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Abstract

This paper proposes an internal state recovery attack on special class of stream generators called non-linear
combiners and filter generators over finite fields consisting of linear feedback shift registers (LFSRs) and nonlinear
functions combining internal states to form output stream. This attack utilizes the concept of an observer well known
in the theory of Linear Dynamical Systems. An observer is a special linear dynamical system which when fed with
the output sequence of the stream generator as an input with arbitrary initial state, reconstructs the internal state of
the generator in finite time. This attack is termed as observability attack and it is shown that the computations are
of complexity O(D4) in pre-computation and of O(D) for online computation, where D =

∑d
i=0

(
n
i

)
for stream

generators with n states and d the degree of the output function, when the stream generator is defined over F2.
The attack is technically applicable over general finite fields and appropriate bounds on computation are estimated.
This attack gives an important estimates of time and memory resources required for cryptanalysis of realistic stream
ciphers.

Index Terms

Cryptanalysis of Stream ciphers, Observer theory, Stream generators

NOTATIONS AND PRELIMINARIES

Fn
q is the n-dimensional vector space over the finite field Fq . The space V o is dual space of Fn

q which is also a
vector space containing functions from Fn

q → Fq . The function χi(x) ∈ V o is the ith-coordinate function defined
as χi(x) = xi. A monomial φ ∈ V o is a function of the form

∏
i x

di
i , where each 0 ≤ di < q.

I. NON-LINEAR STREAM GENERATORS

Non-linear stream generators and non-linear combiners are generic constructions used in stream ciphers and
pseudo-random generators in Cryptography. Such a generator is a dynamical system over a finite field with state
variables and outputs defined over a finite field Fq and having one or more of its Linear Feedback Shift Registers
(LFSRs) driving the update of internal states. In this paper we call such generators which depend on internal state of
feedback shift registers (FSRs) as stream generators1. When the number of state variables is n, the state x(k) of the
system at any time k belongs to Fn

q and the non-linear output map g : Fn
q → Fq defines the output z(k) = g(x(k)).

Typical constructions of such stream generators are shown in the figures (1) and (2), with a single LFSR and
multiple LFSRs respectively. The internal state of the stream generator, denoted x(k) is the collection of states of
all registers of the LFSRs. The output z(k) is in general a non-linear combination of the states of these LFSRs.
Given an initial loading of the internal states of the registers specifies an initial state x(0) ∈ Fn

q of the system. The
system generates a unique output sequence z(k) over Fq for each initial state x(0). Such systems can be used to
generate pseudorandom sequences which can be used for cryptographic applications such as enciphering a stream
or as source of randomness which needs to be reconstructed.

A. Cryptanalysis of stream generators

An important problem associated with such non-linear stream generators is that of computing the initial condition
of the generator x(0) when an output stream z(k) is made available over a limited length of time k such as over an
interval [k0, k0 +m], k0 > 0. This problem is also known as the Cryptanalysis problem (or key recovery problem)
of the generator when used as a stream cipher or a pseudorandom generator, since the values of state variables
at initial loading x(0) consists of the symmetric key K (which is secret) and randomly chosen initializing values

1The well known RC4 stream generators is an example which does not use FSR states for stream generation and hence is not included in
this class
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of states called IV. Such a problem is of NP class for non-linear generators and known to be computationally
challenging as the number of states increase. Search for efficient algorithms for solving the Cryptanalysis problem
of the generator has continued ever since these have been found suitable for use in Cryptography. In this paper
we develop a new approach to the Cryptanalysis of non-linear stream generators called Observability attack. This
approach is based on observability of linear dynamical systems and construction of an observer defined in Systems
Theory and is briefly described as follows.

B. Observability and Observers of dynamical systems

In Mathematical Systems Theory, existence of a unique internal state x(k0) corresponding to an output sequence
z(k) of a dynamical system, for k ≥ k0 is called as the property of Observability of the system. In Linear Dynamical
Systems the unique internal state x(k) of the system can be obtained as a state of another linear dynamical system
called an Observer. The Observer takes the output sequence z(k), k ≥ k0, of the generator as an external input
and an arbitrary initial state of its own at k0. Then there is a minimum m such that the observer state at k0 + m
coincides with the unique internal state of the generator x(k0+m). Such an Observer construction and the algorithm
to compute internal state has however never developed in the past literature for non-linear dynamical systems. It
is shown recently in [1] that such an observer can be constructed for dynamical systems with for the state space,
a vector space over finite fields. An important advantage of this methodology is that it uses only linear algebraic
computations. It is thus important to apply this theory to understand the computational challenges involved in this
approach to Cryptanalysis of non-linear combiners and determine conditions under which the attack is likely to be
practically feasible. Observability of evolution of permutation maps on a finite set X through a function f on X
was discussed in the paper [2]. The approach of this paper however could not be utilized for Cryptanalysis of stream
ciphers because it was based on the complex field as the base field for values of the function f . The state space of
the dynamics of the permutation under complex field turns out to be an inner product space and the permutation
map action on functions on X is a normal operator. No such nice conditions hold when the field is finite. Hence
the observability based approach to cryptanalysis of stream generators needed a fresh investigation after the paper
[2] which is carried out in this paper. Another recent work on observability of dynamical system and its relevance
to Cryptanalysis of stream ciphers is reported in [3]. This work is specially meant for binary field valued variables
and utilizes what is known as the semi tensor product representation of Boolean functions and maps. While this
paper is relevant to the problem posed here it is important to point out central differences of our approach with this
paper. First, the dimension of the linear dynamic model in this approach is always exponential in n and secondly
the approach is specifically only applicable to Boolean functions. In fact the proposed approach in this paper is
useful for realistic Cryptanalysis mainly because the dimension of the linear system obtained is not too large for
the class of stream generators and is never exponential. Moreover our approach is applicable over any finite field
and computationally feasible for fields with small characteristics.

C. Previous work on Cryptanalysis of the stream generator

In past stream generators were cryptanalyzed using the correlation as well as algebraic attacks see [4]. In the
former, correlation of the output stream z(k) for k ≥ k0 with that of the internal states x(k) is estimated. While
correlation attack is statistical, the algebraic attack directly solves the non linear polynomial system of equations
with state variables as unknowns related to the output stream. Such a computation is of NP class and increases in
complexity with the number of variables. Both of these attacks have not been known to scale up for realistic sizes
of stream generators. The work in [5], [6], [7] addressed to the problem of cryptanalysis of stream generators. The
basic idea reported in [6], [7] is to construct a linear system model for the output stream in terms of the monomials
in the variables. The proposed method in our paper differs from the above by the method of construction of the
linear model. The previous work uses a monomial basis for construction of a linear system of equations relating
the output stream. This is broadly known as extended linearization (XL) method of solving multivariate algebraic
equations. The proposed methodology constructs a restriction of the Koopman operator on a space which is invariant
and contains the co-ordinate functions. The dimension of the linear model constructed through this linear method
will be equal to the dimension of the linear model constructed in [6] at the worst case and hence has a distinctive
advantage since not all monomials be present in the invariant subspace. Further in this paper we propose a new
approach to solving the problem of computing the internal state by using the Observer theory well known in Linear
dynamical systems. We show that this theory is useful to solve the nonlinear internal state recovery problem by
linear algebraic computations and is scalable for practically feasible computation for realistic sizes of number of
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states n when the dimension of an invariant subspace associated with the dual of the non-linear state map F is not
too large. In fact this is true of the class of stream generators with LFSRs used for state update. This is a fresh
new approach to the problem and is believed by the authors to have been unknown in the previous literature.

xn x2 x1

Σi cixi

g(x1, x2, .., xn) Output

Fig. 1. Stream generator with with 1 LFSR

x1m x12 x11

Σi c1ix1i

x2m x22 x21 x3m x32 x31

Σi c2ix2i Σi c3ix3i

g(x11, . . . , x3m) Output

Fig. 2. Stream generator with 3 LFSRs

D. Mathematical model of the stream generator

Mathematically any non-linear stream generator with linear state update and non-linear output map as in figure
(1) and (2) can be represented as a dynamical system in the following way

x(k + 1) = Ax(k)

z(k) = g(x(k))
(1)

where x ∈ Fn
q , A is a matrix over Fn×n

q , g is a non-linear function from Fn
q → Fq . When the stream generator is

of the form (1), the A matrix is in companion form and the output is a non-linear function of the internal states.
In the form (2), the A matrix is a block diagonal form representing the matrices in companion form of feedback
polynomials of individual LFSRs and the output is a non-linear function g of all the states.

II. KOOPMAN LINEAR SYSTEM FOR DYNAMICAL SYSTEMS OVER FINITE FIELDS

Mathematically, any dynamical system over a finite field can be modelled as

x(k + 1) = F (x(k))

z(k) = g(x(k))
(2)

where x(k) ∈ Fn
q , z(k) ∈ Fm

q are the internal state and outputs while F : Fn
q → Fn

q , g : Fn
q → Fm

q are the
state transition map and output map respectively. Let V o be the vector space of Fq-valued functions over Fn

q . The
Koopman operator F ∗ for the system (2) is a map from V o → V o defined as

F ∗h(x) = h ◦ F (x) = h(F (x))

where h(x) ∈ V o. The Koopman Linear System (KLS) corresponding to (2) is a linear dynamical system over V o

defined as
hk+1(x) = F ∗hk(x)
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Algorithm 1 Construction of W1 - the smallest F ∗-invariant subspaces spanning χi(x) and g(x)

1: procedure F ∗-INVARIANT SUBSPACE(W1)
2: Outputs:

W1 - the smallest invariant subspace which span the coordinate functions χi(x) and the non-linear function
g(x).
B - the basis for the invariant subspace W1

3: Compute the cyclic Subspace
Z(χ1;F ∗) = 〈χ1, F

∗χ1, . . . , (F
∗)l1−1χ1〉

4: Set of basis functions B = {χ1, F
∗χ1, . . . , (F

∗)l1−1χ1}
5: if χ2, χ3, . . . , χn ∈ Span{B} then
6: W1 ← Span{B}
7: go to 14
8: else
9: Find the smallest i such that χi /∈ span{B}

10: Compute the smallest li such that
(F ∗)liχi ∈ Span{B ∪ 〈χi, F

∗χi, . . . , (F
∗)li−1χi〉}

11: Vi = {χi, F
∗χi, . . . , (F

∗)li−1χi}
12: Append the set Vi to B
13: go to 5
14: if g ∈ Span{B} then
15: halt
16: else
17: Compute the smallest j such that

(F ∗)jg ∈ Span{B ∪ 〈g, F ∗g, . . . , (F ∗)j−1g〉}
18: Vg = {g, F ∗g, . . . , (F ∗)j−1g}
19: Append the set Vg to B
20: halt

for h(k) ∈ V o. The paper [1] develops the theory of Koopman operator for dynamical systems over finite fields.
It is shown that for each solution trajectory of (2), there exists a solution trajectory of the KLS having the same
dynamical evolution. This means that if a point x(0) ∈ Fn

q is on a orbit (or chain) of length L under F , then there
exists a function hx(0)(x) which is on an orbit (or chain) of length L under F ∗. Since the space of functions V o is
of exponential dimension (equal to qn), a reduced order linear system is developed which retains the information
regarding the solution trajectories of the original dynamical system (2).

This system, called as the Reduced Order Koopman Linear System (RO-KLS) is the constructed by the restriction
of the operator F ∗ to the smallest invariant subspace W1 ∈ V o consisting the coordinate functions χi and the output
functions gi(x). The following section describes the algorithm to compute the RO-KLS for stream generators.

A. RO-KLS for stream generators

As discussed above, construction of the F ∗-invariant subspace W1 plays an integral part to construct the RO-KLS.
The dimension of the linear system is equal to dimension of the smallest F ∗-invariant subspace of V o consisting of
the coordinate functions and the output function g. The construction of this subspace is described in the algorithm
1.

Once the invariant subspace W1 and computed, let its basis be B = {ψ1(x), . . . , ψN (x)}. The RO-KLS (as
evaluation map) is the linear system of dimension dim(W1) and can be expressed in terms of matrices with this
specific basis B. Let the dynamical system be

y(k + 1) = K1y(k)

x(k) = Cy(k)

yop(k) = Γy(k)

(3)
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where KT
1 is the restriction of Koopman operator on the invariant subspace W1, C is the matrix corresponding to

the map from the basis functions B to the vector of coordinate functions [χ1(x), . . . , χn(x)]T , and Γ is the matrix
corresponding to representation of the function g in terms of the basis functions B.

Given any initial condition x(0) of the non-linear stream generator, initiating the RO-KLS with

y(0) =

ψ1(x(0))
...

ψN (x(0))


it has been proven that the sequence yop(k) is same as the output of the stream generator (1) initiated with the
same x(0).

B. Dimension of W1

Given the RO-KLS in (3), the first question which needs to be answered is “Is there any bound on the dimension
of W1?”. The stream generator as in (1) is one of few systems for which this question can be answered convincingly
in the affirmative. Since the internal dynamics of the stream generator is linear, the dimension of the RO-KLS solely
depends on the non-linear output function g.

Lemma 1. Given an dynamical system over finite field with linear internal dynamics as in (1) and a monomial φ,
then

degree (F ∗φ) ≤ degree (φ)

where F ∗ is the Koopman operator.

Proof. Assume that the system (1) evolves over Fn
q , where q = pm. Let the monomial be

φ(x1, . . . , xn) =
∏

j⊂{1,2,...,n}

x
dj

j

where each dj < q − 1 and the degree of the monomial φ is
∑

j dj . The action F ∗φ(x1, . . . , xn) is defined as

F ∗φ(x1, .., xn) = φ(f1(x1, .., xn), .., fn(x1, .., xn))

where f1, . . . , fn are functions corresponding to the state transition for each xi. Since the internal dynamics of the
stream generator is linear, each function fi can be written as

fi(x1, . . . , xn) =
∑

aijxj

and these aij are entries of the matrix A in (1). In particular,

F ∗φ = F ∗(
∏
j

x
dj

j ) =
∏
j

(

n∑
k=1

ajkxk)dj

This means

degree (F ∗φ) = degree
(∏

j

(

n∑
k=1

ajkxk)dj

)
Also,

degree
(
(

n∑
k=1

ajkxk)dj
)
≤ dj

the less than sign is because there can be a case where all ajk can be zero. So, each term in the product

degree
(∏

j

(

n∑
k=1

ajkxk)dj

)
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has a degree ≤ dj and hence

degree (F ∗φ) = degree
(∏

j

(

n∑
k=1

ajkxk)dj

)
≤
∑
j

dj = degree (φ)

Remark 1. The main take away point in the above lemma is that given a linear dynamics and a monomial φ, the
action of Koopman operator on the monomial will not increase the degree of the monomial and this information is
used to create upper bounds on the dimension of W1

Given any non-linear function g and a linear dynamics, it can be written as a sum of monomials and the function
g has a degree dg which is the largest degree of the constituent monomials. From the above lemma, it can be seen
that the action of F ∗ on g does not increase the degree.

Theorem 1. Given a non-linear stream generator (1) over Fn
q with the output g having a degree d, the size of the

invariant subspace W1 is bounded by

dim (W1) =
(1− nd+1)

1− n

Proof. Since the degree of g is d, and from lemma (1), the invariant subspace W1 can have functions only upto
degree d. A counting of all the independent monomials oven n-variables from Fn

q → Fq gives an upper bound on
the the dimension of the invariant subspace W1.

For example, with degree r, the total number of independent monomials is upper bounded by nr since the degree
is r and there are n variables to choose from it and the variables can get repeated too (which means that in the
specific monomial, that variable has a power > 1). Hence, conservative estimate on the number of independent
monomials of degree r over n variables is nr.

So, a function g having degree d can have other terms of degree d or less too. So, counting all the independent
monomials of degree d or less gives an upper bound on the dimension of W1. This gives

dim (W1) = 1 + n+ n2 + · · ·+ nd

where 1 is for the constant function, n is for linear functions and so on. The expression is the partial sum of the
geometric series and simplifies to 1−nd+1

1−n

Remark 2. Note that the estimate in (1) does not take the field equation into account. For d ≥ q, the powers xri ,
(r > q) in the monomial gets reduced to a power xrdi where rd = r mod q and one can have better estimates to
the dimension of W1 for specific fields. Also, the estimate in theorem (1) is the best upper bound on the dimension
of W1 whenever d < q.

For a vector space over the finite field F2, any variable xi satisfies the equation x2i = xi (as functions) which
drastically reduces the dimension of W1.

Corollary 1. Given a stream generator (1) over Fn
2 , with the non-linear function having degree d, the dimension

of W1 is upper bounded by

dim (W1) ≤
d∑

i=0

(
n

i

)
The corollary (1) can be proved by a simple counting argument of number of distinct monomials of degree less

than or equal to d over n variables. It is pertinent to see that when the degree d is less, the dimension of the
subspace W1 is much smaller when compared with the dimension of the dual space V o (which is of exponential
size 2n, for a n-state stream generator).

The table I compares the upper bounds for any 80-bit stream generator over F2 for small degrees (d) of the
non-linear function g. The maximum dimension of the subspace W1 are computed for each d using corollary (1).
Also, by theorem (1), the upper bound of the subspace W1 is of order nd, which is also computed for comparison.
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degree (d) maximum dim of W1 nd nd/max dim W1 max dim(W1)/dim(V o)
1 81 80 1 6.7× 10−23

2 3241 6400 1.97 2.7× 10−21

3 8.54 ×104 5.12 ×105 6 7× 10−20

4 1.67 ×106 4.1 ×107 24.57 1.4× 10−18

5 2.57 ×107 3.28 ×109 127.47 2.1× 10−17

6 3.26 ×108 2.62 ×1011 803.6 2.7× 10−16

TABLE I
UPPER BOUNDS ON DIMENSION OF W1 FOR DIFFERENT DEGREES OF OUTPUT FUNCTION FOR A 80 VARIABLE STREAM GENERATOR OVER

F2

Fig. 3. Ratio of nd/dim(W1) vs the degree d for a 80-bit stream generator

Further, since the stream generator is over F2, the dimension of the dual space V o is 2n (which is 280 in this case),
the upper bound on dimension of W1 is shown as a fraction of the dimension of the dual space V o.

Remark 3. It can be seen that the dimension of W1 is even lesser than nd which was a upper bound on the
dimension of W1 for a stream generator over a general Fq . The figure 3 shows the ratio of nd to dim(W1) for
different degrees d of the output function for a 80-bit stream generator over F2. It can be seen that the graph is
linear in the log-scale and hence it can be concluded that the dimension of W1 for the stream generator over F2

is much smaller than 80d. The light blue line in the figure shows the best exponential approximation of the data
points.

Next an approach to compute the internal state x(k0) of the stream generator, given the sequence of outputs
z(k0), z(k0 + 1), . . . is explored.

III. COMPUTATION OF INTERNAL STATE FOR A STREAM GENERATOR OVER Fn
2

Given the linear system (3) starting from an internal state y(k0), the output yop(k) at each k ≥ k0 is given by

yop(k0 + k) = Γy(k0 + k) = Γ Kk
1 y(k0)

Given the output z(k), k = k0, k0 +1, . . . generated by the non-linear stream generator (1) starting from an initial
condition x(k0), it is proved in [1] that when the RO-KLS (3) is initiated with y(k0) as

y(k0) =


ψ1(x(k0))
ψ2(x(k0))

...
ψN (x(k0))


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then the sequence yop(k), k = k0, k0 + 1, . . . generated by (3) is same as z(k) generated by the non-linear stream
generator (1). Since the RO-KLS is a linear system, the vector of output sequence can be written as linear map on
y(k0) as follows 

yop(k0)
yop(k0 + 1)

...
yop(k0 +N)

 =


Γ
K1Γ

...
KN−1

1 Γ

 y(k0) =: O y(k0) (4)

where O is called the observability matrix corresponding to the linear system (3). Given any sequence of outputs
z(k), k ≥ k0, the linear system of equations (4) needs to be solved for y(k0) with yop(k) = z(k). An unique
solution for (4) exists if the observability matrix O is of full rank. Once y(k0) is computed, the internal state x(k0)
of the original non-linear stream generator can be computed through the map C defined in (3). The condition that
the matrix O is of full rank is what in linear systems theory parlance is defined as the system (3) being Observable
[8]. When the matrix O is not of full rank, then multiple y(k0) exists for the given stream of outputs. This leads
to multiple x(k0) through the map C.

Remark 4. Given a stream generator (1) and its RO-KLS being of dimension N , at the most N outputs are needed
to compute the initial state as anything more would not increase the rank of O (due to Cayley-Hamilton theorem).

A. Dynamic Observer

In the previous part, the RO-KLS is constructed and the internal state x(k0) can be computed from the sequence
of outputs starting from z(k), k ≥ k0. Furthermore, in this section, we construct an new linear dynamical system
called as a dynamic observer [8], [9], which takes the output of the non-linear stream generator z(k) and computes
the current internal state x(k) of the non-linear stream generator. Whenever the RO-KLS is observerable, such a
dynamical system can always be constructed.

Mathematically the dynamic observer is a dynamical system defined as

ŷ(k + 1) = K1ŷ(k) + L(z(k)− yop(k))

x̂(k) = Cŷ(k)
(5)

where, ŷ(k) ∈ Fn
q is the observer state, z(k) is the output of the stream generator, x̂(k) is the computed internal

state of the stream generator, K1 and C are as defined as in (3). The matrix L, known as observer gain is chosen
such that K1 − LΓ is nilpotent. From the linear systems theory, it can proved that whenever the system (3) is
observable, such a L exists. Also, whenever such a L exists such that (K1 − LΓ) is nilpotent, the system (3) is
defined to be detectable. The set of observable linear systems is a subset in the set of detectable linear systems.

Given the stream generator (1) and its RO-KLS as constructed in (3), the dynamic observer construction is
graphically illustrated in figure (4)

For an available output sequence starting from time k0, the observer states can be initialized to any arbitrary
initial condition ŷ(k0) and whenever the RO-KLS is detectable, the computed internal state of the stream generator
x̂(k) converges to the true internal state of the stream generator in maximum N0 time instants, where N0 is the
index of nilpotence of (K1 − LΓ).

To summarize, given a stream generator and its corresponding RO-KLS, whenever the RO-KLS is observable,
the internal state x(k0) can be uniquely computed from the sequence of outputs starting from k0 by solving the
linear equations (4). If the RO-KLS system is detectable, then the internal state is uniquely computed at x(k0 +N0)
from a sequence of outputs starting from k0 using the dynamic observer (5) and N0 is the index of nilpotence of
K1 − LΓ matrix used in observer construction.

Remark 5. Though it is possible to uniquely determine the initial condition x(k0) from a sequence of outputs
z(k) starting from k = k0 whenever the system is observable, the construction of dynamic observer is potentially
a better option. This is because the observer based approach inherently uses matrix-vector multiplication to do
forward computation of the observer dynamics while solution to (4) involves solving linear system of equations.
Also, the dynamic observer reconstructs the internal state uniquely for a larger class of stream generators (whenever
the RO-KLS is detectable).

When the RO-KLS is neither observable nor detectable, then unique computation of the internal state of the
stream generator is not possible from the output stream z(k0), z(k0 + 1), . . . , for any k ≥ k0. But equation (4) can
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Stream Generator

x(k + 1) = Ax(k)

z(k) = g(x(k))

Output
z(k)

L
Observer

ŷ(k + 1) = K1ŷ(k) + Lz(k)− Lyop(k)

yop(k) = Γŷ(k)

Stream Generator

Cx̂(k)

RO-KLS based ObserverComputed internal state

Fig. 4. Dynamic Observer for Stream generator using RO-KLS

be used to compute all possible values of y(k0) for the given output stream and use these y(k0) to compute all
possible x(k0) with the map C defined in (3).

1) Illustrative Example: Consider a 4-bit stream generator over F2 as follows. The internal state update is through
a LFSR with feedback polynomial

x4 + x+ 1

The state transition matrix A is

A =


0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0


Let x0, x1, x2, x3 be the register contents. The output stream z(k) is generated as g(x0, x1, x2, x3) = x0x1.

The subspace W1 is computed to be of dimension 10. A basis of this subspace is chosen as in (6)
x0, x1, x2, x3, x1x2, x2x3, x0x3 + x1x3,

x0x1 + x0x2 + x1x2 + x1,
x1x2 + x1x3 + x2x3 + x2,

x0x2 + x1x2 + x0x3 + x1x3 + x2x3 + x3

 (6)
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The matrix K1, C and Γ are computed to be

K1 =



0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
1 1 1 0 1 0 1 1 1 0



C =


1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0


Γ =

[
0 0 0 0 1 0 0 0 0 0

]
The RO-KLS is constructed as in equation (3). It can be seen that the observability matrix O defined in (4) is of
full rank and hence the RO-KLS is observable and L can be computed such that K1 − LΓ is a nilpotent matrix.
The L is computed as

L =
[
0 0 0 1 0 1 0 1 1 0

]T
This concludes the design of the observer. The index of nilpotence of K1 − LΓ is 10 and hence the reconstructed
state x̂(k) is equal to the original internal state of the stream generator from the 10th time instant starting from
the observation of the output. The observer dynamics (5) is now initiated with arbitrary initial condition ŷ(k0)
and by using the output stream from z(k0), the internal state of the stream generator can be uniquely computed
from k0 + 10. The following table gives the comparison between the internal state of the stream generator and the
reconstructed state through the observer

k x(k0 + k)T z(k) x̂(k0 + k)T

0 [1 1 1 0] 1 [1 0 1 0]
1 [1 1 0 0] 1 [0 1 0 1]
2 [1 0 0 0] 0 [1 0 1 0]
3 [0 0 0 1] 0 [0 1 0 0]
4 [0 0 1 0] 0 [1 0 0 1]
5 [0 1 0 0] 0 [0 0 1 1]
6 [1 0 0 1] 0 [0 1 1 1]
7 [0 0 1 1] 0 [1 1 1 1]
8 [0 1 1 0] 0 [1 1 1 0]
9 [1 1 0 1] 1 [1 1 0 1]

10 [1 0 1 0] 0 [1 0 1 0]
11 [0 1 0 1] 0 [0 1 0 1]

TABLE II
THE INTERNAL STATES OF THE STREAM GENERATOR x(k) AND THE RECONSTRUCTED STATES x̂(k) THROUGH OBSERVER

It can be seen that the observer reconstructs the original internal state in k0 + 10 time instances. The initial
condition x(k0) can be recomputed from x̂(k0 + 10) by inverting the dynamics of the LFSR. The computation
gives x(k0) = [1 1 1 0]T .

B. Computation of x(0) from an arbitrary internal state x(k)

Given the stream generator as in (1), computation of the initial condition x(0) from the sequence of outputs
(z(k0), z(k0 + 1), . . . ) starting from a time instant k0 is an important problem in cryptography as it can break the
encryption scheme modeled using this stream generator. From (4), whenever the corresponding RO-KLS of the
stream generator is observable (the O being full rank), the internal state x(k0) can be computed uniquely. Under
the assumption that the system is detectable, the internal state of the stream generator can be uniquely computed
at a time instant k0 +N0, where N0 is the index of nilpotence of K1 − LΓ.
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Algorithm 2 Retrieval of initial condition x(0) using observerability attack
1: procedure OBSERVABILITY ATTACK
2: Outputs:

Reconstruction of internal states x(k) from the output sequence z(k) starting from k0
Retrieval of initial condition x(0) of the stream generator.

3: Compute the invariant subspace W1 using the algorithm (1) and the construct the RO-KLS of the stream
generator.

4: if RO-KLS detectable then
5: Construct the dynamic observer as in figure (4) and reconstruct the internal state uniquely at x(k0 +L),
L is the index of nilpotence of K1 + LΓ

6: if Internal Dynamics of stream generator reversible then
7: Compute the initial condition x(0) uniquely from the unique x(k0 + L)
8: else
9: Compute the all possible initial condition x(0) satisfying A(k0+L)x(0) = x(k0 + L)

10: else
11: Solve for all the solutions y(k0) of the linear equation (4) for the given output sequence.
12: The internal states x(k0) = Cy(k0) are the set of possible states which could generate the output

sequence.
13: halt

Once this internal state is uniquely computed at some x(k), the initial condition x(0) is computed by reversing
the dynamics of the stream generator. But to uniquely reverse the dynamics, the internal dynamics of the stream
generator should be reversible or equivalently the matrix A needs to be invertible. Whenever the system dynamics
is a 1 − 1 map (or a permutation) over Fn

q , the dynamical system is said to be non-singular. And whenever the
system is non-singular and RO-KLS being detectable, unique retrieval of x(0) is possible from the output sequences
starting from any time instant k0.

If the internal dynamics of the stream is not a permutation over Fn
q but detectable, then instead of a unique

x(0), there would be a family of initial conditions corresponding to the unique x(k0 +N1) reconstructed from the
dynamic observer.

When the RO-KLS is neither detectable nor observable, then there are multiple initial conditions y(k0) for
the output sequence z(k) which can be computed through equation (4). These y(k0) lie on a linear subspace.
Corresponding to these y(k0) solutions, there exists multiple points x(k0) in the state space of the stream generator.
These correspond to possibly multiple symmetric keys in the initial state x(0). In practise however, superfluous
multiple keys corresponding to same output stream rarely exists as these denote redundant keys. Hence stream
generators are rarely likely to be unobservable.

The algorithm 2 summarizes the discussion about the retrieval of initial condition x(0) from the sequence of
outputs z(k0), z(k0 + 1), . . . , using the RO-KLS.

C. Numerical Example

Consider the 80-bit stream generator made up of a single LFSR of 80 bit with the characteristic polynomial p(x)
as

p(x) =x80 + x53 + x47 + x35 + x33 + x10 + 1

The characteristic polynomial determines the feedback coefficients of the LFSR. The non-linear output function is

g(x1, . . . , x80) = Majority(x1, x26, x52)

= x1x26 + x1x52 + x26x52
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Fig. 5. Hamming distance of the error between the internal state of the stream generator and the reproduced state through dynamic observer

The dimension of the subspace W1 is computed to be 3240. The RO-KLS is a linear system of dimension 3240
with the matrices K1 ∈ F3240×3240

2 , Γ ∈ F1×3240
2 and C ∈ F80×3240

2 and

y(k + 1) = K1y(k)

yop(k) = Γy(k)

x(k) = Cy(k)

The RO-KLS is verified as observable and hence there exists a matrix L ∈ F3240×1
2 such that K1−LΓ is a nilpotent

matrix. Once L is computed, the observer is designed as in figure (4). The internal states of the observer is ŷ(k).
The dynamics of the observer is

ŷ(k + 1) = K1ŷ(k) + Lz(k)

and the computed internal state of the stream generator is x̂(k) which is

x̂(k) = Cŷ(k)

The observer is initiated with random ŷ(0) and it can be seen that the computed state x̂(k) converges to the internal
state x(k) of the stream generator within a 3240 time instances, which is the dimension of the RO-KLS.

As a verification, let the difference in estimation at each time instant be e(k) = x(k)− x̂(k). For convenience,
the Hamming distance of e(k) is chosen as a matric. The Hamming distance for a vector over F2 is the number
of non-zero entries in that vector. It is seen from the figure that the Hamming distance of the error is continuously
zero after 3240 time instances.

IV. COMPUTATIONAL COMPLEXITY OF COMPUTING INTERNAL STATES

The complexity of computing the internal states of the filter generator is primarily dependent on the size of the
RO-KLS. Once the RO-KLS is computed, further complexities are polynomial in the size of the RO-KLS. The
overall computations for recovery of internal state of a stream generator can be divided into two parts. The first
part dealing with the construction of the RO-KLS which is offline (and need to be done once for a given stream
generator) and the second (the online part) being recovery of the internal state of the filter generator from the given
output stream z(k) using the RO-KLS.
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A. Preliminary offline computations

The offline computation concerns with the construction of the RO-KLS from a given non-linear filter generator.
Since the internal dynamics is linear and by theorem 1, the dimension of the RO-KLS depends on the degree of
the output function. Let D be the maximum possible dimension of this subspace (which is equal to the number
of independent functions in n-variables with degree less than or equal to d and D is given as in theorem (1) or
corollary (1) depending on the field.). Let S be a space of functions over Fn

q of degree less than or equal to d. So
any function of degree less than or equal to d can be written as a linear combination of a chosen basis of S and
hence a vector of dimension D. For example a 4 bit filter generator over F2 with the output restricted to degree 2,
one ordered-basis for S is given below

BS = {1, x1, x2,x3, x4, x1x2, x1x3, x1x4, x2x3, x2x4, x3x4}

Such a basis is referred to as the monomial basis. For example, given a function h(x1, x2, x3, x4) = x1+x1x3+x2x4,
it is written as the vector [0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0]T with the basis BS . Computation of a basis for W1, the invariant
subspace spanning the coordinate and output functions is the main part of RO-KLS construction. Let the output
function g be represented as vector vg ∈ FD

q with a chosen basis of S. Let gi = (F ∗)ig denote the action of
Koopman operator F ∗ i-times on the function g. From theorem 1, it is known that deg F ∗g ≤ d, (d = degree of g)
and hence every iterate (F ∗)i on g is of degree ≤ d and hence in the span of S. Each of these iterates (F ∗)i g can
be represented as a vector vgi over FF

q . Similarly, all the coordinate functions χi are in the span of S and hence
have an unique representation as a vector vxi

. Starting with vg , one needs to find the smallest l such that the vector
vgl is linearly dependent on

vx1
, . . . , vxn

, vg, vg1 , . . . , vgl−1
(7)

This is a linear algebraic computation over the vectors FD
q which is of order D3. In the worst case the dimension

of W1 is going to be D. Hence the offline computations are going to be at the most of order D4

B. Online computations

Once the linear model of the filter generator computed, the dynamic observer does only forward computations.
Let N be the dimension of W1. At each stage, the observer updates the internal state as

ŷ(k + 1) = K1ŷ(k) + L(z(k)− yop(k))

The second part of the update L(z(k)−yop(k)) is a vector-scalar multiplication as both z(k) and yop(k) are scalars
and L is a vector of length N and is of complexity O(N). The first part K1ŷ(k) is matrix-vector multiplication. In
general it is of order O(N2) but we look to exploit the structure of K1. Choosing the basis of W1 as in equation
(7), it can be seen that the matrix representation of K1 is a block triangular matrix.

K1 =

[
K11 0
K21 K22

]
where K11 is the system matrix A as in equation (1). K21 is defined as

K21 =


0 . . . 0
...

. . .
...

0 . . . 0
α1 . . . αn


and K22 as

K22 =


0 1 . . . 0

0 0
. . . 0

0 0 . . . 1
β0 β1 . . . βl−1


where αi and βi are from the linear dependency relation

(f∗)l(x) =

n∑
i=1

αiχi(x) +

l−1∑
i=1

βi(f
∗)i(x)
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The operation K1ŷ(k) is a matrix-vector multiplication and in general of order O(N2). But by construction of the
matrix K1, it can be made simpler. Let ŷ(k) = [ŷ1(k) ŷ2(k)]T where the dimension of ŷ1 is n and ŷ2 is l where,
l = N − n. So the computation of K1ŷ(k) is equal to computing K11ŷ1(k) and K21ŷ1(k) and K22ŷ2(k). The
individual operations are
• K11ŷ1(k) is a matrix-vector multiplication of dimension n. Assuming no structure of A, the total number of

operations is n2.
• K21ŷ1(k) is a matrix-vector multiplication. The dimension of K21 is l × n. But the first l − 1 rows of K21

are 0 and hence it is only a vector-vector product with total n operations.
• K22 is in companion form. The first l− 1 rows need one computation of K22[i, i+ 1]ŷ2[i+ 1] and each is of
O(1) and a cumulative l − 1 operations. The lth-row is a vector-vector product of dimension l and a total of
l operations. Hence the total number of operations is 2l − 1.

Cumulatively, there is a total of n2 + n+ 2l− 1 operations. We know that l = D− n and l >> n. Hence the total
complexity of online computations is O(N).

Also, the computation x̂(k) = Cŷ(k) is needed to compute the internal state of the filter generator. There
are totally n2l operations. And with l >> n, the computations are of order O(N). Hence the effective online
computations are of order O(N).

Also, the reconstructed internal state through the observer converges to the internal state of the filter in M time
instants where M is the index of nilpotence of K1 −LΓ. The total online computations to reconstruct the internal
state is of order O(NM).

Remark 6. It is to be noted that the dimension N of the subspace W1 has an upper bound D. So, in essence, the
online computations are of order O(D).

V. CONCLUSION

The idea of observability based attack on stream ciphers uses the dynamic observer construction well known in
linear system. However it is extended to nonlinear stream generators by considering the reduced Koopman linear
system. This approach allows construction of the observer to nonlinear systems and computation of the internal state
by linear algebraic computation. The online computational complexity to recover the internal state is O(D) with an
offline precomputation of complexity O(D4) where D is the

∑
d

(
n
i

)
. This type of attack can be extended to any

pseudorandom generators over finite fields and the reconstructed state of the observer equals to the internal state
of the random number generator whenever the RO-KLS is detectable. Such an attack for stream generators is also
theoretically applicable to stream generators with non-linear internal dynamics. However the bounds on dimensions
of RO-KLS in case of nonlinear state dynamics cannot be obtained as easily as in the present case.
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