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Abstract. Despite the great potential and flexibility of smart contract-enabled blockchains, build-
ing privacy-preserving applications using these platforms remains an open question. Existing so-
lutions fall short since they ask end users to coordinate and perform the computation off-chain
themselves. While such an approach reduces the burden of the miners of the system, it largely
limits the ability of lightweight users to enjoy privacy since performing the actual computation on
their own and attesting to its correctness is expensive even with state-of-the-art proof systems.
To address this limitation, we propose smartFHE, a framework to support private smart contracts
using fully homomorphic encryption (FHE). To the best of our knowledge, smartFHE is the first to
use FHE in the blockchain model; moreover, it is the first to support arbitrary privacy-preserving
applications for lightweight users under the same computation-on-demand model pioneered by
Ethereum. smartFHE does not overload the user since miners are instead responsible for performing
the private computation. This is achieved by employing FHE so miners can compute over encrypted
data and account balances. Users are only responsible for proving well-formedness of their private
inputs using efficient zero-knowledge proof systems (ZKPs). We formulate a notion for a privacy-
preserving smart contract (PPSC) scheme and show a concrete instantiation of our smartFHE
framework. We address challenges resulting from using FHE in the blockchain setting—including
concurrency and dealing with leveled schemes. We also show how to choose suitable FHE and ZKP
schemes to instantiate our framework, since naively choosing these will lead to poor performance
in practice. We formally prove correctness and security of our construction.
Finally, we conduct experiments to evaluate its efficiency, including comparisons with a state-of-
the-art scheme and testing several private smart contract applications. We have open-sourced our
(highly optimized) ZKP library, which could be of independent interest.

1 Introduction

Cryptocurrency can be traced back to (at least) 1983 when Chaum first proposed the concept of elec-
tronic cash using blind signatures [25]. Extending Chaum’s design, Bitcoin [60] removed the need for a
trusted party and introduced the notion of a public distributed ledger called blockchain through which
users could exchange currency directly with one another. Unfortunately, Bitcoin provides no privacy for
the user as transaction records are fully public on the blockchain [14]; thus, several initiatives emerged
to bring privacy to currency transfer [62,65].

Smart contracts and privacy. In parallel, a very different question about Bitcoin’s functionality was
asked. Could Bitcoin be extended to support arbitrary user-defined applications? The answer was yes
but with major changes to its UTXO-based design. Thus, Ethereum was born, defining an account-based
model and a Turing-complete scripting language that permit users to deploy arbitrary programs called
smart contracts [70]. Although Ethereum offers a highly expressive functionality, it provides no privacy
out of the box.

Over the last few years, several attempts have been made to support private computation for a single
user’s inputs over a blockchain. Some constructions built upon the paradigm used for private currency
transfer—operating directly on additively homomorphic encryptions with zero knowledge proofs (ZKPs)
to prove that inputs satisfy certain conditions [22]. Unfortunately, additive homomorphisms enable only
a limited set of applications with input/output (I/O) privacy. Other constructions offload all work to
the end user to do offline (or off-chain) [19, 68]. Users perform the intended computations on plaintext
data, encrypt inputs and outputs, and create a ZKP certifying correctness of computation with respect
to these encryptions. Blockchain miners only verify correctness of the ZKP. This is referred to as the
ZKP-based approach as it relies on the power of ZKPs to perform computations with I/O privacy [8].



The ZKP-based approach is not suited to lightweight users [8]. This is due to the fact that generating
a proof to certify computation correctness, for even simple computations, is incredibly time and memory
intensive even with state-of-the-art constructions. For example, using the highly optimized implementa-
tion of Zexe [19] with a non-universal proof system [44], the user needs over 50 s to generate the proof
showing correctness of off-chain computation on 2 inputs. Furthermore, even if a very efficient ZKP
system is used, operating on private inputs coming from different users (alternatively known as oper-
ating on foreign data [67]) requires these users to use a privacy-preserving function evaluation protocol
(e.g. multiparty computation [52]). This in turn requires interaction and coordination between the users,
along with performing a distributed protocol to generate the computation correctness proof (perhaps
embedded inside the private computation offline protocol).

Both industry and academia have become increasingly focused on supporting lightweight users in
the blockchain setting. Reducing the user workload while computing over her private inputs has led to
considering fully homomorphic encryption (FHE) based approaches. Despite general belief that FHE is
quite inefficient, FHE has been used to successfully support lightweight clients attempting to retrieve
relevant transactions [54, 57] (the latter, Spiral [57], is deployed in practice [6]). Extending this line of
work, we ask if FHE might be used to support private computation in the blockchain model for lightweight
users. We focus on building a privacy-preserving version of Ethereum’s computing-on-demand model.

1.1 Our Contributions

We propose smartFHE, a framework for building smart contracts that supports lightweight users. Op-
erating directly on encrypted values has proven invaluable across numerous applications [24, 33]. Using
FHE, users could supply encrypted inputs along with a simple ZKP showing their well-formedness and
that certain relations on the plaintexts are satisfied. Miners check the proofs and perform the requested
computations directly on the encrypted inputs. No need for users to provide complex ZKPs attesting to
the correctness of the entire computation.

Combining FHE with blockchain represents a harmonious union. Blockchain addresses the pain point
of verifying correctness of homomorphic computation. In FHE, the evaluation party is different from the
(encrypted) input owner and there is no immediate way for the input owner to validate correctness of
the computation (without repeating the entire computation). Although solutions exist for this problem,
the added cost can be prohibitive [39]. A blockchain offers a simpler solution through consensus; the
assumption that the majority of the mining power is honest provides guarantees with regards to correct-
ness [50]. Moreover, a blockchain solves another problem for computation outsourcing—namely, the need
for an always-available evaluation party. Miners perform paid computations for users (as in Ethereum)
which could be the FHE computations needed in private smart contracts.

We take a foundational approach to realizing smart contracts with I/O privacy employing FHE and
ZKPs. To the best of our knowledge, smartFHE is the first to use FHE in the blockchain model; it is
moreover the first to support lightweight users in preserving input/output privacy across arbitrary de-
centralized applications. Although combining FHE with ZKPs to support private computation appears
natural, in the context of large scale distributed systems like blockchain, this solution introduces several
challenges (including efficiency and concurrency) that we address in our framework. We elaborate on our
contributions in what follows.

A notion for privacy-preserving smart contracts. We define a notion for privacy-preserving smart
contracts (PPSCs) capturing the support of arbitrary computation with I/O privacy. Furthermore, we
extend existing definitions of correctness and security [22,65], in terms of privacy/ledger indistinguisha-
bility and overdraft safety/balance, to provide formal guarantees for a PPSC scheme. We believe that
our PPSC definition is of independent interest as it is general enough to be used in other private smart
contract constructions.

smartFHE framework. We propose smartFHE, a framework to support smart contracts with I/O
privacy along with payments that hide the users’ balances and transfer amount via FHE and ZKPs.
smartFHE preserves privacy under the same decentralization, availability, and work model of general-
purpose (public) smart-contract systems. smartFHE does not overload end users as miners are responsible
for executing the required computations. To allow for operations on encrypted account states, we intro-
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duce a locking mechanism (reminiscent of a mutex) to solve resulting concurrency issues. It also protects
against front-running and replay attacks.

smartFHE is highly flexible with respect to functionality. First, it offers two modes of operation—public
and private—that users can switch between. Private accounts and their data are stored encrypted on
the blockchain and users supplement any additional encrypted inputs with proper ZKPs attesting to
well-formedness. FHE allows miners to operate directly on these private inputs, produce private outputs,
and update the blockchain state accordingly. Second, our framework is modular since it is not bound to
particular FHE and ZKP schemes, allowing us to exploit future improvements in these areas. Third, our
framework and its security notions establish rigorous foundations based on which other FHE flavors can
be used to support private smart contracts, such as multi-party and multi-key FHE [15,58,59].

smartFHE is highly versatile with respect to applications as it supports operation on foreign values.
Our instantiation of smartFHE allows us to realize private payments and arbitrary computations over
a single user’s inputs, e.g. automated market makers (AMMs) that protect users against front-running
attacks. Furthermore, with additional smart contract logic, it can even realize some important applica-
tions operating on multi-user inputs such as statistical data analysis for financial purposes (details can
be found in Appendix B).

smartFHE instantiation. We provide an instantiation of our framework and formally prove its cor-
rectness and security based on our PPSC definition. Working with FHE in the blockchain setting is
non-trivial if we require efficiency. Selection of an FHE scheme must be done carefully with consideration
of the need for exact computation, fast integer arithmetic, and high levels of precision. Additionally, we
encounter concurrency issues and must get around bootstrapping as the best suited FHE schemes for
the blockchain setting do not offer fast bootstrapping.3

The most obvious path forward to proving the lattice-based relations of FHE is via lattice-based
ZKPs. However, state-of-the-art lattice-based ZKPs [16,17] tend to be hundreds of kilobytes to single digit
megabytes in size and are not nearly as space efficient as recently proposed elliptic curve-based ZKPs [23,
28]. To address this challenge, we utilize a recent elliptic-curve based ZKP system [34] that allows for
proving certain lattice-based relations. As [34] proves relations with respect to a Pedersen commitment,
we can employ another elliptic-curve based ZKP—Bulletproofs [23]—to prove further relations over
private inputs quite efficiently.

To demonstrate feasibility, we evaluate the performance of our instantiation to show how our ap-
proach indeed supports lightweight users. In terms of private payments, smartFHE allows a user to
issue payments at a rate that is 1.16x−7.79x (depending on parameter choice) faster than Veri-zexe, a
state-of-the-art scheme. We conduct experiments testing our instantiation in supporting private smart
contracts for statistical data analysis and automated market makers (AMMs). Transaction generation
time for these applications is smaller than that of Veri-zexe across the board. Our implementation in-
cludes developing the first library for short discrete log proofs. Unfortunately, verification time in our
system is quite large but can be improved upon significantly with further work into a GPU-accelerated
version of short discrete log proofs targeting OpenCL (our implementation targets Apple Metal). We
open source our library, which may be of independent interest as it advances the current state-of-the-art
on privacy-preserving computing.

1.2 Related Work

Several works have explored privacy in the context of blockchain. We focus on those peer-reviewed works
that provide I/O privacy for arbitrary computation (rather than customized solutions for specific use
cases).

Hawk [50] is one of the first works to construct a private smart contract scheme using ZKPs. Hawk
requires a semi-trusted manager—trusted with protecting the privacy of the users’ inputs but not for
correctness of computation. Ekiden [26] replaces a semi-trusted manager with trusted hardware, while
Arbitrum [48] relies on a full quorum of trusted parties. Subsequent works avoid such (semi-)trusted
parties or hardware. Among them, several works [10, 11, 13] (including Appendix G in [50]) improve on

3 Bootstrapping is needed to move from a leveled FHE scheme that can perform only a certain number of homo-
morphic computations to an FHE scheme that can perform an unlimited number of homomorphic computations
on encrypted data [20].
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Hawk by implementing the manager functionality using a multiparty computation protocol with various
efficiency optimizations. While Zether [22] targets trustless smart contract privacy for Ethereum, its
reliance on additively homomorphic encryption restricts functionality to private currency transfer and
a limited class of private smart contracts. Although Zether supports anonymity, this feature cannot be
implemented on Ethereum as the cost exceeds the gas limit per block [22].

Zkay [68] and its extension ZeeStar [67] (which targets operation on foreign data) suggest that sup-
porting privacy for smart contracts requires knowledge of advanced cryptographic primitives that the
average developer may not possess. They develop a compiler that takes as input a public smart contract
and produces a functionality-equivalent one that can operate on private inputs. Zkay follows the ZKP-
based approach described earlier, so it overloads end users and requires off-chain coordination to handle
multi-user inputs [8]. Zeestar, on the other hand, supports only additive homomorphisms, and it imple-
ments a non-universal ZKP system [43] that requires a new setup for each computation or application.4

Both works do not address concurrency issues related to operating on private (encrypted) accounts.
Nonetheless, we view the compiler idea as compatible with the smartFHE framework; a compiler could
be used to help implement automatic conversion of smart contract code into public or private format
based on the types of accounts used in the code.

Zexe [19] takes privacy further by also supporting function privacy (i.e. hiding the computation
itself). Following the ZKP-based approach outlined previously, Zexe operates in the UTXO-based model
which restricts the supported functionality to extending Zerocash [65] scripts used to spend currency.
Thus, it does not truly support private smart contracts. Furthermore, Zexe uses a non-universal ZKP
system [43, 44], meaning that a new setup is needed for each new computation circuit.5 Zexe will scale
poorly if the ZKP is used to attest to changes in the contract state. Kachina [49] seeks to solve this
problem by introducing state oracles to reduce the ledger state size involved in a ZKP, in addition
to introducing a formal model for private smart contracts. Nonetheless, it still follows the ZKP-based
approach; thus, it is not suitable for lightweight users.

Combining FHE with blockchain applications has recently been investigated thanks to optimized
implementations of FHE schemes. Oblivious message retrieval [54] allows a client to retrieve all private
transactions relevant to her. By utilizing FHE, this can be done in an efficient way; miners will produce
a concise response (without knowing the client address or which transactions are of interest) so the
client can detect and then retrieve these transactions privately. Spiral [57] utilizes FHE to build a highly
efficient single-server private information retrieval (PIR) protocol. This allows a client, interacting with
a trustless server holding a private database, to retrieve private records without revealing the access
pattern.6

While the space has explored other paradigms such as private (enterprise or permissioned) blockchains,
where privacy is controlled based on which parties are permitted to join certain application or view cer-
tain blockchain logs, our work focuses on cryptographic approaches to preserve privacy in permissionless
blockchains. Another paradigm is utilizing differential privacy, which in general adds noise to the user
data so that the privacy loss is bounded by some factor [31, 46]. A major challenge here is the privacy-
accuracy tradeoff—more noise implies higher privacy level but less accurate results when operating on
the data. This limits the kind of applications this approach can support, e.g., it cannot be used for private
accounts that require exact computation over their balances.

2 Defining a PPSC Scheme

In this section, we define a notion for a privacy-preserving smart contract (PPSC) scheme and formulate
its correctness and security.

4 Both Zeestar and Zether rely on ElGamal encryption. Thus, both support only short plaintexts (i.e. of length
up to 32 bits), meaning that account balances and transferred values cannot exceed this limit. smartFHE, as
it relies on FHE, does not have this limitation and can operate on longer plaintext values, e.g. 64 bits.

5 Veri-zexe [72] addresses this problem by replacing the non-universal ZKP system that Zexe uses with a universal
one, namely Plonk [41], allowing for one setup in the system.

6 PESCA [32] proposes using threshold FHE to support private smart contract state and computation with the
secret key shared among the committee handling the consensus. However, it introduces high level ideas rather
than a detailed protocol design and analysis.
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Notation. We use λ to represent the security parameter, and pp to denote the system’s public param-
eters. To refer to parameter x inside pp, we write pp.x. The public and secret keys of an account are
denoted pk and sk, respectively, with the account owner in superscript and the account type (public or
private) in subscript. Lastly, PPT is probabilistic polynomial time, negl is negligible function, and MAX
is the maximum balance value supported in the system.

PPSC definition. We envision a PPSC scheme applied on top of a public smart contract-enabled
cryptocurrency (such as Ethereum). It can be viewed as the extensions needed to support privacy-
preserving execution of smart contracts and payments on an account-based ledger. Hence, a PPSC
scheme inherits all the public functionality and data structures found in the underlying public system.
This includes the append-only ledger L that stores states for accounts (e.g. their balances and contract
code if applicable). Users have access to this ledger at any time. Processing transactions and performing
computations (the code portions of smart contracts) change the state of the ledger. Thus, issuing any
transaction or implementing any code relies on the latest ledger state reflected by the most recent mined
block. The system operates in blocks and epochs (an epoch is k consecutive blocks).

Our definition below captures the new modules needed to support private transactions and smart
contract execution with private inputs and outputs.

Definition 1 (PPSC Scheme). A PPSC scheme Π is a tuple of PPT algorithms (Setup, CreateAccount,
CreateTransaction, VerifyTransaction, Compute, UpdateState) defined as follows:

– Setup: Takes as input a security parameter λ and outputs system public parameters pp.
– CreateAccount: Takes as inputs pp and a privacy mode (0 for public and 1 for private). It generates a

key pair (sk, pk) and an address addr (derived from pk),7 and it initializes the account state, balance
Bal[pk] = 0 and locking entry Lk[pk] = ⊥ (⊥ means the account is initially unlocked). CreateAccount
outputs the key pair, address, and state.

– CreateTransaction: Takes as inputs pp and transaction related information. Outputs a transaction tx
of one of the following types:
• txshield : Transfers currency from a public account to a private one. Currency amount is public.
• txdeshield : Transfers currency from a private account to a public one. Currency amount is public.
• txprivtransf : Transfers currency between private accounts. Currency amount is private.
• txlock : Locks a private account to some other account, thereby preventing the locked account
balance from being altered until unlocked.

• txunlock : Unlocks a private account, returning control back to its owner. Only the account to which
the private account was locked can issue this transaction.

– VerifyTransaction: Takes as inputs pp, transaction tx, and the transaction’s syntax/semantics for the
types mentioned above. Outputs 1 if tx is valid based on these syntax/semantics; 0, otherwise.

– Compute: Takes as inputs pp, a circuit C representing the code to be executed, and circuit inputs
x1, . . . , xn:
• If x1, . . . , xn are public, then apply C as is on these inputs.
• If x1, . . . , xn are private, transform C into a functionality-equivalent circuit C ′ operating on
private inputs and producing private outputs,8 then apply C ′ to x1, ..., xn.

Output 1 if computation is successful, and 0 otherwise.9

– UpdateState: Takes as inputs pp, current ledger state L, and a list of pending operations Ops =
{opi}.10 Changes induced by all operations are reflected at the end of a block except:
• txshield or txprivtransf are processed at the end of the epoch (i.e. in the last block of the epoch).
• Incoming transactions to a locked account will not be processed until the next epoch after which
the account is unlocked.

At the end of a block, UpdateState outputs an updated ledger state L′.

Now, we define notions for correctness and security of a PPSC scheme, which are inspired by [22,65].
We make the appropriate changes to take into account our different account types, transaction types,
private computation (rather just private payments as in these prior works) and algorithms listed in the
PPSC definition.
7 This address will have a postfix indicating if it is for a private or public account.
8 So for any public input x and its private version x′, we have C(x) = C′(x′).
9 Note that in practice a compute request is packaged as a transaction containing the target smart contract
address, the name of a function inside this contract (the one that C represents), and the inputs.

10 Note that opi can be a transaction txi or a computation Compute(pp, Ci, {xi,1, . . . , xi,n}) as described above.
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2.1 Correctness

Intuitively, the correctness of a PPSC scheme requires that if we start with a valid ledger state and apply
an arbitrary sequence of operations, the resulting state is also valid. Correctness with respect to public
state variables is derived from the correctness of the underlying public system. It can be easily verified by
inspecting the ledger since public accounts and all operations performed on them are stored in the clear.
On the other hand, private accounts store secret values. Although a smart contract’s code is public, it is
translated into privacy-preserving operations before operating on private accounts so it produces private
outputs. Thus, proving correctness requires validating these private operations.

We define an incorrectness game INCGame between a challenger C and a ledger sampler S. At a
high level, after performing the setup phase by C, S samples a valid initial ledger L, a public account
accpub (representing the reference point) and a private account accpriv such that their initial balances
are identical, and an operation transcript Ops that cover all basic operations in the system. Ops will be
applied separately to accpub (as is) and accpriv (with an equivalent private version of Ops denoted as
Ops′) starting with L in each case. Here Ops′ corresponds to the same functionality of Ops—produces
identical state changes—but it deals with private inputs/outputs instead of public ones (e.g., txtransf is
replaced with txprivtransf and C is transformed into C ′ mentioned before).

Applying Ops and Ops′ will produce two updated ledger states: L′
1 (when working on accpub) and L′

2

(when working on accpriv). At the end of the game, the balances of both accounts will be revealed (this
requires a deshield transaction for accpriv). S wins the INCGame game if it can produce a scenario in
which the balance of accpriv is not equal to the balance of accpub.

11

Definition 2 (Correctness of PPSC Scheme). A PPSC scheme Π = (Setup, CreateAccount,
CreateTransaction, VerifyTransaction, Compute, UpdateState) is correct if no PPT ledger sampler S can
win the INCGame game with non-negligible probability. That is, for every PPT S and sufficiently large λ,
we have:

AdvINCGame∏
,S < negl(λ)

where AdvINCGame
Π,S := Pr[INCGame(Π,S, 1λ) = 1] is S’s advantage of winning the incorrectness game, and

the probability is taken over all randomness of C and S.

We now define the specifications of a valid Ops and the ledger state evolution needed to define the
INCGame game referenced above.

Definition 3 (Specifications of a valid Ops). Let Ops = {opi} be a list of operations sampled by S.
We say that Ops is valid if it satisfies the following:

– All account addresses, keys, and states are generated using CreateAccount.
– Each opi is either a transaction defined in a PPSC scheme (cf. Definition 1), a public transaction as

defined in the underlying public smart contract-enabled system, or a Compute operation with some
arbitrary circuit C and a set of inputs {xi}.

– If an operation opi is issued in epoch i, then the ledger state used to produce opi (if needed) is the
one produced by the last block of epoch i− 1.

The last condition implies that an operation issued in an epoch will be processed in the same epoch,
which reflects the assumption on processing delays in our system.

A ledger state is composed of two tables, Bal and Lk, that store the balance amount and lock state for
each account. These tables are indexed using the public keys of the accounts. Let the initial ledger state
sampled by S be L0. Bal and Lk will be initially set to 0 and ⊥, respectively, for all accounts (including
those for accpub and accpriv sampled by S).

Definition 4 (Ledger state evolution). Let Li−1 be the current ledger state and opi be the next
operation to be processed to produce the ith ledger state Li. The updates resulting from processing opi are
defined as follows:

– txshield ← Shield(skfrompub , pktopriv, val). If Lk[pk
to
priv] = ⊥ and val+Bal[pktopriv] < MAX, then increment Bal[pktopriv]

by val.

11 Without loss of generality, to simplify the notions, we focus on the balance value when dealing with states.
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– txprivtransf ← PrivTransfer(skfrompriv , pk
to
priv, val). If Lk[pk

to
priv] = ⊥ and Lk[pkfrompriv ] = ⊥, then decrement

Bal[pkfrompriv ] by val and increment Bal[pktopriv] by val.

– txdeshield ← Deshield(skfrompriv , pk
to
pub, val). If Lk[pkfrompriv ] = ⊥, then decrement Bal[pkfrompriv ] by val and in-

crement Bal[pktopub] by val.
– txlock ← Lock(sk, addr). If Lk[pk] = ⊥ then set Lk[pk] = addr (pk is the public key tied to sk).
– txunlock ← Unlock(pk). If Lk[pk] = txunlock.addr, then set Lk[pk] = ⊥ (txunlock.addr is the account

address that issued txunlock).
– Compute(pp, C, {x1, . . . , xn}). Updates depend on the code that C represents. These may include

altering storage variables related to the smart contract code and/or account balances.

INCGame Game Definition. The probabilistic experiment INCGame takes as inputs a PPSC scheme
Π and a security parameter λ. It defines an interaction between a challenger C and a ledger sampler S
as follows:

1. C runs System.Setup(1λ) and sends the public parameters pp to S.
2. S sends back a ledger L, two accounts accpub and accpriv, and an operation transcript Ops.
3. C verifies the validity of Ops (cf. Definition 3), that the two accounts have properly-initialized states

that are recorded on the ledger. If any of these checks fail, C aborts and outputs 0.
4. C applies Ops to accpub with ledger state L and produces an updated ledger state L′

1. Then, it applies
the private version of Ops (Ops′ mentioned earlier) to accpriv with the same initial ledger state L
and produces an updated ledger state L′

2. Ledger state evolution rules are per Definition 4.
5. C deshields the balance of accpriv on L′

2, denoted as b′. Let b be the balance of accpub based on L′
1.

If b ̸= b′, C outputs 1 (meaning that S won the game), otherwise, it outputs 0.

The advantage of S in wining the INCGame game is defined as the probability that C outputs 1.

2.2 Security

A PPSC scheme is secure if it satisfies two properties—overdraft safety and ledger indistinguishability—as
captured by the following definition.

Definition 5 (Security of a PPSC Scheme). A PPSC scheme Π = (Setup, CreateAccount,
CreateTransaction, VerifyTransaction, Compute, UpdateState) is secure if it satisfies overdraft safety (cf.
Definition 6) and ledger indistinguishability (cf. Definition 8).

We define the security games that capture overdraft safety and ledger indistinguishability. Let A be
the adversary; C, the challenger; and OPPSC, the oracle for a PPSC scheme. All parties receive the security
parameter λ as input and are given oracle access to OPPSC. OPPSC maintains the public parameters pp,
the system state, and all public keys generated in the system PK (the latter is generated by C at A’s
request). Since these belong to C, A does not have the corresponding secret keys for them. Any time a
query requires a secret key belonging to C as input, we allow A to specify the corresponding public key
in PK. OPPSC supports the following query types:

– (setup, 1λ): Takes the security parameter λ as input and sets up the system accordingly. This includes
creating the ledger and the public parameters needed by all parties/cryptographic building blocks.
This query can be called only once by C.

– (request, op, aux): Allows A to request executing any of the user algorithms defined in Definition 1
(represented by op) with certain inputs and any account address of A’s choice (represented by the
auxiliary input aux) through C:
• For CreateAccount, A will receive only the account address and its public key.
• For Compute, only computations supported by the PPSC system will be performed.
• Any transaction from a locked account will be rejected.

– (insert, op): Allows A to insert its own well-formed transaction or computation request. These (and
anything via request) will be held in pending state (or pending operations denoted as Ops) until
processed.

– (execute, op): Allows A to ask OPPSC to process an arbitrary subset of pending operations op ⊂ Ops
and update the ledger state.
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– (corrupt, pk): Allows A to corrupt an account with public key pk, meaning that A will get the
corresponding secret key sk. This command can be invoked at anytime and as many times as A
wishes.

OSGame game. Overdraft safety ensures that a PPSC scheme Π does not allow A to spend more
currency than it owns. To capture this, we define an OSGame game. A wins the game and, hence, breaks
overdraft safety if it manages to spend currency of a value larger than what it rightfully owns. OSGame
proceeds as follows:

1. (setup, 1λ)
2. AOPPSC(1λ)
3. At the end, C queries the ledger state through OPPSC and outputs 1 (meaning that A won the game)

if:
valA→PK + valInsert > valPK→A + valdeposit

such that:
– valA→PK is the total value of payments confirmed from A to users with addresses in PK (this

results from A asking honest parties represented by C to create transactions for it).
– valInsert is the total value of payments placed by A on the ledger.
– valPK→A is the total value of payments confirmed from users with addresses in PK to A.
– valdeposit is the initial amount of currency in accounts owned by A.

Otherwise, C outputs 0.

Definition 6 (Overdraft Safety). A PPSC scheme Π provides overdraft safety if no PPT adversary
A can win the OSGame game with non-negligible probability. That is, for every PPT A and sufficiently
large λ, we have:

AdvOSGame∏
,A < negl(λ)

where AdvOSGame∏
,A := Pr[OSGame(Π,A, 1λ) = 1] is A’s advantage of winning the overdraft safety game,

and the probability is taken over all randomness of C and A.

LINDGame game. Ledger indistinguishability ensures that the ledger produced by a PPSC scheme Π
does not reveal additional information about private account state beyond what can be inferred from
what is publicly revealed. We define a LINDGame to capture this. It is very similar to OSGame except that
at some point in the game, A will send two publicly consistent operations (a transaction or a compute
request) instead of one. C will randomly choose one of these operations to execute. A wins the game if
it manages to correctly guess which operation was chosen.

We first define the notion of public consistency of two operations, which is needed to rule out trivial
wins of A in the LINDGame game.

Definition 7 (Public Consistency). Two operations are publicly consistent if:

– They refer to the same user algorithm, or computation, with the same public keys and addresses.
– For currency transfer between private accounts, only one of the sender or recipient can be corrupt,

not both. If either is corrupt, then the transfer amount must be the same.
– Lock must be associated with the same account and address for the locker and lockee.
– Unlock must be associated with the same account.
– Same balance value returned when querying an account’s balance.
– For private computation requests, the computation in both must be the same and behave similarly on

the supplemented inputs, with private output variables that are not owned by A.12

Accordingly, the LINDGame proceeds as follows:

1. b
$←− {0, 1}

2. (setup, 1λ)
3. (op0, aux0, op1, aux1)← AOPPSC(1λ)
4. If op0 and op1 are publicly consistent, then (execute, opb, auxb)
5. A accesses the updated ledger state through OPPSC

6. A outputs b′, if b′ = b then return 1 (meaning that A won), otherwise, return 0.

12 Public computations are always trivial—they must have same input values, making op0 and op1 identical.
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Definition 8 (Ledger Indistinguishability). A PPSC scheme Π supports ledger indistinguishability
if no PPT adversary A can win the LINDGame game with non-negligible probability. That is, for every
PPT A and sufficiently large λ, we have:

AdvLINDGame∏
,A <

1

2
+ negl(λ)

where AdvLINDGame∏
,A := Pr[LINDGame(Π,A, 1λ) = 1] is A’s advantage of winning LINDGame, and the

probability is taken over all randomness of C and A.

3 Background and Challenges

In this section, we provide a brief background of the cryptographic primitives employed in smartFHE,
along with a brief overview of Ethereum as our framework builds upon its ideas.

Overview of Ethereum. Ethereum [70] is a smart contract-enabled cryptocurrency that allows users
to perform simple currency transfers in its native currency, Ether, as well as deploy complex applications
via the creation of user-defined smart contracts. To this end, Ethereum introduces a Turing-complete
language and maintains a virtual machine to execute contracts written in this language. Ethereum relies
on an account-based model rather than the UTXO model like Bitcoin [60]. Thus, it introduces a more
advanced notion of ledger state, which includes the state of all accounts in the system.

Ethereum provides two types of accounts: externally owned accounts (EOAs) that are controlled
by users and contract accounts that are controlled by their contract code. The state of an EOA mainly
consists of a balance, whereas that of a contract account also includes contract code and its storage. Both
account types can invoke functions from a smart contract’s code. However, only an EOA can initiate a
transaction or deploy a smart contract.

Miners execute the code in any smart contract upon request (i.e. when invoked). To prevent DoS
attacks, each operation has some associated cost in terms of gas. Additionally, Ethereum’s blockchain
has a gas limit which constrains the number of operations that can be executed in a single block.

Fully Homomorphic Encryption. A fully homomorphic encryption (FHE) scheme consists of 3 effi-
cient algorithms: KeyGen for generating public/private keys and public parameters needed in the scheme,
Encrypt for encrypting a message m to produce a ciphertext ct, and Decrypt for decrypting a ciphertext
ct to return the plaintext message m. Moreover, an FHE scheme supports addition and multiplication
on ciphertexts, thereby allowing for arbitrary computation on encrypted data. If ct1 is a ciphertext of
m1 and ct2 is a ciphertext of m2, then ct1 + ct2 = ct3 is a ciphertext of m1 +m2. Also, ct1 · ct2 = ct3 is a
ciphertext of m1 ·m2. All known FHE constructions rely on lattice-based cryptography so provide post-
quantum security guarantees. Correctness of FHE means that decryption produces the original plaintext
that was encrypted, and that homomorphic addition and multiplication produce ciphertexts for valid
results. For security, we require the conventional semantic security (against CPA attackers).

Challenges in working with FHE. FHE schemes model computation in one of three paradigms—as
boolean, exact arithmetic, or floating point arithmetic [45]. Arithmetic-based schemes (such as BFV [36],
BGV [21], CKKS [27]) are almost always used in the leveled format, meaning that only a certain number
of operations can be performed on encrypted data. Ciphertexts produced directly from encryption are
“fresh.” A noise budget is associated with each fresh ciphertext and over the course of computations
on this ciphertext is depleted. Once this budget reaches 0, the ciphertext can no longer be decrypted
successfully.

Although bootstrapping can used to support truly arbitrary computation on encrypted data, it tends
to be very slow for arithmetic-based schemes, often taking a few minutes [69]. Binary schemes offer
very fast bootstrapping so can (at face value) support truly arbitrary computation. When using binary
schemes (like TFHE [29] or Concrete [30]), bootstrapping is used to realize each operation [69]. For
the blockchain setting, we anticipate users needing to perform 32 bit computation to represent account
balances and transfer amounts. TFHE and its variants generally struggle to support more than 20 bits
of precision [53]; in practice, bootstrapping with even around 20 bits of precision can take a few seconds,
making boolean schemes practically inefficient for the blockchain setting. Floating point arithmetic, on
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the other hand, will provide only approximate values and, thus, is a poor choice for smartFHE since we
need precise balance and transfer amounts. While any of the computation paradigms may be used in the
smartFHE protocol, each one presents a unique set of tradeoffs that system designers must account for.

Zero Knowledge Proofs. A zero knowledge proof (ZKP) system allows a prover to convince a verifier
that it knows a witness w for some statement x without revealing anything about the witness itself
beyond what can be inferred by x on its own. A ZKP system consists of 3 algorithms: Setup for gen-
erating public parameters, Prove for producing a proof π proving correctness of x given w, and Verify
for verifying if a proof π is valid for statement x. A secure ZKP system must satisfy certain properties
with respect to soundness, completeness, and zero knowledge. Informally, soundness guarantees a prover
cannot convince a verifier of false statements; completeness guarantees that any honestly generated proof
will be accepted by the verifier; zero knowledge guarantees that the proof of a statement does not reveal
anything about the witness.

Challenges in combining ZKPs with FHE. As mentioned before, all known FHE schemes are
lattice-based. Hence, a naive instanitation of our framework may also require the use of a lattice-based
ZKP system. Indeed this provides full post-quantum security for private accounts but harms efficiency
in terms of storage overhead. Lattice-based ZKPs, although quite fast, tend to result in proofs that are
hundreds of kilobytes to single digit megabytes in size [55,61], making them challenging to work with in
the blockchain model. An elliptic curve or hash-based proof system likely offers space savings but at the
cost of longer proof generation times.

4 smartFHE Framework

In this section, we present the design of smartFHE, a PPSC framework that uses FHE in the blockchain
model. We begin by outlining the cryptographic building blocks employed, then we describe the smart
contract-enabled cryptocurrency architecture that we target, followed by technical details of our frame-
work. In presenting the framework, we address challenges that result from working with FHE in the
blockchain setting, such as dealing with leveled FHE schemes and concurrency.

4.1 Architecture

Our framework can be viewed as extending a public smart contract-enabled cryptocurrency to support
privacy. We require an account-based model, a Turing-complete scripting language, and a virtual machine
with a cost (i.e. miners’ fees) associated with each smart contract operation. Thus, we consider an
Ethereum-like architecture.

smartFHE supports four services: public payments, public smart contracts, private payments, and
private smart contracts. The default operation is the public mode—meaning that everything will be
logged in the clear on the blockchain and smart contract code will operate on public inputs/outputs.
These are handled in the same manner as in Ethereum. On the other hand, if the smart contract (or
a payment transaction) operates on private accounts, then the private mode will be used instead. The
required operations will be converted into their equivalent privacy-preserving format and will produce
private outputs (for simplicity, we refer to these as private smart contracts). smartFHE extends the
standard transaction set of Ethereum with new types of transactions and cryptographic capabilities to
permit operations on private accounts and user inputs.

Similar to Ethereum, smartFHE has two types of accounts: contract owned and externally (or user)
owned. However, we further subdivide externally owned accounts into two types: public and private.
Private accounts will be used to initiate private transactions and participate in private smart contracts.
In our scheme, each account (public or private) will maintain its own nonce which must be signed and
incremented as part of any transaction this account issues. This approach ensures that valid transactions
cannot be replayed and zero-knowledge proofs cannot be maliciously imported into new transactions.

smartFHE operation proceeds in rounds (a round is the time needed to mine a block on the blockchain)
and epochs (where an epoch is y contiguous rounds for some integer y that is selected during the system
setup phase). The latter is needed to handle concurrency issues related to operating on private accounts,
as will be shown later. If desired, epochs can be eliminated entirely (which we discuss towards the end
of this section).
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4.2 The smartFHE Protocol

Our framework is composed of three components: a setup phase to deploy the system, a network pro-
tocol defining all extensions required to support private payments/smart contracts, and mechanisms for
handling concurrency issues (resulting from operating on private accounts) and dealing with leveled FHE
schemes.

4.2.1 Setup This includes setup related to the system, user, and smart contracts. System setup
involves launching the PPSC system—which starts with deploying miners, creating the genesis block of
its blockchain, and generating all public parameters pp needed by the cryptographic primitives (such
as FHE and ZKP) that we employ in the system. The public parameters will be known to everyone
and could either be published in the genesis block or announced and maintained off-chain. Once system
setup is complete, users can now join and create their own public and/or private accounts. Smart contract
setup is dependent on the creator of its code. This code will specify the sorts of (private or public) inputs
the contract functions will accept, along with the operations to be performed on these inputs. Once the
creator deploys the contract on the blockchain, users can invoke its functionality and pass in their inputs
to be operated on.

4.2.2 Network Protocol Syntax In what follows, we informally present the syntax that smartFHE
adds to Ethereum’s network protocol to support privacy. Full technical details can be found in Sec-
tion 5).13

(1) Public operations via public accounts. To create a public account, the user generates the ac-
count key pair (pkpub, skpub) by calling Pub.CreateAccount(pp). The public key defines the user’s account
address while the secret key allows her to sign all transactions issued by this account. Each public ac-
count also has an unencrypted balance and a nonce ctr[pkpub] associated with it. smartFHE handles
public operations (both payments and smart contracts) in the same manner as Ethereum. The algorithm
Transfer(skfrompub , pktopub, amnt) allows a user to send amnt currency from one public account to another. The
syntax for invoking functions in a smart contract is defined by the contract creator. As in Ethereum,
invoking a function is done by issuing a transaction that contains all inputs this function needs.

(2) Private payments via private accounts. Having a private account allows its owner to initiate
transactions that hide transfer values and/or users’ balances.

To create a private account, the user calls Priv.CreateAccount(pp) to generate the FHE account
key pair (pkpriv, skpriv) (which is used to encrypt her inputs) along with a signature scheme key pair
(sigpkpriv, sigskpriv) to sign outgoing transactions. A private account has an encrypted balance (with respect
to pkpriv) and a nonce ctr[pkpriv] associated with it. Users can initiate the following private transaction
types:

– txshield ← Shield(skfrompub , pktopriv, amnt): Transfers a given amount of currency from a public account to
a private one. Thus, the transaction contains the public keys of the sender’s public account and the
recipient’s private account, and the (unencrypted) transfer amount. No ZKP is needed to prove that
the sender owns the right transfer amount. The sender uses a public account and can be verified by
simply tracking the account’s public state on the blockchain.

– txprivtransf ← PrivTransfer(skfrompriv , pk
to
priv, amnt): Transfers some undisclosed (encrypted) amount of cur-

rency from one private account to another private account. This transaction requires a ZKP that
the sender owns the transferred currency, that the same amount has been added to the recipient’s
account as has been deducted from the sender’s account, that the transfer amount is positive, and
that the sender’s remaining balance is non-negative.

– txdeshield ← Deshield(skfrompriv , pk
to
pub, amnt): Transfers a given amount of currency from a private account

to a public one. This transaction needs a ZKP to prove that the sender’s account has a balance
equals to at least the transfer value.

13 Users must sign all transactions they issue and miners must verify these signatures before accepting any of
these transactions. We omit repeating this fact and the corresponding syntax in this section.
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Note that txshield and txdeshield reveal some information about the private account (i.e. sender/recipient
has a balance larger than or equal to the released value) since the transaction amount is public.

(3) Private smart contracts. Users can write smart contracts with code operating on their private
data and private account balances. This code will be translated to an arithmetic or boolean circuit
depending on the type of FHE scheme used. Since the code may operate on encrypted values, users
participating in the contract need to provide ZKPs showing that their initial ciphertexts are well-formed
and satisfy certain conditions (dependent on the application). Miners (of which a majority are trusted
for correctness and availability in the blockchain model) will check these ZKPs, perform the requested
homomorphic computations directly on the ciphertexts, and update the blockchain state accordingly.

A smart contract will have functions that users can invoke to operate on their inputs. When these
inputs are private, operations within a function will be translated in terms of the following homomorphic
computations:

– c3 = Priv.HomAdd(pkpriv, c1, c2): Adds ciphertexts c1 and c2 (which are encrypted with respect to
pkpriv) together to produce the sum c3 of the two ciphertexts.

– c3 = Priv.HomMult(pkpriv, c1, c2): Multiplies two ciphertexts c1 and c2 (which are encrypted with
respect to pkpriv) together to obtain the product c3.

4.2.3 Handling Concurrency Operating on private states (such as encrypted account balances) in-
troduces concurrency issues. In particular, changes in an account state can invalidate all pending ZKPs
tied to this account, thus invalidating all private transactions that rely on these ZKPs. Such a situa-
tion can be exploited to perform front-running attacks; Bob can front-run Alice by issuing a transfer
transaction that changes Alice’s account state and, if this transfer is processed before Alice’s pending
transactions, her transactions will be rejected. We introduce two complementary techniques to address
front-running: (1) automatic balance rollovers for private transactions and (2) a private account locking
mechanism for private smart contracts.

Automatic Rollovers. Using this technique, which is similar to the one in [22], all incoming transfers to
a private account are held in a pending state until an epoch is complete. smartFHE will roll over these
pending funds to private account’s balance automatically at the end of the epoch (unlike [22] which
requires users to trigger the rollover). To guarantee that deshielding and private transfer transactions
will be processed by the end of the same epoch, private account users are advised to submit such trans-
actions at the beginning of an epoch. The length of an epoch must be chosen carefully to ensure that
a transaction submitted at the start of an epoch is processed before the epoch ends. The sender should
view the transaction amount as being deducted from his own account balance immediately (to avoid
double spending).

Private Account Locking. To address multi-epoch concurrency, smartFHE enables private accounts to be
locked to other accounts (via txlock) of any type. The locking mechanism allows a user to put her account
on hold for as long as needed—preventing any state changes to her private balance while her own private
transactions are still pending. The lockee will issue a txunlock transaction to resume acceptance of new
state updates, thereby returning complete control of the locked account to the locker.

– txlock ← Lock(skfrompriv , addr
to): Checks that skfrompriv is not already locked, and if not, it locks the private

account tied to pkfrompriv to the account tied to addrto (the latter can even be the same account itself).
Finally, it outputs txlock = (addrto, σlock) where σlock = Priv.Sign(sigskpriv, (addrto, ctr[pkpriv])). Note
that funds sent to pkfrompriv will not be rolled over onto the account balance until it is unlocked.

– txunlock ← Unlock(pkpriv): First, checks the account tied to pkpriv is locked. If so, it unlocks the private
account corresponding to pkpriv if and only if the address addr that called Unlock is the same one
returned by CheckLock(pkpriv).

– CheckLock(pkpriv): Checks if the account tied pkpriv is currently locked. If locked, returns the address
of the account it is locked to. Otherwise, returns ⊥.
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As an optimization of smartFHE’s design, epochs can be eliminated entirely using the above locking
mechanism.14 When issuing a deshield or private transfer transaction, Alice will lock her account to
itself. However, the network protocol would need to be modified—so that once the ZKP is verified and
the transaction is processed, Alice’s account will automatically be unlocked.15

4.2.4 Handling Leveled Schemes Arithmetic-based FHE schemes are almost always used in the
leveled format. It is highly unlikely that a user would know a priori how many transactions she anticipates
receiving or how many smart contracts she will interact with. Even with careful selection of FHE scheme
parameters, it is entirely possible that a user may run out of noise budget and eventually be unable to
decrypt her private account balance. In practice, users must track the noise associated with their private
account balance to ensure they do not run out of noise budget. Upon reaching some pre-determined noise
threshold, bootstrapping could be used. Below, we present an alternative technique to reset the noise
budget that is likely to offer better concrete efficiency than bootstrapping due to advancements in ZKP
constructions.

– b′, π ← Priv.RefreshBal(skpriv, b): Takes in encrypted account balance b to produce freshly encrypted
account balance b′. User decrypts her private account balance b to get plaintext value bal and then
freshly encrypts bal to produce b′. User will need to provide a ZKP to show that the underlying
plaintext of b′ is equal to the one encrypted in b.16

– CheckPriv.RefreshBal(b′, π): Updates the user private account balance (whose account corresponds to
pkpriv) from b to b′ if the proof π is valid.

5 Our Instantiation

We now present the full syntax and technical details of our instantiation of the smartFHE framework.
We first provide additional notation needed in this section and then an overview of the cryptographic
constructions used to instantiate the building blocks smartFHE needs.

Additional notation. We use Zp to represent Z/pZ, the arrow notation for column vectors (e.g., v⃗),
and capital letters for matrices. For polynomials, we use boldface notation (e.g., v), boldface with arrow
notation for a vector of polynomials (e.g. v⃗), and boldface capital letter for a matrix of polynomials.

Cryptographic primitives. For FHE, we use the leveled BFV scheme [36]. The BFV scheme models
computation as arithmetic circuits and supports exact arithmetic. In BFV, the message, ciphertext, and
the secret key are vectors over the quotient ring R = Zq(x)/(f(x)) (where f(x) = xd + 1 and d is a
power of 2) whereas the public key takes the form of a matrix over R. We have chosen to use this scheme
as it offers incredibly fast integer arithmetic (crucial for private transactions) and easily supports 64-bit
computation.

Importantly, BFV relies on the hardness of Ring-LWE [56], so we can use the short discrete log
proofs construction [34]. This proof system is elliptic curve based and allows us to fairly efficiently prove
knowledge of a short vector s⃗ such that As⃗ = t⃗ for public A and t⃗ over the polynomial ring Zq[X]/(g(x)),
where g(x) is a monic, irreducible polynomial of degree d in Z[X]. Such a relation will allow users to
attest to the well-formedness of FHE ciphertexts (which are the users’ encrypted inputs). In practice,
using this proof system, we obtain proofs on the order of single to double digit kilobytes and reasonable
proving/verification times. As part of the short discrete log proof construction, we obtain a Pedersen
commitment which can then easily be re-used for Bulletproofs [23] which may be needed for private
computations. Bulletproofs allows us to prove arbitrary properties of the user’s private account balance
or private inputs in a fairly efficient manner.

14 By this we mean setting the epoch length to be equal to one block.
15 Note that we would still keep the Lock,Unlock procedures to handle front-running issues in private smart

contracts (to transfer ownership of the user account and keep away incoming transactions for an unknown
amount of time).

16 For floating point or certain binary-based FHE schemes, the relation will be less than or equal. This is due to
precision loss in homomorphic computations under these paradigms.
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Setup(1λ): Takes as inputs the security parameter λ. Outputs the system public parameters pp, including:

– pp.BFV← BFV.Setup(1λ)
– pp.NIZKlogproofs ← NIZKlogproofs.Setup(1

λ)
– pp.NIZKbulletproofs ← NIZKbulletproofs.Setup(1

λ)
– pp.sigpriv ← PrivSig.Setup(1λ), setup for signature scheme used for private accounts.
– pp.sigpub ← PubSig.Setup(1λ), setup for signature scheme used for public accounts.

Initializes:

– acc, account table.
– pendOps, pending operations table to keep track of pending transactions and computations.
– lastRollOver, table of the last epoch at which a private account’s balance was rolled over.
– lock, lock table keeping track of which address a private account is locked to.
– counter, counter table keeping track of the counters associated with accounts.

Also outputs:

– MAX, maximum currency amount the system can support. (We require MAX << q, where q is the
modulus of the ring Rq, to prevent possible overflow for balance/transfer amounts.)

– E, epoch length.

Fig. 1: System setup.

For digital signatures, we use the (lattice-based) Falcon scheme [40] when issuing transactions from
private accounts (for post-quantum protection), and ECDSA [47] when the issuers are public accounts
(to be compatible with existing smart contract-enabled blockchains as in Ethereum). If post-quantum
security is not a concern, one can use ECDSA for both (so long as different keys are used for private and
public accounts) Additional details on all the previous primitives are provided in Appendix A.

5.1 Syntax

We now define the syntax used in our instantiation. Note that all algorithms take as additional inputs
the public parameters pp and the system state sth for the current block height h (but we omit listing it
explicitly).

Setup Related. This is the setup for the entire system, which involves choosing the public parameters
of all cryptographic building blocks and the initial state of the ledger (details are in Figure 1).

Public Account Related. A public account owner maintains a key pair (pkpub, skpub) to sign outgoing
txtransf and txshield transactions (ECDSA is used here as in Ethereum), an unencrypted balance balance,
and a nonce ctr[pkpub].

1. Pub.CreateAccount(pp): This algorithm creates a public account and outputs its key pair (pkpub, skpub).

2. Pub.ReadBalance(pkpub): Returns the (plaintext) balance balance belonging to the public account
pkpub. If no such account exists, returns ⊥.

3. Pub.Sign(skpub,m): Produces a signature σpub on message m with secret key skpub.

4. Pub.VerifySig(m, σpub, pkpub): Verifies a signature σpub on message m using pkpub.

Private Account Related. A private account owner maintains key pair (pkpriv, skpriv), an encrypted
balance (with respect to pkpriv), and a nonce ctr[pkpriv]. As indicated earlier, the Falcon or ECDSA
signature scheme is used to sign outgoing txdeshield and txprivtransf transactions.

1. Priv.CreateAccount(pp): This algorithm creates a private account. It outputs the account key pair
(pkpriv, skpriv), which are the keys for the BFV scheme, along with the keys for the Falcon signa-
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ture scheme or ECDSA (sigpkpriv, sigskpriv). The public key pkpub consists of matrix A and auxiliary
information τ for key switching; the secret key is skpriv = s.

2. Priv.Encrypt(pp, pkpriv,m): Calls BFV.Encrypt on message m, and outputs ciphertext c⃗.

3. Priv.Decrypt(pp, skpriv, c⃗): Decrypts a ciphertext c⃗ encrypted under pkpriv by running BFV.Decrypt(pp, s, c⃗).

4. Priv.ReadBalance(skpriv): Returns the unencrypted balance balance belonging to a private account
pkpriv. If no such account exists, returns ⊥.

5. Priv.Sign(sigskpriv,m): Produces a signature σpriv on message m using Falcon or ECDSA schemes.

6. Priv.VerifySig(m, σpriv, sigpkpriv): Verifies if the signature σpriv on message m is valid using sigpkpriv.

7. CheckLock(pkpriv): Checks if the account corresponding to pkpriv is currently locked. If locked, returns
the address of the account it is locked to. Otherwise, returns ⊥.

Transaction Related. Users can engage in six types of transactions using their key pairs. We have
omitted shield, deshield, and private transfer from here as they are discussed in detail in Section 5.2.

1. Transfer(skfrompub , pktopub, amnt): Used to send currency from one public account to another public account.
It outputs txtransf .

2. VerifyTransfer(txtransf): Verifies if all the conditions for txtransf have been satisfied. If yes, it outputs 1.
Otherwise, it outputs 0.

3. Lock(skfrompriv , addr
to): First, checks that the account corresponding to skfrompriv is not already locked by

calling CheckLock(pkfrompriv ). If not, locks it to the account corresponding to addrto (the latter can even
be the same account itself). Finally, outputs txlock = (addrto, σlock) where

σlock = Priv.Sign(sigskpriv, (addr
to, ctr[pkfrompriv ]))

Note that funds sent to pkfrompriv will not be rolled over onto the account balance until it is unlocked.

4. Unlock(pkpriv): First, checks that the account corresponding to pkpriv is locked by calling CheckLock(pkpriv).
If so, unlocks this account if and only if the address addr that called Unlock is the same one returned
by CheckLock. Outputs txunlock.

Private Smart Contract Related. Operations on inputs belonging to a private account will be trans-
lated into homomorphic computations, with the corresponding smart contract code translated to an
arithmetic circuit.

1. Priv.HomAdd(pkpriv, c⃗1, c⃗2): Runs BFV.HomAdd on the ciphertexts c⃗1 and c⃗2 (which are encrypted
under pkpriv) to produce the sum c⃗3 = c⃗1 + c⃗2 mod q.

2. Priv.HomMult(pkpriv, c⃗1, c⃗2): Runs BFV.HomMult on the ciphertexts c⃗1 = (c1,0, c1,1), c⃗2 = (c2,0, c2,1)
(which are encrypted under pkpriv) to obtain the product c⃗3 after performing the appropriate rounding
operation on (c1,0 · c2,0, c1,0 · c2,1 + c1,1 · c2,0, c1,1 · c2,1). We call Priv.Refresh on c⃗3 and output the
result.

3. Priv.Refresh(⃗c, τ): Runs BFV.Refresh on the ciphertext c⃗ (encrypted under pkpriv) using auxiliary
information τ associated with private account pkpriv to facilitate key switching.

5.2 Instantiating the Payment Mechanism

We discuss our payment scheme in detail; namely, we show how users perform the shield, deshield and
private transfer transactions using our instantiation.

Representing Balances and Transfers. Let R = Zq(x)/(f(x)). We use the Integer Encoder technique
(from SEAL [66]) to represent integer value currency amounts for private accounts as follows:

1. Compute the binary expansion of the integer.
2. Use the bits as coefficients to create the polynomial g(x). Negative integers can be represented via

the use of 0 and −1 as coefficients.
3. To get back the integer from a polynomial, simply evaluate the polynomial g(x) at x = 2.
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Thus, the modulus q must be chosen to be large enough so that there is no overflow. Finally, the
newly obtained polynomial (that represents some integer amount) is passed into Priv.Encrypt to obtain
an encryption that hides this amount.

Shielding Transaction.A sender with public account (pkfrompub , skfrompub ) and unencrypted balance balancefrom

wishes to send some currency amnt to a private account (pktopriv, sk
to
priv) with encrypted balance b⃗′. To do

so, the sender issues a shielding transaction txshield containing the following information:

– Receiver’s public key: pktopriv
– Transfer amount (in plaintext): amnt

– Transfer amount encrypted under the receiver’s public key: c⃗

– Randomness used for encrypting transfer amount: r

The sender signs the transaction along with his nonce ctr[pkfrompub ], producing signature σfrom
pub . He then

broadcasts the transaction txshield to the miners. The miners check that the following conditions are met
(perform VerifyShield(txshield)) in order to accept this transaction:

– Valid signature from sender

– Receiver’s public key exists/is valid

– Ciphertexts are well-formed

– Transfer amount is positive: amnt ∈ [0,MAX]

– Encrypted transfer amount matches plaintext amount with published randomness:

Priv.Encrypt(pp, pktopriv, amnt; r)
?
= c⃗

– Sender’s remaining balance is non-negative: balancefrom − amnt ∈ [0,MAX]

If all conditions are satisfied, miners update the sender’s account balance to balancefrom − amnt and
the receiver’s balance to b⃗′ + c⃗ (i.e. by calling

Priv.HomAdd(pktopriv, b⃗
′, c⃗)).

Deshielding Transaction. A sender with private account (pkfrompriv , sk
from
priv ) and encrypted balance b⃗

wishes to send some currency amnt to the receiver who has public account (pktopub, sk
to
pub) and unencrypted

balance balanceto. The sender will issue a deshielding transaction txdeshield containing the following infor-
mation:

– Receiver’s public key: pktopub
– Transfer amount (in plaintext): amnt

– amnt encrypted under sender’s public key: c⃗

– Randomness used for encrypting transfer amount: r

– Sender’s remaining encrypted balance b⃗′ and proof πdeshield that this balance is non-negative (i.e.

Priv.Decrypt(pp, skfrompriv , b⃗
′) = balance∗ ∈ [0,MAX])

The proof πdeshield is produced using discrete log proofs. The sender signs the transaction along
with his nonce ctr[pkfrompriv ], producing signature σfrom

priv . He then broadcasts txdeshield to the miners. For the
transaction to be valid, and hence VerifyDeshield(txdeshield) = 1, miners check that the following conditions
are met:

– Valid signature from sender

– Sender’s account is not currently locked

– Receiver’s public key exists/is valid

– Transfer amount is positive: amnt ∈ [0,MAX]

– Encrypted transfer amount matches plaintext amount with published randomness:

Priv.Encrypt(pp, pkfrompriv , amnt; r)
?
= c⃗

– Sender’s remaining balance is correctly computed: b⃗′ ?
= b⃗− c⃗

– Proof πdeshield is valid

16



If the transaction is valid, miners update the sender’s encrypted balance to b⃗′ = b⃗ − c⃗ and the
receiver’s balance to balanceto + amnt.

Private Transfer Transaction. A sender with private account (pkfrompriv , sk
from
priv ) and encrypted balance

b⃗ wishes to send some amnt of currency to a recipient who is using a private account (pktopriv, sk
to
priv) with

encrypted balance b⃗′. Thus, this sender will issue a private transaction txprivtransf containing the following
information:

– Receiver’s public key: pktopriv
– Transfer amount encrypted under sender’s public key: c⃗ = Priv.Encrypt(pp, pkfrompriv , amnt; r)
– Transfer amount encrypted under receiver’s public key: c⃗′ = Priv.Encrypt(pp, pktopriv, amnt; r)
– Proof that c⃗ and c⃗′ encrypt same transfer amount amnt with same randomness r and that this

transfer amount is in [0,MAX] 17

– Proof that sender’s remaining (encrypted) balance b⃗∗ is non-negative (i.e. Priv.Decrypt(pp, skfrompriv , b⃗
∗) =

balance∗ ∈ [0,MAX])

The sender signs the transaction along with his nonce ctr[pkfrompriv ], producing signature σfrom
priv . He then

broadcasts the transaction txprivtransf to the miners. In order to accept this transaction, the miners run
VerifyPrivTransfer(txprivtransf) which checks that the following conditions are satisfied:

– Sender’s account is not currently locked
– Valid signature from sender
– Receiver’s public key exists/is valid

– Sender’s remaining encrypted balance is correctly computed: b⃗∗ ?
= b⃗− c⃗

– All proofs are valid

To prove that the two encryptions are to the same positive transfer amount, we set up the following
matrix-vector equation. Let the sender’s public key be represented by matrix A; the receiver’s public key,
by matrix B. Let m⃗ contain the transfer amount amnt and randomness. Then we can form the equation:(

A
B

)
· m⃗ =

(
c⃗
c⃗′

)
(1)

This equation verifies that c⃗ and c⃗′ do in fact encrypt the same amount amnt under the sender’s
public key A and the receiver’s public key B, respectively. Thus, we will need to show that m⃗ satisfies
the above equation and that amnt represented in it is non-negative. This can be done using [34] We will

also have another proof that the sender’s remaining balance Priv.Decrypt(pp, skfrompriv , b⃗
∗) is non-negative;

this proof is identical to the one in txdeshield as discussed earlier.
If the transaction is accepted, miners update the sender’s encrypted balance to b⃗−c⃗ and the receiver’s

encrypted balance to b⃗′ + c⃗′.

5.3 Instantiating Private Computation

The exact computation to be performed is based on the content of a smart contract that a user deploys.
Requesting a computation to be executed (over public or private inputs) is done by sending transactions
containing calls to the functions defined in such a smart contract. The code of a function is represented
by a circuit C that Compute takes as input. It is up to the contract creator to select the computation
and specify which conditions must be satisfied by the user-provided encrypted inputs xj.

Based on the instantiation of smartFHE, computation is limited to what can be presented by the
selected FHE scheme—binary or arithmetic circuits depending on the type of scheme chosen. The user
provides her encrypted inputs (encrypted with respect to her FHE public key pkpriv) and the necessary
ZKPs πi showing that her inputs satisfy the relevant conditions. Similar to private payments discussed
in the previous section, this is done via short discrete log proofs and bulletproofs in which we can re-use
the Pedersen commitment created as part of short discrete log proofs for the Bulletproofs commitment.

17 The scheme is still secure with randomness re-use here (to encrypt the transfer amount under the sender and
receiver’s keys) via the generalized Leftover Hash Lemma [35].
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If the proof is accepted, the requested computation is then performed directly on the encrypted inputs,
and the ledger state will be updated accordingly. As discussed earlier in the Introduction, miners do not
need to provide correctness proofs to verify that C has been performed correctly over the user inputs,
i.e. ledger state updates are valid. This is enforced by the security assumption that the majority of the
underlying mining power is honest. Thus, only state changes resulted from valid computation will be
accepted.

Depending on the computation being performed (if a reciprocal action must happen on a different
user’s account), the user may also need to encrypt certain inputs with respect to the reciprocal account’s
public key and show that the two encryptions indeed contain the same plaintext value; this proof is
similar in flavor to what was presented as a private transfer transaction (i.e. txprivtransf).

5.4 Security

Our instantiation realizes a correct and secure PPSC scheme based on the notions introduced in Section 2.
In Appendix C, we prove the following theorem:

Theorem 1. Our smartFHE instantiation realizes a correct (cf. Definition 2) and secure (cf. Defini-
tion 5) PPSC scheme (cf. Definition 1).

We note that smartFHE is applied on top of a (secure) public smart contract-enabled blockchain.
We do not change the consensus, liveness, availability, or the public payment/smart contract operation
of the underlying system; these invariants are preserved. Thus, proving security entails proving that
smartFHE satisfies the additional privacy properties it offers (outlined in Definition 1), which is detailed
in Appendix C.

6 Performance Evaluation

We evaluate the computational and storage cost of our instantiation, highlighting how our work supports
lightweight users. Specifically, we provide the cost of private transactions in our system as well as three
different representative applications. We compare our work to the state-of-the-art Veri-zexe [72], which
builds upon and improves Zexe. In evaluating our system, we provide the first implementation of short
discrete log proofs and open source our library. We describe our methodology, discuss the obtained
results, and address potential extensions to further improve execution time and storage costs.

6.1 Methodology

For the BFV scheme [36], we use Microsoft’s SEAL library [66] to prototype the various FHE com-
putations needed as this library provides a highly optimized implementation. For Bulletproofs, we use
Dalek [3] for 32-bit range proofs as it is one of the fastest implementations of Bulletproofs. For short
discrete log proofs, we provide the first implementation (a library with 4102 LOC) with Apple Metal
GPU-accelerated code; we significantly improve upon the authors’ performance estimates in [34] by
speeding up scalar multiplication and scalar inversion. In our library, we use Curve25519 for compati-
bility with the Dalek Bulletproofs library. We believe our library is of independent interest as this proof
system provides reasonable time/space tradeoffs for proving well-formedness of FHE ciphertexts; thus,
we have open-sourced our work for the community. For digital signatures, we use ECDSA with curve
secp256k1 (as used by Ethereum) from OpenSSL. We conducted our experiments on an Apple M2 Max
with 32GB RAM, chosen to represent a lightweight user.

We benchmark our work against the state-of-the-art Veri-zexe [72] which improves upon Zexe by
removing per-application trusted setup and significantly cutting down on memory usage but at the
cost of increasing transaction size by an order of magnitude. As Zexe was the most performant system
implementing the ZKP-based approach, comparing our system against its successor Veri-zexe seems most
appropriate.18 Both Zexe and Veri-zexe work in the UTXO model so costs are given based on the number
of inputs and outputs as per the methodology used in their own evaluations.

18 Zexe’s code (the one used in their paper [19]) is no longer maintained. For this reason, Veri-zexe chose to
benchmark their work against snarkVM testnet-2 (created by the company Aleo [1]) which instantiates the
same model as Zexe.
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Table 1: Setup times (one time cost)
Performed by Operation d = 1024 d = 2048 d = 4096

User KeyGen 0.216 ms 0.375 ms 36.5 ms

System ZKP setup 0.8 s 2.06 s 5.7 s

6.2 Results

Setup costs for the system and per user are fairly negligible as observed in Table 1. We evaluate the cost
of private transactions and three private smart contract applications ranging from DeFi to statistical
computations. Before discussing the results, we note that one of the most important parameters to set
is the polynomial modulus degree d for the BFV scheme as it has the largest impact on short discrete
log proof performance, which dominates both transaction generation and verification time. Additionally,
setting d smaller limits the number of sequential homomorphic multiplications that can be performed.
Effectively choosing FHE scheme parameters is a difficult task with many tradeoffs to consider and be-
yond the scope of this work [69]. In deploying our system, we suggest d = 1024 if private transactions are
the main focus. For deploying more complex smart contract applications, d should be set to 2048 or 4096.

Private transactions. We evaluate the cost of the main transactions in our system, focusing on the
added cost from privacy. As shown in Table 2, shield and deshield transactions are fairly lightweight with
regards to generation time and size.19 The situation is different for private transfer due to the proofs
incorporated. Miner cost is particularly high as our experiments were run on a laptop. While our system
targets lightweight users, we emphasize that miners are not lightweight and require much more heavy
duty machines to efficiently verify transactions.20

Veri-zexe’s performance is given in Table 4. Working in the UTXO model presents a scalability issue
when trying to spend coins distributed among several UTXOs. To elaborate, a user must prove that she
owns all these (private) inputs, thus increasing the generation cost as the table shows21—a problem that
does not exist in the account-based model we adopt. Our scheme exhibits superior performance in terms
of user execution time even compared to 2x2 transactions using Veri-zexe. The difference is more stark
when setting d = 2048 or lower.

Table 2: Private transaction costs for smartFHE’s instantiation—user side.
Operation Time (s) Size (KB)

d = 1024
Shield(txshield) 0.0002 0.101
Deshield(txdeshield) 1.89 2.47
PrivTransfer(txprivtransf) 3.57 20.03

d = 2048
Shield(txshield) 0.0002 0.101
Deshield(txdeshield) 3.58 2.53
PrivTransfer(txprivtransf) 10.7 64.76

d = 4096
Shield(txshield) 0.0002 0.101
Deshield(txdeshield) 11.17 2.66
PrivTransfer(txprivtransf) 23.89 180.1

Private smart contract applications. Next, we consider three applications offering I/O privacy
implemented as private smart contracts. Briefly, they are (full details can be found in Appendix B):

A1. Automated market maker (AMM): a special form of decentralized exchange for trading cryp-
tocurrency. Adding privacy to AMMs protects users against front running attacks. An AMM trades
tokens in pairs, say token A and B, with reserve values denoted as totalA and totalB . A user sub-
mits a order to swap an (encrypted) amount amntA of token A. The AMM contract computes the

19 As a further optimization, we are able to perform shield and deshield transactions using ciphertext-plaintext
operations in the BFV scheme. Thus, the user does not need to encrypt the transfer amount.

20 We benchmarked the SDLP verifier algorithm on an M2 Max with 30 GPU cores, each of which runs 32 threads
in a wavefront. Since scalar multiplication is ALU bound, we expect a validator using e.g. an Nvidia RTX 4090
with 16384 shader cores to conservatively yield a 10-15x performance improvement.

21 The slowdown is non-linear; interested readers can check [72] for detailed justification of this trend.
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Table 3: Private transaction costs for smartFHE’s instantiation—miner side.
Operation Time (s)

d = 1024
VerifyShield 0.00017
VerifyDeshield 0.92
VerifyPrivTransfer 1.95

d = 2048
VerifyShield 0.00017
VerifyDeshield 1.92
VerifyPrivTransfer 6.37

d = 4096
VerifyShield 0.00017
VerifyDeshield 6.42
VerifyPrivTransfer 14.77

Table 4: Base private transaction costs for Veri-zexe.
no. of inputs × no. of
outputs

User generation
time (s)

Miner verification
time (ms)

Size (KB)

2 × 2 27.82 13.21 4.82

3 × 3 54.9 13.14 4.88

4 × 4 59 13.15 4.95

8 × 8 121 13.15 5.2

Table 5: Private smart contract application costs.
Application Per user generation

time (s)
Miner verification/-
computing time (s)

Size (KB) per user

AMM (d = 2048) 6.4 3.58 33.53

AMM (d = 4096) 20.88 12.64 91.4

Mean/variance (d = 4096) 20.89 62.9 91.45

Chi-squared (d = 4096) 23.89 44.39 26.95

(encrypted) amount amntB of token B this order will receive (using the constant product formula):
amntB = totalB − totalA · totalB/(totalA + amntA)

A2. Financial standing of DAO members: a DAO (decentralized autonomous organization) contract
wants to decide if the financial standing of a set of members (5 in our experiment) permits spinning out
a new business proposal. Members submit their (encrypted) fund amounts and the DAO computes the
mean/variance of these funds.

A3. Insurance premium: a decentralized health insurance company relies on the chi-squared test over
genetic data to decide premiums. The data is hosted by a group of hospitals (set to 3 hospitals holding
data for 98 patients in our experiment). Hospitals submit the private quantities needed to compute the
test. The contract aggregates the submissions and facilitates the test computation.

The first and second applications require the user to provide a single encryption, generate a short
discrete log proof for two ciphertexts, and a bulletproof. The third application requires each party to
provide three encryptions, a short discrete log proof, and a bulletproof. Miners check the proofs and then
perform the homomorphic computation (the AMM calculation, mean/variance calculation, or chi-squared
calculation, respectively). For these applications, we focus on the core computation related to smartFHE
(that involve FHE, ZKP, and signatures) to quantify the overhead of our scheme. The full description of
the applications (as found in Appendix B) include additional details that are implementation dependent,
e.g. the users share the secret key of the FHE computation, decrypt the result locally (decryption time
is 0.087 ms, 0.173 ms, 0.7 ms for d = 1024, 2048, 4096, respectively), or notify the smart contract that
an encrypted result is within a given range or open the result (if the developer chooses to do that, the
costs of these operations are basically that of our private transactions reported earlier).

The cost of our applications is shown in Table 5. Regardless of application, user execution time is
superior to Veri-zexe on even two inputs and two outputs; furthermore, it is unclear if an AMM can be
implemented in the UTXO model used by Veri-zexe or Zexe.
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Scalability. We briefly discuss issues that impact scalability of the system. Increasing the number of
users (or clients) does not impact the per-user cost since each of them is concerned with only her own
inputs. The miners, on the other hand, have to process more information as the number of users increases.
From our benchmarked applications, we observe that the additional cost is dominated by verifying more
short discrete log proofs rather than the FHE computation or bulletproof verification. For example, for
the mean/variance applications, miner verification time is 63.15 s, 126.19 s, and 189.23 s for 5, 10, and
15 users participating in that application, respectively (where the short discrete log proof verification
cost in these scenarios is 62.9 s, 125.8 s, and 188.7 s, respectively).

As such, an important area to focus on is a GPU-accelerated implementation of this proof system for
OpenCL so we can target a variety of architectures and provide significantly improved performance for
miners (who certainly would not be using an Apple laptop). Performance could be further improved by
speeding up multi-scalar multiplication. These are among our future work directions.

Storage is a large concern in the blockchain setting. To get around having large transactions and
private smart contract state, a potential solution is to employ a decentralized file storage system like
IPFS [5]. Retrieving cached content takes less than a second on average [4]. To prevent data from being
discarded in IPFS, it must be “pinned.” Storage is tamper resistant as any changes to the data changes
the content identifier. Rather than storing the FHE ciphertexts directly on chain, a content identifier
may be stored in its place which allows users or miners to then retrieve the relevant ciphertext.

7 Conclusion

In this paper, we defined a notion for a PPSC scheme and introduced smartFHE as a modular framework
realizing this notion. smartFHE is the first system to investigate the utility of FHE in supporting private
computing in the blockchain model and the first to support private smart contracts for lightweight users.
In comparison to a state-of-the-art solution relying on the ZKP-based approach (where users do the
computation off-chain and submit ZKPs attesting to correctness), our experiments show that our work
offers superior performance for the user. Such results demonstrate the potential viability of FHE-based
solutions to private decentralized applications.
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A Cryptographic Building Blocks

In this section, we provide an extended review of the cryptographic building blocks that we use in our
instantiation of smartFHE (Section 5)—namely, fully homomorphic encryption, zero-knowledge proof
systems, and digital signatures.

A.1 Fully Homomorphic Encryption

FHE supports computations directly on ciphertexts. All currently known schemes rely on lattice-based
cryptography, thus providing post-quantum security guarantees. In our instantiation, we use the BFV
scheme [36], which is based on the Ring-LWE public key encryption scheme [56]. We provide an overview
of both schemes starting with the latter.

Ring-LWE Encryption Scheme. The Ring-LWE public key encryption scheme [56], which we de-
note as RPKE is composed of five algorithms: Setup, SecretKeyGen, PublicKeyGen, Encrypt, and Decrypt.
All operations are performed over the polynomial ring Rq = Zq[x]/(f(x)) where q is an integer and
f(x) ∈ Z[X] is a monic, irreducible polynomial of degree d. In describing the previous algorithms, we
loosely follow the presentation from short discrete log proofs here [34]. Let λ be the security parameter,
the RPKE is defined as follows:

RPKE.Setup(1λ, 1µ): Takes as inputs security parameter λ and positive integer µ. It outputs public pa-
rameters rpke.pp = (p, q, d, χ) where p is the size of the plaintext space (often chosen to be binary), q is
a µ-bit modulus, d = d(λ, µ) is a power of 2 for R = Z[x]/f(x) where f(x) = xd + 1, and χ = χ(λ, µ) is
a “small” noise distribution. The parameters are chosen such that the scheme is based on a Ring-LWE
instance that achieves 2λ security against known attacks [21].

RPKE.SecretKeyGen(rpke.pp): Takes the public parameters rpke.pp as input, and outputs a secret key
rpke.sk = s where s is a polynomial with small, bounded coefficients from the error distribution χ.

RPKE.PublicKeyGen(rpke.pp, rpke.sk): Takes the public parameters rpke.pp and the secret key rpke.sk as
inputs, and outputs public key rpke.pk = (a, t) for a, t ∈ Rq where a is a random polynomial and
t = as+ e such that e is a polynomial with small, bounded coefficients from the error distribution χ.

RPKE.Encrypt(rpke.pp, rpke.pk,m): Takes the public parameters rpke.pp, and the public key rpke.pk, and
the message m = m ∈ Rq to be encrypted as inputs (where all the coefficients of m are in Zp), and
outputs the ciphertext c⃗ that is computed as follows:
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1. Sample polynomials r, e1, e2 with small, bounded coefficients from the error distribution χ. Form

m⃗∗ consisting of the message and randomness as follows: m⃗∗ =


r
e1
e2
m


2. Form the matrix A from rpke.pk by setting:

A =

(
pa p 0 0
pt 0 p 1

)

3. Compute A · m⃗∗ =

(
pa p 0 0
pt 0 p 1

)
r
e1
e2
m

 =

(
u
v

)

4. Output ciphertext c⃗ =

(
u
v

)
RPKE.Decrypt(rpke.pp, rpke.sk, c⃗): Takes the public parameters rpke.pp, the public key rpke.pk, and the
ciphertext c⃗ as inputs, and outputs the plaintext m produced by decrypting c⃗ as follows: compute
v − us mod p. This will return the plaintext message m since v − us = p(er+ e2 − se1) +m and all
the coefficients in the above equation were chosen to be small so that no reduction modulo q occurred.

Correctness is straightforward. Semantic security is based on the hardness of Ring-LWE for ring
R [56]. Recall that the Ring-LWE problem with appropriately chosen parameters can be reduced (via a
quantum reduction) to the Shortest Vector Problem over ideal lattices. Full details on the reduction can
be found in [56].

BFV Scheme. The BFV scheme [36] is a leveled FHE scheme, meaning that only a certain number
of homomorphic multiplications can be performed sequentially before reaching a point at which the
resulting ciphertext cannot be decrypted. Each time we perform homomorphic operations (especially
multiplication), the ciphertext’s noise grows. As mentioned before, bootstrapping can be used as an
optimization to avoid having to specify the multiplicative depth in advance.

When we multiply two ciphertexts c⃗ and c⃗′ together, we get a long resulting ciphertext. Having
to work with these increasingly long ciphertexts impacts the efficiency of the scheme so BFV utilizes
an additional technique called key switching (or relinearization) that instead allows us to work with a
smaller ciphertext that is of the same size as the original. This technique is encapsulated in the refreshing
procedure that can be performed by anyone. The security of the BFV scheme follows from the security
of the basic Ring-LWE encryption scheme [56].

We present a simplified description of the BFV scheme below, while full details can be found in [36].
The BVF scheme is composed of seven algorithms: Setup, KeyGen, Encrypt, Decrypt, HomAdd, HomMult,
and refresh defined as follows:

BFV.Setup(1λ): Takes the security parameter λ as input, and outputs the parameters bfv.pp, which in-
cludes a modulus, noise distribution, two integers, and rpke.pp (produced by invoking
RPKE.SecretKeyGen(rpke.pp)).

BFV.KeyGen(bfv.pp): Takes the public parameters bfv.pp as input, and outputs a secret key sk = s ob-
tained by running RPKE.SecretKeyGen(rpke.pp)), a public key pk (obtained by running
RPKE.PublicKeyGen(rpke.pp, s)), and auxiliary information {τ} needed to facilitate the key switching
procedure in BFV.Refresh.

BFV.Encrypt(bfv.pp, bfv.pk,m): Takes the public parameters bfv.pp, the public key bfv.pk, and a message
m as inputs. It outputs a ciphertext c⃗ which consists of two Ring-LWE samples. The first sample c0
encodes the message m using t from rpke.pk and the second sample c1 is auxiliary and formed from a in
rpke.pk.

BFV.Decrypt(bgv.pp, bfv.sk, c⃗): Takes the public parameters bfv.pp, the secret key bfv.sk, and a ciphertext
c⃗ as inputs. It outputs the corresponding plaintext m after performing the appropriate modulo reductions
and rounding operations on c0 + c1s.
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BFV.HomAdd(bfv.pk, c⃗1, c⃗2): Takes as inputs two ciphertexts c⃗1 = (c1,0, c1,1) and c⃗2 = (c2,0, c2,1), such
that both are encrypted under the public key bfv.pk. It outputs c⃗3 = (c1,0+ c2,0, c1,1+ c2,1), which is the
sum of the two ciphertexts c⃗1 and c⃗2 resulted from performing component-wise vector addition.

BFV.HomMult(bfv.pk, c⃗1, c⃗2): Takes as inputs two ciphertexts c⃗1 = (c1,0, c1,1) and c⃗2 = (c2,0, c2,1), such
that both are encrypted under the public key bfv.pk. It computes (c1,0 ·c2,0, c1,0 ·c2,1+c1,1 ·c2,0, c1,1 ·c2,1)
over the integers and then performs a rounding operation mod q to obtain c⃗3, which is the product of
the two ciphertexts. Finally, it calls BFV.Refresh on c⃗3 and outputs the result.

BFV.Refresh(⃗c, τ): Takes as inputs a ciphertext c⃗ and auxiliary information τ to facilitate key switching.
It then expands the ciphertext and performs the key switching procedure resulting in a new ciphertext
c⃗′ of the original size, and outputs c⃗′.

A.2 Zero-Knowledge Proofs

As FHE uses lattice-based cryptography, lattice-based ZKPs would be a natural candidate for proving
relations about the input plaintexts in our instantiation. There have been recent improvements to lattice-
based ZKPs (namely [18], [16], and [9]) but these constructions still do not achieve the desired efficiency
level with regards to proof sizes (<100KB).

Perhaps surprisingly, it is possible to use elliptic curve-based ZKPs to prove relations in lattice-based
cryptography quite efficiently via the short discrete log proofs construction [34]. We take this approach
in our instantiation to obtain small proof sizes (in the single digit kilobyte range). We will then use
Bulletproofs [23] to prove properties of the plaintext (such as ensuring that a currency amount is in a
particular value range). Both of these ZKP systems provide soundness, completeness, and zero-knowledge
guarantees and can be made non-interactive using the Fiat-Shamir transform [38]. Additionally, neither
requires a trusted setup.

Bulletproofs. This proof system [23] allows us to efficiently prove that a committed value is in a
particular range using an inner product argument. We have chosen Bulletproofs for our smartFHE in-
stantiation as they are universal (i.e. a single reference string can be used to prove any NP statement),
transparent (i.e. no trusted setup), and efficient. Bulletproofs are readily compatible with short discrete
log proofs [34], relying also on the hardness of the discrete log assumption. Additionally, the Pedersen
commitment obtained from short discrete log proofs can be re-used for our range proof [34].

Short Discrete Log Proofs. This proof system [34] allows us to efficiently prove knowledge of a short
vector s⃗ such that As⃗ = t⃗ for public A and t⃗ over the polynomial ring Rq = Zq[X]/(f(x)), where f(x)
is a monic, irreducible polynomial of degree d in Z[X].

To do so, we first form a Pedersen commitment to the coefficients of s⃗. This commitment is in some
group G of size p such that the discrete log problem is hard. The proofs owe their efficiency to the fact
that p is usually much larger than q, particularly in the FHE setting.

Then, to prove the linear relation, a variant of Bulletproofs is used, which differs from the original
Bulletproofs construction in that the inner-product proof will be zero-knowledge [34]. Using the initial
Pedersen commitment to s⃗, we can use Bulletproofs to prove properties of the plaintext—such as a secret
value being in a particular range. The soundness of the proofs is based on the discrete log problem,
whereas secrecy is based on Ring-LWE, a problem generally considered to be hard even for quantum
computers [56].

A.3 Digital Signatures

As our system deals with public and private accounts, issuing public and private transactions and com-
putation requests, a user needs at least two keypairs: one for a private account and one for a public
account (assuming the user is interested in both modes of operation). As mentioned earlier, with public
accounts, we use ECDSA [47] as in Ethereum. For private accounts, if post-quantum security for signa-
tures is desired, we can use a lattice-based digital signature scheme compatible with our FHE scheme. In
practice, we would like for such a scheme to be fairly efficient. We use the lattice-based Falcon signature
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scheme [40] in our instantiation, one of three finalists for NIST’s post-quantum cryptography standard-
ization competition. If post-quantum security is not a concern, we can instead use ECDSA for improved
efficiency and compatibility with existing public smart contract-enabled blockchains. The only condition
is that the user must use a different keypair for the private account than that of the public account to
preserve privacy.

B Applications

In this section, we demonstrate how our smartFHE instantiation can be used to support real-world
applications that require privacy. These applications are used for performance evaluation purposes of
our framework as shown in Section 6. Note that the goal is to provide representative computations that
require FHE to enable evaluating the overhead of our framework.

B.1 Automated Market Makers

Automated market makers, or AMMs, are a form of decentralized exchange for trading cryptocurrency
tokens without intermediaries [73]. They connect buyers with sellers, where sellers build liquidity pools for
trading particular tokens, e.g. Ether-NU trading. AMMs are a prime example of Decentralized Finance
(DeFi) services. They build a platform for automated order matching and execution. The price of the
traded token is automatically computed based on supply and demand. Naturally, if supply is low (i.e.
liquidity in the pool is low) then the price becomes higher. An AMM is usually implemented as a smart
contract to support automatic execution, with many popular systems such as Uniswap [7] and Curve [2]
deployed in practice.

A major problem for AMMs is front-running attacks that allow manipulating the market to achieve
significant profits. Malicious parties monitor the mempool for large pending orders and submit competing
(buy) ones with higher fees, before the matching happens, to front-run unsuspecting user orders. As the
competing order may cause significant price slippage, the victim’s (buy) order may execute at a worse
price than anticipated. The malicious party will then execute a second (sell) order after the victim’s order,
profiting off the price slippage caused by the prior trades. The root cause of this type of attack is lack
of privacy. If AMMs permitted execution of private orders, then malicious parties could not manipulate
the pool price in such a manner. This is a critical problem that has received widespread interest [12,63].

In this application, we show how smartFHE can be used to build a private AMM. We follow the
constant product formula for computing the trading price as adopted in Uniswap. This formula keeps
the ratio of token reserves, and consequently prices, in the pool as balanced as possible to reduce price
slippage. In particular, let token A and token B be the pair of tokens being traded, and totalA and
totalB be the pool reserve values of tokens A and B, respectively. This formula ensures that the price
of token A multiplied by the price of token B equals a constant number, where the price of token A is
totalB/totalA (i.e. it is the number of B tokens required to purchase a single A token); a similar formula
applies to the price of token B.

Accordingly, for an order trading an amount of token A, amntA, the amount of token B, amntB ,
that this order receives is computed as:

amntB = totalB − totalA · totalB/(totalA + amntA)

A private version of this AMM can be implemented in smartFHE as follows. Alice locks her private
account that contains tokens of type A to the AMM smart contract (to avoid any concurrency issues).
She then issues an order, which is basically a transaction, to the AMM representing the intended trade.
This transaction includes the encrypted amount of token A to be traded, denoted as cA, and a ZKP
attesting that:22

– cA encrypts a non-negative value,
– that Alice’s private account can cover the total order value,

22 It is unlikely that a single trade will drain the pool reserves entirely of token B. Pool reserves are generally
quite large and Alice will be required to show that she owns a sufficiently large amount of token A along with
locking her account to the contract. Even if this is the case, submitting such an order is to Alice’s detriment.
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– and that cA is well-formed.

The AMM smart contract will compute the amount of B tokens Alice will get for her order. This
is done using the constant product formula as follows (where cB is the ciphertext of B token amount
resulting from the trade, encrypted under Alice’s public key):

cB = totalB −
totalA · totalB
totalA + cA

Alice will then finalize the trade by issuing a deshield transaction to send amntA tokens out of her
private account to the AMM contract account, which the AMM adds to the pool reserve of token A. This
transaction will include as auxiliary information the randomness used to encrypt cA, allowing anyone to
verify that indeed cA encrypts the correct amntA value. Upon receiving this transaction and executing
it, the AMM contract issues a transfer transaction to send amntB tokens to Alice’s account (if Alice’s B
account is private, this will be a shield transaction), and modifies the pool reserves of token B accordingly.
Note that even though these values are public, this does not impose any threat to Alice’s trade since it
has already been executed—thus addressing front-running attacks.

B.2 Statistical Data Analysis

Many financial applications rely on the results of particular statistical analyses of user financial standing
or other user-related private information, e.g. health records. The spread of blockchain-based applications
to avoid centralized trust has led to several innovations through which traditional services and organiza-
tions are reshaped into fully decentralized ones. Decentralized autonomous organizations (DAOs) [71] are
one such example. These facilitate company/organization formation, with a transparent way of buying
shares, voting on project and business proposals, decision making, e.g. for loan services or health insur-
ance. We discuss two sub-applications under this category—namely, analyzing user financial standing
and performing a chi-squared test over genetic data.

B.2.1 Analyzing Financial Standing For this application, we imagine that a DAO is trying to
decide on forming a new company or spinning out a project based on the financial standing of the users
backing the endeavour. Suppose we have a set of users P1, . . . , Pn, each of which is willing to put funds
u1, . . . , un to back the proposal, where the fund amounts are private. The goal is to compute the mean
and variance to assist in making the decision. Specifically, the mean must be close enough to some target
value set by the DAO and the individual funds should not be far from the mean.

This application relies on inputs from multiple users; we want all these to be encrypted under the
same public key to allow the DAO contract to compute the mean and variance over the ciphertexts.
One approach is to let the users collectively generate a public key pk and share the corresponding secret
key sk. Thus, to decrypt any ciphertext under pk, all the users’ secret key shares are needed. Each Pi

will encrypt her fund value ui (under pk) and send it to the DAO contract, which in turn computes the
mean and the variance over all ciphertexts and updates the contract state with the (encrypted) result.
The users can collectively decrypt the results and take further action (if needed). For example, if the
statistical analysis values are within the required bounds stated by the DAO, any of these users can
issue a transaction to inform the DAO of that (without disclosing the plaintext values of the statistical
results).

In terms of smartFHE operations, the above can be done as follows. User Pi locks her own private
account (which contains a balance that can cover the individual fund ui) to the DAO smart contract.
Then she submits a ciphertext ci of the value of her fund ui (encrypted under the group public key pk)
to the DAO. This is done by issuing a transaction, which is basically a function call with the encrypted
fund as an input. This call also includes a ZKP attesting that:

– The balance of the private account of Pi can cover the fund value ui,
– and that the ciphertext of ui is well-formed.

After receiving c1, . . . , cn, the DAO contract will perform the computation. It computes the mean

c̄ =
∑n

i=1 ci
n , and the variance var =

∑n
i=1(ci−c̄)2

n−1 .23

23 Note that the squaring operation is simply a homomorphic multiplication of the quantity by itself and the
number of users is public—it is the count of the submitted ciphertexts. Thus, dividing the resulting ciphertext
by a public constant is a cheap operation.
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The resulting (encrypted) mean and variance will be recorded in the DAO smart contract. The users
can retrieve these values and use their shares of the secret key to collectively decrypt the result. If they
find out that these values satisfy the conditions set by the DAO, anyone can notify the DAO of that.
This is can be done by issuing a transaction with a ZKP attesting that the encrypted mean and variance
are within the prescribed bounds.

B.2.2 Chi-squared Test The chi-squared test, or X 2, is a popular statistical test that answers ques-
tions with respect to association relations or goodness of fit [42]. In association relations, this involves
testing whether a particular factor, such as age or gender, has a significant association with a particular
outcome, such as election results or health status. In goodness of fit, this involves testing whether a
particular variable (or set of variables) follows a particular distribution. In Genome-Wide Association
Studies (GWAS), the chi-squared test is used to test for deviation from the Hardy-Weinberg equilib-
rium, and, thus, detect potential risks for diseases. Testing such hypotheses is also useful for financial
applications, such as setting health insurance premiums.

In this application, we consider a scenario in which a (decentralized) health insurance company
relies on the genetic testing results for a population of users of size n to make decisions for insurance
premiums. The genetic data of these users is hosted by several trusted medical institution or hospitals.
The population is divided into sub-populations of size n1, n2, . . . , nq such that for i ∈ {1, . . . , q} the ni

group data is hosted by hospital hi. All these hospitals want to keep the hosted data private from others.
We use the approach proposed in [51, 69] to compute this genetic test. We start with one group

to explain the computation and then show how hospitals h1, . . . , hq will participate together under
smartFHE. For population n1, let the genetic counts be t0, t1, t2 such that n1 = t0 + t1 + t2. For
example, assume that the test is for the two alleles A and a of the gene, then t0 = tAA, t1 = tAa, and
t2 = taa. The chi-squared test is computed in two stages. First, compute the quantities α = (4t0t2− t21)

2,
β1 = 2(2t0 + t1)

2, β2 = (2t0 + t1)(2t2 + t1), and β3 = 2(2t2 + t1)
2. Second, compute the test value as:

X 2 =
α

2n1

( 1

β1
+

1

β2

1

β3

)
The goal is to have all hospitals collectively compute one test value over their data through the

insurance company smart contract. Similar to the previous application, these hospitals will generate one
public key pk and share the corresponding sk. Then, each hospital hi will submit the encrypted genetic
counts for population ni, denoted as cti,0 , cti,1 , cti,2 such that ni = ti,0 + ti,1 + ti,2. Hospital hi provides a
ZKP attesting that the counts are for the given population size ni (which is public). That is, this ZKP
attests that:
– All ti,0, ti,1, ti,2 are non-negative,
– that ni = ti,0 + ti,1 + ti,2,
– and that all submitted ciphertexts are well-formed.

The contract first checks that all ZKPs are valid, and then computes the total encrypted counts:

ct0 =

q∑
i=1

cti,0 , ct1 =

q∑
i=1

cti,1 , and ct2 =

q∑
i=1

cti,2

After that, the contract computes four quantities:

cα = (4ct0ct2 − c2t1)
2

cβ1
= 2(2ct0 + ct1)

2

cβ2
= (2ct0 + ct1)(2ct2 + ct1)

cβ3
= 2(2ct2 + ct1)

2

The hospitals can retrieve these encrypted quantities from the contract, collectively decrypt them
using their shares of sk, and then any hospital can compute the test result X 2 using the formula above.

Any of these hospitals can notify the insurance company smart contract of the result, which is done
by issuing a transaction with a ZKP attesting that the test result:

– is correctly computed using the quantities computed by the contract,
– and that this result is in a given premium threshold range set in the contract.

This is done without disclosing the test value.
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C Proof of Theorem 1

To prove Theorem 1, we need to prove that no PPT adversary can win the correctness and security games
defined in Section 2 with non-negligible probability.

Intuitively, our smartFHE instantiation satisfies these properties by relying on the correctness and
security of the underlying cryptographic primitives it uses. The use of a secure zero-knowledge proof
guarantees: completeness (a valid honest proof generated by a user will be accepted by the miners),
soundness (a user that does not own valid private inputs cannot forge valid proofs for any transaction
or computation request), and zero-knowledge (so the proof does not reveal anything about the private
inputs and private account state). The use of a semantically secure FHE scheme guarantees that the
ciphertexts of the inputs and balances do not reveal anything about the underlying (plaintext) values, and
operating on them (by homomorphically adding or multiplying them) will produce valid results. Also,
the correctness of the locking process will avoid invalidating any pending ZKPs, and the correctness
of the rolling over process at the end of each epoch will gurantee that account balances are updated
correctly. The security of the digital signature scheme guarantees that a malicious adversary cannot forge
signatures, and thus steal others’ currency, and that a man-in-the-middle attacker cannot manipulate
any of the messages sent in the system.

Formally, the proof of Theorem 1 requires proving three lemmas showing that smartFHE is correct
and supports both overdraft safety and ledger indistinguishability.

Lemma 1. The smartFHE instantiation described in Section 5 satisfies the correctness property (cf.
Definition 2).

Proof. Correctness follows by the correctness of the FHE scheme, the security of the ZKP system and
the digital signature scheme, and the correctness of the locking and roll-over processes. Every operation,
whether a valid transaction or a circuit computation, will be processed successfully in our instantiation
and leads to a verifiable ledger update. This can easily be seen for each transaction type in the system. By
relying on the completeness of the ZKP systems for Bulletproofs [23] and short discrete log proofs [34], the
correctness of the BFV fully homomorphic encryption scheme [36], the locking process (to lock account
states to avoid invalidating any pending ZKPs), and the rolling over process at the end of each epoch, it
can be easily seen that valid transactions will update the ledger state as expected.

That is, an adversary, who does not own an account or does not know the actual private inputs
and data, cannot forge valid ZKPs; thus, any operation request he issues will not be accepted. Also,
this adversary cannot forge a signature on behalf of an honest user or manipulate the operation requests
issued by others in the system. For computations on private inputs, the correctness of the results is based
on the correctness of the BFV scheme. That is, operating on the ciphertexts of the inputs will produce
ciphertexts of the correct results (the same as what would be obtained if these inputs were public and
the computation was performed in the clear). Being able to do any of these means violating the security
of the underlying cryptographic primitives, which is a contradiction.

Furthermore, the result correctness of any FHE-based is guaranteed by the assumption that the
underlying smart contract-enabled blockchain system is secure (so its consensus protocol satisfies the se-
curity properties of consensus—liveness, persistence/consistency, and chain quality [64]). In other words,
miners will accept blocks that contain only valid results computed by correctly performing a Compute
request using the supplemented user inputs, according to the circuit representing the function call in a
given smart contract. Same for transactions issued by the users. This guarantees that the updated ledger
state contains only valid state changes even for those over private inputs and private accounts.

Accordingly, in the INCGame game, applying Ops to accpub and applying an equivalent private version
Ops′ to accpriv, will lead to the same final balance value. Given that all balance values are not allowed
to exceed some maximum value MAX determined by the system’s setup, the homomorphic operations
on account balances will not cause an overflow that may lead to invalid updates. Thus, A will have a
negligible probability to succeed in producing an operation transcript that leads to different account
balances, which completes the proof.

Lemma 2. The smartFHE instantiation described in Section 5 satisfies the overdraft safety property (cf.
Definition 6).

Proof. To prove that our instantiation supports overdraft safety, we must consider Transfer, Shield,
Deshield, and PrivTransfer, and show that none of these transaction algorithms can be used to send
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more currency than a user rightfully owns with non-negligible probability. Recall that our instantiation
satisfies correctness (as shown in Lemma 1) so that private computations cannot be used to falsely in-
crease a user’s account balance. Ultimately, operations on private balances and transfer amounts will be
captured in the transactions listed above.

In Transfer, all account and transaction details are associated with public accounts so are publicly
verifiable information (e.g. sender/receiver’s balances, transfer amount). Thus, if the sender attempts to
send more currency than he rightfully owns, VerifyTransfer would output 0 and the transaction would be
rejected.

In Shield, the state of the sender’s account can be publicly tracked and verified. The encrypted
transfer amount will be checked to ensure that it matches the published plaintext transfer amount (with
the randomness used in encryption), and that the sender’s remaining balance is non-negative. If the
sender attempts to send more currency than he rightfully owns, VerifyShield will output 0.

In Deshield, the state of the sender’s account is private. The encrypted transfer amount will be
checked to ensure it matches the published non-negative plaintext transfer amount with the corresponding
encryption randomness. The ZKP showing that the sender has enough currency in his private account
to perform this transfer will also be verified as part of VerifyDeshield. Thus, if the sender is able to send
more currency than he rightfully owns (i.e. VerifyDeshield(txdeshield) = 1), he has violated the soundness
of the ZKP systems of Bulletproofs or short discrete log proofs (which happens with at most negligible
probability).

In PrivTransfer, the state of the sender and receiver’s accounts are private. As part of VerifyPrivTransfer,
ZKPs will be checked showing that the sender has enough currency in his account to perform the trans-
action and that the transfer amount encrypted under the sender and receiver’s public key is identi-
cal and non-negative. Thus, if the sender is able to send more currency than he rightfully owns (i.e.
VerifyPrivTransfer(txprivtransf) = 1), he has violated the soundness of the ZKP systems of Bulletproofs or
short discrete log proofs (which happens with at most negligible probability).

As in the proof of correctness, by the assumption that the underlying blockchain system is secure,
the miners will reject any invalid operations and transactions. Thus, any transaction in which its corre-
sponding verify operation outputs 0 will be rejected, so it will not impact the updated ledger state.

Accordingly, in the OSGame game, the adversary A will have a negligible probability to succeed in
spending more currency than what it owns. That is, regardless of how A interacts with the PPSC scheme
(by instructing honest parties to place transactions and computation requests, or by inserting its own via
its accounts or those that it corrupted), the probability of breaking overdraft safety is negligible, which
completes the proof.

Lemma 3. The smartFHE instantiation described in Section 5 satisfies the ledger indistinguishability
property (cf. Definition 8).

Proof. Recall that in the LINDGame, starting with some ledger state, A interacts with the PPSC scheme
(through OPPSC) and can initiate any of the query types this oracle provides. A can request creating
(public and private) accounts, transfer currency between them, request any (public or private) compu-
tation execution in any smart contracts it wishes, instruct honest parties to initiate transactions and
computation requests, and can corrupt any of these parties and control it. At the end, A chooses two
operations (transactions or computation requests) among which the challenger C will choose one at ran-
dom and request OPPSC to execute it. Based on the updated ledger state, A will guess which operation
was chosen and will win if the guess is correct. To rule out trivial wins of A, the two operations op0 and
op1 must be publicly consistent in the sense of Definition 7.

The proof must show that for all operation types in the system (including all transaction types and
private computation requests), A will not be able to win the LINDGame with non-negligible probability.
Without loss of generality, we show that for private computation requests; a similar proof and reasoning
arguments can be applied to the rest of the operation types.

Using a proof technique inspired by the one in [37], we prove ledger indistinguishability for private
computation operations using a series of hybrids starting with an LINDGame with b = 0 (Hybrid0),
and finishing with an LINDGame game with b = 1 (Hybrid7). By showing that all these hybrids are
indistinguishable, we prove that A cannot tell which operation C has chosen for execution.

A private computation operation is composed of a public computation circuit (or code) to be ex-
ecuted, a set of private inputs that are encrypted using the BFV FHE scheme, and ZKPs (using the
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Bulletproofs and the short discrete log proofs system) to attest for the well-formedness of the input
ciphertexts and that these inputs respect all conditions specified in the system. Based on that, we show
the following series of hybrids:

Hybrid0: The game LINDGame with b = 0.

Hybrid1: Same as Hybrid0, but we replace the zero-knowledge proofs with simulated ones, i.e., we invoke
the zero-knowledge property simulator for each of the input values, and we replace the actual proofs in
aux0 and aux1 with simulated ones.

The hybrids Hybrid0 and Hybrid1 are indistinguishable by the zero-knowledge property of the ZKP
systems we use. If A can distinguish these two hybrids, then we can use A to build an adversary B that
can break the zero-knowledge property of the underlying ZKP systems, which is a contradiction.

Hybrid2: Same as Hybrid1, but we replace the input ciphertexts in aux0 and aux1 with fresh ciphertexts
(for plaintext inputs that may have different values than the original ones, but produce same circuit
behavior but not necessarily same output value). That is, we choose a fresh FHE keypair and fresh input
values, then we encrypt these values using the fresh secret key and use them to replace the original input
ciphertexts in aux0 and aux1.

The hybrids Hybrid1 and Hybrid2 are indistinguishable by the zero-knowledge property of the ZKP
system and the semantic security of the FHE scheme. These imply that, regardless of the actual plaintext
input values, the input ciphertexts are indistinguishable—neither the ZKPs nor the FHE ciphertexts will
reveal anything about the plaintext values. In other words, if A can distinguish these two hybrids, then
we can use it to build two adversaries: B1 that can break the zero-knowledge property of the underlying
ZKP systems, and B2 that can break the semantic security of the FHE scheme, which is a contradiction.

Hybrid3: Same as Hybrid2, but we replace the output of the execute query with fresh output produced by
executing opb using the fresh inputs generated in Hybrid2.

The hybrids Hybrid2 and Hybrid3 are indistinguishable by the semantic security of the FHE scheme
that our smartFHE instantiation uses. Similar to above, if A can distinguish them, then we can use it
to build B that can break the semantic security of the FHE scheme, which is a contradiction.

Hybrid4: Same as Hybrid3, but with b = 1. The hybrids Hybrid3 and Hybrid4 are indistinguishable by the
same argument described above. Since the computation is identical for both op0 and op1, by the semantic
security of the FHE scheme and the zero-knowledge property of the ZKP scheme, and regardless of the
actual input values, A will not be able to deduce anything about these inputs or the computed output.
Thus, A will not be able to tell that op1 has been executed instead of op0 in this hybrid. Otherwise, we
can use A to break the security of the FHE and ZKP schemes that our instantiation uses (as described
above), which is a contradiction.

Hybrid5: Same as Hybrid4, but with aux0 and aux1 used in the original game (i.e. original inputs ci-
phertexts). So this is Hybrid3 with b = 1. The hybrids Hybrid4 and Hybrid5 are indistinguishable by the
indistinguishability argument of Hybrid3 and Hybrid2.

Hybrid6: Same as Hybrid5, but with the original output (i.e. ledger sate updates) that will be produced by
opb using the original aux0 and aux1 from the original game. So this is Hybrid2 with b = 1. The hybrids
Hybrid5 and Hybrid6 are indistinguishable by the indistinguishability argument of Hybrid2 and Hybrid1.

Hybrid7: Same as Hybrid6, but with the real (original) ZKPs used in the original game instead of the
simulated ones. So this is the original LINDGame with b = 1. The hybrids Hybrid6 and Hybrid7 are indis-
tinguishable by the indistinguishability argument of Hybrid1 and Hybrid0.

This sequence shows that LINDGame with b = 0 is (negligibly) indistinguishable from LINDGame with
b = 1. This means that publicly-consistent private computation requests in our smartFHE instantiation
are indistinguishable and will not give A any additional information that allows it to win LINDGame
with non-negligible advantage.
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Similar hybrid sequence can be developed for other operation types, and by relying on the security
of the ZKP systems and the FHE scheme we use, similar reasoning as above can be used to show that
they do not give A any non-negligible advantage in winning LINDGame, which completes the proof.

Proof of Theorem 1. Follows by Lemmas 1, 2, and 3.
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