
Large-Scale Non-Interactive Threshold Cryptosystems in the
YOSO Model

Andreas Erwig, Sebastian Faust, and Siavash Riahi

Technische Universität Darmstadt, Germany
firstname.lastname@tu-darmstadt.de

Abstract. A (t, n)-public key threshold cryptosystem allows distributing the execution of a crypto-
graphic task among a set of n parties by splitting the secret key required for the computation into n
shares. A subset of at least t + 1 honest parties is required to execute the task of the cryptosystem
correctly, while security is guaranteed as long as at most t < n

2
parties are corrupted. Unfortunately,

traditional threshold cryptosystems do not scale well, when executed at large-scale (e.g., in the Internet-
environment). In such settings, a possible approach is to select a subset of n players (called a committee)
out of the entire universe of N ≫ n parties to run the protocol. If done naively, however, this means
that the adversary’s corruption power does not scale with N as otherwise, the adversary would be able
to corrupt the entire committee. A beautiful solution for this problem is given by Benhamouda et al.
(TCC 2020) who present a novel form of secret sharing, where the efficiency of the protocol is indepen-
dent of N , but the adversarial corruption power scales with N (a.k.a. fully mobile adversary). They
achieve this through a novel mechanism that guarantees parties in a committee to stay anonymous –
also referred to as the YOSO (You Only Speak Once) model – until they start to interact within the
protocol.
In this work, we initiate the study of large-scale threshold cryptography in the YOSO model of commu-
nication. We formalize and present novel protocols for distributed key generation, threshold encryption,
and signature schemes that guarantee security in large-scale environments. A key challenge in our anal-
ysis is that we cannot use the secret sharing protocol of Benhamouda et al. as a black-box to construct
our schemes, and instead we require a more generalized version, which may be of independent interest.
Finally, we show how our protocols can be concretely instantiated in the YOSO model, and discuss
interesting applications of our schemes.

1 Introduction

In a threshold cryptosystem [19, 21], a secret key sk is distributed among a set of n parties, where each party
holds a share sk i of the secret key. A subset of t+1 parties is needed to re-construct the secret key (or carry
out the cryptographic task such as signing), while ≤ t parties learn nothing about the sensitive information.
A threshold cryptosystem consists of two components. First, a protocol for securely generating a key pair –
so-called distributed key generation (DKG) [38, 39] – that enables the parties to securely generate a shared
secret key sk and the corresponding public key pk . At the end of this protocol each party holds its secret
key share sk i and is aware of the public key pk . Second, a distributed version of the cryptosystem, where the
parties can use their secret key shares to perform the cryptographic tasks at hand. Two important examples
of threshold cryptosystems are threshold signatures for signing messages in a distributed fashion (e.g., [9,
34]), and threshold public key encryption for distributed decryption of ciphertexts (e.g., [14, 41]). While
these threshold cryptosystems can be constructed from general purpose multi-party computation (MPC),
such solutions are typically not desirable due to their lack of efficiency. Instead, there has recently been
a broad interest in constructing concretely efficient threshold cryptographic schemes as evidenced by the
extensive number of works in recent years (e.g., [20, 13, 33]).

Traditionally, threshold cryptographic schemes have been considered in a setting where the adversary is
restricted to corrupt at most t < n/2 parties. This upper bound is required to achieve guaranteed output
delivery [17], i.e., the adversary cannot stall the system even when behaving in an arbitrary malicious way.
When we move to a large-scale setting with many users (e.g., as prominently considered in the blockchain

setting), several new challenges arise. In particular, we aim to achieve two conflicting goals. First, we require
a solution that is scalable when the number of users in the universe – denoted by N – increases. Ideally,
we want a protocol with efficiency independent of the size of the universe, as the size of the universe is
typically very large. Our second goal is that the adversary can corrupt a linear fraction of all parties N , and
in particular its corruption power shall increase when the number of parties in the universe increases. We
call such a strong adversary a fully mobile adversary.

To address these two challenges, the recent work of Benhamouda et al. [7] introduces the concept of
evolving-committee proactive secret sharing (ECPSS). In a nutshell, to achieve an efficient solution, ECPSS
considers a committee of n parties (where n is independent of the number N of parties in the universe) that
hold a shared secret. In addition, to ensure that the corruption power of the adversary is linear in N , Ben-
hamouda et al. combine two ideas, namely (1) using dynamic proactive secret sharing and (2) anonymizing
the identity of the secret shareholders in this protocol. Let us provide some more details on the solution
of [7]. Dynamic proactive secret sharing is a protocol that proceeds in epochs, where the adversary is allowed
to corrupt at most t parties per epoch. Such an adversary is often also referred to as a mobile adversary [36].
To ensure security in this setting, dynamic proactive secret sharing schemes deploy a so-called handover pro-
tocol, where the secret is re-shared to a new committee at the end of each epoch. While a mobile adversary
can corrupt over time ≫ N users, the naive application of dynamic proactive secret sharing only tolerates
t < n/2 corruptions. To circumvent this, Benhamouda et al. introduce a novel concept of anonymity. More
precisely, after a party in a committee is activated and communicates (e.g., for reconstructing the shared
secret), a new committee is selected, via a so-called role assignment mechanism, in such a way that the
members of the new committee stay anonymous. This feature guarantees that an adversary cannot target
the members of the small-sized committee, even if ≫ n parties can be corrupted per epoch. We recall the
definition of ECPSS schemes in Sec. 2.5, and we provide a more detailed description of the ECPSS scheme
of Benhamouda et al. in Sec. 3.

The original work of Benhamouda et al. [7] considers only the question of how to store a secret in a large-
scale environment. This work has recently been extended by Gentry et al. [23] in the so-called YOSO model
of computation (“You Only Speak Once”), which presents a general framework for committee-style secure
computation with anonymity. This framework crucially relies on a role assignment UC ideal functionality,
which is responsible for the selection of anonymous committees and for assigning concrete roles to each party
in the selected committee. Unfortunately, to date this functionality has not been instantiated1 and therefore,
so far the solution of Gentry et al. is not suited for concretely instantiating cryptographic schemes in the
YOSO model. Moreover, the most efficient solution of [23] relies on a trusted party to generate initial secret
key shares and the corresponding public key of a threshold encryption scheme (for a detailed discussion
on [23] see Sec. 1.2). Kolby et al. [32] later showed how to overcome this assumption and the necessity for
any trusted setup, however, at the cost of efficiency.

1.1 Our Contribution

In this work, we address the above drawbacks of Gentry et al.’s general purpose YOSO MPC by formal-
izing and constructing concrete schemes for distributed key generation as well as threshold encryption and
signatures that can be instantiated in the YOSO model. In particular, we show that the role assignment
functionality of Benhamouda et al.’s ECPSS construction suffices to prove our schemes secure in the YOSO
model. While our constructions build on earlier works on efficient threshold encryption and signature schemes,
the resulting YOSO schemes turn out to be rather complex, and proving their security becomes quite in-
volved. One main reason for this is that we cannot use Benhamouda et al.’s ECPSS scheme (which is one of
our main building-blocks) in a black-box fashion. Let us now discuss our contribution in more detail.

Large-Scale Distributed Key Generation. Distributed key generation (DKG) [38, 39] is a fundamental prim-
itive of threshold cryptography. It allows a set of parties to securely generate a shared secret key (and

1In particular, Gentry et al. do not claim that the role assignment of Benhamouda et al. can UC-realize their
functionality.

2

corresponding public key) in a distributed way, thereby avoiding a trusted setup. Our first contribution is
to introduce and formalize the concept of discrete-log-based large-scale distributed key generation in the
YOSO model, and to show a concrete instantiation. We follow the idea of Benhamouda et al. [7] to achieve
security against a fully mobile adversary through anonymization. This, however, complicates the construc-
tion and security proof as we have to ensure that parties stay anonymous as long as they are involved in
the protocol execution. The main challenges arise from the fact that we cannot use the ECPSS construction
from Benhamouda et al. entirely as black-box (see below for further details) and that we must prove that
an adversary indeed corrupts at most a minority of protocol participants. We do the latter by exhibiting
a reduction to the security of the ECPSS construction. In more detail, we use the role assignment mecha-
nism of the ECPSS construction in our protocol and show that if a majority of parties get corrupted in our
DKG, then we can construct an adversary that corrupts a majority of parties in the ECPSS scheme, thereby
breaking its security. Finally, we deal with the fact that distributed key generation protocols are typically
highly interactive which poses a problem in our full security setting where parties can speak only once to
preserve their anonymity. Gentry et al. [23] mentioned the construction of a DKG protocol in the YOSO
model (albeit for the RSA setting) as an open problem and we make the first step towards addressing this
problem with our construction.

Large-Scale Threshold PKE and Signatures. We next consider the setting of large-scale non-interactive
threshold public key encryption and signature schemes in the YOSO model by first providing formal defini-
tions of such primitives and then showing concrete instantiations. To this end, we show how the statically-
secure non-interactive threshold public key encryption scheme from Shoup and Gennaro [41] can be trans-
formed to the large-scale setting with security against fully mobile adversaries. In a similar way we show
in Appendix F how to transform the statically-secure threshold signature scheme from Boldyreva [9] to the
setting of large-scale security. A key building-block for this transformation is again the ECPSS construction
from Benhamouda et al. For the security proof of our schemes, we have to deal with the general issue of
providing a consistent view to an adversary who can adaptively corrupt parties. More importantly, however,
we face similar issues as in our DKG protocol, i.e., we must prove that at most a minority of parties are
corrupted by the adversary and we must deal with the challenges that arise from the non-black-box use of
the ECPSS construction (see below).

Generalization, Instantiation and Applications. We argue that the two transformations of statically-secure
threshold public key encryption and signature schemes to the large-scale setting can be generalized to any
discrete-log-based threshold encryption/signature scheme which satisfies certain properties. The conditions
that such schemes have to satisfy are given in Sec. 5.2. Finally, we discuss how all of our schemes can
be concretely instantiated in the YOSO model and we describe various applications of our schemes in the
blockchain setting, including the fair exchange of secret values and the checkpointing of individual blocks in
a blockchain to decrease computational effort for new parties in the network.

Non-Black-Box Use of Benhamouda et al.’s ECPSS Construction. As a first attempt, one may try to build
large-scale threshold cryptographic schemes by leveraging ECPSS in a black-box fashion to select anonymous
committees and to re-share the secret key of the threshold scheme to future committees. However, in the
YOSO model, each party can speak at most once per epoch, restricting committee members to communicate
only during the state handover to the next-epoch committee. Therefore, any communication that is specific
to the threshold scheme (e.g., the publication of decryption or signature shares) must happen during the
handover. Even worse, all communication required to initially generate the secret key in the DKG protocol
must occur during a state handover as well. Such communication is not needed (and thus not supported)
in the ECPSS construction itself. To tackle this issue, we provide a generalized handover procedure which
allows parties to broadcast auxiliary information while handing over their internal state.

An additional challenge arises from the fact that Benhamouda et al. only consider an honest dealer that
shares one secret to an initial committee. For our distributed key generation protocol, however, we require
n parties to each share a secret random value, where some of the dealers may be malicious. This issue
alone prevents us from using ECPSS as black-box, yet it leads to further issues when trying to make a

3

direct reduction from the security of ECPSS. Concretely, we cannot simulate non-interactive zero knowledge
(NIZK) proofs in the reduction, since our protocol requires NIZK proofs w.r.t. all n initially shared secrets,
whereas the NIZK proofs in Benhamouda et al.’s solution are w.r.t. only one secret.

1.2 Comparison to YOSO MPC

Gentry et al. [23] introduced the YOSO model and proposed two protocols to generically achieve YOSO
MPC in the information theoretical and computational setting, respectively. Both of these protocols rely on
an ideal UC role assignment functionality that is responsible for selecting anonymous committees with honest
majority. To the best of our knowledge, no protocol exists to date which can UC-realize this functionality
and therefore, both proposed protocols cannot currently be instantiated.2 We note that, as part of their
computationally secure protocol, Gentry et al. use a threshold version of the Paillier encryption scheme [37]
and refresh the secret key shares using the techniques of Benhamouda et al.’s ECPSS handover procedure,
which is similar to the general idea of our large-scale threshold encryption construction. However, in contrast
to the work of Gentry et al., we formalize threshold encryption in the YOSO model as a standalone prim-
itive and formally prove the security of our construction w.r.t. the concrete role assignment mechanism of
Benhamouda et al. We believe that this formalization/instantiation can be helpful in future works in order
to instantiate generic YOSO MPC protocols.

In terms of communication efficiency, we note that the main efficiency bottleneck of protocols in the
YOSO model appears during the handover of values from one committee to another and when selecting a
new committee. In order to compile a circuit into a YOSO protocol, the solution of Gentry et al. requires at
least one committee per layer of multiplication gates, regardless of the protocol choice (information theoretic
or computational). In addition, the computationally secure protocol requires a trusted party to generate the
initial encryption key of the committee members. This assumption can be removed by executing a DKG
protocol using either the information theoretic MPC protocol or the solution of Kolby et al. [32], which
are both setup-free YOSO MPC protocols. However, both of these protocols require linear communication
rounds in the depth of the DKG circuit. In contrast, we provide a dlog-based DKG for our threshold schemes,
which requires only 3 communication rounds.

1.3 Related Work

As mentioned in the Introduction, in the last years there has been extensive work on threshold cryptography
[28, 2, 42, 27, 20, 13, 33]. We focus here on schemes that are important to the YOSO setting. We provide a
discussion on additional related work in Appendix A.

Extensions to Benhamouda et al.’s ECPSS Construction. The original ECPSS solution of Benhamouda et
al. [7] suffers from two drawbacks, namely (1) it provides security only against fully mobile adversaries with
corruption power of roughly 25%, while requiring huge committee sizes, and (2) it relies on the use of rather
complex non-interactive zero knowledge (NIZK) proofs. Two recent works of Gentry et al. [25, 24] improve
on these drawbacks. In [25], Gentry et al. introduce a novel committee selection mechanism which allows for
a more powerful adversary that can corrupt less than 50% of all parties. Furthermore, their solution allows
to decrease the required committee size significantly.

The issue that Benhamouda et al.’s solution relies on complex NIZK proofs was addressed in [24], where
the authors propose an efficient non-interactive publicly verifiable secret sharing scheme that might be used
to efficiently instantiate the handover procedure of Benhamouda et al.’s solution.

Other YOSO MPC protocols. In a similar spirit to the YOSO MPC paper, a recent work by Choudhuri
et al. [16] presents general-purpose multi-party computation in the so-called fluid model, where parties can
dynamically join and leave the protocol execution. However, the authors of [16] do not analyze their solution

2We note that Campanelli et al. [12] propose protocols for role assignments in the YOSO model, however, none
of these protocols have been shown to UC-realize the role assignment functionality of [23].

4

w.r.t. a fully mobile adversary who has sufficient corruption power to potentially corrupt a majority of the
universe’s participants. As mentioned previously, Kolby et al. [32] propose a setup-free YOSO MPC protocol,
which however requires communication rounds linear in the depth of the computed circuit. Campanelli et
al. [12] and Cascudo et al. [15] analyze the notion of encryption to the future which generally allows parties
to send messages to an anonymous and yet to be selected committee. Finally, Acharya et al. [3] propose an
MPC model, which deviates from the YOSO model only by considering some parties (so-called MPC input
providers) that speak more than once. While this is a compelling model, the focus of our work is to construct
instantiable threshold cryptosystems in the YOSO model.

2 Preliminaries

In this section, we provide required notation and discussion on our communication and adversarial model
as well as building blocks that we require for our work. We defer the definitions of anonymous public
key encryption, non-interactive threshold public key encryption (TPKE) and non-interactive zero-knowledge
(NIZK) proofs of knowledge to Appendix A.

2.1 Notation

We write s←$ H to denote that a variable s is sampled uniformly at random from a set H. For integers i, j
with i < j, we use [i] to denote the set {1, · · · , i} and [i; j] to denote the set {i, · · · , j}. We write s←$ A(x)
for a probabilistic algorithm A that on input x outputs s, and s← B(x, r) to denote running a deterministic
algorithm B that produces output s on input x and randomness r. s ∈ A(x) denotes that s is in the set of
possible outputs of A on input x. For a polynomial F , we write deg(F) = t to denote that F is of degree t.

For a set of parties C and a protocol Π, we write Π[C⟨x1,··· ,x|C|⟩] to denote that Π is jointly executed

by all parties Pi ∈ C on secret inputs xi for i ∈ [|C|]. Furthermore, we write Π[C⟨x1,··· ,x|C|⟩](y) if all Pi ∈ C

receive a common public input y. Finally, for a set of parties U s.t. C ⊂ U and a protocol Π the notation
Π[C⟨x1,··· ,x|C|⟩, U](y) denotes the joint execution of Π by all parties in U with common public input y where

party Pi ∈ C has secret input xi with i ∈ |C|.

2.2 Communication and Adversarial Model

Following Benhamouda et al. [7], we assume that parties have access to an authenticated broadcast channel
and a public key infrastructure (PKI). The authenticated broadcast channel is the only means of commu-
nication in our model. In particular, we do not consider sender-anonymous channels which are inherently
difficult to construct in practice and significantly simplify the problem of keeping the identity of parties
anonymous. Furthermore, we consider synchronous communication where messages broadcast in some round
i are received by all other parties in round i + δ where δ is a fixed upper bound. We further assume that
communication between parties during the lifetime of the system can be divided into epochs. At the beginning
of each epoch, all parties broadcast a new public key via the PKI. Communication via a blockchain realizes
such a communication model.

We consider a fully mobile adversary which can monitor the broadcast channel and for messages sent in
round i by honest parties, we allow the adversary to receive those messages in the same round i, i.e., without
delay δ. The adversary can corrupt parties at any point in time. Corrupted parties are controlled by the
adversary and can deviate arbitrarily from the protocol execution. We assume that the adversary corrupts a
fraction p of all parties in the system. The fraction p is called the adversary’s corruption power. Notice that
we allow the adversary to “uncorrupt” parites, and consider a party as no longer controlled by the adversary
when the uncorrupted party broadcasts a new public key to the PKI. We also assume that parties can erase
their internal states such that upon their corruption, the adversary would be oblivious to the secret values
that a party had previously stored and erased. Note that this is an inherent requirement in all protocols with
proactive security.

5

Rind-SOA
PKE(λ)

00 I := ∅, (sk,pk)← (Gen(1λ))i∈[n]

01 (D,ResampD, state1)← A(pk)
02 m0 := (mi)i∈[n] ← D
03 c := (ci)i∈[n] ← (Enc(pk i,mi))i∈[n]

04 state2 ← AOC(c, state1)
05 m1 ← ResampD(mI)
06 b← {0, 1}, b′ ← A(mb, state2)
07 Return b = b′

Oracle OC(i)
08 If i /∈ [n]: Return ⊥
09 I := I ∪ {i}
10 Return sk i

Fig. 1: The RIND-SO security game from Hazay et al. [29] adjusted to allow adaptive corruptions of keys.

2.3 Public Key Encryption

Throughout this work, we use different notions of public key encryption (PKE). Recall that a public key
encryption scheme PKE consists of three algorithms KeyGen, Enc and Dec, where (1) KeyGen on input a
security parameter λ outputs a public key pk and a secret key sk ; (2) Enc on input a public key pk and a
message m outputs a ciphertext ct ; and (3) Dec on input a secret key sk and a ciphertext ct outputs either
⊥ or a message m.

Where necessary, we will explicitly mention the random coins used during the encryption procedure as
Enc(pk ,m; r) where r is sampled from the randomness space R used in the encryption procedure. Note that
when using this notation the encryption algorithm itself is deterministic.

Furthermore, we will later in this paper use that given a secret key sk generated by KeyGen, it is possible
to derive the corresponding public key pk via a function SkToPk.

Secrecy under selective opening attacks (RIND-SO). We now recall the indistinguishability-based
notion of receiver selective opening security (RIND-SO) from Hazay et al. [29] for PKE with adaptive
corruptions. The RIND-SO notion considers a security game between a challenger and an adversary in which
the challenger first samples a set of key pairs (pk i, sk i)i∈[n] and then sends all pk i to the adversary. The
adversary then chooses a distribution D and receives a vector of n ciphertexts, each encrypting a message
sampled from D under pk i. The adversary can then adaptively choose to open some of the ciphertexts by
receiving the corresponding secret keys sk i. Finally, for the remaining unopened ciphertexts, the adversary
either receives the correct plaintext, or a randomly sampled messages from D3 and the adversary has to
decide whether it received the correct or random messages. We note that Hazay et al. [29] introduced this
notion for a semi-adaptive adversary which opens all public keys in one shot, but mentioned that their results
hold for adaptive corruptions as well.

Definition 1 (Efficiently Resamplable Distribution). Let k, n > 0. A distribution D over ({0, 1}k)n is
efficiently resamplable if there is a PPT algorithm ResampD such that for any I ⊆ [n] and any partial vector
m′

I consisting of |I| k-bit strings, ResampD(m
′
I) returns a vector m sampled from D|m′

I
i.e., m is sampled

from D conditioned on mI = m′
I .

Definition 2 (RIND-SO Security). For a PKE scheme PKE = (Gen,Enc,Dec), security parameter λ ∈ N,
and a stateful PPT adversary A, the RIND-SO game Rind-SOA

PKE(λ) is defined as in Fig. 1. The advantage
of the adversary A is defined as |Pr[Rind-SOA

PKE(λ) = 1] − 1
2 |. A PKE scheme is RIND-SO secure, if every

PPT A only has negligible advantage (in λ) in winning the above game.

3Note that D must be efficiently resamplable, namely it should be possible to draw new elements from D condi-
tioned on the opened plaintexts.

6

2.4 Secret Sharing

A (t, n)-secret sharing scheme consists of sharing and reconstruction procedures, where the sharing procedure
allows a dealer to share a secret s to a committee of n parties and the reconstruction procedure allows a
subset of size ≥ t to reconstruct s. Essentially, for a security parameter λ ∈ N, a (t, n)-secret sharing scheme
must fulfill two properties against an adversary A corrupting at most t− 1 parties:

1. Secrecy: A samples two secrets s0 and s1, one of which is shared by an honest dealer to a committee of
n parties. A is only able to distinguish which secret was shared with negligible probability in λ.

2. Reconstruction: The secret can be reconstructed from any set of honest secret shares of size ≥ t.

Shamir’s secret sharing [40] is the most prominent (t, n)-secret sharing scheme and we will recall it here
briefly. Let q be a prime and let 1 ≤ t ≤ n < q. The dealer chooses a secret s ∈ Zq and a random polynomial
F (x) = a0+a1x+ · · ·+at−1x

t−1 where a0 = s. For 1 ≤ i ≤ n, the dealer computes si = F (i) and sends si to
secret shareholder Pi. A set S of honest shareholders with |S| ≥ t can reconstruct s via interpolation. More
concretely, for any i ∈ Zq and any j ∈ S there exist Lagrange coefficients li,j such that F (i) =

∑
j∈S li,jsj .

2.5 Evolving-Committee Proactive Secret Sharing

Recently, Benhamouda et al. [7] introduced the notion of evolving-committee proactive secret sharing (ECPSS),
which is defined w.r.t. a universe of N parties and parameters t ≤ n < N . ECPSS allows to share a se-
cret to a committee of parties and to periodically exchange the secret shareholders of the committee. It
further extends previous secret sharing notions by providing a role assignment procedure that selects a size
n committee from all N parties and by proving that a fully mobile adversary with corruption power p s.t.
p · N > t − 1 can at most corrupt t − 1 shareholders at a time. We now recall the definition of an ECPSS
scheme as given in [7].

Definition 3 (ECPSS). An evolving-committee proactive secret sharing scheme with parameters t ≤ n < N
consists of the following procedures:

Setup (optional): Provides the initial state for a universe of N parties.
Sharing: Shares a secret s among an initial committee of size n.
Committee-Selection: This procedure is executed among all N parties and selects the next n-party com-

mittee.
Handover: This procedure is executed among n parties, takes the output of committee-selection and the

current shares and re-shares them among the next committee.
Reconstruction: Takes t or more shares from the current committee and reconstructs the secret s or outputs
⊥ on failure.

An ECPSS protocol is scalable if the messages sent during committee-selection and handover are bounded in
total by some fixed polynomial poly(n, λ), independent of N .

An ECPSS scheme must fulfill the same secrecy and reconstruction properties as a secret sharing scheme,
but w.r.t. a fully mobile adversary with corruption power p s.t. p · N > t − 1. We call an ECPSS scheme
(λ, n, t − 1, p)-secure, if it satisfies the secrecy and reconstruction property w.r.t. a security parameter λ,
committee size n, upper bound t− 1 of corrupted parties in the committee and adversarial corruption power
p.

3 ECPSS Construction from Benhamouda et al.

In this section, we recall the scalable ECPSS scheme ΣECPSS due to Benhamouda et al. [7], which is an
important building block of our schemes. The key observation of Benhamouda et al. is to keep the identity of
the committee members hidden from the adversary, i.e., the committee members should be anonymous until

7

they have to communicate for the first time. This prevents targeted attacks from a fully mobile adversary.
The scheme proceeds in epochs, where at the beginning of each epoch all N parties in the universe generate
a key pair for an anonymous public key encryption scheme. These key pairs are the long-term keys, and are
broadcasted to the PKI.

In each epoch two committees are selected, a nominating and a holding committee. The latter maintains
the shares of the secret while the former selects the members of the holding committee. The nominating
committee self-selects, for instance by the use of verifiable random functions. After self-selecting, each member
of the nominating committee randomly selects a member of the holding committee, generates a fresh session
key pair (also referred to as ephemeral key) and encrypts the ephemeral secret key under the long-term
public key of the selected holding committee member. The resulting ciphertext is then broadcast along with
the ephemeral public key.

Before broadcasting, the nominating committee members must erase their internal state as the broadcast
reveals their identity to the adversary. All N parties now check if they were selected to the next holding
committee by trying to decrypt the published ciphertexts. At this point, the previous-epoch holding com-
mittee (which holds the shares of the secret) encrypts (a sharing of) the secret shares under the ephemeral
public keys and broadcasts the resulting ciphertexts. Again, as broadcasting compromises anonymity, the
parties in the previous holding committee first erase their internal states. We refer the reader to [7] for the
full description of the ΣECPSS scheme.

We will now describe the Setup and Select procedures as well as our generalized handover procedure
G–Handover (which differs only slightly from the original Handover procedure of Benhamouda et al.) in more
detail as these are most relevant for our work.

Setup(1λ): On input a security parameter λ, this procedure chooses a λ-bit prime q and executes crs ←
NIZK.Setup(1λ) to generate the common reference string crs of a NIZK proof system (cf. Def. 13). The
procedure outputs public parameters pp := (crs, q).4

During the Select procedure, a nominating committee first self-selects and then chooses the next n-
party holding committee. We omit the details on the self-selection and focus on the selection of the holding
committee. Let APKE be the anonymous public key encryption scheme and PKE a public key encryption
scheme that is used to generate the ephemeral keys

Select procedure:

Let Cnom be the nominating committee which selects the next n-party holding committee. Let t0 be the initial round
of the protocol. Pi ∈ Cnom proceeds as follows:

1. Choose a nominee for the next holding committee p ∈ [N] with long-term public key pkp, which was broadcast
to the PKI at the beginning of the current epoch.

2. Generate a new ephemeral key pair (eski, epki)← PKE.KeyGen(1λ), and compute ci ← APKE.Enc(pkp, eski).
3. Erase eski, and broadcast (epki, ci).

In round t0 + δ, all parties Pj where j ∈ [N] do:

4. Verify that the broadcasters were indeed in Cnom. Otherwise, ignore this tuple.
5. For each tuple (epki, ci) broadcast by a party in Cnom, decrypt ci using your long-term secret key sk j . If

successful, Pj is in the next holding committee and stores the decrypted value eski.

Intuitively, due to the self-selection and using an anonymous scheme APKE, the adversary does not know the
identities of honest members of the holding committee. Indeed [7] show that (using the correct parameters)
the adversary cannot corrupt more than t < n/2 members of the holding committee except with negligible
probability. Since malicious parties can simply refuse to nominate a party in the holding committee, the
Select procedure might nominate less than n parties. Yet this is similar to selecting a malicious party to the
new holding committee. Hence, for simplicity we assume that the holding committees are of size exactly n.

4For simplicity, we omit the setup of the PKI here.

8

The Handover procedure presented by Benhamouda et al. is tailor-made for the ECPSS construction, i.e.,
parties in the holding committee re-share their secret share to the next holding committee by encrypting
the corresponding shares with the ephemeral public keys received from the Select procedure. Unfortunately,
the construction cannot be used off the shelf to distribute additional secret-dependent material. Since this is
required in our applications, we define a generalized Handover procedure, called G–Handover. More precisely,
we write G–Handover[C⟨(s1,aux1),··· ,(sn,auxn)⟩, U](pp) to state that the G–Handover procedure is executed
between the current holding committee members C and the parties in the universe U where each committee
member Pi ∈ C has secret input si and additionally broadcasts auxiliary input auxi. The only difference to
the original Handover procedure of Benhamouda et al. is the additional broadcast of auxi, which does not
affect the correctness of the Handover procedure.

We will later see how protocols can be proven secure when using G–Handover as a building block. In a
nutshell, we must prove that the auxiliary values do not leak any information about the secret value that is
being passed on to the next committee. We believe that this simple extension of ECPSS is of independent
interest as it is required for many applications in which ECPSS can be used.

G–Handover procedure:

Let C be a holding committee such that each party Pi ∈ C for i ∈ [n] knows a secret share si ∈ Zq and has auxiliary
input auxi. Let t0 denote the round in which the protocol execution begins. We assume that the Select procedure
has been previously executed to select the next-epoch holding committee C′ such that each Pj

′ ∈ C′ is associated
with an ephemeral public key epkj .
In round t0, each party Pi ∈ C does the following:

1. Choose a random degree-t polynomial Fi(x) = ai,0 + ai,1x+ · · ·+ ai,tx
t ∈ Zq[x] with ai,0 = si and compute the

shares si,j := Fi(j) and ci,j ← PKE.Enc(epkj , si,j) for j ∈ [n].
2. Let comi be a commitment to si from the Handover procedure of the previous epocha. Compute a NIZK proof

πi,Handover for the statement that (comi, {ci,j}j∈[n]) are a commitment and encryptions of values on a degree-t
polynomial w.r.t. evaluation points j ∈ [n].

3. Choose a new long-term key pair (sk ′
i, pk

′
i)← APKE.KeyGen(1λ) and erase all secrets from the previous epoch.

4. Broadcast (pk ′
i, πi,Handover, {ci,j}j∈[n], auxi).

5. In round t0 + δ, for all tuples of the form (pk ′
i, πi,Handover, {ci,j}j∈[n]) where i ∈ [n], all parties P ′

j ∈ C′ do the
following:
– Verify the NIZKs πi,Handover and for the first t + 1 valid proofs πi store i in a set Qual. Compute si,j ←

PKE.Dec(eskj , ci,j) for all i ∈ Qual and reconstruct the new secret share s′j using Lagrange polynomial
interpolation.

aThe comi in the first epoch is generated by the dealer

We point out that the encryption schemes PKE and APKE are used as a form of hybrid encryption,
i.e., secret keys from PKE are encrypted under public keys of APKE and messages are encrypted under the
public keys of PKE. Benhamouda et al. call this a “combined” encryption scheme and we will denote it by
CPKE. This combined scheme must be RIND-SO secure. We give a formal specification of this scheme in
Appendix B.

4 Large-Scale Distributed Key Generation

A (t, n)-distributed key generation protocol (DKG) allows a set of n parties to generate a public/secret key
pair (pk , sk) such that all n parties learn pk and each party learns a share of the secret key sk . A DKG
protocol shall satisify correctness, which means that any subset of t + 1 parties can reconstruct sk ; and
security, which states that by corrupting at most t parties the adversary learns no information about sk .

A large-scale (t, n)-distributed key generation protocol (LS–DKG) in the YOSO model differs from the
above notion in the sense that it is defined w.r.t. a universe of parties U . From this universe we select
a committee of parties C of size n with n ≪ |U |, which executes the key generation protocol. The key
difference to traditional DKG protocols is in the security. Concretely, an LS–DKG protocol does not rely on

9

the assumption that an adversary can corrupt at most t parties in C (as previous notions of DKG do), but
rather assumes a fully mobile adversary with corruption power p that can corrupt up to p · |U | > t parties.
We now present the formal definition of a LS–DKG protocol.

Definition 4. A large-scale (t, n)-distributed key generation protocol LS–DKG = (Setup,TKeyGen) is a pro-
tocol run among a universe of parties U = {P1, · · · , PN} with N > n defined as follows:

Setup(1λ): This probabilistic algorithm takes a security parameter λ ∈ N as input and outputs public pa-
rameters pp.

TKeyGen[U](pp, t, n): This is a protocol involving all parties Pj ∈ U , where each Pj receives as input public
parameters pp and two integers t, n ∈ N such that 1 ≤ t ≤ n. The protocol selects a committee of parties
C with |C| = n and outputs to all parties Pj ∈ U a public key pk and to each party Pi ∈ C a secret key
share sk i.

In this work, we focus on discrete-log-based threshold cryptosystems, i.e., threshold schemes that operate
over a cyclic group G of prime order q and output secret/public key pairs of the form (x, gx), where x ∈ Zq

and g is a generator of G. We now present the correctness and secrecy properties of an LS–DKG scheme, which
follow the standard definitions of correctness and secrecy of discrete-log-based DKG schemes as introduced
by Gennaro et al. [22].

Correctness: A (t, n)-LS–DKG protocol must satisfy the following three correctness properties.
1. All subsets of t+ 1 secret key shares provided by honest parties in C define the same unique secret

key sk .
2. After the execution of TKeyGen, all parties Pj ∈ U know the same public key pk which corresponds

to the secret key sk .
3. sk and pk are uniformly distributed in Zq and G, respectively.

Secrecy: A (t, n)-LS–DKG scheme is (λ, n, t, p)-secret if for any security paremeter λ ∈ N and for every fully
mobile adversary A with corruption power p s.t. p · |U | > t, the following holds: there exists an efficient
algorithm S, which on input a uniformly random element pk ∈ G, generates an output distribution which
is computationally indistinguishable from A’s view in an execution of the real protocol LS–DKG that
outputs the public key pk .

We call a large-scale distributed key generation protocol LS–DKG (λ, n, t, p)-secure, if it is (λ, n, t, p)-secret
and satisfies the correctness property.

4.1 Construction

We are now ready to present our construction of a large-scale distributed key generation (LS–DKG) protocol.
Typically, discrete-log based DKG protocols are executed among a fixed set of parties where the execution
proceeds in three phases: (1) share distribution, (2) qualification, and (3) public key reconstruction phase.
In the first phase, each party Pi chooses a random value si and shares it to the other parties via a verifiable
secret sharing protocol. Additionally, party Pi broadcasts a commitment to the group element gsi . The
verifiability of the sharing is crucial in the second phase of the protocol, as it allows to identify misbehaving
parties and consequently to exclude them from the protocol execution, while the honest parties “qualify” to
further execute the protocol. At this point, all parties can reconstruct their respective secret key share by
summing up the secret shares each party received from all qualified parties. In the final phase of the protocol,
each qualified party Pi opens its commitment to gsi , which allows all parties to reconstruct the final public
key.

In our setting, we need to design a DKG protocol in the YOSO model. To do so, we use the ideas of
the ECPSS scheme ΣECPSS as described in Sec. 3 to keep the identity of the parties anonymous. Our DKG
protocol must hence be non-interactive, i.e., any communication must occur only during the state handover

10

from one committee to another. In order to construct such a non-interactive protocol, we follow the ideas
of Damg̊ard et al.’s DKG protocol [18], which deviates from the above DKG description in the following
two points: (1) it uses plain Shamir secret sharing instead of verifiable secret sharing to share secrets si,
and (2) it removes the commitment to elements gsi . Essentially, in their protocol all parties first share their
secret si, then compute their secret key shares sk i from all received shares and only then broadcast gski such
that all parties can compute the public key via Lagrange interpolation in the exponent. The advantage of
this approach is that parties do not first have to send a commitment and later open it, thereby improving
communication complexity and allowing for non-interactivity. However, due to the missing verifiability of the
secret sharing, a single malicious party can cause the protocol to abort. In our case, we want that not even
a minority of t corrupted parties can abort the protocol execution. We therefore add NIZK proofs to achieve
public verifiability of the secret sharing, which allows to identify malicious parties. Furthermore, we must
extend the protocol such that for each round of communication, a fresh committee is being selected and we
must prove that a fully mobile adversary can corrupt at most a minority of parties in each committee.

As mentioned in the Introduction, we cannot employ the ΣECPSS scheme as black-box. Instead, we use the
generalized handover procedure G–Handover as described in Sec. 3 to allow parties to broadcast DKG-specific
values during the state handover. Further, we extend the sharing procedure of ΣECPSS in a non-black-box
way to let n parties each share a secret to the same committee while proving honest behavior. Note, however,
that the role assignment ΣECPSS.Select is not affected by any of the issues mentioned in the Introduction and
hence, we can use it directly to select anonymous committees. In the following, we provide a more detailed
description of our solution.

Suppose that an anonymous committee C has been previously selected via an execution of theΣECPSS.Select
procedure. Our protocol proceeds in four phases and requires a total of three anonymous committees. In
the first phase, the committee selection phase, a fresh anonymous committee C ′ is selected. In the share
distribution phase, each party Pi ∈ C chooses a random value si which it shares to committee C ′ via the
techniques of the ΣECPSS scheme. In order to make the sharing publicly verifiable, Pi broadcasts a NIZK
proof that proves correctness of the sharing.

After δ rounds, the qualification phase begins, in which each party Pj
′ ∈ C ′ verifies the NIZK proofs

and stores in a set Qual the identities of the first t + 1 parties from committee C who sent a valid NIZK
proof. The waiting period of δ rounds ensures that all honest parties in C ′ compute the same set Qual. At
this point, the public and secret key of the protocol are fixed as pk =

∏
i∈Qual g

si and sk =
∑

i∈Qual si.

Each party Pj
′ can now reconstruct a secret key share sk ′

j from the shares of si that it received from parties
Pi ∈ Qual. The only missing piece is to reconstruct and publish the corresponding public key pk . In order
to do so, a new committee C ′′ is selected and all parties Pj

′ ∈ C ′ re-share their secret key shares sk ′
j to C ′′

while broadcasting elements gsk
′
j along with a NIZK proof that proves that gsk

′
j was computed correctly.

This is done by executing the G–Handover procedure.
In the final phase of the protocol, the public key reconstruction phase, all parties in U can use the elements

gsk
′
i to compute the public key via Lagrange interpolation in the exponent.
We now give a formal description of our LS–DKG protocolΠLS–DKG using theΣECPSS.Select and G–Handover

procedures and a NIZK proof system NIZK.5

Setup(1λ): On input a security parameter λ, execute ppECPSS ← ΣECPSS.Setup(1
λ) and crs← NIZK.Setup(1λ).

Parse ppECPSS := (crs′, q). Choose a group G of prime order q with generator g such that the discrete-log
problem is hard in G. Output public parameters pp := (crs,G, q, g).

TKeyGen(pp, t, n) procedure:

In the following, we denote by PKE the public key encryption scheme for the ephemeral keys of the ΣECPSS scheme.
Recall that PKE together with the anonymous public key encryption scheme APKE form the combined public key
encryption scheme CPKE (cf. Sec. 3). We further denote by t0 the round in which the protocol execution begins.

5For simplicity, we use throughout our paper a single NIZK proof system for multiple languages. We emphasize
that we do so only to improve readability. Naturally, this more general NIZK proof system can be replaced by concrete
NIZK proof systems for each language, thereby improving efficiency.

11

Let pp := (crs,G, q, g), integers t, n ∈ N, s.t. n ≥ 2t + 1 and let C be an anonymous committee selected via the
ΣECPSS.Select procedure in the previous epoch s.t. |C| = n.

Committee Selection Phase:
1. During the committee selection phase, the procedure ΣECPSS.Select [U] (pp) is executed by the universe U to

select a new committee C′ where |C| = |C′| = n. Note that after the execution of ΣECPSS.Select for each party
Pj

′ ∈ C′ there exists an ephemeral public key epkj .

Share Distribution Phase:
2. In round t0 + δ, each party Pi ∈ C does the following:

(a) Choose si ←$ Zq and a random degree-t polynomial Fi(x) = ai,0+ai,1x+ · · ·+ai,tx
t ∈ Zq[x] with ai,0 = si.

Moreover, compute shares si,j := Fi(j) and ci,j ← PKE.Enc(epkj , si,j ; ri,j) for j ∈ [n].
(b) Compute a NIZK proof πi for the following language:

L := {((ci,1, · · · , ci,n), (epk1, · · · , epkn))|
∃(si,1, · · · , si,n), (ri,1, · · · , ri,n), Fi s.t. ci,j ← PKE.Enc(epkj , si,j ; ri,j)

∧ Fi(j) = si,j ∈ Zq, ri,j ∈ R for j ∈ [n] ∧ deg(Fi) = t}.

Informally, πi proves for a statement consisting of ciphertexts (ci,1, · · · , ci,n) and ephemeral public keys
(epk1, · · · , epkn) that each ci,j is a ciphertext encrypted under public key epkj and ci,j encrypts a value
si,j in Zq such that any size t subset of {si,1, · · · , si,n} lies on the t-degree polynomial Fi.

(c) Erase all secret values, i.e., shares si,j , polynomial Fi and the value si.
(d) Broadcast (πi, {ci,j}j∈[n])

a.

Qualification Phase:
3. Let Qual = ∅. In round t0 + 2δ, all parties Pj

′ ∈ C′ proceed as follows:

(a) Check for each received tuple (πi, {ci,k}k∈[n]) if πi is valid and if so, store i in Qual until |Qual| = t+ 1.b

(b) For all i ∈ Qual compute si,j ← PKE.Dec(eskj , ci,j).

(c) Compute the secret key share sk ′
j ∈ Zq as sk ′

j =
∑

i∈Qual si,j and compute S′
j = gsk

′
j .

(d) Compute a NIZK proof π′
j for the following language:

L′ := {({ci,j}i∈Qual, epkj , S
′
j)|∃eskj s.t. g

∑
i∈Qual PKE.Dec(eskj ,ci,j) = S′

j

∧ epkj = SkToPk(eskj)}.

Informally, π′
j proves that the dlog of S′

j is the sum of the decryptions of ci,j for i ∈ Qual under eskj .
(e) Execute ΣECPSS.Select [U] (pp) to select a committee C′′ with |C′′| = n.
(f) In round t0 + 3δ, execute the G–Handover[C′

⟨(sk′
1,(S

′
1,π

′
1)),··· ,(sk′

n,(S′
n,π′

n))⟩, U](pp) procedure s.t. each party

Pi
′′ ∈ C′′ learns a refreshed secret key share sk ′′

i .

Public Key Reconstruction Phase:
4. Let PK = ∅. In round t0 + 4δ, all parties in U check for all tuples (S′

j , π
′
j) for j ∈ [n] if π′

j is valid w.r.t. set
Qual and if so store S′

j in PK until |PK| = t+ 1.

5. The public key pk ∈ G can then be computed as pk =
∏

k∈PK S
′lk
k where lk are the corresponding Lagrange

coefficients.

aTo be precise, parties must also provide a proof that they were indeed selected as members of the holding
committee C in the previous epoch as in the Handover procedure of the ΣECPSS scheme. We omit this here for the
sake of brevity.

bWe are implicitly assuming that there is an order on these tuples.

4.2 Security analysis

Theorem 1. Let NIZK be a NIZK proof system, ΣECPSS be a (λ, n, t, p)-secure instantiation of the ECPSS
scheme and CPKE be a RIND-SO secure PKE scheme. Suppose the discrete logarithm assumption holds in
group G, then the protocol ΠLS–DKG from Sec. 4.1 is a (λ, n, t, p)-secure large-scale distributed key generation
protocol.

12

In order to prove Theorem 1, we have to show that ΠLS–DKG satisfies the correctness and secrecy prop-
erty w.r.t. a fully mobile adversary with corruption power p. The proof of correctness can be found in
Appendix C.1. For the secrecy property, we give a proof sketch below and its full proof in Appendix C.2.

Lemma 1. The large-scale distributed key generation scheme ΠLS–DKG as presented in Sec. 4.1 is (λ, n, t, p)-
secret.

Proof Sketch. To prove that our scheme is (λ, n, t, p)-secret, we need to construct a simulator which on input
a public key pk , can simulate an execution of the ΠLS–DKG protocol to a fully mobile adversary A in such a
way that: (1) the simulated and real executions of ΠLS–DKG are computationally indistinguishable to A, and
(2) the public key that is output by the simulated execution is pk .

In our simulation, the simulator first “commits” to the secrets si for all honest Pi ∈ C by sharing them
to committee C ′ and later adjusts these secrets based on the set of qualified parties and the secrets chosen
by the adversary such that:

pk =
∏

k∈PK

gsk
′lk
k =

∏
k∈PK

g(
∑

j∈Qual sk,j)
lk
. (1)

We first show that a fully mobile adversary A can corrupt at most t parties in each committee via a
reduction to the secrecy property of the ΣECPSS scheme. We can make this reduction because we use the role
assignment functionality ΣECPSS.Select. That is, we show that if A is able to corrupt more than t parties in
either of C, C ′ or C ′′, then we can construct an adversary that corrupts more than t parties of a holding
committee in ΣECPSS, thereby breaking the secrecy property of ΣECPSS. The high level idea of this reduction
is to set C, C ′ and C ′′ to the same set of parties as a holding committee in the execution of an ΣECPSS

instance. Clearly, if then more than t parties get corrupted in any of C, C ′ or C ′′, there exists an adversary
that can corrupt more than t parties in a holding committee of ΣECPSS.

Hence, we must have an honest majority in each of C, C ′ and C ′′, which means: (1) there is at least one
honest party in Qual since |Qual| = t+1, and (2) the simulator has sufficient information to reconstruct all
secret key shares sk ′

k for all parties Pk
′ ∈ C ′ and to learn all elements S′

k. The simulator then “adjusts” the
elements S′

j for some honest parties Pj
′ ∈ C ′ such that Eq. (1) holds and broadcasts the adjusted elements

S′
j along with a simulated NIZK proof. We must show that the adversary cannot distinguish the adjusted

elements S′
j from the real ones. Since we cannot use ΣECPSS as black-box, we must exhibit two reductions to

the RIND-SO security of the CPKE scheme to show this indistinguishability.

5 Large-Scale Threshold Public Key Encryption

A non-interactive threshold public key encryption scheme (TPKE) allows to distribute the secret key of a
PKE scheme among a fixed set of parties, who can then non-interactively generate so-called decryption shares
for a ciphertext. Given valid decryption shares from a certain threshold of parties, the ciphertext can then be
decrypted. Security relies on the assumption that an adversary can corrupt less parties than this threshold. In
contrast to traditional threshold public key encryption, a large-scale threshold public key encryption scheme,
denoted by LS–TPKE, operates in the YOSO model, i.e., it is defined w.r.t. a universe of parties U and relies
on a role assignment functionality. An LS–TPKE scheme must include a refresh procedure which allows to
handover the secret key shares of the scheme from one committee to another. This procedure is crucial to
ensure security against a fully mobile adversary. Since committee members can speak only once per epoch,
we require that each member can generate decryption shares locally. Note that a committee member can
generate decryption shares for multiple ciphertexts in one epoch. All generated decryption shares are then
broadcast during the refresh procedure. We now provide the formal definition of an LS–TPKE scheme.

Definition 5. A large-scale non-interactive (t, n)-threshold public key encryption scheme (LS–TPKE) is de-
fined w.r.t. a universe of parties U = {P1, · · · , PN} with N > n and consists of a tuple LS–TPKE =
(Setup,TKeyGen,TEnc,TDec,TShareVrfy,TCombine,Refresh) of efficient algorithms and protocols which are
defined as follows:

13

Setup(1λ): This probabilistic algorithm takes a security parameter λ ∈ N as input and outputs public pa-
rameters pp.

TKeyGen[U](pp, t, n): This is a protocol involving all parties Pj ∈ U , where each Pj receives as input public
parameters pp and two integers t, n ∈ N such that 1 ≤ t ≤ n. The protocol selects a committee of parties
C with |C| = n and outputs to all parties Pj ∈ U a public key pk and to each party Pi ∈ C a verification
key vk i and a secret key share sk i.

TEnc(pk ,m,L): This probabilistic algorithm takes a public key pk, a message m and a label L as input and
outputs a ciphertext ct.

TDec(sk i, ct , L): This algorithm takes as input a secret key share sk i, a ciphertext ct and a label L, and it
outputs either ⊥ or a decryption share ct i of the ciphertext ct.

TShareVrfy(ct , vk i, ct i): This deterministic algorithm takes as input a ciphertext ct, a verification key vk i

and a decryption share ct i and outputs either 1 or 0. If the output is 1, ct i is called a valid decryption
share.

TCombine(T, ct): This deterministic algorithm takes as input a set of valid decryption shares T , s.t. |T | =
t+ 1 and a ciphertext ct and it outputs a message m.

Refresh[C⟨(sk1,vk1,dl1),··· ,(skn,vkn,dln)⟩, U](pp): This is a protocol involving a committee C with |C| = n and
the universe of parties U . Each Pi ∈ C takes as secret input a key share sk i, verification key vk i and
a list of decryption shares dli, and all parties Pj ∈ U take as input public parameters pp. The protocol
selects a committee of parties C ′ with |C ′| = n and outputs to each party Pi

′ ∈ C ′ a verification key vk ′
i

and a secret key share sk ′
i. Furthermore, all parties in the universe receive vk i and dli for i ∈ [n].

We will now define the properties that an LS–TPKE must satisfy, namely Correctness, CCA-Security,
Decryption Consistency and Efficiency. In these definitions, we denote by Cj the committee in the j-th
epoch (similarly for a party Pi

j ∈ Cj , we denote verification keys as vk j
i , secret key shares as sk j

i , decryption

shares as ctji and decryption share lists as dlji).

Correctness. A (t, n) − LS–TPKE scheme must fulfill the following two requirements. For any λ ∈ N, any
pp ← Setup(1λ) and any (pk , {vk1

i }i∈[n], {sk1
i }i∈[n])← TKeyGen[U](pp, t, n) with selected committee C1, for

j > 1 we define ({vk j
i}i∈[n], {sk j

i}i∈[n]) recursively as

({vk j
i}i∈[n], {sk j

i}i∈[n])← Refresh[Cj−1

⟨(skj−1
1 ,vkj−1

1 ,·),··· ,(skj−1
n ,vkj−1

n ,·)⟩, U](pp)

Recall that during these executions verification keys vk j−1
i and decryption share lists dlj−1

i for i ∈ [n] are
broadcasted.

1. For all i ∈ [n], j ≥ 1 and for any message m, label L and ciphertext ct ← TEnc(pk ,m,L), it must hold
that: TShareVrfy(ct , vk j

i ,TDec(sk
j
i , ct , L)) = 1.

2. For all decryption share lists dlj−1
i where i ∈ [n] and j > 1, the k-th element in the list is computed as

ctj−1
i,k ← TDec(sk j−1

i , ctk, L), where ctk ← TEnc(pk ,mk, Lk) for a message mk and a label Lk. Further,

for any set Tk = {ctj−1
1,k , · · · , ctj−1

t+1,k}, it holds that TCombine(Tk, ctk) = mk.

CCA-Security. In the following, we give the definition of chosen-ciphertext security for a (t, n)− LS–TPKE
scheme in the YOSO model considering an efficient fully mobile adversary A with corruption power p s.t.
p · |U | > t. This has the following interesting implications on the definition of the security game as compared
to the notion of CCA-security for a TPKE scheme (cf. Appendix A). First, upon a decryption oracle query,
the game has to output decryption shares on behalf of honest secret key shareholders. However, this requires
these shareholders to “speak”. As each party should speak only once, decryption shares must be computed
locally without immediately outputting them. Instead, only upon refreshing the secret key shares to the
next committee can all previously computed decryption shares be output. Second, in contrast to traditional
threshold public key encryption schemes, the verification key of each honest committee member remains
private until decryption shares are output. Note that (1) the verification keys are required only to check the

14

validity of decryption shares and (2) verification keys depend on the secret key shares, i.e., they are refreshed
in each epoch. Therefore, it is sufficient to output verification keys simultaneously with the decryption shares
at the end of an epoch.

We formally define the following game LSTPKE–CCAA
LS–TPKE(λ) which is initialized with a security pa-

rameter λ:

1. The game executes Setup(1λ) and obtains public parameters pp, which it forwards to the adversary A.
For each epoch j ≥ 0, the game maintains a set of corrupted parties Bj which is initialized as Bj := ∅.

2. The adversary A is given access to the following corruption oracle:

– Corruption oracle: On input i ∈ [N], the game checks if
⌊
|Bj |+1

|U |

⌋
≤ p. If so, the game sets

Bj ← Bj ∪ {Pi
j} and A receives the internal state of Pi

j .
3. The protocol TKeyGen[U](pp, t, n) is executed. The protocol selects a committee C1 with |C1| = n

and outputs a public key pk , a set of verification keys {vk1
1, · · · , vk

1
n} and a set of secret key shares

{sk1
1, · · · , sk

1
n}, such that Pi

1 ∈ C1 learns vk1
i and sk1

i .
4. At this point, A additionally obtains access to the following two oracles. Let dl1i := ∅ for parties Pi

1 ∈
C1 \B1:
– Decryption oracle: On input a ciphertext ct with an associated label L, the game computes

ctji ← TDec(sk j
i , ct , L) for all parties Pi

j ∈ Cj \Bj . Then, the oracle adds ctji to the list dlji .

– Refresh oracle: On input a setNBj , the game executes Refresh[Cj

⟨(skj
1,vk

j
1,dl

j
1),··· ,(sk

j
n,vk

j
n,dl

j
n)⟩, U](pp)

and sets Bj+1 ← Bj \NBj . It further initializes lists dlj+1
i := ∅ for parties Pi

j+1 ∈ Cj+1 \Bj+1.
5. Eventually, A chooses two messages m0,m1 with |m0| = |m1| and a label L and sends them to the game.

The game chooses a random bit b←$ {0, 1} and sends ct ′ ←$ TEnc(pk ,mb, L) to A.
6. A is allowed to make queries as described in steps 2. and 4. with the exception that it cannot make a

decryption query on ciphertext ct ′.
7. Eventually, A outputs a bit b′. The game outputs 1 if b′ = b and 0 otherwise.

We note that in the security game above the adversary is controlling the malicious parties who can deviate
from the protocol description.

Definition 6. A large-scale non-interactive (t, n)-threshold public key encryption scheme LS–TPKE with a
universe of parties U is secure against chosen-ciphertext attacks w.r.t. parameters (λ, n, t, p) s.t. p · |U | > t
if for every fully mobile PPT adversary A with corruption power p there exists a negligible function ν in the
security parameter λ, such that

Pr[LSTPKE–CCAA
LS–TPKE(λ) = 1] ≤ 1/2 + ν(λ).

Further, we require a (t, n)-LS–TPKE scheme to satisfy decryption consistency, which intuitively says that
a fully mobile adversary cannot generate a valid decryption share w.r.t. a ciphertext s.t. the share cannot
be used for decryption. Our definition follows closely the decryption consistency definition of traditional
threshold encryption schemes (e.g., [35]) with adaptions to the YOSO model.

Definition 7 (Decryption Consistency). An LS–TPKE scheme satisfies decryption consistency w.r.t.
parameters (λ, n, t, p) if there exists no fully mobile PPT adversary A with corruption power p that wins the
game LSTPKE–DC described below with non-negligible probability:

LSTPKE–DC: The game proceeds as steps 1.-4. described in game LSTPKE–CCA with the difference that
the adversary is allowed to learn all secret key shares in each epoch j6. The adversary eventually outputs a

ciphertext ct∗, two sets of verification keys V K = {vk j
1, · · · , vk

j
t+1} and ˜V K = {ṽk

j

1, · · · , ṽk
j

t+1} and two

sets of decryption shares T = {ctj1, · · · , ct
j
t+1} and T̃ = {c̃tj1, · · · , c̃t

j
t+1} and wins the game if the following

conditions hold:

6Note however that the adversary is not controlling these parties, i.e., not all parties are corrupted.

15

1. For all i ∈ [t+ 1] it holds that

TShareVrfy(ct∗, vk j
i , ct

j
i) = 1 and TShareVrfy(ct∗, ṽk

j

i , c̃t
j
i) = 1.

2. TCombine(T, ct∗) ̸= TCombine(T̃ , ct∗)

Finally, we require an efficiency property. Intuitively, this property states that (1) similar to an ECPSS
scheme, the total communication complexity during the execution of the refresh procedure for honest parties
depends only on the committee size n and the number of decryption shares honest parties have to broadcast,
and (2) an execution of the refresh procedure must terminate within a constant number of rounds.

Definition 8 (Efficiency). Let dlji be the decryption share list of an honest party Pi
j ∈ Cj in epoch j.

Then we call a (t, n)-LS–TPKE scheme efficient, if for all epochs j ≥ 1 and a constant c:

1. The communication complexity of all honest parties during an execution of the Refresh procedure is upper
bounded by some fixed polynomial poly(n, λ, |dlji |).

2. An execution of the Refresh procedure takes at most c · δ rounds.

We call a large-scale non-interactive (t, n)-threshold public key encryption scheme LS–TPKE (λ, n, t, p)-
secure, if it satisfies correctness, decryption consistency, efficiency and CCA-security w.r.t. parameters
(λ, n, t, p).

5.1 Construction

Shoup and Gennaro [41] introduced two TPKE schemes denoted as TDH1 and TDH2, which are both CCA-
secure against static adversaries in the random oracle model [6]. Both of these schemes are well suited for
our construction of an LS–TPKE scheme, since they are non-interactive and use discrete-log key pairs. In the
following, we show how the scheme TDH1 = (Setup,KeyGen,TEnc,TShareVrfy,TCombine) can be transformed
into an LS–TPKE scheme ΠLS–TPKE = (Setup,TKeyGen,TEnc,TDec,TShareVrfy,TCombine,Refresh). For this
transformation, we make use of the following building-blocks: (1) our large-scale DKG protocol ΠLS–DKG =
(Setup,TKeyGen) as described in Sec. 4, (2) the role assignment mechanism of Benhamouda et al., (3) the
G–Handover procedure as presented in Sec. 3 and (4) a NIZK proof system NIZK = (Setup,Prove,Verify) as
per Def. 13. Note that for similar reasons as for our ΠLS–DKG protocol, we cannot use the ΣECPSS.Handover
procedure as black-box. Instead, we have to use the generalized handover procedure G–Handover to broadcast
verification keys and decryption shares during a state handover.

We detail the construction of the ΠLS–TPKE scheme below, which is based on the TDH1 scheme given in
Appendix E.

ΠLS–TPKE.Setup(1
λ)

Execute:
ppTDH1 ← TDH1.Setup(1λ), p̃pLS–DKG ← ΠLS–DKG.Setup(1

λ), crs← NIZK.Setup(1λ).

Parse p̃pLS–DKG := (crs′,G, q, g). Define ppLS–DKG := (crs,G, q, g) and output public parameters pp := (ppTDH1, ppLS–DKG).

ΠLS–TPKE.TKeyGen[U](pp, t, n)

Let t0 be the round in which the protocol execution begins. All parties in U do:

1. Parse pp := (ppTDH1, ppLS–DKG).
2. Run ΠLS–DKG.TKeyGen[U](ppLS–DKG, t, n). This protocol selects a committee C1 with |C1| = n, outputs a public

key pk to all parties in U and distributes secret key shares sk1
i to each party Pi

1 ∈ C1.

In round t0 + 4δ all parties Pi
1 ∈ C1 do:

3. Compute v̂k
1

i := gsk
1
i and a proof π1

i proving that v̂k
1

i was computed correctlya.

4. Set vk1
i := {v̂k

1

i , π
1
i } and initialize a decryption share list dl1i := ∅.

16

ΠLS–TPKE.TEnc(pk ,m, L)

Execute TDH1.TEnc(pk ,m, L) and output the resulting ciphertext ct .

ΠLS–TPKE.TDec(sk
j
i , ct , L)

Execute TDH1.TDec(sk j
i , ct , L) and add the output (ctji or ⊥) to the list dlji .

ΠLS–TPKE.TShareVrfy(ct , vk
j
i , ct

j
i)

Parse vk j
i := {v̂k

j

i , π
j
i }, verify πj

i and output 0 if the verification fails. Otherwise, execute TDH1.TShareVrfy(ct , v̂k
j

i , ct
j
i)

and output the resulting bit.

ΠLS–TPKE.TCombine(T, ct)

Execute TDH1.TCombine(T, ct) and output the resulting message m.

ΠLS–TPKE.Refresh[C
j

⟨(skj
1,vk

j
1,dl

j
1),··· ,(sk

j
n,vk

j
n,dl

j
n)⟩, U](pp)

Let tj be the round in which this protocol execution begins. This protocol is executed between a committee Cj in
epoch j ≥ 1 and the universe U .

1. Run ΣECPSS.Select [U] (pp) to select a committee Cj+1 with |Cj+1| = n.
2. In round tj + δ run G–Handover[Cj

⟨(skj
1,(vk

j
1,dl

j
1)),··· ,(sk

j
n,(vk

j
n,dl

j
n))⟩, U](pp).

Afterwards, each Pi
j+1 ∈ Cj+1 receives a refreshed secret key shares sk j+1

i

In round tj + 2δ all parties Pi
j+1 ∈ Cj+1 do:

3. Compute v̂k
j+1

i := gsk
j+1
i , generate a NIZK proof πj+1

i that the verification key was computed correctly a and

set vk j+1
i := {v̂k

j+1

i , πj+1
i }.

4. Initialize a decryption share list dlj+1
i := ∅.

aThe language for this proof is the same as the language L′ in the ΠLS–DKG protocol (cf. Sec. 4).

Theorem 2. Let ΠLS–DKG be a (λ, n, t, p)-secure instantiation of the LS–DKG protocol from Sec. 4, TDH1 be
the non-interactive (t, n)-TPKE scheme as described in Appendix E, ΣECPSS a (λ, n, t, p)-secure instantiation
of the ECPSS scheme, NIZK a NIZK proof system and CPKE a RIND-SO secure PKE scheme. Then ΠLS–TPKE

is a (λ, n, t, p)-secure large-scale non-interactive threshold public key encryption scheme in the ROM.

In order to prove Theorem 2, we have to show that ΠLS–TPKE satisfies correctness, decryption consistency
and efficiency as well as security against chosen-ciphertext attacks w.r.t. parameters (λ, n, t, p). We therefore
state the following lemmas.

Lemma 2. The large-scale non-interactive threshold public key encryption scheme ΠLS–TPKE as described in
Sec. 5.1 satisfies correctness.

Proof. This lemma follows directly from the correctness property of the TDH1 scheme, the completeness
property of the NIZK proof system and from the handover correctness [7] of G–Handover. We provide a proof
outline for Lemma 2 in Appendix D.

Lemma 3. The large-scale non-interactive threshold public key encryption scheme ΠLS–TPKE as described in
Sec. 5.1 satisfies decryption consistency w.r.t. parameters (λ, n, t, p).

Proof. We provide a proof sketch for Lemma 3 in Appendix D.

Lemma 4. The large-scale non-interactive threshold public key encryption scheme ΠLS–TPKE as described in
Sec. 5.1 satisfies the efficiency property.

17

Proof. This lemma follows directly from the fact that ΣECPSS is a scalable ECPSS scheme, i.e., the com-
munication complexity of ΣECPSS.Select and ΣECPSS.Handover is upper bounded by poly(n, λ). Note that we
use the G–Handover procedure instead of ΣECPSS.Handover to additionally broadcast verification keys, NIZK
proofs and decryption lists, whose communication complexity for honest parties, however, is upper bounded
by poly(n, λ, |dli|). Furthermore, it is easy to see that the refresh procedure takes 2δ rounds.

Lemma 5. The large-scale non-interactive threshold public key encryption scheme ΠLS–TPKE as described in
Sec. 5.1 is secure against chosen-ciphertext attacks w.r.t. parameters (λ, n, t, p).

Proof Sketch. We provide the full proof of Lemma 5 in Appendix D, and give a proof sketch here. At a high
level, we show that if there exists a fully mobile adversary B with corruption power p who can win game
LSTPKE–CCAB

ΠLS–TPKE
, then there exists an efficient static adversary A who can use B to win its own game

TPKE–CCAA
TDH1 (cf. Def. 11). Therefore, we show how A can simulate the game LSTPKE–CCAB

ΠLS–TPKE
such

that it is indistinguishable from a real execution for B, and how A can use B’s output bit b′ to win its own
game.

The first step is similar to the proof of Lemma 1, i.e., we show that B corrupts at most t committee
members per epoch via a reduction to the secrecy property of the ΣECPSS scheme. We then show how A
simulates the game LSTPKE–CCAB

ΠLS–TPKE
to B w.r.t. the public key pk that it receives from its own game

TPKE–CCAA
TDH1. A embeds pk in game LSTPKE–CCAB

ΠLS–TPKE
by executing the simulator of the ΠLS–DKG

scheme (cf. Fig. 2) on input pk . Afterwards, A knows the secret key shares of all honest and malicious
parties. Note that these secret key shares are merely random values in Zq and independent of pk . We have to

show now that A can simulate game LSTPKE–CCAB
ΠLS–TPKE

without B noticing that the committee members
hold a sharing of a random value.
A has to simulate verification keys and decryption shares for honest committee members that are con-

sistent with B’s view. These simulated verification keys and decryption shares are, however, not consistent
with the secret key shares of honest parties (since A does not know the correct secret key shares). Yet, as
committee members erase their secret state before outputting their verification key and decryption shares,
this inconsistency between public information and internal state of honest parties remains undetected by
B. More concretely, if B corrupts a committee member before it outputs its verification key and decryption
shares, there exists no inconsistent public information through which B could distinguish the simulation from
a real execution (as long as at most t committee members are corrupted). On the other hand, if B corrupts
a committee member after it outputs its verification key and decryption shares, the secret key share has
already been erased. Note, however, that at this point an encrypted sharing of the secret key share has been
broadcast (as part of the G–Handover procedure) and that the encrypted shares are inconsistent with the
verification key and decryption shares. Therefore, we must provide a reduction to the RIND-SO security of
the CPKE scheme to show that this inconsistency remains undetected.

We note that parts of our proof use similar techniques as the proof of Gentry et al. [23] for their com-
putational protocol (e.g., for the simulation of decryption shares). However, we additionally consider our
ΠLS–DKG protocol and show reductions to, e.g., the secrecy of the ΣECPSS scheme and the RIND-SO security
of the underlying CPKE scheme.

5.2 Transformation Framework from TPKE to LS–TPKE

The TDH1 scheme satisfies certain properties that allow us to transform it into an LS–TPKE scheme. In the
following, we will informally abstract these properties to argue that any CCA-secure non-interactive TPKE
scheme satisfying these properties can be transformed into an LS–TPKE scheme. We will show in Appendix
F how this idea can be applied to non-interactive threshold signature schemes. For our transformation, a
TPKE must satisfy the following properties .

1. Compatibility with ΠLS–DKG. The TPKE scheme must be compatible with our ΠLS–DKG protocol, i.e.,
the public key pk and secret key shares (sk1, · · · , skn) as output by ΠLS–DKG.TKeyGen can be used in
TPKE. More concretely, it must hold that (pk , ·, (sk1, · · · , skn)) ∈ TPKE.KeyGen(pp, t, n).

18

2. Dlog-Based Verification Keys. Secret key shares and the corresponding verification keys must form
a discrete-log instance in TPKE, i.e., for a secret key share sk i the corresponding verification key is of
the form vk i = gski .

3. Simulatability. There must exist a simulator for the TPKE scheme that simulates the TPKE–CCA game
(cf. Appx. A.2) to a static adversary on input a public key, verification keys and t secret key shares in such
a way that the simulated execution of the TPKE–CCA game is computationally indistinguishable from
a real execution to the adversary. Intuitively, we use such a simulator in our security proof to simulate
decryption oracle (and possibly random oracle) queries to the fully mobile adversary playing in game
LSTPKE–CCALS–TPKE. However, since LS–TPKE is run in epochs, we must guarantee that the simulation
of the oracles remains consistent from the adversary’s view across multiple consecutive executions of the
protocol with differing secret key shares and verification keys while the public key stays the same.

The first property is naturally required for using our ΠLS–DKG protocol jointly with the TPKE scheme to
construct the LS–TPKE scheme. For the second property recall that in our security proof of ΠLS–TPKE, the
reduction has to output verification keys for honest parties in each epoch without knowing the corresponding
secret key shares. However, the reduction knows the public key pk and the secret key shares of all corrupted
parties. Therefore, it can also compute the corresponding verification keys (say w.l.o.g. (vk1, · · · , vk t)). We
know that the public key is of the form pk = gsk and hence, if a verification key vk i is of the form vk i = gski ,
then the reduction can use pk and (vk1, · · · , vk t) to construct a degree-t polynomial F in the exponent
such that F (0) = sk and F (i) = sk i for i ∈ [t]. The reduction can then evaluate F in the exponent at
points j ∈ [t + 1;n] to compute valid verification keys for honest parties without knowledge of the corre-
sponding secret key shares. Finally, the third property gives us a simulator which we can use in our security
proof to simulate the responses to oracle queries from a fully mobile adversary in game LSTPKE–CCALS–TPKE.

6 Instantiations and Applications

In this section, we first show how to instantiate our large-scale schemes and afterwards discuss various
applications.

6.1 Instantiations

Benhamouda et al. show that their ECPSS construction is secure w.r.t. different choices of parameters.
For instance, their scheme is (128, 889, 425, 0.05)-secure. Since our large-scale schemes use the concrete role
assignment functionality of Benhamouda et al., our schemes are secure w.r.t. the same parameters. Further,
our NIZK proofs for the languages L and L′ can be instantiated using bulletproofs [11].

Since our G–Handover extends ΣECPSS.Handover only by allowing to broadcast auxiliary values, it is
likely that any improved handover mechanism that is compatible with ΣECPSS can be used in our schemes
as well. Indeed, a recent work by Gentry et al. [24] proposes an efficient non-interactive publicly verifiable
secret sharing (PVSS) scheme with the goal of using the PVSS scheme to efficiently instantiate the Handover
procedure of ΣECPSS. If the PVSS scheme can indeed efficiently instantiate the ΣECPSS.Handover, then we
believe that it can also instantiate our G–Handover procedure. Finally, another work by Gentry et al. [25]
introduced a new role assignment mechanism that improves the one from Benhamouda et al. by allowing
to significantly reduce the committee size and guaranteeing security against stronger adversaries. It is an
interesting open question, if this role assignment mechanism can be used to improve our large-scale schemes
as well.

6.2 Applications

Our protocols can directly be used for blockchain applications, in particular for: (1) storage of blockchain-
backed secrets, and (2) adding signing functionality to a blockchain. We defer application (2) to Appendix H.

19

Storage of Secrets on a Blockchain Any information stored on a blockchain is publicly available to all
users which severely restricts applications running on top of a blockchain. Recently, Benhamouda et al. [7]
and Goyal et al. [26] presented solutions based on secret sharing to allow the storage of secret values on a
blockchain. At a high level, these solutions allow a client to secret share a value to a committee, which then
stores the secret and periodically refreshes the shares to a new committee. However, for many applications it
is not necessary to store the secret on the blockchain, instead it suffices to (privately) exchange a commitment
to a secret and have the blockchain open the commitment in case of malicious behavior.

Consider the example of a fair exchange protocol. Assume two parties, say Alice and Bob, wish to
exchange secrets a and b. They can use the solutions of Benhamouda or Goyal et al. to share a and b to
the committee, which then send the shares of b to Alice and vice versa. There are, however, several issues
with this solution: (1) Alice and Bob have to interact with the committee, (2) the committee has to store
shares of a and b and possibly refresh the shares to new committees, and (3) the committee members learn
that Alice and Bob exchange secrets, thereby compromising the two parties’ privacy. Instead, assume that
each committee member holds a secret key share of an LS–TPKE scheme and the corresponding public key
pk is stored on the blockchain. In this case, Alice and Bob can encrypt their secrets under pk and exchange
the ciphertexts7. Once each of them have received the respective ciphertext, they can reveal their secrets
to each other. If one party, say Alice, does not reveal her secret, Bob can let the committee decrypt Alice’s
ciphertext8. Note that, in the optimistic case, i.e., when no party misbehaves, we have (1) no interaction
with the committee, (2) the committee does not have to store and refresh a and b, and (3) the committee
does not learn which parties interact with each other.

Naturally, this idea can be used to store secrets on a blockchain, i.e., if Alice wants to store a secret
on the blockchain, she can simply encrypt the secret under the committee’s public key and publish the
ciphertext to the blockchain. The advantage of this solution compared to the secret sharing based solutions
of Benhamouda and Goyal et al. is that the committee only refreshes the secret key shares (instead of all
secrets that are stored on the blockchain), and therefore the communication complexity of a state handover
is independent of the number of stored secrets.

References

[1] M. Abe and S. Fehr. “Adaptively Secure Feldman VSS and Applications to Universally-Composable
Threshold Cryptography”. In: Advances in Cryptology – CRYPTO 2004. Berlin, Heidelberg, 2004.

[2] I. Abraham, P. Jovanovic, M. Maller, et al. “Reaching Consensus for Asynchronous Distributed Key
Generation”. In: Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing.
Virtual Event, Italy, 2021.

[3] A. Acharya, C. Hazay, V. Kolesnikov, et al. SCALES: MPC with Small Clients and Larger Ephemeral
Servers. Cryptology ePrint Archive, Paper 2022/751. 2022.

[4] J. F. Almansa, I. Damg̊ard, and J. B. Nielsen. “Simplified Threshold RSA with Adaptive and Proactive
Security”. In: Advances in Cryptology - EUROCRYPT 2006. Berlin, Heidelberg, 2006.

[5] M. Bellare, A. Boldyreva, A. Desai, et al. “Key-Privacy in Public-Key Encryption”. In: ASI-
ACRYPT 2001. 2001.

[6] M. Bellare and P. Rogaway. “Random Oracles are Practical: A Paradigm for Designing Efficient Pro-
tocols”. In: ACM CCS 93. 1993.

[7] F. Benhamouda, C. Gentry, S. Gorbunov, et al. “Can a Public Blockchain Keep a Secret?” In: Theory
of Cryptography. Cham, 2020.

[8] M. Blum, P. Feldman, and S. Micali. “Non-Interactive Zero-Knowledge and Its Applications (Extended
Abstract)”. In: 20th ACM STOC. 1988.

[9] A. Boldyreva. “Threshold Signatures, Multisignatures and Blind Signatures Based on the Gap-Diffie-
Hellman-Group Signature Scheme”. In: PKC 2003. 2003.

7With NIZK proofs that prove the ciphertexts indeed encrypt a and b, respectively.
8The label of the ciphertext can be used as a decryption policy i.e.,“If Bob publishes his ciphertext on the

blockchain, he can learn the content of Alice’s ciphertext.”

20

[10] D. Boneh, B. Lynn, and H. Shacham. “Short Signatures from the Weil Pairing”. In: ASIACRYPT 2001.
2001.

[11] B. Bünz, J. Bootle, D. Boneh, et al. “Bulletproofs: Short Proofs for Confidential Transactions and
More”. In: 2018 IEEE Symposium on Security and Privacy. 2018.

[12] M. Campanelli, B. David, H. Khoshakhlagh, et al. Encryption to the Future: A Paradigm for Sending
Secret Messages to Future (Anonymous) Committees. Cryptology ePrint Archive, Report 2021/1423.
2021.

[13] R. Canetti, R. Gennaro, S. Goldfeder, et al. “UC Non-Interactive, Proactive, Threshold ECDSA with
Identifiable Aborts”. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer and Com-
munications Security. New York, NY, USA, 2020.

[14] R. Canetti, R. Gennaro, S. Jarecki, et al. “Adaptive Security for Threshold Cryptosystems”. In:
CRYPTO’99. 1999.

[15] I. Cascudo, B. David, L. Garms, et al. YOLO YOSO: Fast and Simple Encryption and Secret Sharing
in the YOSO Model. Cryptology ePrint Archive, Report 2022/242. 2022.

[16] A. R. Choudhuri, A. Goel, M. Green, et al. Fluid MPC: Secure Multiparty Computation with Dynamic
Participants. Cryptology ePrint Archive, Report 2020/754. 2020.

[17] R. Cohen and Y. Lindell. “Fairness Versus Guaranteed Output Delivery in Secure Multiparty Compu-
tation”. In: Journal of Cryptology 4 (2017).

[18] I. Damg̊ard, T. P. Jakobsen, J. B. Nielsen, et al. “Fast Threshold ECDSA with Honest Majority”. In:
Security and Cryptography for Networks. Cham, 2020.

[19] Y. Desmedt and Y. Frankel. “Threshold Cryptosystems”. In: CRYPTO’89. 1990.
[20] J. Doerner, Y. Kondi, E. Lee, et al. “Threshold ECDSA from ECDSA Assumptions: The Multiparty

Case”. In: 2019 IEEE Symposium on Security and Privacy. 2019.
[21] Y. Frankel. “A Practical Protocol for Large Group Oriented Networks”. In: EUROCRYPT’89. 1990.
[22] R. Gennaro, S. Jarecki, H. Krawczyk, et al. “Secure Distributed Key Generation for Discrete-Log Based

Cryptosystems”. In: EUROCRYPT’99. 1999.
[23] C. Gentry, S. Halevi, H. Krawczyk, et al. “YOSO: You Only Speak Once - Secure MPC with Stateless

Ephemeral Roles”. In: CRYPTO 2021. 2021.
[24] C. Gentry, S. Halevi, and V. Lyubashevsky. Practical Non-interactive Publicly Verifiable Secret Sharing

with Thousands of Parties. Cryptology ePrint Archive, Report 2021/1397. 2021.
[25] C. Gentry, S. Halevi, B. Magri, et al. “Random-Index PIR and Applications”. In: Theory of Cryptog-

raphy. Cham, 2021.
[26] V. Goyal, A. Kothapalli, E. Masserova, et al. Storing and Retrieving Secrets on a Blockchain. Cryp-

tology ePrint Archive, Report 2020/504. 2020.
[27] J. Groth. Non-interactive distributed key generation and key resharing. Cryptology ePrint Archive,

Report 2021/339. 2021.
[28] K. Gurkan, P. Jovanovic, M. Maller, et al. Aggregatable Distributed Key Generation. Cryptology ePrint

Archive, Report 2021/005. 2021.
[29] C. Hazay, A. Patra, and B. Warinschi. “Selective Opening Security for Receivers”. In: ASI-

ACRYPT 2015, Part I. 2015.
[30] A. Herzberg, M. Jakobsson, S. Jarecki, et al. “Proactive Public Key and Signature Systems”. In: ACM

CCS 97. 1997.
[31] S. Jarecki and A. Lysyanskaya. “Adaptively Secure Threshold Cryptography: Introducing Concurrency,

Removing Erasures”. In: EUROCRYPT 2000. 2000.
[32] S. Kolby, D. Ravi, and S. Yakoubov. Towards Efficient YOSO MPC Without Setup. Cryptology ePrint

Archive, Report 2022/187. 2022.
[33] C. Komlo and I. Goldberg. “FROST: Flexible Round-Optimized Schnorr Threshold Signatures”. In:

Selected Areas in Cryptography. Cham, 2021.
[34] B. Libert, M. Joye, M. Yung, et al. “Fully Distributed Non-Interactive Adaptively-Secure Threshold

Signature Scheme with Short Shares : Efficiency Considerations and Implementation ?” In: 2019.

21

[35] B. Libert and M. Yung. “Adaptively Secure Non-interactive CCA-Secure Threshold Cryptosystems:
Generic Framework and Constructions”. In: J. Cryptol. 4 (2020).

[36] R. Ostrovsky and M. Yung. “How to Withstand Mobile Virus Attacks (Extended Abstract)”. In: 10th
ACM PODC. 1991.

[37] P. Paillier. “Public-Key Cryptosystems Based on Composite Degree Residuosity Classes”. In: EURO-
CRYPT’99. 1999.

[38] T. P. Pedersen. “Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing”. In:
CRYPTO’91. 1992.

[39] T. P. Pedersen. “A Threshold Cryptosystem without a Trusted Party”. In: Advances in Cryptology —
EUROCRYPT ’91. Berlin, Heidelberg, 1991.

[40] A. Shamir. “How to Share a Secret”. In: Communications of the Association for Computing Machinery
11 (1979).

[41] V. Shoup and R. Gennaro. “Securing Threshold Cryptosystems against Chosen Ciphertext Attack”.
In: EUROCRYPT’98. 1998.

[42] N. Shrestha, A. Bhat, A. Kate, et al. Synchronous Distributed Key Generation without Broadcasts.
Cryptology ePrint Archive, Report 2021/1635. 2021.

[43] A. Tomescu, R. Chen, Y. Zheng, et al. “Towards Scalable Threshold Cryptosystems”. In: 2020 IEEE
Symposium on Security and Privacy. 2020.

22

Supplementary Material

23

A Additional Related Work and Preliminaries

A.1 Additional Related Work

Threshold Cryptosystems. There has been extensive work in the field of threshold cryptosystems. Distributed
key generation (DKG) protocols have been studied in the past mostly in the static corruption setting (e.g.,
[38, 22]). Recently, Gurkan et al. [28] presented a DKG protocol with aggregatable and publicly-verifiable
transcripts based on a gossip network which reduces communication complexity and verifcation time but is
secure only against static adversaries. Likewise, Abraham et al. [2] recently presented an asynchronous DKG
protocol and Shrestha et al. [42] presented a synchronous DKG protocol that does not require broadcasts.
Both these works are in the static security setting. Abe and Fehr [1] and Canetti et al. [14] proposed DKG
protocols which are secure against adaptive adversaries. The recent work by Groth [27] introduces a non-
interactive distributed key generation protocol, which is secure against a mobile adversary, but not in the
fully mobile setting that we consider in our work.

Threshold public key cryptosystems have been extensively studied with security against static adversaries
(e.g., [41, 9]) and adaptive adversaries (e.g., [14, 31]). Herzberg et al. [30] proposed a solution how to generi-
cally proactivize discrete-log-based public key threshold cryptosystems. However, their generic construction
is only secure in the static proactive setting, i.e., the adversary has to decide which parties to corrupt at the
beginning of each epoch. Finally, there have been works in the adaptive proactive adversarial setting (e.g.,
[14, 4]) which is the setting that is most similar to the setting we consider in this work. However, all of the
above mentioned works focus on an adversary (static, adaptive or mobile) that is restricted to only corrupt
at most a minority of the participants in the universe, whereas we consider a fully mobile adversary that has
sufficient corruption power to corrupt a large fraction of all parties. Finally, Tomescu et al. [43] consider the
notion of scalable threshold cryptosystems, however, in an entirely different setting than the one we consider
in our work.

A.2 Additional Preliminaries

Anonymous PKE We now briefly recall the definition of an anonymous PKE scheme as introduced by
Bellare et al. [5].

Definition 9. A public key encryption scheme PKE = (KeyGen,Enc,Dec) is anonymous if for every PPT
adversary A there exists a negligible function ν in the security parameter λ such that Pr[AnonAPKE(λ) = 1] ≤
1/2 + ν(λ) where the game AnonAΣAPKE

(λ) is defined as follows:

1. The game executes the key generation procedure twice to obtain key pairs (pk i, sk i) ←$ KeyGen(1λ) for
i ∈ {0, 1} and forwards pk0, pk1 to the adversary.

2. The game receives a message m from the adversary.
3. The game chooses at random a bit b ←$ {0, 1} and executes ctb ← Enc(pk b,m). The game sends ctb to

the adversary.
4. The adversary outputs a bit b′ and wins the game if b′ = b.

We define the advantage of the adversary A as

AdvAAnon,PKE(λ) = 2 · Pr[AnonAΣAPKE
(λ) = 1)]− 1

2
.

Threshold Public Key Encryption In the following, we recall the notion of a non-interactive threshold
public key encryption scheme.

Definition 10. A non-interactive (t, n)-threshold public key encryption scheme TPKE consists of a tuple
of efficient algorithms and protocols TPKE = (Setup,KeyGen,TEnc,TDec,TShareVrfy,TCombine) which are
defined as follows:

24

Setup(1λ): This probabilistic algorithm takes a security parameter λ ∈ N as input and output public param-
eters pp.

KeyGen(pp, t, n): This probabilistic algorithm takes as input public parameters pp and two integers t, n ∈ N.
It outputs a public key pk, a set of verification keys {vk i}i∈[n] and a set of secret key shares {sk i}i∈[n] .

TEnc(pk ,m,L): This probabilistic algorithm takes a public key pk, a message m and a label L as input and
outputs a ciphertext ct.

TDec(sk i, ct , L): This algorithm takes as input a secret key share sk i, a ciphertext ct and a label L and it
outputs either ⊥ or a decryption share ct i of the ciphertext ct.

TShareVrfy(ct , vk i, ct i): This deterministic algorithm takes as input a ciphertext ct, a verification key vk i

and a decryption share ct i and it outputs either 1 or 0. If the output is 1, ct i is called a valid decryption
share.

TCombine(T, ct): This deterministic algorithm takes as input a set of valid decryption shares T such that
|T | = t and a ciphertext ct and it outputs a message m.

Correctness A (t, n)− TPKE scheme must fulfill the following two requirements.

Let pp ← Setup(1λ) and (pk , {vk i}i∈[n], {sk i}i∈[n])←$ KeyGen(pp, t, n).

1. For any message m, any label L and any ciphertext ct ←$ TEnc(pk ,m,L), it must hold that

TShareVrfy(ct , vk i,TDec(sk i, ct , L)) = 1.

2. For any message m, any label L, any ciphertext ct ←$ TEnc(pk ,m,L) and any set T = {ct1, · · · , ct t} of
valid decryption shares ct i ← TDec(sk i, ct , L) with sk i being t distinct secret key shares, it must hold
that TCombine(T, ct) = m.

CCA-Security We recall the definition of chosen-ciphertext security for a (t, n)− TPKE scheme with static
corruptions. Consider a PPT adversary A playing in the following game TPKE–CCAA

TPKE:

1. The adversary outputs a set B ⊂ {1, · · · , n} with |B| = t to indicate its corruption choice. Let H :=
{1, · · · , n} \B.

2. The game executes

pp ← Setup(1λ)

and

(pk , {vk i}i∈[n], {sk i}i∈[n])← KeyGen(pp, t, n).

It sends pp, pk and {vk i}i∈[n] as well as {sk j}j∈B to the adversary.

3. The adversary A is allowed to adaptively query a decryption oracle, i.e., on input (ct , L, i) with ct ∈
{0, 1}∗, L ∈ {0, 1}∗ and i ∈ H, the decryption oracle outputs TDec(sk i, ct1, L).

4. Eventually, A chooses two messages m0,m1 with |m0| = |m1| and a label L and sends them to the game.
The game chooses a random bit b←$ {0, 1} and sends ct∗ ←$ TEnc(pk ,mb, L) to A.

5. A is allowed to make decryption queries with the exception that it cannot make a query on ciphertext
ct∗.

6. Eventually, A outputs a bit b′. The game outputs 1 if b′ = b and 0 otherwise.

Definition 11. A non-interactive (t, n)-threshold public key encryption scheme TPKE is secure against
chosen-ciphertext attacks with static corruptions if for every PPT adversary A there exists a negligible
function ν in the security parameter λ, such that Pr[TPKE–CCAA

TPKE(λ) = 1] ≤ 1/2 + ν(λ). We define
the advantage of A in game TPKE–CCAA

TPKE as AdvATPKE–CCATPKE
= |Pr[TPKE–CCAA

TPKE = 1]− 1/2|.

Definition 12 (Decryption Consistency). A (t, n)-TPKE scheme satisfies decryption consistency if for
all λ ∈ N, all pp ← Setup(1λ) and all PPT adversaries A it holds that

25

Pr


K ∈ KeyGen(pp, t, n)∧
∀i ∈ [t+ 1] :
TShareVrfy(ct∗, vk i, ct i) = 1
∧TShareVrfy(ct∗, vk i, c̃t i) = 1

∧TCombine(T, ct∗) ̸= TCombine(T̃ , ct∗)

∣∣∣∣∣∣∣∣∣∣
(K, ct∗, T, T̃)← A(pp, t, n) s.t.,
K := (pk , {vk i}i∈[n], {sk i}i∈[n])
T := {ct1, · · · , ct t+1}
T̃ := {c̃t1, · · · , c̃t t+1}

 ≤ ν(λ).

where ν is a negligible function in the security parameter λ.

Non-Interactive Zero-Knowledge We now recall the definition of a non-interactive zero-knowledge
(NIZK) proof of knowledge which has first been introduced in [8].

Definition 13. A NIZK proof of knowledge for a language L with a polynomial-time recognizable binary
relation R is given by the following tuple of PPT algorithms NIZK := (Setup,Prove,Verify), where (i)
Setup(1λ) outputs a common reference string crs; (ii) Prove(crs, (Y, y)) outputs a proof π for (Y, y) ∈ R;
(iii) Verify(crs, Y, π) outputs a bit b ∈ {0, 1}. Further, the NIZK proof of knowledge w.r.t. R should satisfy
the following properties:

(i) Completeness: For all (Y, y) ∈ R and crs← Setup(1λ), it holds that Verify(crs, Y,Prove(crs, (Y, y))) = 1
except with negligible probability;

(ii) Soundness: For any (Y, y) ̸∈ R and crs← Setup(1λ), it holds that Verify(crs, Y,Prove(crs, (Y, y))) = 0
except with negligible probability;

(iii) Zero knowledge: For any PPT adversary A, there exist PPT algorithms Setup′ and S, where
Setup′(1λ) on input the security parameter, outputs a pair (c̃rs, τ) with τ being a trapdoor and S(c̃rs, τ, Y)
which on input c̃rs, τ and a statement Y , outputs a simulated proof π̃ for any (Y, y) ∈ R. It must hold
that (1) the distributions {crs : crs ← Setup(1λ)} and {c̃rs : (c̃rs, τ) ← Setup′(1λ)} are indistinguishable
to A except with negligible probability; (2) for any (c̃rs, τ) ← Setup′(1λ) and any (Y, y) ∈ R, the distribu-
tions {π : π ← Prove(c̃rs, Y, y)} and {π̃ : π̃ ← S(c̃rs, τ, Y)} are indistinguishable to A except with negligible
probability.

B Combined Encryption Scheme from [7]

The security of the ΣECPSS scheme of Benhamouda et al. [7] relies on the fact that the combined public key
encryption scheme CPKE, consisting of the anonymous and ephemeral schemes APKE and PKE, is RIND-SO
secure. We recall here the construction of this combined scheme as used in [7].

Let APKE = (KeyGen,Enc,Dec) be the anonymous public key encryption scheme and PKE = (KeyGen,Enc,Dec)
be the ephemeral public key encryption scheme as used in [7]. The combined encryption scheme CPKE consists
of a tuple CPKE = (KeyGen,Enc,Dec) which are defined as follows:

CPKE.KeyGen(1λ): This is the key generation of the APKE scheme, i.e., (sk , pk)← APKE.KeyGen(1λ).
CPKE.Enc(pk ,m):

– Execute (esk, epk)← PKE.KeyGen(1λ)
– Encrypt esk under pk , i.e., cAPKE := APKE.Enc(pk , esk)
– Encrypt m under epk, i.e., cPKE := PKE.Enc(epk,m)
– Output c := (epk, cAPKE, cPKE)

CPKE.Dec(sk , c): Parse c as (epk, cAPKE, cPKE) and:
– Decrypt cAPKE as esk := APKE.Dec(sk , cAPKE)
– Check if esk is a valid secret key corresponding to epk. If it is not, abort.
– Decrypt cPKE as m := PKE.Dec(esk, cPKE)
– Output m

C Proof of Theorem 1

In this section, we provide a proof of Theorem 1. We do so by first proving Lemma 6 and then Lemma 1.

26

C.1 Proof of Correctness

Lemma 6. The large-scale distributed key generation scheme ΠLS–DKG as presented in Sec. 4.1 satisifies the
correctness property.

Proof. In order to prove Lemma 6, we have to show that the correctness properties 1.-3. hold. The correctness
proof for properties 1. and 3. proceeds in a similar manner as for the DKG protocol in [22]. We briefly recall
the proof here.

First, we note that all parties in U compute the same set Qual during an execution of ΠLS–DKG.TKeyGen.
This is because (1) each party in U can verify the NIZK proofs {πi}i∈[n] that are output by parties Pi ∈ C
and, due to the completeness property of the NIZK proof system, identify valid tuples and (2) the fact that
there exists an order on the tuples and all honest parties wait until round t0 +2δ to consider the same set of
tuples broadcast after the share distribution phase. Therefore it holds that all honest parties in U compute
the same set Qual consisting of t+ 1 valid tuples.

1. Note that if it holds that k ∈ Qual, then party Pk ∈ C must have shared ak,0 correctly to committee C ′

by round t0 + 2δ. Therefore, each party Pj
′ ∈ C ′ receives secret shares sk,j ∈ Zq for all k ∈ Qual and

subsequently computes its secret key share as sk ′
j =

∑
k∈Qual sk,j . Further, from Shamir’s secret sharing

we know that it must hold for any set S with |S| ≥ t+1 of correct secret shares that ak,0 =
∑

j∈S lj ·sk,j .
From this, it follows that

sk =
∑

k∈Qual

ak,0 =
∑

k∈Qual

∑
j∈S

lj · sk,j

 =
∑
j∈S

lj ·

 ∑
k∈Qual

sk,j

 =
∑
j∈S

lj · sk ′
j .

The correctness for secret key shares sk ′′
j of parties Pj

′′ ∈ C ′′ follows directly from the above and from
the handover correctness [7] of G–Handover.

2. In order to show that correctness property 2. is satisfied, we have to show that all parties Pj ∈ U know

the same public key pk = gsk = g
∑

k∈Qual ak,0 after an execution of ΠLS–DKG.TKeyGen. If k ∈ PK, then
Pk ∈ C ′ must have broadcast the group element gsk

′
k alongside a valid NIZKs proof π′

k (which is possible
to produce and verify due to the completeness property of the NIZK proof).9 All parties Pj ∈ U then

compute the public key as pk =
∏

k∈PK gsk
′lk
k = gsk .

3. Since the secret key is computed as sk =
∑

k∈Qual ak,0 and ak,0 is chosen uniformly at random from Zq,

it holds that sk is uniformly distributed in Zq. Since sk is uniformly distributed in Zq, so is pk = gsk ∈ G.

C.2 Proof of Lemma 1

In order to prove Lemma 1, we first state and prove the following lemma:

Lemma 7. Let ΠLS–DKG be the large-scale distributed key generation protocol from Sec. 4 instantiated with
a (λ, n, t, p)-secure instantiation of ΣECPSS. Then there exists no fully mobile adversary A with corruption
power p who can corrupt more than t parties in either of C, C ′ or C ′′ with more than negligible probability
in λ.

Proof (Sketch). We can prove this lemma by reduction to the secrecy property of the ΣECPSS scheme. More
precisely, we show that if there exists an adversary A who can corrupt more than t parties in either of C,
C ′ or C ′′ with non-negligible probability, then we can construct a fully mobile adversary B with corruption
power p who uses A to break the secrecy property of ΣECPSS. In fact, we distinguish the following three
cases: (1) A corrupts more than t parties in C, (2) A corrupts more than t parties in C ′ and (3) A corrupts
more than t parties in C ′′. We then show that in each of these cases we can write a reduction to the secrecy

9Note that all honest parties in U compute the same set PK since we assume an order on the broadcast tuples
and all honest parties wait until round t0 + 4δ to consider the same set of tuples.

27

property of ΣECPSS. In our reduction, we assume for simplicity that the self-selection process in ΣECPSS

is implemented via verifiable random functions as suggested in [7]. We further assume that the verifiable
random functions are evaluated on the same input values in ΣECPSS and ΠLS–DKG, which is easy to achieve in,
e.g., the blockchain setting. We finally assume that a malicious party in the nominating committee always
selects itself.

– Case 1: A corrupts more than t parties in C

The main idea of the reduction is that B sets committee C in ΠLS–DKG to the same committee of parties
that is selected in ΣECPSS, s.t., if more than t parties in C get corrupted by A, then B corrupts more than
t parties in the holding committee of ΣECPSS. Therefore, B first sets the universe of parties in ΠLS–DKG

to the same universe as in ΣECPSS and simulates the behavior of all honest parties in this universe to A.
Whenever A corrupts a party in ΠLS–DKG, B corrupts the same party in ΣECPSS and forwards its internal
state to A. When the procedure ΣECPSS.Select is executed in ΠLS–DKG to select committee C, B executes
the same procedure in ΣECPSS and relays the outputs of honest parties in ΣECPSS to adversary A. B lets
all corrupted parties in the nominating committee self-select10. This ensures that the holding committee
in ΣECPSS and committee C contain the same parties.

Whenever A corrupts a party Pi after the selection of C, B corrupts the corresponding party in ΣECPSS

and hence learns whether Pi is part of C. If it is, B prepares an internal state for Pi corresponding to the
protocol description of ΠLS–DKG and sends this state along with the ephemeral secret key eski to A11.

Clearly, if A is able to corrupt more than t parties in committee C during the ΠLS–DKG execution, then
B is able to corrupt more than t parties in the ΣECPSS scheme and can consequently break the secrecy of
ΣECPSS. Hence, the probability of B corrupting more than t parties in ΣECPSS is equal to the probability
of A corrupting more then t parties in C. Therefore, A corrupts more than t parties in C with at most
negligible probability in λ.

– Case 2: A corrupts more than t parties in C ′

The reduction in this case works in a similar way as the reduction in the previous case. The only difference
is that committee C is now selected independently of ΣECPSS and instead committee C ′ is set to the
same committee as in ΣECPSS. Recall that the long-term public keys of all parties in the universe are
updated in each epoch. Therefore, B must update the long-term public keys of honest parties in ΠLS–DKG

to the same public keys used by honest parties in ΣECPSS. Additionally, for all long-term public keys
pk ′

k that are chosen by A in ΠLS–DKG, B has to choose its own long-term key pair (pkk, skk) and publish
pkk in ΣECPSS. During the execution of ΣECPSS.Select, B first receives a ciphertext ci

12 from each honest
party Pi in the nominating committee of ΣECPSS. B then tries to decrypt all received ciphertexts with
its long-term secret keys skk. If decryption is successful, B learns an ephemeral secret key eski, which it
then encrypts under A’s corresponding long-term public key pk ′

k, i.e., c
′
i ← APKE.Enc(pk ′

k, eski). B then
forwards all received ciphertexts to A but replaces ci by c′i.

This simulation ensures again that the holding committee in ΣECPSS and committee C ′ consist of the
same parties. Similar to the reduction above, whenever A corrupts an honest party, B corrupts the
corresponding party in ΣECPSS. If the corrupted party is in the holding committee, then B learns its
ephemeral secret key and thereby, B can simulate the party’s internal state. It again holds that if A
corrupts more than t parties in C ′, then B corrupts more than t parties in ΣECPSS. Therefore, A corrupts
more than t parties in C with at most negligible probability in λ.

– Case 3: A corrupts more than t parties in C ′′

The reduction in this case works as the reduction for Case 2 with the only difference that committee C ′′

is set to the same committee as in ΣECPSS.

10B obtains the proof that a malicious party has been selected to the nominating committee from A and the proof
is valid in ΣECPSS since the same input values are used in the self-selection processes of ΣECPSS and ΠLS–DKG.

11To be exact, B returns the internal state which is specific to the ΠLS–DKG protocol together with any other internal
secrets that party Pi might hold, e.g., the secret key for the verifiable random function.

12Recall that these ciphertexts nominate a public key pkk to the holding committee by encrypting an ephemeral
secret key under pkk.

28

With Lemma 7 in place, we can now prove Lemma 1.

Proof. We describe a simulator S which on input a public key pk = gx ∈ G where x ∈ Zq simulates an
execution of ΠLS–DKG to an efficient fully mobile adversary A such that the output distribution of S is
computationally indistinguishable from A’s view of an execution of the real protocol which ends with pk
as its output public key. In the following, we first describe the behavior of simulator S on input pk and
subsequently we show that the output distribution produced by S is computationally indistinguishable to A
from the output distribution of a real protocol execution of ΠLS–DKG.

During theΠLS–DKG.Setup(1
λ) procedure, S runs (c̃rs, τ)← NIZK.Setup′(1λ) instead of crs← NIZK.Setup(1λ).

This allows S to obtain a trapdoor τ for the NIZK proof system. Afterwards the execution ofΠLS–DKG.TKeyGen
begins during which the adversary A can corrupt honest parties at any time.

For all honest parties, S follows the protocol instructions of ΠLS–DKG.TKeyGen until step 3c. As such, it
correctly executes the protocol for all honest parties in committee C. Let H ′ ⊆ C ′ and B′ ⊂ C ′ denote the
sets of honest and corrupted parties in committee C ′ respectively. Note that S knows the correct internal
states of all parties Pj

′ ∈ H ′13, in particular the values sk ′
j . Further, note that due to Lemma 7 there is

an honest majority in each of C, C ′ and C ′′ through which S can learn the values sk ′
k for all Pk

′ ∈ B′.
Therefore, S can learn the elements S′

j for all parties Pj
′ ∈ C ′.

In step 3c, S chooses t − |B′| parties from H ′ and assigns them to a new set SH ′ (i.e., SH ′ ∩H ′ = ∅).
For all parties in SH ′, S follows the protocol instructions of step 3c while for parties Pj

′ ∈ H ′, S sets

S̃′
j = pk lj,0 ·

∏
i∈B′∪SH′

S
′lj,i
i (2)

where lj,i are the appropriate Lagrange coefficients. Note that this allows any set T ⊂ {{S̃′
j}j∈H′∪{S′

i}i∈B′∪SH′}
with |T | = t+ 1 to reconstruct pk via interpolation in the exponent.

In step 3d, S then uses the trapdoor τ as generated during the NIZK.Setup′ procedure, to generate
simulated NIZK proofs π̃′

j that prove correctness of the elements S′
j .

The simulator S executes the rest of the protocol correctly for all honest parties.
We now show that the simulation is computationally indistinguishable toA from a real protocol execution.

Before providing the full formal proof of indistinguishability, we first give a high level overview of why
indistinguishability holds. Note that S only deviates from the protocol instructions during the NIZK.Setup
procedure and during steps 3c and 3d for parties Pj

′ ∈ H ′. Due to the zero-knowledge property of the
NIZK proof system, it holds that the distributions {crs : crs ← NIZK.Setup(1λ)} and {c̃rs : (c̃rs, τ) ←
NIZK.Setup′(1λ)} are computationally indistinguishable to A. In step 3c, S replaces the elements S′

j = gsk
′
j

for all Pj
′ ∈ H ′ by elements S̃′

j computed as in Eq. (2). Note that, due to Lemma 7, there exists at least one
honest party Pi ∈ Qual and we further know that all honest parties compute the same set Qual. Therefore all
elements S′

j contain at least one uniformly random value si,j from an honest party in the exponent. Further,
due to the soundness property of the NIZK proof system, all parties in Qual behaved honestly during
the share distribution phase except with negligible probability. Therefore A can distinguish the simulated
elements S̃′

j from the real elements S′
j only by breaking the RIND-SO security of the CPKE scheme. Finally,

by the soundness and zero-knowledge properties of the NIZK proof system, A cannot generate a valid NIZK
proof for a maliciously computed element S′

k for a party Pk
′ ∈ B′ and A cannot distinguish the simulated

NIZK proofs π̃′
j from the real proofs π′

j except with negligible probability.

We now show formally that the simulated execution of ΠLS–DKG as described above is computationally
indistinguishable from a real execution of ΠLS–DKG to an efficient fully mobile adversary A.

Proof. We show indistinguishability in a series of games.
Game G0G0G0: This is the real execution of the ΠLS–DKG protocol.

13For simplicity, we use the notations Pj
′ ∈ H ′ and j ∈ H ′ interchangeably throughout this paper.

29

GameG1G1G1: In this game we only modify the ΠLS–DKG.Setup procedure. When the common reference string
crs of the NIZK proof system is generated, the simulator executes (c̃rs, τ)← NIZK.Setup′(1λ) instead of crs←
NIZK.Setup(1λ). This allows S to learn a trapdoor τ . Since the distributions {crs : crs ← NIZK.Setup(1λ)}
and {c̃rs : (c̃rs, τ) ← NIZK.Setup′(1λ)} are indistinguishable to A except with negligible probability (due to
the zero-knowledge property of NIZK), it holds that this game is indistinguishable from the previous game
except with negligible probability.

GameG2G2G2: This game works as the previous game with the difference that S aborts if any party Pk ∈ B14

generates a valid proof πk for a statement x = ({ck,i, epki}i∈[n]) such that x /∈ L. The simulator can identify
this situation, since it knows the ephemeral secret keys of all parties in H ′ and since it learns at least t+ 1
decryptions of the ciphertexts (ck,1, · · · , ck,n).

Due to the soundness property of the NIZK proof system, the simulator aborts only with negligible prob-
ability.

Game G3G3G3: This game works as the previous game with the following difference. For each party Pj
′ ∈ H ′,

the game computes a simulated NIZK proof π̃′
j,Handover

15 (i.e., without using the secret key share sk ′
j) using

the trapdoor τ and algorithm S (cf. Def. 13).
Due to the zero-knowledge property of the NIZK proof system, the simulated proof π̃′

j,Handover is indistin-
guishable from the real proof except with negligible probability.

Game G4G4G4: This game works as the previous game with the following difference. For each party Pj
′ ∈ H ′,

the game computes a simulated NIZK proof π̃′
j (i.e., without using the secret key share sk ′

j) using the
trapdoor τ and algorithm S (cf. Def. 13).

Due to the zero-knowledge property of the NIZK proof system, the simulated proof π̃j
′ is indistinguish-

able from the real proof except with negligible probability.

Game G5G5G5: This game is the same as the previous game with only a syntactical change. For committee
C ′, the simulator maintains another list SH ′ with |SH ′| = t−|B′|, in addition to the sets H ′ and B′. At the
beginning of the epoch, the simulator randomly assigns t− |B′| parties from H ′ to SH ′ and removes these
parties from H ′ (i.e., H ′ ∩ SH ′ = ∅).

Game G6G6G6: This game works as the previous game with the following difference. The simulator first

chooses uniformly at random a secret key s̃k ←$ Zq with the corresponding public key p̃k = gs̃k . Then for

each party Pj
′ ∈ H ′, the simulator chooses secret key shares s̃k

′
j conditioned on the secret key shares sk ′

k for

k ∈ B′ ∪ SH ′, s.t. ({s̃k
′
j}j∈H′ , {sk ′

k}k∈B′∪SH′) form a (t, n)-sharing of s̃k . The simulator then replaces the

secret key shares sk ′
j by s̃k

′
j .

Claim. A can distinguish this game from the previous game with at most negligible probability.

Proof. Due to Lemma 7, there are at most t corrupted parties in C ′. Further, note that all honest parties
compute the same set Qual and that there must exist at least one honest party in Qual. As such, each sk ′

j

for j ∈ H ′ contains at least one uniformly random value. Therefore, A can distinguish this game from the
previous one only by breaking the RIND-SO security of the combined PKE scheme CPKE.

We now show that if A is able to distinguish the two games, then we can construct an adversary B which
can break the RIND-SO security of the CPKE scheme. In the beginning of the reduction, B chooses the
following resamplable distribution D: The distribution samples uniformly at random an element y ←$ Zq and
outputs a (t, n)-sharing of y, i.e., it chooses a random degree-t polynomial F (x) = a0+a1x+· · ·+atx

t ∈ Zq[x]
with a0 = y and outputs (F (1), · · · , F (n)). The algorithm ResampD on input a vector of messages mI for
|I| ≤ t samples a uniform random element z ←$ Zq and outputs a (t, n)-sharing of z conditioned on mI .

14By B we denote the set of corrupted parties in C.
15π̃′

j,Handover is used during the G–Handover procedure, see Sec. 3.

30

Having chosen D, B receives n public keys (pk1, · · · , pkn) from its RIND-SO game which B embeds
in the execution of the ΠLS–DKG protocol on behalf of n honest parties in U . Additionally, B receives n
ciphertexts (c1, · · · , cn) from its game where each ciphertext ci consists of (1) an ephemeral public key epki,
(2) the encryption of the corresponding ephemeral secret key under one of the public keys from the RIND-SO
game, (i.e., ci,APKE = APKE.Enc(pk i, eski)), and (3) the encryption of a message under the ephemeral public
key (i.e., ci,PKE = PKE.Enc(epki,mi)). Whenever A sends a corruption query for any of the public keys
(pk1, · · · , pkn), B forwards the query to its own game. During the nomination of committee C ′, B nominates
parties by embedding public key/ciphertext pairs (epki,APKE.Enc(pk i, eski)) for which B does not know the
secret key sk i. B then sends the ciphertexts cj,PKE for j /∈ I to honest parties in C ′ and sends messages mi

for i ∈ I to the corrupted parties in C ′ encrypted under their respective ephemeral public keys.16 Finally, B
starts the challenge phase in the RIND-SO game through which it receives messages m̃j for all j /∈ I which
are either the correct messages encrypted in cj,PKE or resampled messages conditioned on the messages of
corrupted parties. Note that each honest party Pi

′ ∈ H ′ receives n messages from committee C of which
one is the message m̃i. Adversary B, on behalf of party Pi

′, then sums up t+ 1 of those messages to obtain
an element sk ′

i and broadcasts gsk
′
i . If A realizes that sk ′

i does not correspond to the sum of the decrypted
ciphertexts for party Pi

′, then B outputs 0, otherwise B outputs 1.

Note that B wins the RIND-SO game, whenever A successfully distinguishes gamesG5G5G5 andG6G6G6. Therefore,
A succeeds at most with negligible probability.

Game G7G7G7: This game works as the previous game with the following difference. For each party Pj
′ ∈ H ′,

the simulator computes S̃′
j = p̃k

lj,0 ·
∏

i∈B′∪SH′ S
′lj,i
i where lj,i are the appropriate Lagrange coefficients.17 S

then broadcasts S̃′
j , however uses sk

′
j for the remaining protocol execution. That is, the ciphertexts {c′j,k}k∈[n]

and the elements S̃′
j , that are broadcast in the same epoch, are inconsistent.

The indistinguishability argument follows in a similar manner as for game G6G6G6, i.e., we can show a reduc-
tion to the RIND-SO security of the CPKE scheme. Note that the only difference is the fact that the elements
S̃′
j are broadcast in the same epoch as the ciphertexts from the RIND-SO game and that the resamplable

distribution must output either a sharing of sk ′
j or of s̃k

′
j .

Game G8G8G8: This game works as the previous game with the difference that S aborts if any party
Pk

′ ∈ B′ generates a valid NIZK proof π′
j,Handover, but there exists at least one party Pi

′′ ∈ H ′′ such that

PKE.Dec(esk′′i , c
′′
k,i) /∈ Zq or the decryptions of the ciphertexts (c′k,1, · · · , c′k,n) do not form a (t, n)-sharing of

sk ′
k. The simulator can identify this situation, since it simulates all parties Pi

′′ ∈ H ′′.

Due to the soundness property of the NIZK proof system, the simulator aborts at most with negligible
probability.

Game G9G9G9: This game works as the previous game with the difference that S aborts if any party Pk
′ ∈ B′

generates a valid proof π′
k for a statement x = ({ci,k}i∈Qual, epkk, S

′
k) such that x /∈ L′. Note that the

simulator can identify this since it knows the secret key share of at least t + 1 parties and therefore has
sufficient information to reconstruct the correct elements S′

k for all parties in B′.

Due to the soundness property of the NIZK proof system, the simulator aborts only with negligible prob-
ability.

In the final simulation, the simulator replaces the public key p̃k by the input public key pk . Note that if a
corruption of a party Pi

′ ∈ H ′ occurs, then the simulator has to output the correct (not simulated) internal
state of Pi

′ and recompute the internal states for the updated sets H ′.

16Note that B learns mi for i ∈ I because it receives the secret key sk i from the RIND-SO game, which allows B
to open the ciphertext ci,PKE.

17Note that the elements S̃′
j are the same in this game as in the previous game, i.e., the dlog of S̃′

j is s̃k
′
j .

31

Simulator Code: Let S := (S1,S2) where S1 simulates ΠLS–DKG.Setup and S2 simulates ΠLS–DKG.TKeyGen. During
the simulation of ΠLS–DKG.Setup, S1 executes NIZK.Setup′(1λ) instead of NIZK.Setup(1λ) through which it learns a
trapdoor τ for the NIZK proof system. Let H ′ ⊆ C′ and B′ ⊂ C′ be the sets of honest and corrupted parties in
committee C′. Note that there is an honest majority in committees C, C′ and C′′ due to Lemma 7.
On input a public key pk , trapdoor τ and public parameters pp, S2 then simulates ΠLS–DKG.TKeyGen as follows:
– S2 follows the protocol instructions for all honest parties until step 3c.
– In step 3c, S2 proceeds as follows:
• S2 chooses t− |B′| parties from H ′ and assigns those parties to a new set SH ′ s.t. SH ′ ∩H ′ = ∅.
• For all parties Pj

′ ∈ H ′, S2 computes S̃′
j = pk lj,0 ·

∏
i∈B′∪SH′ S

′lj,i
i where lj,i are the appropriate lagrange

coefficients.
– In step 3d, S2 then uses the trapdoor τ to generate simulated NIZK proofs π̃′

j that prove correctness of the

elements S̃′
j .

– The simulator S2 executes the rest of the protocol correctly for all honest parties.

Fig. 2: Simulator code for our large-scale distributed key generation protocol ΠLS–DKG. The simulator code
is divided into two parts S1 generates the simulated crs and the corresponding trapdoor τ and S2 simulates
the DKG execution on input a public key pk and the trapdoor τ .

D Proof of Theorem 2

In this section, we first provide a proof outline of Lemma 2 before giving a formal proofs of Lemma 3 and
Lemma 5.

D.1 Proof outline of Lemma 2

We show that the correctness property holds for ΠLS–TPKE for the first epoch. For all subsequent epochs,
these properties then follow from the handover correctness property [7] of the G–Handover procedure. Let
λ ∈ N be the security parameter and let pp ← ΠLS–TPKE.Setup(1

λ) be the public parameters, where pp :=
(ppTDH1, ppLS–DKG).

1. Note that the following holds:

for all (pk , {vk1
i }i∈[n], {sk1

i }i∈[n])← ΠLS–TPKE.TKeyGen [U] (pp, t, n),

where vk1
i := (v̂k

1

i , π
1
i) it holds that

(pk , ·, {sk1
i }i∈[n]) ∈ TDH1.KeyGen(ppTDH1, t, n).

2. Due to the completeness property of the NIZK scheme, it holds that π1
i is a valid NIZK proof for the

correctness of v̂k
1

i .
3. Correctness in epoch 1 then follows from the above and from the correctness property of the TDH1

scheme.

D.2 Proof Sketch of Lemma 3

We can prove Lemma 3 via reduction to the decryption consistency property of the TDH1 scheme. Assume
an adversary B winning game LSTPKE–DC with non-negligible probability, i.e., B outputs in some epoch j
with non-negligible probability a ciphertext ct∗, two sets of verification keys V K = {vk j

1, · · · , vk
j
t+1} and

˜V K = {ṽk
j

1, · · · , ṽk
j

t+1} and two sets of decryption shares T = {ctj1, · · · , ct
j
t+1} and T̃ = {c̃tj1, · · · , c̃t

j
t+1}

such that the conditions of game LSTPKE–DC hold, then we can use B to construct a PPT adversary A that
breaks the decryption consistency property of the TDH1 scheme.

32

For this reduction, A simulates game LSTPKE–DC to B in a straightforward way, i.e., it executes the game
code of LSTPKE–DC. Note that we can show in the same way as in the proof of Lemma 5 (GameGGG1) that for
each epoch j the adversary B corrupts at most t parties in Cj . Further note that by the soundness property
of the NIZK proof system for language L′, it holds except with negligible probability that V K = ˜V K , i.e.,
the sets contain the same verification keys. Additionally, we know that for all epochs j ≥ 1 and for the tuple

(pk , {vk j
i}i∈[n], {sk j

i}i∈[n]) with vk j
i := (v̂k

j

i , π
j
i), it holds that

(pk , {v̂k
j

i}i∈[n], {sk j
i}i∈[n]) ∈ TDH1.KeyGen(ppTDH1, t, n).

Finally, since the algorithms ΠLS–TPKE.TCombine and TDH1.TCombine are identical and the algorithms
ΠLS–TPKE.TShareVrfy and TDH1.TShareVrfy differ only in the fact that ΠLS–TPKE.TShareVrfy includes the
additional NIZK proof verification, it must hold that ct∗, T and T̃ satisfy the conditions of the decryption

consistency property of TDH1 w.r.t. public key pk , verification keys (v̂k
j

1, · · · , v̂k
j

t+1) and secret key shares

(sk j
1, · · · , sk

j
t+1).

Therefore, upon B winning the LSTPKE–DC game with non-negligible probability by outputting (ct∗, V K,
˜V K, T, T̃), A breaks the decryption consistency property of TDH1 with non-negligible probability by out-

putting ((pk , {v̂k
j

i}i∈[n], {sk j
i}i∈[n]), ct

∗, T, T̃). Note that A can learn all secret key shares {sk j
i}i∈[n], since it

controls a majority of the parties in Cj .

D.3 Proof of Lemma 5

Proof. We now present the proof of Lemma 5. To this end, we show that if there exists a fully mobile adver-
sary B that can win the LSTPKE–CCAB

ΠLS–TPKE
game with non-negligible advantage, then there also exists a

static adversary A who can win the game TPKE–CCAA
TDH1 (cf. Section A.2) with non-negligible advantage.

More precisely, we show in a series of computationally indistinguishable games that A can use B’s output
bit b′ to win its own game.

GameG0G0G0: This is the original LSTPKE–CCA
B
ΠLS–TPKE

game. In the beginning of this game, theΠLS–TPKE.Setup
procedure is executed to generate public parameters pp. In each epoch j, the game maintains a list Bj

which indicates the set of corrupted parties in the universe U . Additionally, the game maintains two lists
HCj

and BCj

which indicate the sets of honest and corrupted parties in committee Cj . The execution of
ΠLS–TPKE.TKeyGen generates a public key pk , selects a committee of secret key shareholders C1 and outputs
a secret key share sk1

i to each party Pi
1 ∈ C1. Note that B gets access to a corruption oracle, which allows B

to corrupt parties in epoch j at any point in time as long as it holds that
⌊
|Bj |+1

|U |

⌋
≤ p. Further, B obtains

access to a decryption oracle, a refresh oracle and random oracles H1, H2, H3 and H4.

Game G1G1G1: This game proceeds as the previous game with the difference that it aborts in case in any
epoch j it holds that |BCj | > t, i.e., in case in epoch j there are more than t corrupted parties in Cj .

The indistinguishability argument for this game follows from the secrecy property of the ΣECPSS scheme.
That is, if an adversary B was able to corrupt more than t parties in Cj , then we can construct an adversary
A′ who can break the secrecy property of ΣECPSS by corrupting more than t parties in ΣECPSS. The reduction
works in a similar fashion as the one in Lemma 7, i.e., A′ trying to break the secrecy property of ΣECPSS can
simulate game LSTPKE–CCAB

ΠLS–TPKE
to B by correctly executing all instructions for all honest parties except

for the broadcasting of corrupted long-term public keys at the beginning of an epoch and executions of the
ΣECPSS.Select procedure in ΠLS–TPKE, which are simulated as described in the proof of Lemma 7.

Hence, we get that Pr[G0G0G0 = 1] ≤ Pr[G1G1G1 = 1] + ν1(λ) where ν1 is a negligible function in λ.

Game G2G2G2: This game is the same as the previous game with only two syntactical changes. First, for each
epoch j after the execution of ΠLS–TPKE.TKeyGen the game maintains another list SHCj

with |SHCj | =

33

t−|BCj |, in addition to the sets HCj

and BCj

. At the beginning of epoch j, the game then randomly assigns

t− |BCj | parties from HCj

to SHCj

and removes these parties from HCj

(i.e., HCj ∩ SHCj

= ∅).
Second, the game maintains a list CT j for each epoch j. Upon the adversary querying the decryption

oracle on input a ciphertext ctj in epoch j, the game stores ctj in CT j .

The changes in this game are only syntactical. Therefore, we have that Pr[G1G1G1 = 1] = Pr[G2G2G2 = 1].

GameG3G3G3: This game proceeds as the previous game with the following modification. After the execution
of ΠLS–TPKE.TKeyGen, the game uses the secret key shares sk1

i of all Pi
1 ∈ HC1

to reconstruct the secret key

sk corresponding to pk via Lagrange interpolation. Note that this is possible because |HC1 | ≥ t+ 1. During
a refresh oracle query in an epoch j, the game then proceeds as follows: It reconstructs a degree-t polynomial
F̃ j from the secret key shares {sk j

k}k∈BCj∪SHCj and sk , s.t. F̃ j(k) = sk j
k and F̃ j(0) = sk . The game then

computes secret key shares F̃ j(i) = s̃k
j

i for all Pi
j ∈ HCj

and uses s̃k
j

i to compute decryption shares c̃t
j
i for

Pi
j for all ciphertexts ctj ∈ CT j . Finally, the game replaces all decryption shares in decryption list dlji by

the decryption shares c̃t
j
i .

First, note that in each epoch it holds that |HCj | ≥ t + 1 and therefore the game has sufficient in-
formation to compute the secret key shares {sk j

k}k∈BCj . Second, note that for each epoch j there exists

a degree-t polynomial F j , s.t. F j(i) = sk j
i and F j(0) = sk for all Pi

j ∈ Cj . This polynomial is uniquely

identified by any t+ 1-size subset of {sk , sk j
1, · · · , sk

j
n}. Therefore, we have that F̃ j = F j and s̃k

j

i = sk j
i for

all Pi
j ∈ HCj

. Therefore, all decryption shares c̃t
j
i are valid w.r.t. the verification key vk j

i . We therefore get
that Pr[G2G2G2 = 1] = Pr[G3G3G3 = 1].

Game G4G4G4: This game works as the previous game with the following difference. Upon a refresh oracle

query in epoch j, the game parses the verification key of parties Pi
j ∈ HCj

as vk j
i := (v̂k

j

i , π
j
i) and computes

a new verification key ṽk
j

i := (v̂k ′j
i , π

j
i) where v̂k ′j

i = gs̃k
j
i . The game then uses ṽk

j

i instead of vk j
i during the

refresh oracle execution.

The indistinguishability argument for this game follows in the same way as for the previous game, i.e.,

since we have that s̃k
j

i = sk j
i , it holds that ṽk

j

i = vk j
i . Therefore, we have that Pr[G3G3G3 = 1] = Pr[G4G4G4 = 1].

Game G5G5G5: This game is similar to the previous game with a modification in the ΠLS–TPKE.Setup pro-
cedure. When the common reference string crs of the NIZK proof system is generated, the game executes
(c̃rs, τ) ← NIZK.Setup′(1λ) instead of crs ← NIZK.Setup(1λ). This allows the game to learn a trapdoor τ .
Since the distributions {crs : crs← NIZK.Setup(1λ)} and {c̃rs : (c̃rs, τ)← NIZK.Setup′(1λ)} are indistinguish-
able to B except with negligible probability (due to the zero-knowledge property of the NIZK proof system),
it holds that Pr[G4G4G4 = 1] ≤ Pr[G5G5G5 = 1] + ν2(λ) where ν2 is a negligible function in λ.

Game G6G6G6: This game works as the previous game with the following difference. Upon a refresh oracle
query j, the game computes for each party Pi

j ∈ HCj

a simulated NIZK proof π̃j
i using the trapdoor τ

and algorithm S (cf. Def. 13) which proves that v̂k ′j
i is a valid verification key for party Pi

j . It then sets

ṽk
j

i := (v̂k ′j
i , π̃

j
i).

Due to the zero-knowledge property of the NIZK proof system, the simulated proof π̃j
i is indistinguishable

from a real proof except with negligible probability. It holds that Pr[G5G5G5 = 1] ≤ Pr[G6G6G6 = 1] + ν3(λ) where ν3
is a negligible function in λ.

Game G7G7G7: This game works as the previous game with the difference that the game aborts if any party
Pk

j ∈ BCj

generates a valid NIZK proof πj
k,Handover, but there exists at least one party Pi

j+1 ∈ HCj+1

such that PKE.Dec(eskj+1
i , cjk,i) /∈ Zq or the decryptions of the ciphertexts (cjk,1, · · · , c

j
k,n) do not form a

34

(t, n)-sharing of sk j
k. The game can identify this situation, since it knows the internal states of all parties

Pi
j ∈ HCj

and Pi
j+1 ∈ HCj+1

.
Due to the soundness property of the NIZK proof system, it holds that Pr[G6G6G6 = 1] ≤ Pr[G7G7G7 = 1] + ν4(λ)

where ν4 is a negligible function in λ.

Game G8G8G8: This game proceeds similarly as the previous game with the following modification. In the
beginning of the game, a uniformly random value x←$ Zq is chosen. Then during the refresh oracle execution,

the game computes a degree-t polynomial F̄ j , s.t., F̄ j(0) = x and F̄ j(k) = sk j
k for all Pk ∈ {SHCj ∪BCj}.

Then the game executes the G–Handover procedure on input xj
i ← F̄ j(i) for all parties Pi

j ∈ HCj

and on

input sk j
k for all Pk

j ∈ SHCj

.
The indistinguishability argument of this game to the previous one follows by the RIND-SO security of

the CPKE scheme. The reduction works in a similar manner as the reduction in Game G6G6G6 of Lemma 1, with
the only difference that the resamplable distribution must output either a sharing of sk j

i or of xj
i . Therefore,

it holds that Pr[G7G7G7 = 1] ≤ Pr[G8G8G8 = 1] + ν5(λ) where ν5 is a negligible function in λ.

The following games G9G9G9-G12G12G12 show how random oracle and decryption oracle queries are handled, which
was previously described in [41].

Game G9G9G9: This game proceeds as the previous game with a modification to the random oracle H2. The
game programs H2 by maintaining a list H2 in the following way. Upon a query (c, L, u, w) to H2 from B,
the game first checks if H2[c, L, u, w] has already been defined. Otherwise, the game chooses uniformly at
random o←$ Zq and sets H2[c, L, u, w] = pko. The game then returns H2[c, L, u, w].

Note that o is chosen uniformly at random from Zq and therefore pko is a uniformly random element in
G. Hence, we have that Pr[G8G8G8 = 1] = Pr[G9G9G9 = 1].

Game G10G10G10: This game differs from the previous game in the following ways: First, the game maintains a
list H4 which stores query/response pairs for the random oracle H4. Second, upon B issuing a refresh oracle
query, the game does the following for all ciphertexts ctj ∈ CT j where ctj = (c, L, u, ū, e, f): it computes

the decryption share c̃t
j
i for each party Pi

j ∈ HCj

by computing ui = us̃k
j
i as prescribed by the protocol

description of TDec and then chooses uniformly at random ei ←$ Zq and fi ←$ Zq. Then the game computes

ûi = ufi/uei
i and ĥi = gfi/v̂k i

jei

, checks if H4[ui, ûi, ĥi] has been set previously and if so, the game aborts.

Otherwise the game sets H4[ui, ûi, ĥi] = ei. Note that the resulting decryption share c̃t
j
i = (i, ui, ei, fi) is

valid w.r.t. ciphertext ctj and verification key ṽk
j

i , i.e., it holds that TShareVrfy(ct
j , ṽk

j

i , c̃t
j
i) = 1.

Adversary B can distinguish this game from the previous one only in the event that game G10G10G10 aborts.
However, since fi is chosen uniformly at random from Zq, the elements ûi and ĥi are uniform random elements
from G. Since the adversary makes only a polynomially bounded number of decryption queries, the abort
event happens at most with negligible probability. Therefore, we have that Pr[G9G9G9 = 1] ≤ Pr[G10G10G10 = 1]+ν6(λ)
where ν6 is a negligible function in λ.

Game G11G11G11: This game proceeds similarly to the previous game with the following modification in the re-

fresh oracle. For all Pi
j ∈ HCj

, the game computes the verification key v̂k ′j
i as v̂k

′j
i = pk li,0

∏
k∈BCj∪SHCj v̂k

jli,k

k

instead of v̂k ′j
i = gs̃k

j
i .

Note that it holds that

v̂k ′j
i = pk li,0 ·

∏
k∈BCj∪SHCj

v̂k
jli,k

k = gF̃
j(i) = gs̃k

j
i .

Therefore, we have that Pr[G10G10G10 = 1] = Pr[G11G11G11 = 1].

35

Game G12G12G12: This game proceeds similarly to the previous game with the following modification in the

refresh oracle. Upon a refresh oracle query, the game computes the decryption shares c̃t
j
i for all Pi

j and for
all ctj ∈ CT j as follows:

It first looks up ḡ = H2[c, L, u, w]. Recall that H2[c, L, u, w] was programmed to be pko in game G9G9G9 and
that the game knows o. It then computes (ū)1/o = (ḡ)r/o = pkr and ui = (ū)li,0/o ·

∏
k∈BCj∪SHCj uskkli,k .

The computation of ei and fi as well as the programming of H4 is done in the same way as described in G10G10G10.

This game is indistinguishable from the previous game except if o = 0. In this case, the game cannot
correctly compute the element ui and consequently has to abort. Since o is chosen uniformly at random from
Zq this event happens only with negligible probability and therefore it holds that Pr[G11G11G11 = 1] ≤ Pr[G12G12G12 =
1] + ν7(λ) where ν7 is a negligible function in λ.

Game G13G13G13: This game proceeds similarly to the previous game G12G12G12 with the exception that before the
execution of ΠLS–TPKE.TKeyGen, the game chooses at random a public key pk , s.t. (pk , ·, ·) ∈ TDH1.KeyGen.
Then during the ΠLS–TPKE.TKeyGen procedure, instead of executing ΠLS–DKG.TKeyGen, the game executes
S2, i.e., the simulator code of ΠLS–DKG.TKeyGen (cf. Fig. 2) on input pk , the NIZK trapdoor τ and the public
parameters ppLS–DKG. This code simulates ΠLS–DKG.TKeyGen in a way such that the output public key is
equal to pk .

The indistinguishability argument follows from the secrecy property of the ΠLS–DKG scheme. More pre-
cisely, we showed that for the ΠLS–DKG protocol there exists a simulator which on input a public key pk ,
trapdoor τ and public parameters ppLS–DKG can simulate the execution of ΠLS–DKG.TKeyGen in such a way
that the execution is indistinguishable to an efficient fully mobile adversary except with negligible probabil-
ity and the output public key equals pk . Note that the distribution of (pk , τ, ppLS–DKG) is identical to the
output distribution of S1 in Fig. 2. Therefore, it holds that Pr[G12G12G12 = 1] ≤ Pr[G13G13G13 = 1] + ν8(λ) where ν8 is a
negligible function in λ.

By the transition from game G0G0G0 to G13G13G13 we get that

Pr[LSTPKE–CCAB
ΠLS–TPKE

(λ) = 1] = Pr[G0G0G0 = 1]

≤ Pr[G13G13G13 = 1] + ν1(λ) + ν2(λ) + ν3(λ) + ν4(λ)

+ ν5(λ) + ν6(λ) + ν7(λ) + ν8(λ)

≤ Pr[G13G13G13 = 1] + ν(λ).

where ν(λ) ≥
∑8

i=1 νi(λ) is a negligible function in λ.

Having shown that the transition from game G0G0G0 to game G13G13G13 is indistinguishable, it remains to show
that there exists an efficient static adversary A who plays in game TPKE–CCAA

TDH1 and simulates game G13G13G13

to B. We have to show that A can then use B to win its own game. The only differences between game G13G13G13

and A’s simulation are as follows: (1) In TPKE–CCAA
TDH1, A receives a challenge public key pkC , which it

uses instead of the randomly chosen public key in game G13G13G13, (2) A forwards all queries to random oracles
H1, H3 and H4 to the corresponding oracles in the TPKE–CCAA

TDH1 game, and (3) A forwards all queries
to the random oracle H2 that are related to the challenge ciphertext to the corresponding oracle of its own
game. Since the challenge public key pkC is chosen uniformly at random, these changes are only syntactical.

Finally, we have to show that A can use B to win the TPKE–CCAA
TDH1 game. Note that the encryption

procedure is the same in both the ΠLS–TPKE and TDH1 scheme. Therefore, upon A receiving challenge
messagesm0 andm1 and a label L′ from B, A forwards these messages as challenge messages to its own game.
Upon receiving the challenge ciphertext ct ′ = (c′, L′, u′, ū′, e′, f ′), A forwards it to B. Upon B outputting
a bit b′, A forwards this bit to its own game. Since A forwards queries to H2 that are related to ct ′ to its
own oracle but programs the oracle on all other queries from B, there is a negligible probability that B has
previously (before receiving ct ′) queried H2 on input (c′, L′, u′, w′). Hence, there exists a negligible function
ν′ in λ such that it holds that

36

Pr[LSTPKE–CCAB
ΠLS–TPKE

(λ) = 1] ≤ Pr[TPKE–CCAA
TDH1(λ) = 1] + ν(λ)

≤ 1/2 + ν′(λ) + ν(λ).

E The TDH1 Threshold Public Key Encryption Scheme From Shoup and
Gennaro [41]

In the following we briefly recall the (t, n)-threshold encryption scheme from Shoup and Gennaro [41], denoted
by TDH1.

Setup(1λ): On input a security parameter λ, the setup procedure generates a group G of prime order q with
generator g. For simplicity, we assume that both, the messages and labels, are l bits long. In addition, the
setup procedure defines the following hash functions:

H1 : G→ {0, 1}l, H2 : {0, 1}l × {0, 1}l ×G×G→ G, H3, H4 : G3 → Zq

The setup procedure outputs public parameters pp := (G, q, g, l,H1, H2, H3, H4).

KeyGen(pp, t, n): On input public parameters pp and integers t, n ∈ N s.t. n ≥ 2t+1, this procedure chooses
a random degree-t polynomial F (x) = a0 + a1x+ · · ·+ atx

t ∈ Zq[x] and sets sk i = F (i) and vk i = gski . The
procedure outputs pk = gsk , where sk = F (0), and all {vk i}i∈[n] to all parties Pi. Additionally, it outputs
to each party Pi the secret key share sk i.

TEnc(pk ,m,L): On input a public key pk , a message m ∈ {0, 1}l and label L ∈ {0, 1}l the encryption
algorithm works as follows:

1. Choose r, s←$ Zq at random
2. Compute:

c = H1(pk
r)⊕m,u = gr, w = gs, ḡ = H2(c, L, u, w)

ū = ḡr, w̄ = ḡs, e = H3(ḡ, ū, w̄), f = s+ re.

The output is the ciphertext ct = (c, L, u, ū, e, f).

TDec(sk i, ct , L): On input a secret key share sk i, a ciphertext ct = (c, L, u, ū, e, f) and a label L the
decryption algorithm for party Pi does the following:

1. Compute: w = gf/ue, ḡ = H2(c, L, u, w), w̄ = ḡf/ūe.
2. If e ̸= H3(ḡ, ū, w̄), output (i, ?)
3. If e = H3(ḡ, ū, w̄), choose si ←$ Zq at random and compute:

ui = uski , ûi = usi , ĥi = gsi , ei = H4(ui, ûi, ĥi), fi = si + sk iei.

The output is a decryption share ct i = (i, ui, ei, fi).

TShareVrfy(ct , vk i, ct i): On input a ciphertext ct = (c, L, u, ū, e, f), a verification key vk i and a decryption
share ct i = (i, ui, ei, fi), the decryption share verification algorithm does the following:

1. Check if e ̸= H3(ḡ, ū, w̄) as in the decryption procedure and if so output 1 only if the decryption share
is (i, ?) and 0 otherwise.

2. Compute: ûi = ufi/uei
i , ĥi = gfi/vkei

i .

3. If ei ̸= H4(ui, ûi, ĥi), output 1 and 0 otherwise.

37

TCombine(T, ct): On input a set of valid decryption shares T := {ct i}i∈[t+1] and a ciphertext ct =
(c, L, u, ū, e, f), the share combination algorithm does the following:

1. Check if e ̸= H3(ḡ, ū, w̄) as in the decryption procedure and if so, output ?. Otherwise, assume that it
holds that all ct i ∈ T are of the form ct i = (i, ui, ei, fi).

2. Compute m = H1(
∏t+1

i=1 u
li,0
i)⊕ c.

The output is the message m.

In [41], Shoup and Gennaro prove in the random oracle model that TDH1 is CCA-secure against static
adversaries corresponding to Def. 11.

F Large-Scale Non-Interactive Threshold Signature Schemes

F.1 Model

The formal definition of a large-scale non-interactive threshold signature scheme (LS–TSIG) in the YOSO
model follows the ideas of the definition of LS–TPKE schemes. That is, an LS–TSIG scheme is defined
w.r.t. a universe U of parties and proceeds in epochs at the beginning of which a new committee of secret
key shareholders is selected. Similarly to LS–TPKE schemes, the definition of LS–TSIG schemes includes a
refresh procedure which allows to transition from one epoch to the next by selecting a new committee and
refreshing the secret key shares. An LS–TSIG scheme must be secure w.r.t. a fully mobile adversary. Finally,
we require that each committee member can generate signature shares locally and that a committee member
can generate multiple signature shares per epoch. All generated signatures are then broadcast during the
refresh procedure. We now provide the formal definition of a non-interactive LS–TSIG scheme.

Definition 14. A large-scale non-interactive (t, n)-threshold signature scheme (LS–TSIG) is defined w.r.t. a
universe of parties U = {P1, · · · , PN} with N > n and consists of a tuple LS–TSIG = (Setup,TKeyGen,TSign,
TShareVrfy,TCombine,Verify,Refresh) of efficient algorithms and protocols which are defined as follows:

Setup(1λ): This probabilistic algorithm takes a security parameter λ ∈ N as input and outputs public pa-
rameters pp.

TKeyGen[U](pp, t, n): This is a protocol involving all parties Pj ∈ U , where each Pj receives as input public
parameters pp and two integers t, n ∈ N such that 1 ≤ t ≤ n. The protocol selects a committee of parties
C with |C| = n and outputs to each party Pj ∈ U a public key pk and to each party Pi ∈ C a verification
key vk i and a secret key share sk i.

TSign(sk i,m): This algorithm takes as input a secret key share sk i and a message m and outputs a signature
share σi.

TShareVrfy(vk i,m, σi): This deterministic algorithm takes as input a verification key vk i, a message m and
a signature share σi and it either outputs 1 or 0. If the output is 1, σi is called a valid signature share.

TCombine(pk ,m, T): This deterministic algorithm takes as input a set of valid signature shares T such that
|T | = t+ 1, a public key pk and a message m and it outputs a full signature σ valid under pk.

Verify(pk ,m, σ): This deterministic algorithm takes as input a public key pk, a message m and a signature
σ. It outputs either 1 or 0. If the output is 1, σ is called a valid signature.

Refresh[C⟨(sk1,vk1,sl1),··· ,(skn,vkn,sln)⟩, U](pp): This is a protocol involving a committee C with |C| = n and
the universe of parties U , where each Pi ∈ C takes as secret input a secret key share sk i verification key
vk i and signature share list sli, and all parties Pj ∈ U take as input public parameters pp. The protocol
selects a committee of parties C ′ with |C ′| = n and outputs to each party Pi

′ ∈ C ′ a verification key vk ′
i

and a secret key share sk ′
i. Furthermore, all parties in the universe receive vk i and sli for i ∈ [n].

38

Consistency A (t, n)− LS–TSIG scheme must fulfill the following two consistency properties. For any λ ∈ N,
pp ← Setup(1λ) and (pk , {vk1

i }i∈[n], {sk1
i }i∈[n]) ← TKeyGen[U](pp, t, n) with selected committee C1, for

j > 1 we define the tuple ({vk j
i}i∈[n], {sk j

i}i∈[n]) recursively as

({vk j
i}i∈[n], {sk j

i}i∈[n])← Refresh[Cj−1

⟨(skj−1
1 ,vkj−1

1 ,·),··· ,(skj−1
n ,vkj−1

n ,·)⟩, U](pp)

Recall that during these executions verification keys vk j−1
i and signature share lists slj−1

i for i ∈ [n] are
broadcasted.

1. For i ∈ [n] and j ≥ 1 and for any message m it must hold that:

TShareVrfy(vk j
i ,m,TSign(sk j

i ,m)) = 1

2. For all signature share lists slj−1
i where i ∈ [n] and j > 1, the k-th element in the list is computed as

σi,k ← TSign(sk j−1
i ,mk) for a message mk. Further, for any set Tk = {σj−1

1,k , · · · , σj−1
t+1,k}, it holds that:

Verify(pk ,mk,TCombine(pk ,mk, Tk)) = 1

Unforgeability In the following, we give the definition of unforgeability under chosen-message attacks for a
(t, n)− LS–TSIG scheme considering an efficient fully mobile adversary A with corruption power p · |U | > t.
We define the following game LSSIG–UFCMAA

LS–TSIG(λ) which is affected by the same implications of the
YOSO model as the CCA-Security game in Sec. 5. The game LSSIG–UFCMAA

LS–TSIG(λ) is initialized with a
security parameter λ and proceeds as follows:

1. The game executes Setup(1λ) and obtains public parameters pp, which it forwards to the adversary A.
For each epoch j ≥ 0, the game maintains a set of corrupted parties Bj which is initialized as Bj := ∅.

2. The adversary A is given access to the following oracle:

– Corruption oracle: On input an index i ∈ [N], the game checks if
⌊
|Bj |+1

|U |

⌋
≤ p. If so, A receives

the internal state of party Pi
j and the game sets Bj ← Bj ∪ {Pi

j}.
3. The protocol TKeyGen[U](pp, t, n) is executed. The protocol selects a committee C1 with |C1| = n

and outputs a public key pk , a set of verification keys {vk1
1, · · · , vk

1
n} and a set of secret key shares

{sk1
1, · · · , sk

1
n}, such that Pi

1 ∈ C1 learns vk1
i and sk1

i .
4. Additionally to the corruption oracle, the adversary A obtains access to the following two oracles. Let

sl1i := ∅ for parties Pi
1 ∈ C1 \B1.

– Signing oracle: On input a message m, the game computes σj
i ← TSign(sk j

i ,m) for all parties

Pi
j ∈ Cj \Bj . Then, the oracle adds σj

i to the list slji .
– Refresh oracle: On input a setNBj , the game executes Refresh[C⟨(skj

1,vk
j
1,sl

j
1),··· ,(sk

j
n,vk

j
n,sl

j
n)⟩, U](pp)

is executed and the game sets Bj+1 ← Bj\NBj . Additionally, the game initializes the lists slj+1
i := ∅

for parties Pi
j+1 ∈ Cj+1 \Bj+1.

5. Eventually, A outputs a message m′ and a signature σ′. A wins the game if it has never previously
queried the signing oracle on message m′ and if Verify(pk ,m′, σ′) = 1.

Definition 15 (Unforgeability). A large-scale non-interactive (t, n)-threshold signature scheme LS–TSIG
with a universe of parties U is (λ, n, t, p)-unforgeable with p · |U | > t if for every efficient fully mobile
adversary A with corruption power p there exists a negligible function ν in the security parameter λ, such
that

Pr[LSSIG–UFCMAA
LS–TSIG(λ) = 1] ≤ ν(λ).

Further, we require a (t, n)-LS–TSIG scheme to satisfy robustness, which intuitively says that a fully
mobile adversary cannot generate signature shares, which are valid w.r.t. a message and the corresponding
verification keys, but cannot be combined to a full signature on this message. That is, an honest majority
can always generate a valid signature.

39

Definition 16 (Robustness). An LS–TSIG scheme satisfies (λ, n, t, p)-robustness if there exists no fully
mobile PPT adversary A that wins the following game with non-negligible probability. The game begins with
steps 1.-4. as in game LSSIG–UFCMA with the difference that the adversary is allowed to learn all secret
key shares in each epoch j. The adversary then outputs a message m, a set of verification keys V K =
{vk j

1, · · · , vk
j
t+1} and a set of signature shares T = {σj

1, · · · , σ
j
t+1} and wins the game if the following

conditions hold:

1. For all i ∈ [t+ 1] it holds that TShareVrfy(vk j
i ,m, σj

i) = 1.
2. Verify(pk ,m,TCombine(pk ,m, T)) = 0.

Finally, similar to LS–TPKE schemes, we require the following efficiency property.

Definition 17 (Efficiency). Let slji be the signature share list of an honest party Pi
j ∈ Cj in epoch j.

Then we call a (t, n)-LS–TSIG scheme efficient, if for all epochs j ≥ 1 and a constant c:

1. The communication complexity of all honest parties during an execution of the Refresh procedure is upper
bounded by some fixed poly(n, λ, |slji |).

2. An execution of the Refresh procedure takes at most c · δ rounds.

We call a large-scale non-interactive (t, n)-threshold signature scheme LS–TSIG scheme (λ, n, t, p)-secure,
if it satisfies the consistency, efficiency, (λ, n, t, p)-robustness and -unforgeability properties.

F.2 Construction

Boldyreva [9] introduced a threshold signature scheme denoted as TH–BLS, which is secure against a static
adversary. This scheme is well suited for our construction of a large-scale threshold signature scheme, since
it is non-interactive and uses discrete-log key pairs. In the following, we show how the scheme TH–BLS =
(Setup,KeyGen,TSign,TShareVrfy,TCombine,Verify) can be transformed into an LS–TSIG scheme ΠLS–TSIG =
(Setup,TKeyGen,TSign,TShareVrfy,TCombine,Verify,Refresh). Similarly as for our construction of ΠLS–TPKE

(cf. Sec. 5), we make use of the following building-blocks: (1) our large-scale DKG protocol ΠLS–DKG = (Setup,
TKeyGen) as described in Sec. 4, (2) the role assignment mechanism of Benhamouda et al., (3) the G–Handover
procedure as presented in Sec. 3 and (4) a NIZK proof system NIZK = (Setup,Prove,Verify) as per Def. 13.
Note that for similar reasons as for our ΠLS–DKG and ΠLS–TPKE protocols, we cannot use the ΣECPSS.Handover
procedure as black-box. Instead, we have to use the generalized handover procedure G–Handover to broadcast
verification keys and signature shares during a state handover. We detail our construction below. We recall
the definition of a threshold signature scheme and the TH–BLS scheme in Appx. G.

ΠLS–TSIG.Setup(1
λ)

Execute:
ppTH–BLS ← TH–BLS.Setup(1λ), p̃pLS–DKG ← ΠLS–DKG.Setup(1

λ), crs← NIZK.Setup(1λ).

Parse p̃pLS–DKG := (crs′,G, q, g). Define ppLS–DKG := (crs,G, q, g) and output public parameters pp := (ppTH–BLS, ppLS–DKG).

ΠLS–TSIG.TKeyGen[U](pp, t, n)

Let t0 be the round in which the protocol execution begins. All parties in U do:

1. Parse pp := (ppTH–BLS, ppLS–DKG).
2. Run ΠLS–DKG.TKeyGen(pp

LS–DKG, t, n). This protocol selects a committee C1 and outputs a public key pk to all
parties in U and secret key shares sk1

i to each party Pi
1 ∈ C1.

In round t0 + 4δ all parties Pi
1 ∈ C1 do:

3. All Pi
1 ∈ C1 compute v̂k

1

i := gsk
1
i and a NIZK proof π1

i that the verification key v̂k
1

i was computed correctlya.

4. All Pi
1 ∈ C1 set vk1

i := {v̂k
1

i , π
1
i } and initialize a signature share list sl1i := ∅.

ΠLS–TSIG.TSign(sk
j
i ,m)

40

Execute TH–BLS.TSign(sk j
i ,m) and then add the resulting signature share σj

i to the list slji .

ΠLS–TSIG.TShareVrfy(σ
j
i , vk

j
i ,m)

Parse vk j
i := {v̂k

j

i , π
j
i } and check if πj

i is a valid proof w.r.t. v̂k
j

i (i.e., check if v̂k
j

i is indeed the correct verification

key of party Pi
j ∈ Cj). If this check does not hold, output 0. Otherwise, output TH–BLS.TShareVrfy(σj

i , v̂k
j

i ,m).

ΠLS–TSIG.TCombine(pk ,m, T)

Execute TH–BLS.TCombine(pk ,m, T) and output the resulting signature σ.

ΠLS–TSIG.Verify(pk ,m, σ)

Execute TH–BLS.Verify(pk ,m, σ) and output the resulting bit.

ΠLS–TSIG.Refresh[C⟨(skj
1,vk

j
1,sl

j
1),··· ,(sk

j
n,vk

j
n,sl

j
n)⟩, U](pp)

Let tj be the round in which the protocol execution begins. This protocol is executed between a committee Cj in
epoch j and the universe U .

1. Run ΣECPSS.Select [U] (pp) to select a committee Cj+1 with |Cj+1| = n.
2. In round tj + δ run G–Handover[Cj

⟨(skj
1,(vk

j
1,sl

j
1)),··· ,(sk

j
n,(vk

j
n,sl

j
n))⟩, U](pp).

Afterwards, each Pi
j+1 ∈ Cj+1 gets a refreshed secret key shares sk j+1

i .

In round tj + 2δ all parties Pi
j+1 ∈ Cj+1 do:

3. Compute v̂k
j+1

i := gsk
j+1
i , generate a NIZK proof πj+1

i that the verification key was computed correctlya and

set vk j+1
i := {v̂k

j+1

i , πj+1
i }.

4. Initialize a signature share list slj+1
i := ∅.

aThe language for this proof is the same as the language L′ in the ΠLS–DKG protocol (cf. Sec. 4).

Theorem 3. Let ΠLS–DKG be a (λ, n, t, p)-secure instantiation of the LS–DKG protocol from Sec. 4, TH–BLS
the non-interactive (t, n)-TSIG scheme as described in Appx. G, ΣECPSS a (λ, n, t, p)-secure instantiation of
the ECPSS construction, NIZK a NIZK proof system and CPKE a RIND-SO secure PKE scheme. Then
ΠLS–TSIG is a (λ, n, t, p)-secure large-scale non-interactive threshold signature scheme.

In order to prove Theorem 3, we have to show that ΠLS–TSIG satisfies consistency, efficiency and (λ, n, t, p)-
robustness and -unforgeability. We therefore state the following lemmas.

Lemma 8. The large-scale non-interactive threshold signature scheme ΠLS–TSIG as described in Appendix F.2
satisfies consistency.

Proof. This lemma follows directly from the consistency property of the TH–BLS scheme (cf. Definition 20),
the completeness property of the NIZK proof system and from the handover correctness of the G–Handover
scheme. A proof outline of this lemma looks similar to the proof outline of Lemma 2 in Appx. D.

Lemma 9. The large-scale non-interactive threshold signature scheme ΠLS–TSIG as described in Appendix F.2
satisfies the efficiency property.

Proof. The proof for this lemma is the same as the proof for Lemma 4.

Lemma 10. The large-scale non-interactive threshold signature scheme ΠLS–TSIG as described in Appendix F.2
satisfies (λ, n, t, p)-robustness.

Proof. The proof of this lemma is similar to the proof of Lemma 3.

Lemma 11. The large-scale non-interactive threshold threshold signature scheme ΠLS–TSIG as described in
Appendix F.2 is (λ, n, t, p)-unforgeable.

41

The proof of Lemma 11 is similar to the proof of Lemma 5 with the difference that we have to provide
a reduction to the unforgeability of TH–BLS. As part of this reduction we have to show that signing oracle
queries from the adversary in game LSSIG–UFCMAΠLS–TSIG

can be answered without knowing the correct
secret key shares. We show briefly in Appx. G how such signing oracle answers can be simulated for the
TH–BLS scheme.

F.3 Transformation Framework from TSIG to LS–TSIG

The same reasoning that we presented in Sec. 5 for the transformation framework from TPKE schemes to
LS–TPKE schemes applies to TSIG and LS–TSIG schemes as well. In a nutshell, a discrete-log-based non-
interactive threshold signature scheme TSIG can be transformed to a large-scale non-interactive threshold
signature scheme LS–TSIG if TSIG satisfies the same properties as described in Sec. 5 for TPKE schemes.
The only minor difference in the properties is that the simulator in the simulatability property receives as
input a public key, n verification keys and t secret key shares and additionally obtains access to a signing
oracle which on input a message outputs a valid signature under the input public key. Apart from this, the
same argumentation from Sec. 5 can be used here to argue that any discrete-log-based non-interactive TSIG
scheme can be transformed to an LS–TSIG scheme.

G The TH–BLS Scheme from Boldyreva [9]

G.1 Background on Digital Signature and Threshold Signature Schemes

Before we recall the TH–BLS scheme [9], we first recall the basic definitions of digital signature schemes and
threshold signature schemes as we need these definitions to argue later about the simulatability of signing
oracle queries from an adversary in game LSSIG–UFCMAΠLS–TSIG

.

Definition 18 (Digital signatures). A digital signature scheme SIG consists of a triple of algorithms
SIG = (KeyGen,Sign,Verify) defined as:

KeyGen(1λ): This probabilistic algorithm takes as input a security parameter λ and outputs a key pair
(sk , pk);

Sign(sk ,m): This probabilistic algorithm takes as input a secret key sk and message m and outputs a signature
σ;

Verify(pk ,m, σ): This deterministic algorithm takes as input a public key pk, message m and signature σ
and outputs a bit either 1 or 0. If the output is 1, σ is called a valid signature.

A signature scheme must satisfy that for all messages m it holds that:

Pr
[
Verify(pk ,m,Sign(sk ,m)) = 1 | (sk , pk)← KeyGen(1λ)

]
= 1,

where the probability is taken over the randomness of KeyGen and Sign.

Definition 19 (Unforgeability). A signature scheme SIG is unforgeable if for every PPT adversary A
there exists a negligible function ν in the security parameter λ such that Pr[SIG–UFCMAA

SIG(λ) = 1] ≤ ν(λ),
where the experiment SIG–UFCMAA

SIG is defined as follows:

1. The game executes KeyGen(1λ) and obtains a key pair (sk , pk). It forwards the public key pk to the
adversary A.

2. A obtains access to a signing oracle, which on input a message m outputs a signature σ for m under
public key pk.

3. Eventually, A outputs a forgery (m∗, σ∗) and wins the game if (1) it holds that Verify(pk ,m∗, σ∗) = 1
and (2) m∗ has never been queried to the signing oracle before.

42

Definition 20. A non-interactive (t, n)-threshold signature scheme TSIG consists of a tuple of efficient
algorithms TSIG = (Setup,KeyGen,TSign,TShareVrfy,TCombine,Verify) which are defined as follows:

Setup(1λ): This probabilistic algorithm takes a security parameter λ ∈ N as input and output public param-
eters pp.

KeyGen(pp, t, n): This probabilistic algorithm takes as input public parameters pp and two integers t, n ∈ N.
It outputs a public key pk, a set of verification keys {vk i}i∈[n] and a set of secret key shares {sk i}i∈[n] .

TSign(sk i,m): This probabilistic algorithm takes a secret key share sk i and a message m as input and
outputs a signature share σi.

TShareVrfy(σi, vk i,m): This deterministic algorithm takes as input a signature share σi, a verification key
vk i and a message m and it outputs either 1 or 0. If the output is 1, σi is called a valid signature share.

TCombine(pk ,m, T): This deterministic algorithm takes as input a public key pk; a message m and a set
of valid signature shares T for m under pk such that |T | = t+ 1 and it outputs a signature σ.

Verify(pk ,m, σ): This deterministic algorithm takes as input a public key pk, message m and signature σ
and outputs a bit either 1 or 0. If the output is 1, σ is called a valid signature.

Consistency A (t, n)−TSIG scheme must fulfill the following two consistency properties. Let pp ← Setup(1λ)
and (pk , {vk i}i∈[n], {sk i}i∈[n])← KeyGen(pp, t, n).

1. For any message m it must hold that

TShareVrfy(TSign(sk i,m), vk i,m) = 1.

2. For any message m and any set T = {σ1, · · · , σt+1} of valid signature shares σi ← TSign(sk i,m) with
sk i being t distinct secret key shares, it must hold that

Verify(pk ,m,TCombine(pk ,m, T)) = 1.

Unforgeability We recall the definition of unforgeability for a (t, n) − TSIG scheme with static corruptions.
Consider a PPT adversary A playing in the following game SIG–UFCMAA

TSIG which receives as input a security
parameter λ:

1. The adversary outputs a set B ⊂ {1, · · · , n} with |B| = t to indicate its corruption choice. Let H :=
{1, · · · , n} \B.

2. The game computes pp ← Setup(1λ) and sets (pk , {vk i}i∈[n], {sk i}i∈[n]) ← KeyGen(pp, t, n). It sends
pp, pk and {vk i}i∈[n] as well as {sk j}j∈B to the adversary.

3. The adversary A is allowed to adaptively query a signing oracle, i.e., on input (m, i) with i ∈ H, the
signing oracle outputs TSign(sk i,m).

4. Eventually, A outputs a forgery (m∗, σ∗) and wins the game if (1) it holds that Verify(pk ,m∗, σ∗) = 1
and (2) A has not previously made a signing query on message m∗.

Definition 21. A non-interactive (t, n)-threshold signature scheme TSIG is unforgeable if for every PPT ad-
versary A there exists a negligible function ν in the security parameter λ, such that Pr[SIG–UFCMAA

TSIG(λ) =
1] ≤ ν(λ).

In this work, we define robustness of a TSIG scheme with honest majority as follows.

Definition 22 (Robustness). A (t, n)-TSIG scheme satisfies robustness if for all λ ∈ N, all pp ← Setup(1λ)
and all PPT adversaries A the following holds:

Pr

∀i ∈ [t+ 1] : TShareVrfy(σi, vk i,m) = 1
∧Verify(pk ,m,TCombine(pk ,m, T)) = 0
∧K ∈ KeyGen(pp, t, n)

∣∣∣∣∣∣
(K,m, T)← A(pp, t, n) s.t.,
K := (pk , {vk i}i∈[n], {sk i}i∈[n])
T := {σ1, · · · , σt+1}

 ≤ ν(λ).

where ν is a negligible function in the security parameter λ.

43

G.2 The BLS and TH–BLS Schemes

In the following we present the non-interactive threshold signature scheme from [9], which we denote by
TH–BLS. We then give a proof sketch for a reduction of TH–BLS to the single party signature scheme
BLS as introduced in [10]. This proof sketch demonstrates how signing oracle responses for TH–BLS can be
simulated without knowing the corresponding secret key shares. As mentioned in Appendix F, this is crucial
for the proof of Lemma 11. Both BLS and TH–BLS operate over so-called Gap Diffie-Hellman (GDH) groups
in which the computational Diffie-Hellman (CDH) problem is hard, whereas the decisional Diffie-Hellman
(DDH) problem is easy. We briefly recall the notions of CDH, DDH and GDH in the following.

Computational/Decisional Diffie-Hellman Problem and GDH Groups Let G be a cyclic group of prime order
q and with generator g. Let a, b, c be elements chosen uniformly at random from Zq.

Computational Diffie-Hellman (CDH) Given (g, ga, gb), the CDH problem is to compute gab.
Decisional Diffie-Hellman (DDH) Given (g, ga, gb, gc), the DDH problem is to decide whether c = ab.

We now recall the definition of GDH groups as given in [9].

Definition 23 (Gap Diffie-Hellman Group). A group G of prime order q is called a Gap Diffie-Hellman
(GDH) group if there exists an efficient algorithm V-DDH() which solves the DDH problem in G and there
is no polynomial-time (in |q|) algorithm which solves the CDH problem in G.

We now first recall the BLS scheme as presented in [10], before presenting its threshold variant TH–BLS
as presented in [9].

G.3 The BLS scheme

KeyGen(1λ): On input a security parameter λ, this procedure generates a GDH group G of prime order q with
generator g. In addition, the procedure defines the hash function H : {0, 1}∗ → G∗ and sets pp = (G, q, g,H).
Further, it picks a secret key sk ←$ Zq and computes the corresponding public key pk ← gx and sets
sk ′ = (sk , pp), pk ′ = (pk , pp) It outputs (sk ′, pk ′).

Sign(sk ′,m): On input a secret key sk ′ and a message m, this procedure parses sk ′ := (sk , pp) and computes
a signature σ = H(m)sk and outputs σ.

Verify(pk ′,m, σ): On input a public key pk ′, a message m and a signature σ, this procedure parses pk ′ :=
(pk , pp) and checks if V-DDH(g, pk , H(m), σ) = 1. If so, this procedure outputs 1 and 0 otherwise.

The authors of [10] show that the BLS scheme is unforgeable as per Definition 19.

G.4 The TH–BLS scheme

We now recall the threshold variant of the BLS scheme, which we denote by TH–BLS. Boldyreva [9] proved
the TH–BLS scheme unforgeable as per Definition 21.

Setup(1λ): On input a security parameter λ, the setup procedure generates a GDH group G of prime order
q with generator g. In addition, the setup procedure defines the hash function H : {0, 1}∗ → G∗.

The setup procedure outputs public parameters pp := (G, p, g,H).

KeyGen(pp, t, n): On input public parameters pp and integers t, n ∈ N s.t. n ≥ 2t+1, this procedure chooses
a random degree-t polynomial F (x) = a0 + a1x+ · · ·+ atx

t ∈ Zq[x] and sets sk i = F (i) and vk i = gski . The
procedure outputs pk = gsk , where sk = F (0), and all {vk i}i∈[n] to all parties Pi. Additionally, it outputs
to each party Pi the secret key share sk i.

TSign(sk i,m): On input a secret key share sk i and a message m, this algorithm outputs σi = H(m)ski .

44

TShareVrfy(vk i,m, σi): On input a verification key vk i, a message m and a signature share σi, this algorithm
outputs V-DDH(g, vk i, H(m), σi).

TCombine(pk ,m, T): On input a public key pk , a message m and a set of valid signature shares T ⊂
{σ1, · · · , σn} with |T | = t+ 1, this algorithm computes σ =

∏
σi∈T (σ

li
i) and outputs σ.

Theorem 4. If the BLS scheme as presented in Section G.3 is unforgeable as per Definition 19, then the
TH–BLS scheme is unforgeable as per Definition 21 in the random oracle model.

Proof sketch. We provide a proof sketch for Theorem 4 by exhibiting a simulator S := (S1,S2) who uses
an adversary A playing in game SIG–UFCMAA

TH–BLS to win its own game SIG–UFCMAS
BLS. S receives a public

key pk from its game SIG–UFCMAS
BLS as well as access to a signing and a random oracle and it has to simulate

game SIG–UFCMAA
TH–BLS to A. On a high level, the simulation works as follows:

W.l.o.g. let A corrupt parties (P1, · · · , Pt). Upon S receiving pk , S calls its subprocedure S1 on input

(pk , {vk i, sk i}i∈[t]) for sk i ←$ Zq and vk i = gski with i ∈ [t]. S1 computes vk j = pk lj,0
∏t

i=1 vk
lj,i
i for

t+ 1 ≤ j ≤ n. Note that for any subset T ⊂ {vk1, · · · , vkn} with |T | = t+ 1 it holds that pk =
∏

vki∈T vk li
i

and therefore any T uniquely identifies pk . S then executes S2 on input (pk , {vk j}j∈[n], {sk i}i∈[t]), which

simulates game SIG–UFCMAA
TH–BLS as follows:

In the beginning of the game, S2 sends (pk , {vk j}j∈[n], {sk i}i∈[t]) to the adversary. Upon A issuing a
random oracle query on input m, S2 forwards the query to its own random oracle and receives a group
element H(m) ∈ G. Upon A issuing a signing query on input (m, i), S2 issues a signing query on message
m to its signing oracle and receives a signature σ = H(m)sk . S2 then computes the signature share σi as
σi = σli,0

∏t
j=1 H(m)skj li,j . Finally, upon A outputting a forgery (m∗, σ∗), S2 can simply forward the forgery

to game SIG–UFCMAS
BLS. S wins its game SIG–UFCMAS

BLS whenever A wins game SIG–UFCMAA
TH–BLS due to

the following reason. If (m∗, σ∗) is a valid forgery in game SIG–UFCMAA
TH–BLS (i.e., A has never previously

queried the signing oracle on input m∗), then S2 has never previously queried its own signing oracle on
message m∗ and hence (m∗, σ∗) constitutes a valid forgery in game SIG–UFCMAS

BLS.

H Adding Signing Functionality to a Blockchain

An LS–TSIG scheme can be used to generate signatures “on behalf” of the blockchain. This allows to sign
individual blocks of the blockchain, thereby certifying that the block is indeed a valid part of the blockchain or
it allows to sign certain messages indicating that a specific event has occurred on the blockchain. Benhamouda
et al. [7] previously mentioned that extending their solution to a threshold signature scheme (as we did in
this work) opens the door to various interesting applications. We briefly recall two applications here. We
note that Benhamouda et al. have never formally shown how to construct such a threshold signature scheme
from their solution.

Blockchain Interoperability. Blockchain interoperability deals with the issue of running applications across
multiple different blockchain networks. This often requires proving to a blockchain B that a certain event
has occurred on another blockchain A. In order to do so, trusted parties can be used that are part of both
networks and therefore can mediate between two blockchains. With our LS–TSIG scheme, however, blockchain
A can simply create a signature on a message indicating that the event in question has occurred and this
message/signature pair can be sent to blockchain B. Parties in blockchain B merely require the signing public
key of blockchain A to verify the signature.

Blockchain Checkpointing. Checkpoints on a blockchain allow to certify that a certain blockchain state is
valid. This proves to be particularly useful for new parties joining a blockchain network, as these parties
are not anymore required to download and validate the entire blockchain starting at the first block. Instead,
new parties can download the blocks since the latest checkpoint and validate the blocks that succeed this
checkpoint. This significantly improves computation time of parties joining a blockchain system. A threshold
signature scheme, like our LS–TSIG scheme, can be used to build such checkpoints by simply signing valid
blocks. The signature serves as a proof for the block’s validity.

45

	Large-Scale Non-Interactive Threshold Cryptosystems in the YOSO Model

