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Abstract

We initiate the study of a problem called the Polynomial Independence Distinguishing Prob-
lem (PIDP). The problem is parameterized by a set of polynomials Q = (q1, . . . , qm) where each
qi : Rn → R and an input distribution D over the reals. The goal of the problem is to distinguish
a tuple of the form {qi, qi(x)}i∈[m] from {qi, qi(xi)}i∈[m] where x,x1, . . . ,xm are each sampled
independently from the distribution Dn. Refutation and search versions of this problem are
conjectured to be hard in general for polynomial time algorithms (Feige, STOC 02) and are
also subject to known theoretical lower bounds for various hierarchies (such as Sum-of-Squares
and Sherali-Adams). Nevertheless, we show polynomial time distinguishers for the problem in
several scenarios, including settings where such lower bounds apply to the search or refutation
versions of the problem.

Our results apply to the setting when each polynomial is a constant degree multilinear poly-
nomial. We show that this natural problem admits polynomial time distinguishing algorithms
for the following scenarios:

• Non-trivial Distinguishers. We define a non-trivial distinguisher to be an algorithm
that runs in time nO(1) and distinguishes between the two distributions with probability
at least n−O(1). We show that such non-trivial distinguishers exist for large classes of
worst-case families of polynomials, and essentially any non-trivial input distribution that
is symmetric around zero, and isn’t equivalent to a distribution over Boolean values.

In particular, we show that when m ≥ n and the sets of indices corresponding to the
variables present in each monomial exhibit a weak expansion property with expansion
factor greater than 1/2 for unions of at most 4 sets, then a non-trivial distinguisher exists.

• Overwhelming Distinguishers. Next we consider the problem of amplifying the success
probability of the distinguisher, to guarantee that it succeeds with probability 1− n−ω(1).
We obtain such an overwhelming distinguisher for natural random classes of homogeneous
multilinear constant degree d polynomials, denoted by Qn,d,p, and natural input distribu-
tions D such as discrete Gaussians or uniform distributions over bounded intervals. The
polynomials are chosen by independently sampling each coefficient to be 0 with proba-
bility p and uniformly from D otherwise. For these polynomials, we show a surprisingly
simple distinguisher that requires p > n log n/

(
n
d

)
and m ≥ Õ(n2) samples, independent

of the degree d. This is in contrast with the setting for refutation, where we have sum-of-
squares lower bounds against constant degree sum-of-squares algorithms (Grigoriev, TCS
01; Schoenebeck, FOCS 08) for this parameter regime for degree d > 6.
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1 Introduction

In this work, we consider the following problem:

Definition 1.1 (Polynomial Independence Distinguishing Problem). Let Q = {q1, ..., qm} denote
a set of multivariate polynomials where qi : Rn → R and m = nO(1). Let D be a distribution on R,

and let D∗ be the distribution D × · · · × D︸ ︷︷ ︸
n times

over Rn where x = (x1, . . . , xn)
R←− D∗ means x1, . . . , xn

are independently sampled from D. The Polynomial Independence Distinguishing Problem with
respect to D,Q (or simply (D,Q)−PIDP) consists of distinguishing the following two distributions:

Distribution 1: Distribution 2:

1. Sample x
R←− D∗ 1. Sample x1, . . . ,xm

R←− D∗
2. Output {qi, qi(x)}i∈[m] 2. Output {qi, qi(xi)}i∈[m]

Observe that the problem of recovering x from the output of Distribution 1 corresponds to
solving the search version of a natural Constraint Satisfaction Problem (CSP for short). Similarly,
the problem of certifying that no such x exists when in the scenario of Distribution 2 corresponds
to the refutation version of the CSP. If it were possible to efficiently solve the search or refutation
versions of our CSP above, then the distinguishing problem would immediately also be solved. The
converse, however, is not true, and exploring this gap is the focus of this work.

Indeed, in many CSP problems, efficient search or refutation algorithms are not known to exist,
and are even subject to theoretical lower bounds. For instance, there are abundant examples of
CSPs where there are known Sum-of-Squares lower bounds [Gri01, Sch08, KMOW17]. In particular,
the search and refutation versions of the Polynomial Independence Distinguishing Problem are
subject to known Sum-of-Squares lower bounds for certain parameters [Jai19]. Nevertheless, in this
work, we will show efficient distinguishers for those settings (and more).

Pseudorandomness over the Integers. The Polynomial Independence Distinguishing Problem
is intimately tied with the notion of a pseudo-random generator (PRG). A PRG G : X n → Ym
with stretch m > n takes as input x = (x1, . . . , xn) where each xi is a random sample from some
distribution Din with support over X . The pseudorandomness property requires that the output
G(x) ∈ Ym is computationally indistinguishable from m independent copies of distribution Dout
with support in Y.

Traditionally, PRGs have been defined in the Boolean setting, where X = Y = {0, 1}, or in
the setting of finite fields, where X = Y = Fq. A great deal of research has investigated these
settings; much of this work has focused on investigating the possibility of the PRG G lying in a low
complexity class such as low-locality [Gol00, AIK07, MST03, OW14, AL16, ABR12], block locality
[LT17, LV17, BBKK18], low circuit-depth [AIK07], or low degree arithmetic circuits [KS99, KS98].

The goal of our work is to explore a new setting where X = Y = Z. (By appropriate rescaling,
this is equivalent to considering finite precision reals.)

More specifically, we consider the case where Din and Dout are both distributions over the
integers (or more broadly the reals) and G is a low degree multivariate polynomial over the integers.
Furthermore, instead of aiming for a particular output distribution Dout, one can simply require
that the output of the generator is indistinguishable from the product of the marginals of the output
components. One can therefore define a natural notion of a pseudorandom generator as follows (as
defined by [ABKS17]).
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Definition 1.2. (Pseudo-Independent Distribution Generator) A Pseudo-Independent Distribution
Generator (or PIDG) is a tuple (D,F = {fi}mi=1)) where m is called the stretch of the PIDG and

• D is an efficiently samplable distribution over R.

• Each fi for i ∈ [m] is a polynomial-time computable multivariate function fi : Rn → R.

The security requirement is that for any probabilistic polynomial time adversary A, the following
holds:

x,x1,x2, . . . ,xm
R←− D∗∣∣∣Pr[A(F , {fi(x)}mi=1) = 1]− Pr[A((F , {fi(xi)}mi=1))) = 1]

∣∣∣ < n−ω(1)

We are interested in exploring the possibility of whether such PIDGs can exist, in settings that
do not correspond to the well-studied Boolean case. Note that relaxing either the input domain to
{0, 1}n or letting the PIDG G be sufficiently complex trivialises the problem. If the input domain is
allowed to be {0, 1}n, any such PIDG can be easily constructed using any standard Boolean PRG.
Similarly, if G is allowed to be sufficiently complex then it is also trivial to construct a PIDG. The
generator could treat the input as a string of bits and derive pseudorandom Boolean bits from the
input bits, and then proceed again using a Boolean PRG.

This paper aims to initiate the study of limits on the existence of nontrivial PIDGs. In particular,
we study the case where:

• Input Distribution. We require the input distribution to be a well-spread distribution over
the integers (or reals) such as the standard discrete Gaussian distribution. Our results apply
to different “spread” requirements, with several of our results applying to a quite minimal
condition: that the distribution is symmetric, and at least three values in Z have noticeable
probability mass.

• Complexity of the PIDG. The complexity class of the PIDG is the class of constant degree
multilinear multivariate polynomials evaluated over the integers.

Connection to the Security of Indistinguishability Obfuscation. Indeed, the choice of
input distribution and the complexity class above is motivated by recent progress [AJL+19, JLMS19,
Agr19, JLS19, GJLS21] towards Indistinguishability Obfuscation (iO) [BGI+01, GR10, GGH+13].
These works, relied on standard assumptions in addition to new assumptions which are very much
related to the PIDP problem. The line culminated in the first construction of iO from well-studied
assumptions [JLS21b, JLS21a]. Unfortunately, like the predecessors this work relies on bilinear
maps and therefore, is not quantum secure.

Very recently there has been a lot of progress towards constructing plausibly post-quantum
secure iO [WW21, GP21, BDGM20, DQV+21]. Underlying these works, there are new assumptions
which employ random polynomial systems, which are plausibly susceptible to our observations.

1.1 Our Results

We consider two kinds of distinguishers - non-trivial and overwhelming. An algorithm A is a
non-trivial distinguisher if it succeeds in distinguishing the two distribution of the (D,Q) − PIDP
with a noticable probability (in the input size). An overwhelming distinguisher is one where this
probability is very close to 1. We define this formally below.
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Definition 1.3. (Non-trivial PIDP Distinguisher) An algorithm A is a non-trivial PIDP distin-
guisher for the (D,Q)-polynomial independence distinguishing problem if∣∣∣Pr[A(x1) = 1]− Pr[A(x2) = 1]

∣∣∣ ≥ 1

nO(1)

where x1 is sampled from Distribution 1 and x2 is sampled from Distribution 2, as defined in
Definition 1.1.

Definition 1.4. (Overwhelming PIDP Distinguisher) An algorithm A is an overwhelming PIDP
distinguisher for the (D,Q)-polynomial independence distinguishing problem if∣∣∣Pr[A(x1) = 1]− Pr[A(x2) = 1]

∣∣∣ ≥ 1− 1

nω(1)

where x1 is sampled from Distribution 1 and x2 is sampled from Distribution 2, as defined in
Definition 1.1.

Results for Non-Trivial Distinguishers. We begin by building non-trivial distinguishers for
large classes of input distributions and worst-case families of polynomials chosen by an adversary.

We require the input distribution to satisfy only a few basic structural properties. These
input distributions are called weakly nice. A weakly nice distribution is a distribution that is
intuitively well spread and symmetric around 0. We capture this by requiring all odd moments
of the distribution to be 0, and in addition, requiring that for random variable X over D that(
E[X4]

)/ (
E[X2]

)2 ≥ 1 + ε where ε > 0 is some constant1. Refer to Definition 3.7 for a formal

definition.
We obtain nontrivial distinguishers for the following classes of polynomials:

• We consider the set of constant degree multilinear polynomials where the monomials satisfy
an expansion criteria QExp ⊆ R[x1, . . . , xn]. Namely, the expansion criteria, formally defined
in Definition 5.3, captures the idea that the set of indices of variables in the monomials
form an expanding set. Note that this is a key feature in low locality cryptographic Boolean
PRGs [Gol00, KMOW17, ABR12, AL16, Gri01, Sch08], and CSPs with Sum-of-Squares Lower
Bounds. Namely, we obtain:

Theorem 1.1. (Informal) Let Q = {q1, . . . , qm} ⊂ R[x1, . . . , xn] where Q is an Expander
Based Polynomial Set with coefficients bounded in absolute value by nO(1), and let D be a
weakly-nice distribution with bounded support in [−β, β] for β = nO(1). If m > n, then there
exists a probabilistic polynomial algorithm can solve the (D,Q)-PIDP with probability at least
Ω(n−O(1)).

• We also consider the set of constant degree multilinear polynomials with nonnegative coeffi-
cients Qn,nonneg ⊆ R[x1, . . . , xn], obtaining:

Theorem 1.2. (Informal.) Let Q = {q1, . . . , qm} ∈ Qn,nonneg ⊂ Z[x1, ..., xn] with coefficients
bounded in absolute value by nO(1), and let D be a weakly-nice distribution with bounded
support in [−β, β] for β = nO(1). If m > n, then there exists a probabilistic polynomial
algorithm can solve the (D,Q)-PIDP with probability at least Ω(n−O(1)).

1Although, our results do apply to the case when ε = 1/nO(1), we treat it as a constant for the sake of clarity of
exposition.
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We note that both our results correspond to worst-case properties that are checkable in poly-
nomial time. In particular, the expansion condition that we refer to above only involves sets of size
at most 4. Furthermore, the distinguisher also succeeds with non-trivial probability even if m is as
small as 2, provided the conditions required by the algorithm are met.

Results for Overwhelming Distinguishers. We next consider the problem of amplifying the
distinguishing advantage to yield overwhelming distinguishers for natural distributions of both
inputs and polynomials.

We consider random families of polynomials, where each polynomial is sampled from some
distribution Qn,d,p. The polynomials sampled from this distribution consist of homogeneous, mul-
tilinear degree d polynomials over the reals, where each coefficient is independently set to 0 with
probability 1 − p, and otherwise sampled from some “nice” distribution. The distribution is nice
if it satisfies certain conditions: The fourth moment is required to be sufficiently greater than the
square of the second moment; it is required to take values within a bound that is roughly polylog-
arithmic in the second moment; and it must satisfy a weak anti-concentration property. We refer
the reader to Definition 3.9 for a formal definition of a nice distribution. For the reader, it would
be helpful to think of a (discrete) Gaussian distribution, or a uniform distribution over [−nc, nc]
for a constant c > 0 as examples of nice distributions.

The input distribution is also required to be nice. Then, our main result is:

Theorem 1.3. Let d be any constant degree, and let p > n log n/
(
N
d

)
. Let Dnice be a nice distri-

bution as described above. If m ≥ n2 · (log n)O(1), then there exists a probabilistic polynomial time
overwhelming distinguisher for the (D,Qmn,d,p)− PIDP problem.

We stress that our overwhelming distinguisher applies in a context where strong sum-of-squares
lower bounds apply to the search and refutation versions of our problem [Gri01, Sch08, KMOW17,
HK22]. In particular, for d > 6, the value of m for which our attack applies is below the value of
m for which sum-of-squares lower bounds apply.

2 Technical Overview

In this section, we give an intuitive technical guide to our results. Our objective, we recall, is to
build efficient distinguishers for the Polynomial Independence Distinguishing Problem.

Correlations that arise over the integers, but not over Boolean values. The starting
point for our work is that polynomials evaluated over natural distributions over the integers, instead
of over uniform Boolean values, can lead to a detectable correlation between polynomials with
shared variables. Consider the following example: Let q1, q2 ∈ Z[x1, x2] share the variable x1 where

q1(x) = x1

q2(x) = x1x2

Let X = (X1, X2) and Y = (Y1, Y2) where each Xi, Yi are i.i.d. random variables with probabil-
ity distribution D. Now, if D were the uniform distribution over {−1, 1}, then the distributions
(q1(X), q2(X)) and (q1(X), q2(Y )) are identical. However, if D is a non-Boolean distribution where
E[X2

1 ] 6= (E[X1])2, then
E[q1(X)q2(X)] = E[X2

1 ]E[X2]
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whereas
E[q1(X)q2(Y )] = E[X1]E[Y1]E[Y2]

which differ as long as E[X2] 6= 0.
Unfortunately, if the distribution D has expectation 0, the above discrepancy will still yield the

same overall expectation. As a result, we will instead consider the squared product distributions.
For our simple example, this yields:

E[q2
1(X)q2

2(X)] = E[X4
1 ]E[X2

2 ]

E[q2
1(X)q2

2(Y )] = E[X2
1 ]E[Y 2

1 ]E[Y 2
2 ]

which differ as long as E[X4
1 ] 6= (E[X2

1 ])2 and E[X2
2 ] 6= 0. Such conditions are reasonable for

symmetric mean zero distributions over integers as we later show in Lemma 4.1. In fact, for any
random variable Z, then E[Z4] = E[Z2]2 if and only if var[Z2] = 0. In other words, this will hold
if and only if the input distribution either (1) is a point distribution, or (2) has support on {−k, k}
for some k ∈ R+, in which case it would be a scaled Boolean.

Polynomials. The (D,Q)-polynomial independence distinguishing problem can be studied for
any set of multivariate polynomials and input distributions over the reals. In this paper, we initiate
this study by considering multilinear polynomials of constant degree over the reals. We leave it
as an open question as to whether, and under what conditions, these results can be extended to
arbitrary polynomials.

In all cases, we will consider m, the number of polynomials, to be larger than n, the number
of variables. Otherwise, one can trivially build a set of m polynomials {qi(x) = xi}i∈[m] for

which {qi, qi(x)}i∈[m] and {qi, qi(xi)}i∈[m] have identical distributions when x,x1, . . . ,xn
R←− D for

some distribution D over the reals. We note that viewed as a pseudorandom number generator
G : Rn → Rm where G(x) = {qi(x)}, this is just the identity function truncated to the first m
values of the input.

Results. We show how we leverage the simple starting observation above to achieve nontrivial
distinguishers for a wide variety of worst-case polynomials and a very large class of input distribu-
tions. In the case of natural randomized families of polynomials and natural input distributions,
we also show how to amplify the nontrivial correlations we identify in the case of our nontrivial
distinguishers to obtain overwhelming distinguishers. We now elaborate.

2.1 Non-trivial Probability Distinguishers

We want to identify distributions D and classes of polynomials C such that for any set of m >
n polynomials Q ⊆ R[x1, . . . , xn] chosen from C, there is an efficient algorithm that solves the
(D,Q)− PIDP with non-trivial probability.

Input Distributions. Our results apply to any bounded symmetric mean zero distribution over
the reals with a wide enough spread. This is formalised by requiring E[Z4]/(E[Z2])2 ≥ γ for some
γ > 1 and E[Z2] ≥ η for some η > 0, where Z is a random variable with distribution D. The
property of having E[Z4]/E[Z2]2 ≥ γ is called the γ−hyper expansion property of the distribution.
For the technical overview, we will consider γ, η to be constants.
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Leveraging Expectation Differences of the Squared Product Differences. Let Q =
{q1, . . . , qm} ⊂ R[x1, . . . , xn], let D be a distribution on R, and let D∗ sample an n-tuple of values
each independently drawn from D. Let X be a random variable on distribution D∗. If m > n,
then by the pigeonhole principle, there exist i, j ∈ [m] such that qi, qj share a variable. We want
to leverage the correlation between these two polynomials (or rather the correlation between the
squares of these two polynomials). By definition of covariance,

cov[q2
i (X), q2

j (X)] = E[q2
i (X)q2

j (X)]− E[q2
i (X)]E[q2

j (X)]

Therefore, if the covariance between qi, qj is large, then this expectation difference is also large.
Note that in the (D,Q) − PIDP problem, we either get samples of the form {qi, zi = qi(x)}i∈[m]

where E[Z2
i Z

2
j ] = E[q2

i (X)q2
j (X)] or samples of the form {qi, zi = qi(xi)}i∈[m] where E[Z2

i Z
2
j ] =

E[q2
i (X)]E[q2

j (X)]. Here the random variables Zi = qi(Xi), where Xi
R←− D∗, correspond to the

samples zi received. Thus, the covariance is equal to the difference in the expectations of the
distribution of Z2

i Z
2
j when getting evaluations on the same input, and the distribution of Z2

i Z
2
j when

getting evaluations on independent inputs. To build a distinguisher to solve the (D,Q)−PIDP, we
proceed in two steps.

1. Expectation Distinguisher: First, we build a general algorithm which, when given a
single sample from one of two bounded non-negative distributions whose expectations differ
by a non-negligible amount, can distinguish between the two distributions with non-negligible
probability (Lemma 5.1). We will call this algorithm the Expectation Distinguisher.

2. Covariance Guarantee: Second, we show that for certainQ andD, then cov[q2
i (X), q2

j (X)] =

E[q2
i (X)q2

j (X)]− E[q2
i (X)]E[q2

j (X)] is non-negligible (Lemmas 5.2 and 5.3).

By combining these two steps, we get a distinguisher for the (D,Q) − PIDP: We simply compute
the product of the samples z2

i z
2
j and send the product to the Expectation Distinguisher as input.

Expectation Distinguisher. As a basic tool for reasoning about the existence of nontrivial
distinguishers, we prove the following general lemma which roughly says that if there exist two
distributions D0 and D1 with support in [0, 1]—which we can assume without loss of generality
because we can shift and scale arbitrary bounded distributions—such that their expectations differ
by some quantity q, then, we can show a distinguisher that runs in time q−O(1) and distinguishes
these two distributions with probability qO(1). More generally, both the running time and the
distinguishing probability is a function of the ratio of the absolute value of the difference in the
expectation to the size of the support. More precisely,

Lemma 2.1. Let p, q be two positive parameters. Let D0 and D1 be distributions with bounded
support in [0, p].2 Let X0 be a random variable distributed according to D0 and X1 be a random
variable distributed according to D1. If ∣∣∣E[X0]− E[X1]

∣∣∣ > q

then the Expectation Distinguisher A (Algorithm 1) succeeds with probability∣∣∣Pr[A(x
R←− D0) = 0]− Pr[A(x

R←− D1) = 0]
∣∣∣ ≥ q2

16p2

2More generally, the support is allowed to be [−p/2, p/2] and then the result follows by appropriately shifting the
two distributions by p/2.
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Relying on this lemma, we prove a variety of results for PIDP. First, we describe how we prove
this lemma. We construct a simple distinguisher that first creates an approximate histogram of the
two distributions by randomly sampling from each of D0 and D1 a sufficient number of times. The
distinguisher partitions the support into some ε-width intervals and estimates the probability of
these distributions falling within these intervals. A Chernoff bound combined with a union bound
ensures that these probability estimates are reasonably accurate.

Next, we show that there exists an interval where the following happens:

Lemma 2.2. Let p, q be two positive parameters. Suppose D0 and D1 are distributions with bounded
support in [0, p], and X0 be a random variable distributed according to D0 and X1 be a random
variable distributed according to D1. If ∣∣∣E[X0]− E[X1]

∣∣∣ > q

Then, if {Ii}ni=1 is a partition of [0, p] into equal-sized intervals and n = 2p
q , then there exists an

index i such that ∣∣∣Pr[x ∈ Ii | x
R←− D0]− Pr[x ∈ Ii | x

R←− D1]
∣∣∣ ≥ q2

4p2
.

The lower bound on the difference in probabilities follows by an averaging argument on the difference
between the expectations.

A high-level perspective is that the algorithm uses the histogram to make its decisions for any
input x by choosing the larger estimated probability. The existence of the interval guaranteed by
Lemma 2.2, allows us to form a lower bound for the distinguishing probability through a careful
argument involving the aforementioned partitioning and accuracy guarantees given by the Chernoff
bound combined with a union bound.

Covariance Guarantee. We now hunt for families of polynomials where we can apply our Ex-
pectation Distinguisher to yield a nontrivial distinguisher. Let qi, qj be multilinear polynomials
that share a variable xk, and let D be a symmetric mean zero distribution with minimum spread
as defined earlier. Let X be a random variable distributed according to the product distribution
D∗. We introduce some notation first. Let x1, ..., xn be variables. For a set S ∈ P([n]), define
xS =

∏
i∈S(xi). Then,

qi(x) =
∑

S∈P([n])

cSxS

qj(x) =
∑

S∈P([n])

dSxS

where each cS , dS ∈ R. Since expectation is linear, then

E[q2
i (X)q2

j (X)]−E[q2
i (X)]E[q2

j (X)] =
∑

S,T,U,V ∈P([n])

cScTdUdV (E[XSXTXUXV ]− E[XSXT ]E[XUXV ])

Let us consider any single (E[XSXTXUXV ]−E[XSXT ]E[XUXV ]). We will show that this value is
always non-negative. Now, since D is symmetric, all odd moments of each Xi are zero. Consider
the following two cases:
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1. XSXTXUXV is a square. In that case, if one of XSXT or XUXV is not a square, then
observe that E[XSXT ]E[XUXV ] = 0 since all odd moments are 0. Therefore, the difference
is non-negative, since the expectation of a square is always non-negative. Otherwise, XSXT

and XUXV are squares, so the degree of all variables in these terms is 2. Also, the degree of
any Xi for i ∈ [n] occurring in XSXTXUXV is even and is the sum of the degree of Xi in
XSXT and the degree of Xi in XUXV . Therefore, if Z is a random variable with distribution
D, then the difference in expectations is

E[Z4]t · E[Z2]u−2t − E[Z2]u =

((
E[Z4]

(E[Z2])2

)t
− 1

)(
E[Z2]

)u
for some u > t ≥ 0. Since D has minimum spread, we have E[Z4]/E[Z2] ≥ γ for some γ > 1
and E[Z2] ≥ η for some η > 0, so this difference is non-negative. Note that whenever t > 0,
then this difference is positive. This occurs at least once if qi, qj share a variable, as illustrated
by the example at the start of this section.

2. XSXTXUXV is not a square. Then, one of XSXT or XUXV is also not a square. So, the
difference is 0 because all the odd moments are zero.

Although, each (E[XSXTXUXV ]− E[XSXT ]E[XUXV ]) ≥ 0, we may have
cScTdUdV (E[XSXTXUXV ]− E[XSXT ]E[XUXV ]) < 0 depending on the coefficients. Thus, the
total expectation difference may still be close to zero because these summation terms could cancel
out. Applying certain conditions on the coefficients prevents this from occurring, ensuring that our
expectation difference is large enough. We note immediately that if all coefficients are nonnegative,
then all summation terms are nonnegative, so such a cancellation does not occur. However, we
show another set of conditions also ensures this: Expander Based Coefficients.

Expander Based Coefficients. The following definitions will ensure that the coefficients of the
summation terms where E[XSXTXUXV ] − E[XSXT ]E[XUXV ] 6= 0 are always nonnegative. As
before, this implies that the summation terms of the expectation difference do not cancel each
other out.

Definition 2.1 (n-Half-Expanding Set). Let S = {S1, . . . , Sm} be a collection of sets. Then, S is
a n-half-expanding set if for all k ≤ n and all distinct a1, a2, ..., ak ∈ [m]∣∣∣∣∣

k⋃
i=1

Sai

∣∣∣∣∣ > 1

2

k∑
i=1

|Sai |

Definition 2.2 (Expander Based Polynomial Set). Let Q = {q1, . . . , qm} ⊂ R[x1, . . . , xn] be a set
of multilinear polynomials over the reals. Then, each qi(x) =

∑
S∈P([n]) cS,ixS for some coefficients

{cS,i}S∈P([n]) ∈ R. We say that Q is a Expander Based Polynomial Set if

• Each qi is a polynomial of degree at most some constant d

• {S ∈ P([n]) | cS,i 6= 0 for any i ∈ [m]} is a 4-half expanding set.

• CS = {cS,i}i∈[m] contains at most one non-zero value. (i.e. All monomials appear at most
once across all polynomials in Q.)
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Note that picking sufficiently sparse polynomials at random will yield an Expander Based
Polynomial Set with good probability. Indeed, the random families of polynomials that yield sum-
of-squares lower bounds for the search and refutation version of the natural CSP for our problem
have this property [Jai19].

If qi, qj come from an Expander Based Polynomial Set Q, then the following occurs: Consider
the terms where cS , cT , dU , dV 6= 0. Then, since {S ∈ P([n]) | cS,i 6= 0 for any i ∈ [m]} is a 4-half
expanding set, then for distinct S, T, U, V ∈ P([n]), we have |S∪T ∪U∪V | > 1

2(|S|+|T |+|U |+|V |).
Therefore, some Xi occurs once in XSXTXUXV . Thus, XSXTXUXV is not a square, which
means that E[XSXTXUXV ] − E[XSXT ]E[XUXV ] = 0. Suppose then that S, T, U, V are not all
distinct. Let one of S or T equal one of U or V . But since we assumed that cS , cT , dU , dV 6=
0, this means that cA and dA are both nonzero for some set A. But this contradicts the fact
that all monomials appear at most once in all polynomials of Q since Q is an Expander Based
Polynomial Set. Therefore, if S, T, U, V are not all distinct, we need either S = T or U = V .
Suppose without loss of generality, that S = T . Then, in order for XSXSXUXV = X2

SXUXV

to be a square (so that E[XSXTXUXV ] − E[XSXT ]E[XUXV ] 6= 0.), we need U = V as well.
Therefore, the actual coefficient that arises in the expectation calculation is cScTdUdV = c2

Sd
2
U ≥ 0

whenever E[XSXTXUXV ] − E[XSXT ]E[XUXV ] 6= 0. This implies that the summation terms of
the expectation difference do not cancel each other out, and we obtain a non-trivial distinguisher.

2.2 Overwhelming Probability Distinguisher

We now describe how to amplify the correlations described above to yield our overwhelming prob-
ability distinguisher. In this setting, we are given polynomials {qi}i∈[m] sampled from Qmn,p,d along
with evaluations of the form {qi(x) = yi}i∈[m] or {qi(xi) = y′i}i∈[m] where each x as well as {xi}i∈[m]

are chosen at random from a distribution D∗, as defined in Definition 1.1, where D is a nice distri-
bution. For the purpose of this technical overview, the reader may assume that a nice distribution
is simply a discrete Gaussian centered at zero with standard deviation nO(1).

Remark 2.1. Inputs to the generated polynomials are taken from D∗ where the notation is as
described in Definition 1.1. Throughout, we will treat x in small letters as an input variable to
the polynomial, and X in capital letters as the corresponding random variable sampled from D∗.
Similarly, for any given random variables X, {Xi}mi=1 and given polynomials {qi}mi=1 we will denote
the random variable qi(X) = Yi and qi(Xi) = Y ′i for all i.

Aside: Amplification in the case of Gaussian samples. If one observes yi = qi(x) =∑
S cSΠi∈Sxi =

∑
S cS · xS , then a single sample should be distributed somewhat like a Gaussian

distribution of mean 0 and appropriate standard deviation (this could be formalized for example
using the Berry-Esseen theorem.). Thus, consider the following simplistic setting. Suppose we have
been given either an instance of the form consisting of independently chosen Gaussian samples
z′ = (z′1, ..., z

′
m) or some arbitrarily correlated Gaussians z = (z1, ..., zm) and the goal is to identify

the case. Consider the following ratio for Z1, Z2 random variables over the standard Gaussian.

β =
EZ1 [Z4

1 ]

EZ1,Z2 [Z2
1 · Z2

2 ]

If z1, z2 are sampled according to identical and independently distributed Gaussian distribution,

then β =
EZ1

[Z4
1 ]

EZ1
[Z2

1 ]2
. For a centered Gaussian variable Z1, this quantity, which we will refer to as βdiff

(diff for different) is exactly equal to 3 since for a centered Gaussian distribution the ratio of the
fourth moment to the square of the second moment is 3. On the other hand, when Z1 and Z2 are

9



ρ correlated (i.e. Z2 = ρ · Z1 +
√

1− ρ2Z⊥ where Z⊥ is independently and identically distributed
as Z1), then, the ratio we get is denoted by βsame. Observe,

βsame =
3

1 + 2 · ρ2

Thus, as the correlation increases, this ratio (with maximum value 3) decreases until it attains a
minimum value of 1 when ρ ∈ {+1,−1}. This example suggests that we consider the following
idea:

Ratios for the PIDP problem. Define two ratios for Y1, Y2, Y
′

1 , Y
′

2 random variables as defined
in remark 2.1:

αdiff =
EY ′1 [Y ′41]

EY ′1 ,Y ′2 [Y ′21 · Y ′22]
αsame =

EY1 [Y 4
1 ]

EY1,Y2 [Y 2
1 · Y 2

2 ]

One can compute αdiff = E[Y ′41]

E[Y ′21·Y ′22]
by expanding the random variables:

αdiff =
Eq1,X1 [q4

1(X1)]

Eq1,q2,X1,X2 [q2
1(X) · q2

2(X2)]

=
Eq1,X1 [q4

1(X1)]

Eq1,X1 [q2
1(X1)] · Eq2,X2 [q2

2(X2)]

Denote q1(X) =
∑
|S|=d cSXS and q2(Y ) =

∑
|S|=d dSYS where coefficients cS and dS are chosen

independently from some nice distribution D with probability p and 0 otherwise. Assume x and y

are chosen at random from D∗. Let D be such that a random variable Z over D has E[Z4]
E[Z2]2

= γ > 1.

A typical value of γ is some constant greater than 1. With this notation the numerator of αdiff can
be computed as:

E
q1,X

[q4
1(X)]

=E
X
E
q1

∑
S1

∑
S2

∑
S3

∑
S4

cS1 · cS2 · cS3 · cS4 ·XS1 ·XS2 ·XS3 ·XS4


=E
X

∑
S

p · γ ·X4
S + 3 · p2 ·

∑
S1 6=S2

X2
S1
·X2

S2


Let N =

(
n
d

)
, then the numerator becomes,

N · p · γ · E
X

[X4
S ] + 3 · p2 ·

∑
S1 6=S2

E
X

[X2
S1
·X2

S2
]

Since, EX [X4
S ] = γd and

∑
S1 6=S2

EX [X2
S1
·X2

S2
] = N · (N − 1)ES1 6=S2 EX [XS1 ·XS2 ], the numerator

becomes,

N · p · γ · γd + 3 · p2 ·N · (N − 1) E
S1 6=S2

E
X

[XS1 ·XS2 ]

10



For i ∈ [d− 1], let gi denote the probability that two randomly chosen sets S1 6= S2 in [n] of size d
have i common elements.

This means that,

E
S1 6=S2

E
X

[XS1 ·XS2 ] = (1− g1 − . . .− gd−1) · 1 + γ · g1 + . . .+ γd−1 · gd−1

This means that the numerator is,

E
q1,X

[q4
1(X)]

=N · p · γ · γd + 3 · p2 ·N · (N − 1) ·
(

(1− g1 − . . .− gd−1) · 1 + γ · g1 + . . .+ γd−1 · gd−1

)
Now, consider the denominator, Eq1,q2,X,Y [q2

1(X) · q2
2(Y )].

E
q1,q2,X,Y

[q2
1(X) · q2

2(Y )] = E
q1,q2,X,Y

[
∑
S1,S3

c2
S1
d2
S3
X2
S1
Y 2
S3

]

= p2 · E
X,Y

[
∑
S1,S3

X2
S1
Y 2
S3

]

=N2 · p2

This means that:

αdiff =
N · p · γ · γd + 3 · p2 ·N · (N − 1) ·

(
(1− g1 − . . .− gd−1) · 1 + γ · g1 + . . .+ γd−1 · gd−1

)
N2 · p2

Setting t = N · p as the average density of each polynomial (number of non-zero coefficients)
and setting gi ≈ θ(1/ni) for i ∈ [d− 1], we get that:

αdiff =
γd+1

t
+ 3 + Ω(

1

n
)

Similarly, one can compute αsame

αsame =
Eq1,X [q4

1(X)]

Eq1,q2,X [q2
1(X) · q2

2(X)]

Lo and Behold,

αsame =
N · p · γ2 · γd + 3 · p2 ·N · (N − 1) ·

(
(1− g1 − . . .− gd−1) · 1 + γ · g1 + . . .+ γd−1 · gd−1

)
p2 ·N · γd + p2 ·N · (N − 1) · ((1− g1 − . . .− gd−1) · 1 + γ · g1 + . . .+ γd−1 · gd−1)

Assuming p < γ/3,

αsame = 3 + θ(
γ2 · γd1
t

)

Thus, as expected αdiff > αsame. In fact, if t� n, then αdiff − αsame > Ω(1/n).
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Amplifying from αdiff − αsame > Ω(1/n) to an overwhelming distinguisher. Above we
observed that αsame and αdiff for the PIDP problem are apart by at least 1/n. Can we somehow
utilize this difference to construct an overwhelming distinguisher?

In order to do that, we construct empirical approximations of α̂same of αsame and α̂diff of αdiff

computed as:

α̂diff =
1/m

∑
i y
′4
i

2/m
∑

i∈[m/2] y
′2
2i−1 · y′22i−1

α̂same =
1/m

∑
i y

4
i

2/m
∑

i∈[m/2] y
2
2i−1 · y2

2i−1

If m is sufficiently large, then, α̂same will be close to αsame and α̂diff will be close to αdiff (at
least in expectation). Thus, to prove this claim, what we do is that, given the samples {vi}i∈[m]

where vi = qi(x) or qi(xi) for all i ∈ [m], we compute the ratio:

α̂ =
1/m

∑
i v

4
i

2/m
∑

i∈[m/2] v
2
2i−1 · v2

2i−1

Then, we check if α̂ − αsame+αdiff
2

?
> 0. If the check is true we declare independent, otherwise

we declare same. Indeed, we show that the check identifies the distribution correctly if m ≥
n2 logO(1)(n). Note that for showing this we need to analyse

1/m
∑

i v
4
i

2/m
∑

i∈[m/2] v
2
2i−1·v2

2i−1
. In general,

analysing the ratio of this form may not be an easy task, as expected ratio of a quantity is in
general not the ratio of expectations. Thus, we analyse a slightly different objective. Define
αth = αsame+αdiff

2 and consider,

F =
∑
i

v4
i − 2 · αth

∑
i∈[m/2]

v2
2i−1 · v2

2i−1

In order to prove the result, we show two claims:

• If v1, ..., vm is sampled using independent inputs then with probability 1− n−ω(1), F > 0.

• If v1, ..., vm is sampled using a single input then with probability 1− n−ω(1), F < 0.

The analysis of this claim is somewhat involved, and includes careful algebraic manipulations
and applications of concentration inequalities. Details can be found in Section 6.

3 Preliminaries

Let N,Z, and R denote the set of positive integers, integers, and real numbers respectively. For
n ∈ N, let [n] denote the set {1, . . . , n}. Let P(S) denote the power set of set S. We represent
vectors using lower case bold-faced characters. For example, v ∈ Rn indicates a vector over the
reals of dimension n where n ∈ N.

We use the usual Landau notations. A function f(n) is said to be negligible if it is n−ω(1) and
we denote it by f(n) = negl(n). A probability p(n) is said to be overwhelming if it is 1 − n−ω(1).
For any distribution D, we denote the process of sampling x at random from distribution D by

x
R←− D. We say that an algorithm or function A(x) is polynomial time if for all x, A is computable

in time t = O
(
|x|O(1)

)
.
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Definition 3.1 (Computational Indistinguishability). We say that D1 is computationally indistin-
guishable from D1, denoted D1 ≈C D2, if no computationally-bounded adversary can distinguish
between D1 and D2 except with advantage negl(·). More formally, we write D1 ≈C D2 if for any
probabilistic polynomial time algorithm A,∣∣∣∣∣ Pr

x
R←−D1

[A(x) = 1]− Pr
x

R←−D2

[A(x) = 1]

∣∣∣∣∣ ≤ negl(|x|)

where negl(·) is a negligible function defined above and the probabilities are taken over the coins
of A and the choice of x.

Remark 3.1. We will consider all real numbers used in our algorithms to be of some finite precision
λ. When we talk about polynomial time algorithms with real inputs, we refer to algorithms that
use a polynomial number of λ-precision operations.

Definition 3.2 (t-Samplable Distribution). A probability distribution D is t-samplable if there is
a probabilistic algorithm A that runs in time t such that A(0) = D.

For random variables X,Y , let EX [f(X)] denote the expectation of f(·) over random variable X
and let EX,Y [f(X,Y )] denote EX EY [f(X,Y )].

Definition 3.3. Let X be a random variable. For any integer i ≥ 1, we denote the ith moment of
X as

µi = E[Xi]

In general, the random variable X we are referring to will be clear by context.

Theorem 3.1. (Chernoff Bound) Suppose X1, . . . , Xn are independent random variables taking
values in {0, 1}, and let X =

∑n
i=1Xi and E[X] = µ. Then a two-sided Chernoff bound for δ > 0

is

Pr [|X − µ| > δµ] ≤ 2 · exp

(
− δ2µ

2 + δ

)
Theorem 3.2. (Hoeffding Bound) Let X1, . . . , Xn be independent bounded random variables with
Xi ∈ [a, b] for all i, where −∞ < a ≤ b <∞. Then

Pr

[
1

n

n∑
i=1

(Xi − E[Xi]) ≥ t

]
≤ exp

(
− 2nt2

(b− a)2

)
Pr

[
1

n

n∑
i=1

(Xi − E[Xi]) ≤ −t

]
≤ exp

(
− 2nt2

(b− a)2

)
for all t ≥ 0.

3.1 Polynomial Independence Distinguishing Problem

Definition 3.4 (Polynomial Independence Distinguishing Problem). Let Q = {q1, ..., qm} denote a
set of multivariate polynomials where qi : Rn → R. Let D be a distribution on R, and let D∗ be the

distribution D × · · · × D︸ ︷︷ ︸
n times

over Rn where x = (x1, . . . , xn)
R←− D∗ means x1, . . . , xn are independently

sampled from D. The Polynomial Independence Distinguishing Problem with respect to D,Q (or
simply (D,Q)− PIDP) consists of distinguishing the following two distributions:
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Distribution 1: Distribution 2:

1. Sample x
R←− D∗ 1. Sample x1, . . . ,xm

R←− D∗
2. Output {qi, qi(x)}i∈[m] 2. Output {qi, qi(xi)}i∈[m]

Remark 3.2. In the above definition, Q is a set of polynomials. However, we may refer to the
(D,Q)-Polynomial Independence Distinguishing Problem for some distribution Q over some family
of polynomials. In this case, we mean that each polynomial qi for i ∈ [m] is sampled from the
distribution Q.

Remark 3.3. We say that an algorithm A solves the (D,Q) − PIDP with probability p if A can
distinguish between Distribution 1 and Distribution 2 of the (D,Q) − PIDP with probability at
least p.

3.2 Pseudo-Independent Distribution Generator

Definition 3.5. (Pseudo-Independent Distribution Generator) A Pseudo-Independent Distribution
Generator (or PIDG) is a tuple (D,F = {fi}mi=1)) where m is called the stretch of the PIDG and

• D∗ is a t-samplable distribution over Rn where t = nO(1) and D∗ is as defined in Definition
3.4 above.

• each fi for i ∈ [m] is a polynomial time multivariate function fi : Rn → R.

Further, we require the generator to satisfy the following security notion:

x,x1,x2, . . . ,xm
R←− D∗

(F , {fi(x)}mi=1) ≈c (F , {fi(xi)}mi=1))

In other words, a PIDG is a distribution along with a set of functions such that one cannot
distinguish between evaluations of these functions on independent inputs and evaluations of these
functions on the same input when the input(s) are sampled randomly from D∗.

Remark 3.4. If there exists a probabilistic polynomial time algorithm A that solves the (D,Q)−
PIDP with non-negligible probability, then (D,Q) is not a PIDG.

3.3 Distribution Definitions

Definition 3.6. A random variable X is called a (k, n, γ)-hyper-expanding random variable, if:

E[Xn]

E[Xk]n/k
≥ γ.

We will omit parameters n and k to denote (2, 4, γ)-hyper-expanding random variables and call
them γ-hyper-expanding random variables. For example, a standard Gaussian random variable X
is 3-hyper-expanding since

E[X4]

E[X2]2
= 3.

and a uniform random variable Y on U[−β,β] for any large enough β is 3
2 -hyper-expanding. Some-

times we will abuse the hyper-expanding notation to talk about hyper-expanding distributions,
where we state that the same requirements hold for any random variable with distribution D.

14



Definition 3.7. We say that a distribution D is (η, γ)-weakly-nice if

1. D is a symmetric distribution with mean 0

2. If X is a random variable over D, then E[X2] ≥ η and E[X4]
E[X2]2

≥ γ.

Definition 3.8. We say that a distribution D is C bounded if

Pr[x
R←− D, |x| < C] = 1

Definition 3.9. We say that a distribution D is (γ,C, ε)-nice if

1. D is a symmetric distribution with mean 0

2. (Normalization.) If X is a random variable over D, then E[X2] = 1 and E[X4] = γ.

3. D is C-bounded.

4. (Anti-concentration) Pr[x
R←− D, |x| > ε] > Ω(1)

Remark 3.5. If a distribution D is (γ,C, ε)-nice, then D is also (1, γ)-weakly-nice

We will be concerned with (η, γ)-weakly-nice distributions where η, γ− 1 are positive and large
enough (to be quantified later). For bounded integer distributions, we can get a lower bound on
these values provided that we don’t have all (or almost all) of the weight of the distribution lie on
k and −k for some value k ∈ Z.

3.4 Polynomial Notation and Expectations

Notation Let x1, ..., xn be variables. For a set S ∈ P([n]), define

xS =
∏
i∈S

xi

Consider a multilinear polynomial q ∈ R[x1, . . . , xn]. Then, q(x) is of the form

q(x) =
∑

S∈P([n])

cSxS

where each cS ∈ R.

Fact If D is a symmetric distribution with mean 0, and X is a random variable with distribution
D, then for all odd i ∈ N, ui = E[Xi] = 0.

Remark 3.6. Let D be a symmetric distribution with mean 0. Let X = (X1, X2, ..., Xn) where
each Xi is an i.i.d. random variable with distribution D. Let f(x) =

∏n
i=1 x

ai
i where each ai is a

nonnegative integer. Then, if any ai is odd, E[f(X)] =
∏n
i=1 E[Xai

i ] = 0.

Lemma 3.1. Let D be a symmetric distribution over R with mean 0. Let X = (X1, X2, ..., Xn)
where each Xi is an i.i.d. random variable with distribution D. Let S, T ∈ P([n]). Then,

E[XSXT ] =

{
0 if S 6= T

µ
|S|
2 if S = T

where µ2 is the second moment of each Xi
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Proof. If S 6= T , then since XS and XT contain each variable at most once, then XSXT will contain
some variable Xi of odd degree. By Remark 3.6, then S 6= T implies E[XSXT ] = 0. If S = T , then

E[XSXT ] = E[X2
S ] = E[

∏
i∈S X

2
i ] =

∏
i∈S E[X2

i ] = µ
|S|
2 .

Lemma 3.2. Let D be a symmetric distribution over R with mean 0. Let X = (X1, X2, ..., Xn)
where each Xi is an i.i.d. random variable with distribution D. Let S, T, U, V ∈ P([n]). Then,

E[XSXTXUXV ] =

{
0 if XSXTXUXV contains a variable Xi of odd power

µ
|a|
4 µ
|b|
2 else

where a = |S ∩ T ∩ U ∩ V |, b = 1
2(|S|+ |T |+ |U |+ |V |)− 2a, and µ2, µ4 are the second and fourth

moments respectively of each Xi.

Proof. Now,

E[XSXTXUXV ] = E

∏
i∈S

Xi

∏
j∈T

Xj

∏
k∈U

Xk

∏
l∈V

Xl

 = E

[
n∏
i=1

Xai
i

]
=

n∏
i=1

E [Xai
i ] =

n∏
i=1

µai

for some {ai}ni=1 such that 0 ≤ ai ≤ 4 for all i ∈ [n]. If XSXTXUXV contains a variable Xi of
odd power (i.e. if any ai is odd), then by Remark 3.6, E[XSXTXUXV ] = 0. Otherwise, each
ai ∈ {0, 2, 4}. Now, ai = 4 if and only if Xi appears in each of XS , XU , XV , XT . Define

a = |{i | ai = 4}| = |S ∩ T ∩ U ∩ V |

For any other variable Xi that appears in one of XS , XU , XV , XT , we must have that ai = 2. Now,

deg(XSXTXUXV ) = |S|+ |T |+ |U |+ |V | =
n∑
i=1

ai

= 4|{i | ai = 4}|+ 2|{i | ai = 2}|
= 4a+ 2|{i | ai = 2}|

Define b = |{i | ai = 2}| = 1
2(|S|+ |T |+ |U |+ |V |)− 2a. Therefore, E[XSXTXUXV ] =

∏n
i=1 µai =

µ
|a|
4 µ
|b|
2

4 Useful Lemmas

We show that for a bounded symmetric mean zero distribution D over the integers, then we only
need a minimal notion of spread (namely that we have some noticeable probability mass on at least
three points in Z) to get a (η, γ)-weakly-nice distribution with reasonable lower bounds on η, γ− 1.

Definition 4.1. For a random variable X with integer support bounded by [a, b], define mode(X)
to be k such that PrX [X = k] = maxbi=a(PrX [X = i])

Lemma 4.1. Let D be any distribution over Z with bounded support over [−β, β]. Let X be a
random variable with distribution D. Let t > 0. If PrX [|X| 6= mode(|X|)] ≥ 1

t , then

µ2 ≥ E[X]2 +
1

2 ·max(β + 1, t)

µ4

µ2
2

≥ 1 +
1

2µ2
2 ·max(β + 1, t)
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Proof. Since
∑β

i=0 PrX [|X| = i] = 1 and PrX [|X| = mode(|X|)] = maxβi=0 PrX [|X| = i], then
PrX [|X| = mode(|X|)] ≥ 1

(β+1) . Therefore,

1

t
≤ Pr

X
[|X| 6= mode(|X|)] ≤ 1− 1

(β + 1)

By the definition of variance
µ2 = E

[
X2
]

= E [X]2 + var [X]

Let y1 be the closest integer to E[X], and let y2 be the next closest integer to E[X] with y1 6= y2.
Then, y1 and y2 are adjacent integers where

|y1 − E[X]|+ |y2 − E[X]| = 1

Since y1 and y2 are the two closest integers to E[X], then for every integer x ∈ Z where x 6= y1

(y1 − E[X])2 ≤ (y2 − E[X])2 ≤ (x− E[X])2

Therefore,

var[X] =

β∑
i=−β

(
Pr
X

[X = i](X − E[X])2

)
≥ Pr

X
[X = y1](y1 − E[X])2 + (1− Pr

X
[X = y1])(y2 − E[X])2

By definition of mode(|X|), then

Pr
X

[X = y1] ≤ Pr
X

[|X| = |y1|] ≤ Pr
X

[|X| = mode(|X|)]

Which means that

var[X] ≥ Pr
X

[|X| = mode(|X|)](y1 − E[X])2 + (1− Pr
X

[|X| = mode(|X|)])(y2 − E[X])2

= (1− Pr
X

[|X| 6= mode(|X|)])(y1 − E[X])2 + Pr
X

[|X| 6= mode(|X|)](y2 − E[X])2

Claim 4.1. If a, b ≥ 0, a+ b ≥ 1, and 0 ≤ p ≤ t ≤ c, then ta2 + (1− t)b2 ≥ 1
2 min(p, 1− c)

By the Cauchy Schwarz inequality, (a + b)2 = 〈(a, b), (1, 1)〉2 ≤ 〈(a, b), (a, b)〉 · 〈(1, 1), (1, 1)〉 =
2(a2 + b2). So, a+ b ≥ 1 implies that (a+ b)2 ≥ 1 which means (a2 + b2) ≥ 1

2 . Then,

ta2 + (1− t)b2 ≥ pa2 + (1− c)b2

≥ min(p, 1− c)(a2 + b2)

≥ 1

2
min(p, 1− c)

By applying this claim to a = |y2 − E[X]2|, b = |y1 − E[X]2|, and t = PrX [|X| 6= mode(|X|)] then

var[X] ≥ 1

2
min

(
1

β + 1
,
1

t

)
=

1

2 ·max(β + 1, t)

µ2 ≥ E[X]2 +
1

2 ·max(β + 1, t)
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Now, note that PrX [|X| = i] = PrX [X2 = i2] and mode(|X|))2 = mode(X2). Therefore,
PrX [X2 6= mode(X2)] = PrX [|X| 6= mode(|X|)] so that

1

t
≤ Pr

X
[X2 6= mode(X2)] ≤ 1− 1

(β + 1)

By the definition of variance

µ4 = E
[
X4
]

= E
[
X2
]2

+ var
[
X2
]

= µ2
2 + var

[
X2
]

Let y be the closest integer to E[X2] where y 6= mode(X2). Then, since y and mode(X2) are
nonequal integers

|y − E[X2]|+ |mode(X2)− E[X2]| ≥ 1

Now,

var[X2] =

β2∑
i=0

(
Pr[X2 = i](X2 − E[X2])2

)
≥ Pr

X
[X2 6= mode(X2)](y − E[X2])2 + (1− Pr

X
[X2 6= mode(X2)])(mode(X2)− E[X2])2

By Claim 4.1

var[X2] ≥ 1

2
min

(
1

β + 1
,
1

t

)
=

1

2 ·max(β + 1, t)

µ4 = µ2
2 + var[X2] ≥ µ2

2 +
1

2 ·max(β + 1, t)

µ4

µ2
2

≥ 1 +
1

2µ2
2 ·max(β + 1, t)

Corollary 4.1. Let D be any symmetric distribution over Z with mean 0 and bounded support over
[−β, β]. Let X be a random variable with distribution D. If PrX [|X| 6= mode(|X|)] ≥ 1

t for some

t > 0, then D is (η, γ)-weakly-nice where η = (min( 1
β ,

1
t ))

O(1) and γ = 1 + (min( 1
β ,

1
t ))

O(1).

The following lemma proves that if the expectations of two distributions on bounded support
[0, 1] differ by some parameter q, then there exists a sufficiently large interval such that the difference
between the probability that a sample from the first distributions lies in that interval and the
probability that a sample from the second distribution lies in that interval is O(qO(1)).

Lemma 4.2. Let p, q be two parameters. Let D0 and D1 be distributions with bounded support in
[0, p].3 Let X0 be a random variable on D0 and X1 be a random variable on D1. Suppose∣∣∣E[X0]− E[X1]

∣∣∣ ≥ q.
If [0, p] is partitioned into n = 2p

q intervals {Ii}ni=1 each of width q
2 , then there exists an interval Ii

such that ∣∣∣Pr[x ∈ Ii | x
R←− D0]− Pr[x ∈ Ii | x

R←− D1]
∣∣∣ ≥ q2

4p2
.

3More generally, the support is allowed to be [−p/2, p/2] and then the result follows by appropriately shifting the
two distributions by p/2.
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Remark 4.1. Note that p
q ≥ 1. Otherwise, p

q < 1 so q > p. But this means that the difference in
expectations is bigger than the whole range of the support, which is a contradiction.

Proof. Without loss of generality, let E[X0] ≥ E[X1]. Consider the following partition process.
Partition [0, p] into n = p

ε disjoint intervals Ii each of width ε where ai = sup Ii and ai−1 = inf Ii
for i ∈ [n]. Since x ≤ ai for x ∈ Ii,

E[X0] ≤
∑
i∈[n]

ai Pr[D0 ∈ Ii].

Similarly, a lower bound on E[D1] is given as follows:

E[X1] ≥
∑
i∈[n]

ai−1 Pr[D1 ∈ Ii].

Thus,

q ≤ E[X0]− E[X1] ≤
∑
i∈[n]

ai Pr[D0 ∈ Ii]−
∑
i∈[n]

ai−1 Pr[D1 ∈ Ii]

=
∑
i∈[n]

ai (Pr[D0 ∈ Ii]− Pr[D1 ∈ Ii]) + εPr[D1 ∈ Ii]

= ε+
∑
i∈[n]

ai (Pr[D0 ∈ Ii]− Pr[D1 ∈ Ii])

Therefore, ∑
i∈[n]

ai (Pr[D0 ∈ Ii]− Pr[D1 ∈ Ii]) ≥ q − ε

By an averaging argument, there exists an index i∗ such that

ai∗ [Pr[D0 ∈ Ii∗ ]− Pr[D1 ∈ Ii∗ ]] ≥
1

n
· (q − ε) .

Note ai∗ ≤ p so by substitution we have:∣∣∣Pr[D0 ∈ Ii∗ ]− Pr[D1 ∈ Ii∗ ]
∣∣∣ ≥ q

np
− 1

n2

Choosing n = 2p
q gives us

∣∣∣Pr[D0 ∈ Ii∗ ]− Pr[D1 ∈ Ii∗ ]
∣∣∣ ≥ q2

4p2
.

5 Non-trivial Probability Distinguishers

In this section, we show some of the limits of using polynomials to construct PIDGs. In particular,
we show that a PIDG with large enough spread cannot be formed out of any set of polynomials and
distributions taken from certain specific classes of polynomials and distributions. In this section,
we consider selections of polynomials and distributions that lead to the smallest distinguishing
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advantage; we want to distinguish between any choice of polynomials and distributions from these
classes. In the next section, we will consider distinguishers when the polynomials are chosen
randomly from some class of polynomials.

For these distinguishers, we consider the difference of EX,Y [q2
i (X)q2

j (Y )] and EX [q2
i (X)q2

j (X)]
for polynomials qi and qj from some set Q where X = (X1, . . . , Xm) and Y = (Y1, . . . , Ym) where
each Xi, Yi is an i.i.d. random variable with probability distribution D. When the polynomials are
correlated in certain ways, then this difference will be noticeable and can be used to construct a
weak probabilistic polynomial time distinguisher that can solve the (Q,D)− PIDP with noticeable
probability.

5.1 An Expectation Distinguisher

Algorithm 1 (Expectation Distinguisher).

Given: x from either distribution D0 or D1.

Goal: Output 0 if x was sampled from D0, and output 1 if x was sampled from D1.

Operation:

1. Let t = 16000p
5

q5 . Randomly sample t points from D0 and t points from D1. Let S0

be the set of t points sampled from D0, and let S1 be the set of t points sampled
from D1.

2. Partition [0, p] into n = 2p
q disjoint intervals {Ii}i∈[n] each of width q

2 where ai =
sup Ii and ai−1 = inf Ii.

3. Count the number of samples in each interval and compute the sample probabilities,
letting

S0,i = {s ∈ S0 : s ∈ Ii} r0,i =
|S0,i|
t

S1,i = {s ∈ S1 : s ∈ Ii} r1,i =
|S1,i|
t

where i ∈ [n].

4. Pick interval index i such that x ∈ Ii. If r0,i ≥ r1,i, then output 0; else if r0,i < r1,i

then output 1.

Remark 5.1. If the samplers for D0 and D1 run in time at most k, then the Expectation Distin-
guisher A performs (kpq )O(1) operations over real numbers. The running time scales multiplicatively
as the number of real operations times the cost of manipulating ` bit numbers where ` is the pre-
cision of the input to the algorithm.

Lemma 5.1. Let p, q be two parameters. Let D0 and D1 be distributions with bounded support in
[0, p].4 Let X0 be a random variable on D0 and X1 be a random variable on D1. If∣∣∣E[X0]− E[X1]

∣∣∣ ≥ q
4More generally, the support is allowed to be [−p/2, p/2] and then the result follows by appropriately shifting the

two distributions by p/2.
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then the Expectation Distinguisher A (Algorithm 1) succeeds with probability∣∣∣Pr[A(x
R←− D0) = 0]− Pr[A(x

R←− D1) = 0]
∣∣∣ ≥ q2

16p2

Proof. Partition [0, p] into n = 2p
q disjoint intervals {Ii}i∈[n] each of width q

2 where ai = sup Ii and
ai−1 = inf Ii. Let p0,i = Pr[D0 ∈ Ii] and p1,i = Pr[D1 ∈ Ii]. Define

∆i = p0,i − p1,i = Pr[D0 ∈ Ii]− Pr[D1 ∈ Ii]

δi = r0,i − r1,i =
|S0,i|
t
− |S1,i|

t

Note that δi is our approximation of ∆i based on our t samples from each distribution.

We remark that for b, b′ ∈ {0, 1} then

Pr[A(x
R←− Db) = b′] =

∑
i∈[n]

Pr[A(x) = b′|x ∈ Ii] Pr[Db ∈ Ii] =
∑
i∈[n]

pb,i Pr[A(x) = b′|x ∈ Ii]

Therefore, we have

2
∣∣∣Pr[A(x

R←− D0) = 0]− Pr[A(x
R←− D1) = 0]

∣∣∣
=
∣∣∣Pr[A(x

R←− D0) = 0]− Pr[A(x
R←− D1) = 0]

∣∣∣+
∣∣∣Pr[A(x

R←− D1) = 1]− Pr[A(x
R←− D0) = 1]

∣∣∣
≥
∣∣∣(Pr[A(x

R←− D0) = 0]− Pr[A(x
R←− D0) = 1]

)
−
(

Pr[A(x
R←− D1) = 0]− Pr[A(x

R←− D1) = 1]
)∣∣∣

=
∣∣∣ ∑
i∈[n]

p0,i

(
Pr[A(x) = 0 | x ∈ Ii]− Pr[A(x) = 1 | x ∈ Ii]

)
−
∑
i∈[n]

p1,i

(
Pr[A(x) = 0 | x ∈ Ii]− Pr[A(x) = 1 | x ∈ Ii]

)∣∣∣
=
∣∣∣ ∑
i∈[n]

∆i

(
Pr[A(x) = 0 | x ∈ Ii]− Pr[A(x) = 1 | x ∈ Ii]

)∣∣∣
Fix some i ∈ [n]. Suppose that ∆i ≥ 0. Then p0,i ≥ p1,i and by construction of the algorithm:

Pr[A(x) = 0 | x ∈ Ii] = Pr[δi > 0]

=
1

2
Pr[|∆i − δi| > ∆i] + Pr[|∆i − δi| ≤ ∆i]

=
1

2
+

1

2
Pr[|∆i − δi| ≤ ∆i]

Define the random variable Xi,k for i ∈ [n], k ∈ [t] representing whether the kth sample from D0 is
in Ii and the random variable Yi,k for i ∈ [n], k ∈ [t] representing whether the kth sample from D1

is in Ii as:

Xi,k =

{
1 if kth sample from D0 is in Ii

0 o.w.
Yi,k =

{
1 if kth sample from D1 is in Ii

0 o.w.
.

21



Then consider the sum of these random variables:

Xi =
∑
k∈[t]

Xi,k E[Xi] = tp0,i

Yi =
∑
k∈[t]

Yi,k E[Yi] = tp1,i

where Xi,k and Yi,k are i.i.d. Bernoulli random variable and Xi, Yi are binomial random variables.
Note that the distribution of δi is the same as the distribution of Xi

t −
Yi
t

Claim 5.1. Assume that ∆i ≥ 0. Then,

Pr [|δi −∆i| ≤ ∆i] ≥ 1− 4 exp

(
−∆2

i t

10

)
.

Proof. Applying a two-sided Chernoff bound gives

Pr

[∣∣∣∣Xi

t
− p0,i

∣∣∣∣ > δp0,i

]
= Pr [|Xi − p0,it| > δp0,it] ≤ 2 · exp

(
−δ

2p0,i

2 + δ
· t
)
.

Set δp0,i = θ0 to obtain

Pr

[∣∣∣∣Xi

t
− p0,i

∣∣∣∣ > θ0

]
≤ 2 exp

(
− θ2

0

2 + θ0
· t
)
.

By the same argument,

Pr

[∣∣∣∣Yit − p1,i

∣∣∣∣ > θ1

]
≤ 2 exp

(
− θ2

1

2 + θ1
· t
)
.

Fix θ = ∆i
2 . Then θ2

2+θ =
∆2

i
8+2∆i

. Since 0 ≤ ∆i ≤ 1, then exp(− ∆2
i t

8+2∆i
) ≤ exp(−∆2

i t
10 ). So by the

union bound:

Pr

[(∣∣∣∣Xi

t
− p0,i

∣∣∣∣ ≤ ∆i

2

)
∧
(∣∣∣∣Yit − p1,i

∣∣∣∣ ≤ ∆i

2

)]
≥ 1− 4 exp

(
− ∆2

i t

8 + 2∆i

)
≥ 1− 4 exp

(
−∆2

i t

10

)
.

Then it follows:

Pr

[∣∣∣∣∣∣∣∣Xi

t
− p0,i

∣∣∣∣− ∣∣∣∣Yit − p1,i

∣∣∣∣∣∣∣∣ ≤ ∆i

2

]
≥ 1− 4 exp

(
−∆2

i t

10

)
.

Since ∆i ≤ 1,

Pr

[∣∣∣∣(Xi

t
− Yi

t

)
− (p0,i − p1,i)

∣∣∣∣ ≤ ∆i

]
≥ 1− 4 exp

(
−∆2

i t

10

)
⇒Pr [|δi −∆i| ≤ ∆i] ≥ 1− 4 exp(−∆2

i t

10
)
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By the claim,

Pr[A(x) = 0 | x ∈ Ii] ≥
1

2
+

1

2

(
1− 4 exp

(
−∆2

i t

10

))
Pr[A(x) = 1 | x ∈ Ii] ≤

1

2
− 1

2

(
1− 4 exp

(
−∆2

i t

10

))
.

Therefore,

∆i

(
Pr[A(x) = 0 | x ∈ Ii]− Pr[A(x) = 1 | x ∈ Ii]

)
≥ |∆i| ·

(
1− 4 exp

(
−∆2

i t

10

))
By a symmetric argument, if ∆i < 0, then p0,i < p1,i and

∆i ·
(

Pr[A(x) = 1 | x ∈ Ii]− Pr[A(x) = 0 | x ∈ Ii]
)
≥ |∆i| ·

(
1− 4 exp

(
−∆2

i t

10

))
Since the inequality above holds for all values of ∆i,

2 ·
∣∣∣Pr[A(x

R←− D0) = 0]− Pr[A(x
R←− D1) = 0]

∣∣∣ ≥ ∣∣∣ ∑
i∈[n]

|∆i| ·
(

1− 4 exp

(
−∆2

i t

10

)) ∣∣∣
≥ max

i
|∆i| ·

(
1− 4 exp

(
−maxi|∆i|2t

10

))
By Lemma 4.2, since |E[D0]− E[D1]| ≥ q and [0, p] is partitioned into n = 2p

q intervals of equal
width, there exists an interval indexed by j such that

q2

4p2
≤ |∆j | ≤ max

i
|∆i|.

Suppose that the algorithm makes t = 16000p
5

q5 sampling calls for each of the distributions. Since
p
q ≥ 1 as noted in Lemma 4.2, the distinguishing advantage of the algorithm is given by:∣∣∣Pr[A(x

R←− D0) = 0]− Pr[A(x
R←− D1) = 0]

∣∣∣ ≥ 1

2
·
(
q2

4p2

)
· (1− 4 · exp(−100 · p

q
)) ≥ q2

16p2

Corollary 5.1. Let Q = {qi}mi=1 ⊂ R[x1, . . . xn] be a collection of multilinear polynomials over the
reals of degree at most some constant d and coefficients bounded by [−ν, ν]. Let D be a samplable
distribution over R with support bounded by [−β, β]. Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn)
where each Xi and each Yi is an i.i.d. random variable with probability distribution D. If a
probabilistic algorithm can compute i, j ∈ [m] such that i 6= j and∣∣∣∣EX[q2

i (X)q2
j (X)]− E

X,Y
[q2
i (X)q2

j (Y )]

∣∣∣∣ ≥ t
then there exists a probabilistic algorithm A that solves the (D,Q)-polynomial independence distin-
guishing problem with probability at least

t2

16(dndνβd)8

.
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Proof. Since Q is of degree at most d, then Q has at most
∑d

i=1

(
n
d

)
≤ dnd monomials. Since X,Y

are bounded by [−β, β]n and the coefficients of Q are in [−ν, ν], then for x ∈ X or y ∈ Y , then
|qi(x)|, |qj(y)| ∈ [0, dndνβd]. Therefore, q2

i (x)q2
j (x) and q2

i (x)q2
j (y) are bounded by [0, (dndνβd)4].

Now, let A be the following adversary:

Algorithm 2 (Squared Expectation Distinguisher).

Given: (Q, E) where E is either {qi(x)}mi=1 or {qi(xi)}mi=1 where x,x1,x2, . . . ,xm
R←− D

Operation:

1. Compute i, j ∈ [m]

2. Compute E2
i E2

j which is either q2
i (x)q2

j (x) or q2
i (xi)q

2
j (xj).

3. Let B be the Expectation Distinguisher (Algorithm 1) from Lemma 5.1. Let D0

be the distribution of q2
i (X)q2

j (X) and let D1 be the distribution of q2
i (X)q2

j (Y ).

Output B(D0,D1, E2
i E2

j ).

Since B is a probabilistic algorithm, then A is also a probabilistic algorithm. Then, by Lemma 1
since D0 and D1 are bounded distributions over [0, (dndνβd)4] then

|Pr [A(Q, {qi(x)}mi=1) = 1]− Pr [A(Q, {qi(xi)}mi=1)]|

=
∣∣Pr[B(D0,D1, q

2
i (x)q2

j (x)) = 1]− Pr[B(D0,D1, q
2
i (xi)q

2
j (xj)) = 1]

∣∣ ≥ t2

16(dndνβd)8

Therefore A is a probabilistic algorithm that solves the (D,Q)-polynomial independence distin-
guishing problem with this advantage.

Remark 5.2. Let the runtime of the sampler for D be nO(1), and let the algorithm to compute
i, j make nO(1) operations over real numbers. Then if m = nO(1), by Remark 5.1, the Squared

Expectation Algorithm (Algorithm 2) makes
(
nνβ
t

)O(1)
operations over real numbers. The actual

running time scales multiplicatively as the number of real operations times the cost of manipulating
` bit numbers where ` is the precision of the input to the algorithm.

5.2 Non-trivial Distinguisher for Polynomials with Non-negative Coefficients

First, we recall the definition of a (η, γ)-weakly-nice distribution:

Definition 5.1. We say that a distribution D is (η, γ)-weakly-nice if

1. D is a symmetric distribution with mean 0

2. If X is a random variable over D, then µ2 = E[X2] ≥ η and µ4

µ2
2

= E[X4]
E[X2]2

≥ γ.

Definition 5.2. Let Qn,nonneg ⊂ R[x1, . . . , xn] be the set of multilinear polynomials over the reals
with degree at most some constant d and nonnegative coefficients

Lemma 5.2. Let q1, . . . , qm ∈ Qn,nonneg, and let D be any (η, γ)-weakly-nice distribution with η > 0
and γ > 1. Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) where each Xi and each Yi is an i.i.d.
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random variable with probability distribution D. Then, if m > n then a probabilistic algorithm can
find i, j ∈ [m] such that i 6= j, qi, qj share a variable xk, and

E
X

[q2
i (X)q2

j (X)]− E
X,Y

[q2
i (X)q2

j (Y )] ≥ (γ − 1)(ν ′)2(ν ′′)2ηd
′+d′′

for any ν ′, d′ that are the coefficient and degree respectively of some monomial in qi that contains
variable xk, and for any ν ′′, d′′ that are the coefficient and degree respectively of some monomial in
qj that contains variable xk.

Proof. By the pigeonhole principle, since m > n, there must exist i, j ∈ [m] where i 6= j such that
qi and qj share a variable xk. Furthermore, such i, j can be found by a probabilistic algorithm. We
know that qi(x) =

∑
S∈P([n]) cSxS and qj(x) =

∑
S∈P([n]) dSxS where each cS , dS ∈ R. Consider

any nonzero term cS∗xS∗ in qi that contains xk and any nonzero term dT ∗xT ∗ in qj that contains xk.
Then, S∗, T ∗ ∈ P([n]) such that |S∗ ∩ T ∗| ≥ 1, |S∗| = d′, |T ∗| = d′′, cS∗ = ν ′ 6= 0, and dT ∗ = ν ′′ 6= 0
for some d′, d′′, ν ′, ν ′′. Now,

E
X,Y

[q2
i (X)q2

j (Y )] = E
X

[q2
i (X)]E

Y
[q2
j (Y )] = E

X
[q2
i (X)]E

X
[q2
j (X)]

= E
X

 ∑
S,T∈P([n])

cScTXSXT

E
X

 ∑
S,T∈P([n])

dSdTXSXT


=

∑
S,T∈P([n])

cScT E
X

[XSXT ]
∑

S,T∈P([n])

dSdT E
X

[XSXT ]

By Lemma 3.1, EX [XSXT ] equals 0 if S 6= T and equals µ
|S|
2 if S = T . Therefore,

E
X,Y

[q2
i (X)q2

j (Y )] =
∑

S∈P([n])

c2
S E
X

[
X2
S

] ∑
S∈P([n])

d2
S E
X

[
X2
S

]
=

∑
S∈P([n])

c2
Sµ
|S|
2

∑
S∈P([n])

d2
Sµ
|S|
2

=
∑

S,T∈P([n])

c2
Sd

2
Tµ
|S|+|T |
2

Now, in the other case, we have

E
X

[q2
i (X)q2

j (X)] = E
X

 ∑
S,T,U,V ∈P([n])

cScTdUdVXSXTXUXV


=

∑
S,T,U,V ∈P([n])

cScTdUdV E
X

[XSXTXUXV ]

By Lemma 3.2, ∀S, T, U, V ∈ P([n]), EX [XSXTXUXV ] ≥ 0. Since all coefficients of qi and qj are
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nonnegative, then cScTdUdV EX [XSXTXUXV ] ≥ 0 Therefore,

E
X

[q2
i (X)q2

j (X)] ≥
∑

S,T∈P([n])

c2
Sd

2
T E
X

[
X2
SX

2
T

]
=

∑
S,T∈P([n])

c2
Sd

2
T

(
µ4

µ2
2

)|S∩T |
µ
|S|+|T |
2

≥
∑

S,T∈P([n]);S 6=S∗orT 6=T ∗

(
c2
Sd

2
Tµ
|S|+|T |
2

)
+ c2

S∗d
2
T ∗

(
µ4

µ2
2

)|S∗∩T ∗|
µ
|S∗|+|T ∗|
2

≥
∑

S,T∈P([n]);S 6=S∗orT 6=T ∗

(
c2
Sd

2
Tµ
|S|+|T |
2

)
+ c2

S∗d
2
T ∗

(
µ4

µ2
2

)
µ
|S∗|+|T ∗|
2

=
∑

S,T∈P([n])

(
c2
Sd

2
Tµ
|S|+|T |
2

)
+ c2

S∗d
2
T ∗

(
µ4

µ2
2

− 1

)
µ
|S∗|+|T ∗|
2

= E
X,Y

[q2
i (X)q2

j (Y )] + c2
S∗d

2
T ∗

(
µ4

µ2
2

− 1

)
µ
|S∗|+|T ∗|
2

Now, |S∗|+ |T ∗| = d′ + d′′, c2
S∗d

2
T ∗ = (ν ′)2(ν ′′)2 6= 0, µ4

µ2
2
≥ γ > 1, and µ2 ≥ η > 0

E
X

[q2
i (X)q2

j (X)]− E
X,Y

[q2
i (X)q2

j (Y )] ≥ (γ − 1)(ν ′)2(ν ′′)2ηd
′+d′′

Remark 5.3. Since each polynomial qi ∈ Q in the previous lemma is of degree at most some
constant d, then qi has O(dnd) monomials each of degree at most d. If m = nO(1) then finding i 6= j
such that qi, qj share a variable requires nO(1) operations over the reals. The running time scales
multiplicatively as the number of real operations times the cost of manipulating ` bit numbers
where ` is the precision of the input to the algorithm.

Theorem 5.1. Let Q = {q1, . . . , qm} ∈ Qn,nonneg with coefficients bounded by [−ν, ν] and let D be
a (η, γ)-weakly-nice distribution with η > 0, γ > 1 with bounded support in [−β, β]. If m > n, then
a probabilistic algorithm can find i, j ∈ [m] such that i 6= j and qi, qj share a variable xk and that
solves the (D,Q)-polynomial independence distinguishing problem with probability at least

(γ − 1)2(ν ′)4(ν ′′)4η2d′+2d′′

16(dndνβd)8

for any ν ′, d′ that are the coefficient and degree respectively of some monomial in qi that contains
variable xk and for any ν ′′, d′′ that are the coefficient and degree respectively of some monomial in
qj that contains variable xk.

Proof. This follows directly from Corollary 5.1 and Lemma 5.2.

Remark 5.4. Let the runtime of the sampler for D be nO(1) and let m = nO(1). By Remark 5.3,
then the algorithm to compute i, j makes nO(1) operations over real numbers. Then, by Remark 5.1,

the distinguisher in Theorem 5.1 makes
(

nνβ
(γ−1)ν′ν′′η

)O(1)
operations over real numbers. The actual

running time scales multiplicatively as the number of real operations times the cost of manipulating
` bit numbers where ` is the precision of the input to the algorithm.
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Corollary 5.2. Any (D,Q) satisfying the conditions of Theorem 5.1 where γ − 1, |ν ′|, |ν ′′|, η are
Ω(n−O(1)), and m, ν, β are nO(1) is not a PIDG.

Corollary 5.3. Suppose D and Q are over the integers Z. Any (D,Q) satisfying the conditions of
Theorem 5.1 where γ − 1, η are Ω(n−O(1)), and m, ν, β are nO(1) is not a PIDG.

5.3 Nontrivial Distinguisher for Expander Based Polynomials

Next, we will show that for a different set of polynomials and distributions, we can also find a prob-
abilistic polynomial time algorithm that solves the (D,Q)− PIDG with non-negligible probability.

Definition 5.3 (n-Half-Expanding Set). Let S = {S1, . . . , Sm} be a collection of sets. Then, S is
a n-half-expanding set if for all k ≤ n and all distinct a1, a2, ..., ak ∈ [m]∣∣∣∣∣

k⋃
i=1

Sai

∣∣∣∣∣ > 1

2

k∑
i=1

|Sai |

Definition 5.4 (Expander Based Polynomial Set). Let Q = {q1, . . . , qm} ⊂ R[x1, . . . , xn] be a set
of multilinear polynomials over the reals. Then, each qi(x) =

∑
S∈P([n]) cS,ixS for some coefficients

{cS,i}S∈P([n]) ∈ R. We say that Q is a Expander Based Polynomial Set if

• Each qi is a polynomial of degree at most some constant d

• {S ∈ P([n]) | cS,i 6= 0 for some i ∈ [m]} is a 4-half expanding set.

• CS = {cS,i}i∈[m] contains at most one non-zero value. (i.e. All monomials appear at most
once across all polynomials in Q.)

Lemma 5.3. Let Q = {q1, . . . , qm} ⊂ R[x1, . . . , xn] be a Expander Based Polynomial Set and let D
be any (η, γ)-weakly-nice distribution with η > 0 and γ > 1. Let X = (X1, . . . , Xn) and Y =
(Y1, . . . , Yn) where each Xi and each Yi is an i.i.d. random variable with probability distribution D.
Let d be the maximum degree of each polynomial qi. Then, if m > n then a probabilistic algorithm
can find i, j ∈ [m] such that i 6= j, qi, qj share a variable xk, and

E
X

[q2
i (X)q2

j (X)]− E
X,Y

[q2
i (X)q2

j (Y )] ≥ (γ − 1)(ν ′)2(ν ′′)2ηd
′+d′′

for any ν ′, d′ that are the coefficient and degree respectively of some monomial in qi that contains
variable xk and for any ν ′′, d′′ that are the coefficient and degree respectively of some monomial in
qj that contains variable xk.

Proof. By the pigeonhole principle, since m > n, there must exist i, j ∈ [m] where i 6= j such that
qi and qj share a variable xk. Furthermore, such i, j can be found by a probabilistic algorithm. We
know that qi(x) =

∑
S∈P([n]) cSxS and qj(x) =

∑
S∈P([n]) dSxS where each cS , dS ∈ R. Consider

any nonzero monomial cS∗xS∗ in qi that contains xk and any nonzero monomial dT ∗xT ∗ in qj that
contains xk. Then, S∗, T ∗ ∈ P([n]) such that |S∗ ∩ T ∗| ≥ 1, |S∗| = d′, |T ∗| = d′′, cS∗ = ν ′ 6= 0, and
dT ∗ = ν ′′ 6= 0 for some d′, d′′, ν ′, ν ′′. Since Q is a Expander Based Polynomial Set, then all monomials
appear at most once in any polynomial. So, dS∗ = 0. Therefore,

q1(x) = cS∗xS∗ + p1(x)

q2(x) = p2(x)
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where
p1(x) =

∑
S∈P([n]);S 6=S∗

cSxS

p2(x) =
∑

S∈P([n]);S 6=S∗
dSxS .

Now,

E
X,Y

[q2
i (X)q2

j (Y )] = E
X

[q2
i (X)]E

X
[q2
j (X)]

= E
X

[
c2
S∗X

2
S∗ + 2cS∗XS∗p1(X) + p2

1(X)
]
E
X

[
p2

2(X)
]

= c2
S∗ E

X

[
X2
S∗
]
E
X

[
p2

2(X)
]

+ 2cS∗ E
X

[XS∗p1(X)]E
X

[
p2

2(X)
]

+ E
X

[
p2

1(X)
]
E
X

[
p2

2(X)
]
.

On the other hand,

E
X

[q2
i (X)q2

j (X)] = E
X

[
c2
S∗X

2
S∗p

2
2 + 2cS∗XS∗p1(X)p2

2 + p2
1(X)p2

2

]
= c2

S∗ E
X

[
X2
S∗p

2
2(X)

]
+ 2cS∗ E

X

[
XS∗p1(X)p2

2(X)
]

+ E
X

[
p2

1(X)p2
2(X)

]
Therefore,

E
X,Y

[q2
i (X)q2

j (Y )]− E
X

[q2
i (X)]E

Y
[q2
j (Y )]

= c2
S∗

(
E
X

[X2
S∗p

2
2(X)]− E

X
[X2

S∗ ]E
X

[p2
2(X)]

)
+ 2cS∗

(
E
X

[XS∗p1(X)p2
2(X)]− E

X
[XS∗p1(X)]E

X
[p2

2(X)]

)
+

(
E
X

[p2
1(X)p2

2(X)]− E
X

[p2
1(X)]E

X
[p2

2(X)]

)
We will consider each term separately. First,

E
X

[
X2
S∗p

2
2(X)

]
− E
X

[
X2
S∗
]
E
X

[
p2

2(X)
]

= E
X

 ∑
S,T∈P([n]);S,T 6=S∗

dSdTX
2
S∗XSXT

− E
X

[∑
i∈S∗

X2
i

]
E
X

 ∑
S,T∈P([n]);S,T 6=S∗

dSdTXSXT


=

∑
S,T∈P([n]);S,T 6=S∗

dSdT E
X

[
X2
S∗XSXT

]
−
∑
i∈S∗

E
X

[
X2
i

] ∑
S,T∈P([n]);S,T 6=S∗

dSdT E
X

[XSXT ]

By Lemma 3.1, EX [XSXT ] equals 0 if S 6= T and equals µ
|S|
2 if S = T . Furthermore, by Lemma

3.2, EX [X2
S∗XSXT ] 6= 0 only if X2

S∗XSXT does not contains a variable Xi of odd power. However,
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since XS∗ is different from XS , XT , this only occurs when S = T . Therefore,

E
X

[
X2
S∗p

2
2(X)

]
− E
X

[
X2
S∗
]
E
X

[
p2

2(X)
]

=
∑

S∈P([n]);S 6=S∗
d2
S E
X

[
X2
S∗X

2
S

]
− µ|S

∗|
2

∑
S∈P([n]);S 6=S∗

d2
Sµ
|S|
2

=
∑

S∈P([n]);S 6=S∗
d2
S E
X

[
X2
S∗X

2
S

]
−

∑
S∈P([n]);S 6=S∗

d2
Sµ
|S|+|S∗|
2

=
∑

S∈P([n]);S 6=S∗
d2
S

(
µ4

µ2
2

)|S∩S∗|
µ
|S|+|S∗|
2 −

∑
S∈P([n]);S 6=S∗

d2
Sµ
|S|+|S∗|
2

=
∑

S∈P([n]);S 6=S∗
d2
Sµ
|S|+|S∗|
2

((
µ4

µ2
2

)|S∩S∗|
− 1

)

≥ d2
T ∗µ

|S∗|+|T ∗|
2

((
µ4

µ2
2

)|S∗∩T ∗|
− 1

)
Since |S∗|+ |T ∗| = d′ + d′′, d2

T ∗ = (ν ′′)2 6= 0, µ4

µ2
2
≥ γ > 1, and µ2 ≥ η > 0.

E
X

[
X2
S∗p

2
2(X)

]
− E
X

[
X2
S∗
]
E
X

[
p2

2(X)
]
≥ (γ − 1)(ν ′′)2ηd

′+d′′

For the next term, we have

E
X

[
XS∗p1(X)p2

2(X)
]
− E
X

[XS∗p1(X)]E
X

[
p2

2(X)
]

= E
X

 ∑
S,T,U∈P([n]);S,T,U 6=S∗

dSXS∗XSXTXU

− E
X

 ∑
S∈P([n]);S 6=S∗

dSXS∗XS

E
X

[
p2

2(X)
]

=
∑

S,T,U∈P([n]);S,T,U 6=S∗
cSdTdU E

X
[XS∗XSXTXU ]−

∑
S∈P([n]);S 6=S∗

dS E
X

[XS∗XS ]E
X

[
p2

2(X)
]

Now by Lemma 3.1, then EX [XS∗XS ] = 0 whenever S∗ 6= S. So,

E
X

[
XS∗p1(X)p2

2(X)
]
− E
X

[XS∗p1(X)]E
X

[
p2

2(X)
]

=
∑

S,T,U∈P([n]);S,T,U 6=S∗
cSdTdU E

X
[XS∗XSXTXU ]

Now consider the terms where cS , dT , dU 6= 0. Then, since {S ∈ P([n]) | cS,i 6= 0 for some i ∈ [m]}
is a 4-half expanding set and cS∗ 6= 0, then for distinct S∗, T, U, V ∈ P([n]), then |S∗∪T ∪U ∪V | >
1
2(|S∗|+ |T |+ |U |+ |V |). Therefore, some Xi occurs once in XS∗XSXTXU . So, by Lemma 3.2, then
EX [XS∗XSXTXU ] = 0. Suppose then that S∗, T, U, V are not all distinct and that S∗ 6= T,U, V .
Without loss of generality, assume that U = V . Then, since S∗ 6= T and S∗ 6= U , then XS∗XTX

2
U

must contain some Xi of odd power. So, by Lemma 3.2, then EX [XS∗XSXTXU ] = 0. Therefore,

E
X

[
XS∗p1(X)p2

2(X)
]
− E
X

[XS∗p1(X)]E
X

[
p2

2(X)
]

= 0

For the last term,

E
X

[
p2

1(X)
]
E
X

[
p2

2(X)
]

= E
X

 ∑
S,T∈P[n];S,T 6=S∗

cScTXSXT

E
X

 ∑
S,T∈P[n];S,T 6=S∗

dSdTXSXT


=

∑
S,T∈P[n];S,T 6=S∗

cScT E
X

[XSXT ]
∑

S,T∈P[n];S,T 6=S∗
dSdT E

X
[XSXT ]
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By Lemma 3.1, then EX [XSXT ] equals 0 whenever S 6= T and equals µ
|S|
2 whenever S = T .

Therefore,

E
X

[
p2

1(X)
]
E
X

[
p2

2(X)
]

=
∑

S∈P[n];S 6=S∗
c2
Sµ
|S|
2

∑
T∈P[n];T 6=S∗

d2
Tµ
|T |
2 =

∑
S,T∈P[n];S,T 6=S∗

c2
Sd

2
Tµ
|S|+|T |
2

So we have that

E
X

[
p2

1(X)p2
2(X)

]
− E
X

[
p2

1(X)
]
E
X

[
p2

2(X)
]

=
∑

S,T,U,V ∈P[n];S,T,U,V 6=S∗
cScTdUdV E

X
[XSXUXDXV ]−

∑
S,T∈P[n];S,T 6=S∗

c2
Sd

2
Tµ
|S|+|T |
2

Now consider the terms where cS , cT , dU , dV 6= 0. Then, since {S ∈ P([n]) | cS,i 6= 0 for some i ∈
[m]} is a 4-half expanding set, then for distinct S, T, U, V ∈ P([n]), then |S ∪ T ∪ U ∪ V | >
1
2(|S|+ |T |+ |U |+ |V |). Therefore, some Xi occurs once in XSXTXUXV . So, by Lemma 3.2, then
EX [XSXTXUXV ] = 0. Suppose then that S, T, U, V are not all distinct. Let one of S or T equal
one of U or V . But since we assumed that cS , cT , dU , dV 6= 0, this means that cA and dA are both
nonzero for some set A. But this contradicts the fact that all monomials appear at most once in all
polynomials of Q since Q is an Expander Based Polynomial Set. Therefore, if S, T, U, V are not all
distinct, we need either S = T or U = V . Suppose without loss of generality, that S = T . Then, in
order for XSXSXUXV = X2

SXUXV to not contain a variable Xi of odd power, we need U = V as
well. So, by Lemma 3.2, then cScTdUdV EX [XSXTXUXV ] 6= 0 if and only if S = T and U = V .

E
X

[
p2

1(X)p2
2(X)

]
− E
X

[
p2

1(X)
]
E
X

[
p2

2(X)
]

=
∑

S,T∈P[n];S,T 6=S∗
c2
Sd

2
T E
X

[
X2
SX

2
T

]
−

∑
S,T∈P[n];S,T 6=S∗

c2
Sd

2
Tµ
|S|+|T |
2

=
∑

S,T∈P[n];S,T 6=S∗
c2
Sd

2
T

(
µ4

µ2
2

)|S∩T |
µ
|S|+|T |
2 −

∑
S,T∈P[n];S,T 6=S∗

c2
Sd

2
Tµ
|S|+|T |
2

≥
∑

S,T∈P[n];S,T 6=S∗
c2
Sd

2
Tµ
|S|+|T |
2 −

∑
S,T∈P[n];S,T 6=S∗

c2
Sd

2
Tµ
|S|+|T |
2

= 0

As a result,

E
X,Y

[q2
i (X)q2

j (Y )]− E
X

[q2
i (X)]E

Y
[q2
j (Y )]

= c2
S∗

(
E
X

[X2
S∗p

2
2(X)]− E

X
[X2

S∗ ]E
X

[p2
2(X)]

)
+ 2cS∗

(
E
X

[XS∗p1(X)p2
2(X)]− E

X
[XS∗p1(X)]E

X
[p2

2(X)]

)
+

(
E
X

[p2
1(X)p2

2(X)]− E
X

[p2
1(X)]E

X
[p2

2(X)]

)
≥ c2

S∗(γ − 1)(ν ′′)2ηd
′+d′′ + 0 + 0

≥ (γ − 1)(ν ′)2(ν ′′)2ηd
′+d′′

Remark 5.5. Since each polynomial qi ∈ Q in the previous lemma is of degree at most some
constant d, then qi has O(dnd) monomials each of degree at most d. Therefore, if m = nO(1), then
finding i 6= j such that qi, qj share a variable takes nO(1) operations over the reals.
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Theorem 5.2. Let Q = {q1, . . . , qm} ⊂ R[x1, . . . , xn] where Q is a Expander Based Polynomial Set with
coefficients bounded by [−ν, ν], and let D be a (η, γ)-weakly-nice distribution with η > 0, γ > 1 and
bounded support in [−β, β]. If m > n, then there exists a probabilistic algorithm A that can find
i, j ∈ [m] such that i 6= j and qi, qj share a variable xk, and that solves the (D,Q)-polynomial
independence distinguishing problem with probability at least

(γ − 1)2(ν ′)4(ν ′′)4η2d′+2d′′

16(dndνβd)8

for any ν ′, d′ that are the coefficient and degree respectively of some monomial in qi that contains
variable xk, and for any ν ′′, d′′ that are the coefficient and degree respectively of some monomial in
qj that contains variable xk.

Proof. This follows directly from Corollary 5.1 and Lemma 5.3.

Remark 5.6. Let the runtime of the sampler for D be nO(1) and let m = nO(1). By Remark 5.5,
then the algorithm to compute i, j makes nO(1) operations over real numbers. Then, by Remark 5.1,

the distinguisher in Theorem 5.2 makes
(

nνβ
(γ−1)ν′ν′′η

)O(1)
operations over real numbers. The actual

running time scales multiplicatively as the number of real operations times the cost of manipulating
` bit numbers where ` is the precision of the input to the algorithm.

Corollary 5.4. Any (D,Q) satisfying the conditions of Theorem 5.2 where γ − 1, |ν ′|, |ν ′′|, η are
n−O(1), and m, ν, β are nO(1) is not a PIDG.

Corollary 5.5. Suppose D and Q are over the integers Z. Any (D,Q) satisfying the conditions of
Theorem 5.2 where γ − 1, η are n−O(1), and m, ν, β are nO(1) is not a PIDG.

6 Overwhelming Probability Distinguisher

First, we recall the definitions of C-bounded and nice distributions.

Definition 6.1. We say that a distribution D is C-bounded if

Pr[x
R←− D, |x| < C] = 1.

Remark 6.1. Note that our results also apply if the probability specified above is greater than
1− n−ω(1) where n is the number of inputs. This follows from a simple union bound.

Definition 6.2. We say that a distribution D is (γ,C, ε)-nice if

1. D is a symmetric distribution with mean 0

2. (Normalization.) If X is a random variable over D, then E[X2] = 1 and E[X4] = γ.

3. D is C-bounded.

4. (Anti-concentration) Pr[x
R←− D, |x| > ε] > Ω(1)

Definition 6.3. (Inputs and Coefficient Distributions.)

• We now define the input distribution DInp used when sampling inputs x = (x1, . . . , xn) ∈ Rn.
DInp is a (γ1, C1, ε1)−nice distribution. The input vectors are sampled by sampling each
coordinate independently from DInp.
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• The coefficient distribution DCoeff is defined as follows. Let D denote a (γ2, C2, ε2)−nice
distribution. Then, for some p ∈ [0, 1], let DCoeff be the distribution that outputs 0 with
probability p and samples from D with probability 1 − p. Observe that E[X2] = p and
E[X4] = γ2 ·p for X a random variable over D. The ratio for Z a random variable over DCoeff ,

E[Z4]

E[Z2]2
= γ2/p

Also observe that all odd moments of Z are 0.

Problem Setup Let n denote the number of variables/inputs for any given polynomial. Let m
be the number of polynomial evaluations. Let d be the constant degree of every polynomial. Let
γ1, γ2, C1, C2, ε1, ε2 be a set of parameters. We now describe the process of sampling polynomials
as follows:

• Each polynomial is generated as

qi(x) =
∑

S∈P([n]),|S|=d

cSxS

where i ∈ [m], P(·) denotes the power set, and each cS is sampled randomly from DCoeff

for a given probability parameter p. Note that this means that roughly the density of each
polynomial is t =

(
n
d

)
p.

• Inputs to the generated polynomials are vectors where each coordinate is sampled from DInp

as mentioned above. Throughout, we will treat xi in small letters as an input variable to
the polynomial and Xi in capital letters as a tuple of random variables, each of which has
distribution DInp.

The problem we are interested in is the (DInp,Q = (q1, . . . , qm))−Polynomial Independence
Distinguishing Problem.

Consider Algorithm 3. We now prove correctness of the algorithm and then analyze its running
time.

Theorem 6.1. Assume γ1, γ2, ε1 = θ(1), p = Ω(n log n · Cd1/
(
n
d

)
), p < γ2/3, m = Ω(n2 · C8d

1 · C8
2 ·

log10 n) then, Algorithm 3 is an overwhelming distinguisher for the PIDP problem with respect to
the input and polynomial distributions specified above.

Algorithm 3 (Strong Distinguishing Algorithm).

Given: Polynomials {qi}mi=1 where q1, ..., qm : Rn → R, along with evaluations {yi}i∈[m] for
some e sampled from DInp as described above where either yi = qi(e) for a fixed e (denoted
by the event same)for all i ∈ [m] or yi = qi(ei) (denoted by the event diff) for ei sampled
from DInp as described above.

Goal: Output 0 if same holds and 1 otherwise.

Operation:

1. Let αth be as defined below.

2. Compute F (αth, y1, . . . , ym) =
∑

i y
4
i − 2 · αth

∑
i∈[m/2] y

2
2i−1 · y2

2i
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3. If F (αth, y1 . . . , ym) ≥ 0 output 1 otherwise output 0.

We now define αth as:

αth =
αsame + αdiff

2

Define αsame as:

αsame =
Eq1,X [q4

1(X)]

Eq1,q2,X [q2
1(X) · q2

2(X)]

Define αdiff as:

αdiff =
Eq1,X1 [q4

1(X1)]

Eq1,q2,X1,X2 [q2
1(X1) · q2

2(X2)]

where the expectations are taken over the input distribution DInp and coefficient distri-
bution DCoeff .

Lemma 6.1. Assuming p < γ2/3, αsame = 3 + θ(
γ2·γd1
t )

Proof. Recall that,

αsame =
Eq1,X [q4

1(X)]

Eq1,q2,X [q2
1(X) · q2

2(X)]

Let q1(x) =
∑

S cS · xS and q2(x) =
∑

S dS · xS . Here the coefficients are sampled from DCoeff and
inputs are sampled from DInp. Now we compute the numerator.

E
q1,X

[q4
1(X)] =E

X
E
q1

∑
S1

∑
S2

∑
S3

∑
S4

cS1 · cS2 · cS3 · cS4 ·XS1 ·XS2 ·XS3 ·XS4


=E
X

∑
S1

∑
S2

∑
S3

∑
S4

E
q1

[cS1 · cS2 · cS3 · cS4 ·XS1 ·XS2 ·XS3 ·XS4 ]


=E
X

∑
S

p · γ2 ·X4
S + 3 · p2 ·

∑
S1 6=S2

X2
S1
·X2

S2


The last equality follows because the odd moments of each coefficient are 0. Let N =

(
n
d

)
, then

the numerator becomes,

=N · p · γ2 · E
X

[X4
S ] + 3 · p2 ·

∑
S1 6=S2

E
X

[X2
S1
·X2

S2
]

Since, EX [X4
S ] = γd1 and

∑
S1 6=S2

EX [X2
S1
·X2

S2
] = N · (N − 1)ES1 6=S2 EX [XS1 ·XS2 ], the numerator

becomes,

=N · p · γ2 · γd1 + 3 · p2 ·N · (N − 1) E
S1 6=S2

E
X

[XS1 ·XS2 ]
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For i ∈ [d− 1], let gi denote the probability that two randomly chosen sets S1 6= S2 in [n] of size d
have i common elements.

This means that,

E
S1 6=S2

E
X

[XS1 ·XS2 ] = (1− g1 − . . .− gd−1) · 1 + γ1 · g1 + . . .+ γd−1
1 · gd−1

This means that the numerator is,

E
q1,X

[q4
1(X)]

=N · p · γ2 · γd1 + 3 · p2 ·N · (N − 1) ·
(

(1− g1 − . . .− gd−1) · 1 + γ1 · g1 + . . .+ γd−1
1 · gd−1

)
Now, consider the denominator, Eq1,q2,X [q2

1(X) · q2
2(X)]. By a similar calculation above, we can

show that:

E
q1,q2,X

[q2
1(X) · q2

2(X)]

=E
X

[p2 ·
∑
S1,S2

X2
S1
·X2

S2
]

=E
X

[p2 ·
∑
S

X4
S +

∑
S1 6=S2

X2
S1
·X2

S2
]

= p2 ·N · γd1 + p2 ·N · (N − 1) ·
(

(1− g1 − . . .− gd−1) · 1 + γ1 · g1 + . . .+ γd−1
1 · gd−1

)
From this, observe that

αsame =

=
N · p · γ2 · γd1 + 3 · p2 ·N · (N − 1) ·

(
(1− g1 − . . .− gd−1) · 1 + γ1 · g1 + . . .+ γd−1

1 · gd−1

)
p2 ·N · γd1 + p2 ·N · (N − 1) ·

(
(1− g1 − . . .− gd−1) · 1 + γ1 · g1 + . . .+ γd−1

1 · gd−1

)
Let t = p ·N , then observe that:

αsame =

=3 +
N · p · γ2 · γd1 − 3 · p2 ·N · γd1

p2 ·N · γd1 + p2 ·N · (N − 1) ·
(

(1− g1 − . . .− gd−1) · 1 + γ1 · g1 + . . .+ γd−1
1 · gd−1

)
Assuming p < γ2/3, numerator of additive term is θ(N · p · γ2 · γd1). Since γ1, γ2 > 1, denominator

is θ(p2 ·N2). Thus, αsame = 3 + θ(
γ2·γd1
t ).

Lemma 6.2. Assuming d > 1 and γ1, γ2 are constants αdiff = 3 +
γ2·γd1
t + Ω(1/n)

Proof. Recall the definition αdiff,

αdiff =
Eq1,X1 [q4

1(X1)]

Eq1,q2,X1,X2 [q2
1(X1) · q2

2(X2)]
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The numerator is identical to the calculation done for αsame. Hence, the numerator is:

E
q1,X1

[q4
1(X1)] =

= N · p · γ2 · γd1 + 3 · p2 ·N · (N − 1) ·
(

(1− g1 − . . .− gd−1) · 1 + γ1 · g1 + . . .+ γd−1
1 · gd−1

)
Now, let’s compute the denominator:

E
q1,q2,X1,X2

[q2
1(X1) · q2

2(X2)] =

= E
q1,q2,X1,X2

[
∑

S1,S2,S3,S4

cS1cS2dS3dS4X1,S1X1,S2X2,S3X2,S4 ]

where we write q1(x) =
∑

S cSxS and q2(y) =
∑

S dSyS . Now, since the odd moments of coefficients
are 0, this becomes:

E
q1,q2,X1,X2

[q2
1(X1) · q2

2(X2)] =

= E
q1,q2,X1,X2

[
∑
S1,S3

c2
S1
d2
S3
X2

1,S1
X2

2,S3
]

=p2 · E
X1,X2

[
∑
S1,S3

X2
1,S1

X2
2,S3

]

=N2 · p2

This means that:

αdiff =
N · p · γ2 · γd1 + 3 · p2 ·N · (N − 1) ·

(
(1− g1 − . . .− gd−1) · 1 + γ1 · g1 + . . .+ γd−1

1 · gd−1

)
N2 · p2

When d is a constant integer greater than 1, observe that gi = θ(1/ni) for i ∈ [d]. Hence,

αdiff ≥
γ2γ

d
1

t
+ 3 · (1− 1

N
) · (1 + θ(

1

n
))

Since N ≥ n2, the claim holds.

From the above two lemmata it holds that:

Corollary 6.1. Assuming d ≥ 2, γ1 and γ2 are constants greater than 1, αth = 3 + Ω(1/n)

Lemma 6.3. Assume γ1, γ2, ε1 = θ(1), t = Ω(n log n · Cd1 ), m = Ω(n2 · C8d
1 · C8

2 · log10 n) then,
with probability 1 − n−ω(1), Algorithm 3 outputs 0, given randomly chosen input from the same
distribution.

Proof. Define Vi for i ∈ [m/2] to be the random variable denoting:

Vi = q4
2i−1(X) + q4

2i(X)− 2αthq
2
2i−1(X) · q2

2i(X)
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For a given vector x, let us calculate Eq2i−1,q2i [Vi] = µx. Using a similar calculation as done in the
previous lemmata, we obtain that:

µx = p · (2 · γ2 − 2αth · p)
∑
S

x2
S + (6− 2 · αth)p2

∑
S1 6=S2

x2
S1
· x2

S2

Now, in order to prove the claim, we need to show that with probability 1 − n−ω(1) over the
choice of the polynomials and input :

∑
i∈[m/2]

(Vi − µx) +m · µx/2 < 0

In order to prove the lemma, we prove the following two conditions hold with probability
1− n−ω(1),

µx < 0 (1)

Secondly, ∣∣∣∣∣∣
∑

i∈[m/2]

(Vi − µx)

∣∣∣∣∣∣ < |mµx/2| (2)

We now show Equation 1 holds with probability at least 1− nω(1). Observe,

µx = p · (2 · γ2 − 2αth · p)
∑
S

x2
S + (6− 2 · αth)p2

∑
S1 6=S2

x2
S1
· x2

S2

As αth > 3 + Ω(1/n),

µx < p · (2 · γ2 − 2αth · p)
∑
S

x2
S − Ω(1/n)p2

∑
S1 6=S2

x2
S1
· x2

S2

We show that with probability 1− n−ω(1),

µx < 2 · p · γ2

∑
S

x2
S − Ω(1/n)p2

∑
S1 6=S2

x2
S1
· x2

S2
< 0

Since input distribution is C1 bounded, this can be proven if we show that with probability
1− n−ω(1),

µx < 2 · p · γ2 ·N · C2d
1 − Ω(1/n)p2

∑
S1 6=S2

x2
S1
· x2

S2
< 0

Since the input distribution satisfies Pr[|DInp| > ε1] > Ω(1), where ε1 = Ω(1), then with
probability 1− n−ω(1) ∑

S1 6=S2

x2
S1
· x2

S2
= Ω(N2)

This means, that with probability 1− n−ω(1), µx < 0, if:
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p2 ·N2/n >> γ2 · p ·N · Cd1

As γ2 = O(1), this can be ensured if t >> n · Cd1 .
Now we prove the second claim. With probability 1− n−ω(1),∣∣∣∣∣∣

∑
i∈[m/2]

(Vi − µx)

∣∣∣∣∣∣ < |mµx/2| (3)

Due to C1 boundedness it holds that |xi| < C1 for i ∈ [n].

Claim 6.1. With probability 1− e−Ω(log2 n) over the coins of qi,

|qi(x) =
∑
S

cSxS | ≤ O(Cd1 · C2 ·
√
t · log n)

Proof. To prove this we apply hoeffding bound. Note that for a fixed x, qi(x) =
∑

S cSxS . Here
the coefficeints are chosen independently from DCoeff . The coefficients are chosen to be 0 with
probability 1 − p and from a distribution D with probability p. We replace it by chosing a set
S containing all monomials that have non zero coefficients that are sampled from D. This set is
constructed by choosing each set S of size d with probability p. The expected number of elements
inside this set is t = N · p. Let k be the number of elements inside this set S. Then,

qi(x) =
∑
S∈S

cS · xS

where cS is now chosen from D. Since DInp is C1 bounded and D is C2 bounded, we can now use
hoeffding bound to bound with probability the absolute value |qi(x)| to show:

Pr[|qi(x)| <
√
k · Cd1 · C2 · log n] > 1− e−Ω(log2 n) (4)

Then, observe that by chernoff bound,

Pr[|k − t| < t/2] > 1− e−Ω(t)

Thus the required probability is computed as follows. Let A1 be the event stated in the claim.
A2 be the event that when the set S is selected for the non zero coefficients, the condition in
Equation 4 is satisfied. Let A3 be event that size of S is within [t/2, 3t/2]

Pr[A1] ≥ Pr[A2 ∧A3]

Thus by a union bound, the probability is at least 1− e−Ω(t)− e−Ω(log2 n). The claim follows by
observing that t > n.

Now, consider: ∑
i∈[m/2]

Vi − µx
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With probability 1 − n−ω(1) over polynomials qi, each Vi is bounded in absolute value by O(C4d
1 ·

C4
2 · t2 · log4 n).

Now we apply Hoeffding bound again to bound∑
i∈[m/2]

Vi − µx

However, Hoeffding bound requires that each random variable Vi to be bounded with an interval of
O(C4d

1 ·C4
2 · t2 · log4 n) with probability 1 over the coins of choosing the polynomials. However, this

happens only with probability 1−n−ω(1) in our case. In order to deal with this issue, note that due
to niceness of the input distribution, each coefficient is bounded by C2 and inputs are bounded in
absolute value by C1. Thus each qi(x) are bounded by N ·Cd1 ·C2 in absolute value. Define, V ′i to
be the random variable denoting Vi if the underlying polynomials sampled force the absoulte value
to be smaller than O(C4d

1 · C4
2 · t2 · log4 n), and 0 otherwise. Now consider,∑

i∈[m/2]

Vi − µx

Let Ei be the event that Vi = V ′i . Observe that, E[Vi] = µx and |E[V ′i − Vi]| = n−ω(1). Note
that E[Vi] = µx = E[Vi/Ei] · Pr[Ei] + E[Vi/Ei] · Pr[Ei]. Note that Pr[Ei] = O(n−ω(1)). Since
E[Vi/Ei] = O(N4 ·C4d

1 ·C4
2 ), µx = E[Vi/Ei] ·Pr[Ei]+O(n−ω(1)). Also E[Vi/Ei] = E[V ′i ]. This means

that |E[Vi]− E[V ′i ]| ≤ O(n−ω(1)). Denote by µ′x = E[V ′i ]. Consider,

∑
i∈[m/2]

V ′i − µx =
∑

i∈[m/2]

V ′i − µ′x +
m(µ′x − µx)

2

Observe that by Hoeffding’s inequality,

∣∣∣∣∣∣
∑

i∈[m/2]

V ′i − µ′x

∣∣∣∣∣∣ ≤ O(
√
m/2 · C4d

1 · C4
2 · t2 · log5 n)

with probability at least 1− e−Ω(log2 n). Thus,∣∣∣∣∣∣
∑

i∈[m/2]

V ′i − µx

∣∣∣∣∣∣ ≤ O(
√
m/2 · C4d

1 · C4
2 · t2 · log5 n)

as |µx − µ′x| ≤ n−ω(1).
As Vi = V ′i with probability 1− n−ω(1), by a union bound, with probability 1− n−ω(1),

∣∣∣∣∣∣
∑

i∈[m/2]

Vi − µx

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑

i∈[m/2]

V ′i − µx

∣∣∣∣∣∣
Let’s now conclude a lower bound on |µx|. Observe

|µx| = |p · (2 · γ2 − 2αth · p)
∑
S

x2
S + (6− 2 · αth)p2

∑
S1 6=S2

x2
S1
· x2

S2
|
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Since the distribution on inputs DInp is (γ1, C1, ε1) nice where ε1, γ1 = θ(1) and αth = 3+Ω(1/n),
with probability 1− n−ω(1),

|µx| ≥ p2 ·N · (N − 1)aε/n− (2γ2 + 2αth · p)p ·N · Cd1

for some constant aε. Thus, this is Ω(t2/n) if t is ω(Cd1 ).
This means that with probability at least 1 − n−ω(1) over the choice of x and polynomials

q1, .., qm, the claim holds true if:

√
m/2 · C4d

1 · C4
2 · t2 · log5 n <<

m · t2

2n

This is true if:

m > 2 · n2 · C8d
1 · C8

2 · log10 n

Lemma 6.4. Assume γ1, γ2, ε1 = θ(1), t = Ω(n log n · Cd1 ), m = Ω(n2C8d
1 · C8

2 · log10 n) then, with
probability 1−n−ω(1), Algorithm 3 outputs 1, given randomly chosen input from the diff distribution.

Proof. Define Ui for i ∈ [m/2] to be the random variable denoting:

Ui = q4
2i−1(X2i−1) + q4

2i(X2i)− 2αthq
2
2i−1(X2i−1) · q2

2i(X2i)

First observe that

E
q2i,q2i−1,X2i−1,X2i

[Ui] = E
q2i,q2i−1,X2i−1,X2i

[q4
2i−1(X2i−1) + q4

2i(X2i)

− 2αthq
2
2i−1(X2i−1) · q2

2i(X2i)]

= E
q2i,q2i−1,X2i−1,X2i

[q4
2i−1(X2i−1) + q4

2i(X2i)

− (αsame + αdiff)q2
2i−1(X2i−1) · q2

2i(X2i)]

= E
q2i,q2i−1,X2i−1,X2i

[q4
2i−1(X2i−1) + q4

2i(X2i)

− 2αdiffq
2
2i−1(X2i−1) · q2

2i(X2i)

+ (αdiff − αsame)q
2
2i−1(X2i−1) · q2

2i(X2i)]

= E
q2i,q2i−1,X2i−1,X2i

[(αdiff − αsame)q
2
2i−1(X2i−1) · q2

2i(X2i)]

=Ω(p2 ·N2/n)

The above calculation uses the fact that:

E
q2i,q2i−1,X2i−1,X2i

[q4
2i−1(X2i−1) + q4

2i(X2i)− 2αdiffq
2
2i−1(X2i−1) · q2

2i(X2i)] = 0

and αdiff − αsame = Ω(1/n). Denote E[Ui] = µ. As before, we will be done if we prove that with
probability 1− n−ω(1),
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∑
i∈[m/2]

(Ui − µ) +
m · µ

2
> 0

This will follow if we show that with probability 1− n−ω(1):

∣∣∣∣∣∣
∑

i∈[m/2]

(Ui − µ)

∣∣∣∣∣∣ < m · µ
2

Note that this is enough as µ > 0. First observe that with probability 1− eΩ(− log2 n),

|qi(xi)| = O(
√
t · Cd1 · C2 log n)

This is proven similar to claim 6.1 This uses chernoff bound to bound density of each polynomial
within [t/2, 3t/2] monomials and then a hoeffding bound relying on C1 and C2 boundedness of DInp

and DCoeff . This means that with probability probability 1− eΩ(− log2 n),

|Ui − µ| = O(t2 · C4d
1 · C4

2 log4 n)

We now apply hoeffding bound. Denote Zi = Ui − µ. Note that with probability 1− eΩ(− log2 n),

|Zi| = O(t2 · C4d
1 · C4

2 log4 n)

but with probability 1,

|Zi| = O(N4 · C4d
1 · C4

2 )

Let Ei be the event that

|Zi| = O(t2 · C4d
1 · C4

2 log4 n)

and define Z ′i to be equal to Zi if Ei occurs and 0 otherwise. Note that E[Zi] = 0 and,

E[Zi] = 0

=E[Zi/Ei] Pr[Ei] + E[Zi/Ei] Pr[Ei]

=E[Z ′i] Pr[Ei] + E[Zi/Ei] Pr[Ei]

=µ′ · (1− e−Ω(log2 n)) + E[Zi/Ei] · e−Ω(log2 n)

This means that |µ′| = |E[Z ′i]| = O(e− log2 n) as E[Zi/Ei] < |Zi| = O(N4 ·C4d
1 ·C4

2 ) with probability
1.

Now consider the probability ∣∣∣∣∣∣
∑

i∈[m/2]

Zi

∣∣∣∣∣∣ < m · µ
2
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Let’s denote this event by E∗. Thus,

Pr[E∗] = Pr[E∗/ ∧i∈[m/2] Ei] · Pr[∧i∈[m/2]Ei] + Pr[E∗/ ∨i∈[m/2] Ei] · Pr[∨i∈[m/2]Ei]

Observe that Pr[∧i∈[m/2]Ei] ≥ 1 − m · e−Ω(− log2 n) using a union bound. Now let’s analyse
Pr[E∗/ ∧i∈[m/2] Ei]. This probability is the same as the probability

∣∣∣∣∣∣
∑

i∈[m/2]

Z ′i

∣∣∣∣∣∣ < m · µ
2

By using hoeffding bound, with probability 1− e−Ω(log2 n),

∣∣∣∣∣∣
∑

i∈[m/2]

Z ′i

∣∣∣∣∣∣ < |mµ′/2|+O(
√
m/2 · t2 · C4d

1 · C4
2 · log5 n)

By substituting |µ′| = O(n−ω(1)), if m = Ω(n2 · C8d
1 · C8

2 · log10 n), the claim holds.

Running Time. The algorithm 3 first computes ratio αth which can be computed exactly using
the formulae described in lemma 6.1 and 6.2. This step consists of O(dO(1)) operations. Then,
the algorithm computes a simple objective function which consists of O(m) real operations. The
running time scales multiplicatively as the number of real operations times the cost of manipulating
` bit numbers where ` is the precision of the input to the algorithm.

7 Acknowledgements

We gratefully thank Boaz Barak, Pravesh Kothari, and Rachel Lin for several illuminating conversa-
tions about estimating features of inputs based on observations of random polynomial evaluations.

41



8 References

[ABKS17] Prabhanjan Ananth, Zvika Brakerski, Dakshita Khurana, and Amit Sahai. Construct-
ing indistinguishability obfuscation using preprocessing-friendly pseudoindependence
generators. Unpublished Work, 2017.

[ABR12] Benny Applebaum, Andrej Bogdanov, and Alon Rosen. A dichotomy for local small-
bias generators. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages
600–617. Springer, Heidelberg, March 2012.

[Agr19] Shweta Agrawal. Indistinguishability obfuscation without multilinear maps: New
methods for bootstrapping and instantiation. In Yuval Ishai and Vincent Rijmen,
editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 191–225. Springer,
Heidelberg, May 2019.

[AIK07] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography with constant
input locality. In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages
92–110. Springer, Heidelberg, August 2007.

[AJL+19] Prabhanjan Ananth, Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. In-
distinguishability obfuscation without multilinear maps: New paradigms via low de-
gree weak pseudorandomness and security amplification. In Alexandra Boldyreva and
Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages
284–332. Springer, Heidelberg, August 2019.

[AL16] Benny Applebaum and Shachar Lovett. Algebraic attacks against random local func-
tions and their countermeasures. In Daniel Wichs and Yishay Mansour, editors, 48th
ACM STOC, pages 1087–1100. ACM Press, June 2016.

[BBKK18] Boaz Barak, Zvika Brakerski, Ilan Komargodski, and Pravesh K. Kothari. Limits on
low-degree pseudorandom generators (or: Sum-of-squares meets program obfuscation).
In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part II,
volume 10821 of LNCS, pages 649–679. Springer, Heidelberg, April / May 2018.
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