Guide to
Fully Homomorphic Encryption
over the [Discretized] Torus

Marc Joye
Zama, France
https://zama.ai

https://ia.cr/2021/1402
Abstract

First posed as a challenge in 1978 by Rivest et al., fully homomorphic encryption—the ability to evaluate any function over encrypted data—was only solved in 2009 in a breakthrough result by Gentry (Commun. ACM, 2010). After a decade of intense research, practical solutions have emerged and are being pushed for standardization.

This guide is intended to practitioners. It explains the inner-workings of TFHE, a torus-based fully homomorphic encryption scheme. More exactly, it describes its implementation on a discretized version of the torus. It also explains in detail the technique of the programmable bootstrapping. Numerous examples are provided to illustrate the various concepts and definitions.

Keywords: Fully homomorphic encryption · Discretized torus · TFHE · Programmable bootstrapping · Implementation
Fully Homomorphic Encryption

Fully homomorphic encryption or FHE has long been considered as the holy grail of cryptography. The concept was imagined in the late seventies [RAD78], but the first realization only came three decades later [Gen09, Gen10]. Today, both the public and private sectors are embracing this new security paradigm and are actively working at making FHE more practical and easier to use. An excellent account on FHE can be found in [Hal17].

What is FHE? Data encryption enables the protection of sensitive data while it is stored or when it needs to be transferred. However, standard encryption technologies require data to be decrypted to be processed. FHE on the contrary enables computing directly on encrypted data. It bears its name from the mathematical notion of homomorphism: elements of one set are transformed to elements of a second set while maintaining the relationships between the elements of the two sets. Applied to encryption, this means that operating on plaintexts (i.e., unencrypted data) or on ciphertexts (i.e., encrypted data) yields an equivalent result—in the clear when operating on plaintexts and under an encrypted form when operating on ciphertexts. For example, given any two ciphertexts c_1 and c_2 respectively encrypting plaintexts x_1 and x_2, there exists a public operation \oplus such that $c_3 = c_1 \oplus c_2$ is an encryption of $x_3 = x_1 + x_2$.

While cryptosystems enabling to add or to multiply ciphertexts were quickly identified (e.g., [RAD78, ElG85, Pai99]), cryptosystems supporting both addition and multiplication of ciphertexts are harder to come by. An encryption scheme that supports both addition and multiplication of ciphertexts is said fully homomorphic, as any program can be represented as a circuit of additions and multiplications. More generally, an FHE scheme is an encryption scheme that is capable of evaluating any program over encrypted data.

The first realization of an FHE scheme is due to Gentry [Gen09, Gen10]. Subsequent realizations include the following schemes: BFV [Bra12, FV12], GSW [GSW13], BGV [BGV12, BGV14], FHEW [DM15], CKKS [CKKS17], and TFHE [CGGI16, CGGI20].

Dealing with noise: The bootstrapping trick Most solutions for fully homomorphic encryption rely on hard lattice problems. Accordingly, the resulting ciphertexts must contain a certain level of noise to guarantee the security of the encryption.
The issue though is that computing homomorphically increases the noise level in the ciphertext. As long as the noise is below a certain threshold, the ciphertext can be decrypted. But if the noise grows too much, it can overflow on the data itself, rendering decryption impossible. In order to prevent this from happening, a special noise-reduction operation called bootstrapping—a concept introduced in [Gen09]—can be applied to the ciphertext, effectively resetting the noise to a nominal level.

Programmable bootstrapping and functional circuits Originally designed for boolean circuits, the TFHE encryption scheme can nevertheless be extended to support more than booleans as an input format, such as integers [CJL+20]. Remarkably, it enjoys a relatively fast bootstrapping. In addition, bootstrapping in TFHE and the likes can be programmed to evaluate a univariate function for free, at the same time as the noise is reduced. This is referred to as programmable bootstrapping (PBS). PBS is a powerful technique to homomorphically evaluate non-linear functions, such as activation functions in a neural network [CJP21]. (It is worth remarking that the regular bootstrapping corresponds to the programmable bootstrapping with the identity function.)

The PBS operation enables more than the homomorphic evaluation of univariate functions and can be used to compute multivariate functions. For example the max function, \(\max(x, y) \), can be rewritten as \(\max(x, y) = y + \max(0, x - y) \). More generally, Kolmogorov’s superposition theorem [Kol57] states that any multivariate function can be expressed as a linear combination of univariate functions. This gives rise to the computational paradigm of functional circuits, where an encryption scheme can be fully homomorphic as long as it implements homomorphic addition and univariate functions. Univariate functions can be evaluated homomorphically using the programmable bootstrapping while the addition of ciphertexts is evaluated in a leveled way.

Application to neural networks Neural networks it turns out are just a special case of a functional circuit, where activation functions are non-linear univariate functions, taking as input the sum of weighted inputs from previous
Figure 1: Example of a functional circuit taking on input an encryption of x_1, x_2, \ldots, x_n and outputting an encryption of y_1, y_2, \ldots, y_m through a series of homomorphically evaluated univariate functions and linear combinations.

layers. Computing the activation function has been notoriously hard in FHE, as non-linearities cannot be as precisely represented using simple additions and multiplications versus using programmable bootstrapping.

Programmable bootstrapping along with the original TFHE features are available as part of Concrete [CJL+20], an open source FHE framework. As an illustration, a series of numerical experiments were conducted to assess the performance against the MNIST data-set [LCB98] for depth-20, 50, 100 neural networks, respectively noted NN-20, NN-50 and NN-100; see [CJP21]. These networks all include dense and convolution layers with activation functions; every hidden layer possesses at least 92 active neurons. Experiments were performed on two different types on machine: a personal computer with 2.6GHz 6-Core Intel® Core™ i7 processor, and a 3.00GHz Intel® Xeon® Platinum 8275CL processor with 96 vCPUs hosted on AWS. The two machines are referred to as PC and AWS. Cryptographic parameters are selected to meet the standard 128-bit security level.

The running times are given in Table 1. For reference, the times for an unencrypted inference are also included. It is important to note that the given times correspond to the evaluation of a single inference run independently; in particular, the times are not amortized over a batch of inferences. The AWS implementation takes advantage of the 96 vCPUs; in particular, the neurons in the hidden layers are processed in parallel.

1https://github.com/zama-ai/concrete
<table>
<thead>
<tr>
<th></th>
<th>In the clear</th>
<th>Encrypted</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PC</td>
<td>PC</td>
<td>AWS</td>
<td></td>
</tr>
<tr>
<td>NN-20</td>
<td>0.17 ms</td>
<td>115.52 s</td>
<td>17.96 s</td>
<td></td>
</tr>
<tr>
<td>NN-50</td>
<td>0.20 ms</td>
<td>233.55 s</td>
<td>37.69 s</td>
<td></td>
</tr>
<tr>
<td>NN-100</td>
<td>0.33 ms</td>
<td>481.61 s</td>
<td>69.32 s</td>
<td></td>
</tr>
</tbody>
</table>

Acknowledgments

I am grateful to my colleagues at Zama for useful feedback and comments. If you have suggestions for improvements or if you find errors or typos, you can contact me at marc@zama.ai.
Contents

1 Definitions 8
 1.1 Torus and Torus Polynomials ... 8
 1.2 Discretized Torus .. 9
 1.3 Notation .. 10
 1.4 Complexity Assumptions ... 11

2 TLWE Encryption 12
 2.1 Description ... 12
 2.2 Encoding/Decoding ... 15
 2.3 Implementation Notes ... 16

3 TGLWE Encryption 17
 3.1 Description ... 17
 3.2 Encoding/Decoding ... 18
 3.3 Implementation Notes ... 18

4 Working over Encrypted Data 20
 4.1 TLWE Ciphertexts .. 20
 4.1.1 Addition of ciphertexts 20
 4.1.2 Multiplication by a known constant 20
 4.1.3 Multiplication of ciphertexts 21
 4.2 TGLWE Ciphertexts .. 25
 4.2.1 Addition of ciphertexts 25
 4.2.2 Multiplication by a known polynomial 25
 4.2.3 Multiplication of ciphertexts 26
 4.3 Implementation Notes ... 28

5 Programmable Bootstrapping 28
 5.1 Gentry’s Recryption ... 28
 5.2 Bootstrapping .. 29
 5.2.1 Blind rotation ... 31
 5.2.2 Sample extraction .. 33
 5.2.3 Key switching ... 34
 5.2.4 Putting it all together 35
 5.3 Programmable Bootstrapping 35
 5.4 More Techniques .. 36

A From Private Key to Public Key 42

B Pseudo-Code 44

C Index to Notations 46
1 Definitions

1.1 Torus and Torus Polynomials

The letter 'T' in TFHE [CGGI20] refers to the real torus $T = \mathbb{R}/\mathbb{Z}$. Basically, T is the set $\{0, 1\}$ of real numbers modulo 1.

Any two elements of T can be added modulo 1: $(T, +)$ forms an abelian group. But it is important to observe that T is not a ring as the internal product \times of torus elements is not defined.

Torus T is not a ring. If T were a ring, one would have $(a + b) \times c = a \times c + b \times c$ and $a \times (b + c) = a \times b + a \times c$, where $+$ and \times are defined over the torus (i.e., where $+$ and \times respectively stand for the addition and the multiplication over the real numbers modulo 1).

Example 1. Take for example $a = \frac{2}{5}$, $b = \frac{4}{5}$ and $c = \frac{1}{5}$. Over T, we get $(a + b) \times c = \frac{2}{5} \times \frac{1}{5} = \frac{2}{25}$ and $a \times (b + c) = \frac{2}{5} \times \frac{4}{5} = \frac{8}{25}$, a contradiction.

The problem stems from the fact that 0 and 1 are equivalent as elements of T.

External product The external product \cdot between integers and torus elements is however well defined. Let $k \in \mathbb{Z}$ and $t \in T$. If $k \geq 0$, we define

$$k \cdot t = t + \cdots + t \quad (k \text{ times}).$$

If $k < 0$, we define $k \cdot t = (−k) \cdot (−t)$. Hence, for $0, 1 \in \mathbb{Z}$ and $t \in T$, we have $0 \cdot t = 0 \in T$ and $1 \cdot t = t \in T$. Mathematically, T is endowed with a \mathbb{Z}-module structure. For any $k, l \in \mathbb{Z}$ and $a, b \in T$, we have $(k + l) \cdot a = k \cdot a + l \cdot a$ and $k \cdot (a + b) = k \cdot a + k \cdot b$. Further, the external product is homogeneous: for any $k, l \in \mathbb{Z}$ and $t \in T$, we have $k \cdot (l \cdot t) = (kl) \cdot t$.

Example 2. Take $k = 2$, $l = 3$, $a = \frac{2}{5}$ and $b = \frac{4}{5}$. We get $(k + l) \cdot a = 5 \cdot \frac{2}{5} = 2$ and $k \cdot a + l \cdot a = \frac{4}{5} + \frac{4}{5} = \frac{8}{5}$, as expected. We also get $k \cdot (a + b) = 2 \cdot \frac{1}{5} = \frac{2}{5}$ and $k \cdot a + k \cdot b = \frac{4}{5} + \frac{4}{5} = \frac{8}{5}$. Finally, taking $t = a = \frac{2}{5}$, we get $k \cdot (l \cdot t) = 2 \cdot \frac{3}{5} = \frac{6}{5}$ and $(kl) \cdot t = 6 \cdot \frac{2}{5} = \frac{12}{5}$, as expected.

Torus polynomials We can as well define polynomials over the torus. Let $\Phi(X)$ denote the M-th cyclotomic polynomial (i.e., the unique irreducible polynomial with integer coefficients that divides $X^M − 1$ but not $X^k − 1$ for any $k < M$) and let N denote its degree. For performance reasons, M is chosen as a power of 2, in which case we have $N = M/2$ and $\Phi(X) = X^N + 1$.

8
Considering the polynomial rings $\mathbb{R}_N[X] := \mathbb{R}[X]/(X^N + 1)$ and $\mathbb{Z}_N[X] := \mathbb{Z}[X]/(X^N + 1)$, this defines the $\mathbb{Z}_N[X]$-module

$$T_N[X] := \mathbb{R}_N[X]/\mathbb{Z}_N[X] = \mathbb{T}[X]/(X^N + 1) .$$

Elements of $T_N[X]$ can therefore be seen as polynomials modulo $X^N + 1$ with coefficients in T. Being a $\mathbb{Z}_N[X]$-module, elements in $T_N[X]$ can be added together and externally multiplied by polynomials of $\mathbb{Z}_N[X]$.

Example 3. If $M = 4$ (and so $N = 2$) then $\Phi(X) = X^2 + 1$ and, in turn, $T_2[X] = \mathbb{T}[X]/(X^2 + 1) = \{ p(X) = p_1X + p_0 \mid p_0, p_1 \in \mathbb{T} \}$. Take for example $p(t) = \frac{1}{2}X + \frac{1}{2}$, $q(X) = \frac{1}{2}X + \frac{1}{2}$, and $r(X) = 2X + 7$. Then $(p + q)(X) = \frac{1}{2}X + \frac{5}{2}$ and $(r \cdot p)(X) = \frac{1}{2}X^2 + \frac{7}{15}X + \frac{1}{2} = \frac{1}{15}X^2 + \frac{7}{15}X + \frac{8}{15}$. Recall that polynomials are defined modulo $X^2 + 1$ (and thus $X^2 \equiv -1$).

1.2 Discretized Torus

Let B be an integer ≥ 2. Any torus element $t \in T$ can be written as an infinite sequence of radix-B digits $(t_1, t_2, \ldots)_B$ with $t_j \in \{0, \ldots, B - 1\}$ corresponding to the expansion $t = \sum_{j=1}^\infty t_j \cdot B^{-j}$. In practice, torus elements are not represented with an infinite number of digits. Elements are expanded up to some finite precision. With a fixed-point approach, a torus element t is written as

$$t = \sum_{j=1}^w t_j \cdot B^{-j} \quad \text{with } t_j \in \{0, \ldots, B - 1\}$$

for some $w \geq 1$. This representation limits the torus to the subset $B^{-w} \mathbb{Z}/\mathbb{Z} \subset T$ with representatives in $\{ 0, \frac{1}{B^w}, \frac{2}{B^w}, \ldots, \frac{B^w - 1}{B^w} \}$.

Example 4. Suppose $B = 10$. We have $\sqrt{2} \mod 1 = 0.4142 \ldots = 4 \cdot 10^{-1} + 1 \cdot 10^{-2} + 4 \cdot 10^{-3} + 2 \cdot 10^{-4} + \ldots$. With $w = 3$ digits, $\sqrt{2} \mod 1 \approx \frac{414}{100}$ is approximated by the torus element $4 \cdot 10^{-1} + 1 \cdot 10^{-2} + 4 \cdot 10^{-3}$.

Remark 1. In radix 2, letting $w = \Omega$, we have $t = \sum_{j=1}^\Omega t_j \cdot 2^{-j}$. Parameter Ω is called the bit precision. Furthermore, the leading bit (i.e., t_1) is sometimes called the sign bit. Indeed, elements of T are real numbers modulo 1. They can be viewed as unsigned real numbers in the range $[0, 1)$ or as signed real numbers in the range $[-\frac{1}{2}, \frac{1}{2}) = [-\frac{1}{2}, 0) \cup [0, \frac{1}{2})$. Hence, if the leading bit is set, the corresponding torus element can be interpreted as a negative number; i.e., as a number in $[-\frac{1}{2}, 0)$.

Modern architectures typically have a bit precision of 32 or 64 bits; i.e., $\Omega = 32$ or 64. On such architectures, torus elements are restricted to elements of the form $\sum_{i=1}^\Omega t_i \cdot 2^{-i}$ (mod 1) with $t_i \in \{0, 1\}$. Essentially, the
effect of working with a finite precision boils down to replacing \mathbb{T} with the submodule

$$T_q := q^{-1}\mathbb{Z}/\mathbb{Z} \subset \mathbb{T} \quad \text{where} \quad q = 2^\Omega.$$

The representatives of T_q are the set of fractions $\{\frac{i}{q} \mod 1 \mid i \in \mathbb{Z}\} = \{\frac{i}{q} \mid i \in \mathbb{Z}/q\mathbb{Z}\} = \{0, \frac{1}{q}, \ldots, \frac{q-1}{q}\}$. Note that the discretization modulo q of the torus is indicated by the subscript q in T_q. The submodule $T_q \subset \mathbb{T}$ forms what is called a discretized torus.

For practical reasons, torus elements are not implemented with fractions, but rather as elements modulo q by identifying $T_q = \frac{1}{q}\mathbb{Z}/\mathbb{Z}$ with $\mathbb{Z}/q\mathbb{Z}$. In more details, given two torus elements $t = \frac{a}{q}, u = \frac{b}{q} \in T_q$, if $v := t + u = \frac{c}{q} \in T_q$ then $c \equiv a + b \pmod{q}$. Likewise, for a torus element $t = \frac{a}{q} \in T_q$ and a scalar $k \in \mathbb{Z}$, if $w := k \cdot t = \frac{d}{q} \in T_q$ then $d \equiv k a \pmod{q}$. Computations over T_q can therefore be carried out entirely with arithmetic modulo q, taking only the numerator into account.

Likewise, on the discretized torus T_q, we similarly define

$$T_{N,q}[X] := T_q[X]/(X^N + 1).$$

We also define $Z_{N,q}[X] := Z_q[X]/(X^N + 1)$ with $Z_q = \mathbb{Z}/q\mathbb{Z}$. Viewing $\frac{1}{q}$ as an element in $T_{N,q}[X]$, any polynomial $p \in T_{N,q}[X]$ can be written as $p = \overline{p} \cdot \frac{1}{q}$ for some polynomial $\overline{p} \in Z_{N,q}[X]$. Addition and external multiplication in $T_{N,q}[X]$ are respectively denoted with ‘+’ and ‘•’.

1.3 Notation

It is useful to introduce some notation. If S is a set, $\alpha \leftarrow S$ indicates that α is sampled uniformly at random in S. If \mathcal{D} is a probability distribution, $\alpha \leftarrow \mathcal{D}$ indicates that α is sampled according to \mathcal{D}. For a real number x, $\lfloor x \rfloor$ denotes the largest integer $\leq x$, $\lceil x \rceil$ denotes the smallest integer $\geq x$, and $\lceil x \rceil$ denotes the nearest integer to x.

Elements in \mathbb{Z} or \mathbb{T} (resp. in \mathbb{Z}_q or \mathbb{T}_q) are denoted with roman letters while polynomials are denoted with calligraphic letters. \mathbb{B} is the integer subset $\{0, 1\}$ and, for N a power of 2, $\mathbb{B}_N[X]$ is the subset of polynomials in $\mathbb{Z}_N[X]$ with coefficients in \mathbb{B}.

Vectors are viewed as row matrices and are denoted with bold letters. Further notations used throughout this document are listed in Appendix C.

Example 5. The vector $v = (3, 4) \in \mathbb{Z}^2$ is regarded as the row matrix $(3\ 4) \in \mathbb{Z}^{1 \times 2}$, and if $A = (\begin{smallmatrix} 1 & 2 \\ 0 & 1 \end{smallmatrix})$ then $vA = (3\ 10) = (3, 10)$.

10
1.4 Complexity Assumptions

In 2005, Regev [Reg05, Reg09] introduced the learning with errors problem (LWE). Generalizations and extensions to ring structures were subsequently proposed in [SSTX09, LPR10]. As originally stated in [CGGI20], the security of TFHE relies on the hardness of torus-based problems [BLP+13, CS15]: the LWE assumption and the GLWE assumption [BGV14, LS15] over the torus.

We consider below similar definitions, but over the discretized torus.

Definition 1 (LWE problem over the discretized torus). Let \(q, n \in \mathbb{N} \) and let \(s = (s_1, \ldots, s_n) \xleftarrow{\$} \mathbb{B}^n \). Let also \(\chi \) be an error distribution over \(q^{-1}\mathbb{Z} \). The **learning with errors (LWE) over the discretized torus problem** is to distinguish samples chosen according to the following distributions:

\[
D_0 = \{ (a, r) \mid a \xleftarrow{\$} T_q^n, r \xleftarrow{\$} T_q \}
\]

and

\[
D_1 = \{ (a, r) \mid a = (a_1, \ldots, a_n) \xleftarrow{\$} T_q^n, r = \sum_{j=1}^{n} s_j \cdot a_j + e, e \xleftarrow{\$} \chi \}.
\]

Definition 2 (GLWE problem over the discretized torus). Let \(N, q, k \in \mathbb{N} \) with \(N \) a power of 2 and let \(s = (s_1, \ldots, s_k) \xleftarrow{\$} \mathbb{B}[X]^k \). Let also \(\chi \) be an error distribution over \(q^{-1}Z_N[X] \); namely, over polynomials of \(q^{-1}Z_N[X] \) with coefficients drawn according to \(\chi \). The **general learning with errors (GLWE) over the discretized torus problem** is to distinguish samples chosen according to the following distributions:

\[
D_0 = \{ (\alpha, r) \mid \alpha \xleftarrow{\$} T_{N,q}[X]^k, r \xleftarrow{\$} T_{N,q}[X] \}
\]

and

\[
D_1 = \{ (\alpha, r) \mid \alpha = (\alpha_1, \ldots, \alpha_k) \xleftarrow{\$} T_{N,q}[X]^k, \\
\quad \quad \quad r = \sum_{j=1}^{k} s_j \cdot \alpha_j + e, e \xleftarrow{\$} \chi \}.
\]

The decisional LWE assumption (resp. the decisional GLWE assumption) asserts that solving the LWE problem (resp. GLWE problem) is infeasible for some security parameter \(\lambda \), where \(q := q(\lambda) \), \(n := n(\lambda) \), and \(\chi := \chi(\lambda) \) (resp. \(N := N(\lambda) \), \(q := q(\lambda) \), \(k := k(\lambda) \), and \(\chi := \chi(\lambda) \)).

Interestingly, identifying \(T_q \) with \(\mathbb{Z}_q = \mathbb{Z}/q\mathbb{Z} \) (resp. \(T_{N,q}[X] \) with \(Z_{N,q}[X] \)), it turns out that the decisional LWE (resp. GLWE) assumption over the discretized torus is equivalent to the standard decisional LWE (resp. GLWE) assumption.
Cryptographic parameters Table 2 lists typical cryptographic parameters to be used for secure instances for the LWE and GLWE assumptions. The error distribution χ is induced by the normal distribution $N(0, \sigma^2)$, centered in 0 and with variance σ^2 (σ represents the standard deviation).

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Dimension</th>
<th>Error distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>LWE</td>
<td>$n = 630$</td>
<td>$N(0, \sigma^2)$ with $\sigma = 2^{-15}$</td>
</tr>
<tr>
<td>GLWE</td>
<td>$(N, k) = (1024, 1)$</td>
<td>$N(0, \sigma^2)$ with $\sigma = 2^{-25}$</td>
</tr>
</tbody>
</table>

We recommend the reader to check the lwe-estimator script\(^2\) to find concrete parameters for a given security level [APS15].

For an equivalent security level, a smaller value for parameter n (resp. for (N, k)) should be compensated with a larger value for σ (i.e., less concentrated noise).

2 TLWE Encryption

2.1 Description

Intuition The LWE assumption over the discretized torus essentially says that a torus element $r \in \mathbb{T}_q$ constructed as $r = \sum_{j=1}^{n} s_j \cdot a_j + e$ cannot be distinguished from a random torus element $r \in \mathbb{T}_q$, even if the torus vector $(a_1, \ldots, a_n) \in \mathbb{T}_q^n$ is known. Torus element $r = \sum_{j=1}^{n} s_j \cdot a_j + e$ can therefore be used as a kind of one-time pad to conceal a “plaintext message” $\mu \in \mathbb{T}_q$ so as to form a ciphertext $c = (a_1, \ldots, a_n, r + \mu) \in \mathbb{T}_q^{n+1}$, where $s = (s_1, \ldots, s_n) \in \mathbb{B}^n$ plays the role of the private encryption key. The reason why secret key s is chosen as a vector of bits is to have an efficient implementation for the bootstrapping; see Section 5.

Only part of the torus is used to input plaintext messages. The plaintext space is chosen as a proper additive subgroup $\mathcal{P} \subset \mathbb{T}_q$; specifically,

$$\mathcal{P} = \{0, \frac{1}{p}, \ldots, \frac{p-1}{p}\}$$

for some integer p dividing q, $p \geq 2$. This allows for unique decryption, provided that the noise present in the ciphertext is not too large. In particular, with the above choice for \mathcal{P}, if $c = (a_1, \ldots, a_n, b)$ with $b =$

\(^2\)https://bitbucket.org/malb/lwe-estimator/
\[
\sum_{j=1}^{n} s_j \cdot a_j + \mu + e
\]
is an encryption of a plaintext \(\mu \in \mathcal{P}\), plaintext \(\mu\) can be recovered in two steps as:

- compute \(\mu^* = b - \sum_{j=1}^{n} s_j \cdot a_j\) (in \(\mathbb{T}_q\));
- return the closest plaintext in \(\mathcal{P}\).

TLWE encryption scheme Given the discretized torus \(\mathbb{T}_q\), the plaintext space is set as an additive subgroup of \(\mathbb{T}_q\); i.e., \(\mathcal{P} := p^{-1}\mathbb{Z}/\mathbb{Z} = \mathbb{T}_p \subset \mathbb{T}_q\) for some \(p\) dividing \(q\). The discretized distribution \(\hat{\chi}\) over \(q^{-1}\mathbb{Z}\) is induced by an error distribution \(\chi\) over \(\mathbb{R}\): a noise error \(e \leftarrow \hat{\chi}\) is defined as \(e = \frac{\varepsilon}{q}\) with \(\varepsilon = \text{round}(qe_0) \in \mathbb{Z}\) for some \(e_0 \leftarrow \chi\). The mask \((a_1, \ldots, a_n) \in \mathbb{T}_q^n\) of a ciphertext is formed by drawing \(a_j \leftarrow \mathbb{Z}/q\mathbb{Z}\) and letting \(a_j = \frac{s_j}{q}\), for \(1 \leq j \leq n\); the corresponding body \(b\) is given by \(b = \sum_{j=1}^{n} s_j \cdot a_j + \mu + e\) where \(e \leftarrow \hat{\chi}\). The TLWE encryption of \(\mu \in \mathcal{P}\) is the vector \((a_1, \ldots, a_n, b)\).

Remark 2. A private-key encryption scheme is symmetric: the same key is used for both encryption and decryption. Public-key variants are presented in Appendix A.

Formally, we get the following **private-key** encryption scheme.

TLWE Encryption

| KeyGen(1^\lambda) | On input security parameter \(\lambda\), define a positive integer \(n\), select positive integers \(p\) and \(q\) such that \(p \mid q\), and define a discretized error distribution \(\hat{\chi}\) over \(q^{-1}\mathbb{Z}\) induced by a normal distribution \(\chi = N(0, \sigma^2)\) over \(\mathbb{R}\). Sample uniformly at random a vector \(s = (s_1, \ldots, s_n) \leftarrow \mathbb{B}^n\). The plaintext space is \(\mathcal{P} = \mathbb{T}_p \subset \mathbb{T}_q\). The public parameters are \(pp = \{n, \sigma, p, q\}\) and the private key is \(sk = s\).

| Encrypt_{sk}(\mu) | The encryption of \(\mu \in \mathcal{P}\) is given by \(c \leftarrow \text{TLWE}_a(\mu) = (a_1, \ldots, a_n, b) \in \mathbb{T}_q^{n+1}\) with \[
\begin{align*}
\mu^* &= \mu + e \\
b &= \sum_{j=1}^{n} s_j \cdot a_j + \mu^*
\end{align*}
\]
for a random vector \((a_1, \ldots, a_n) \leftarrow \mathbb{T}_q^n\) and a “small” noise \(e \leftarrow \hat{\chi}\). |
Decrypt_{sk}(c) To decrypt \(c = (a_1, \ldots, a_n, b) \), use private key \(s = (s_1, \ldots, s_n) \), compute (in \(T_q \))

\[
\mu^* = b - \sum_{j=1}^{n} s_j \cdot a_j
\]

and return

\[
\mu = \frac{\lfloor p \mu^* \rfloor \mod p}{p},
\]

that is, the closest plaintext \(\mu \in \mathcal{P} \), as the decryption of \(c \).

To ease the notation, for an integer \(k \) and a torus element \(t \in T_q \subset T \), \(|k t|\) denotes the nearest integer to the product of \(k \) by \(t \) viewed as a real number. Rigorously, one should write \(|k \text{lift}(t)|\) where function lift lifts elements of \(T \) to \(\mathbb{R} \) (i.e., views elements of \(T \) as elements in \(\mathbb{R} \)).

It is easily verified that decryption succeeds in recovering plaintext \(\mu \) if the noise error \(e \) satisfies \(|e| < \frac{1}{2p}\).

Proof. For plaintext \(\mu \in \mathcal{P} = \{0, \frac{1}{p}, \ldots, \frac{p-1}{p}\} \), we let \(c \leftarrow \text{TLWE}_s(\mu) = (a_1, \ldots, a_n, b) \) where \((a_1, \ldots, a_n) \leftarrow T_q^n \) and \(b = \sum_{j=1}^{n} s_j \cdot a_j + \mu + e \) with \(e \leftarrow \chi \). Since \(\mu \in \mathcal{P} \), there exists a unique integer \(m \in \{0, p\} \) such that \(\mu = \frac{m}{p} \).

An application of Decrypt_{sk}(c) outputs \(\frac{\lfloor p \mu^* \rfloor \mod p}{p} \) with \(\mu^* := (\mu + e) \in T_q \subset T \). We have \(\lfloor p \mu^* \rfloor = \lfloor p((\mu + e) \mod 1) \rfloor = \lfloor p(\mu + e + \delta) \rfloor = \lfloor p(\mu + e) \rfloor + \delta p \) for some \(\delta \in \mathbb{Z} \). We also have \(\lfloor p(\mu + e) \rfloor = \lfloor p(\frac{m}{p} + e) \rfloor = \lfloor m + pe \rfloor = m \) if we assume that \(|e| < 1/(2p)\). In this case, it thus follows that \(\frac{\lfloor p \mu^* \rfloor \mod p}{p} = \frac{m}{p} = \mu \).

Example 6. Suppose \(p = 4 \) and \(q = 64 \) (= 2^6). The plaintext space is \(\mathcal{P} = \{0, \frac{1}{8}, \frac{2}{8}, \frac{3}{8}, \frac{4}{8}\} \).

The outer wheel depicts the discretized torus \(T_q = \{0, \frac{61}{64}, \ldots, \frac{63}{64}\} \). It can be observed that if the noise error \(e \) satisfies \(|e| < \frac{1}{2p} = \frac{1}{8} \), that is, \(e \in \{-\frac{7}{64}, \ldots, \frac{7}{64}\} \), then any noisy value \(\mu^* := \mu + e \) corresponds unequivocally to a plaintext \(\mu \in \mathcal{P} = \{0, \frac{16}{64}, \frac{32}{64}, \frac{48}{64}\} \). The closest plaintext to \(\mu^* \in \{\frac{23}{64}, \ldots, \frac{63}{64}\} \) is \(\mu = 0 \) (note that \(\frac{32}{64} \) and \(-\frac{32}{64} \) are equivalent as elements of \(T_q \)); the closest plaintext to \(\mu^* \in \{\frac{19}{64}, \ldots, \frac{23}{64}\} \) is \(\mu = \frac{16}{64} = \frac{1}{4} \); the closest plaintext to \(\mu^* \in \{\frac{23}{64}, \ldots, \frac{35}{64}\} \) is \(\mu = \frac{32}{64} = \frac{1}{2} \); and the closest plaintext to \(\mu^* \in \{\frac{29}{64}, \ldots, \frac{35}{64}\} \) is \(\mu = \frac{48}{64} = \frac{3}{4} \).
2.2 Encoding/Decoding

The encryption algorithm takes (discretized) torus elements—or, more exactly, elements in \(\mathcal{P} \)—on input. Encoding and decoding aim at supporting further input formats.

Let \(M \) be an arbitrary finite message space of cardinality \(\# M = p \) with \(p = 2^\nu \). The plaintext space is \(\mathcal{P} = \mathbb{T}_p \subset \mathbb{T}_q \) with \(q = 2^\Omega \). The encoding function, \(\text{Encode}: M \rightarrow \mathcal{P} \), maps a message \(m \in M \) to an element \(\mu \in \mathcal{P} \); the encoding is applied before encryption. The decoding function, \(\text{Decode}: \mathcal{P} \rightarrow M \), is applied after decryption.

We discuss below the cases of message spaces consisting of bits, of integers modulo \(p \) (with \(p \) dividing \(q \)), and of fixed-precision torus elements.

Bits
The message space is \(M = \{0, 1\} \).

For a bit \(b \in \{0, 1\} \), we define \(\text{Encode}(b) = b/2 \). Hence, bit 0 is encoded as torus element 0 = 0 \(q \in \mathbb{T}_q \) and bit 1 as torus element \(1 \frac{1}{2} = 1 \frac{1}{4} \in \mathbb{T}_q \).

The reverse operation is defined as \(\text{Decode}(\mu) = [2 \mu] \mod 2 \), and thus if \(\mu \in \{0, \frac{1}{2}\} \) then \(\text{Decode}(\mu) \in \{0, 1\} \).

Integers modulo \(p \)
This generalizes the previous case (bits can be seen as integers modulo \(p = 2 \)). We have \(M = \{i \mod p \mid i \in \mathbb{Z}\} = \mathbb{Z}/p\mathbb{Z} \).

Let \(\Delta = q/p \in \mathbb{Z} \). The encoding and decoding are then respectively given by

\[
\text{Encode}(i) = \frac{i \mod p}{p} \quad \left(= \frac{(i \mod p) \Delta}{q}\right)
\]

and

\[
\text{Decode}(\mu) = \lfloor p \mu \rfloor \mod p .
\]

Fixed-precision torus elements
Let \(p \geq 2 \) with \(p \mid q \). This case is similar to the case of integers modulo \(p \) and considers torus elements of the form \(t = \frac{i}{p} \) with \(i \in \mathbb{Z}/p\mathbb{Z} \). These elements form a subset of fixed-precision torus elements. For \(x \in \mathbb{T}_p = p^{-1}\mathbb{Z}/\mathbb{Z} \) and \(\mu \in \mathbb{T}_q \), we define

\[
\text{Encode}(x) = x
\]

and

\[
\text{Decode}(\mu) = \lfloor p \mu \rfloor \mod p .
\]

Remark 3. The second encoding obviously applies to unsigned integers smaller than \(p \); i.e., to integers in \(\{0, \ldots, p-1\} \). It may also apply to signed
integers. In the latter case, the “mod \(p \)” returns the signed representative in \(\{-\frac{p}{2}, \ldots, \frac{p}{2}-1\} \).

Example 7. Suppose \(p = 4 \) and \(q = 64 \). If \(\mu = \frac{48}{64} \), then \(\text{Decode}(\mu) = \lfloor p \mu \rfloor \mod p \equiv 3 \equiv -1 \pmod{4} \), which represents the unsigned integer 3 or the signed integer −1.

Alike, the third encoding applies to unsigned (fixed-precision) numbers in \(T_p \cap [0, 1) \), or to signed (fixed-precision) numbers in \(T_p \cap [-\frac{1}{2}, \frac{1}{2}) \).

2.3 Implementation Notes

Batching ciphertexts When a set of \(m \) plaintexts (torus elements) need to be encrypted, randomness can be re-used if they are all encrypted under different keys. Specifically, for \(\mu_1, \ldots, \mu_m \in \mathcal{P} \), we set \(C = (a_1, \ldots, a_n, b_1, \ldots, b_m) \in T_q^{n+m} \) as their encryption with \(b_i = \sum_{j=1}^{n} s_{i,j} \cdot a_j + \mu_i + e_i \) for \(1 \leq i \leq m \), where \((a_1, \ldots, a_n) \leftarrow T_q^n \), \(s_i = (s_{i,1}, \ldots, s_{i,n}) \leftarrow \mathbb{B}^n \) and noise error \(e_i \).

The security of this variant follows from [BBS03]. Since the randomness is given explicitly in a TLWE ciphertext (namely, the \(a_j \)'s), it is readily verified that the “reproducibility” criterion [BBKS07, Definition 9.3] is satisfied.

Ciphertext compression TLWE ciphertexts are torus vectors with \(n + 1 \) components. With the parameter set of Table 2, if we suppose that torus elements are represented with 64 bits, a TLWE ciphertext typically requires \(631 \times 64 = 40384 \) bits (or about 5 kilobytes) for its representation.

Instead of representing a ciphertext \(c \) as \(c = (a_1, \ldots, a_n, b) \), a much more compact way is to define \(c \) as \(c = (\theta, b) \) where \(\theta \leftarrow \{0, 1\}^\lambda \) is a random \(\lambda \)-bit string for security parameter \(\lambda \). The value of \(\theta \) is used as a seed to a cryptographically secure pseudo-random number generator (PRNG) to derive the random vector \((a_1, \ldots, a_n) \):

\[
(a_1, \ldots, a_n) \leftarrow \text{PRNG}(\theta).
\]

With the above parameter set (which corresponds to a desired bit-security of 128 bits), the same ciphertext only needs \(128 + 64 = 192 \) bits for its representation.

Key storage The same trick applies to private key \(s \). Instead of plainly storing \(s \) as a \(n \)-bit string, we can store it as a \(\lambda \)-bit random seed that is used to generate \(s \) through a cryptographic pseudo-random number generator.
3 TGLWE Encryption

3.1 Description

TLWE encryption readily extends to torus polynomials in \(T_{N,q}[X] \). Operations on the torus \(T_q \) are simply replaced with operations on polynomials modulo \(X^N + 1 \) (and modulo \(q \)). Given two polynomials \(\alpha, \beta \in T_{N,q}[X] \), \(\alpha + \beta \) refers to the addition of \(\alpha \) and \(\beta \) modulo \((X^N + 1, q) \) and, for \(\alpha \in \mathbb{Z}_{N,q}[X] \) and \(\beta \in T_{N,q}[X] \), \(\alpha \cdot \beta \) refers to the external product of \(\alpha \) and \(\beta \) modulo \((X^N + 1, q) \)—remember that the internal product is not defined.

The plaintext space is the subset of polynomials

\[
P_N[X] := \mathbb{P}[X]/(X^N + 1) = T_{N,p}[X] \subset T_{N,q}[X]
\]

with \(\mathbb{P} = T_p = p^{-1}\mathbb{Z}/\mathbb{Z} \) for some \(p \) dividing \(q \). Note that this latter condition imposes that \(P_N[X] \) forms an additive subgroup of \(T_{N,q}[X] \).

<table>
<thead>
<tr>
<th>TGLWE Encryption</th>
</tr>
</thead>
</table>
| KeyGen(1^λ) On input security parameter λ, define a pair of integers \((N, k)\) with \(N \) a power of 2 and \(k \geq 1 \). Select positive integers \(p \) and \(q \) such that \(p \mid q \). Define also a discretized error distribution \(^\chi \) over \(q^{-1}\mathbb{Z}_N[X] \) induced by a normal distribution \(\chi = N(0, \sigma^2) \) over \(\mathbb{R}_N[X] \). Sample uniformly at random a vector \(\delta = (\delta_1, \ldots, \delta_k) \leftarrow ^\delta \mathbb{B}_N[X]^k \). The plaintext space is \(P_N[X] = T_{N,p}[X] \subset T_{N,q}[X] \). The public parameters are \(pp = \{k, N, \sigma, p, q\} \) and the private key is \(sk = \delta \).
| Encrypt_{sk}(\mu) The encryption of \(\mu \in P_N[X] \) is given by
| \[\cdot c \leftarrow \text{TGLWE}_\delta(\mu) = (\alpha_1, \ldots, \alpha_k, \beta) \in T_{N,q}[X]^{k+1} \] with
| \[
\begin{align*}
\mu^* &= \mu + \epsilon \\
\beta &= \sum_{j=1}^{k} \delta_j \cdot \alpha_j + \mu^*
\end{align*}
\]
| for a random vector \((\alpha_1, \ldots, \alpha_k) \leftarrow ^\delta T_{N,q}[X]^k \) and a “small” noise \(\epsilon \leftarrow ^\chi \).
| Decrypt_{sk}(\cdot c) To decrypt \(\cdot c = (\alpha_1, \ldots, \alpha_k, \beta) \), use private key \(\delta = (\delta_1, \ldots, \delta_k) \), compute (in \(T_{N,q}[X] \))
| \[
\mu^* = \beta - \sum_{j=1}^{k} \delta_j \cdot \alpha_j
\]
| and return the closest plaintext \(\mu \in P_N[X] \) as the decryption of \(\cdot c \). |
Remark 4. Since $T_{N,q}[X] = T_q$ when $N = 1$, it turns out that the TLWE encryption (Section 2.1) can be seen as a special instantiation of the TGLWE encryption with parameters $(k, N) = (n, 1)$.

At this point, the reader may wonder why there are two versions for the encryption: one over T_q and one over $T_{N,q}[X]$. For the encryption of a single torus element $\mu \in P$, TLWE should be preferred to TGLWE because the resulting ciphertext is shorter. For the encryption of multiple torus elements, TGLWE can be a better option; see next section. But the main reason of having two different schemes is for the implementation of the programmable bootstrapping where both TLWE and TGLWE are needed; see Section 5.

3.2 Encoding/Decoding

The TGLWE encryption scheme supports the encryption of an arbitrary polynomial $\mu \in P_N[X]$. In many applications, μ is restricted to a polynomial of degree 0 and can therefore be seen as an element in P. In this case, the encoding and decoding functions presented in Section 2.2 equally apply.

When up to N torus elements $\mu_0, \ldots, \mu_{N-1} \in P$ need to be encrypted, they can each be represented as a coefficient of polynomial $\mu(X) = \mu_0 + \mu_1 X + \cdots + \mu_{N-1} X^{N-1} \in P_N[X]$. Such an optimization is known as coefficient packing.

3.3 Implementation Notes

The (external) product of two polynomials is a demanding operation. The special form of cyclotomic polynomial $\Phi(X) = X^N + 1$ makes however computations slightly easier.

Example 8. Let $N = 4$ and thus $\Phi(X) = X^4 + 1$. Let also $q = 8$. Suppose we want to externally multiply $p \in \mathbb{Z}_{N,q}[X]$ and $q \in T_{N,q}[X]$ with $p(X) = 2X^3 + 5X + 3$ and $q(X) = \frac{1}{3}X^3 + \frac{1}{2}$. Then the product $r := p \cdot q \in T_{N,q}[X]$ verifies

\[
p(X) \cdot q(X) \equiv (2X^3 + 5X + 3) \cdot \left(\frac{1}{3}X^3 + \frac{1}{2}\right)
\equiv \frac{1}{3}X^6 + \frac{2}{3}X^3 + \frac{5}{2}X + \frac{1}{2}X^3 + \frac{1}{3}
\equiv \frac{1}{3}X^6 + \frac{1}{3}X^4 + X^3 + \frac{5}{3}X + \frac{3}{8}
\equiv (X^4 + 1) \cdot \left(\frac{3}{2}X^2 + \frac{1}{2}\right) + X^3 + \frac{5}{2}X + \frac{3}{2} - \frac{1}{2}X^2 - \frac{1}{4}
\equiv X^3 + \frac{3}{4}X^2 + \frac{5}{8}X + \frac{1}{8} \pmod{(X^4 + 1, 8)}.
\]

Hence, $r(X) = X^3 + \frac{3}{4}X^2 + \frac{5}{8}X + \frac{1}{8} \in T_{N,q}[X]$.

In the general case, for $\Phi(X) = X^N + 1$, let $p \in \mathbb{Z}_{N,q}[X]$ and $q \in T_{N,q}[X]$
This requires \(N^2 \) external torus products for evaluating \(p_i \cdot q_i \) with \(0 \leq i,j \leq N - 1 \). For large values of \(N \), an alternative way is to rely on the fast Fourier transform (FFT) [vzGG13, Chapter 8]; see also [Ber01] for an algebraic description.

When \(p(X) \) is the monomial \(X^j \) for some \(j \in \{0, \ldots, N - 1\} \), the previous product formula simplifies into

\[
X^j \cdot q(X)
\]

\[
\begin{aligned}
q_0 + q_1 X + q_2 X^2 + \cdots + q_{N-2} X^{N-2} + q_{N-1} X^{N-1} & \quad j = 0 \\
-q_{N-1} + q_0 X + q_1 X^2 + \cdots + q_{N-3} X^{N-2} + q_{N-2} X^{N-1} & \quad j = 1 \\
& \quad \vdots \\
-q_1 - q_2 X - q_3 X^2 - \cdots - q_{N-1} X^{N-2} + q_0 X^{N-1} & \quad j = N - 1 \\
\end{aligned}
\]

or, more concisely,

\[
X^j \cdot q(X) = \sum_{i=0}^{j-1} q_{i+N-j} X^i + \sum_{i=j}^{N-1} q_{i-j} X^i
\]

and \(X^{N+j} \cdot q(X) = -X^j \cdot q(X) \). This relation is known as the **negacyclic property**.

Example 9. To better exhibit the negacyclic property, we represent polynomials by their vectors of coefficients. Take \(N = 4 \) and consider the polynomial \(q(X) = q_0 + q_1 X + q_2 X^2 + q_3 X^3 \). Then

\[
q(X) = [q_0, q_1, q_2, q_3] \quad X^4 q(X) = [-q_0, -q_1, -q_2, -q_3]
\]

\[
X \cdot q(X) = [-q_3, q_0, q_1, q_2] \quad X^5 \cdot q(X) = [q_3, -q_0, -q_1, -q_2]
\]

\[
X^2 \cdot q(X) = [-q_2, -q_3, q_0, q_1] \quad X^6 \cdot q(X) = [q_2, q_3, -q_0, -q_1]
\]

\[
X^3 \cdot q(X) = [-q_1, -q_2, -q_3, q_0] \quad X^7 \cdot q(X) = [q_1, q_2, q_3, -q_0]
\]

\[
X^8 \cdot q(X) = [q_0, q_1, q_2, q_3] = q(X), \text{ and so on. At each multiplication by } X, \text{ it turns out that the polynomial coefficients are circularly shifted one position to the right and the entering coefficient is negated.}
\]
4 Working over Encrypted Data

Clearly, TLWE encryption and TGLWE encryption are additively homomorphic.

The approach of Gentry–Sahai–Waters [GSW13] using matrix product is employed to turn these encryption schemes into schemes supporting a limited number of multiplications.

4.1 TLWE Ciphertexts

4.1.1 Addition of ciphertexts

Let $c_1 \leftarrow \text{TLWE}_s(\mu_1)$ and $c_2 \leftarrow \text{TLWE}_s(\mu_2)$ (in T_q^{n+1}) be respective TLWE encryptions of μ_1 and μ_2 (in \mathcal{P}):

$c_1 = (a_1, \ldots, a_n, b)$ and $c_2 = (a'_1, \ldots, a'_n, b')$

with $(a_1, \ldots, a_n) \leftarrow T_q^n$ and $b = \sum_{j=1}^n s_j \cdot a_j + \mu_1 + e_1$, $(a'_1, \ldots, a'_n) \leftarrow T_q^n$ and $b' = \sum_{j=1}^n s_j \cdot a'_j + \mu_2 + e_2$, and e_1, e_2 “small”. Then $c_3 := c_1 + c_2$ (in T_q^{n+1}) is a valid encryption of $\mu_3 := \mu_1 + \mu_2$ (in \mathcal{P}); i.e.,

$c_3 = (a''_1, \ldots, a''_n, b'')$ with \[
\begin{cases}
 a''_j = a_j + a'_j & (1 \leq j \leq n) \\
 b'' = b + b'
\end{cases}
\]

provided that the additive noise $e_3 := e_1 + e_2$ keeps “small”.

Addition of ciphertexts explains why \mathcal{P} was chosen as an additive subgroup of T_q in the definition of TLWE encryption. Doing so implies that if $\mu_1, \mu_2 \in \mathcal{P}$ then so does $\mu_3 = \mu_1 + \mu_2$.

4.1.2 Multiplication by a known constant

Multiplying by a constant can be obtained as a series of additions. As a result, given the TLWE ciphertext $c \leftarrow \text{TLWE}_s(\mu)$ with $\mu \in \mathcal{P}$, the TLWE encryption of $K \cdot \mu$ for some known (small) integer $K \neq 0$ can be obtained as

$K \cdot c = c + \cdots + c$

K times

if $K > 0$, and $K \cdot c = (-K) \cdot (-c)$ if $K < 0$. Clearly, this boils down to multiplying every vector component of c by K; namely, if $c = (a_1, \ldots, a_n, b) \in T_q^{n+1}$ then

$K \cdot c = (K \cdot a_1, \ldots, K \cdot a_n, K \cdot b)$.
Again, $K \cdot c$ (in \mathbb{T}_q^{n+1}) is a valid encryption of $K \cdot \mu$ (in \mathbb{P}), provided that the resulting noise keeps “small”.

4.1.3 Multiplication of ciphertexts

The main challenge in working over encrypted data resides in multiplying ciphertexts. In order to make the Gentry–Sahai–Waters’ approach work, ciphertexts in TLWE encryption need to be expressed as matrices.

Gadget matrix *Flattening* is a method that modifies vectors without affecting dot products [BGV14, Bra12]. As will become apparent, this technique helps controlling the noise.

We present the “gadget decomposition” technique over the discretized torus $\mathbb{T}_q = q^{-1}\mathbb{Z}/\mathbb{Z}$ for a general integer q (i.e., not necessarily a power of 2). For a radix B and some integer $\ell \geq 1$ such that $B^\ell \mid q$, we consider the so-called *gadget matrix* $G \in \mathbb{T}_q^{(n+1) \times (n+1)}$ given by

$$
G' = I_{n+1} \otimes g' = \text{diag}(g'_1, \ldots, g'_{n+1}) =
\begin{pmatrix}
1/B \\
\vdots \\
1/B^\ell \\
1/B \\
\vdots \\
1/B^\ell \\
\vdots \\
1/B \\
\vdots \\
1/B^\ell
\end{pmatrix}
$$

with $g = (1/B, \ldots, 1/B^\ell) \in \mathbb{T}_q^\ell$, so that for an input vector $u \in \mathbb{Z}^{(n+1)\ell}$ the product $u \cdot G'$ yields a vector in \mathbb{T}_q^{n+1}. We also consider the associated inverse transformation $G^{-1} : \mathbb{T}_q^{n+1} \rightarrow \mathbb{Z}^{(n+1)\ell}$ such that for any vector $v \in \mathbb{T}_q^{n+1}$, we have

$$
G^{-1}(v) \cdot G' \approx v \quad \text{and} \quad G^{-1}(v) \text{ is “small”}
$$

This inverse transformation replaces each entry of a vector by its signed radix-B expansion. Explicitly, if $v = (v_1, \ldots, v_{n+1}) \in \mathbb{T}_q^{n+1}$ with $v_i \in (-\frac{1}{2}, \frac{1}{2})$, we set $\overline{v}_i = [B^\ell v_i]$ and write

$$
\overline{v}_i \equiv \sum_{j=1}^{\ell} u_{i,j} B^{\ell-j} \pmod{B^\ell} \quad \text{where } u_{i,j} \in [-\lfloor B/2 \rfloor, \lceil B/2 \rceil).
$$
We define \(g^{-1}(v_i) := (u_{i,1}, \ldots, u_{i,\ell}) \in \mathbb{Z}^\ell \). Then

\[
G^{-1}(v) := (g^{-1}(v_1), g^{-1}(v_2), \ldots, g^{-1}(v_{n+1}))
\]

\[
= (u_{1,1}, \ldots, u_{1,\ell}, \ldots, u_{2,1}, \ldots, u_{2,\ell}, \ldots, u_{n+1,1}, \ldots, u_{n+1,\ell}) \in \mathbb{Z}^{(n+1)\ell}.
\]

Note that when \(B^\ell = q \), all the components \(v_i \in [-\frac{1}{2}, \frac{1}{2}) \) of \(v \) satisfy \(\overline{v_i} = B^\ell v_i \). It then follows that, over \(T_q \), \(G^{-1}(v) \cdot G^\top = v \) holds exactly.

Example 10. Take \(n = 1, \ell = 2, B = 4 \), and \(q = 64 \) (and so \(T_q = \frac{1}{64}\mathbb{Z}/\mathbb{Z} \)). Hence,

\[
G^\top = \begin{pmatrix}
\frac{1}{4} & 0 \\
\frac{1}{16} & 0 \\
0 & \frac{1}{4}
\end{pmatrix} \in T_q^{4 \times 2}.
\]

Suppose that \(v = \left(\frac{41}{64}, \frac{26}{64} \right) \equiv \left(\frac{-23}{64}, \frac{26}{64} \right) \pmod{1} \). We get \(\overline{v_1} = \left[4^2 \left(\frac{-23}{64} \right) \right] = -6 \) and \(\overline{v_2} = \left[4^2 \left(\frac{26}{64} \right) \right] = 7 \). We have \(-6 = -1 \cdot 4^1 - 2 \) and \(7 = 1 \cdot 4^2 - 2 \cdot 4^1 - 1 \equiv -2 \cdot 4^1 - 1 \pmod{4^2} \), and so \(G^{-1}(v) = (-1, -2, -2, -1) \). We can verify that \(G^{-1}(v) \cdot G^\top = (-\frac{24}{64}, -\frac{36}{64}) \equiv (\frac{40}{64}, \frac{28}{64}) \approx v \).

Now with the same parameters but with \(\ell = 3 \) (and thus \(B^\ell = q \)), we have

\[
G^\top = \begin{pmatrix}
\frac{1}{4} & 0 & 0 \\
\frac{1}{16} & 0 & 0 \\
0 & 1/16 & 0
\end{pmatrix} \in T_q^{6 \times 2}.
\]

We have \(\overline{v_1} = -23 \) and \(\overline{v_2} = 26 \). We obtain \(G^{-1}(v) = (-1, -2, 1, -2, -1, -2) \) and \(G^{-1}(v) \cdot G^\top = (-\frac{23}{64}, -\frac{38}{64}) \equiv (\frac{41}{64}, \frac{28}{64}) = v \).

Remark 5. The inverse transformation \(G^{-1} \) naturally extends to matrices. For a matrix \(M \in T_q^{m \times (n+1)} \), \(G^{-1}(M) \in \mathbb{Z}^{m \times (n+1)\ell} \) is defined as the \(m \times (n+1)\ell \) matrix whose row \(\#i \) is \(G^{-1}(m_i) \) where \(m_i \) is row \(\#i \) of \(M \). It satisfies \(G^{-1}(M) \cdot G \approx M \).

TGSW encryption The gadget matrix gives rise to a torus-based variant of the Gentry–Sahai–Waters (GSW) encryption scheme.

Let an integer \(p \mid q \) where \(q = 2^\Omega \). The gadget decomposition over \(T_q \) supposes integers \(B \) and \(\ell \) such that \(B^\ell \mid q \). Actually, since all its elements are \(0 \) or of the form \(B^{-j} \) with \(1 \leq j \leq \ell \), the gadget matrix \(G \) is actually defined over \(B^{-\ell}Z/Z \subseteq T_q \). We assume that \(p = B^\ell \). In this case, \(G \) is defined over \(T_p = p^{-1}Z/Z \).

The private key is \(s = (s_1, \ldots, s_n) \in B^n \) and the plaintext space is \(\overline{\mathbb{P}} := Z/pZ \). The **TGSW encryption** of \(m \in \overline{\mathbb{P}} \) under key \(s \) is defined as

\[
\text{TGSW}_s(m) = Z + m \cdot G^\top \quad (\in T_q^{\ell \times (n+1)})
\]
where

\[
Z \leftarrow \begin{pmatrix}
\text{TLWE}_s(0) \\
\text{TLWE}_s(0) \\
\vdots \\
\text{TLWE}_s(0)
\end{pmatrix}
\begin{cases}
(n+1)\ell \text{ rows}.
\end{cases}
\]

The last row of \(\text{TGSW}_s(m) \in \mathbb{T}_q^{(n+1)\ell \times (n+1)}\) contains \(\text{TLWE}_s(0) + m \cdot (0, \ldots, 0, \frac{1}{w}) \in \mathbb{T}_q^{n+1}\), that is, a TLWE encryption of \(\mu := \frac{m}{w} \in \mathcal{P}\) where \(\mathcal{P} = \mathbb{T}_p\).

Being defined over the ring \(\mathcal{P} = \mathbb{Z}/p\mathbb{Z}\), TGSW plaintexts can be multiplied. For \(m_1, m_2 \in \mathcal{P}\), given their respective ciphertexts \(C_1 \leftarrow \text{TGSW}_s(m_1)\) and \(C_2 \leftarrow \text{TGSW}_s(m_2)\), we let \(C_3 = C_1 \times C_2 = G^{-1}(C_2) \cdot C_1\). This is known as the [internal] product of ciphertexts [GSW13, AP14, DM15]. It can be verified that \(C_3 = C_1 \times C_2\) is a TGSW of \(m_3 = m_1 \times m_2 \pmod{p}\), up to rounding error and multiplicative noise.

Proof. From the definition, we have \(C_3 = C_1 \times C_2 = G^{-1}(C_2) \cdot C_1 = G^{-1}(C_2) \cdot (Z_1 + m_1 \cdot G') = G^{-1}(C_2) \cdot Z_1 + (G^{-1}(C_2) m_1) \cdot G'\), letting \(C_1 = Z_1 + m_1 \cdot G'\) where \(Z_1 \leftarrow \text{TGSW}_s(0)\).

Let \(\epsilon_2 := G^{-1}(C_2) \cdot G' - C_2\) denote the rounding error matrix. We so get \(C_3 = G^{-1}(C_2) \cdot Z_1 + m_1 \cdot (C_2 + \epsilon_2) = G^{-1}(C_2) \cdot Z_1 + m_1 \cdot Z_2 + (m_1 m_2) \cdot G' + m_1 \cdot \epsilon_2\), letting \(C_2 = Z_2 + m_2 \cdot G'\) where \(Z_2 \leftarrow \text{TGSW}_s(0)\). Assuming the error resulting from the rounding (i.e., \(m_1 \cdot \epsilon_2\)) keeps “small” and that the multiplicative noise keeps “small”, we can write \(C_3 = Z_3 + (m_1 m_2) \cdot G'\) for some \(Z_3 \leftarrow \text{TGSW}_s(0)\).

If \(Z \in \mathbb{T}_q^{(n+1)\ell \times (n+1)}\) is a matrix whose rows are TLWE encryptions of 0 then, for any (small) matrix \(A \in \mathbb{Z}^{m \times (n+1)}\), \(Z' := A \cdot Z \in \mathbb{T}_q^{m \times (n+1)}\) is a matrix whose rows are TLWE encryptions of 0 (up to the noise).

Example 11. To see it, suppose \(m = n = 2\). Letting

\[
A = \begin{pmatrix}
\alpha_{1,1} & \alpha_{1,2} & \alpha_{1,3} \\
\alpha_{2,1} & \alpha_{2,2} & \alpha_{2,3}
\end{pmatrix}
\text{ and } Z = \begin{pmatrix}
a_{1,1} & a_{1,2} & b_1 \\
a_{2,1} & a_{2,2} & b_2 \\
a_{3,1} & a_{3,2} & b_3
\end{pmatrix}
\text{ with } b_i = \sum_{j=1}^{2} s_j \cdot \alpha_{i,j} + e_i
\]

we get \(Z' := A \cdot Z = \begin{pmatrix}
a_{1,1}' & a_{1,2}' & b_1' \\
a_{2,1}' & a_{2,2}' & b_2' \\
a_{3,1}' & a_{3,2}' & b_3'
\end{pmatrix}\) with \(b_1' = \sum_{i=1}^{2} \alpha_{1,1} \cdot b_i = \sum_{i=1}^{2} \alpha_{1,1} \cdot \left(\sum_{j=1}^{2} s_j \cdot \alpha_{i,j} + e_i\right) = \sum_{i=1}^{2} \sum_{j=1}^{2} \alpha_{1,1} \cdot \alpha_{i,j} \cdot s_j + \sum_{i=1}^{2} \alpha_{1,1} \cdot e_i\).

Remark that \(b_1' = \sum_{i=1}^{2} \alpha_{1,1} \cdot b_i = \sum_{i=1}^{2} \sum_{j=1}^{2} \alpha_{i,j} \cdot a_{1,1} \cdot s_j + \sum_{i=1}^{2} \alpha_{i,j} \cdot e_i\).

Inspecting the proof indicates that the resulting error term present in
Z_3 comprises three components: (i) one coming from the noise present in Z_1, which is amplified by $G^{-1}(C_2)$; (ii) one coming from the noise present in Z_2, which is amplified by m_1; and (iii) one coming from the rounding error e_2, which is also amplified by m_1. The multiplicative noise can grow quickly. The use of the gadget matrix leads however to a favorable situation since by construction $\|G^{-1}(C_2)\|_\infty \leq B/2$. Furthermore, the two other components can be contained if plaintext m_1 keeps small (for example, if m_1 is restricted to elements in $\{0, 1\}$).

External product of ciphertexts TLWE ciphertexts are [much] shorter than TGSW ciphertexts and should therefore be preferred. The best we can do for TLWE is to consider the external product of plaintexts: $m_1 \cdot \mu_2$ for some integer $m_1 \in \mathbb{P}$ and a plaintext $\mu_2 \in \mathbb{P} \subset \mathbb{T}_q$. Corresponding to $m_1 \cdot \mu_2$ is the external product of ciphertexts. The \boxdot operation enables the external multiplication of ciphertexts. It is given by

$$\boxdot: \text{TGSW} \times \text{TLWE} \rightarrow \text{TLWE}, \quad (C_1, c_2) \mapsto C_1 \boxdot c_2 = G^{-1}(c_2) \cdot C_1$$

where $C_1 \leftarrow \text{TGSW}_s(m_1)$ with $m_1 \in \mathbb{P}$ and where $c_2 \leftarrow \text{TLWE}_s(\mu_2)$ with $\mu_2 \in \mathbb{P}$. In more detail, we have:

$$C_1 = Z_1 + m_1 \cdot G^T \in \mathbb{T}_q^{(n+1)\ell \times (n+1)} \quad \text{and} \quad c_2 \in \mathbb{T}_q^{n+1}$$

where

$$Z_1 = \begin{pmatrix} a_{1,1} & \cdots & a_{1,n} & b_1 \\ a_{2,1} & \cdots & a_{2,n} & b_2 \\ \vdots & \vdots & \vdots & \vdots \\ a_{(n+1)\ell,1} & \cdots & a_{(n+1)\ell,n} & b_{(n+1)\ell} \end{pmatrix}$$

with

$$\begin{cases} (a_{i,1}, \ldots, a_{i,n}) \xleftarrow{\$} \mathbb{T}_q^n \\ b_i = \sum_{j=1}^n s_j \cdot a_{i,j} + (e_1)_i \end{cases}$$

and

$$c_2 = (a'_1, \ldots, a'_n, b') \quad \text{with} \quad \begin{cases} (a'_1, \ldots, a'_n) \xleftarrow{\$} \mathbb{T}_q^n \\ b' = \sum_{j=1}^n s_j \cdot a_j + \mu_2 + e_2 \end{cases},$$

and where $(e_1)_i$ for $1 \leq i \leq (n+1)\ell$ and e_2 are "small". Then

$$c_3 := C_1 \boxdot c_2 = G^{-1}(c_2) \cdot C_1 = G^{-1}(c_2) \cdot (Z_1 + m_1 \cdot G^T) = \frac{G^{-1}(c_2) \cdot Z_1 + m_1 \cdot (G^{-1}(c_2) \cdot G^T)}{=\text{TLWE}_s(0)} \approx c_2$$

24
\[\text{TLWE}_s(0) + m_1 \cdot c_2 = \text{TLWE}_s(0) + m_1 \cdot \text{TLWE}_s(\mu_2) = \text{TLWE}_s(m_1 \cdot \mu_2) \]

is a valid TLWE encryption of \(\mu_3 := m_1 \cdot \mu_2 \) (in \(\mathcal{P} \)), provided that

1. the rounding error \(\|G^{-1}(c_2) \cdot G' - c_2\|_{\infty} \) keeps “small”;

2. the multiplicative noise \(e_3 := G^{-1}(c_2) \cdot e_1^T + m_1 \cdot e_2 \) keeps “small”,

where \(e_1 = ((e_1)_1, \ldots, (e_1)_{(n+1)\ell}) \).

4.2 TGLWE Ciphertexts

Again, the operations and underlying techniques developed for TLWE and TGSW extend to polynomials. Torus elements are replaced with torus polynomials. Addition and external multiplication are performed modulo \(X^N + 1 \). The same trick using a gadget matrix (over \(\mathbb{T}_{N,q}[X] \)) is used to control the noise growth.

4.2.1 Addition of ciphertexts

Let \(\mu_1, \mu_2 \in \mathcal{P}_N[X] \) and their ciphertexts \(c_1 \leftarrow \text{TGLWE}_s(\mu_1) = (a_1, \ldots, a_k, \delta) \in \mathbb{T}_{N,q}[X]^{k+1} \) and \(c_2 \leftarrow \text{TGLWE}_s(\mu_2) = (a'_1, \ldots, a'_k, \delta') \in \mathbb{T}_{N,q}[X]^{k+1} \). If \(e_1 \) and \(e_2 \) are the respective noise present in \(c_1 \) and \(c_2 \) then \(c_3 := c_1 + c_2 = (a_1 + a'_1, \ldots, a_k + a'_k, \delta + \delta') \in \mathbb{T}_{N,q}[X]^{k+1} \) is a valid TGLWE encryption of \(\mu_3 := \mu_1 + \mu_2 \) (in \(\mathcal{P}_N[X] \)), provided that the additive noise \(e_3 := e_1 + e_2 \) keeps “small”.

4.2.2 Multiplication by a known polynomial

Let \(\mu \in \mathcal{P}_N[X] \) and let \(K \in \mathbb{Z} \subset \mathbb{Z}_N[X] \) (i.e., viewed as a degree 0 polynomial in \(\mathbb{Z}_N[X] \)). Given the ciphertext \(c \leftarrow \text{TGLWE}_s(\mu) \),

\[c' := K \cdot c \]

is a valid ciphertext of \(\mu' = K \cdot \mu \) (in \(\mathcal{P}_N[X] \)), provided that the resulting noise keeps “small”. More generally, for a (small) polynomial \(\bar{k} \in \mathbb{Z}_N[X] \), \(\bar{c}' = \bar{k} \cdot c \) is a valid ciphertext of \(\mu' = \bar{k} \cdot \mu \) (in \(\mathcal{P}_N[X] \)), provided that the resulting noise keeps “small”.

25
4.2.3 Multiplication of ciphertexts

Gadget matrix The “gadget vector” \(\mathbf{g} = (1/B, \ldots, 1/B^\ell) \in \mathbb{T}_q^\ell \) that we used for TLWE/TGSW encryption can be seen as an element in \(\mathbb{T}_{N,q}[X]^\ell \). It therefore applies to the polynomial setting too.

Adapting the dimension, we define the \textit{gadget matrix} \(\mathbf{G} \) over \(\mathbb{T}_{N,q}[X] \), \(\mathbf{G} \in \mathbb{T}_{N,q}[X]^{(k+1)\times(k+1)^\ell} \), as

\[
\mathbf{G}' = \mathbf{I}_{k+1} \otimes \mathbf{g}' = \begin{pmatrix}
1/B \\
1/B^\ell \\
\vdots \\
1/B \\
1/B \\
\vdots \\
\vdots \\
\vdots \\
1/B \\
1/B^\ell
\end{pmatrix}.
\]

The associated inverse transformation \(\mathbf{G}^{-1}(\cdot) \) flattens a vector of \((k + 1) \) polynomials of \(\mathbb{T}_{N,q}[X] \) into a vector of \((k + 1)^\ell \) polynomials of \(\mathbb{Z}_N[X] \) with small coefficients (i.e., in the range \([-\lfloor B/2 \rfloor, \lceil B/2 \rceil]) \). The definition of \(\mathbf{G}^{-1}(\cdot) \) is similar to the one of Section 4.1.3 where vectors in \(\mathbb{T}_q^{n+1} \) are replaced by vectors in \(\mathbb{T}_{N,q}[X]^{k+1} \). Also, for any polynomial vector \(\mathbf{p} \in \mathbb{T}_{N,q}[X]^{k+1} \), it holds that \(\mathbf{G}^{-1}(\mathbf{p}) \cdot \mathbf{G}' \approx \mathbf{p} \) and \(\mathbf{G}^{-1}(\mathbf{p}) \) is “small”.

\textit{Example 12.} Take \(k = 1, N = 2, \ell = 3, B = 4 \), and \(q = 256 \). Hence,

\[
\mathbf{G}' = \begin{pmatrix}
1/4 & 0 & 0 \\
1/16 & 0 & 0 \\
1/64 & 0 & 0 \\
0 & 1/4 & 0 \\
0 & 0 & 1/16 \\
0 & 0 & 0
\end{pmatrix}.
\]

If \(\mathbf{p} = \left(\frac{41}{256} + \frac{26}{256}X, \frac{31}{256} + \frac{25}{256}X \right) \equiv \left(\frac{41}{256} + \frac{26}{256}X, -\frac{25}{256} + \frac{35}{256}X \right) \pmod{(X^2 + 1, 1)} \) then

\[
\begin{align*}
\overline{p_1} &= \lfloor 4^3 \cdot 41/256 \rfloor + \lfloor 4^3 \cdot 26/256 \rfloor X = 10 + 7X \\
&= (1 \cdot 4^2 - 1 \cdot 4^1 - 2) + (1 \cdot 4^2 - 2 \cdot 4^1 - 1)X \\
&= (1 + X) \cdot 4^2 + (-1 - 2X) \cdot 4^3 + (-2 - X)
\end{align*}
\]

and

\[
\begin{align*}
\overline{p_2} &= \lfloor 4^3 \cdot (\frac{-25}{64}) \rfloor + \lfloor 4^3 \cdot 35/64 \rfloor X = -6 + 9X \\
&= (0 \cdot 4^2 - 1 \cdot 4^1 - 2) + (1 \cdot 4^2 - 2 \cdot 4^1 + 1)X \\
&= X \cdot 4^2 + (-1 - 2X) \cdot 4^3 + (-2 + X)
\end{align*}
\]

and so \(\mathbf{G}^{-1}(\mathbf{p}) = (1 + X, -1 - 2X, -2 - X, X, -1 - 2X, -2 + X) \).

\textit{TGGSW ciphertexts} Again, it is worth noting that a TGLWE ciphertext can be seen as \(\text{TGLWE}_3(\mu) \equiv \text{TGLWE}_3(0) + (0, \ldots, 0, 1) \cdot \mu \).
Let $p = B^\ell$ and such that $p \mid q$. Let also $\delta = (\delta_1, \ldots, \delta_k) \in \mathbb{B}_N[X]^k$. The *TGGSW encryption of* $m \in \overline{\mathbb{P}}_N[X]$ *under private key* δ *is defined as*

$$\text{TGGSW}_{\delta}(m) = \mathcal{X} + m \cdot \mathbf{G}^T \quad (\in \mathbb{T}_{N,q}[X]^{(k+1)\ell \times (k+1)})$$

where

$$\mathcal{X} \leftarrow \begin{pmatrix}
\text{TGLWE}_\delta(0) \\
\text{TGLWE}_\delta(0) \\
\vdots \\
\text{TGLWE}_\delta(0)
\end{pmatrix} \quad (k+1)\ell \text{ rows}.$$

External product of ciphertexts Let $m_1 \in \overline{\mathbb{P}}_N[X]$ and $\mu_2 \in \mathbb{P}_N[X]$ and their respective ciphertexts $\mathcal{C}_1 \leftarrow \text{TGGSW}_{\delta}(m_1) \ (\in \mathbb{T}_{N,q}[X]^{(k+1)\ell \times (k+1)})$ and $\mathcal{C}_2 \leftarrow \text{TGLWE}_{\delta}(\mu_2) \ (\in \mathbb{T}_{N,q}[X]^{k+1})$. The *external product* \Box of a TGGSW ciphertext by a TGLWE ciphertext is defined as

$$\Box: \text{TGGSW} \times \text{TGLWE} \rightarrow \text{TGLWE}, \quad (\mathcal{C}_1, \mathcal{C}_2) \mapsto \mathcal{C}_1 \Box \mathcal{C}_2 = \mathbf{G}^{-1}(\mathcal{C}_2) \cdot \mathcal{C}_1.$$

The resulting ciphertext $\mathcal{C}_3 \equiv \mathcal{C}_1 \Box \mathcal{C}_2 \ (\in \mathbb{T}_{N,q}[X]^{k+1})$ is a valid encryption of $\mu_3 = m_1 \cdot \mu_2 \ (\in \mathbb{P}_N[X])$, provided that the rounding error resulting from $\mathbf{G}^{-1}(\cdot)$ and the multiplicative noise keep “small”.

CMUX The main application of the external product in TFHE is the “controlled” multiplexer, or CMUX in short. Given two TGLWE ciphertexts $\mathcal{C}_0 \leftarrow \text{TGLWE}_{\delta}(\mu_0)$ and $\mathcal{C}_1 \leftarrow \text{TGLWE}_{\delta}(\mu_1)$, the CMux operator acts as a selector to choose between \mathcal{C}_0 and \mathcal{C}_1 according to a TGGSW encryption $\mathcal{C}_b \leftarrow \text{TGGSW}_{\delta}(b)$ of a control bit $b \in \{0, 1\}$. This can be computed through an external product as

$$\text{CMux}(\mathcal{C}_b, \mathcal{C}_0, \mathcal{C}_1) \leftarrow \mathcal{C}_b \Box (\mathcal{C}_1 - \mathcal{C}_0) + \mathcal{C}_0$$

$$\leftarrow \text{TGGSW}_{\delta}(b) \Box \text{TGLWE}_{\delta}(\mu_1 - \mu_0)$$

$$\quad + \text{TGLWE}_{\delta}(\mu_0)$$

$$\leftarrow \text{TGLWE}_{\delta}(b(\mu_1 - \mu_0) + \mu_0)$$

$$\leftarrow \text{TGLWE}_{\delta}(\mu_b).$$

The output is a TGLWE encryption of μ_b.

27
4.3 Implementation Notes

The encoding for integers modulo p (including bits when $p = 2$) presented in Section 2.2 respects the addition. In more details, for any $i_1, i_2 \in \mathbb{Z}/p\mathbb{Z}$, letting $i_3 = i_1 + i_2 \mod p$, we have $\text{Encode}(i_3) = \text{Encode}(i_1) + \text{Encode}(i_2)$ (in \mathbb{T}_p). The encoding also respects the external product: for any $i \in \mathbb{Z}/p\mathbb{Z}$ and any integer k, letting $i_k = k \cdot i \mod p$, we have $\text{Encode}(i_k) = k \cdot \text{Encode}(i)$ (in \mathbb{T}_p). In other words, the encoding is homomorphic and so complies with the homomorphic structure of the encryption.

The same holds true for the encoding for fixed-precision torus elements presented in Section 2.2.

5 Programmable Bootstrapping

As aforementioned, both TLWE and TGLWE encryptions are needed for implementing certain operations. We will see in this section that their combination is central to refreshing noisy TLWE ciphertexts. Such an operation is referred to as bootstrapping. Furthermore, this operation can be programmed to evaluate at the same time a selected function.

5.1 Gentry’s Recryption

For a (symmetric) fully homomorphic encryption algorithm Encrypt, given the encryption of x under private key sk, the homomorphic evaluation of a univariate function f yields the encryption of $f(x)$. This is illustrated in the next figure.

![Figure 2: Homomorphic evaluation](image)

Gentry’s key idea to reduce the noise present in a ciphertext is to homomorphically evaluate the decryption of the ciphertext using a homomorphic encryption of its own decryption key [Gen10]. The encryption of the decryption key (matching the encryption key used to produce the ciphertext) forms what is called the bootstrapping key.

Specifically, let $c \leftarrow \text{Encrypt}_{sk_1}(m)$ denote a noisy ciphertext encrypting a plaintext m and let $bsk \leftarrow \text{Encrypt}_{sk_2}(sk_1)$ denote the bootstrapping
key. Assume that function f in the above figure is the decryption function
dedicated to ciphertext c, viewed as the univariate function $\text{Decrypt}(\cdot, c)$. Then, letting $x = sk_1$, the homomorphic evaluation of f yields

$$\text{Encrypt}_{sk_2} (f(x)) = \text{Encrypt}_{sk_2} (\text{Decrypt}(sk_1, c)) = \text{Encrypt}_{sk_2} (m).$$

The procedure is detailed in Fig. 3.

Figure 3: Recryption

Starting with the noisy ciphertext $c \leftarrow \text{Encrypt}_{sk_1} (m)$, the recryption process ends up with a new ciphertext $\text{Encrypt}_{sk_1} (m)$, encrypting the same plaintext m. Note that the encryption keys are different. The encryption algorithms Encrypt and Decrypt may be distinct or not. In the latter case, the resulting ciphertext can be reverted back into a ciphertext under the initial key sk_1 thanks to a standard key-switching technique.

5.2 Bootstrapping

General description Let $s = (s_1, \ldots, s_n) \in \mathbb{R}^n$. Consider a TLWE encryption of $\mu \in \mathcal{P}$: we have $c \leftarrow \text{TLWE}_s (\mu) = (a_1, \ldots, a_n, b) \in T_q^{n+1}$ where $a_i \leftarrow T_q$ and $b = \sum_{j=1}^n s_j \cdot a_j + \mu^*$ with $\mu^* = \mu + e$ for some “small” noise error e. The goal of the bootstrapping procedure is to produce a TLWE ciphertext of the same plaintext but with a reduced amount of noise $e' < e$. So far, the only known way to bootstrap a ciphertext is Gentry’s recryption technique. In the case of TFHE, using the previous notations, its application involves two steps:

1. obtaining the noisy plaintext μ^* as $\mu^* = b - \sum_{j=1}^n s_j \cdot a_j \in T_q$;
2. recovering the plaintext μ by rounding μ^* to the closest plaintext as $\mu = \lfloor \mu^* \rfloor \mod p \in \mathcal{P}$.

These two steps have to be performed over encrypted data. The first step being linear is easy given an encryption of the s_j’s. The second step (i.e., the rounding) is more problematic. This is where polynomials come to the rescue.
Consider polynomial \(v(X) = v_0 + v_1 X + \cdots + v_{N-1} X^{N-1} \in T_{N,p}[X] = T_p[X]/(X^N + 1) \). The formula of the external multiplication in \(T_{N,p}[X] \) by a monomial (cf. Section 3.3) teaches that

\[
X^{-1} \cdot v(X) = X^{2N-1} \cdot v(X) = \begin{cases}
 v_j + \ldots & \text{for } 0 \leq j < N \\
 -v_j + \ldots & \text{for } N \leq j < 2N
\end{cases}.
\]

In other words, when \(0 \leq j < N \), the constant term of polynomial \(X^{-1} \cdot v(X) \) is \(v_j \). As we will see, this simple observation provides a way to round a torus element \(\mu^* \in T_q \) as an element of \(\mu \in T_p \), where \(p \mid q \).

Since \(\mu^* \in T_q \), we can write \(\mu^* = \mu^\ast/q \) where \(\mu^\ast := \lfloor q \mu^* \rfloor \mod q \) with \(0 \leq \mu^\ast < q \). If we suppose for a moment that \(N \geq q \), we have \(0 \leq \mu^\ast < N \). It also means that polynomial \(v \) has more coefficients than the number of possible values for \(\mu^\ast \). We can therefore assign a chosen value for \(v_j \), for any \(0 \leq j < q \), and an application of \(X^{-1} \cdot v(X) \) will yield \(v_j + \ldots \). In particular, if we select \(v_j := \lfloor (p j)/q \rfloor \mod p \in T_p \) plugging \(j = \mu^\ast \) in the relation \(X^{-1} \cdot v(X) = v_j + \ldots \) yields

\[
X^{-\mu^\ast} \cdot v(X) = \frac{\lfloor (p \mu^\ast)/q \rfloor \mod p}{p} + \ldots = \frac{\lfloor p \mu^\ast \rfloor \mod p}{p} + \ldots = \mu + \ldots
\]

namely, a polynomial whose constant term is the rounded value \(\mu \in T_p \).

Example 13. As an illustration, suppose we wish to round 5-bit precision torus elements \(\mu^* \) to 2-bit precision torus elements \(\mu \), for \(0 \leq \mu^* \leq 25/32 \); rounding by convention downwards in the case of a tie. This setting corresponds to \(q = 32 \) and \(p = 4 \) (that is, \(T_q = \frac{1}{32} \mathbb{Z}/\mathbb{Z} \) and \(T_p = \frac{1}{4} \mathbb{Z}/\mathbb{Z} \)).

<table>
<thead>
<tr>
<th>(\mu^*)</th>
<th>(\mu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 [\frac{3}{32}]</td>
<td>0 [\frac{3}{4}]</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>0 [\frac{7}{32}]</td>
<td>0 [\frac{3}{4}]</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>1 [\frac{5}{32}]</td>
<td>1 [\frac{3}{4}]</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>1 [\frac{13}{32}]</td>
<td>1 [\frac{3}{4}]</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>2 [\frac{21}{32}]</td>
<td>2 [\frac{3}{4}]</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>2 [\frac{25}{32}]</td>
<td>2 [\frac{3}{4}]</td>
</tr>
</tbody>
</table>

Since there are 26 possible values for \(\mu^* \), we set \(N = 32 \) (i.e., as the smallest power of 2 that is \(\geq 26 \)). We set polynomial \(v \) as

\[
v(X) = \frac{0}{4} + \frac{0}{4} X + \frac{0}{4} X^2 + \frac{3}{4} X^3 + \frac{0}{4} X^4 + \frac{1}{4} X^5 + \frac{1}{4} X^6 + \frac{1}{4} X^7 + \frac{1}{4} X^8 + \frac{1}{4} X^9 + \frac{1}{4} X^{10} + \frac{1}{4} X^{11} + \frac{1}{4} X^{12} + \frac{2}{4} X^{13} + \frac{2}{4} X^{14} + \frac{2}{4} X^{15} + \frac{2}{4} X^{16} + \frac{2}{4} X^{17} + \frac{2}{4} X^{18} + \frac{2}{4} X^{19} + \frac{2}{4} X^{20} + \frac{3}{4} X^{21} + \frac{3}{4} X^{22} + \frac{3}{4} X^{23} + \frac{3}{4} X^{24} + \frac{2}{4} X^{25}.
\]

It can be checked that any 5-bit precision element \(\mu^* \in \left[0, \frac{25}{32}\right] \subset T_q \), verifies

\[
X^{-\lfloor \frac{32}{4} \mu^* \rfloor} \cdot v(X) = \mu + \ldots
\]

where \(\mu \in T_p \) denotes the matching rounded value.
5.2.1 Blind rotation

As above, let $\tilde{\mu}^* = \lfloor q \mu^* \rfloor \mod q$. Let also $\tilde{a}_j = \lfloor qa_j \rfloor \mod q$ and $\tilde{b} = \lfloor qb \rfloor \mod q$. In order to bootstrap, one way to look at the decryption (without the rounding) is to see that

$$-\tilde{\mu}^* = -\tilde{b} + \sum_{j=1}^{n} s_j \tilde{a}_j \quad \text{(mod q)}.$$

This value can then be put at the exponent of X to get the monomial $X^{-\tilde{\mu}^*}$, which leads to plaintext μ from the evaluation of $X^{-\tilde{\mu}^*} \cdot \nu(X)$. There are a couple of complications in implementing this idea as it supposes $q < N$, which is not verified in practical settings. Typical cryptographic parameters mandate $N \in \{2^{10}, 2^{11}, 2^{12}\}$ and $q \in \{2^{32}, 2^{64}\}$.

First, the relation $X^{-\tilde{\mu}^*} \cdot \nu(X)$ being defined modulo $X^N + 1$, this means that, as a multiplicative element of $\mathbb{Z}_N[X]$, X is of order $2N$ (i.e., $X^{2N} = 1$) and thus exponent $-\tilde{\mu}^*$ in $X^{-\tilde{\mu}^*} \cdot \nu(X)$ is defined modulo $2N$. The value of $\tilde{\mu}^*$ needs therefore to be rescaled modulo $2N$. As a consequence, instead of starting with the relation $-\tilde{\mu}^* = -\tilde{b} + \sum_{j=1}^{n} s_j \tilde{a}_j \quad \text{(mod q)}$, we rely on the approximation

$$-\tilde{\mu}^* = -\tilde{b} + \sum_{j=1}^{n} s_j \tilde{a}_j \quad \text{(mod 2N)},$$

where $\tilde{b} = \lfloor 2Nb \rfloor \mod 2N$ and $\tilde{a}_j = \lfloor 2Na_j \rfloor \mod 2N$. This approximation may generate a small additional error that adds to the noise.

The additional error introduced by the discretization modulo $2N$ is called drift. Its impact on the result can be dealt with by a careful choice of the parameters.

Second, because polynomial ν lies in $\mathbb{T}_{N,p}[X]$ and thus has N coefficients, at most N values for $\tilde{\mu}^*$ can be encoded. This is addressed by ensuring that the most significant bit of $\tilde{\mu}^*$ is set to 0. In this case, $\tilde{\mu}^*$ can take at most N possible values.

From the above considerations, the so-called test polynomial ν is formed as

$$\nu := \nu(X) = \sum_{j=0}^{N-1} v_j X^j \quad \text{with } v_j = \lfloor \frac{p}{p} \rfloor \mod p \in \mathbb{P}$$

and the relation

$$X^{-\tilde{b} + \sum_{j=1}^{n} s_j \tilde{a}_j} \cdot \nu(X) = X^{-\tilde{\mu}^*} \cdot \nu(X) = \mu + \ldots$$

holds, provided that the drift is contained and that $0 \leq (\tilde{\mu}^* \mod 2N) < N$. For conciseness, we let $q_j := X^{-\tilde{b} + \sum_{j=1}^{n} s_j \tilde{a}_j} \cdot \nu$. The external product being

31
homogeneous, it follows that
\[q_j = (X^{-\tilde{b} + \sum_{i=1}^{j} s_i \tilde{a}_i} X^{s_j \tilde{a}_j}) \cdot v = X^{s_j \tilde{a}_j} \cdot (X^{-\tilde{b} + \sum_{i=1}^{j-1} s_i \tilde{a}_i} \cdot v) = X^{s_j \tilde{a}_j} \cdot q_{j-1} \]
\[
\begin{cases}
q_{j-1} & \text{if } s_j = 0 \\
X^{\tilde{a}_1} \cdot q_{j-1} & \text{if } s_j = 1
\end{cases}
\]
This provides an iterative method to get \(q_n = X^{-\tilde{b} + \sum_{i=1}^{n} s_i \tilde{a}_i} \cdot v \), starting at \(q_0 = X^{-\tilde{b}} \cdot v \) and then iterating on \(j \) from 1 to \(n \).

Gentry’s recryption does the same but over encrypted data. As the rounding method involves polynomials, we rely on TGLWE encryption. Let \(\delta' \in \mathbb{B}_N[X]^{k+1} \). We assume that we are given the bootstrapping keys \(\text{bsk}[j] \leftarrow \text{TGGSW}_{\delta'}(s_j) \in \mathbb{T}_{N,q}[X]^{(k+1) \times (k+1)} \), for \(1 \leq j \leq n \). We have:

<table>
<thead>
<tr>
<th>(in the clear)</th>
<th>(over encrypted data)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_0 \leftarrow X^{-\tilde{b}} \cdot v)</td>
<td>(c'0 \leftarrow X^{-\tilde{b}} \cdot \text{TGLWE}{\delta'}(v))</td>
</tr>
<tr>
<td>for (j = 1) to (n) do</td>
<td>for (j = 1) to (n) do</td>
</tr>
</tbody>
</table>
| \(q_j \leftarrow \begin{cases}
q_{j-1} & \text{if } s_j = 0 \\
X^{\tilde{a}_1} \cdot q_{j-1} & \text{if } s_j = 1
\end{cases} \) | \(c'_j \leftarrow \text{CMux(bsk}[j], c'_{j-1}, X^{\tilde{a}_j} \cdot c'_{j-1}) \) |
| end for | end for |
| return \(q_n \) | return \(c'_n \) |

Clearly, the output ciphertext \(\mathcal{c}' := c'_n \) is a TGLWE encryption of \(q_n = X^{-\tilde{b} + \sum_{i=1}^{n} s_i \tilde{a}_i} \cdot v \); i.e., \(c'_n \leftarrow \text{TGLWE}_{\delta'}(X^{-\tilde{b} + \sum_{i=1}^{n} s_i \tilde{a}_i} \cdot v) = \text{TGLWE}_{\delta'}(X^{-\tilde{\mu}} \cdot v) \). Finally, we remark that \((0, \ldots, 0, v) \in \mathbb{T}_{N,q}[X]^{k+1} \) is a valid TGLWE encryption for \(v \); we can thus take \(c'_0 \leftarrow X^{-\tilde{b}} \cdot (0, \ldots, 0, v) \).

Summing up, given a TLWE ciphertext \(\mathcal{c} \leftarrow \text{TLWE}_{\delta}(\mu) \in \mathbb{T}_{n+1}^{n+1} \) under the key \(\mathbf{s} = (s_1, \ldots, s_n) \in \mathbb{B}^n \) and the matching bootstrapping-key vector \(\text{bsk} = (\text{bsk}[1], \ldots, \text{bsk}[n]) \) with \(\text{bsk}[j] \leftarrow \text{TGGSW}_{\delta'}(s_j) \) and \(\delta' = (\delta'_1, \ldots, \delta'_k) \in \mathbb{B}_N[X]^k \), we get a TGLWE ciphertext \(\mathcal{c}' \leftarrow \text{TGLWE}_{\delta'}(X^{-\tilde{\mu}} \cdot v) = \text{TGLWE}_{\delta'}(\mu + \ldots) \in \mathbb{T}_{N,q}[X]^{k+1} \) under the key \(\delta' \) for the predefined polynomial \(v(X) = \sum_{j=0}^{N-1} \left[p_j \cdot (2N)^{j} \mod p \right] X^j \in \mathbb{F}_N[X] \), in two steps as:

1. define \(\mathcal{c} := (0, \ldots, 0, v) \) and \(\tilde{\mathcal{c}} := (\tilde{a}_1, \ldots, \tilde{a}_n, \tilde{b}) \leftarrow [c 2N] \mod 2N; \)
2. do
\[
\begin{cases}
\mathcal{c}_0' \leftarrow X^{-\tilde{b}} \cdot \mathcal{c} \\
\mathcal{c}_j' \leftarrow \text{CMux(\text{bsk}[j], c'_{j-1}, X^{\tilde{a}_j} \cdot c'_{j-1})} & \text{for } 1 \leq j \leq n
\end{cases}
\]
and set \(\mathcal{c}' := \mathcal{c}_n' \).

We write \(\mathcal{c}' \leftarrow \text{BlindRotate}_{\text{bsk}}(\mathcal{c}, \tilde{\mathcal{c}}) \) where \(\text{bsk} = (\text{bsk}[1], \ldots, \text{bsk}[n]) \).

Algorithms in pseudo-code are provided in Appendix B.
5.2.2 Sample extraction

The previous conversion step turns the TLWE encryption of a plaintext \(\mu \in \mathbb{P} \) into a TGLWE encryption of a polynomial plaintext \(\mu(X) := X^{-\tilde{\mu}} \cdot \nu \in \mathbb{P}_N[X] \) whose constant term is \(\mu \). The constant-term component is then extracted to give rise to a refreshed TLWE encryption of \(\mu \), but under a different key. This is referred to as sample extraction. We note that, although it is applied to the constant term, the technique readily adapts to extract other components of \(\mu \).

In more detail, on input a TLWE ciphertext \(c \leftarrow \text{TLWE}_q(\mu) \in \mathbb{T}_q^{n+1} \), the previous step yields at the end of the blind rotation a TGLWE ciphertext \(c' \leftarrow \text{TGLWE}_q'(X^{-\tilde{\mu}} \cdot \nu) = \text{TGLWE}_q'(\mu + \ldots) \in \mathbb{T}_{N,q}[X]^{k+1} \).

Let \(\delta' = (\delta'_1, \ldots, \delta'_k) \in \mathbb{B}_N[X]^k \) and \(c' = (\alpha'_1, \ldots, \alpha'_k, \delta') \in \mathbb{T}_N[X]^{k+1} \) where, for \(1 \leq j \leq k \), \(\delta'_j = \delta'_j(X) = (s'_j) + (s'_j)_1 X + \cdots + (s'_j)_{N-1} X^{N-1} \) and \(\alpha'_j := \alpha'_j(X) = (a'_j)_0 + (a'_j)_1 X + \cdots + (a'_j)_{N-1} X^{N-1} \). Let also \(\mu = X^{-\tilde{\mu}} \cdot \nu = \mu + \cdots \). By definition of a TLWE ciphertext, there exists \(\epsilon := \epsilon(X) = e_0 + e_1 X + \cdots + e_{N-1} X^{N-1} \) such that \(\delta' = \sum_{j=1}^k \delta'_j \cdot \alpha'_j + \mu + \epsilon \).

Expanding polynomial \(\delta' \), we get
\[
\delta' := \delta'(X) = b'_0 + b'_1 X + \cdots + b'_{N-1} X^{N-1} \\
= \sum_{j=1}^k ((s'_j)_0 + \cdots + (s'_j)_{N-1} X^{N-1}) \cdot ((a'_j)_0 + \cdots + (a'_j)_{N-1} X^{N-1}) + \mu + \epsilon.
\]

Now, if we take a close look at the constant term \(b'_0 \in \mathbb{T}_q \) of polynomial \(\delta' \), we see that it satisfies
\[
b'_0 = \sum_{j=1}^k [(s'_j)_0 \cdot (a'_j)_0 - (s'_j)_1 \cdot (a'_j)_{N-1} - \cdots - (s'_j)_{N-1} \cdot (a'_j)_1] + \mu + e_0 \\
= ((s'_1)_0, (s'_1)_1, \ldots, (s'_1)_{N-1}, \ldots, (s'_k)_0, (s'_k)_1, \ldots, (s'_k)_{N-1}) \cdot \\
((a'_1)_0, -(a'_1)_{N-1}, \ldots, -(a'_1)_1, \ldots, (a'_k)_0, -(a'_k)_{N-1}, \ldots, \\
-(a'_k)_1) + \mu + e_0.
\]

As a result, defining \(s' := ((s'_1)_0, (s'_1)_1, \ldots, (s'_k)_{N-1}) \in \mathbb{B}_N^{kN} \) and \(\tilde{a}' := ((a'_1)_0, -(a'_1)_{N-1}, \ldots, -(a'_k)_1) \in \mathbb{T}_q^{kN} \), the vector \(c' := (\tilde{a}', b'_0) \in \mathbb{T}_q^{kN+1} \) can be viewed as a TLWE encryption of \(\mu \) under key \(s' \).

We write \(s' \leftarrow \text{Recode}(\delta') \) and \(c' \leftarrow \text{SampleExtract}(c') \).
5.2.3 Key switching

The loop is almost closed. With the above procedure, ciphertexts c and $c' \leftarrow \text{SampleExtract}(\text{BlindRotate}_{\text{bsk}}(c, \tilde{c}))$ both encrypt plaintext μ but they feature a different set of parameters: $c \leftarrow \text{TLWE}_s(\mu) \in \mathbb{T}_q^{n+1}$ and $c' \leftarrow \text{TLWE}_{s'}(\mu) \in \mathbb{T}_q^{kN+1}$. The key switching algorithm converts a ciphertext under a key into a ciphertext under another key. Its implementation requires key-switching keys, i.e., TLWE encryptions of the key bits of s' with respect to the original key s. The procedure may seem conceptually very similar to the bootstrapping, but there is a fundamental difference between the two techniques: bootstrapping reduces the noise (and is computationally demanding) whereas the key switching makes the noise increase (but is cheaper to evaluate).

Assume we are given the key-switching keys

$$\text{ksk}[i, j] \leftarrow \text{TLWE}_s(s'_i \cdot B^{-j}) \quad (1 \leq i \leq kN \text{ and } 1 \leq j \leq \ell)$$

for some parameters B and ℓ defining a gadget decomposition (see Section 4.1.3). On input ciphertext $c' \leftarrow \text{TLWE}_{s'}(\mu) = (a'_1, \ldots, a'_{kN}, b') \in \mathbb{T}_q^{kN+1}$ under the key $s' = (s'_1, \ldots, s'_{kN}) \in \mathbb{B}^{kN}$, the ciphertext

$$c'' := (0, \ldots, 0, b') - \sum_{i=1}^{kN} \sum_{j=1}^{\ell} (\overline{a'_i})_j \cdot \text{ksk}[i, j]$$

where

$$((\overline{a'_i})_1, \ldots, (\overline{a'_i})_\ell) = g^{-1}(a'_i) \quad \text{with } (\overline{a'_i})_j \in [-\lfloor B/2 \rfloor, \lceil B/2 \rceil]$$

is a TLWE encryption of μ under the key $s \in \mathbb{B}^n$, provided that the resulting noise error remains contained.

We write $c'' \leftarrow \text{KeySwitch}_{\text{ksk}}(c')$ with $\text{ksk} = \{\text{ksk}[i, j]\}_{1 \leq i \leq kN, \ 1 \leq j \leq \ell}$.

Proof. The gadget decomposition leads to $g^{-1}(a'_i) \cdot g^j = \sum_{j=1}^{\ell} (\overline{a'_i})_j \cdot B^{-j} = a'_i + \epsilon_i$ where ϵ_i denotes the rounding error. Hence, $\sum_{j=1}^{\ell} (\overline{a'_i})_j \cdot \text{ksk}[i, j] = \sum_{j=1}^{\ell} (\overline{a'_i})_j \cdot \text{TLWE}_s(s'_i \cdot B^{-j}) = \text{TLWE}_s(s'_i \cdot (a'_i + \epsilon_i))$. Moreover, $(0, \ldots, 0, b')$ is a valid TLWE encryption for b'. Letting e' the noise present in c', we therefore see that $c'' \leftarrow \text{TLWE}_s(b' - \sum_{i=1}^{kN} s'_i \cdot (a'_i + \epsilon_i)) = \text{TLWE}_s(\mu + e' + \sum_{i=1}^{kN} s'_i \epsilon_i)$, which decrypts to μ if the error $e'' := e' + \sum_{i=1}^{kN} s'_i \epsilon_i$ keeps small. \qed

34
5.2.4 Putting it all together

To sum up, the bootstrapping of a TLWE ciphertext $c \leftarrow \text{TLWE}_s(\mu) \in \mathbb{T}_q^{n+1}$ with $s = (s_1, \ldots, s_n) \in \mathbb{B}^n$ proceeds as a series of 3 steps.

1. $c' \leftarrow \text{BlindRotate}_{bsk}(c, \tilde{c}) \ (\in \mathbb{T}_{N,q}[X]^{k+1})$, where

 - $c = (0, \ldots, 0, v) \in \mathbb{T}_{N,q}[X]^{k+1}$
 with $v := v(X) = \sum_{j=0}^{N-1} \frac{[p j/(2N)] \mod p}{p} X^j \in \mathbb{F}_N[X] \subset \mathbb{T}_{N,q}[X]$
 - $\tilde{c} = \lfloor c 2N \rfloor \in (\mathbb{Z}/2NZ)^{n+1}$,
 - $bsk = (bsk[j])_{1 \leq j \leq n}$
 with $\begin{cases} bsk[j] \leftarrow \text{TGGSW}_s(s_j) \in \mathbb{T}_{N,q}[X]^{(k+1) \times (k+1)}; \\ \beta' = (\beta'_1, \ldots, \beta'_{k}) \in \mathbb{B}[X]^k \end{cases}$

2. $c' \leftarrow \text{SampleExtract}(c') \ (\in \mathbb{T}_q^{kN+1})$;

3. $c'' \leftarrow \text{KeySwitch}_{skk}(c') \ (\in \mathbb{T}_q^{n+1})$, where

 - $skk = (skk[i, j])_{1 \leq i \leq kN}$
 with $\begin{cases} skk[i, j] \leftarrow \text{TLWE}_s(s'_i \cdot \text{B}^{-1}) \in \mathbb{T}_q^{n+1} \\ s' = (s'_1, \ldots, s'_{kN}) \leftarrow \text{Recode}(\beta') \in \mathbb{B}^{kN}. \end{cases}$

5.3 Programmable Bootstrapping

The (regular) bootstrapping essentially relies on the observation that $X^{-1} \cdot v(X) = v_j + \ldots$, for any $0 \leq j < N$. In the above section, test polynomial $v \in \mathbb{T}_N[X]$ was defined as $v(X) = \sum_{j=0}^{N-1} \frac{[p j/(2N)] \mod p}{p} X^j$.

Now, given a function $f : \mathbb{T}_p \rightarrow \mathbb{T}_p$, if we instead define test polynomial v as

$$v(X) = \sum_{j=0}^{N-1} f\left(\frac{[p j/(2N)] \mod p}{p}\right) X^j,$$

we remark that the resulting polynomial $X^{-\tilde{\mu}^*} \cdot v(X)$ has for constant term $f\left(\frac{[p \tilde{\mu}^*/(2N)] \mod p}{p}\right) = f(\mu)$, assuming the absence of drift impact and $0 \leq (\tilde{\mu}^* \mod 2N) < N$. Under these conditions, on input a (noisy) TLWE ciphertext $c \leftarrow \text{TLWE}_s(\mu)$, the above procedure (cf. Section 5.2.4) outputs a TLWE ciphertext $c' \leftarrow \text{TLWE}_s(f(\mu))$ featuring a small amount of noise. Observe that the regular bootstrapping corresponds to the identity function for f.

We note that the range restriction on $\tilde{\mu}^*$ can be suppressed when function f is negacyclic (i.e., if $f(\mu + \frac{1}{2}) = -f(\mu)$, $\forall \mu \in \mathbb{T}_p$). The “sign” function over the torus is an example of negacyclic function.
5.4 More Techniques

The bootstrapping and the programmable bootstrapping as presented in the previous sections can be extended in multiple directions. This allows for more versatility or better performance. We list below a number of such modifications.

Arbitrary functions As described in the previous section, the programmable bootstrapping requires either $0 \leq (\tilde{\mu}^* \mod 2N) < N$ or function f to be negacyclic. The first condition can be met through the use of padding bits [CJL+20]. Another approach is to generalize the programmable bootstrapping to an arbitrary (i.e., non-necessarily negacyclic) function $f: \mathbb{T}_p \rightarrow \mathbb{T}_p$ [CLOT21]; see also [KS21, LMP21]. In particular, [LMP21, Sect. 4] presents an efficient strategy for homomorphically evaluating an arbitrary function f from a succession of two programmable bootstrappings on negacyclic functions.

Larger precision Parameter N limits the number of values that can be programmed in a programmable bootstrapping. For typical parameters, the precision is limited to 6 or 7 bits. Two methods for homomorphically evaluating large look-up tables are presented in [GBA21]. Higher precision is achieved by decomposing large plaintexts into smaller plaintexts that are individually encrypted. The first method makes use of tree evaluation while the second one relies on chaining.

Multi-value programmable bootstrapping Suppose one needs to get a TLWE encryption of $f_i(\mu)$ for multiple functions $f_i: \mathbb{T}_p \rightarrow \mathbb{T}_p$. In certain cases, this can be achieved using a single blind rotation [CIM19]. Each test polynomial v_i (corresponding to the homomorphic evaluation of function f_i) is split into two factors: a first factor k that is independent f_i and a second factor u_i that depends on f_i but with expected low-norm coefficients (in order to control the noise growth). A blind rotation is performed with k as the test polynomial. Multiplying the obtained result with polynomial u_i leads to an output equivalent to a blind rotation with v_i. A subsequent sample extraction and key switching yield a TLWE encryption of $f_i(\mu)$.

Ternary keys and more The blind rotation makes essential the use of binary keys. Following the astute observation of [MP21] that a ternary vector $s = (s_1, \ldots, s_n) \in \{-1, 0, 1\}^n$ can be expressed as the difference of two
binary vectors, the authors of [JP22] provide a general method extending the programmable bootstrapping with secret keys in higher radices. The cost is essentially only one external product per key digit but the total number of bootstrapping keys increases with the radix size. See [JP22] for an analysis of the different possible trade-offs.

References

[CKKS17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. Homomorphic encryption for arithmetic of approximate numbers. In T. Takagi and T. Peyrin, editors, Advances in Cryptology – ASIACRYPT

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with errors: Conceptually-simpler, asymptotically-faster,

[MP21] Daniele Micciancio and Yuriy Polyakov. Bootstrapping in FHEW-like cryptosystems. In M. Brenner et al., editors, 9th Workshop on En-

A From Private Key to Public Key

As described in Sections 2 and 3, TLWE and TGLWE are private-key encryption schemes. This is not a restriction because, as demonstrated in [Rot11], any additively homomorphic private-key encryption scheme can be converted into a public-key encryption scheme. In this appendix, we expand on how to extend TLWE and TGLWE to the public-key setting.

Let $\mu \in \mathcal{P}$. We noticed in Section 4.1.3 that the encryption of μ using the private-key TLWE encryption scheme (Section 2.1) can be put under the form

$$\text{TLWE}_s(\mu) \leftarrow \text{TLWE}_s(0) + (0, \ldots, 0, \mu) .$$

Only the first part—i.e., $\text{TLWE}_s(0)$—involves the private key s.

Now consider m private-key TLWE encryptions of ‘0’. TLWE encryption being additively homomorphic, any linear combination of these encryptions of ‘0’ is also a private-key TLWE encryption of ‘0’ (provided that the resulting noise keeps “small”). This leads to a [public-key] version of TLWE encryption. The public key is $\text{pk} = Z$, a $m \times (n + 1)$ matrix whose rows are private-key TLWE encryptions of 0. The [public-key] encryption of $\mu \in \mathcal{P}$ is then obtained by adding together a random subset of the encryptions of 0 present in the public key Z and adding to it $(0, \ldots, 0, \mu)$. Specifically, the public-key encryption of μ is given by

$$\text{TLWE}_{\text{pk}}(\mu) = r \cdot Z + (0, \ldots, 0, \mu)$$

where $r \xleftarrow{} \mathbb{B}^m$.

More formally:

<table>
<thead>
<tr>
<th>Public-key TLWE Encryption</th>
</tr>
</thead>
<tbody>
<tr>
<td>KeyGen(1^λ) On input security parameter λ, define two positive integers m, n, select positive integers p and q such $p</td>
</tr>
</tbody>
</table>
The public parameters are $\mathsf{pp} = \{m, n, \sigma, p, q\}$, the public key is $\mathsf{pk} = \mathbf{Z}$, and the private key is $\mathsf{sk} = \mathbf{s}$.

Encrypt $\mathsf{pk}(\mu)$ The [public-key] encryption of $\mu \in \mathcal{P}$ is given by

$$\mathbf{c} = \mathbf{r} \cdot \mathbf{Z} + (0, \ldots, 0, \mu) \in \mathbb{T}^{n+1}_{q}$$

for a random vector $\mathbf{r} \xleftarrow{\$} \mathbb{B}^m$.

Decrypt $\mathsf{sk}(\mathbf{c})$ To decrypt $\mathbf{c} = (a_1, \ldots, a_n, b)$, using secret decryption key $\mathbf{s} = (s_1, \ldots, s_n)$, compute (in \mathbb{T}_q)

$$\mu^* = b - \sum_{j=1}^{n} s_j \cdot a_j$$

and return closest plaintext $\mu \in \mathcal{P}$ as the decryption of \mathbf{c}.

The public-key variant of private-key TGLWE encryption (see Section 3.1) is obtained analogously. We present it below for completeness. The key observations are that (i) for $\mu \in \mathcal{P}_N[X]$ we have $\text{TGLWE}_s(\mu) = \text{TGLWE}_s(0) + (0, \ldots, 0, \mu)$—see Section 4.2.3, and (ii) private-key TGLWE encryption is additively homomorphic.

Public-key TGLWE Encryption

KeyGen(1^λ) On input security parameter λ, define integers N, k, m with N a power of 2 and $m, k \geq 1$. Select positive integers p and q such $p \mid q$. Define also a discretized error distribution \mathcal{X} over $\mathbb{Z}_N[X]$ induced by a normal distribution $\chi = \mathcal{N}(0, \sigma^2)$ over $\mathbb{R}_N[X]$. Sample uniformly at random a vector $\mathbf{s} = (s_1, \ldots, s_k) \xleftarrow{\$} \mathbb{B}_N[X]^k$. Using \mathbf{s}, randomly generate m [private-key] TGLWE encryptions of 0 (see Section 3.1), and form the corresponding matrix

$$\mathcal{E} \leftarrow \begin{pmatrix} \text{TGLWE}_s(0) \\ \vdots \\ \text{TGLWE}_s(0) \end{pmatrix} \in \mathbb{T}_{q}^{m \times (k+1)}$$

The plaintext space is $\mathcal{P}_N[X] \subset \mathbb{T}_{q}^{N, q} [X]$ where $\mathbb{T}_q = q^{-1}\mathbb{Z}/\mathbb{Z}$. The public parameters are $\mathsf{pp} = \{m, k, N, \sigma, p, q\}$, the public key is $\mathsf{pk} = \mathcal{E}$, and the private key is $\mathsf{sk} = \mathbf{s}$.
Encrypt\(_{pk}(\mu)\) The [public-key] encryption of \(\mu \in P_N[X]\) is given by

\[c = r \cdot Z + (0, \ldots, 0, \mu) \in T_{N,q}[X]^{k+1}\]

for a random vector \(r \leftarrow \mathbb{B}_N[X]^m\).

Decrypt\(_{sk}(c)\) To decrypt \(c = (c_1, \ldots, c_n, \theta)\), using secret decryption key \(\delta = (\delta_1, \ldots, \delta_n)\), compute (in \(T_{N,q}[X]\))

\[\mu^* = \theta - \sum_{j=1}^{k} \delta_j \cdot a_j\]

and return the closest plaintext \(\mu \in P_N[X]\) as the decryption of \(c\).

B Pseudo-Code

CMux

| Input: | 1) \(c_0, c_1 \in T_{N,q}[X]^{k+1}\)
2) \(K \in \mathbb{T}_{N,q}[X]^{(k+1)\ell \times (k+1)}\) where \(K \leftarrow \text{TGGSW}_\delta(b)\) with \(b \in \{0, 1\}\) and \(\delta \in \mathbb{B}_N[X]^k\) |
Output:	\(c' \leftarrow \text{CMux}(K, c_0, c_1) \in T_{N,q}[X]^{k+1}\)
	\(c' \leftarrow K \odot (c_1 - c_0) + c_0\)
	return \(c'\)

BlindRotate

| Input: | 1) \(c \leftarrow \text{TGLWE}_\delta(\mu) \in T_{N,q}[X]^{k+1}\)
2) \(\bar{c} = (\bar{a}_1, \ldots, \bar{a}_n, \bar{b}) \in (\mathbb{Z}/2\mathbb{Z})^{n+1}\) |
	3) \(\text{bsk} = (\text{bsk}[1], \ldots, \text{bsk}[n]) \in (T_{N,q}[X]^{(k+1)\ell \times (k+1)})^n\)
	where \(\text{bsk}[j] \leftarrow \text{TGGSW}_\delta(s_j)\) with \(s \in \mathbb{B}_N[X]^k\) and \(s = (s_1, \ldots, s_n) \in \mathbb{B}^n\)
Output:	\(c' \leftarrow \text{BlindRotate}_{\text{bsk}}(c, \bar{c}) \in T_{N,q}[X]^{k+1}\)
	\(c' \leftarrow X^{-\delta} \cdot c\)
for \(j = 1\) to \(n\) do	
	\(c' \leftarrow \text{CMux}(\text{bsk}[j], c', X^\delta \cdot c')\)
	end for
	return \(c'\)
SampleExtract

Input: \(c \leftarrow \text{TGLWE}_s(\mu) = (a_1, \ldots, a_k, b) \in \mathbb{T}_{N,q}[X]^{k+1} \) with
\[
a_j(X) = (a_j)_0 + (a_j)_1 X + \cdots + (a_j)_{N-1} X^{N-1}
\]
and \(\delta(X) = b_0 + b_1 X + \cdots + b_{N-1} X^{N-1} \), and where
\[
\mu(X) = \mu_0 + \cdots + \mu_{N-1} X^{N-1} \in \mathbb{T}_N[X]
\]

Output: \(c' \leftarrow \text{SampleExtract}(c) \in \mathbb{T}_{q,n}^{kN+1} \)
\[
\alpha' \leftarrow ((a_1)_0, -(a_1)_N, \ldots, -(a_1)_1, \\
\ldots, (a_k)_0, -(a_k)_N, \ldots, -(a_k)_1)
\]
\[
c' \leftarrow (\alpha', b_0)
\]
return \(c' \)

Recode

Input: \(s = (s_1, \ldots, s_k) \in \mathbb{B}_{N,q}[X]^k \) with
\[
s_j(X) = (s_j)_0 + (s_j)_1 X + \cdots + (s_j)_{N-1} X^{N-1}
\]
for \(1 \leq j \leq k \)

Output: \(s' \leftarrow \text{Recode}(s) \in \mathbb{B}^{kN} \)
\[
s' \leftarrow ((s_1)_0, (s_1)_1, \ldots, (s_1)_N, \\
\ldots, (s_k)_0, (s_k)_1, \ldots, (s_k)_N)
\]
return \(s' \)

KeySwitch

Input: 1) \(c \leftarrow \text{TLWE}_s(\mu) = (a_1, \ldots, a_n, b) \in \mathbb{T}_q^{n+1} \)
with \(s = (s_1, \ldots, s_n) \in \mathbb{B}^n \)
2) \(\text{ksk} = (\text{ksk}[i,j])_{1 \leq i \leq n} \) with \(\text{ksk}[i,j] \in \mathbb{T}_q^{n'+1} \)
\[
\text{where } \text{ksk}[i,j] \leftarrow \text{TLWE}_{s'}(s_i \cdot B_j^{-1}) \) with \(s' \in \mathbb{B}^n \)

Output: \(c' \leftarrow \text{KeySwitch}_{\text{ksk}}(c) \in \mathbb{T}_q^{n'+1} \)
\[
c' \leftarrow (0, \ldots, 0, b)
\]
for \(i = 1 \) to \(n \) do
\[
\left((\overline{a})_1, \ldots, (\overline{a})_{\ell} \right) \leftarrow g^{-1}(a_i)
\]
\[
d' \leftarrow (\overline{a})_1 \cdot \text{ksk}[i,1]
\]
for \(j = 2 \) to \(\ell \) do
\[
d' \leftarrow d' + (\overline{a})_j \cdot \text{ksk}[i,j]
\]
\[
c' \leftarrow c' - d'
\]
end for

return \(c' \)

C Index to Notations

In the following notations, letters have the following significance:

- N: a power of two;
- q: ciphertext modulus, $q = 2^\Omega$ where Ω is the bit-precision for the representation;
- p: plaintext modulus such that $p \mid q$.

<table>
<thead>
<tr>
<th>Formal symbolism</th>
<th>Meaning</th>
<th>Section reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>\cdot</td>
<td>external product</td>
<td>Section 1.1</td>
</tr>
<tr>
<td>$\lfloor x \rfloor$</td>
<td>largest integer $\leq x$</td>
<td>Section 1.3</td>
</tr>
<tr>
<td>$\lceil x \rceil$</td>
<td>smallest integer $\geq x$</td>
<td>Section 1.3</td>
</tr>
<tr>
<td>$\lfloor x \rfloor$</td>
<td>nearest integer to x</td>
<td>Section 1.3</td>
</tr>
<tr>
<td>$\Phi(X)$</td>
<td>cyclotomic polynomial</td>
<td>Section 1.1</td>
</tr>
<tr>
<td>\mathbb{B}</td>
<td>$\mathbb{B} = {0, 1}$</td>
<td>Section 1.3</td>
</tr>
<tr>
<td>$\mathbb{B}_N[X]$</td>
<td>$\mathbb{B}_N[X] = \mathbb{B}[X]/(X^N + 1)$</td>
<td>Section 1.3</td>
</tr>
<tr>
<td>G</td>
<td>gadget matrix</td>
<td>Section 4.1.3</td>
</tr>
<tr>
<td>\mathcal{P}</td>
<td>$\mathcal{P} = \mathcal{T}_p$ (plaintext space)</td>
<td>Section 1.3</td>
</tr>
<tr>
<td>\mathcal{P}</td>
<td>$\mathcal{P} = \mathbb{Z}/p\mathbb{Z}$</td>
<td>Section 1.3</td>
</tr>
<tr>
<td>$\mathcal{P}_N[X]$</td>
<td>$\mathcal{P}_N[X] = \mathcal{P}[X]/(X^N + 1)$</td>
<td>Section 1.3</td>
</tr>
<tr>
<td>\mathcal{T}</td>
<td>$\mathcal{T} \in \mathbb{R}/\mathbb{Z}$ (real torus)</td>
<td>Section 1.1</td>
</tr>
<tr>
<td>T_q</td>
<td>$T_q = \frac{1}{q}\mathbb{Z}/\mathbb{Z}$ (discretized torus)</td>
<td>Section 2.1</td>
</tr>
<tr>
<td>$\mathcal{T}_N[X]$</td>
<td>$\mathcal{T}_N[X] = \mathcal{T}[X]/(X^N + 1)$</td>
<td>Section 1.1</td>
</tr>
<tr>
<td>$\mathcal{T}_{N,q}[X]$</td>
<td>$\mathcal{T}_{N,q}[X] = T_q[X]/(X^N + 1)$</td>
<td>Section 3.1</td>
</tr>
<tr>
<td>$\mathbb{Z}_N[X]$</td>
<td>$\mathbb{Z}_N[X] = \mathbb{Z}[X]/(X^N + 1)$</td>
<td>Section 1.1</td>
</tr>
</tbody>
</table>