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Abstract

Quantum money is a main primitive in quantum cryptography, that enables a bank to distribute
to parties in the network, called wallets, unclonable quantum banknotes that serve as a medium
of exchange between wallets. While quantum money suggests a theoretical solution to some of
the fundamental problems in currency systems, it still requires a strong model to be implemented;
quantum computation and a quantum communication infrastructure. A central open question in this
context is whether we can have a quantum money scheme that uses "minimal quantumness", namely,
local quantum computation and only classical communication.

Public-key semi-quantum money (Radian and Sattath, AFT 2019) is a quantum money scheme
where the algorithmof the bank is completely classical, and quantumbanknotes are publicly verifiable
on any quantum computer. In particular, such scheme relies on local quantum computation and only
classical communication. The only known construction of public-key semi-quantum is based on
quantum lightning (Zhandry, EUROCRYPT 2019), which is based on a computational assumption
that is now known to be broken.

In this work, we construct public-key semi-quantum money, based on quantum-secure indistin-
guishability obfuscation and the sub-exponential hardness of the LearningWith Errors problem. The
technical centerpiece of our construction is a new 3-message protocol, where a classical computer
can delegate to a quantum computer the generation of a quantum state that is both, unclonable and
publicly verifiable.
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1 Introduction

Mediums of exchange have been a central part of modern society, with the most popular of them being
currency systems. Currency systems, divide into two different categories: cash-based currency systems
and cashless currency systems. At the center of every cash system there is a banknote - a physical
object that is (1) verifiable publicly, and (2) hard to counterfeit. In contrast, cashless systems swap
the use of physical banknotes with a database of assets, governed by a middleman that approves or
declines every transaction request. The main advantage of cash systems is that transactions are local.
Local transactions are private and do not require communication with a third party. As a result, such
systems are usually highly efficient and unbounded in their ability to handle any number of transactions
simultaneously. These properties of cash become even more desirable when considering decentralizing
a currency system1. On the opposite side, there are three main disadvantages of cash systems. First,
in theory, any piece of information can be copied and our ability to prevent counterfeiting is limited.
Second, banknotes are physical objects and usually take large amounts of space. Third, cash exchange
requires physical contact, so, long-distance transactions are not accessible.

More than five decades ago, in a 1969 paper by Wiesner [Wie83], quantum money was introduced
for the first time as an alternative cash-based currency system, suggesting a theoretical solution to all
three issues above. In a quantum money system, a banknote is made up of quantum, rather than classical,
information. The reasoning underlying such design is the no-cloning theorem [WZ82], which asserts
the striking guarantee that, according to the laws of quantum mechanics, some quantum states cannot be
cloned by any physical procedure, be it unbounded in its resources. Specifically, if a banknote is made
up from a quantum unclonable state then the banknote is unclonable and cannot be counterfeited. Also,
quantum money opened the possibility of cash that takes negligible amounts of physical space and can
be sent remotely over communication channels.

Due to its desirable properties and due to the fascinating technical challenges it provides, quantum
money has come a long way since Wiesner’s seminal work. Today, quantum money serves as a precursor
in the field of quantum cryptography, acting both as a central primitive and a breeding ground for
new cryptographic techniques. Naturally, Wiesner’s version of quantum money lacked many of the
properties that are needed to make such idea feasible. Following works on quantum money overcame
significant barriers, exploring different functionalities of quantummoney and, more generally, unclonable
cryptography, c.f. [BBBW83,MS06, LAF+09, Aar09,MS10, AC12, FGH+12, PYJ+12, BDS16, JLS18,
BDG19, Zha19, HS20, BS20, RZ20, CLLZ21, BSS21]. Notably, are the works of Aaronson and
Christiano [AC12] and Zhandry [Zha19] that achieve public-key quantum money i.e. where the receiver
of a quantum banknote can locally verify it, without interacting with any other party, let alone the bank.
This made quantummoney behave like actual cash (i.e. where banknotes are both locally sent and locally
verified) for the first time. Still, even with these advancements we are a long way to go from realizable
quantum money schemes.

Semi-quantum money. A central question that remains open in this framework, is whether or not the
bank can be a classical algorithm in a public-key quantum money system. This question was asked in
the past in different variations, in particular, Radian and Sattath [Rad19] define this notion as Public-
Key Semi-Quantum Money, along with other notions of quantum money where the bank is completely
classical. Compared to public-key (fully) quantum money, in a public-key semi-quantum money scheme
the bank has two additional abilities.

• Classical Certificates of Destruction (CCoD) for Banknotes: Any quantum wallet can return

1A central problem currently preventing cryptocurrencies from being adopted on a world-wide scale is the long transaction
times. This is a direct cause of the combination between two design needs: (1) every transaction needs to update the database of
assets, and (2) the database is decentralized in cryptocurrencies, and with each and every one of its updates the whole network
needs to reach a consensus on it.



to the classical bank a valid quantum banknote it is holding. Specifically, a quantum wallet can
derive a classical certificate crt from its quantum banknote, that guarantees that the banknote has
been destroyed and cannot pass the public quantum verification anymore. When the bank receives
crt, it can then consider that banknote as returned to the balance of the wallet that sent it.

• Classical Minting: The bank can execute a classical minting protocol, where it lets a quantum
wallet generate, by itself, exactly one copy of a quantum banknote which is publicly verifiable by
all quantum wallets.

The question of a classical bank has numerous consequences (as mentioned in previous works [Gav12,
Rad19]), two main examples are below.
Sending banknotes over long distances. Sending quantumbanknotes over long distances using quantum
channels is tricky. In fact, we do not know how to guarantee the security of banknotes against some basic
attacks. To be more precise, independently of the ability of any quantum error correcting code to protect
a quantum state, when a single copy of a quantum state is sent through a channel and communication is
cut at the right time (from some reason, malicious or not), the state is lost. States sent from the bank
can still be safe: The bank can first send the quantum banknote, wait for a classical confirmation signal
from the receiver, and then sign the state using a classical signature (e.g. the state can have a classical
part that the bank can sign on). In contrast, for a wallet sending a banknote, due to the communication
shutdown attack described, we don’t know how to guarantee that a state will arrive to its destination
without assuming the physical safety of the channel.

The above means that in a solution where there is CCoD (even where the bank does not have the
ability of classical minting, and needs to quantumly generate banknotes by itself), a quantum wallet can
locally generate a classical certificate crt which can then be sent to the bank over a classical channel (and
classical channels are not susceptible to the shutdown attack described, as information can be copied
and re-sent). Consequently, when wanting to send a quantum banknote, the wallet can choose between
two options. First option is direct exchange, where the banknote is passed physically to another wallet,
and the other wallet can verify it locally and quantumly without needing a middleman. Second option is
long-distance transaction, where the wallet generates the CCoD crt, sends it to the bank, which can then
send a new quantum banknote to the receiving wallet.
Public-key quantummoney on a classical communication network. If we add classical minting along
to the CCoD mechanism, it follows that all communication between the wallet and bank is classical.
This gives us a scheme where the only quantum communication is between wallets, can be local and
does not require a quantum communication network. Apart from the fact that a classical communication
infrastructure already exists for both cabled and wireless communication, classical information is more
stable and classical communication is likely to be more efficient2.

Previous work on making the bank more classical and decreasing its quantum computational work
have produced exciting research in recent years [Gav12, BDS16, Zha19, Rad19, AGKZ20, VZ21,
CLLZ21]. In particular, the work of Ben-David and Sattath [BDS16] combined with the work of
Coladangelo, Liu, Liu and Zhandry [CLLZ21] show how to construct public-key quantum money with
CCoDs, but no classical minting. On the side of classical minting, Zhandry [Zha19] introduces the
idea of Quantum Lightning, which is essentially a non-interactive and reusable classical delegation of
sampling states that are unclonable and publicly verifiable. In particular, Quantum Lightning gives a
solution to the classical minting problem of public-key quantum money (but does not necessarily pro-
vide classical proofs of destruction of banknotes). Zhandry [Zha19] gave a construction of Quantum
Lightning based on a new computational assumption. The security of Zhandry’s construction was later
called into question when Roberts showed that the computational assumption is broken [Rob21]. Radian

2The conjectured efficiency gap between classical and quantum communication is a consequence of the better algorithmic
efficiency and lower rate of classical error correcting codes, compared to their quantum counterparts.
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and Sattath explain in [Rad19] how Quantum Lightning with a certificate of destruction mechanism3 is
at least as strong as public-key semi-quantum money, when adding some basic cryptographic primitives
like signature schemes. To date, we still have no secure constructions of Quantum Lightning under
studied assumptions, and no solution to the classical minting problem of public-key quantum money. In
general terms, the main question we focus on in this work is,

Can a classical computer delegate to a quantum computer the generation of a quantum state, that is
both publicly verifiable and unclonable?

1.1 Results

We resolve the open question and construct a public-key semi-quantummoney scheme, that is, having both
CCoD mechanism and classical minting. Our first assumption is the existence of indistinguishability
obfuscation (iO) for classical circuits secure against quantum polynomial-time attacks. Our second
assumption is that the Learning With Errors [Reg09] problem has sub-exponential indistinguishability
against quantum computers4, that is, there exists some constant δ ∈ (0, 1) such that for every quantum
polynomial-time algorithm, Decisional LWE cannot be solved with advantage greater than 2−λ

δ , where
λ ∈ N is the security parameter of LWE.

Formally, we have the following main Theorem.

Theorem 1.1. Assume that Decisional LWE has sub-exponential indistinguishability and that indis-
tinguishability obfuscation for classical circuits exists with security against quantum polynomial time
distinguishers. Then, there is a public-key semi-quantum money scheme.

The remaining of the paper is as follows. In Section 2 we explain the main ideas in our construction.
The Preliminaries are given in Section 3. In Section 4 we present our construction of public-key
semi-quantum money and its proof of correctness, and in Section 5 we give the security proof of the
scheme.

2 Technical Overview

In this section we explain the main technical ideas in our construction. The structure of the overview
is as follows: in Section 2.1 we start with reviewing the known techniques for classical delegation of
unclonable state generation and discuss the challenge of public verification of such states. In Section
2.2 we describe our new technique of publicly verifiable unclonable state generation, without a security
proof. In Section 2.3 we prove the security of our scheme.

2.1 The Lightning Strike Paradigm and Bolt Verifiability

Let us recall the known methods for classical delegation of unclonable state generation. Specifically, we
consider a scenario where a classical delegator D interacts with a quantum receiver Q and at the end of
the interaction Q has a single copy of a quantum state |ψ〉, and D will know what the state is i.e. D will
have some classical string s that uniquely identifies |ψ〉. The unclonability guarantee will say that for
any quantum polynomial-time Q∗ interacting with D, Q∗ cannot generate two copies of |ψ〉.

A known template to classically delegate unclonable state sampling is that D samples a quantum
circuit G ← G from some large distribution of possible circuits. While G is a distribution on circuits,

3The certificate of destruction mechanism is for the unclonable states generated by the lightning. In [Rad19], such
mechanism is called bolt-to-certificate property of the quantum lightning.

4Note that this assumption is weaker than assuming that Decisional LWE is hard for sub-exponential time quantum
algorithms, which is considered a standard cryptographic assumption.
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each circuit G defines a distribution ΨG on quantum states in the following way: G outputs a 2λ-qubit
state in two λ-qubit registers (A,B). When wanting to sample from ΨG, Q executes G and measures B
at the end of computation, to get some measurement outcome β ∈ {0, 1}λ. After the measurement, A
collapses to some marginal quantum state |ψβ〉 - this state is the sample from ΨG. The hope is that G is
such a circuit that given both β and a single copy of |ψβ〉, it is hard to generate an additional copy of the
state |ψβ〉 in register A.

We think of this process of Q computing G as the formation of a lightning, and on the act of
measuring registerB as a lightning strike - a natural probabilistic event with outcome that is unique with
high probability5. The remaining quantum state |ψβ〉 is called the lightning bolt, and β is called the
identifier.

There are natural examples for quantum computations G that generate lightning strikes. A known
cryptographic example is that G is a family of collision resistant functions, and G is computing a
collision-resistant function H in superposition. The register A is the input register to H and B is the
output register of H . Measuring B we get a uniform image y ∈ {0, 1}λ of H and register A collapses
to a uniform superposition |Hy〉 :=

∑
x:H(x)=y |x〉 of the y-preimages in H . The sampled state |Hy〉 is

unclonable, because if we managed to generate two copies of the state in A we can find a collision in H
with non-negligible probability: By simply measuring the two copies, with at least probability 1/2 the
measurement outcomes are different and we have a y-collision. So to conclude this part, the delegator
D can sampleH and send it to Q, which can then compute it in superposition and generate the identifier
β := y and bolt |ψβ〉 := |Hy〉.

The Problem of Lightning Bolt Verification. A classical delegator D that lets the quantum Q generate
lightning strikes is not a problem, but enabling verification of lightning bolts is a different game. Our
goal until the end of Section 2.2 of the technical overview will be to implement the following protocol
template:

1. D samples G← G and sends G to Q.

2. Q computes (A,B)← G, measures register B to get (|ψβ〉, β), and sends β to D.

3. D sends a classical description of V , a verification circuit that accepts |ψβ〉.

For now, we will think of V as an ideal obfuscation of some classical circuit, that is, the delegator enables
quantum oracle access to some classical efficient function. We will later move to public verification in
the standard model, without oracles. The unclonability of the protocol will guarantee that no quantum
polynomial-time Q∗ can end up with two quantum states that pass the verification of V . That is, Q
samples a state that is unclonable and publicly verifiable.

Keeping in mind the previous example of hash functions, given H and the image y, we don’t know
what D can classically send to Q in order to allow the classical verification of the quantum state |Hy〉.
Given H , y, one can check that the state in register A is some superposition of preimages of y, by
computingH in superposition with input registerA and watching the output y. The challenge is to check
the quantumness of registerA i.e. whether or not it contains more than a single entry in the superposition
of y-preimages. This question has proved to be non-trivial and was asked previously. In particular,
Unruh shows [Unr16b, Unr16a] that under the Learning with Errors assumption there are collision
resistant hash functions where a single preimage |x′〉 of y and the entire superposition

∑
x:H(x)=y |x〉

are indistinguishable.

Noisy Trapdoor Claw-Free Functions and Learnable Verification. One general method that we know
of, where lightning bolts can be efficiently verified, is when the lightning bolt has some "global structure",

5Thinking of lightning storms in nature, we generally view the probability of two lightning strikes hitting the same point as
extremely small when the area of possible strikes is uniform i.e. made up of the same material and have the same distance from
the formation of the storm. The interpretation of such computational process as a lightning strike was first given in [Zha19].
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for example, if it is a subspace state. Specifically, the circuit G is such that when register B is measured
to get β, registerA collapses to a state of the form |Sβ〉 :=

∑
u∈Sβ |u〉, for some subspace Sβ ⊆ {0, 1}λ.

In that case, by the following known method, the bolt |Sβ〉 in register A can be verified with quantum
oracle access to the classical membership functions for the subspace Sβ and its dual S⊥β :

1. Execute on register A membership check for the subspace Sβ in superposition.

2. Execute Quantum Fourier Transform (QFT) on register A.

3. Execute on register A membership check for the subspace S⊥β in superposition.

4. If both subspace membership checks are verified, accept the state as valid.

The above implies that if the classical delegatorD knows how to efficiently compute the classical circuits
for membership checks for the two subspaces Sβ , S⊥β given β, verification (with respect to oracles)
is possible. Consequently, a second "trapdoor property" of G will solve the problem. Specifically, a
satisfying property is that when we sample G ← G we can sample G along with a classical trapdoor
td that allows, given any β in the support of G, to efficiently compute a succinct representation of the
subspaces Sβ , S⊥β .

For sampling states with subspace structure we have one known tool in the literature - Noisy Trapdoor
Claw-Free (NTCF) functions [BCM+18]. In a nutshell, NTCFs allow the sampling of a quantum circuit
and a trapdoor (td, G) ← G such that when computed, and register B is measured to get β, register
A collapses to a quantum state exponentially close in trace distance to |xβ0 〉 + |xβ1 〉. The strings
xβ0 , x

β
1 ∈ {0, 1}λ are called the claw of β, and the security of the NTCF asserts that for every β in the

support of the circuitG, one cannot efficiently find both strings in the claw (hence, "claw-free" function)
with a non-negligible probability. Due to the claw-freeness of G, lightning bolts based on NTCFs are
unclonable: If we had two copies of the bolt |xβ0 〉+ |xβ1 〉, with probability 1/2 we have a claw (xβ0 , x

β
1 )

of some β by measuring both copies.
Regarding the verifiability of claw states: First, the set of two strings xβ0 , x

β
1 can be thought of as the

coset Sβ := {0, xβ0 + xβ1}+ xβ0 (i.e. the 1-dimensional subspace {0, xβ0 + xβ1} with constant shift xβ0 ).
So, the NTCF bolt is verifiable given quantum oracle access to the classical membership functions to Sβ
and its dual (the QFT-based verification algorithm above can be slightly modified to handle cosets rather
than only subspaces, this is still within the range of known techniques). Second, the trapdoor property
of NTCFs guarantee that given the trapdoor td, we can efficiently compute from any valid β the claw
(xβ0 , x

β
1 ). Since the coset Sβ and its dual are efficiently computable from the claw (xβ0 , x

β
1 ), the delegator

can enable verification of claw states using the trapdoor td.
To partially summarize, claw states are unclonable when no oracle is present, and when the mem-

bership oracles for the cosets are accessible, they are verifiable. These observations on NTCFs are not
new. In particular, as part of their work, Radian and Sattath [Rad19] construct private-key semi-quantum
money (i.e. where the bank is completely classical, but verification of banknotes can only be done with
the assistance of the bank) based on NTCFs.

There is a catch to the above NTCF-based bolts. While separately, bolts from NTCFs are (1)
unclonable and (2) verifiable given an oracle, these two properties cannot co-exist. Formally, claw states
are in fact clonable whenever the membership oracles are accessible. In a nutshell, this follows because
oracle access to the coset S⊥β is learnable. Here is how: Given one copy of a claw state |x0〉 + |x1〉,
by measuring the bolt we get xb for some bit b ∈ {0, 1}. We then can execute H⊗λ on xb to get∑

d∈{0,1}λ(−1)〈xb,d〉|d〉, insert that superposition into the membership check S⊥β , measure the result and
let the state collapse with accordance to the measurement outcome. Sβ is 1-dimensional and thus S⊥β
has λ − 1 dimensions and covers half of all {0, 1}λ. With probability 1/2, the state collapses to the
superposition

∑
d∈S⊥β

(−1)〈xb,d〉|d〉. Since d ∈ S⊥β we have 〈d, x¬b〉 = 〈d, xb〉 and it can be verified by
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the reader that this state is H⊗λ · (|x0〉+ |x1〉). By executing Hadamard again and measuring we have
x¬b with probability 1/2 and thus a claw. To conclude, we do not know of a way to make lightning bolts
based on NTCFs publicly verifiable.

2.2 Our Technique - An Alternative Lightning Bolt

We re-examine the lightning strike paradigm. Our aim is to give a different suggestion for a quantum
circuit G that generates lightning strikes. Crucially, we ask that unlike the case of NTCFs, our bolts
should be publicly verifiable.

We start with an observation on hybrid Quantum Fully Homomorphic Encryption (QFHE) schemes
[BJ15, DSS16, Mah20, Bra18] which are a template for constructing QFHE. In a hybrid QFHE scheme,
any ciphertext of any λ-qubit state |ψ〉 consists of a quantum part, which is a quantum one-time pad
(QOTP) encryption |ψ〉(x,z) :=

(
⊗i∈[λ]Xxi

)
·
(
⊗i∈[λ]Zzi

)
· |ψ〉 of |ψ〉 using classical keys x, z ∈ {0, 1}λ,

and a classical part which is classical Fully Homomorphic Encryption (FHE) encryptions ctx,z of the
pad itself. The process of homomorphic evaluation of a quantum circuit C involves changing the pad
from the initial x, z to some other x′, z′:(

C (|ψ〉)(x
′,z′) , ctx′,z′

)
← QHE.Eval

(
(|ψ〉(x,z), ctx,z), C

)
.

Our starting observation is that in all known hybrid QFHE schemes, in the quantum homomorphic
evaluation process, the pad transformation (x, z)→ (x′, z′) is a randomized function, at least when the
evaluation is executed honestly.

The above is clearly not a proof that the pad has to be randomized, and it is also provably not always
true - it depends on the evaluated quantum circuit C. For example, for any C a Clifford circuit it is a
known fact that it can be computed homomorphically on any hybrid-encrypted quantum state, where the
pad transformation (x, z) → (x′, z′) is deterministic [BJ15]. Keeping this transformation deterministic
is however not known to be possible when we deal with general quantum circuits, in particular, when we
need to homomorphically evaluate Toffoli gates. We’ll next see that it is not known for a reason, because
it is impossible.
Hybrid Quantum Homomorphic Evaluation is a Lightning Strike. We want to show that the process
of quantum homomorphic evaluation itself is a lightning strike. Formally, we claim there exists a quantum
circuit C such that when given along with a QFHE encryption (|s〉(x,z), ctx,z) of any string s ∈ {0, 1}λ,
the following process generates a lightning strike:C (|s〉)(x

′,z′)︸ ︷︷ ︸
Bolt

, ctx′,z′︸ ︷︷ ︸
Identifier

← QHE.Eval
(

(|s〉(x,z), ctx,z), C
)

︸ ︷︷ ︸
Bolt generator G

,

which means that it is computationally impossible to generate twice the quantum part C (|s〉)(x
′,z′) of

the ciphertext, that corresponds to the same classical part ctx′,z′ .
The quantum circuit C we suggest is this: Given an input string s ∈ {0, 1}λ and zero-initialized

ancilla |0(1+λ)〉, generate |+〉 = |0〉+ |1〉 by executing Hadamard gate on the first qubit ancilla register.
Then execute λ parallel Toffoli gates where for gate i ∈ [λ], the two controls are the first ancilla qubit
and the i-th bit of |s〉, and the target qubit is the (1 + i)-th qubit of the ancilla (which we know is |0〉
before the Toffoli gate). The reader can verify that the obtained state is |s〉 ⊗

(
|0, 0λ〉+ |1, s〉

)
. C traces

out |s〉 and outputs |0, 0λ〉+ |1, s〉.
Finally, assume toward contradiction that some adversary A gets QFHE encryption (|s〉(x,z), ctx,z)

for a random s and outputs twice the quantum part of the encryption along with the classical FHE

6



encryption of the pad of the evaluated ciphertext, that is,

C (|s〉)(x
′,z′) ⊗ C (|s〉)(x

′,z′) ⊗ ctx′,z′

= Z⊗z
′ ·
(
|x′ + 01+λ〉+ |x′ + (1, s)〉

)
⊗ Z⊗z′ ·

(
|x′ + 01+λ〉+ |x′ + (1, s)〉

)
⊗ ctx′,z′ .

We can toss ctx′,z′ and measure the first bolt to get the classical measurement x′ + (b, b · s) for some
b ∈ {0, 1}. The point is that regardless of the value of b, when we add the classical string x′ + (b, b · s)
to the bolt it cancels the shift x′ but does not disturb the rest of the state, because it is still in uniform
superposition. This means that the measured x′ + (b, b · s) acts as a decryption key:

C+x′+(b,b·s)

(
Z⊗z

′ ·
(
|x′ + 01+λ〉+ |x′ + (1, s)〉

))
= Z⊗z

′ ·
(
|x′ + 01+λ + x′ + (b, b · s)〉+ |x′ + (1, s) + x′ + (b, b · s)〉

)
= Z⊗z

′ ·
(
|01+λ〉+ |1, s〉

)
.

When the remaining, post-processed bolt is measured we get the secret string s with probability 1/2 and
violate the security of the QFHE.
Unlearnable Verification through High-Dimensional Subspaces. Additionally to the no-cloning
guarantee, the lightning bolt generated can be seen as a uniform superposition over the 1-dimensional
coset S + x′ (S is {0λ, s}) with phase (−1)〈u,z

′〉 for all u in the superposition. By having quantum
oracle access to S + x′ and S⊥ + z′ it follows that Similarly to how we verified NTCF-based bolts,
such states are verifiable by the QFT-based verification algorithm. Such oracle access can be computed
efficiently by the delegator D, as it can get ctx′,z′ from Q which made the homomorphic evaluation, and
enable access to membership checks for S + x′ and S⊥ + z′. Unfortunately, also similarly to the case
for NTCFs, when quantum oracle access to S + x′ and S⊥ + z′ is enabled, the lightning bolts become
clonable by the same attack (it is a nice exercise to execute the very similar attack and see how to clone
a QFHE-based bolt).

So, we know how to create lightning bolts from QFHE, but not how to publicly verify them.
Rethinking our attacks on the public verification of both the NTCF and QFHE bolts, it can be seen that
at the core of the attacks is the fact that the dimension of S was small, which made the dimension of
S⊥ almost full, which let the adversary sample copies of the state with noticeable probability. Indeed,
we have reason to believe that increasing the dimension of the subspace can aid public verification. In
their seminal work, Aaronson and Christiano [AC12] suggest a uniform superposition over a hidden
random subspace S as the money state, and show that when the dimensions of S and S⊥ are both λ/2,
any adversary that is given |S〉 :=

∑
u∈S |u〉 and quantum oracle access to the classical membership

functions S, S⊥ cannot clone the state. In particular, the subspace S stays hidden.

Putting the Pieces Together. The key advantage of our QFHE technique over NTCF bolts is the ability
to generate bolts where the underlying subspace S can have a large dimension, as we next see. Recall
the circuit C we homomorphically evaluated earlier in order to create a bolt. Under the encryption,
given input s ∈ {0, 1}λ what the circuit C really does is generating a subspace state |S〉 =

∑
u∈S |u〉

for S = {0λ, s}6. We then showed that when the specific quantum circuit homomorphically evaluated is
C, than the state is unclonable. This proof only uses the fact that C generates subspace states, it is not
sensitive to the dimension of the subspace, as long as it isn’t too large.

More precisely, we can take C the homomorphically evaluated circuit to be a generating circuit
for a subspace state |S〉, for a subspace S with a larger dimension λ

2 . Instead of encrypting a random

6The circuit C we described earlier generated |0, 0λ〉+ |1, s〉 for the simplicity of the first example, but having s it could
have just output |0λ〉+ |s〉 which is indeed the superposition over S = {0λ, s}.
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s ∈ {0, 1}λ, the QFHE contains a generating matrix MS ∈ {0, 1}
λ
2
×λ for a random λ

2 -dimensional
subspace. It can be verified by the reader that if an adversary A generates twice the quantum part of
the ciphertext, which is twice C(|MS〉)(x

′,z′) =
∑

u∈S(−1)〈z
′,u〉|x′ + u〉 then by the same trick we

used to prove the unclonability of the previous QFHE bolts (i.e. measuring one of the copies and using
the measurement result as a decryption key for the x′-part in the other copy of the bolt), we generate∑

u∈S(−1)〈z
′,u〉|u〉. This follows because given a uniform superposition over any subspace, adding to the

state any element in the subspace, the quantum state stays the same. By measuring
∑

u∈S(−1)〈z
′,u〉|u〉

we get a uniform sample in S. Now, because S is a random subspace of dimension λ
2 it takes a tiny

fraction of the entire space of possible strings {0, 1}λ. Consequently, by the hiding of the QFHE, getting
a sample from S should be hard.
To summarize what we saw until now, the delegator D samples a random λ

2 -dimensional subspace
S ⊆ {0, 1}λ and sends the QFHE encryption (|MS〉(x,z), ctx,z). The quantum receiver computes,C (|MS〉)(x

′,z′)︸ ︷︷ ︸
Bolt

, ctx′,z′︸ ︷︷ ︸
Identifier

← QHE.Eval
(

(|MS〉(x,z), ctx,z), C
)

︸ ︷︷ ︸
Bolt generator G

,

to generate a lightning bolt, and sends ctx′,z′ to D. By decrypting (x′, z′) = QHE.Dec(ctx′,z′), D knows
S+x′ and S⊥+ z′ and can enable quantum oracle access to them (by sending ideal obfuscations to their
membership circuits).

2.3 Security in the Standard Model

It remains to explain two things: one is how D enables public verification of the bolt in the standard
model (without ideal obfuscation), and second, how given this public verification in the standard model
the state is still unclonable7.

Subspace Hiding Obfuscation as First Try. In the last version of the protocol, after Q generates
the bolt and identifier

(
C(|MS〉)(x

′,z′), ct(x′,z′)

)
it sends the identifier ct(x′,z′) to the delegator in the

second message of the generation protocol. The delegator can then decrypt to get the pad (x′, z′) =
QHE.Dec(fhek, ct(x′,z′)) and then have the discriptions of S+x′ and S⊥+ z′. In order for the delegator
to enable verification in the standard model we would like to use a key obfuscation technique in public
verification of quantum money states: the subspace hiding [Zha19] property of indistinguishability
obfuscators (iO).

Subspace hiding says that if injective one-way functions exist and we use iO to obfuscate a classical
membership check for some coset S + x, if the dimension of S is bounded by (1 − ε) · λ, where λ is
the full dimension and ε ∈ (0, 1) is some constant, then the obfuscation of S + x is indistinguishable
from an obfuscation of T + x for T some random (1− ε′) · λ-dimensional superspace of S with ε′ < ε a
constant. Informally this means that when the dimension of the subspace is sufficiently small we can hide
it with iO. To hide both a subspace and its dual, taking the dimension of S to be λ/2 seems ideal. It is
natural to try let the delegator send obfuscations of the coset membership circuits OS+x′ ← iO(CS+x′),
OS⊥+z′ ← iO(CS⊥+z′) as a means for public quantum verification. We examine this possibility next.

Is Subspace Hiding Sufficient for Bolt Public Verification? Recent works [Zha19, CLLZ21] have
shown that subspace hiding is indeed sufficient in order to publicly and securely verify unclonable states,
under the following conditions:

1. The state is of the form
∑

u∈S(−1)〈z,u〉|x+ u〉 for λ/2-dimensional S and any x, z ∈ {0, 1}λ.
This seems to be our case as well.

7In the body of this work we prove a stronger property than only no-cloning of the bolt, that it has a CCoD mechanism.
For the simplicity and because the arguments are identical, we focus only on no-cloning during the technical overview.
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2. There is no delegator i.e. there is a bank and it generates the quantum state by itself, and sends it
ready to the receiver. This isn’t our case.

Indeed the fact that the bank is the author of the banknotes comes up in the security argument of such
schemes. We very roughly explain how: In the security reduction we can fix T0 a superspace of S, T1
a superspace of S⊥, tx := x + s and tz := z + s⊥ for any x, z ∈ {0, 1}λ, s ∈ S, s⊥ ∈ S⊥. The free
variables at this point are S, which is subject to T⊥1 ⊆ S ⊆ T0, and x, s, z, s⊥, which are subject to
tx = x+ s, tz = z + s⊥. Even given the fixing of T0, T1, tx, tz , cloning is still hard for the adversary as
the free variables still have sufficient entropy, linear in the security parameter.

The point is that in order for the reduction to move to this setting where T0, T1, tx, tz are fixed (and
in particular tx, tz are fixed) we exactly use the fact that the bank can sample x, z by itself in the original
construction. In our setting, the bank only samples the original pad x, z but does not have control over
the actual padding x′, z′ of the generated bolt - as we already saw, the creation process of x′, z′ is both
randomized and happens on the computer of the receiver.

At the end of section 2.2 it was shown that if the adversary A clones the QFHE bolt then it breaks
the security of the QFHE by getting a uniform sample from S. This stays the main direction of our
reduction. To prove security under public verification we need to carry the reduction again, but in a
setting where we send A the verification circuits OS+x′ , OS⊥+z′ without knowing the QFHE secret key
that is used in the original protocol to decrypt (x′, z′) = QHE.Dec(fhek, ct(x′,z′)). At this point we
get stuck: The subspace hiding guarantee lets us swap OS+x′ , OS⊥+z′ with OT0+x′ , OT1+z′ for random
superspaces T0, T1, and still we do not know how to send something indistinguishable from any of the
above obfuscations without knowing the actual pads x′, z′.

Knowing the Pads Versus Containing the Pads. We suggest a tweak to the original scheme, and a
stronger subspace hiding guarantee. We will explain how the stronger subspace hiding follows from the
same assumptions as in [Zha19]. We change the verification slightly: the first check CS+x′ is swapped
to C(S,x′) i.e. membership check not in the coset S + x′ but in the subspace spanned by vectors in S and
{x′} (this subspace is (S + x′) ∪ S), and the dual check is also swapped analogously from CS⊥+z′ to
C(S⊥,z′).

How does this helps exactly? Recall that subspace hiding of indistinguishability obfuscators lets you
go to a significantly larger superspace, as long as the initial subspace is not too large. So, O(S,x′) is
indistinguishable from OT0 where T0 is a random high-dimensional superspace of (S, x′) and O(S⊥,z′)

is indistinguishable from from OT1 where T1 is a random high-dimensional superspace of (S⊥, z′).
It follows that if we can simulate OT0 , OT1 we can perform the reduction. The helping part here is
that in order to simulate these obfuscations, we don’t need to know the strings x′, z′ but only let the
corresponding subspaces T0, T1 to "catch" them. So, to simulate the obfuscation the reduction can guess
T0, T1 subject only to S ⊆ T0, S⊥ ⊆ T1 (rather than to (S, x′) ⊆ T0, (S⊥, z′) ⊆ T1 as in the original
protocol) and hope that (x′ ∈ T0) ∧ (z′ ∈ T1). If this is the case then the obfuscations distribute the
same and our reduction should check.

Recalling the subspace hiding guarantee from earlier, this isn’t helpful as it is. T0 can only be of
dimension (1−ε′) ·λ for a constant ε′ ∈ (0, 1), which means its fraction in the space of all strings {0, 1}λ

is exponentially small 2(1−ε
′)·λ

2λ
= 2−ε

′·λ = 2−O(λ). The same is true for T1. However, by looking at
the actual proof of the subspace hiding property of indistinguishability obfuscators in [Zha19] (proof of
Theorem 6.3), one can observe that the exact same proof actually proves a stronger statement than what
was claimed - the dimension of the random superspace T of S can be even larger λ−λδ for any constant
δ ∈ (0, 1), under the exact same computational assumptions. We explain how this is true in Section 3.1,
in the proof of Lemma 3.1.

Finally, assuming the stronger subspace hiding property we complete our security reduction. If for
every constant δ ∈ (0, 1) we could sample random (λ − λδ)-dimensional subspaces T0, T1 subject to
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S ⊆ T0, S⊥ ⊆ T1 and obfuscations of them are indistinguishable from S and S⊥, we can amp up
the security of the QFHE and get our reduction to work: Assume that the QFHE has sub-exponential
advantage security, that is, there is some constant δ′ ∈ (0, 1) such that any quantum polynomial-time
algorithm cannot distinguish encryptions of different messagesm,m′ with advantage better than 2−λ

δ′ .
By taking the subspace dimension parameter to be δ = δ′/2 we create a gap between the probability
that the random T0, T1 contain the corresponding x′, z′ ((x′ ∈ T0) ∧ (z′ ∈ T1) happens with probability
≈ 2−λ

δ ) and the probability that the adversary should find a random string in S (by the increased security
of the QFHE and the fact that the dimension of S is λ

2 , A should not be able to do this with probability
greater than ≈ 2−λ

δ′ ), and because δ = δ′/2 implies 2−λ
δ′
<< 2−λ

δ , we get our contradiction. So,
the third and last message of the minting protocol is indistinguishability obfuscations of the classical
membership checks C(S,x′), C(S⊥,z′).

3 Preliminaries

We rely on standard notions of classical Turing machines and Boolean circuits:

• A PPT algorithm is a probabilistic polynomial-time Turing machine.

• For a PPT algorithmM , we denote byM(x; r) the output ofM on input x and random coins r.
For such an algorithm and any input x, we write m ∈ M(x) to denote the fact that m is in the
support ofM(x; ·).

We follow standard notions from quantum computation.

• A QPT algorithm is a quantum polynomial-time Turing machine.

• An interactive algorithmM , in a two-party setting, has input divided into two registers and output
divided into two registers. For the input, one register Im is for an input message from the other
party, and a second register Ia is an auxiliary input that acts as an inner state of the party. For the
output, one register Om is for a message to be sent to the other party, and another register Oa is
again for auxiliary output that acts again as an inner state. For a quantum interactive algorithmM ,
both input and output registers are quantum.

The Adversarial Model. Throughout, efficient adversaries are modeled as quantum circuits with
non-uniform quantum advice (i.e. quantum auxiliary input). Formally, a polynomial-size adversary
A = {Aλ, ρλ}λ∈N, consists of a polynomial-size non-uniform sequence of quantum circuits {Aλ}λ∈N,
and a sequence of polynomial-size mixed quantum states {ρλ}λ∈N.

For an interactive quantum adversary in a classical protocol, it can be assumed without loss of
generality that its output message register is always measured in the computational basis at the end of
computation. This assumption is indeed without the loss of generality, because whenever a quantum state
is sent through a classical channel then qubits decohere and are effectively measured in the computational
basis.
Indistinguishability in the Quantum Setting.

• Let f : N→ [0, 1] be a function.

– f is negligible if for every constant c ∈ N there exists N ∈ N such that for all n > N ,
f(n) < n−c.

– f is noticeable if there exists c ∈ N, N ∈ N such that for every n ≥ N , f(n) ≥ n−c.
– f is overwhelming if it is of the form 1− µ(n), for a negligible function µ.
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• We may consider random variables over bit strings or over quantum states. This will be clear from
the context.

• For two random variablesX and Y supported on quantum states, quantum distinguisher circuit D
with, quantum auxiliary input ρ, and µ ∈ [0, 1], we write X ≈D,ρ,µ Y if

|Pr[D(X; ρ) = 1]− Pr[D(Y ; ρ) = 1]| ≤ µ.

• Two ensembles of random variables X = {Xi}λ∈N,i∈Iλ , Y = {Yi}λ∈N,i∈Iλ over the same set of
indices I = ·∪λ∈NIλ are said to be computationally indistinguishable, denoted by X ≈c Y , if for
every polynomial-size quantum distinguisher D = {Dλ, ρλ}λ∈N there exists a negligible function
µ(·) such that for all λ ∈ N, i ∈ Iλ,

Xi ≈Dλ,ρλ,µ(λ) Yi .

• The trace distance between two distributions X,Y supported over quantum states, denoted
TD(X,Y ), is a generalization of statistical distance to the quantum setting and represents the
maximal distinguishing advantage between two distributions supported over quantum states, by un-
bounded quantum algorithms. We thus say that ensemblesX = {Xi}λ∈N,i∈Iλ , Y = {Yi}λ∈N,i∈Iλ ,
supported over quantum states, are statistically indistinguishable (and write X ≈s Y), if there
exists a negligible function µ(·) such that for all λ ∈ N, i ∈ Iλ,

TD (Xi, Yi) ≤ µ(λ) .

In what follows, we introduce the cryptographic tools used in this work.

3.1 Indistinguishability Obfuscation

We use indistinguishability obfuscators for classical circuits, that are secure against quantum polynomial-
time adversaries.

Definition 3.1. An indistinguishability obfuscation scheme iO is a PPT algorithm that gets as input a
security parameter λ ∈ N and a classical circuit C, and outputs a classical circuit. It has the following
guarantees.

• Correctness: For every classical circuitC and security parameter λ ∈ N, the programs iO(1λ, C)
and C are functionally equivalent.

• Indistinguishability: For every polynomial poly(·):

{iO(1λ, C0)}λ,C0,C1 ≈c {iO(1λ, C1)}λ,C0,C1 ,

where λ ∈ N, C0, C1 are two poly(λ)-size classical circuits with the same functionality.

In [Zha19], it is shown that indistinguishability obfuscation schemes have the property of subspace
hiding. This is proven in Theorem 6.3 in [Zha19]. We observe that a stronger statement can be derived
from the exact same proof of Zhandry, when one small observation is added. This stronger statement is
given in Lemma 3.1 below. We write the proof for the lemma below for the sake of completeness.
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Lemma 3.1. Let iO an indistinguishability obfuscation scheme, and assume that injective one-way
functions exist. Let S = {Sλ}λ∈N a subspace S ⊆ {0, 1}λ. For a subspace S′, denote by CS′ a
classical circuit that checks membership in S′. Then, for every constant δ ∈ (0, 1] we have the following
indistinguishability,

{OSλ |OSλ ← iO(CSλ)}λ∈N ≈c {OT |OT ← iO(CT ), T ← SSλ}λ∈N ,

where SSλ is the set of all subspaces of dimension λ − λδ that contain Sλ, and T is a uniform sample
from that set.

Proof. We prove the claim by a hybrid argument. Specifically, we will only need to prove two things:

• The claim is correct when the dimension of T the random superspace of S is dim(S) + 1, as long
as dim(S) + 1 ≤ λ− λδ.

• The size of the output obfuscated circuitOT is bigger then the original circuit by at most an additive
polynomial size.

The reason this will be sufficient is because we can perform this argument a linear amount of times as
long as the upper bound on the dimension of T holds. At the end of applying the argument we use

We next show that the claim is correct whenever dim(T ) = dim(S) + 1 by a hybrid argument.

• Hyb0 : The adversary A gets the obfuscation O(S) of the original base subspace S. The circuit
CS is appropriately padded so that all the programs received by the adversary in the following
hybrids have the same length.

• Hyb1 : In this hybrid, the adversary receives an obfuscation of the following function. Let P̂ be an
obfuscation under iO of the simple program Z that always outputs 0 on inputs in {0, 1}λ−dim(S).
Let B ∈ {0, 1}λ−dim(S) a matrix whose rows are a basis for S⊥, the space orthogonal to S. This
basis can be computed by Gaussian elimination. Then Ŝ is the obfuscation under iO of the function

Q(x) =


1 if B · x = 0λ

1 if P̂ (B · x) = 1

0 Otherwise

Since P̂ always outputs 0, the program Q program still accepts if and only if the input is in S.
Therefore, Hyb0 and Hyb1 are indistinguishable by the security of the outer iO invocation.

• Hyb2 : This hybrid is the same as Hyb1, except that P̂ is the obfuscation under iO of the function
which is defined for y ∈ {0, 1}λ−dim(S),

Py(x) =

{
1 if OWF(x) = y

0 Otherwise

Here,OWF is an injective one-way function, and y = OWF(x∗) for a random x∗ ∈ {0, 1}λ−dim(S).
At this point in the proof we slightly deviate from the proof of Theorem 6.3 in [Zha19]. By the
guarantee that dim(S)+1 ≤ λ−λδ, it follows that the row dimension ofB, isλ−dim(S) ≥ λδ+1.
This means that the security parameter of the one-way function OWF, which is the length of the
random input x∗, is exactly λδ + 1. Note that this is still enough to invoke the security of the
one-way function.
Notice that because OWF is injective, the only point on which Z and Py differ is x∗, and finding
x∗ requires inverting OWF. Therefore, if iO was a differing inputs obfuscator, the obfuscations
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of Z and Py would be indistinguishable. Since Z and Py differ in only a single input, the results
of [BCP14] show that iO is a differing inputs obfuscator for these circuits. This implies that Hyb1
and Hyb2 are indistinguishable.
Notice now, thatQ(·) decides membership in the subspace S′ of vectors u ∈ {0, 1}λ such thatB ·u
is in the span of x∗ (which is just {0, x∗}). Except with negligible probability, x∗ 6= 0λ−dim(S),
and so S′ has dimension dim(S) + 1 and also contains S.

• Hyb3 : In this hybrid, a random x∗ is chosen, S′ is constructed as above, and then obfuscated. Since
Q(·) decides membership in S′, the programs being obfuscated in Hyb2 and Hyb3 are the same, so
these two hybrids are indistinguishable by the security of the indistinguishability obfuscation iO.

• Hyb4 : Here, we choose x∗ ∈ {0, 1}λ−dim(S) at random, except not equal to 0. Since x∗ comes
from a set of size 2λ−dim(S) ≥ 2λ

δ+1 which by assumption is at least of sub-exponential size, the
two distributions are statistically close. Finally, the set S′ is a random (dim(S) + 1)-dimensional
superspace of S, so Hyb4 is the case that corresponds to the obfuscation of T above.

Instantiations. Indistinguishability Obfuscation for classical circuits that has security against quan-
tum polynomial-time attacks follows from the recent line of works on lattice-inspired iO candidates
[BDGM20a, GP21, BDGM20b, DQV+21].

3.2 Leveled Hybrid Quantum Fully Homomorphic Encryption

We rely on quantum fully homomorphic encryption of a specific structure. The formal definition follows.

Definition 3.2 (Leveled Hybrid Quantum Fully-Homomorphic Encryption). A hybrid leveled quantum
fully homomorphic encryption scheme is given by six algorithms (QHE.Gen, QHE.Enc, QHE.OTP,
QHE.Dec, QHE.QOTP, QHE.Eval) with the following syntax:

• fhek ← QHE.Gen(1λ, 1`) : A PPT algorithm that given a security parameter λ ∈ N and target
circuit bound ` ∈ N, samples a classical secret key fhek.

• m ⊕ x ← QHE.OTPx(m) : A deterministic algorithm that takes as input a classical pad x ∈
{0, 1}∗ and messagem such that |m| = |x|, and outputsm⊕ x.

• ct ← QHE.Encfhek(x) : A PPT algorithm that takes as input a classical string x ∈ {0, 1}∗ and
the secret key fhek and outputs a classical ciphertext ct.

• x = QHE.Decfhek(ct) : A deterministic algorithm that takes as input a classical ciphertext ct and
outputs a string x.

• |ψ〉(x,z) = QHE.QOTP(x,z)(|ψ〉) : A QPT algorithm that takes as input an n-qubit quantum state
|ψ〉 and classical strings as quantum OTPs x, z ∈ {0, 1}n and outputs its QOTP transformation
|ψ〉(x,z) :=

(
⊗i∈[n]Xxi

)
·
(
⊗i∈[n]Zzi

)
· |ψ〉.

• |phi〉(x′,z′), ct(x′,z′) ← QHE.Eval
(
(|ψ〉(x,z), ct(x,z)), C

)
: A QPT algorithm that takes as input

a general quantum circuit C, a quantum one-time-pad encrypted state |ψ〉(x,z) and a classical
ciphertext ct(x,z) of the pads. The evaluation outputs a QOTP encryption of some quantum state
|φ〉 encrypted under new keys (x′, z′) that are encrypted in the classical encryption ct(x′,z′).

The scheme satisfies the following.
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• Quantum Semantic Security: For every polynomials m(·), `(·), and quantum polynomial-time
algorithm A = {Aλ, ρλ})λ∈N there exists a negligible function neglA(·) such that{

(m0 ⊕ x, ctx)

∣∣∣∣ x← {0, 1}m(λ), fhek← QHE.Gen(1λ, 1`(λ)),
ctx ← QHE.Encfhek(x),

}
λ,m0,m1

≈Aλ,ρλ,neglA(λ){
(m1 ⊕ x, ctx)

∣∣∣∣ x← {0, 1}m(λ), fhek← QHE.Gen(1λ, 1`(λ)),
ctx ← QHE.Encfhek(x),

}
λ,m0,m1

,

where λ ∈ N,m0,m1 ∈ {0, 1}m(λ).

– If there exists a constant δ ∈ (0, 1] such that, for every adversary A, ∀λ ∈ N, neglA(λ) ≤
2−λ

δ , we say that the QFHE scheme has sub-exponential advantage security.

• Homomorphism: If the homomorphic evaluation is executed honestly |φ〉(x′,z′), ct(x′,z′) ←
QHE.Eval

(
(|ψ〉(x,z), ct(x,z)), C

)
and the size of C is bounded by ` the parameter used for the

generation of the secret key fhek, then the state |φ〉 has exponentially small trace distance from
C(|ψ〉).

Instantiations. QuantumLeveled Fully-Homomorphic encryptionwith the hybrid structure follows from
the work of Mahadev [Mah20], and can be based on the hardness of Learning with Errors. Brakerski
[Bra18] shows how to increase the security of QFHE using a weaker LWE assumption. Consequently,
constructing QFHE that has hybrid structure, leveled, and has sub-exponential advantage can be based
on assuming Decisional LWE for quantum computers, with sub-exponential indistinguishability.

3.3 Signature Schemes

We use signature schemes that are secure against quantum polynomial-time attacks.
Definition 3.3 (Signature Scheme). A signature scheme consists of 3 classical algorithms (Sig.Gen,
Sig.Sign, Sig.Ver) with the following syntax.

• (pkSig, skSig)← Sig.Gen(1λ) : The key generation algorithm is a PPT that takes as input a security
parameter and outputs a pair of public verification key pkSig and secret signing key skSig.

• σ ← Sig.Sign(skSig,m) : The signature algorithm is a PPT that takes as input a secret signing
key skSig and a messagem ∈ {0, 1}∗ and outputs a signature σ.

• Sig.Ver(pkSig,m, σ) ∈ {0, 1} : The verification algorithm is a deterministic algorithm such that
for the public verification key, a messagem ∈ {0, 1}∗ and a candidate signature σ form outputs
a bit signalling whether or not the signature was successful.

The algorithms have the following properties.

• Correctness: for any messagem ∈ {0, 1}∗,

Pr
[
Sig.Ver(pkSig,m, σ) = 1

∣∣∣ (pkSig, skSig)← Sig.Gen(1λ), σ ← Sig.Sign(skSig,m)
]

= 1 .

• Unforgeability against Chosen Plaintext Attack: For any oracle aided quantum polynomial-time
adversary A = {Aλ, ρλ}λ∈N there exists a negligible function negl(·) such that

Pr

[
Sig.Ver(pkSig,m

∗, σ∗) = 1

∣∣∣∣ (m∗, σ∗)← ASig.Sign(skSig,·)(pkSig),
m∗ /∈ Q

]
≤ negl(λ) ,

where (skSig, pkSig)← Sig.Gen(1λ) andQ is the set of queries thatA makes to Sig.Sign(skSig, ·).

Instantiations. Signature schemes with quantum security are known based on assuming the Learning
with Errors Assumption [BZ13].
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3.4 Public-key Semi-Quantum Money

In this workwe construct a public-key semi-quantummoney scheme based on cryptographic assumptions.
Before describing our construction in Section 4, we give a definition of public-key semi-quantum money,
which was formally introduced in [Rad19]. Our version of the definition is written below.

Definition 3.4 (Public-key semi-quantum money). A public-key semi-quantum money scheme consists
of algorithms (Gen, BankMint, RecMint, QV, GenCert, CV) with the following syntax.

• (pk, sk) ← Gen(1λ) : A PPT algorithm that gets as input the security parameter and samples a
pair of classical keys, a public verification key and a secret generation key.

• |$〉 ← 〈BankMint(sk),RecMint(pk)〉 : a classical-communication protocol between a classical
algorithm BankMint(sk) and a quantum algorithm RecMint(pk). At the end of interaction the
receiver has a quantum banknote |$〉.

• (b, |$′〉) ← QV(pk, |$〉) : A QPT algorithm that gets as input the public key and a candidate
banknote |$〉 and outputs a banknote |$′〉 along with a bit b ∈ {0, 1}.

• crt ← GenCert(pk, |$〉) : A QPT algorithm that gets as input the public key and a candidate
banknote and outputs a classical string crt.

• CV(pk, crt) ∈ {0, 1} : A classical algorithm that takes as input the public key pk and a classical
string crt, and outputs a bit.

The scheme satisfies the following guarantees.

• Statistical Correctness: There exists a negligible function negl(·) such that for every λ ∈ N,

Pr

[
(1, |$′〉)← QV(pk, |$〉)

∣∣∣∣ (pk, sk)← Gen(1λ),
|$〉 ← 〈BankMint(1λ, sk),RecMint(1λ)〉

]
≥ 1− negl(λ) .

• Security: LetA = {Aλ, ρλ}λ∈N a quantumpolynomial-time algorithm, and consider the following
game:

– A key pair (pk, sk)← Gen(1λ) is sampled,A gets pk and interacts the bank minting protocol
BankMint(sk). At the end, A outputs a quantum state BN∗.

Then, there exists a negligible function negl(·) such that for all λ ∈ N, for each of the below events,
the probability for it to occur is ≤ negl(λ):

– Counterfeiting: BN∗ = (crt, |$〉), such that CV(pk, crt) = 1 and (1, |$′〉)← QV(pk, |$〉).
– Quantum Sabotage: BN∗ = |$〉 such that (1, |$′〉)← QV(pk, |$〉) on first execution of QV,

and then (0, |$′′〉)← QV(pk, |$′〉).
– Classical Sabotage: BN∗ = |$〉 such that (1, |$′〉)← QV(pk, |$〉) on first execution of QV,

and then crt← GenCert(pk, |$′〉), CV(pk, crt) = 0.

The above definition is relatively succinct compared to the number of protections it guarantees. We
go over these derived guarantees here.
Security against sabotage. Security against quantum and classical sabotage protects wallets in the
system i.e. banknote holders. It basically says that when a wallet is given a quantum banknote and it
passed the public quantum verification QV(pk, ·) once, it will pass all further quantum verifications with
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overwhelming probability, and at the end of this process we can destroy the banknote withGenCert(pk, ·),
to successfully generate a valid classical certificate of destruction crt that will be verified by CV(pk, ·).
Security against counterfeiting is intended to protect the bank. The guarantee says that an adversary
cannot output both a quantum banknote and a corresponding classical certificate of destruction for it.
This guarantee is stronger then no cloning: This follows as if we had an extra copy of a quantum state
that passes quantum verification, we keep one copy on the side and process the second like this: due to
the security against classical sabotage, this state yields a valid classical certificate with overwhelming
probability. In that case we have one quantum banknote on the side and now a classical certificate.
Correctness. The formal correctness guarantee says that when the protocol is executed honestly, then the
generated banknote |$〉 passes quantumverificationwith overwhelming probability. When combinedwith
security against classical sabotage, this means that the banknote which passed the a quantum verification
will successfully generate a classical certificate of destruction crt that passes the classical verification
CV. So, when the protocols are executed honestly the banknote both passes quantum verification and
classical certificate generation and verification.
Multi-session Security. The above definition considers security over a single session of the minting
protocol between the bank and the adversary A. However, the definition captures multi-session security
without the loss of generality by a generic and trivial transformation. In multi-session security the
adversary can perform the minting protocol with the bank arbitrarily many times to generate many
different banknotes, and still can’t counterfeit or sabotage (nor quantum or classical sabotage). Like in
the definition from [Rad19], multi-session security requires the bank to keep a database of banknotes
that have been previously destroyed by the classical certificate of destruction mechanism.

A schemewithmulti-session security can be obtained by the following use of the single-session-secure
definition above. The initial key generation is generating keys for a signature scheme (pkSig, skSig) ←
Sig.Gen(1λ). At the beginning of every session of classical minting, the bank uses the single-session
definition above, sends the public key (of the single session definition) along with the first message, and
signs on the public key of the one-session bank, using its many-session secret key skSig, at the end of each
minting protocol. Breaking the security of the original, single-session-secure scheme can be reduced to
breaking the security of the multi-session scheme, by the fact that minting sessions are independent.

4 Public-Key Semi-Quantum Money Construction

In this section we present our construction of a Public-key Semi-Quantum Money scheme (Definition
3.4), and proof of correctness.
Ingredients and notation:

• A quantum hybrid fully homomorphic encryption scheme (QHE.Gen, QHE.Enc, QHE.OTP,
QHE.Dec, QHE.QOTP, QHE.Eval), with sub-exponential advantage security (Definition 3.2).

• An indistinguishability obfuscation scheme iO (Definition 3.1).

• A signature scheme (Sig.Gen, Sig.Sign,Sig.Ver) for classical messages (Definition 3.3).

We describe the scheme in Figure 1, this includes the initial public key generation, the minting protocol,
the quantum public verification of a bank note and the classical verification of a classical certificate of
destruction.

4.1 Correctness

We prove that our scheme is correct, that is, if the scheme’s algorithms are ran honestly, then the protocol
ends successfully with probability 1− negl(λ). Also, if the protocol ends successfully, then a quantum
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banknote generated in the minting protocol passes quantum verification with probability 1−negl(λ) and
generates a valid classical certificate of destruction with probability 1− negl(λ).

Claim 4.1. At the end of a successful execution of the minting protocol, the bank note has negligible
trace distance from the state, (

σ, (OS,x,OS⊥,z,OS), |S〉(x,z)
)
,

where,
|S〉(x,z) :=

∑
u∈S

(−1)〈z,u〉|x+ u〉 .

Proof. In case the protocol ends successfully, it follows readily from the perfect correctness of the
Indistinguishability obfuscation and the statistical correctness of the QFHE that the output state has a
negligible trace distance to the state C(M) = |S〉(x,z).

Claim 4.2. A successful quantum verification procedure QV
(
pkSig, (σ,OS,x,OS⊥,z,OS ,BN)

)
acts as

a projection of the state in BN on the space spanned by the 4 following vectors,

|S00〉 :=
∑
u∈S
|u〉 , |S01〉 :=

∑
u∈S
|x+ u〉 ,

|S10〉 :=
∑
u∈S

(−1)〈z,u〉|u〉 , |S11〉 :=
∑
u∈S

(−1)〈z,u〉|x+ u〉 .

Proof. It is easy to verify that the quantum verification procedure acts as the identity on each of the
vectors |S00〉, |S01〉, |S10〉, |S11〉. We’ll show that any vector that passes verification is projected to the
span of these vectors.

Assume that the signature check passes, and we perform the first part of quantum verification, i.e.
executing OS,x(BN). After passing this check successfully, the state in BN is some superposition of
vectors in (S, x), with some phases (possibly entangled with an external system). More precisely, if we
isolate the state (and trace other registers) it can be written as,∑

u∈S
αu|u〉+

∑
u∈S

βu|x+ u〉+
∑
u∈S

γu(−1)〈z,u〉|u〉+
∑
u∈S

δu(−1)〈z,u〉|x+ u〉 ,

for amplitudes
∑

u∈S |αu|2 + |βu|2 + |γu|2 + |δu|2 = 1.
After executing H⊗λ, the state is,

∑
u∈S

αu

√2−λ ·
∑

v∈{0,1}λ
(−1)〈u,v〉|v〉


+
∑
u∈S

βu

√2−λ ·
∑

v∈{0,1}λ
(−1)〈x+u,v〉|v〉


+
∑
u∈S

γu(−1)〈z,u〉

√2−λ ·
∑

v∈{0,1}λ
(−1)〈u,v〉|v〉


+
∑
u∈S

δu(−1)〈z,u〉

√2−λ ·
∑

v∈{0,1}λ
(−1)〈x+u,v〉|v〉


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=
∑

v∈{0,1}λ

(
√

2−λ ·
∑
u∈S

(−1)〈u,v〉 · αu

)
· |v〉

+
∑

v∈{0,1}λ

(
√

2−λ ·
∑
u∈S

(−1)〈x+u,v〉 · βu

)
· |v〉

+
∑

v∈{0,1}λ

(
√

2−λ ·
∑
u∈S

(−1)〈u,v〉(−1)〈z,u〉 · γu

)
· |v〉

+
∑

v∈{0,1}λ

(
√

2−λ ·
∑
u∈S

(−1)〈x+u,v〉(−1)〈z,u〉 · δu

)
· |v〉

=
∑

v∈{0,1}λ

(
√

2−λ ·
∑
u∈S

(−1)〈u,v〉 · αu

)
· |v〉

+
∑

v∈{0,1}λ

(
√

2−λ ·
∑
u∈S

(−1)〈u,v〉 · (−1)〈x,v〉 · βu

)
· |v〉

+
∑

v∈{0,1}λ

(
√

2−λ ·
∑
u∈S

(−1)〈u,v〉 · (−1)〈z,u〉 · γu

)
· |v〉

+
∑

v∈{0,1}λ

(
√

2−λ ·
∑
u∈S

(−1)〈u,v〉 · (−1)〈x,v〉 · (−1)〈z,u〉 · δu

)
· |v〉 .

Now, the state passes the second verification circuit OS⊥,z(BN). This means that our state is the
same as above, only that the sum is only over v ∈ (S⊥, z) rather than over v ∈ {0, 1}λ. We will fist
calculate what happens with the part of the sum that is over S⊥. We will later consider the part of the
sum that is for v ∈ S⊥ + z.

=
∑
v∈S⊥

(
√

2−λ ·
∑
u∈S

αu

)
· |v〉

+
∑
v∈S⊥

(
√

2−λ ·
∑
u∈S

(−1)〈x,v〉 · βu

)
· |v〉

+
∑
v∈S⊥

(
√

2−λ ·
∑
u∈S

(−1)〈z,u〉 · γu

)
· |v〉

+
∑
v∈S⊥

(
√

2−λ ·
∑
u∈S

(−1)〈x,v〉 · (−1)〈z,u〉 · δu

)
· |v〉
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=
∑
v∈S⊥

(
√

2−λ ·
∑
u∈S

αu

)
· |v〉

+
∑
v∈S⊥

(
√

2−λ ·
∑
u∈S

βu

)
· (−1)〈x,v〉 · |v〉

+
∑
v∈S⊥

(
√

2−λ ·
∑
u∈S

(−1)〈z,u〉 · γu

)
· |v〉

+
∑
v∈S⊥

(
√

2−λ ·
∑
u∈S

(−1)〈z,u〉 · δu

)
· (−1)〈x,v〉 · |v〉

:=
∑
v∈S⊥

A · |v〉

+
∑
v∈S⊥

B · (−1)〈x,v〉 · |v〉

+
∑
v∈S⊥

C · |v〉

+
∑
v∈S⊥

D · (−1)〈x,v〉 · |v〉 ,

:= (A+ C) ·H⊗λ · |S00〉+ (B +D) ·H⊗λ · |S01〉 ,
for some complex numbers A,B,C,D, that are independent of v (some of them might be zero).

Similarly to the above computation, we look at the sum over S⊥ with a z shift:

=
∑
v∈S⊥

(
√

2−λ ·
∑
u∈S

(−1)〈u,z〉 · αu

)
· |z + v〉

+
∑
v∈S⊥

(
√

2−λ ·
∑
u∈S

(−1)〈u,z〉 · (−1)〈x,v〉 · βu

)
· |z + v〉

+
∑
v∈S⊥

(
√

2−λ ·
∑
u∈S

(−1)〈u,z〉 · (−1)〈z,u〉 · γu

)
· |z + v〉

+
∑
v∈S⊥

(
√

2−λ ·
∑
u∈S

(−1)〈u,z〉 · (−1)〈x,v〉 · (−1)〈z,u〉 · δu

)
· |z + v〉

=
∑
v∈S⊥

(
√

2−λ ·
∑
u∈S

(−1)〈u,z〉 · αu

)
· |z + v〉

+
∑
v∈S⊥

(
√

2−λ ·
∑
u∈S

(−1)〈u,z〉 · βu

)
· (−1)〈x,v〉 · |z + v〉

+
∑
v∈S⊥

(
√

2−λ ·
∑
u∈S

γu

)
· |z + v〉

+
∑
v∈S⊥

(
√

2−λ ·
∑
u∈S

δu

)
· (−1)〈x,v〉|z + v〉
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:=
∑
v∈S⊥

A′ · |z + v〉

+
∑
v∈S⊥

B′ · (−1)〈x,v〉 · |z + v〉

+
∑
v∈S⊥

C ′ · |z + v〉

+
∑
v∈S⊥

D′ · (−1)〈x,v〉 · |z + v〉 ,

:= (A′ + C ′) ·H⊗λ · |S10〉+ (B′ +D′) ·H⊗λ · |S11〉 ,

where as before, A′, B′, C ′, D′ are complex numbers independent of v.
Considering both the analysis for summing v ∈ S⊥ and v ∈ S⊥ + z, we get that after successful

verification of the second circuit OS⊥,z , the state in BN (after tracing out other registers) is,

H⊗λ ·
(
(A+ C) · |S00〉+ (B +D) · |S01〉+ (A′ + C ′) · |S10〉+ (B′ +D′) · |S11〉

)
.

At the end of quantum verification an additional H⊗λ is executed, which makes the state exactly be in
the span of {|S00〉, |S01〉, |S10〉, |S11〉}, and our proof is finished.

Proposition 4.1. The scheme presented in Protocol 1 has statistical correctness (Definition 3.4).

Proof. First, we explain why when executed honestly, the minting protocol ends successfully with
probability 1−negl(λ). The only scenario where there is an abort in the honest execution of the protocol
is in step 3, x ∈ S. By Claim 4.1, after the successful honest execution of the protocol the quantum
part of the QFHE encryption is |S〉(x,z). This means that if x ∈ S, then the state |S〉x,z is |S〉(0λ,z). It
follows that the state in BN has a negligible trace distance from such state, and measuring BN in the
computational basis yields, with a noticeable probability, s ∈ (S \ T⊥1 ). This contradicts Claim 5.2, so,
with probability 1− negl(λ) we have x /∈ S.

Now, assume that the protocol ended successfully. By the correctness of the signature scheme, the
signature check passes successfully. Let x, z ∈ {0, 1}λ the strings that BankMint obtains by decryption,
at step 3 of the minting protocol.

• In Claim 4.2 we saw that the quantum verification procedure acts as a projector on the space
spanned by {|S00〉, |S01〉, |S10〉, |S11〉}, which means that the state in BN passes quantum veri-
fication of QV with probability 1 − negl(λ), as it has negligible trace distance from |S11〉 :=∑

u∈S(−1)〈z,u〉|x+ u〉.

• Since a measurement to |S〉(x,z) yields an element crt ∈ S + x with probability 1, then with
probability 1 − negl(λ) a measurement crt ← BN satisfies crt ∈ S + x. Consequently, with
probability 1− negl(λ), measuring BN yields crt such that OS,x(crt) = 1.
Additionally, the protocol is defined such that it ends successfully only if x /∈ S. This means that
measuring |S〉(x,z) yields crt such that crt /∈ S with probability 1. It follows that measuring BN
yields crt such that with probability 1− negl(λ) we have crt /∈ S. Consequently, with probability
1− negl(λ), measuring BN satisfies OS(crt) = 0.
It follows that with probability 1 − negl(λ), a measurement crt ← BN passes the classical
verification of CV.

Overall, with probability 1 − negl(λ) the protocol ends successfully, and with probability 1 − negl(λ)
both quantum and classical certificate verification pass successfully.
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5 Security Proof

In this section we will argue that the scheme is secure, that is, under the security of our ingredient
primitives, there is no quantum polynomial time adversary that can counterfeit, sabotage quantum
verification or sabotage classical verification.

Lemma 5.1. (Main Security Lemma) For every quantum polynomial time adversaryA = {Aλ, ρλ}λ∈N,
the probability of the following event E = {Eλ}λ∈N is negligible:

• The adversary A interacts with the bank during the minting protocol, let S the subspace picked
by the bank and let x, z be the decrypted QOTP keys obtained by the bank at step 3 of the minting
protocol.

• At the end of the protocol A outputs an λ-qubit register BN.

• E is the event where the projection of BN on the space spanned by {|S00〉, |S01〉} :=
{
∑

u∈S |u〉,
∑

u∈S(−1)〈z,u〉|u〉} is successful.

Proof. LetA = {Aλ, ρλ}λ∈N a quantum polynomial time adversary that succeeds in eventE with some
noticeable probability ε = {ελ}λ∈N. We will show how to use A in order to break the sub-exponential
security of the QFHE. We define the hybrid experiment Hyb1 to be exactly the experiment described
above whereA succeeds inE. We next describe a sequence of hybrid experiments, consequently arriving
to a hybrid experiment that is directly useful for breaking the security of the QFHE.

Hyb2 : Let δ′ ∈ (0, 1] the sub-exponential security level of the QFHE (that is, any quantum
polynomial-time algorithm cannot break the security of the QFHEwith advantage bigger than 2−λ

δ′ ), and
denote δ := δ′

2 . This hybrid is identical toHyb1, with the only difference is that when the bank returns the
obfuscations OS,x, OS⊥,z , OS at step 3 of the minting protocol, the obfuscations OS,x, OS are changed:
We sample a random 3λ

4 -dimensional superspace T̃0 ⊆ {0, 1}λ of S, and an (λ − λδ)-dimensional
superspace T0 ⊆ {0, 1}λ of (T̃0, x). We send OT0 ← iO(MT0) instead of OS,x ← iO(MS,x), and
OT̃0 ← iO(MT̃0

) instead of OS ← iO(MS)
Note that for the rest of Hyb1, after computing (S, x) from the receiver’s message in the minting

protocol (step 2), we can get the obfuscated circuits (which is either (OS,x,OS) or (OT0 ,OT̃0)) from
an outside source, as we do not use the knowledge of T0, T̃0, only the subspace S and the decrypted
pad z are both used to verify the success of the experiment at the end of step 3 of Hyb1. The outputs
of the experiments are indistinguishable due to Claim 5.1. This means in particular that the success
probabilities are negligibly close ≥ ε− negl(λ).

Hyb3 : This hybrid is the same as Hyb2 only that we now swap the obfuscation of the dual subspace
(S⊥, z). Identical to Hyb2, with the only difference is that when the bank returns the obfuscations OT0 ,
OS⊥,z,OT̃0 , the obfuscationOS⊥,z is changed: Instead of obfuscating the row span ofMS⊥,z , we choose
a random superspace (S⊥, z) ⊆ T1 ⊆ {0, 1}λ of dimension λ− λδ with a generating matrix MT1 . We
send OT1 ← iO(MT1) instead of OS ← iO(MS⊥,z).

Similarly to the above explanation of why the success probabilities of Hyb1 and Hyb2 are negligibly
close, the success probabilities of Hyb2 and Hyb3 are negligibly close. The success probability of Hyb3
is thus ≥ ε− negl(λ).

Hyb4 : The following hybrid is going to be identical to Hyb3, but executed in a different way. First,
the process samples an intermediate random subspace T̃0 ⊆ {0, 1}λ of dimension 3·λ

4 , and an additional
intermediate random subspace T̃1 ⊆ {0, 1}λ of dimension 3·λ

4 , subject to T̃⊥1 ⊆ T̃0 (this sampling can
be done by sampling T̃⊥1 directly, by sampling a random λ

4 -dimensional subspace of T̃0).
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Now, we sample a random subspace S ⊆ {0, 1}λ subject to T̃⊥1 ⊆ S ⊆ T̃0, and carry on the
interaction process between the bank andA regularly. Consider the step when the bank gets the message
of A after step 2 of the minting protocol. The bank decrypts the classical FHE ciphertext to get the
QOTP keys x, z. Now, we sample a random (λ − λδ)-dimensional subspace T0 ⊆ {0, 1}λ subject to
(T̃0, x) ⊆ T0 and a random (λ − λδ)-dimensional subspace T1 ⊆ {0, 1}λ subject to (T̃1, z) ⊆ T1. We
send the obfuscations OT0 ← iO(MT0), OT1 ← iO(MT1), OT̃0 ← iO(MT̃0

) and continue regularly as
in Hyb3.

Note that the only change between the two experiments Hyb3 and Hyb4 is the algorithm to sample
the subspaces S, T0, T1, T̃0, T̃1. However, all subspaces distribute identically as to how they distribute in
Hyb3. Since this is the only difference, the experiments are identical in their output and in particular in
the success probability, which is ≥ ε− negl(λ).

Hyb5 : We can take the sampling procedure of the subspaces described in Hyb4 and perform an
averaging argument on the sampling of the intermediate subspaces T̃0, T̃1, to take the two subspaces
that maximize the success probability of Hyb4. This means that there exist fixed subspaces T̃0, T̃1 for
which that experiment is successful with probability≥ ε−negl(λ). This process where the intermediate
subspaces T̃0, T̃1 are fixed is defined to be Hyb5.

Hyb6 : In this hybrid experiment we perform the exact same experimentHyb5, but with the following
changes to the operation of the experiment and definition of success:

• At the end of Hyb5 we project the quantum register BN onto the span of {|S00〉, |S01〉}. In Hyb6,
instead of executing the projection, we simply measure BN in the standard basis. Denote by
s ∈ {0, 1}λ the measurement outcome.

• The experiment Hyb6 is defined to be successful if s ∈
(
S \ T̃⊥1

)
.

Let us understand the success probability of Hyb6. We know that when executing Hyb5, the probability
that BN is successfully projected onto the span of {|S00〉, |S01〉} at the end is ≥ ε − negl(λ). It
is necessarily the case that the average amplitude of this span in BN just before the projection, is
≥
√
ε− negl(λ). Recall that measuring either of the quantum states |S00〉, |S01〉 in the standard

basis yields a uniform sample from the subspace S. It follows that with probability ≥ ε − negl(λ),
the measurement outcome s distributes uniformly in the subspace S. It follows that the probability
that s ∈

(
S \ T̃⊥1

)
is |S\T̃

⊥
1 |

|S| = 2
λ
2 −2

λ
4

2
λ
2

> 1
2 , and overall the probability that Hyb6 is successful is

ε
2 − negl(λ).

Hyb7 : This experiment is identical to Hyb6 with one change: in step 3 of the minting protocol,
when the bank usually decrypts the QFHE classical part to get the QOTP keys x, z (and also checks
that x /∈ S), the process Hyb7 does not decrypt to get x, z and instead it samples the subspaces T0, T1
independently of x, z. More precisely, T0 is a random (λ − λδ)-dimensional subspace subject only to
T̃0 ⊆ T0 (rather than subject to (T̃0, x) ⊆ T0) and T1 is a random (λ−λδ)-dimensional subspace subject
only to T̃1 ⊆ T1 (rather than subject to (T̃1, z) ⊆ T1).

First, notice that the first message ofBankMint in the protocol distributes the same betweenHyb6 and
Hyb7, so the probability that x /∈ S is the same and is≥ ε. Observe that conditioned on the probabilistic
event that

(x ∈ T0) ∧ (z ∈ T1) ,

the experiments Hyb6 and Hyb7 distribute exactly the same. Due to the fact that the dimension of each
of T0, T1 is λ − λδ and that these subspaces are random, the probability that (x ∈ T0) ∧ (z ∈ T1), for
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any x, z, is at least
|T0|
|{0, 1}λ|

· |T1|
|{0, 1}λ|

=

(
2λ−λ

δ

2λ

)2

= 2−2·λ
δ
.

Overall, the success probability of Hyb7 is ≥
(
ε
2 − negl(λ)

)
· 2−2·λδ ≥ 2−3·λ

δ .

At this point we use the success probability and structure ofHyb7 to show that we can efficiently solve
some hard problem with probability that should not be possible, under our computational assumptions.
Recall that the QFHE has security against advantage 2−λ

δ′ for quantum polynomial-time adversaries.
By Claim 5.2, given any fixed subspaces T̃0, T̃⊥1 ⊆ {0, 1}λ such that T̃0 is of dimension 3·λ

4 and T̃⊥1 is
a λ

4 -dimensional subspace of T̃0, there is no quantum polynomial-time algorithm that can get as input
a QFHE encryption of a classical description of a random λ

2 -dimensional subspace T̃⊥1 ⊆ S ⊆ T̃0 and
find a string s ∈

(
S \ T̃⊥1

)
with probability ≥ 2−λ

δ′+1 = 2−λ
2·δ+1.

Executing Hyb7 does not require any knowledge on S nor (x, z), but only T̃0, T̃1 and the fact that
S is subject to T̃⊥0 ⊆ S ⊆ T̃0. It follows that using A in the experiment Hyb7 lets us find such vector
s ∈

(
S \ T̃⊥1

)
with probability ≥ 2−3·λ

δ
> 2−λ

2·δ+1, in contradiction.

5.1 Security against Counterfeiting and Sabotage

Security against counterfeiting. We next use our main Lemma 5.1 in order to prove that the scheme is
secure against counterfeiting attacks.

Proposition 5.1 (Security against Counterfeiting). The public-key semi-quantum money scheme de-
scribed in Protocol 1 has security against counterfeiting, according to Definition 3.4.

Proof. Let A = {Aλ, ρλ}λ∈N a quantum polynomial time adversary that succeeds in counterfeiting
with some noticeable probability ε = {ελ}λ∈N. We will show how to use A and Lemma 5.1 to get a
contradiction, that is, we will describe an adversary A′ = {A′λ, ρλ}λ∈N that violates Lemma 5.1.

Whenever A counterfeits successfully it sends a quantum bank note
(
σ(1),O

(1)
S,x,O

(1)

S⊥,z
,O

(1)
S ,BN

)
,

and a classical certificate
(
σ(2),O

(2)
S,x,O

(2)

S⊥,z
,O

(2)
S , crt ∈ {0, 1}λ

)
such that:

• σ(1) is a valid signature for (O
(1)
S,x,O

(1)

S⊥,z
,O

(1)
S ).

• σ(2) is a valid signature for (O
(2)
S,x,O

(2)

S⊥,z
,O

(2)
S ).

• The quantum register BN passes quantum verification with the circuits (O
(1)
S,x,O

(1)

S⊥,z
), and crt

passes classical certificate verification with (O
(1)
S,x,O

(1)
S ) respectively.

Recall that the bank signs on exactly one message, which is the original obfuscations OS,x, OS⊥,z, OS
generated in the minting protocol. From the unforgeability property of the signature scheme it follows
that with probability negligibly close to ε we have

(OS,x,OS⊥,z,OS) = (O
(1)
S,x,O

(1)

S⊥,z
,O

(1)
S ) = (O

(2)
S,x,O

(2)

S⊥,z
,O

(2)
S )

and BN, crt pass quantum (classical, resp.) verification using the original verification circuits. Let us
update the output of A such that it is only BN, crt, after performing the above verification. We next
describe an experiment Exp.
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Exp : The experiment starts with its first step, which isA interacting with the bank during the minting
protocol procedure. At the end of step 1 of Exp, A outputs BN, crt as described above, after running
on BN quantum verification with OS,x, OS⊥,z and running on crt classical verification with OS,x, OS .
We would like that the next step of the experiment sets BN to hold |Sb,0〉 :=

∑
u∈S(−1)〈b·z,u〉|u〉 (for

some b ∈ {0, 1}) with a noticeable amplitude, and we will later want to show that this happens with a
noticeable probability. The second step of Exp is to sample α← {0, 1}.

• If α = 0 then leave BN unchanged.

• If α = 1 then add crt to register BN.

The third and final step of the experiment Exp is to project the state in BN onto the space spanned by
only {

∑
u∈S |u〉,

∑
u∈S(−1)〈z,u〉|u〉}. This is done by first measuring whether BN is in the row span of

MS , then executing H⊗λ on BN, and then measuring whether BN is in the row span of MS⊥,z . The
experiment is successful iff the projective measurement succeeds.
The success probability of Exp. We will see what is the success probability of each of the three steps
of Exp, conditioned on previous steps succeeding.

1. As explained in the beginning of the proof, the probability thatA outputsBN, crt that pass quantum
and classical (respectively) verifications with the original circuits is at least ε2 > ε−negl(λ), which
means that the probability that the first step of Exp succeeds is also at least ε2 .

2. Assume that the first step of Exp was successful. As we saw in Claim 4.2, a successful quantum
verification projects the state in BN to the space spanned by four vectors,

|S00〉 :=
∑
u∈S
|u〉 , |S01〉 :=

∑
u∈S
|x+ u〉 ,

|S10〉 :=
∑
u∈S

(−1)〈z,u〉|u〉 , |S11〉 :=
∑
u∈S

(−1)〈z,u〉|x+ u〉 ,

for the x, z derived from the decryption in step 3 of the minting protocol. This means that if we
isolate and focus from hereon only on register BN (e.g. by tracing out other registers), the quantum
state in BN is spanned by {|Sb1,b2〉}b1,b2∈{0,1}. For at least one of these 4 basis states there is an

amplitude ≥
√

1
4 for the state in BN, denote such state by |Sa1,a2〉.

We define the second part of Exp as successful if the guess for the x coordinate is correct i.e.
α = a1. This happens with probability ≥ 1

2 , and overall the probability that both steps 1 and 2 of
Exp are successful is at least ε4 .

3. Assume both steps 1 and 2 of Exp were successful. This means that there is a2 ∈ {0, 1} such that
after the guess for αmade at step 2 of Exp, in register BN we have an amplitude≥

√
1
4 on |Sα,a2〉.

Consider the follow-up step done, where we add crt to BN conditioned on α = 1. It is easy to
verify that ifα = 0 (and indeed we guessed correctly) then at the end of the follow-up step, the state
in BN has amplitude ≥

√
1
4 on the semi-decrypted subspace state

∑
u∈S(−1)〈b·z,u〉|u〉 = |S0,b〉

(for some b ∈ {0, 1}). In the case α = 1 it follows that before the follow-up step, the quantum
state in BN(1) has amplitude ≥

√
1
4 on,

|S1,a2〉 =
∑
u∈S

(−1)〈a2·z,u〉 · |u+ x〉 .
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Now, because crt ∈ {0, 1}λ passed classical certificate verification, it means that OS,x(crt) = 1
and OS(crt) = 0, which implies that there is some u′ ∈ S such that crt = u′ + x. Observe that
after adding crt to the state |S1,a2〉 we get,∑

u∈S
(−1)〈a2·z,u〉 · |u+ u′〉 ,

and now we can use the fact that we are dealing with subspaces: because u′ ∈ S and the sum of u
runs over the entire subspace S, the above state can be re-written as,∑

u∈S
(−1)〈a2·z,u+u

′〉 · |u〉 = (−1)〈a2·z,u+u
′〉 ·
∑
u∈S

(−1)〈a2·z,u〉 · |u〉 ,

where the above state has a global phase and is thus equivalent to |S0,a2〉.

4. It follows that conditioned on the success of steps 1 and 2 in Exp, after the follow-up procedure,
if we isolate register BN, the quantum state in it has an amplitude ≥

√
1
4 for a semi-decrypted

subspace state, that is, |S0,b〉 for some b ∈ {0, 1}. Now, |S0,b〉 is in the span of the two vectors,

{
∑
u∈S
|u〉,

∑
u∈S

(−1)〈z,u〉|u〉} = {|S00〉, |S01〉} ,

and thus passes the projection test at step 3 of Exp with probability 1. Due to the fact that the
amplitude of |S0,b〉 is at least

√
1
4 , the probability that the projection on BN succeeds, is at least 1

4 .
Overall, the probability that the experiment Exp is successful is at least ε

16 .

We can define the actions of the experiment Exp, except the final projection on {|S00〉, |S01〉}, as a
quantum polynomial-time adversary A′ = {A′λ, ρλ}λ∈N that does not need any extra information than
what A receives. By the success probability of Exp, we know that A′ contradicts Lemma 5.1.

Security against sabotage. Wenext prove that the scheme has security against both, quantum verification
sabotage and classical verification sabotage. That is, if a quantum banknote passes the public quantum
verification of QV once, we are guaranteed two things:

• Security against quantum sabotage: The banknote will pass the next public quantum verification
by QV with probability 1.

• Security against classical sabotage: A classical certificate of of destruction crt can be generated
from the banknote by simply measuring it, such that crt passes the classical certificate verification
CV with probability 1− negl(λ).

We start with proving security against quantum sabotage, and then show security against classical
sabotage.

Proposition 5.2. The scheme described in Protocol 1 is secure against quantum sabotage (as inDefinition
3.4).

Proof. We need to show that if a bank note BN passes the quantum verification procedure, then the
probability that it passes another quantum verification procedure is negligibly close to 1, which in our
case is going to be exactly 1. In Claim 4.2 we show that the quantum verification procedure acts as a
projector on the space spanned by BS := {|S00〉, |S01〉, |S10〉, |S11〉}. It is also straightforward to see
that any state in BS passes quantum verification with probability 1. This exactly guarantees security
against quantum sabotage.
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Proposition 5.3. The scheme described in Protocol 1 is secure against classical sabotage (as inDefinition
3.4).

Proof. We need to show that if a bank note BN passes quantum verification, then if we measure it in the
computational standard basis, it generates a valid classical certificate crt with probability negligibly lose
to 1. Consider an isolation of the quantum register BN after we performed quantum verification, and let
ε = {ελ}λ∈N be the average amplitude of the state in BN on the subspace {|S00〉, |S01〉}. Recall that the
state in BN after successful quantum verification is in the space of BS := {|S00〉, |S01〉, |S10〉, |S11〉}.

• If ε is negligible, this means the amplitude of {|S10〉, |S11〉} in BN is negligibly close to 1. Now,
due to the fact that a standard basis measurement on any of |S10〉, |S11〉 yields a vector in S + x
with probability 1, this means that with probability negligibly close to 1 the generated classical
receipt crt←Measure(BN) passes classical verification.

• If ε is noticeable, it means that projecting BN on the subspace {|S00〉, |S01〉} succeeds with
noticeable probability, in contradiction to Lemma 5.1.

5.2 Supplementary Claims

We prove supporting claims for the main Lemma 5.1.

Claim 5.1 (Synchronized Subspace Indistinguishability). Let iO an indistinguishability obfuscator for
classical circuits, as in Definition 3.1. Denote the following,

• M = {Mλ}λ∈N a binary matrix in {0, 1}k×λ, for k such that there is some constant δ′ ∈ (0, 1),
such that k < λ− λδ′ .

• x = {xλ}λ∈N a binary string of length λ, and denote by (M, x) the matrix in {0, 1}(k+1)×λ with
its first row x and the rest of the matrix isM.

• S = {Sλ}λ∈N the row span ofM and (S, x) the row span of (M, x).

• For any matrix M , let CM : {0, 1}λ → {0, 1} a classical circuit that checks membership in the
row span ofM , by Gaussian elimination.

Assume injective one-way functions exist, then for any constant δ ∈ (0, 1) such that δ < δ′ for all
d0, d1 ∈ N such that k < d0 < d1 < λ− λδ we have the following indistinguishability.

{OS ,OS,x|OS ← iO(CM),OS,x ← iO(CM,x)} ≈c {OT̃ ,OT |OT̃ ← iO(CMT̃
),OT ← iO(CMT

)} ,

where T̃ ⊆ {0, 1}λ is a random d0-dimensional superspace of S, and T ⊆ {0, 1}λ is a random
d1-dimensional superspace of (T̃ , x).

Proof. We describe a sequence of indistinguishable hybrids.

Hyb1 : The initial experiment as it is, i.e. we obfuscate the membership circuits CM, CM,x.

Hyb2 : Same as Hyb1, only that instead of obfuscating the circuit CM,x, we first obfuscate
OS ← iO(CM) as usual, and define the circuit C ′M,x that for input u outputs 1 iff (OS(u) = 1) ∨
(OS(u+ x) = 1). So, in Hyb2 we send an obfuscation O′S,x ← iO(C ′M,x) rather than an obfuscation of
CM,x.

Note that checking whether (u ∈ S) ∨ (u ∈ S + x) is the same as checking whether u ∈ (S, x).
So, by the correctness of the obfuscation OS ← iO(CM), the functionality of C ′M,x is the same as that
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of CM,x. It follows that by the security of the indistinguishability obfuscation O′S,x ← iO(C ′M,x), the
distributions Hyb1 and Hyb2 are indistinguishable.

Hyb3 : Same as Hyb2, except that instead of obfuscating OS ← iO(CM) (and use it in two places,
once, send it out in the open, and second, we wire it inside the second obfuscated circuit C ′MT̃ ,x

) we
obfuscate OT̃ ← iO(CMT̃

), where T̃ ⊆ {0, 1}λ is a random d0-dimensional superspace of S (and
MT̃ is some matrix that its row span is T̃ ). By the subspace hiding property of indistinguishability
obfuscators (Lemma 3.1) and the fact that injective OWFs exist, the distributions Hyb2 and Hyb3 are
indistinguishable.

Hyb4 : In this hybrid we sample T̃ ⊆ {0, 1}λ a random d0-dimensional superspace of S, and let
MT̃ ∈ {0, 1}

d0×λ a matrix such that its row space is T̃ . Let MT̃ ,x ∈ {0, 1}
(d0+1)×λ the matrix with its

first row x and the rest isMT̃ . We send the obfuscations OT̃ ← iO(CMT̃
) and OT̃ ,x ← iO(CMT̃ ,x

).
In both hybrids Hyb3 and Hyb4, the first obfuscation is OT̃ ← iO(CMT̃

). Regarding the second
obfuscation, in Hyb3 we send O′

T̃ ,x
← iO(C ′MT̃ ,x

), and in Hyb4 we send OT̃ ,x ← iO(CMT̃ ,x
). Given

u ∈ {0, 1}λ, checking whether (OT̃ (u) = 1)∨ (OT̃ (u+ x)) and checking that u ∈ (T̃ , x) is equivalent.
Thus, by the security of the indistinguishability obfuscation, the second obfuscations are indistinguishable
between the two hybrids.

Hyb5 : Same as Hyb4, with the change that instead of obfuscating OT̃ ,x ← iO(CMT̃ ,x
), we sample

T ⊆ {0, 1}λ a random d1-dimensional superspace of (T̃ , x), and obfuscate OT ← iO(CMT
). We send

OT̃ ,OT .
The distributions are indistinguishable by the subspace hiding property of the indistinguishability

obfuscation (Lemma 3.1) and that injective OWFs exist.

Claim 5.2. [Subspace-Hiding Encryption] Let (Enc,Dec) any encryption scheme such that no quantum
polynomial-time adversary can distinguish encryptions of two different messages with advantage larger
than pλ, where λ ∈ N is the security parameter.

Then, for any two subspaces T0, T1 ⊆ {0, 1}λ of dimension 3·λ
4 each, such that T⊥1 ⊆ T0, any

quantum polynomial time algorithm A = {Aλ, ρλ}λ∈N can win the following game with probability at
most pλ + 2−

λ
4
+1:

• A random λ
2 -dimensional subspace S subject to T⊥1 ⊆ S ⊆ T0 is sampled, described by a matrix

M ∈ {0, 1}
λ
2
×λ.

• The matrix is encrypted ct← Enc(M), and ct is sent to A.

• A wins iff it finds a vector s ∈
(
S \ T⊥1

)
.

Proof. We prove the claim by a hybrid argument, and based on the security of the encryption scheme.
Assume there is some quantum polynomial time adversary A = {Aλ, ρλ}λ∈N that wins the game with
probability > pλ + 2−

λ
4
+1.

Hyb1 : The initial experiment as it is. The output of the experiment is defined to be the success bit
of the adversary in the game.

Hyb2 : The game as it is, but an encryption to the zero matrix M0 ∈ {0, 1}
λ
2
×λ, ct0 ← Enc(M0) is

sent instead of an encryption of the original matrixM.
Consider the following two distributions.

• DistributionX: SamplingM ∈ {0, 1}
λ
2
×λ randomly, and an encryption of it ct← Enc(M). The

output of the distribution is (M, ct).
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• Distribution Y : Sampling M ∈ {0, 1}
λ
2
×λ randomly, and an encryption of the zero matrix

ct0 ← Enc(M0). The output of the distribution is (M, ct0).

In both X and Y the first step is to sample the matrix M, but in X we send an encryption of it along
with the matrix, and in Y we send an encryption of the zero matrix.

By the fact that for every two different messages m 6= m′, their encryptions cannot be distin-
guished with advantage better than pλ, it follows in particular (by an averaging argument) that the above
distributions cannot be distinguished with advantage better than pλ.

A successful distinguisher between Hyb1 and Hyb2 (i.e. a quantum polynomial-time algorithm A′
that succeeds in the two experiments with probabilities differing in advantage a) can be used to distinguish
betweenX and Y with the same advantage a. This follows because when we get a sample fromX or Y ,
we get to see the matrixM, which means that when A′ outputs a candidate s′ to be in (S \ T⊥1 ), we can
check it againstM.

Now, if the success probability in Hyb1 and Hyb2 differ in more than pλ, it means that distributions
X and Y can be distinguished with advantage > pλ, in contradiction. So, the success probability in
Hyb2 has to be > pλ + 2−

λ
4
+1 − pλ = 2−

λ
4
+1.

Now, consider a different game where M is sampled but A gets no input at all, and just needs to
guess some s ∈

(
S \ T⊥1

)
. AsA got no input, we can make an averaging argument on the output s ofA

that maximizes the probability to win the game. So,A always outputs some s′ ∈ {0, 1}λ, independently
of the sampledM. SinceM is a random λ

2 -size basis for T
⊥
1 ⊆ S ⊆ T0, then for any string s∗ ∈ T0, the

probability that s∗ ∈
(
S \ T⊥1

)
is the same, which is,

|S \ T⊥1 |
|T0 \ T⊥1 |

=
2
λ
2 − 2

λ
4

2
3·λ
4 − 2

λ
4

<
2
λ
2

2
3·λ
4
−1

= 2−
λ
4
+1 .

Finally, if A wins in the original game Hyb1 with probability > pλ + 2−
λ
4
+1, then it wins in Hyb2

w.p. > 2−
λ
4
+1, and if this is the case, it can win in the above information theoretic game with the same

probability > 2−
λ
4
+1, in contradiction to the above bound 2−

λ
4
+1.
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Protocol 1

Key Generation:

• Gen(1λ): The key generation algorithm is that of the signature scheme, that is, compute
(pkSig, skSig)← Sig.Gen(1λ), and set pk = pkSig, sk = skSig.

Minting Protocol: The bank has sk = skSig as private input, the joint input is the security
parameter λ ∈ N.

1. BankMint samples a random λ
2 -dimensional subspace S ⊆ {0, 1}λ, described by a

matrix MS ∈ {0, 1}
λ
2
×λ. Samples OTP key px ← {0, 1}

λ2

2 to encrypt M
(px)
S =

QHE.OTPpx(MS), and then fhek ← QHE.Gen(1λ), ctpx ← QHE.Encfhek(px). BankMint

sends the encryption (M
(px)
S , ctpx) to RecMint.

2. Let C the quantum circuit that for an input matrix M, outputs a uniform superpo-
sition of its row span. RecMint homomorphically evaluates C:

(
|S〉(x,z), ctx,z

)
←

QHE.Eval
(

(M
(px)
S , ctpx), C

)
. RecMint saves the quantum part |S〉(x,z) and sends the clas-

sical part ctx,z to BankMint.

3. BankMint decrypts (x, z) = QHE.Decfhek(ctx,z). If x ∈ S, abort the interaction. Let
MS,x ∈ {0, 1}(

λ
2
+1)×λ the matrix generated by adding x as an initial row to MS . Let

MS⊥ ∈ {0, 1}
λ
2
×λ amatrixwith rows that are a basis forS⊥, and letMS⊥,z ∈ {0, 1}(

λ
2
+1)×λ

the matrix generated by adding z as an initial row to MS⊥ . BankMint computes indistin-
guishability obfuscations OS,x ← iO(MS,x), OS⊥,z ← iO(MS⊥,z), OS ← iO(MS) and
signs σ ← Sig.SignskSig(OS,x,OS⊥,z,OS) and sends (σ,OS,x,OS⊥,z,OS).

The quantum part of the bank note is |S〉(x,z) which is stored in register BN, the classical part
of the bank note is (σ,OS,x,OS⊥,z,OS).

Quantum Verification:

• QV
(
pkSig, (σ,OS,x,OS⊥,z,OS ,BN)

)
: The verifier checks three things:

– Checks the signature Sig.VerpkSig
(
σ, (OS,x,OS⊥,z,OS)

)
= 1.

– Checks that OS,x(BN) = 1 in superposition.
– Executes Hadamard transform H⊗λ on BN and then checks that OS⊥,z(BN) = 1 in

superposition.

If all checks passed, the verifier executes H⊗λ again on BN and accepts the bank note.

Classical Certificate Verification:

• In order to generate a classical certificate, the note holder measures BN in the standard basis
crt←Measure(BN).

• CV
(
pkSig, (σ,OS,x,OS⊥,z,OS , crt)

)
: The bank accepts the certificate iff

Sig.VerpkSig
(
σ, (OS,x,OS⊥,z,OS)

)
= 1 and (OS,x(crt) = 1) ∧ (OS(crt) = 0).

Figure 1: A public-key semi-quantum money scheme.
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