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Abstract. The celebrated Fiat-Shamir transformation turns any public-coin interactive proof into a
non-interactive one, which inherits the main security properties (in the random oracle model) of the
interactive version. While originally considered in the context of 3-move public-coin interactive proofs,
i.e., so-called Σ-protocols, it is now applied to multi-round protocols as well. Unfortunately, the security
loss for a (2µ + 1)-move protocol is, in general, Qµ, where Q is the number of oracle queries performed
by the attacker. In general, this is the best one can hope for, as it is easy to see that this loss applies
to the µ-fold sequential repetition of Σ-protocols, but it raises the question whether certain (natural)
classes of interactive proofs feature a milder security loss.
In this work, we give positive and negative results on this question. On the positive side, we show that
for (k1, . . . , kµ)-special-sound protocols (which cover a broad class of use cases), the knowledge error
degrades linearly in Q, instead of Qµ. On the negative side, we show that for t-fold parallel repetitions
of typical (k1, . . . , kµ)-special-sound protocols with t ≥ µ (and assuming for simplicity that t and Q are
integer multiples of µ), there is an attack that results in a security loss of approximately 1

2 Qµ/µµ+t.

1 Introduction

1.1 Background

The celebrated and broadly used Fiat-Shamir transformation turns any public-coin interactive proof into
a non-interactive proof, which inherits the main security properties (in the random oracle model) of the
interactive version. The rough idea is to replace the random challenges, which are provided by the verifier in
the interactive version, by the hash of the current message (concatenated with the messages from previous
rounds). By a small adjustment, where also the to-be-signed message is included in the hashes, the trans-
formation turns any public-coin interactive proof into a signature scheme. Indeed, the latter is a commonly
used design principle for constructing very efficient signature schemes.

While originally considered in the context of 3-move public-coin interactive proofs, i.e., so-called Σ-
protocols, the Fiat-Shamir transformation also applies to multi-round protocols. However, a major drawback
in the case of multi-round protocols is that, in general, the security loss obtained by applying the Fiat-Shamir
transformation grows exponentially with the number of rounds. Concretely, for any (2µ+1)-move interactive
proof Π (where we may assume that the prover speaks first and last, so that the number of communication
rounds is indeed odd) that admits a cheating probability of at most ϵ, captured by the knowledge or soundness
error, the Fiat-Shamir-transformed protocol FS[Π] admits a cheating probability of at most (Q+1)µ ·ϵ, where
Q denotes the number of random-oracle queries admitted to the dishonest prover. Furthermore, there are
(contrived) examples of multi-round protocols Π for which this (Q + 1)µ security loss is almost tight. For
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instance, the µ-fold sequential repetition Π of a special-sound Σ-protocol with challenge space C is ϵ-sound
with ϵ = 1

|C|µ , while it is easy to see that, by attacking the sequential repetitions round by round, investing
Q/µ queries per round to try to find a “good” challenge, and assuming |C| to be much larger than Q, its
Fiat-Shamir transformation FS[Π] can be broken with probability approximately

(
Q
µ

1
|C|
)µ =

(
Q
µ

)µ · ϵ.2

For µ beyond 1 or 2, let alone for non-constant µ (e.g., for Bulletproofs-like protocols [BCC+16,BBB+18]),
this is a very unfortunate situation when it comes to choosing concrete security parameters. If one wants
to rely on the proven security reduction, one needs to choose a large security parameter for Π, in order to
compensate for the order Qµ security loss, effecting its efficiency; alternatively, one has to give up on proven
security and simply assume that the security loss is much milder than what the general bound suggests —
indeed, for the protocols one cares about, the known attacks do not feature such a large security loss. The
latter of simply assuming the loss to be milder has become common practice.

This situation gives rise to the following question: Do there exist natural classes of multi-round public-coin
interactive proofs for which the security loss behaves more benign than what the general reduction suggests?
Ideally, the general Qµ loss appears for contrived examples only. So far, the only positive result in that
direction is [GT21], which shows an online/straight-line extractor for Bulletproofs and related protocols in
the algebraic group model. They prove a security loss linear in Q (and linear in n, the statement size).

In this work, we address this question (in the plain random-oracle model), and give both positive and
negative answers, as explained in more detail below.

1.2 Our Results

On the positive side, we show that the Fiat-Shamir transformation of any (k1, . . . , kµ)-special-sound interac-
tive proof has a security loss of at most Q+1. More concretely, we consider the knowledge error κ as the figure
of merit, i.e., informally, the maximal probability of the verifier accepting the proof when the prover does
not have a witness for the claimed statement, and we prove the following result. For any (k1, . . . , kµ)-special-
sound (2µ + 1)-move interactive proof Π with knowledge error κ (which is a known function of (k1, . . . , kµ)),
the Fiat-Shamir transformed protocol FS[Π] has a knowledge error at most (Q + 1) · κ.

Since in the Fiat-Shamir transformation of any (2µ+1)-move protocol Π, a dishonest prover can simulate
any attack against Π, and can try Q/µ times when allowed to do Q queries in total, our new upper bound
(Q+1)·κ is close to the trivial lower bound 1−(1− κ)Q/µ ≈ Qκ/µ. Another, less explicit, security measure in
the context of knowledge soundness is the run time of the knowledge extractor. Our bound on the knowledge
error holds by means of a knowledge extractor that makes an expected number of K + Q · (K − 1) queries,
where K = k1 · · · kµ. This is a natural bound: K is the number of necessary distinct “good” transcripts
(which form a certain tree-like structure). The loss of Q · (K − 1) captures the fact that a prover may finish
different proofs, depending on the random oracle answers, and only one out of Q proofs may be useful for
extraction, as explained below.

The construction of our knowledge extractor is motivated by the extractor from [ACK21] in the interactive
case, but the analysis here in the context of a non-interactive proof is much more involved. We analyze the
extractor in an inductive manner, and capture the induction step (and the base case) by means of an abstract
experiment. The crucial idea for the analysis (and extractor) is how to deal with accepting transcripts which
are not useful.

To see the core problem, consider a Σ-protocol, i.e., a 3-move k-special-sound interactive proof, and a
semi-honest prover that knows a witness and behaves as follows. It prepares, independently, Q first messages
a1, . . . , aQ and asks for all hashes ci = RO(ai), and then decides “randomly” (e.g., using a hash over all
random oracle answers) which thread to complete, i.e., for which i∗ to compute the response z and then
output the valid proof (ai∗

, z). When the extractor then reprograms the random oracle to try to obtain
another valid response but now for a different challenge, this affects i∗, and most likely the prover will then
use a different thread j∗ and output the proof (aj∗

, z′) with aj∗ ̸= ai∗ . More precisely, Pr(aj∗ = ai∗) = 1/Q.
Hence, an overhead of Q appears in the run-time.
2 This is clearly a contrived example since the natural construction would be to apply the Fiat-Shamir transformation

to the parallel repetition of the original Σ-protocol, where no such huge security loss would then occur.
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Perhaps surprisingly, when moving to multi-round protocols, dealing with the knowledge error is relatively
simple by recursively composing the extractor. However, controlling the run-time is intricate. If the extractor
is recursively composed, i.e., it makes calls to a subextractor to obtain a subtree, then a naive construction
and analysis gives a blow-up of Qµ in the run-time. Intuitively, because only 1/Q of the subextractor runs
produce useful subtrees, i.e., subtrees which extend the current ai∗ . The other trees belong to some aj with
j ̸= i∗ and are thus useless. This overhead of Q then accumulates per round (i.e., per subextractor).

The crucial observation that we exploit in order to overcome the above issue is that the very first
(accepting) transcript sampled by a subextractor already determines whether a subtree will be (potentially)
useful, or not. Thus, if this very first transcript already shows that the subtree will not be useful, there is
no need to run the full-fledged subtree extractor, saving precious time.

To formally capture the technical aspects behind the extractor analysis, we consider and analyze an
abstract sampling game. The sampling game considers a high-dimensional array, where each entry contains
a bit v and a pointer i to one of the many dimensions. The goal is to find, by means of a prescribed strategy
(which reflects how the extractor proceeds), k entries with v = 1 and with pointers i to the same dimension,
and, on top, the entries need to be appropriately located in the array, namely aligned along the dimension
specified by the common pointer. The technical core of our proof then lies in analyzing certain figures of
merit in this abstract experiment: the success probability and a cost function. Defining the cost function
naively as the (expected) number of array entries that need to be visited is good enough for the analysis
of the extractor of a Σ-protocol, but would lead to the old Qµ blow-up when analyzing the inductively
defined extractor in that way. In order to capture the above idea of not running the full-fledged subtree
extractor when it can be avoided, we introduce two weight functions and define the cost function by means
of the total weight of the array entries visited by the extractor. The more general treatment, considering
non-constant weight functions, significantly complicates the analysis of the abstract sampling game. Thus,
the main technical core of our positive result lies in the analysis of this weighted cost function (Lemma 5).

On the negative side, we show that the general exponential security loss of the Fiat-Shamir transformation,
when applied to a multi-round protocol, is not an artefact of contrived examples, but there exist natural
protocols that indeed have such an exponential loss. Concretely, we show that the t-fold parallel repetition
Πt of a typical (k1, . . . , kµ)-special-sound (2µ + 1)-move interactive proof Π features this behavior when
t ≥ µ. For simplicity, let us assume that t and Q are multiples of µ. Then, in more detail, we show that for
any typical (k1, . . . , kµ)-special-sound protocol Π there exists a poly-time Q-query prover P∗ against FS[Πt]
that succeeds in making the verifier accept with probability ≈ 1

2 Qµκt/µµ+t for any statement x, where κ is
the knowledge error (as well as the soundness error) of Π. Thus, with the claimed probability, P∗ succeeds in
making the verifier accept for statements x that are not in the language and/or for which P∗ does not know
a witness. Given that κt is the soundness error of Πt (i.e., the soundness error of Πt as an interactive proof),
this shows that the soundness error of Πt grows proportionally with Qµ when applying the Fiat-Shamir
transformation. Recent work on the knowledge error of a parallel repetition [AF21] shows that κt is also the
knowledge error of Πt, and so the above shows that the same exponential loss holds in the knowledge error
of the Fiat-Shamir transformation of a parallel repetition.

1.3 Related Work

Independent Concurrent Work. In independent and to a large extent concurrent work,3 Wik-
ström [Wik21] achieves a similar positive result on the Fiat-Shamir transformation, using a different ap-
proach and different techniques: [Wik21] reduces non-interactive extraction to a form of interactive extraction
and then applies a generalized version of [Wik18], while our construction adapts the interactive extractor
from [ACK21] and offers a direct analysis. One small difference in the results, which is mainly of theoretical
interest, is that our result holds and is meaningful for any Q < N , where N is the size of the challenge set,
whereas [Wik21] requires N to be large.

3 When finalizing our write-up, we were informed by Wikström that he derived similar results a few months earlier,
subsequently made available online [Wik21].
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The Forking Lemma. Security of the Fiat–Shamir transformation of k-special-sound 3-move proto-
cols is widely used for construction of signatures. There, unforgeability is typically proven via a forking
lemma [PS96,BN06], which extracts, with probability roughly ϵk/Q, a witness from a signature-forging ad-
versary with success probability ϵ, where Q is the number of queries to the random oracle. The loss ϵk is
due to strict polynomial time extraction (and can be decreased, but in general not down to ϵ). Such a k-th
power loss in the success probability for a constant k is fine in certain settings, e.g., for proving the security
of signature schemes; however, not for proofs of knowledge (which, on the other hand, consider expected
polynomial time extraction [BL02]).

A forking lemma for interactive multi-round proofs was presented in [BCC+16] and its analysis was
improved in a line of follow-up works [Wik18,HKR19,dLS19,JT20,AL21]. This forking lemma shows that
multi-round special-sound interactive proofs satisfy a notion of knowledge soundness called witness extended
emulation. Eventually, it was shown that (k1, . . . , kµ)-special-soundness tightly implies knowledge sound-
ness [ACK21].

We are not aware of forking lemmas being used in the context of the Fiat–Shamir transformation for
multi-round interactive proofs, i.e., for (2µ + 1)-move protocols with µ > 1. The aforementioned techniques
for interactive proofs are not directly applicable to the Fiat-Shamir mode. First, incorporating the query
complexity Q of a dishonest prover P∗ attacking the non-interactive Fiat–Shamir transformation complicates
the analysis. Second, a naive adaptation of the forking lemmas for interactive proofs gives a blow-up of Qµ

in the run-time.

2 Preliminaries

2.1 Interactive Proofs

Let R ⊆ {0, 1}∗×{0, 1}∗ be a binary relation. Following standard conventions, we call (x; w) ∈ R a statement-
witness pair, that is, x is the statement and w is a witness for x. The set of valid witnesses for a statement
x is denoted by R(x), i.e., R(x) = {w : (x; w) ∈ R}. A statement that admits a witness is said to be a true
or valid statement; the set of true statements is denoted by LR, i.e., LR = {x : ∃w s.t. (x; w) ∈ R}. The
relation R is an NP relation if the validity of a witness w can be verified in time polynomial in the size |x|
of the statement x. From now on we assume all relations to be NP relations.

In an interactive proof for a relation R, a prover P aims to convince a verifier V that a statement x
admits a witness, or even that the prover knows a witness w ∈ R(x).

Definition 1 (Interactive Proof). An interactive proof Π = (P,V) for relation R is an interactive
protocol between two probabilistic machines, a prover P and a polynomial time verifier V. Both P and V take
as public input a statement x and, additionally, P takes as private input a witness w ∈ R(x). The verifier
V either accepts or rejects and its output is denoted as (P(w),V)(x). Accordingly, we say the corresponding
transcript (i.e., the set of all messages exchanged in the protocol execution) is accepting or rejecting.

Let us introduce some conventions and additional properties for interactive proof systems. We assume
that the prover P sends the first and the last message in any interactive proof Π = (P,V). Hence, the
number of communication moves 2µ + 1 is always odd. We also say Π is a (2µ + 1)-move protocol. We will
refer to multi-round protocols as a way of emphasizing that we are not restricting to 3-move protocols.

Informally, an interactive proof Π = (P,V) is complete if for any statement-witness pair (x; w) ∈ R
the honest execution results in the verifier accepting with high probability. It is sound if the verifier rejects
false statements, i.e., x /∈ LR, with high probability. We do neither require (or formally define) completeness
nor soundness, as our main focus is knowledge soundness. Intuitively, a protocol is knowledge sound if any
(potentially malicious) prover P∗ which convinces the verifier must “know” a witness w such that (x, w) ∈ R.
Informally, this means that any prover P∗ with Pr((P∗,V)(x) = accept) large enough is able to efficiently
compute a witness w ∈ R(x).

Definition 2 (Knowledge Soundness). An interactive proof (P,V) for relation R is knowledge sound
with knowledge error κ : N → [0, 1] if there exists a positive polynomial q and an algorithm E, called a
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knowledge extractor, with the following properties. Given input x and black-box oracle access to a (potentially
dishonest) prover P∗, the extractor E runs in an expected number of steps that is polynomial in |x| (counting
queries to P∗ as a single step) and outputs a witness w ∈ R(x) with probability

Pr
(
(x; EP∗

(x)) ∈ R
)
≥ ϵ(P∗, x)− κ(|x|)

q(|x|) ,

where ϵ(P∗, x) := Pr((P∗,V)(x) = accept).

Remark 1. From the linearity of the expectation, it follows easily that it is sufficient to consider deterministic
provers P∗ in Definition 2.

An important class of protocols have particularly simple verifiers: effectively stateless verifiers which send
uniformly random challenges to the prover, and run an efficient verification function on the final transcript.

Definition 3 (Public-Coin). An interactive proof Π = (P,V) is public-coin if all of V’s random choices
are made public. The message ci ←R Ci of V in the 2i-th move is called the i-th challenge, and Ci is the
challenge set.

2.2 Special-Sound Multi-Round Protocols

The class of interactive proofs we are interested in are those where knowledge soundness follows from another
property, namely special-soundness. Special-soundness is often simpler to verify, and many protocols satisfy
this notion. Note that we require special-sound protocols to be public-coin.

Definition 4 (k-out-of-N Special-Soundness). Let k, N ∈ N. A 3-move public-coin interactive proof
Π = (P,V) for relation R, with challenge set of cardinality N ≥ k, is k-out-of-N special-sound if there exists
a polynomial time algorithm that, on input a statement x and k accepting transcripts (a, c1, z1), . . . (a, ck, zk)
with common first message a and pairwise distinct challenges c1, . . . , ck, outputs a witness w ∈ R(x). We
also say Π is k-special-sound and, if k = 2, it is simply said to be special-sound.

We refer to a 3-move public-coin interactive proof as a Σ-protocol. Note that often a Σ-protocol is required
to be (perfectly) complete, special-sound and special honest-verifier zero-knowledge (SHVZK) by definition.
We do not require a Σ-protocol to have these additional properties.

Definition 5 (Σ-Protocol). A Σ-protocol is a 3-move public-coin interactive proof.

In order to generalize k-special-soundness to multi-round protocols we introduce the notion of a tree of
transcripts. We follow the definition of [ACK21].

Definition 6 (Tree of Transcripts). Let k1, . . . , kµ ∈ N. A (k1, . . . , kµ)-tree of transcripts for a (2µ + 1)-
move public-coin interactive proof Π = (P,V) is a set of K =

∏µ
i=1 ki transcripts arranged in the following

tree structure. The nodes in this tree correspond to the prover’s messages and the edges to the verifier’s
challenges. Every node at depth i has precisely ki children corresponding to ki pairwise distinct challenges.
Every transcript corresponds to exactly one path from the root node to a leaf node. See Figure 1 for a graphical
illustration. We refer to the corresponding tree of challenges as a (k1, . . . , kµ)-tree of challenges.

We will also write k = (k1, . . . , kµ) ∈ Nµ and refer to a k-tree of transcripts or a k-tree of challenges.

Definition 7 ((k1, . . . , kµ)-out-of-(N1, . . . , Nµ) Special-Soundness). Let k1, . . . , kµ, N1, . . . , Nµ ∈ N. A
(2µ + 1)-move public-coin interactive proof Π = (P,V) for relation R, where V samples the i-th challenge
from a set of cardinality Ni ≥ ki for 1 ≤ i ≤ µ, is (k1, . . . , kµ)-out-of-(N1, . . . , Nµ) special-sound if there
exists a polynomial time algorithm that, on input a statement x and a (k1, . . . , kµ)-tree of accepting transcripts
outputs a witness w ∈ R(x). We also say Π is (k1, . . . , kµ)-special-sound.
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Fig. 1. (k1, . . . , kµ)-tree of transcripts of a (2µ + 1)-move interactive proof [ACK21].

It is well known that, for 3-move protocols, k-special-soundness implies knowledge soundness, but only
recently it was shown that more generally, for public-coin (2µ + 1)-move protocols, (k1, . . . , kµ)-out-of-
(N1, . . . , Nµ) special-soundness tightly implies knowledge soundness [ACK21], with knowledge error

Er(k1, . . . , kµ; N1, . . . , Nµ) = 1−
µ∏

i=1

Ni − ki + 1
Ni

= 1−
µ∏

i=1

(
1− ki − 1

Ni

)
, (1)

which matches the probability that at least one of the random challenges ci hits a certain set Γi of size
ki − 1. Since typical protocols admit a trivial attack that succeeds if at least one of the random challenges
ci hits a certain set Γi of size ki − 1 (we capture this by the special-unsoundness property in Section 7), the
soundness/knowledge error Er is tight for general special-sound protocols.

Note that Er(k; N) = (k − 1)/N and, for all 1 ≤ m ≤ µ,

Er(km, . . . , kµ; Nm, . . . , Nµ) = 1− Nm − km + 1
Nm

(
1− Er(km+1, . . . , kµ; Nm+1, . . . , Nµ)

)
, (2)

where we define Er(∅; ∅) = 1. If N1 = · · · = Nµ = N , i.e., if the verifier samples all µ challenges from a set
of size N , we simply write Er(k1, . . . , kµ; N), or Er(k; N) for k = (k1, . . . , kµ).

2.3 Non-Interactive Random Oracle Proofs (NIROP)

In practice, interactive proofs are not typically used. Instead, transformations are used which turn them into
non-interactive proofs in the random oracle model (ROM). We define non-interactive random oracle proofs
(NIROP) as in [BCS16]. Their definition is a straightforward adaption of (non-)interactive proof systems to
the ROM. The same holds for their properties. Every algorithm is augmented by access to a random oracle.

In the random oracle model, algorithms have black-box access to an oracle RO : {0, 1}∗ → Y, called the
random oracle, which is instantiated by a uniformly random function with domain {0, 1}∗ and codomain Y.
For convenience, we let the codomain Y be an arbitrary finite set, while typically Y = {0, 1}η for some η ∈ N
related to the security parameter. Equivalently, RO is instantiated by lazy sampling, i.e., for every bit-string
x ∈ {0, 1}∗, RO(x) is chosen uniformly at random in Y (and then fixed). To avoid technical difficulties, we
limit the domain from {0, 1}∗ to {0, 1}≤u, the finite set of all bitstrings of length at most u, for a sufficiently
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large u ∈ N. An algorithm ARO that is given black-box access to a random oracle is called a random-oracle
algorithm. We call A a Q-query random-oracle algorithm, if it makes at most Q queries to RO (independent
of RO).

A natural extension of the random oracle model is when A is given access to multiple independent random
oracles RO1, . . . , ROµ, possibly with different codomains.4 The definitions below apply to this extension in
the obvious way.

Definition 8 (Non-Interactive Random Oracle Proof (NIROP)). A non-interactive random oracle
proof for relation R is a pair (P,V) of (probabilistic) random-oracle algorithms, a prover P and a polynomial-
time verifier V, such that: Given (x; w) ∈ R and access to a random oracle RO, the prover PRO(x; w) outputs
a proof π. Given x ∈ {0, 1}∗, a purported proof π, and access to a random oracle RO, the verifier VRO(x, π)
outputs 0 to reject or 1 to accept the proof.

As for interactive definitions, a NIROP is complete if honestly generated proofs for (x; w) ∈ R are
accepted by V with high probability. It is sound if it is infeasible to produce an accepting proof for a false
statement. In the non-interactive setting, the soundness error, i.e., the success probability of a cheating
prover necessarily depends on the number of queries it is allowed to make to the random oracle. The same
holds true for knowledge soundness of NIROPs.

Definition 9 (Knowledge Soundness - NIROP). A non-interactive random oracle proof (P,V) for
relation R is knowledge sound with knowledge error κ : N×N→ [0, 1] if there exists a positive polynomial q
and an algorithm E, called a knowledge extractor, with the following properties: The extractor, given input
x and oracle access to any (potentially dishonest) Q-query random oracle prover P∗, runs in an expected
number of steps that is polynomial in |x| and Q and outputs a witness w ∈ R(x), and satisfies

Pr
(
(x; w) ∈ R : w ← EP∗

(x)
)
≥ ϵ(P∗, x)− κ(|x|, Q)

q(|x|)

for all x ∈ {0, 1}∗ where ϵ(P∗, x) = Pr
(
VRO(x,P∗,RO) = 1

)
. Here, E implements RO for P∗, in particular, E

can arbitrarily program RO. Moreover, the randomness is over the randomness of E, V, P∗ and RO.

Remark 2. As for the knowledge soundness of interactive proofs (see Remark 1), it is sufficient to consider
deterministic provers P∗ in Definition 9. Consequently, we will assume all dishonest provers P∗ to be de-
terministic in order to simplify our analysis. Black-box access to P∗ then simply means black-box access to
the next-message function of P∗. This in particular means that E can “rewind” P∗ to any state. We stress
though that E cannot depend on (or “know”) certain properties of P∗, such as Q or the success probability
ϵ(P∗, x).

2.4 Adaptive Security

Thus far, knowledge soundness has been defined with respect to static or non-adaptive provers P∗ attacking
the considered (non-)interactive proof for a fixed statement x. However, in many practical scenarios the
dishonest provers are free to choose the statement x adaptively. Hence, in these cases static security is not
sufficient. For interactive proofs, it is well-known that static knowledge soundness implies adaptive knowledge
soundness. However, this does not carry over to non-interactive proofs. For instance, it is easy to see that
the static Fiat-Shamir transformation (see Definition 11) is in general not adaptively sound.

For this reason, let us formalize adaptive knowledge soundness for non-interactive random oracle proofs.
An adaptive prover Pa attacking the considered NIROP is given oracle access to a random oracle RO
and outputs a statement x of fixed length |x| = n together with a proof π. As in the static definition,
adaptive knowledge soundness requires the existence of a knowledge extractor. However, formalizing the
4 In practice, these random oracles will be instantiated by one random oracle RO : {0, 1}∗ → {0, 1}η using standard

techniques for domain separation and for sampling random elements from non-binary sets.
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requirements of this extractor introduces some subtle issues. Namely, because Pa chooses the statement
x adaptively, it is not immediately clear for which statement the extractor should extract a witness. For
instance, granting the extractor the same freedom of adaptively choosing the statement x, for which it needs
to extract a witness w, renders knowledge extraction trivial; the extractor could simply output an arbitrary
statement-witness pair (x; w). For this reason, we require the extractor to output statement-witness pairs
(x; w) corresponding to the valid pairs (x, π) outputted by the adaptive prover Pa. To formalize these
requirements, we also write (x, π, v), with v ∈ {0, 1} indicating whether π is a valid proof for statement x.
Given this notation, the extractor should output a triple (x, π, v) with the same distribution as the triples
(x, π, v) produced by Pa; furthermore, if π is a valid proof for statement x, i.e., v = 1, then the extractor
should additionally aim to output a witness w ∈ R(x). As before, the success probability of the extractor is
allowed to depend on the success probability of Pa. Finally, to ensure that the knowledge extractor can be used
in compositional settings, where the NIROP is deployed as a component of a larger protocol, the prover Pa

is also allowed to additionally output arbitrary auxiliary information aux ∈ {0, 1}∗ and the extractor is then
required to simulate the tuple (x, π, aux, v), rather than the triple (x, π, v). The following definition formalizes
adaptive knowledge soundness along these lines. For alternative definitions see, e.g., [Unr17,DFMS19].

Definition 10 (Adaptive Knowledge Soundness - NIROP). A non-interactive random oracle proof
(P,V) for relation R is adaptively knowledge sound with knowledge error κ : N × N → [0, 1] if there exists
a positive polynomial q and an algorithm E, called a knowledge extractor, with the following properties:
The extractor, given input n ∈ N and oracle access to any adaptive Q-query random oracle prover Pa that
outputs statements x with |x| = n, runs in an expected number of steps that is polynomial in n and Q
and outputs a tuple (x, π, aux, v; w) such that {(x, π, aux, v) : (x, π, aux) ← Pa,RO ∧ v ← VRO(x, π)} and
{(x, π, aux, v) : (x, π, aux, v; w)← EPa(n)} are identically distributed and

Pr
(
v = accept ∧ (x; w) ∈ R : (x, π, aux, v; w)← EPa

(n)
)
≥ ϵ(Pa)− κ(n, Q)

q(n) ,

where ϵ(Pa) = Pr
(
VRO(x, π) = 1 : (x, π) ← Pa,RO). Here, E implements RO for Pa, in particular, E can

arbitrarily program RO. Moreover, the randomness is over the randomness of E, V, Pa and RO.

Remark 3. We note that, while the tuple (x, π, aux, v) is required to have the same distribution for Pa and
E(n), by default the respective executions of Pa and E(n) give rise to two different probability spaces. Looking
ahead though, we remark that the extractor that we eventually construct first does an honest run of Pa by
faithfully simulating the answers to Pa’s random oracle queries (this produces the tuple (x, π, aux, v) that
E(n) eventually outputs and which so trivially has the right distribution), and then, if π is a valid proof, E(n)
starts rewinding Pa and reprogramming the random oracle to try to find enough valid proofs to compute a
witness. Thus, in this sense, we can then say that E(n) aims to find a witness w ∈ R(x) for the statement x
outputted by Pa.

2.5 Fiat–Shamir Transformations

The Fiat-Shamir transformation [FS87] turns a public-coin interactive proof into a non-interactive random
oracle proof (NIROP). The general idea is to compute the i-th challenge ci as a hash of the i-th prover
message ai and (some part of) the previous communication transcript. For a Σ-protocol, the challenge c
is computed as c = H(a) or as c = H(x, a), where the former is sufficient for static security, where the
statement x is given as input to the dishonest prover, and the latter is necessary for adaptive security, where
the dishonest prover can choose the statement x for which it wants to forge a proof.

For multi-round public-coin interactive proofs, there is some degree of freedom in the computation of the
i-th challenge. For concreteness and simplicity, we consider a particular version where all previous prover
messages are hashed along with the current message. As for Σ-protocols, we consider a static and an adaptive
variant of this version of the Fiat-Shamir transformation. In contrast to the static variant, the adaptive Fiat-
Shamir transformation includes the statement x in all hash function evaluations. If it is not made explicit
which variant is used, the considered result holds for both variants.
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Let Π = (P,V) be a (2µ+1)-move public-coin interactive proof, where the challenge from the i-th round
is sampled from set Ci. For simplicity, we consider µ random oracles ROi : {0, 1}≤u → Cithat map into the
respective challenge spaces.

Definition 11 (Fiat-Shamir Transformation). The static Fiat-Shamir transformation FS[Π] =
(Pfs,Vfs) is the NIROP where PRO1,...,ROµ

fs (x; w) runs P(x; w) but instead of asking the verifier for the chal-
lenge ci on message ai, the challenges are computed as

ci = ROi(a1, . . . , ai−1, ai) ; (3)

the output is then the proof π = (a1, . . . , aµ+1). On input a statement x and a proof π = (a1, . . . , aµ+1),
VRO1,...,ROµ

fs (x, π) accepts if, for ci as above V accepts the transcript (a1, c1, . . . , aµ, cµ, aµ+1) on input x.
If the challenges are computed as

ci = ROi(x, a1, . . . , ai−1, ai) ; (4)

the resulting NIROP is referred to as the adaptive Fiat-Shamir transformation.

By means of reducing the security of other variants of the Fiat-Shamir transformation to Definition 11,
appropriately adjusted versions of our results also apply to other variants of doing the “chaining” (Equations 3
and 4) in the Fiat-Shamir transformation, for instance when ci is computed as ci = ROi(i, ci−1, ai) or
ci = ROi(x, i, ci−1, ai), where c0 is the empty string.

2.6 Negative Hypergeometric Distribution

Consider a bucket containing ℓ green balls and N − ℓ red balls, i.e., a total of N balls. In the negative
hypergeometric experiment balls are drawn uniformly at random from this bucket, without replacement,
until k green balls have been found or until the bucket is empty. The number of red balls X drawn in this
experiment is said have a negative hypergeometric distribution with parameters N, ℓ, k, which is denoted by
X ∼ NHG(N, ℓ, k).

Lemma 1 (Negative Hypergeometric Distribution). Let N, ℓ, k ∈ N with ℓ, k ≤ N , and let X ∼
NHG(N, ℓ, k). Then E[X] ≤ k N−ℓ

ℓ+1 .

Proof. If ℓ < k, it clearly holds that Pr(X = N − ℓ) = 1. Hence, in this case, E[X] = N − ℓ ≤ k N−ℓ
ℓ+1 , which

proves the claim.
So let us now consider the case ℓ ≥ k. Then, for all 0 ≤ x ≤ N − ℓ,

Pr(X = x) =
(

x+k−1
x

)(
N−x−k
N−ℓ−x

)(
N

N−ℓ

) .

Hence,

E[X] =
N−ℓ∑
x=0

Pr(X = x) · x =
N−ℓ∑
x=1

x

(
x+k−1

x

)(
N−x−k
N−ℓ−x

)(
N

N−ℓ

)
= k

N − ℓ

ℓ + 1

N−ℓ∑
x=1

x
k

(
x+k−1

x

)(
N−x−k
N−ℓ−x

)
N−ℓ
ℓ+1

(
N

N−ℓ

) = k
N − ℓ

ℓ + 1

N−ℓ∑
x=1

(
x+k−1

x−1
)(

N−x−k
N−ℓ−x

)(
N

N−ℓ−1
)

= k
N − ℓ

ℓ + 1

N−ℓ∑
x=1

Pr(Y = x− 1) = k
N − ℓ

ℓ + 1 ,

where Y ∼ NHG(N, ℓ + 1, k − 1). This completes the proof of the lemma.
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Remark 4. Typically, negative hypergeometric experiments are restricted to the non-trivial case ℓ ≥ k. For
reasons to become clear later, we also allow parameter choices with ℓ < k resulting in a trivial negative
hypergeometric experiment in which all balls are always drawn.
Remark 5. The above has a straightforward generalization to buckets with balls of more than 2 colors: say
ℓ green balls and mi balls of color i for 1 ≤ i ≤ M . The experiment proceeds as before, i.e., drawing until
either k green balls have been found or the bucket is empty. Let Xi be the number of balls of color i that
are drawn in this experiment. Then Xi ∼ NHG(ℓ + mi, ℓ, k) for all i. To see this, simply run the generalized
negative hypergeometric experiment without counting the balls that are neither green nor of color i.

3 An Abstract Sampling Game
Towards the goal of constructing and analyzing a knowledge extractor for the Fiat-Shamir transformation
FS[Π] of special-sound interactive proofs Π = (P,V), we define and analyze an abstract sampling game.
Given access to a deterministic Q-query prover P∗, attacking the non-interactive random oracle proof FS[Π],
our extractor will essentially play this abstract game in the case Π is a Σ-protocol, and it will play this game
recursively in the general case of a multi-round protocol. The abstraction allows us to focus on the crucial
properties of the extraction algorithm, without unnecessarily complicating the notation.

The game considers an arbitrary but fixed U -dimensional array M , where, for all 1 ≤ j1, . . . , jU ≤ N ,
the entry M(j1, . . . , jU ) = (v, i) contains a bit v ∈ {0, 1} and an index i ∈ {1, . . . , U}. Think of the bit v
indicating whether this entry is “good” or “bad”, and the index i points to one of the U dimensions. The
goal will be to find k “good” entries with the same index i, and with all of them lying in the 1-dimensional
array M(j1, . . . , ji−1, · , ji+1, . . . , jU ) for some 1 ≤ j1, . . . , ji−1, ji+1, . . . , jU ≤ N .

Looking ahead, considering the case of a Σ-protocol first, this game captures the task of our extractor
to find k proofs that are valid and feature the same first message but have different hash values assigned to
the first message. Thus, in our application, the sequence j1, . . . , jU specifies the function table of the random
oracle

RO : {1, . . . , U} → {1, . . . , N} , i 7→ ji

while the entry M(j1, . . . , jU ) captures the relevant properties of the proof produced by the considered
prover when interacting with that particular specification of the random oracle. Concretely, the bit v indicates
whether the proof is valid, and the index i is the first message a of the proof. Replacing ji by j′

i then means
to reprogram the random oracle at the point i = a. Note that after the reprogramming, we want to obtain
another valid proof with the same first message, i.e., with the same index i (but now a different challenge,
due to the reprogramming).

The game is formally defined in Figure 2 and its core properties are summarized in Lemma 2 below.
Looking ahead, we note that for efficiency reasons, the extractor will naturally not sample the entire sequence
j1, . . . , jU (i.e., function table), but will sample its components on the fly using lazy sampling.

To capture the main properties of the abstract sampling game, for all 1 ≤ i ≤ U , we define the function

ai : {1, . . . , N}U → N≥0, (j1, . . . , jU ) 7→
∣∣{j : M(j1, . . . , ji−1, j, ji+1, . . . , jU ) = (1, i)

}∣∣ . (5)

The value ai(j1, . . . , jU ) counts the number of entries that are “good” and have index i in the 1-dimensional
array M(j1, . . . , ji−1, · , ji+1, . . . , jU ). Note that ai does not depend on the i-th entry of the input vector
(j1, . . . , jU ), and so, by a slight abuse of notation, we sometimes also write ai(j1, . . . , ji−1, ji+1, . . . , jU )
instead.
Lemma 2 (Abstract Sampling Game). Consider the game in Figure 2. Let J = (J1, . . . , JU ) be uni-
formly distributed in {1, . . . , N}U , indicating the first entry sampled, and let (V, I) = M(J1, . . . , JU ). Further,
for all 1 ≤ i ≤ U , let Ai = ai(J). Moreover, let X be the number of entries of the form (1, i) with i = I
sampled (including the first one), and let Λ be the total number of entries sampled in this game. Then

E[Λ] ≤ 1 + (k − 1)P and

Pr(X = k) ≥ N

N − k + 1

(
Pr(V = 1)− P · k − 1

N

)
,
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Fig. 2. Abstract Sampling Game.

Parameters: k, N, U ∈ N, and M a U -dimensional array with entries in M(j1, . . . , jU ) ∈ {0, 1} × {1, . . . , U}
for all 1 ≤ j1, . . . , jU ≤ N .

– Sample (j1, . . . , jU ) ∈ {1, . . . , N}U uniformly at random and set (v, i) = M(j1, . . . , jU ).
– If v = 0, abort.
– Else, repeat

• sample j′ ∈ {1, . . . , N} \ {ji} (without replacement),
• compute (v′, i′) = M(j1, . . . , ji−1, j′, ji+1, . . . , jU ),

until either k − 1 additional entries equal to (1, i) have been found or until all indices j′ have been tried.

where P =
∑U

i=1 Pr(Ai > 0).

Note the abstractly defined parameter P . In our application, where M(j1, . . . , jU ) is determined by the
output of an algorithm making no more than Q queries to the random oracle with function table j1, . . . , jU , the
parameter P will be bounded by Q+1. We show this formally (yet again somewhat abstractly) in Lemma 3.
Intuitively, the reason is that the events Ai > 0 are disjoint for the all but Q indices i that the considered
algorithm does not query, and so their probabilities add up to at most 1. Indeed, if ai(j1, . . . , jU ) > 0 for an
index i that the algorithm did not query then M(j1, . . . , jU ) = (1, i); namely, by choice of i, the output of
the algorithm is oblivious to the value of ji. Therefore, given j1, . . . , jU , such an index i as above is unique.

Proof (of Lemma 2). Expected Number of Samples. Let us first derive an upper bound on the expected
value of Λ. To this end, let X ′ denote the number of sampled entries of the form (1, i) with i = I, but, in
contrast to X, without counting the first one. Similarly, let Y ′ denote the number of sampled entries of the
form (v, i) with v = 0 or i ̸= I, again without counting the first one. Then Λ = 1 + X ′ + Y ′ and

Pr(X ′ = 0 | V = 0) = Pr(Y ′ = 0 | V = 0) = 1 .

Hence, E[X ′ | V = 0] = E[Y ′ | V = 0] = 0.
Let us now consider the expected value E[Y ′ | V = 1]. To this end, we observe that, conditioned on the

event V = 1∧ I = i∧Ai = a with a > 0, Y ′ follows a negative hypergeometric distribution with parameters
N − 1, a− 1 and k − 1. Hence, by Lemma 1,

E[Y ′ | V = 1 ∧ I = i ∧Ai = a] ≤ (k − 1)N − a

a
,

and thus, using that Pr(X ′ ≤ k − 1 | V = 1) = 1,

E[X ′ + Y ′ | V = 1 ∧ I = i ∧Ai = a] ≤ (k − 1) + (k − 1)N − a

a
= (k − 1)N

a
.

On the other hand

Pr(V = 1 ∧ I = i | Ai = a) = a

N

and thus

Pr(V = 1 ∧ I = i ∧Ai = a) = Pr(Ai = a) a

N
. (6)
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Therefore, and since Pr(V = 1 ∧ I = i ∧Ai = 0) = 0,

Pr(V = 1) · E[X ′ + Y ′ | V = 1] =
U∑

i=1

N∑
a=1

Pr(V = 1 ∧ I = i ∧Ai = a) · E[X ′ + Y ′ | V = 1 ∧ I = i ∧Ai = a]

≤
U∑

i=1

N∑
a=1

Pr(Ai = a)(k − 1)

= (k − 1)
U∑

i=1
Pr(Ai > 0)

= (k − 1)P ,

where P =
∑U

i=1 Pr(Ai > 0). Hence,

E[Λ] = E[1 + X ′ + Y ′]
= 1 + Pr(V = 0) · E[X ′ + Y ′ | V = 0] + Pr(V = 1) · E[X ′ + Y ′ | V = 1]
≤ 1 + (k − 1)P ,

which proves the claimed upper bound on E[Λ].
Success Probability. Let us now find a lower bound for the “success probability” Pr(X = k) of this

game. Using (6) again, we can write

Pr(X = k) =
U∑

i=1
Pr(V = 1 ∧ I = i ∧Ai ≥ k) =

U∑
i=1

N∑
a=k

Pr(Ai = a) a

N
.

Now, using a ≤ N , note that

a

N
= 1−

(
1− a

N

)
≥ 1− N

N − k + 1

(
1− a

N

)
= N

N − k + 1

(
N − k + 1

N
− 1 + a

N

)
= N

N − k + 1

(
a

N
− k − 1

N

)
.

Therefore, combining the two, and using that the summand becomes negative for a < k to argue the second
inequality, and using (6) once more, we obtain

Pr(X = k) ≥
U∑

i=1

N∑
a=k

Pr(Ai = a) N

N − k + 1

(
a

N
− k − 1

N

)

≥
U∑

i=1

N∑
a=1

Pr(Ai = a) N

N − k + 1

(
a

N
− k − 1

N

)

= N

N − k + 1

U∑
i=1

N∑
a=1

(
Pr(V = 1 ∧ I = i ∧Ai = a)− Pr(Ai = a) · k − 1

N

)

= N

N − k + 1

(
Pr(V = 1)− k − 1

N

U∑
i=1

Pr(Ai > 0)
)

= N

N − k + 1

(
Pr(V = 1)− P · k − 1

N

)
,

where, as before, we have used that Pr(V = 1∧ I = i∧Ai = 0) = 0 for all 1 ≤ i ≤ U to conclude the second
equality, and finally that P =

∑U
i=1 Pr(Ai > 0). This completes the proof of the lemma.

12



Our knowledge extractor will instantiate the abstract sampling game via a deterministic Q-query prover
P∗ attacking the Fiat-Shamir transformation FS[Π]. The index i of M(v, i) = (j1, . . . , jU ) is then determined
by the output of P∗, with the random oracle being given by the function table j1, . . . , jU . Since the index i
is thus determined by Q queries to the random oracle, the following shows that the parameter P will in this
case be bounded by Q + 1.

Lemma 3. Consider the game in Figure 2. Let v and idx be functions such that M(j) =
(
v(j), idx(j)

)
for

all j ∈ {1, . . . , N}U . Furthermore, let J = (J1, . . . , JU ) be uniformly distributed in {1, . . . , N}U , and set
Ai = ai(J) for all 1 ≤ i ≤ U . Let us additionally assume that for all j ∈ {1, . . . , N}U there exists a subset
S(j) ⊆ {1, . . . , U} of cardinality at most Q such that idx(j) = idx(j′) for all j′ with j′

ℓ = jℓ for all ℓ ∈ S(j).
Then

P =
U∑

i=1
Pr(Ai > 0) ≤ Q + 1 .

Proof. By basic probability theory, it follows that5

P =
U∑

i=1
Pr(Ai > 0)

=
∑

j∈{1,...,N}U

Pr(J = j)
U∑

i=1
Pr(Ai > 0 | J = j)

=
∑

j

Pr(J = j)
( ∑

i∈S(j)

Pr(Ai > 0 | J = j) +
∑

i/∈S(j)

Pr(Ai > 0 | J = j)
)

≤
∑

j

Pr(J = j)
(

Q +
∑

i/∈S(j)

Pr(Ai > 0 | J = j)
)

≤ Q +
∑

j

Pr(J = j)
∑

i/∈S(j)

Pr(Ai > 0 | J = j) ,

where the inequality follows from the fact that |S(j)| ≤ Q for all j.
Now note that, by definition of the sets S(j), for all j ∈ {1, . . . , N}U , i /∈ S(j) and ji ∈ {1, . . . , N}, it

holds that
Pr
(
idx(J1, . . . , Ji−1, ji, Ji+1, . . . , JU ) = idx(j) | J = j

)
= 1 .

Therefore, for all i /∈ S(j) ∪ {idx(j)},
Pr(Ai > 0 | J = j) = 0 .

Hence, ∑
i/∈S(j)

Pr(Ai > 0 | J = j) ≤ Pr(Aidx(j) > 0 | J = j) ≤ 1.

Altogether, it follows that

P ≤ Q +
∑

j

Pr(J = j) = Q + 1 ,

which completes the proof.

5 The probabilities Pr(Ai > 0 | J = j) are all 0 or 1; however, it’s still convenient to use probability notation here.
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4 Fiat-Shamir Transformation of Σ-Protocols

Let us first consider the Fiat-Shamir transformation of a k-special-sound Σ-protocol Π, i.e., a 3-move in-
teractive proof, with challenge set C; subsequently, in Section 6, we move to general multi-round interactive
proofs.

Let P∗ be a deterministic dishonest Q-query random-oracle prover, attacking the Fiat-Shamir transfor-
mation FS[Π] of Π on input x. Given a statement x as input, after making Q queries to the random oracle
RO : {0, 1}≤u → C, P∗ outputs a proof π = (a, z). For reasons to become clear later, we re-format (and partly
rename) the output and consider

I := a and π

as P∗’s output. We refer to the output I as the index.
Furthermore, we extend P∗ to an algorithm A that additionally checks the correctness of the proof π.

Formally, A runs P∗ to obtain I and π, queries RO to obtain c := RO(I), and then outputs

I = a , y := (a, c, z) and v := V (y) ,

where V (y) = 1 if y is an accepting transcript for the interactive proof Π on input x and V (y) = 0 otherwise.
We will also write ARO for the algorithm that executes A given a fixed random oracle RO.

Hence, A is a random-oracle algorithm making at most Q + 1 queries; indeed, it relays the oracle queries
done by P∗ and makes the one needed to do the verification. Moreover, A has a naturally defined success
probability

ϵ(A) := Pr
(
v = 1 : (I, y, v)← ARO) ,

where RO : {0, 1}≤u → C is chosen uniformly at random. The probability ϵ(A) equals the success probability
ϵ(P∗, x) of the random-oracle prover P∗ on input x.

Our goal is now to construct an extraction algorithm that, when given black-box access to A, aims to
output k accepting transcripts y1, . . . , yk with common first message a and distinct challenges. By the k-
special-soundness property of Π, a witness for statement x can be computed efficiently from these transcripts.

The extractor E is defined in Figure 3. We remark that, by construction of A, A does make a query to
I; thus, ci is well defined in Figure 3. Also, since P∗ and thus A is deterministic, in each iteration of the
repeat loop A is ensured to make the query to I again.

Fig. 3. Extractor E .

Parameters: k, Q ∈ N
Black-box access to: A as above

– Run A as follows to obtain (I, y1, v): answer all (distinct) oracle queries with uniformly random values in
C. Set i := I, and let ci be the response to query i.

– If v = 0, abort.
– Else, repeat

• sample c′
i ∈ C \ {ci} (without replacement);

• run A as follows to obtain (I ′, y′, v′): answer the query to i with c′
i, while answering all other queries

consistently if the query was performed by A already on a previous run and with a fresh random value
in C otherwise;

until either k − 1 additional challenges c′
i with v′ = 1 and I ′ = I have been found or until all challenges

c′
i ∈ C have been tried.

– In the former case, output the k accepting transcripts y1, . . . , yk.

A crucial observation is the following. Within a run of E , all the queries that are made by the different
invocations of A are answered consistently using lazy sampling, except for the queries to the index i, where
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different responses ci, c′
i, . . . are given. This is indistinguishable from having them answered by a full-fledged

random oracle, i.e., by means of a pre-chosen function RO : {0, 1}≤u → C, ℓ 7→ jℓ = RO(ℓ), but then replacing
ji by fresh j′ ̸= ji for the runs of A in the repeat loop. Thus, the extractor is actually running the abstract
game from Figure 2 and bounds on the success probability and the expected run time (in terms of queries
to A) follow from Lemma 2 and Lemma 3. Altogether we obtain the following result.

Lemma 4 (Extractor). The extractor E of Figure 3 makes an expected number of at most k + Q · (k− 1)
queries to A and succeeds in outputting k transcripts y1, . . . , yk with common first message a and distinct
challenges with probability at least

N

N − k + 1

(
ϵ(A)− (Q + 1) · k − 1

N

)
.

Proof. Let U be the cardinality of the domain {0, 1}≤u of a random oracle RO : {0, 1}≤u → C. Considering
an arbitrary but fixed ordering ξ1, . . . , ξU of the bitstrings ξi ∈ {0, 1}≤u, a vector c ∈ CU then encodes the
function table of the entire random oracle as RO(ξi) = ci. For this reason, we can also refer to c ∈ CU as a
(full-fledged) random oracle.

Further, since P∗ is deterministic, the outputs I, y and v of the algorithm A can be viewed as functions
taking as input a random oracle c ∈ CU .

Let us now consider the following array M(c) =
(
I(c), v(c)

)
, indexed by random oracles c ∈ CU . Then,

a single run of the extractor is indistinguishable from playing the abstract sampling game of Figure 2
instantiated with array M . The only difference is that, in this sampling game, we consider full-fledged
random oracles encoded by vectors c ∈ CU , while the actual extractor implements these random oracles by
lazy sampling.

Thus, we can apply Lemma 2 to obtain bounds on the success probability and the expected run time.
However, in order to control the parameter P , which occurs in the bound of Lemma 2, we make the following
observation, so that we can apply Lemma 3 and prove that P ≤ Q + 1.

Namely, since P∗ is deterministic, its output can only change when the random oracle is reprogrammed
at one of the indices i ∈ {0, 1}≤u queried by P∗. In other words, for every random oracle c ∈ CU , there exists
a subset S(c) ⊂ {0, 1}≤u (indicating the queries made by P∗) such that P∗’s output stays the same when
the random oracle is reprogrammed at an index i /∈ S(c). In particular, I(c) = I(c′) for all c, c′ with ci = c′

i

for all i ∈ S(c). Hence, the conditions of Lemma 3 are satisfied and P ≤ Q + 1. The bounds on the success
probability and the expected run time now follow, completing the proof.

Given the existence of the above extractor, combined with the k-special-soundness property, implies the
following theorem.

Theorem 1 (Fiat-Shamir Transformation of a Σ-Protocol). The Fiat-Shamir transformation FS[Π]
of a k-out-of-N special-sound Σ-protocol Π is knowledge sound with knowledge error

κfs(Q) = (Q + 1) · κ ,

where κ := Er(k; N) = (k − 1)/N is the knowledge error of the (interactive) Σ-protocol Π.

5 Refined Analysis of the Abstract Sampling Game

Before we prove knowledge soundness of the Fiat-Shamir transformation of multi-round interactive protocols,
we reconsider the abstract game of Section 3, and consider a refined analysis of the cost of playing the game.
The multi-round knowledge extractor will essentially play a recursive composition of this game; however, the
analysis of Section 3 is insufficient for our purposes (resulting in a super-polynomial bound on the run-time
of the knowledge extractor). Fortunately, it turns out that a refinement allows us to prove the required
(polynomial) upper bound.
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In Section 3, the considered cost measure is the number of entries visited during the game. For Σ-protocols,
every entry corresponds to a single invocation of the dishonest prover P∗. For multi-round protocols, every
entry will correspond to a single invocation of a subtree extractor. The key observation is that some invocations
of the subtree extractor are expensive while others are cheap. For this reason, we introduce a cost function
Γ and a constant cost γ to our abstract game, allowing us to differentiate between these two cases. Γ and
γ assign a cost to every entry of the array M ; Γ corresponds to the cost of an expensive invocation of the
subtree extractor and γ corresponds to the cost of a cheap invocation. While this refinement presents a
natural generalization of the abstract game of Section 3, its analysis becomes significantly more involved.

The following lemma provides an upper bound for the total cost of playing the abstract game in terms
of these two cost functions.

Lemma 5 (Abstract Sampling Game - Weighted Version). Consider again the game of Figure 2, as
well a cost function Γ : {1, . . . , N}U → R≥0 and a constant cost γ ∈ R≥0. Let J = (J1, . . . , JU ) be uniformly
distributed in {1, . . . , N}U , indicating the first entry sampled, and let (V, I) = M(J1, . . . , JU ). Further, for
all 1 ≤ i ≤ U , let Ai = ai(J), where the function ai is as defined in Equation 5.

We define the cost of sampling an entry M(j1, . . . , jU ) = (v, i) with index i = I to be Γ (j1, . . . , jU ) and
the cost of sampling an entry M(j1, . . . , jU ) = (v, i) with index i ̸= I to be γ. Let ∆ be the total cost of
playing this game. Then

E[∆] ≤ k · E[Γ (J)] + (k − 1) · T · γ

where T =
∑U

i=1 Pr(I ̸= i ∧Ai > 0) ≤ P .

Note that the parameter T in the statement here differs slightly from its counterpart P =
∑

i Pr(Ai > 0)
in Lemma 2. Recalling the informal discussion of P right after Lemma 2 in the context of our application,
we immediately see that now the defining events I ̸= i∧Ai > 0 are all empty for all but the Q indices i that
the algorithm does not query, giving the bound T ≤ Q here, compared to the bound P ≤ Q + 1 on P . The
formal (and more abstract) statement and proof is given in Lemma 6.

Proof. Let us split up ∆ into the cost measures ∆1, ∆2 and ∆3, defined as follows. ∆1 denotes the total
costs of the elements M(j1, . . . , jU ) = (1, i) with i = I sampled in the game, i.e., the elements with bit v = 1
and index i = I; correspondingly, X denotes the number of entries of the form (1, i) with i = I sampled
(including the first one if V = 1). Second, ∆2 denotes the total costs of the elements M(j1, . . . , jU ) = (0, i)
with i = I sampled, i.e., the elements with bit v = 0 and index i = I; correspondingly, Y denotes the number
of entries of the form (0, i) with i = I sampled (including the first one if V = 0). Finally, ∆3 denotes the
total costs of the elements M(j1, . . . , jU ) = (v, i) with i ̸= I sampled; correspondingly, Z denotes the number
of entries of this form sampled.

Clearly ∆ = ∆1 + ∆2 + ∆3. Moreover, since the cost γ is constant, it follows that E[∆3] = γ · E[Z]. In
a similar manner, we now aim to relate E[∆1] and E[∆2] to E[Y ] and E[Z], respectively. However, since the
cost function Γ : {1, . . . , N}U → R≥0 is not necessarily constant, this is more involved.

For 1 ≤ i ≤ U let us write J∗
i = (J1, . . . , Ji−1, Ji+1, . . . , JU ), which is uniformly random with support

{1, . . . , N}U−1. Moreover, for all 1 ≤ i ≤ U and j∗ = (j∗
1 , . . . , j∗

i−1, j∗
i+1, · · · , jU ) ∈ {1, . . . , N}U−1, let Λ(i, j∗)

denote the event
Λ(i, j∗) = [I = i ∧ J∗

i = j∗] .

We note that conditioned on the event Λ(i, j∗), all samples are picked from the subarray
M(j∗

1 , . . . , j∗
i−1, · , j∗

i+1, · · · , j∗
U ); the first one uniformly at random subject to the index I being i, and the

remaining ones (if V = 1) uniformly at random (without replacement).
We first analyze and bound E[∆1 | Λ(i, j∗)]. We observe that, for all i and j∗ with Pr

(
Λ(i, j∗)

)
> 0,

E[∆1 | Λ(i, j∗)] =
N∑

ℓ=0
Pr
(
X = ℓ | Λ(i, j∗)

)
· E[∆1 | Λ(i, j∗) ∧X = ℓ] .
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Since, conditioned on Λ(i, j∗)∧X = ℓ for ℓ ∈ {0, . . . , N}, any size-ℓ subset of elements with v = 1 and index
i is equally likely to be sampled, it follows that

E[∆1 | Λ(i, j∗) ∧X = ℓ] = E[Γ (J) | V = 1 ∧ Λ(i, j∗)] · ℓ .

Hence,

E[∆1 | Λ(i, j∗)] = E[Γ (J) | V = 1 ∧ Λ(i, j∗)] ·
∑

ℓ

Pr
(
X = ℓ | Λ(i, j∗)

)
· ℓ

= E[Γ (J) | V = 1 ∧ Λ(i, j∗)] · E[X | Λ(i, j∗)] .

Similarly,

E[∆2 | Λ(i, j∗)] = E[Γ (J) | V = 0 ∧ Λ(i, j∗)] · E[Y | Λ(i, j∗)] .

Next, we bound the expected values of X and Y conditioned on Λ(i, j∗). The analysis is a more fine-
grained version of the proof of Lemma 2. Bounding E[X | Λ(i, j∗)] is quite easy: since V = 0 implies X = 0
and V = 1 implies X ≤ k, it immediately follows that

E[X | Λ(i, j∗)] = Pr(V = 0 | Λ(i, j∗)) · E[X | V = 0 ∧ Λ(i, j∗)]
+ Pr(V = 1 | Λ(i, j∗)) · E[X | V = 1 ∧ Λ(i, j∗)]

≤ Pr(V = 1 | Λ(i, j∗)) · k .

Hence,
E[∆1 | Λ(i, j∗)] ≤ k · Pr(V = 1 | Λ(i, j∗)) · E[Γ (J) | V = 1 ∧ Λ(i, j∗)] . (7)

Suitably bounding the expectation E[Y | Λ(i, j∗)], and thus E[∆2 | Λ(i, j∗)], is more involved. For that
purpose, we introduce the following parameters. For the considered fixed choice of the index 1 ≤ i ≤ U and
of j∗ = (j∗

1 , . . . , j∗
i−1, j∗

i+1, · · · , j∗
U ), we let6

a := ai(j∗) =
∣∣{j : (vj , ij) = M(j∗

1 , . . . , j∗
i−1, j, j∗

i+1, . . . , j∗
U ) = (1, i)

}∣∣ and

b := bi(j∗) :=
∣∣{j : (vj , ij) = M(j∗

1 , . . . , j∗
i−1, j, j∗

i+1, . . . , j∗
U ) = (0, i)

}∣∣ .

Let us first note that

Pr
(
V = 1 | Λ(i, j∗)

)
= a

a + b
and Pr

(
V = 0 | Λ(i, j∗)

)
= b

a + b

for all i and j∗ with Pr
(
Λ(i, j∗)

)
> 0. Therefore, if we condition on the event V = 1 ∧ Λ(i, j∗) we implicitly

assume that i and j∗ are so that a is positive. Now, towards bounding E[Y | Λ(i, j∗)], we observe that condi-
tioned on the event V = 1 ∧ Λ(i, j∗), the random variable Y follows a negative hypergeometric distribution
with parameters a + b− 1, a− 1 and k − 1 (see also Remark 5). Hence, by Lemma 1,

E[Y | V = 1 ∧ Λ(i, j∗)] ≤ (k − 1) b

a
,

and thus
E[Y | Λ(i, j∗)] = Pr(V = 0 | Λ(i, j∗)) · E[Y | V = 0 ∧ Λ(i, j∗)]

+ Pr(V = 1 | Λ(i, j∗)) · E[Y | V = 1 ∧ Λ(i, j∗)]

≤ Pr
(
V = 0 | Λ(i, j∗)

)
+ Pr

(
V = 1 | Λ(i, j∗)

)
· (k − 1) b

a

= b

a + b
+ a

a + b
· (k − 1) b

a
= k

b

a + b

= k · Pr(V = 0 | Λ(i, j∗)) ,

6 Recall that we use ai(j1, . . . , jU ) and ai(j1, . . . , ji−1, ji+1, . . . , jU ) interchangeably, exploiting that ai(j1, . . . , jU )
does not depend on the i-th input ji.
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where we use that E[Y | V = 0 ∧ Λ(i, j∗)] = 1. Hence,

E[∆2 | Λ(i, j∗)] ≤ k · Pr(V = 0 | Λ(i, j∗)) · E[Γ (J) | V = 0 ∧ Λ(i, j∗)] ,

and thus, combined with Equation 7,

E[∆1 + ∆2 | Λ(i, j∗)] ≤ k · E[Γ (J) | Λ(i, j∗)] .

Since this inequality holds for all i and j∗ with Pr
(
Λ(i, j∗)

)
> 0, it follows that

E[∆1 + ∆2] ≤ k · E[Γ (J)] .

What remains is to show that E[Z] ≤ (k − 1)T , and thus E[∆3] = γ E[Z] ≤ (k − 1)Tγ. The slightly
weaker bound E[Z] ≤ (k − 1)P follows immediately from observing that Z ≤ Y ′ for Y ′ as in the proof
of Lemma 2 (the number of entries counted by Z is a subset of those counted by Y ′), and using that
E[Y ′] ≤ E[X ′ + Y ′] ≤ (k − 1)P as derived in the proof of Lemma 2. In order to get the slightly better
bound in terms of T , we bound E[Z] from scratch below. We use a similar approach as above for bounding
the expectation of Y . Thus, we consider a fixed choice of i and j∗ and set a := ai(j∗) and b := bi(j∗).
Then, conditioned on V = 1 ∧ Λ(i, j∗), also Z follows a negative hypergeometric distribution, but now with
parameters N − b− 1, a− 1 and k − 1. Therefore, for all i and j∗ with Pr

(
V = 1 ∧ Λ(i, j∗)

)
> 0,

E[Z | V = 1 ∧ Λ(i, j∗)] ≤ (k − 1)N − a− b

a
.

Using that E[Z | V = 0∧Λ(i, j∗)] = 0, but also recalling that Pr
(
V = 1 | Λ(i, j∗)

)
= a/(a+ b) and exploiting

Pr(I = i | J∗
i = j∗) = (a + b)/N , it follows that

E[Z | Λ(i, j∗)] = Pr
(
V = 1 | Λ(i, j∗)

)
· E[Z | V = 1 ∧ Λ(i, j∗)]

≤ a

a + b
· (k − 1) · N − a− b

a
= (k − 1) · N − a− b

a + b

= (k − 1) ·
( 1

Pr(I = i | J∗
i = j∗) − 1

)
= (k − 1) · Pr(J∗

i = j∗)− Pr(I = i ∧ J∗
i = j∗)

Pr(Λ(i, j∗))

= (k − 1) · Pr(I ̸= i ∧ J∗
i = j∗)

Pr(Λ(i, j∗)) .

We recall that the above holds for all i and j∗ for which a = ai(j∗) > 0, so that Pr(V = 1 ∧ Λ(i, j∗)) > 0.
For i and j∗ with a = ai(j∗) = 0, it holds that Λ(i, j∗) implies V = 0, and thus E[Z | Λ(i, j∗)] = 0. Therefore

E[Z] =
U∑

i=1

∑
j∗ s.t.

ai(j∗)>0

Pr[Λ(i, j∗)] · E[Z | Λ(i, j∗)]

= (k − 1) ·
U∑

i=1

∑
j∗ s.t.

ai(j∗)>0

Pr(I ̸= i ∧ J∗
i = j∗)

≤ (k − 1) ·
U∑

i=1
Pr(I ̸= i ∧Ai > 0) = (k − 1) · T .

Hence E[∆3] ≤ (k − 1) · T · γ, as intended, and altogether it follows that

E[∆] = E[∆1 + ∆2 + ∆3] ≤ k · E[Γ (J)] + (k − 1) · T · γ ,

which completes the proof of the lemma.
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Lemma 6. Consider the game in Figure 2. Let v and idx be functions such that M(j) =
(
v(j), idx(j)

)
for all j ∈ {1, . . . , N}U . Furthermore, let J = (J1, . . . , JU ) be uniformly distributed in {1, . . . , N}U and set
Ai = ai(J) for all 1 ≤ i ≤ U as in Equation 5. Let us additionally assume that for all j ∈ {1, . . . , N}U there
exists a subset S(j) ⊆ {1, . . . , U} of cardinality at most Q such that idx(j) = idx(j′) for all j, j′ with jℓ = j′

ℓ

for all ℓ ∈ S(j). Then

T =
U∑

i=1
Pr
(
idx(J) ̸= i ∧Ai > 0

)
≤ Q .

Proof. The proof is analogous to the proof of Lemma 3. By basic probability theory, it follows that

T =
U∑

i=1
Pr
(
idx(J) ̸= i ∧Ai > 0

)
=
∑

j

Pr(J = j)
( ∑

i∈S(j)

Pr
(
idx(J) ̸= i ∧Ai > 0 | J = j

)
+
∑

i/∈S(j)

Pr
(
idx(J) ̸= i ∧Ai > 0 | J = j

))
≤ Q +

∑
j

Pr(J = j)
∑

i/∈S(j)

Pr
(
idx(J) ̸= i ∧Ai > 0 | J = j

)
,

where the inequality follows from the fact that |S(j)| ≤ Q for all j.
Now note that, by definition of the sets S(j), for all j ∈ {1, . . . , N}U , i /∈ S(j) and ji ∈ {1, . . . , N}, it

holds that
Pr
(
idx(J1, . . . , Ji−1, ji, Ji+1, . . . , JU ) = idx(j) | J = j

)
= 1 .

Therefore, for all i /∈ S(j) ∪ {idx(j)},
Pr(Ai > 0 | J = j) = 0 .

Hence, ∑
i/∈S(j)

Pr
(
idx(J) ̸= i ∧Ai > 0 | J = j

)
≤ Pr

(
idx(J) ̸= idx(j) ∧Aidx(j) > 0 | J = j

)
= 0.

Altogether, it follows that

T ≤ Q +
∑

j

Pr(J = j)
∑

i/∈S(j)

Pr
(
idx(J) ̸= i ∧Ai > 0 | J = j

)
= Q ,

which completes the proof.

6 Fiat-Shamir Transformation of Multi-Round Protocols

Let us now move to multi-round interactive proofs. More precisely, we consider the Fiat-Shamir transfor-
mation FS[Π] of a k-special-sound (2µ + 1)-move interactive proof Π, with k = (k1, . . . , kµ). While the
multi-round extractor has a natural recursive construction, it requires a more fine-grained analysis to show
that it indeed implies knowledge soundness.

To avoid a cumbersome notation, in Section 6.1 we first handle (2µ + 1)-move interactive proofs in which
the verifier samples all µ challenges uniformly at random from the same set C. Subsequently, in Section 6.2,
we argue that our techniques have a straightforward generalization to interactive proofs where the verifier
samples its challenges from different challenge sets. In Section 6.3, we show that our results extend to adaptive
security in a straightforward way.
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6.1 Multi-Round Protocols with a Single Challenge Set

Consider a deterministic dishonest Q-query random-oracle prover P∗, attacking the Fiat-Shamir transforma-
tion FS[Π] of a k-special-sound interactive proof Π on input x. We assume all challenges to be elements in
the same set C. After making at most Q queries to the random oracle, P∗ outputs a proof π = (a1, . . . , aµ+1).
We re-format the output and consider

I1 := a1 , I2 := (a1, a2) , . . . , Iµ := (a1, . . . , aµ) and π

as P∗’s output. Sometimes it will be convenient to also consider Iµ+1 := (a1, . . . , aµ+1). Furthermore, we
extend P∗ to a random-oracle algorithm A that additionally checks the correctness of the proof π. Formally,
relaying all the random oracle queries that P∗ is making, A runs P∗ to obtain I = (I1, . . . , Iµ) and π,
additionally queries the random oracle to obtain c1 := RO(I1), . . . , cµ := RO(Iµ), and then outputs

I , y := (a1, c1, . . . , aµ, cµ, aµ+1) and v := V (x, y) ,

where V (x, y) = 1 if y is an accepting transcript for the interactive proof Π on input x and V (x, y) = 0
otherwise. Hence, A makes at most Q + µ queries (the queries done by P∗, and the queries to I1, . . . , Iµ).
Moreover, A has a naturally defined success probability

ϵ(A) := Pr
(
v = 1 : (I, y, v)← ARO) ,

where RO : {0, 1}≤u → C is distributed uniformly. As before, ϵ(A) = ϵ(P∗, x).
Our goal is now to construct an extraction algorithm that, when given black-box access to A, and thus

to P∗, aims to output a k-tree of accepting transcripts (Definition 6). By the k-special-soundness property
of Π, a witness for statement x can then be computed efficiently from these transcripts.

To this end, we recursively introduce a sequence of “subextractors” E1, . . . , Eµ, where Em aims
to find a (1, . . . , 1, km, . . . , kµ)-tree of accepting transcripts. The main idea behind this recursion is
that such a (1, . . . , 1, km, . . . , kµ)-tree of accepting transcripts is the composition of km appropriate
(1, . . . , 1, km+1, . . . , kµ)-trees.

For technical reasons, we define the subextractors Em as random-oracle algorithms, each one making Q+µ
queries to a random oracle. As we will see, the recursive definition of Em is very much like the extractor
from the 3-move case, but with A replaced by the subextractor Em+1; however, for this to work we need the
subextractor to be the same kind of object as A, thus a random-oracle algorithm making the same number
of queries. As base for the recursion, we consider the algorithm A (which outputs a single transcript, i.e., a
(1, . . . , 1)-tree); thus, the subextractor Eµ (which outputs a (1, . . . , 1, kµ)-tree) is essentially the extractor of
the 3-move case, but with A now outputting an index vector I = (I1, . . . , Iµ), and with Eµ being a random-
oracle algorithm, so that we can recursively replace the random-oracle algorithm A by Eµ to obtain Eµ−1,
etc.

Formally, the recursive definition of Em from Em+1 is given in Figure 4, where Eµ+1 (the base case) is set
to Eµ+1 := A, and where Em exploits the following early abort feature of Em+1: like A, the subextractor Em+1
computes the index vector it eventually outputs by running P∗ as its first step (see Lemma 7 below). This
allows the executions of Em+1 in the repeat loop in Fig. 4 to abort after a single run of P∗ if the requirement
I ′

m = Im on its index vector I is not satisfied, without proceeding to produce the remaining parts y′, v′ of
the output (which would invoke more calls to P∗).

The actual extractor E is then given by a run of E1, with the Q + µ random-oracle queries made by E1
being answered using lazy-sampling.

Remark 6. Let us emphasize that within one run of Em, except for the query to i for which the response
is “reprogrammed”, all the queries made by the multiple runs of the subextractor Em+1 in the repeat loop
are answered consistently, both with the run of Em+1 in the first step and among the runs in the repeat
loop. This means, a query to a value ξ that has been answered by η in a previous run on Em+1 (within the
considered run of Em) is again answered by η, and a query to a value ξ′ that has not been queried yet in a
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Fig. 4. Subextractor Em, as a (Q + µ)-query random-oracle algorithm.

Parameters: km, Q ∈ N
Black-box access to: Em+1
Random oracle queries: Q + µ

– Run Em+1 as follows to obtain (I, y1, v): relay the Q + µ queries to the random oracle and record all query-
response pairs. Set i := Im, and let ci be the response to query i.

– If v = 0, abort with output v = 0.
– Else, repeat

• sample c′
i ∈ C \ {ci} (without replacement);

• run Em+1 as follows to obtain (I′, y′, v′), aborting right after the initial run of P∗ if I ′
m ̸= Im: answer

the query to i with c′
i, while answering all other queries consistently if the query was performed by

Em+1 already on a previous run and with a fresh random value in C otherwise;
until either km − 1 additional challenges c′

i with v′ = 1 and I ′
m = Im have been found or until all challenges

c′
i ∈ C have been tried.

– In the former case, output I, the km accepting (1, . . . , 1, km+1, . . . , kµ)-trees y1, . . . , ykm , and v := 1; in the
latter case, output v := 0.

previous run on Em+1 (within the considered run of Em) is answered with a freshly chosen uniformly random
η′ ∈ C. In multiple runs of Em, very naturally the random tape of Em will be refreshed, and thus there is no
guaranteed consistency among the answers to the query calls of Em+1 across multiple runs of Em.

The following lemma captures some technical property of the subextractors Em. Subsequently, Propo-
sition 1 shows that Em, if successful, indeed outputs a (1, . . . , 1, km . . . , kµ)-tree of accepting transcripts.
Proposition 2 bounds the success probability and expected run time of Em. All statements are understood
to hold for any statement x and any m ∈ {1, . . . , µ + 1}.

Lemma 7 (Consistency of P∗ and Em). Em obtains the index vector I, which it eventually outputs, by
running (I, π)← P∗ as its first step. In particular, for any fixed choice of the random oracle RO, the index
vector I output by ERO

m matches the one output by P∗,RO.

Proof. The first claim holds for Eµ+1 = A by definition of A, and it holds for Em with m ≤ µ by induction,
given that Em runs Em+1 as a first step. The claim on the matching index vectors then follows trivially.

Proposition 1 (Correctness). For any fixed choice of the random oracle let (I, y1, . . . , ykm
, v)← ERO

m (x).
If v = 1 then (y1, . . . , ykm) forms a (1, . . . , 1, km, . . . , kµ)-tree of accepting transcripts.

Proof. All km+1 · · · kµ transcripts in a (1, . . . , 1, km+1, . . . , kµ)-tree contain the same partial transcript
(a1, c1, . . . , cm, am+1), i.e., the first 2m − 1 messages in all these transcripts coincide. Hence, any
(1, . . . , 1, km+1, . . . , kµ)-tree of transcripts has a well-defined trunk (a1, c1, . . . , cm, am+1).

By induction on m, we will prove that if v = 1 then (y1, . . . , ykm) forms a (1, . . . , 1, km, . . . , kµ)-tree
of accepting transcripts with trunk (a1, RO(I1), . . . , RO(Im−1), am), where Im+1 = (a1, . . . , am+1). This
obviously implies the correctness claim.

For the base case m = µ + 1, recall that Eµ+1 = A, and that by definition of A and its output
(I, y, v), if v = 1 then y is an accepting transcript, and thus a (1, . . . , 1)-tree of accepting transcripts with
(a1, RO(I1), . . . , RO(Iµ), aµ+1) as trunk where Iµ+1 = (a1, . . . , aµ+1), by definition of I = (I1, . . . , Iµ).

For the induction step, by the induction hypothesis on Em+1 and its output (I, y, v), if v = 1 then y is
a (1, . . . , 1, km+1, . . . , kµ)-tree of accepting transcripts with trunk (a1, RO(I1), . . . , am, RO(Im), am+1), where
Im+1 = (a1, . . . , am+1). This holds for (I, y1, v) output by Em+1 in the first step of Em, but also for any invoca-
tion of Em+1 in the repeat loop with output (I′, y′, v′), here with trunk (a′

1, RO′(I ′
1), . . . , a′

m, RO′(I ′
m), a′

m+1),
where I ′

m+1 = (a′
1, . . . , a′

m+1) and RO′ is such that RO′(Ij) = RO(Ij) for all j ̸= m, while RO(Im) = ci and
RO′(Im) = c′

i. By definition of the output of Em, for y1 and y′ occurring in the output of Em, it is ensured
that Im = I ′

m.
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Now note that, by Lemma 7, for the purpose of the argument, Em could have run P∗ instead of Em+1
to obtain I and I′. Therefore, by definition of the index vectors outputted by P∗, which is such that Ij is a
(fixed-size) prefix of Im for j < m, it follows that also Ij = I ′

j for all j < m.
Therefore, the output y1, . . . , ykm

of Em forms a (1, . . . , 1, km, . . . , kµ)-tree of accepting transcripts with
trunk (a1, RO(I1), . . . , am−1, RO(Im−1), am), where Im = (a1, . . . , am). This completes the proof.

Proposition 2 (Run Time and Success Probability). Let Km = km · · · kµ. The extractor Em makes
an expected number of at most Km + Q · (Km − 1) queries to A (and thus to P∗) and successfully outputs
v = 1 with probability at least

ϵ(A)− (Q + 1) · κm

1− κm

where κm := Er(km, . . . , kµ; N) is as defined in Equation 1.

Proof. The proof goes by induction on m. The base case m = µ + 1 holds trivially, understanding that
Kµ+1 = 1 and Er(∅, N) = 0. Indeed, Eµ+1 makes 1 call to A and outputs v = 1 with probability ϵ(A).
Alternatively, we can take m = µ as base case, which follows immediately from Lemma 4.

For the induction step, we assume now that the lemma is true for m′ = m + 1 and consider the extractor
Em. As in the 3-move case, we observe that, within a run of Em, all the queries that are made by the different
invocations of Em+1 are answered consistently using lazy sampling, except for the queries to the index i,
which is answered with different responses c′

i. This is indistinguishable from having them answered by a
full-fledged random oracle c ∈ CU , where we recall that U = |{0, 1}≤u| and therefore a full-fledged random
oracle corresponds to a vector c ∈ CU encoding its function table. Thus, the extractor is actually running
the abstract sampling game from Figure 2.

However, in contrast to the instantiation of Section 4, the entries of the array M are now probabilistic.
Namely, while A is deterministic, the extractor Em+1 is a probabilistic algorithm. Fortunately, this does not
influence the key properties of the abstract sampling game. For the purpose of the analysis we may namely
fix the randomness of the extractor Em+1. By linearity of the success probability and the expected run time,
the bounds that hold for any fixed choice of randomness also hold when averaged over the randomness. Thus,
we can apply Lemma 2 and Lemma 5 to bound the success probability and the expected run time.7

To control the parameters P and T , which occur in the bounds of these lemmas, we make the following
observation. A similar observation was required in the proof of Lemma 4.

First, by Lemma 7, the index vector I outputted by Em+1 matches the index vector outputted by P∗,
when given the same random oracle c ∈ CU . Second, since P∗ is deterministic, its output can only change
when the random oracle is reprogrammed at one of the indices i ∈ {0, 1}≤u queried by P∗. Therefore, for
every random oracle c ∈ CU , there exists a subset S(c) ⊂ {0, 1}≤u (indicating the queries made by P∗)
such that P∗’s output stays the same when the random oracle is reprogrammed at an index i /∈ S(c). In
particular, Ij(c) = Ij(c′) for all 1 ≤ j ≤ µ and c, c′ ∈ CU with ci = c′

i for all i ∈ S(c). Hence, the conditions
of Lemma 3 and Lemma 6 are satisfied, and it follows that P ≤ Q + 1 and T ≤ Q. We are now ready to
analyze the success probability and the expected number of A queries of Em.

Success Probability. By the induction hypothesis, the success probability pm+1 of Em+1 is bounded by

pm+1 ≥
ϵ(A)− (Q + 1) · κm+1

1− κm+1
.

Then, by Lemma 2 and Lemma 3, the success probability of Em is bounded by

pm ≥
N

N − km + 1

(
pm+1 − (Q + 1)km − 1

N

)
≥ N

N − km + 1

(
ϵ(A)− (Q + 1) · κm+1

1− κm+1
− (Q + 1)km − 1

N

)
.

7 To be more precise, to allow for fresh randomness in the different runs of Em+1 within Em, we first replace the
randomness of Em+1 by F (c) for a random function F , where c ∈ CU is the random oracle providing the answers to
Em+1’s queries, and then we fix the choice of F and average over F after having applied Lemma 2 and Lemma 5.
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By the recursive property (2) of κm = Er(km, . . . , kµ; N, . . . , N
)
, it follows that

N − km + 1
N

(1− κm+1) = 1− κm .

Hence,

pm ≥
ϵ(A)− (Q + 1) · κm+1

1− κm
− (Q + 1) km − 1

N − km + 1

= 1
1− κm

(
ϵ(A)− (Q + 1) ·

(
κm+1 + (1− κm) km − 1

N − km + 1

))

= 1
1− κm

(
ϵ(A)− (Q + 1) ·

(
1− (1− κm) · N

N − km + 1 + (1− κm) km − 1
N − km + 1

))

= ϵ(A)− (Q + 1) · κm

1− κm
,

which proves the claimed success probability.
Expected Number of A-Queries. Let the random variable Tm denote the number of A-queries made

by extractor Em. By the induction hypothesis, it holds that

E[Tm+1] ≤ Km+1 + Q · (Km+1 − 1) .

We make one crucial observation, allowing us to achieve the claimed query complexity, linear in Q. Namely,
we can view the run of a (sub)extractor as a two-stage algorithm that allows an early abort. By Lemma 7,
after only one A-query Em+1 already returns the index Im. At this stage, Em can decide whether to continue
the execution of Em+1 or to early abort this execution. If the index is incorrect, i.e., it does not match the
one obtained in the first invocation of Em+1, then Em early aborts the execution of Em+1. Only if the index
is correct, the Em+1 execution has to be finished.

For this reason, we define the function c 7→ Γ (c), where Γ (c) is the (expected) costs of running Em+1
(completely) with random oracle c ∈ CU . Moreover, we set γ = 1 indicating the cost of an early abort
invocation of Em+1. These cost functions measure the expected number of calls to A.

Hence, by Lemma 5 and Lemma 6, the expected cost of running Em is at most

E[Tm] ≤ km · E[Γ (C)] + γ ·Q · (km − 1) = km · E[Tm+1] + Q · (km − 1)
≤ Km + Q · (Km − km) + Q · (km − 1) = Km + Q · (Km − 1) ,

where C is distributed uniformly at random in CU . This completes the proof.

The existence of extractor E1, combined with the k-special-soundness property, implies the following. This
theorem shows that the Fiat-Shamir security loss for k-out-of-N special-sound (2µ + 1)-round interactive
proofs is Q+1, i.e., the security loss is linear in the query complexity Q of provers P∗ attacking the considered
non-interactive random oracle proof FS[Π]. In particular, the Fiat-Shamir security loss is independent of the
number of rounds (2µ + 1) of the interactive proof Π.

Theorem 2 (FS Transformation of a (k1, . . . , kµ)-Special-Sound Protocol). The Fiat-Shamir trans-
formation FS[Π] of a k = (k1, . . . , kµ)-special-sound interactive proof Π, in which all challenges are sampled
from a set C of size N , is knowledge sound with knowledge error

κfs(Q) = (Q + 1)κ ,

where κ := Er(k; N) is the knowledge error of the interactive proof Π.
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6.2 Multi-Round Protocols with Arbitrary Challenge Sets

Thus far, we considered and analyzed multi-round interactive proofs in which all challenges are sampled
uniformly at random from the same set C of cardinality N . However, it is straightforward to verify that
our techniques also apply to multi-round interactive proofs with different challenge sets, i.e., where the i-th
challenge is sampled from a set Ci of cardinality Ni.

A natural first step in this generalization is to consider µ random oracles ROi : {0, 1}≤u → Ci instead
of one. Besides some additional bookkeeping, all the reasoning goes through unchanged. Indeed, everything
works as is when the prover P∗ has the additional freedom to choose which random oracle it queries. Thus,
we obtain the following generalization of Theorem 2.

Theorem 3 (FS Transformation of a k-out-of-N Special-Sound Interactive Proof). The Fiat-
Shamir transformation of a k-out-of-N special-sound interactive proof Π is knowledge sound with knowledge
error

κfs(Q) = (Q + 1)κ ,

where κ := Er(k; N) is the knowledge error of the interactive proof Π.

Remark 7. Alternatively, one could fix µ mappings fi : {0, 1}∗ → Ci and define the random oracle to output
sufficiently long bit-strings. As before, this allows the prover P∗ to take as input a single random oracle.
Of course, this approach closely resembles practice, where the random oracles are replaced hash functions.
However, one must be careful, since distinct bit-strings do not necessarily map to distinct challenges and
uniformly random bit-strings do not necessary correspond to uniformly random challenges.

6.3 Adaptive Security

Thus far, we restricted our extractor analysis to the static or non-adaptive knowledge soundness notion of
Definition 9. More precisely, our knowledge extractor takes as input a fixed statement x, is given oracle
access to a static dishonest prover P∗ attacking the considered protocol on input x, and aims to output a
witness w for x.

However, our approach is easily modified towards proving adaptive knowledge soundness (Definition 10).
To this end, let Pa be an adaptive Q-query prover attacking the adaptive Fiat-Shamir transformation FS[Π] of
a k-out-of-N special-sound interactive proof, i.e., Pa takes no input and outputs a statement-proof pair (x, π),
with |x| = n for some fixed n, together with some auxiliary information aux. The random oracle algorithm
A is defined to run (x, π, aux)← Pa and verify that π is a valid proof for statement x. The main difference
with the static case is that the indices are now defined as

I1 := (x, a1) , I2 := (x, a1, a2) , . . . , Iµ := (x, a1, . . . , aµ) ,

so as to match up with(4), i.e., with the adaptive Fiat-Shamir transformation.
The statement x can thus be considered as part of the first message (x, a1). Since all transcripts in a tree

of transcripts have a common first message, it is easily seen that the extractor of Section 6, if successfully
applied to this adaptive instantiation of A, outputs a well-defined statement x together with a tree of
accepting transcripts for this statement x. Moreover, x is the statement outputted by the extractor’s first
invocation of Pa.

For this reason, it immediately follows that our knowledge extractor, when applied to adaptive Q-query
provers Pa, has the required properties. This proves the following theorem, showing that the adaptive Fiat-
Shamir transformation of a special-sound interactive proof is adaptively knowledge sound.

Theorem 4 (FS Transformation - Adaptive Knowledge Soundness). The adaptive Fiat-Shamir
transformation of a k-out-of-N special-sound interactive proof Π is adaptively knowledge sound with know-
ledge error

κfs(Q) = (Q + 1)κ ,

where κ := Er(k; N) is the knowledge error of the interactive proof Π.
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7 The Fiat-Shamir Transformation of Parallel Repetitions

In the previous sections we have established a positive result; for a broad class of interactive proofs the
Fiat-Shamir security loss is only linear in the query complexity Q and independent of the number of rounds.
One might therefore wonder whether the generic (Q + 1)µ security loss, for (2µ + 1)-move protocols, is only
tight for contrived examples. In this section, we show that this is not the case. We demonstrate a non-trivial
attack on the Fiat–Shamir transformation of the parallel repetition of k-special-sound protocols.

Let Π = (P,V) be a (2µ + 1)-move k-special-sound interactive proof. We write Πt = (Pt,Vt) for its
t-fold parallel repetition. That is, the prover Pt(x; w) runs t instances of P(x; w), i.e., each message is a
tuple (a1, . . . , at) of messages, one for each parallel thread of execution. Likewise, the verifier Vt(x) runs t
instances of V(x) in parallel, i.e., each challenge is a tuple (c1, . . . , ct) of challenges, one for each parallel
thread of the execution. Finally, the verifier accepts if all parallel instances are accepting.

Assuming certain natural properties on Π, which are satisfied by typical examples, and assuming again
for simplicity that the challenge spaces Ci all have the same cardinality N , we show that, when t ≥ µ, there
exists a malicious Q-query prover P∗, attacking FS[Πt], that, for any statement x, succeeds in convincing
the verifier with probability at least

1
2

Qµ

µt+µ
Er(k; N)t ,

assuming some mild conditions on the parameters. Given that Er(k; N)t equals the soundness as well as the
knowledge error of Πt,8 our attack shows that the security loss of the Fiat-Shamir transformation, when
applied to the t-fold parallel repetition of Π, is at least 1

2 Qµ/µt+µ (both, as a proof of language membership
as well as a proof of knowledge). This stands in stark contrast to a single execution of a k-special-sound
protocol, where the loss is linear in Q and independent of µ.

We go on to discuss the kind of k-special-sound protocols Π for which our attack applies. For simplicity,
we restrict our attention here to k = (k, . . . , k) and assume t and Q to be multiples of µ. In Appendix A.3, we
consider the case of arbitrary k, and the restrictions on t and Q can be easily avoided with some adjustments
to the bound and the reasoning. Let ℓ = (ℓ, . . . , ℓ) where ℓ ≤ k − 1. The attack on FS[Πt] uses a property
most k-special-sound protocols Π satisfy, namely that there exists an efficient attack strategy A against Π
which tries to guess challenges up front so that:
1. In any round, A can prepare and send a message so that if he is lucky and the next challenge falls in a

certain set Γ of cardinality ℓ, A will be able to complete the protocol and have the verifier accept (no
matter what challenges A encounters in the remaining rounds), and

2. until A is lucky in the above sense, in any round A can actually prepare B distinct messages as above,
for a given parameter B.

We call protocols which admit such an attack strategy ℓ-special-unsound with B potential responses per
round (see Appendix A.1 for a formal definition). The first point in particular implies an attack strategy for
the interactive proof Π that succeeds with probability Er(ℓ + 1, N). Since many k-special-sound interactive
proofs Π are ℓ-special-unsound with ℓ = k−1, this confirms the tightness of the knowledge error Er(k, N), as
already mentioned at the end of Section 2.2. The second point implies that in the context of the Fiat-Shamir
transformation, an attacker can produce and try multiple message-challenge pairs in any round.

These requirements are very common (for non-trivial ℓ and large B). For example, the folding technique
of [BCC+16], when used to fold two parts into one, satisfies (3, . . . , 3)-special-soundness and (2, . . . , 2)-
special-unsoundness with an exponential parameter B; we discuss this in detail in Appendix A.2. Note that,
while the honest prover in [BCC+16] is deterministic, a dishonest prover can produce different messages (and
hope to be lucky with one of the corresponding challenges).

The following theorem gives a lower bound for the success probability of our attack on the Fiat-Shamir
transformation FS[Πt] of the t-fold parallel repetition Πt of an interactive proof Π with certain common
soundness and unsoundness properties.
8 The soundness and knowledge error of a single invocation of Π are both equal to Er(k; N). Therefore, it immediately

follows that the soundness error of the parallel repetition Πt is Er(k; N)t. The fact that the knowledge error of Πt

also equals Er(k; N)t follows from the recent work [AF21].
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Theorem 5. Let Π be a (2µ + 1)-move (k, . . . , k)-out-of-(N, . . . , N) special-sound interactive proof that is
(ℓ, . . . , ℓ)-special-unsound with B responses per round for ℓ = k − 1. Furthermore, let t, Q ∈ N be integer
multiples of µ such that Q ·

(
ℓ
N

)t/µ ≤ 1/4 and B ≥ Q. Then there exists a Q-query dishonest prover P∗

against (P,V) = FS[Πt] such that, for any statement x ∈ {0, 1}∗,

ϵ(P∗, x) = Pr
(
VRO(x,P∗,RO) = 1

)
≥

(
1−

(
1−

(k − 1
N

)t/µ
)Q/µ

)µ

≥ 1
2

Qµ

µt+µ
Er(k; N)t .

The run-time of P∗ is at most tQ times the run-time of attack strategy A against Π.

Proof. The basic idea of the attack is that (groups of) parallel threads can be attacked individually and
independently from each other over the different rounds of the protocol. Concretely, the attack is given by
the adversary P∗ against FS[Πt], which makes up to Q = µ ·Q′ queries, defined as follows: P∗ runs attack
strategy A in parallel against all t = µ · t′ threads. Let us call a thread green if strategy A succeeds in
guessing the challenge for that thread (and hence, V will eventually accept for that thread). Otherwise, a
thread is red. All threads start out red, and the goal of P∗ is to turn all threads green. To do so, in every
round P∗ tries to turn at least t′ = t/µ red threads into green threads (or all red threads into green threads
if fewer than t/µ remain). For this, P∗ uses A to get the messages which it feeds to the random oracle. If
P∗ was lucky with the received challenges for at least t′ = t/µ threads, then enough red threads turn green.
Else, P∗ tries the considered round again, exploiting that A can produce up to B distinct messages that give
him a chance, each one giving a fresh challenge from the random oracle. The dishonest prover P∗ tries up
to Q′ = Q/µ times per round until it gives up (and fails).

The number of queries P∗ makes to the random oracle is at most Q, hence P∗ is a Q-query adversary.
The probability that P∗ succeeds for any try in any round to turn at least t′ = t/µ red threads into green
threads is at least ( ℓ

N )t′ = λt′ , where we introduce λ = ℓ
N to simplify the upcoming expressions. Therefore,

since P∗ makes at most Q′ = Q/µ queries in every round, the success probability for any fixed round is at
least

1−
(
1− λt′)Q′

≥ Q′λt′
− 2 Q′2λ2t′

= Q′λt′(
1− 2 Q′λt′)

. (8)

where the inequality follows from the fact that 1− (1−x)n ≥ nx− 2n2x2, which can be shown to hold when
nx ≤ 1/2 (see Appendix A), which is (more than) satisfied for x = λt′ and n = Q′ by assumption. Hence,
P∗ succeeds (in all µ rounds) with probability at least

Q′µλt
(
1− 2 Q′λt′)µ ≥ Q′µλt

(
1− 2Qλt′)

≥ 1
2Q′µλt ,

where we use that (1− z)n ≥ 1−nz for n ∈ N and z ∈ [0, 1] to argue the first inequality, and Q ·
(

ℓ
N

)t′

≤ 1/4
for the second. To complete the analysis of P∗’s success probability, we observe that

Er(k; N) = 1−
(

1− k − 1
N

)µ

≤ µ · k − 1
N

= µ · ℓ

N
= µ · λ .

Hence, the success probability of P∗ is at least 1
2 Q′µ(Er(k;N)

µ

)t, as claimed.

Recall that we assume t and Q to be divisible by µ; this is mainly for simplicity. In general, i.e., when
dropping this assumption, the success probability has lower bound 1/2 · ⌊Q/µ⌋µ ·

(
Er(k; N)/µ

)⌈t/µ⌉µ.
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A Detailed Discussion of the Attack

We discuss our attack in more detail, but also in more generality, here. Let Π be a (2µ+1)-move public-coin
interactive proof for relation R with challenge sets C1, . . . , Cµ.

In Appendix A.1, we give a formal definition of the unsoundness property required for our attack to
succeed. In Appendix A.2, we give an example of a multi-round protocol satisfying this unsoundness property,
i.e., a protocol to which our attack applies. In Appendix A.3, we generalize the attack to a broader class of
protocols and describe the properties of this generalization.

A.1 Special-Unsoundness with Multiple Potential Responses

For simplicity, we assume perfect correctness. The attack applies when Π satisfies the following property.

Definition 12 (ℓ-special-unsoundness with B potential responses per round). We say that Π has
ℓ-special-unsoundness for ℓ = (ℓ1, . . . , ℓµ) ∈ Nµ if there exists a dishonest prover A of the following form,
and so that in the execution with V and input x the following holds:

– A starts off in active mode, which is so that in every round 2i− 1 when A sends the response ai to V,
there exists a subset Γi ⊆ Ci of cardinality ℓi (defined as a function of the state of A at that point) such
that if the subsequent challenge ci is in Γi then A switches into passive mode.

– If A switches to passive mode then it remains in passive mode, and V will accept at the end of the
protocol execution.

We say Π is ℓ-special-unsound with B potential responses per round if additionally the following holds:
As long as A is in active mode, the computation of ai involves a designated seed si, which is chosen arbitrarily
from some set Si. By redoing the computation with different seeds (but fixed randomness), A can obtain at
least B distinct ai’s satisfying the properties specified above (i.e., existence of Γi such that A switches to
passive mode if ci ∈ Γi). Moreover, we require that distinct seeds produce distinct ai, that is, the mapping
from seed si to message ai is injective.

The “B potential responses per round”, which can be derived by changing the seed s, are used so that
A can “retry” each round at least B times. This will be used to obtain fresh challenges from the random
oracles. The requirement that different seeds produce different ai will simplify statements and proofs, but
it will be evident that it is stronger than necessary. One can relax the definition as long as A can produce
distinct ai efficiently, say by picking a few seeds at random; the (run-time) analysis must then take these
additional tries into account.

Protocols that are (k1, . . . , kµ)-special-sound are often (k1− 1, . . . , kµ− 1)-special-unsound. For example,
k-special-sound Σ-protocols are typically (k − 1)-special-unsound in that a dishonest prover can first pick
an arbitrary subset Γ ⊂ C of cardinality k − 1, then choose an arbitrary response z, and finally compute a
first message a (as a function of Γ and z), so that (a, c, z) is an accepting conversation whenever c ∈ Γ .9
Furthermore, different choices (possibly of a certain form) of the pre-chosen response z typically lead to
different values of a, thus satisfying the multiple responses per round property as well.

For multi-round k-special-sound protocols, this kind of attack often extends in such a way that once A is
successful in one round, it has all the information needed to continue as an honest prover, and the verifier will
accept. In other words, the passive mode of A usually corresponds to following the remainder of the protocol
honestly. Below, we discuss in detail that in particular Bulletproofs-like protocols satisfy the Definition 12.

A.2 An Example Protocol

Bulletproofs-like protocols are typically (2, . . . , 2)-special-unsound (or worse), as we explain here. At the core
of these protocols is the folding technique of [BCC+16]. Here, we describe the adaptation considered [AC20],
9 For 2-special-sound Σ-protocols, this is very much in line with being special honest-verifier zero-knowledge.
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which, in the plain DL-setting, is the following 3-special-sound Σ-protocol for proving knowledge of x ∈ Fn
q

with gx = h; we refer to this protocol as the folding protocol in the remainder. Here, g = (g1, . . . , gn) ∈ Gn

and h ∈ G are publicly known, where G is a group with prime order q, and gx := gx1 · · · gxn
n ; furthermore, it

is assumed (w.l.o.g.) that n is a power of 2, and so in particular n is even and we can write gL = (g1, . . . , gn/2)
and gR = (gn/2+1, . . . , gn/2), and similarly for x, so that gx is the component-wise product gx = gxL

L gxR

R of
gxL

L and gxR

R . Lastly, we may assume that g ̸= (1, . . . , 1), since in this case the relation gx = h is trivial and
so there is nothing for the prover to prove.

In the considered folding protocol, the honest prover first sends a := gxL

R and b := gxR

L to the verifier and
then answers the challenge c←R Fq with z := xL + c xR, and the verifier accepts if and only if(

gc
L ⊙ gR

)z = ahcbc2
, (9)

where gc
L ⊙ gR denotes the component-wise product of gc

L and gR. The communication complexity of this
Σ-protocol can now be improved by not sending the answer z, but instead proving knowledge of x̃ with
g̃x̃ = h̃ := ahcbc2 for g̃ := gc

L ⊙ gR; the latter is done by means of running another instance of the protocol
but now with the smaller witness x̃ = z. But then, also in this instance, instead of sending the answer one can
run yet another instance of the protocol to prove knowledge of the answer, etc. This results in a compressed
multi-round interactive proof of knowledge with communication complexity logarithmically in n (instead of
linear).

Towards arguing unsoundness, i.e., Definition 12, it follows directly from the construction design for the
compression protocol that once a dishonest prover holds the correct answer, then he can honestly follow the
remainder of the protocol and the verifier will accept. Thus, this defines the passive mode. For the active
mode, we observe that the following holds for the folding protocol. For any two c1, c2 ∈ Fq with c2

1 ̸= c2
2 and

with g̃1 := gc1
L ⊙ gR and g̃2 := gc2

L ⊙ gR both not being equal to (1, . . . , 1), A can pick an arbitrary answer
z ∈ Fn/2

q and solve the equation system

abc2
1 = g̃z

1h−c1

abc2
2 = g̃z

2h−c2

for a and b by applying the inverse of the matrix
(

1 c2
1

1 c2
2

)
to both sides “in the exponent”.

Then, by construction, the pre-chosen answer z satisfies (9) if the verifier’s challenge c happens to be in
Γ = {c1, c2}, and thus by switching to the passive mode now if this happens to be the case and following
the remainder of the protocol honestly, A will make the verifier accept, as required by Definition 12. Also, if
desired, A can solve the above equation system with a different choice of z to obtain a new pair (a, b). More
precisely, let i ∈ {1, . . . , n/2} be so that the i-th coordinate of, say, g̃1 is not 1 (which exists by choice of c1),
then the q possible choices of the i-th coordinate zi ∈ Fq of z lead to q distinct right-hand-sides in the above
equation system, and thus to q distinct pairs (a, b), when keeping the remaining coordinates of z fixed.

A.3 Generalizing Theorem 5 to Arbitrary Special-Unsound Protocols

Theorem 6 removes the restriction ℓ1 = · · · = ℓµ in Theorem 5. Indeed, it considers a (ℓ1, . . . , ℓµ)-special-
unsound protocol with arbitrary ℓi’s.

Theorem 6. Let Π be a (2µ+1)-move public-coin interactive proof with challenge spaces C1, . . . , Cµ. Suppose
Π has (ℓ1, . . . , ℓµ)-special-unsoundness with B responses per round. Let Πt be the t-fold parallel repetition
of Π. Let m1, . . . , mµ ∈ N such that

∑µ
i=1 mi = t, and set αi = ( ℓi

|Ci| )
mi . Let Q = µQ′ for Q′ ∈ N with

Q′∑µ
i=1 αi < 1/4 and Q′ ≤ B. Then there is a Q-query dishonest prover P∗ against (P,V) = FS[Πt] so that

for every statement x

ϵ(P∗, x) = Pr
(
VRO(x,P∗,RO) = 1

)
≥ 1

2

(
Q

µ

)µ

·
µ∏

i=1
αi .
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The run-time of P∗ is O(t·Q·TA), where TA is an upper-bound on the run-time of some ℓ-special-unsoundness
dishonest prover A attacking the (interactive) proof system Π (i.e., when A computes one message ai per
round).

We recover the statement of Theorem 5 by considering Π that is (ℓ, . . . , ℓ)-special-unsound and has
challenge spaces of fixed size |Ci| = N , and by setting m1 = . . . = mµ = t/µ and thus α1 = . . . = αµ =
( k−1

N )t/µ then. In general, the freedom in choosing m1, . . . , mµ allows to adapt the number of threads that
should be successfully attacked in each round, which is useful when the |Ci|’s and/or the ℓi’s vary over the
different rounds.

Proof. The proof is analogous to the proof of Theorem 5, with the attack working in a thread by thread
manner. Let A be an (ℓ1, . . . , ℓµ)-special-unsoundness malicious prover for Π with B potential responses per
round. Let P∗ be the adversary defined as follows:

1. Start t parallel instances A with input x, denoted as A1, . . . ,At. We write aj
i for the (2i − 1)-th move

message of the j-th instance, and similarly for the corresponding unsoundness set Γ j
i .

2. From i = 1, repeat until i = µ

– Try up to Q/µ times:
• For all Aj which are in active mode, pick a seed sj

i ∈ S, distinct from all seeds previously chosen
for Aj in this round.
• Run all Aj to obtain the (2i−1)-th move message aj

i for all i, j. Moreover, compute the challenges
cj

i for all threads j.
• If, after receiving the challenges cj

i , at least
∑i

k=1 mk of the Aj ’s would be in passive mode, send
the challenges and increase i (i.e., move on to attacking the next round). In particular, if at least
mi Aj ’s switch from active to passive, i will increase.

3. P∗ receives aj
µ+1 from Aj (for j = 1, . . . , t) and completes the fake proof.

First, let us analyze the efficiency of P∗. Clearly, P∗ is a Q-query random-oracle algorithm. Moreover,
P∗ emulates at most t ·Q (partial) runs of the ℓ-special-unsoundness malicious prover instances Aj .

Now, let us analyze the success probability. For the i-th challenge, P∗ will execute the inner loop body
at most Q′ ∈ N times, where Q = µQ′ by definition. Moreover, for each retry, at least one message aj

i is
different from its previous choices. (Because different seeds sj

i lead to different aj
i for any Aj which is in

active mode, and at least one Aj is still in active mode, because otherwise the inner loop increases i). Thus,
the random oracle queries provide fresh random challenges. The probability that an inner iteration in move
2i− 1 succeeds for a uniformly random challenge choice is at least αi = (ℓi/|Ci|)mi , since by construction at
most mi threads/instances Aj need to be lucky in this round. Consequently, the probability that Q′ tries
are sufficient to switch enough Aj from active to passive mode in the i-the iteration is

1− (1− αi)Q′
≥ Q′αi − 2(Q′αi)2 . (10)

For the inequality we used that 1 − (1 − x)n ≥ nx − 2n2x2 for any x ≥ 0 and n ∈ N with 0 ≤ nx ≤ 1/2,
where the latter follows from

|1− (1− x)n − nx| ≤
n∑

i=2

(
n

i

)
xi ≤

n∑
i=2

(nx)i ≤
∞∑

i=2
(nx)i = n2x2

1− nx
≤ 2n2x2 .

Noting that Q′αi ≤ Q′∑
i αi ≤ 1/4 ≤ 1/2 by assumption, we can thus indeed conclude (10).

As every round must be successful for P∗ to succeed, the overall success probability of P∗ is thus at least

µ∏
i=1

(
1− (1− αi)Q′)

≥
µ∏

i=1

(
Q′αi − 2(Q′αi)2) = Q′µ

µ∏
i=1

αi ·
µ∏

i=1
(1− 2Q′αi) .

30



Using that
∏µ

i=1(1− zi) ≥ 1−
∑µ

i=1 zi for zi ≥ 0, we can further bound the right hand side as

Q′µ
µ∏

i=1
αi ·

µ∏
i=1

(1− 2Q′αi) ≥ Q′µ
µ∏

i=1
αi ·

(
1− 2

µ∑
i=1

Q′αi

)
≥ 1

2 ·Q
′µ

µ∏
i=1

αi ,

where we used again Q′∑
i αi ≤ 1/4 for the final inequality. This proves the claim.
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