —1 and S'v =0} C {0} and this set is
thus the empty set. We then have{v € F{', hw(v) = m and Sv = 0} = () with probability at
least 1— (m — 1)¢g~! > 1 —mq~?, and so there exists a linear subspac® of dimensionm — n
that contains this set.
If V' is of dimensionm — 1 —n’ > 0, we can assume without loss of generality that the column
of S deleted to obtain S’ was the last one (by permuting the blocks of the matrix). We have the
following block-decomposition of S
S” u
5= (S/ On"><1>

whereS" is a (n —n') x (m — 1) matrix and u a column vector of dimension ¢ —»’). Note that
u is a random vector in[Fg~" independent from S’ and S”. Let v € F§' such that hw(v) = m

and Sv = 0. Since j > 1, note that u is a random vector in Fg—”" independent from S’. We can
then conclude as in the proof of Lemma 11.

This concludes the proof of the lemma. a

55

Using the same arguments as above for Case 1 (but replacing Lemma 11 by Lemma 12), we
obtain that for any set I C {1,...,z} of cardinal n such that M, has no identically zero column
vectors, with probability at least 1 — 2" - n - ¢~ over the choice ofy, we havehw(L; -v) < n — K
or My -v 7 0, for any vector v € Fy (where K denotes the number of coordinatesy, . .., ik € [z]
such that v, #0,...,v, 7 0 and the corresponding columnsiy,...,i in L and in M have no
zero coelcient). .

Case 3. We now consider the setd C {1,...,n}U{(n+3) -n+1,..., 2} of cardinal n for which M,
has some identically zero column vectors (i.e.J N{1,...,n} # (). Foreachi € IN{1,...,n} % 0,
the i-th column in L is the i-th vector in the canonical basis of F (i.e., it corresponds to a
probe of a valuea;). We can consider the submatrix of M, and L, in which we delete for each
ieIn{l,...,n}# 0, the i-th column and the i-th row. We denote p =# I'n{1,...,n} 7 0.

Let us denote M| and L the corresponding matrices (with m’ = m — p columns). These
matrices are of the form handled in the previousCase 2 (with m’ < m). The previous argument
shows therefore that with probability at least 1 — 2" - n - q 1, we havehw(L| -v) <n—p— K or
M| -v # 0, for any vector v € Fg (where K denotes the number of coordinatesi, ..., ik € [z]
such that v, #0,...,v, 7 0 and the corresponding columnsiy,...,i in L and in M have no
zero coelcient).

Going back to the original matricesL; and M, we have shown for any sef C {1,...,n}U{(n+
3)-n+1,...,2} of cardinal n, with probability at least 1 — 2" -n - ¢~ over the choice ofy, we have
hw(L) -v) <n— K or M, -v % 0, for any vector v € Fg (indeed a vectorv satisPesM, - v = 0
if an only if M| - v’ = 0, where v’ denotes the restriction of v to the support 7N {1,...,n} and
the Hamming weight of hw(L, - v) is at smaller than hw(L, - v’) + p since at mostp positions can
be set arbitrarily..

Case 4. We now consider all setsl C {1,...,z} (with no restrictions). Without loss of generality,
we can assume that all not identically zero column vectors inM,; are pairwise distinct. Indeed,
if two columns are equal, they come either from the two submatricesl,, of M, or from the brst
column vectors of a submatrix I, and the submatrix T, or from the Prst column vectors of a
submatrix D, ; for some: € {1,...,n} and the corresponding submatrix T, ;. In all these cases,
one can replace the index of the second vector ifi by an index in {1,...,n — 1} (and modify the
vector accordingly) in such a way that M, for the new set I’ has a new null column vector for
each duplicate in the original matrix M, .

We can now delete the columns corresponding to the null vectors as in Case 3 (i.e., for each
ieIn{l...,n+1} # 0, the i-th column and the i-th row in M, and L;). The only di"erence
occurs if a column in M, is equal to the i-th vector in the canonical basis (fori > 2) or to the
scalar multiplication of this vector by some element of the matrix v € [Fq (corresponding to the
casesIN{n+1,....2n}F0andIN{2n+1,...,(n+3) -n+1} # () respectively). As in Case 3,
we can delete the corresponding column and row iM, and L; (i.e., it corresponds to a probe of
a valueri, a value a; + r; or a value a; + ;i ri).

As above, if we denoteM| and L the corresponding matrices (withm’ columns andn’ < n and
n/+1 rows, respectively), the previous argument shows that with probability at least 1—2" n-q L,
we havehw (L -v) < n'— K or M| -v # 0y for any vector v € Fg' (where K denotes the number of
coordinatesiy, ... ,ik € [2] suchthatv, 70,...,v;, 70 and the corresponding columnsiy, ...,k
in L and in M have no zero coe!cient).

56

Going back to the original matrices Ly and M, we have shown for any set/ C {1,...,z2} of
cardinal n, with probability at least 1 — 2" -n-¢~* over the choice ofy, we havehw(L; -v) < n— K
or M -v 7 0n for any vector v € Fy

Conclusion . By the union on all such sets, we obtain that the probability that, for ~ picked
uniformly at random in FHX”, the matrix M satisbes Condition 3, i.e., for any vectorv € Fé of
Hamming weight hw(v) < n we havehw(L-v) <n— K or M -v Z 0, is at least

2n+4) -n+1
l—(Z)Zn-n~q_l=l—<(n) n >2n-n~q_l.

n n

The binomial coelcient in this lower-bound is always less than (6n)" (this can be checked by
hand for small values ofn and it follows for large values using the classical upper-boundy) <
((r - exp(1))/s)®). We thus obtain the claimed bounds and this concludes the proof. !

A.13 Instantiations

In this paragraph, we present explicit matrices obtained following [19] that achieve our Condition 3
and can thus be used to instantiate our new multiplication gadget.
A brst matrix for 3 shares can be used over the bnite PelB,s represented asi,[X]/(X%+ X?+1):

X+1 X X?+1
v = X X?2+1 X+1
X2+1 X+1 X

Another matrix for 3 shares (denoted in hexadecimal by evaluating each polynomial atX = 2 and
writing the result in base 16) can be used over the bnite belli,s represented asfo[X]/(X6+ X +1):

36 30 1d
~v= |21051a
3531 1b

Another example for 4 shares can be instantiated using the following matrix (also denoted in
hexadecimal) over the (AES) Pnite PeldF,s represented asF,[X]/(X8+ X4+ X3+ X +1):

2d £5 2e 23
el c3 ac 30
bd £6 fa 8a
eb6 4a 4d ab

Eventually, we present a matrix for 5 shares over the bnite Pel@ 0 represented asf,[X]/(X 10+
X3 +1):
225 2a9 0d0 224 2dd
254 11b 325 3a6 219
~ = | 3d2 2bc 2bf 3a2 2al
2af 311 295 26b 11d
16c 124 158 319 0b8

57

