
Rabbit: Efficient Comparison for
Secure Multi-Party Computation

Eleftheria Makri1,5, Dragos Rotaru2,1, Frederik Vercauteren1, and Sameer Wagh3,4

1 imec-COSIC, KU Leuven, Belgium
2 Cape Privacy

3 University of California, Berkeley, USA
4 Princeton University, Princeton, USA

5 ABRR, Saxion University of Applied Sciences, The Netherlands
emakri@esat.kuleuven.be, dragos@capeprivacy.com,

frederik.vercauteren@kuleuven.be, swagh@berkeley.edu

Abstract. Secure comparison has been a fundamental challenge in privacy-
preserving computation, since its inception as Yao’s millionaires’ problem
(FOCS 1982). In this work, we present a novel construction for general n-
party private comparison, secure against an active adversary, in the dishonest
majority setting. For the case of comparisons over fields, our protocol is more
efficient than the best prior work (edaBits: Crypto 2020), with „1.5ˆ better
throughput in most adversarial settings, over 2.3ˆ better throughput in
particular in the passive, honest majority setting, and lower communication.
Our comparisons crucially eliminate the need for bounded inputs as well
as the need for statistical security that prior works require. An important
consequence of removing this “slack” (a gap between the bit-length of the
input and the MPC representation) is that multi-party computation (MPC)
protocols can be run in a field of smaller size, reducing the overhead incurred
by privacy-preserving computations. We achieve this novel construction using
the commutative nature of addition over rings and fields. This makes the
protocol both simple to implement and highly efficient and we provide an
implementation in MP-SPDZ (CCS 2020).

Keywords: Secure Comparison·Multi-party Computation·Unconditional Se-
curity·Dishonest Majority.

1 Introduction

After years of active research, both in theoretical results and system building, multi-
party computation (MPC) is becoming practical as a paradigm. Recent research
results and practical implementations [13,1], deployment of MPC in real-life ap-
plications [3], as well as organizations beyond academia offering commercial MPC
solutions [30,27,26], confirm that MPC is reaching maturity. However, MPC, just like
any other cryptographic primitive deployed to enhance privacy, comes at a significant
efficiency penalty, in terms of computation and communication. While some research
focuses on tailoring MPC solutions to a particular problem, to compensate for this

2 Makri et al.

efficiency penalty, other works focus on improving the efficiency of fundamental MPC
building blocks, which are applicable to a wide variety of problems.

Secure comparison is an important problem in multi-party computation – it
involves the comparison of two or more secret values in a privacy-preserving manner.
Comparison is a fundamental building block, necessary for the realization of various
larger tasks: from online auctions to big data analytics and machine learning. Given
the privacy considerations that today’s digital infrastructure entails, protocols for
secure comparison are a fundamental MPC tool in privacy-preserving applications.

Since the introduction of the secure comparison problem by Andrew Yao in
1982 [34] as the millionaires’ problem, research efforts have pushed the frontiers of
performance of this primitive. MPC has traditionally been efficient either on linear
operations, when it is based on arithmetic circuits, or on non-linear operations, when
it is based on Boolean circuits. Recent applications require a combination of linear and
non-linear operations, and they are most of the time addressed with solutions based
on arithmetic circuits, because these are significantly more efficient than Boolean
circuits for the linear part, which presents itself as the bulk of the computation. Given
the non-linear nature of the comparison operation, protocols for secure comparison
still remain a bottleneck for privacy-preserving computation. Thus, any improvement
in this line of work has a compounding impact on improving the overall efficiency
of privacy-preserving computations.

In this work, we present a novel comparison protocol that is secure against an
active adversary in the dishonest majority setting and holds for general n-party
computation. Our work improves upon the state-of-the-art protocol for comparison in
dishonest majority in both the total time and communication by a factor of two for
the OT-based preprocessing. In addition, our protocol is easy to implement requiring
no heavy cryptography. Notably, our protocol is highly conducive to amortization
and preprocessing, which makes it attractive for deployment in real-life applications,
as these are important considerations in building practical secure systems.

1.1 Our Contribution

We present Rabbit1, a novel secure comparison protocol, which leverages the commu-
tative nature of addition over rings and fields. Our protocol exploits recent advances
in the generation and deployment of doubly authenticated shared bits (daBits [25]),
which are bits living both in Fp and in F2k , as well as extended doubly authenticated
bits (edaBits [14]), which correspond to shared integers in the arithmetic domain,
whose bit decomposition is shared in the binary domain. The proposed comparison
is more efficient than previously proposed secure comparison protocols, while at the
same time removing the dependence on bounds and statistical parameters. This
allows the MPC engines used for our secure comparison to be smaller than the ones
required by previous protocols, which has a positive impact on the concrete efficiency
of the MPC protocols. Concretely we make the following contributions:

(i) Novel comparison protocol: We propose Rabbit, a novel secure comparison
protocol based on the commutative nature of addition over rings and fields.

1 The name is an extension of the daBit [25], maBit [24] and edaBit [14] line of work.

Rabbit: Efficient Comparison for Secure Multi-Party Computation 3

Rabbit is a general n-party protocol and crucially eliminates the need for any
“slack” – a statistically larger dataspace to ensure security of computations, and
thus enables computations over smaller datatypes. For instance, to compute over
64-bits, prior works require the use of 128-bit datatypes, while we can support
these computations in standard 64-bit datatypes.

(ii) Security: Since we eliminate the slack and keep an exact tab of overflows, our
protocols are unconditionally secure even against active adversaries in the dishon-
est majority setting. In the case of comparison over fields, we do have to account
for a statistical security parameter, because of the existing implementation of
edaBits [14]. In general, when implemented in a larger body of MPC computation,
our comparison inherits the security properties of the platform, such as statistical
security when using MP-SPDZ [13].

(iii) Simplicity and Efficiency: Our protocol is straightforward to implement. As
shown in Fig. 1b, it is merely a few lines of code in MP-SPDZ. This also makes
our protocol highly amenable to secure implementation. As for efficiency, the
benefits of our work over the state-of-the-art are most pronounced in the case of
comparison over fields. In this case, we improve end-to-end computations such as
secure evaluation of ResNet-50 up to 2x faster, albeit at a higher communication.

1.2 Technical Overview

Our central focus in this work is to propose novel and efficient protocols for secure com-
parison. Comparison protocols usually rely on statistical security or bit-decomposition
combined with prefix computation to achieve the results. We observe that:

(i) When considering arithmetic secret shares, the bit encoding modulus overflow
of secrets enables exact integer relations between the secret, the secret shares,
and the modulus.

(ii) Using the commutativity of addition over standard structures, such as rings
and fields, we can express a sum in two different ways and thus equate the
corresponding constraint equations.

These two observations together enable more efficient protocols for comparisons. More
specifically, the core idea behind our comparison protocols lies in our ability to detect
when a sum over a particular modulus overflows (i.e., wraps around), and when
this happens we can correct it. Observe that given two integers x;yPZM , their sum
x�y mod M is less than either of the two summands, iff the sum wrapped around
the modulus. That is, given a comparison function:

LTp�;�q :Z�ZÑt0;1u � Z :

#

LTpx;yq�1 if px yq;

LTpx;yq�0 otherwise;

we can compute the modular sum x�y mod M, by performing computations over
the integers as:

x�y mod M�x�y�M �LTpx�y mod M;xq�x�y�M �LTpx�y mod M;yq

This is due to the observation that LTpx�y mod M;xq (or LTpx�y mod M;yq) is
true, iff the sum wrapped around. Given that the LTp�;�q function detects (i.e., outputs

4 Makri et al.

rxsM a“rx`rsM

c“rx`BsM b“rx`r`BsM

�r

�B �B

�r

(a) Intuition behind Rabbit comparison protocol (b) Rabbit code snippet

Fig. 1: Our protocol relies on the commutative properties of addition over rings/fields as
shown in Fig. 1a. This diagram indicates the two different ways we can obtain the value b.
The r¨sM notation indicates that the corresponding values or sums are taken modulo M.
The horizontal arrows indicate addition of a uniformly random value rPt0,...,M´1u, used to
mask the secret input of the comparison x (so that we can later open it without information
leakage, to perform a comparison). The vertical arrows indicate addition of a known constant
B Pt0,...,M´1u related to the public quantity to be compared against. These two ways
of computing the sum b, are necessary for the comparison protocol between a secret value
x and a public constant M´B. The code on the right (Fig. 1b) shows the simplicity of
implementing our protocol, implemented in this case in the MP-SPDZ codebase [13].

true) when a wrap around happens, we can indeed realize the modular sum, while
performing computations over the integers, by conditionally subtracting the quantity
of the wrap around (i.e., M), when LTp�;�q returns true.

Notation. We use rxsN to denote the sharing of a secret x in the ring ZN . We
primarily consider two values of the modulus: N�M and N�2, where M is a fixed
constant, set to either a prime p, or a power of two 2k. The types of sharings are:

(i) rxsM , where the secret is xPZM or rbs2, where the secret is a bit bPF2;

(ii) rxsM and rx0s2;:::rxm�1s2 such that x�
°m�1
i�0 xj �2

j pmod Mq and M 2m (this
is also known as an edaBit [14])

Similarly, given a (public) constant value RPZM , we denote by R0;:::;Rm�1 the bit
decomposition of R, and by Ri its individual bits (at the corresponding position i).

2 Comparison Protocols

In this section we present our comparison protocols and their workings on a step-
by-step basis. Then, for each presented protocol, we also show correctness. We do
not provide any formal proofs of security of our protocols, as these follow trivially
from the arithmetic black box functionality paradigm [11]. We present the protocols
in the following order:

(i) First, we present the protocol ΠLTBits (Fig. 3), which realizes a comparison be-
tween a secret bit-decomposed value, and a public value, and outputs a secret

Rabbit: Efficient Comparison for Secure Multi-Party Computation 5

Fig. 2: Proposed comparison protocols, their inputs, and their interdependencies.

bit indicating the result of the comparison. This is a building block that uses
prefix computation for comparison.

(ii) Second, we introduce the protocol ΠLTC (Fig. 4), which invokes ΠLTBits and per-
forms a comparison between a secret value (without bit-decomposition), and a pub-
lic value, where the output is a secret bit indicating the result of the comparison.

(iii) Third, we present a specialized comparison protocol, ΠReLU (Fig. 5), that can be
applied when the modulus is a power of 2 and the public constant against which we
compare is half the modulus. Note that this is an important case, as it corresponds
to computation of the ReLU function, which is widely used in machine learning.

(iv) Finally, in ΠLTS (Fig. 6), we show how to generalize ΠLTC to compare two secret
shared values, where once again the output is a secret bit.

Note that given our novel approach of comparison, there is a difference between
secret-public constant comparison (ΠLTC) and secret-secret comparison (ΠLTS), which
often comes for free when using standard techniques that require a slack. For more
details on this, we refer the reader to Section 4. Finally, for all proposed protocols,
the output can either be an element of ZM or F2 (depending on the needs of the
follow-up computations) indicating the result of the comparison. An overview of all
our comparison protocols, their inputs, and their interdependencies is given in Fig. 2.

2.1 Comparison with Bitwise Shared Input { LTBits Protocol

The protocol ΠLTBits, listed in Fig. 3, follows a standard bit decomposition idea to
privately compute a secret bit, indicating the result of a comparison. It is essentially
an adaptation of the BIT-LT protocol by Damg̊ard et. al. [9], which instead of two
secret bit-decomposed inputs (that BIT-LT receives), it receives one bitwise secret
shared input and a public arithmetic value to compare upon, while its output is a
secret Boolean value indicating the result of the comparison. Notably, each component
of our bit-decomposed secret lives in F2, unlike Damg̊ard et. al.’s [9] construction,
where each secret bit lives in Fp. The protocol LTBits computes the following:

1. The XOR of each bit of the secret input rxis2 value with the corresponding bit
of the public value Ri. This results in a bit-string ry0s2;:::rym�1s2 with ones on
all positions where the bits of the values to be compared differ.

6 Makri et al.

2. A prefix OR (circuit computes for each position i of a bit vector, the OR between
all previous bits in the vector up to position i. - more details in Catrina and de
Hoogh [6]) of the previously computed bits ryis2, which results in a vector rzis2
of 0’s followed by 1’s with the transition from 0 to 1 occurring at the first bit
where the secret and the public value differ.

3. In this step, the previous vector is converted into a vector rwis2; i�0;:::;m�1
of all 0’s and a single 1 at the index of the first differing bit.

4. In the last step, we take the inner product between the vector w (which is a vector
of 0’s in all positions, except for the position of the first differing bit of the values
to be compared) and the bits of the public value R. This inner product results in 0,
if at the position of the differing bit R was 0, which further implies that x is larger
than R, and it results in 1 otherwise. We have computed the value rpx Rqs2,
but we are actually after rpR xqs2, thus 1�rpx Rqs2 concludes the protocol.

Less Than Bits ΠLTBitspR,rx0s2,...rxm�1s2q

Inputs: Secret value x shared bitwise, such that parties hold rx0s2,...rxm�1s2, where
x“

°m�1
i�0 xj ¨2

j, and public value R.
Outputs: Compute the Boolean value rcs2“rpRďxqs2.
Protocol: Complete steps 1-3 for all iPt0,1,...,m´1u

1. Parties compute ryis2“rxis2‘Ri.
2. Parties compute rzis2“_

m�1
j�i ryjs2 using PrefixOR circuit.

3. Parties compute rwis2“rzis2´rzi�1s2, where zm“0.
4. Output rcs2“1´rpxăRqs2, where rpxăRqs2“

°m�1
i�0 Ri ¨rwis2.

Fig. 3: Protocol for comparison between an input shared bitwise and a public value.

Correctness of ΠLTBits: To see the correctness of ΠLTBits, note the following series
of observations:

1. To compare two numbers, we start from the most significant bit (MSB) and look
for the first bit where the two numbers differ. This is precisely what is computed
in Step 1 of ΠLTBits. Thus, ym�1;:::;y0 contains a series of 0’s, followed by a 1,
which in turn is followed by bits that are irrelevant to the comparison.

2. As a consequence, zm�1;:::;z0 contains a series of 0’s followed by 1’s starting at
the first location where xi and Ri differ. Let kPt0;:::;m�1u be the largest index
where xi�Ri. Thus, wi�1 iff i�k and wi�0 otherwise.

3. Finally, multiplying wi by Ri ensures the following:

output�

#

1 if Rk�1; xk�0 (implying R¡xq

0 otherwise (implying R⁄x)

�
2.2 Comparison with a Constant { LTC Protocol

The protocol ΠLTC, listed in Fig. 4, is a comparison protocol between a shared secret
value, and a public constant. Unlike ΠLTBits, it does not require the secret input

Rabbit: Efficient Comparison for Secure Multi-Party Computation 7

value to be bitwise secret shared, but it invokes the protocol �LTBits twice. These
two invocations can be parallelized, decreasing the total number of rounds of the
comparison protocol. � LTC requires anedaBitas an input. An edaBit is a shared value
in the arithmetic domain, accompanied by its own bit decomposition in the binary
domain [14]. The core idea behind this comparison protocol is that addition in a ring
or field is commutatitve as explained in Fig. 1a.

Less Than Constant � LTCprxsM ;Rq

Inputs: Value x secret shared, such that parties hold rxsM , a shared
edaBit

�
rr sM ;rr0s2;:::;rrm � 1s2

�
and public value R.

Outputs: Compute the Boolean value rpx Rqs2.
Protocol:

1. Parties compute the value rasM � r x � r sM (and rbsM � r x � r � M � RsM).
2. Parties open the value a (b� a� M � R can be opened locally).
3. Parties compute the following quantities:

 r w1s2 � � LTBits pa;rr0s2;:::;rrm � 1s2q.

 r w2s2 � � LTBits pb;rr0s2;:::;rrm � 1s2q.

 w3 �p b M � Rq.

4. Output rws2 � 1�pr w1s2 �r w2s2 � w3q or use one classicaldaBit to output rwsM .

Fig. 4: Protocol for comparison between an input shared in ZM and a public value R for
any modulus M (in particular, M can be 2k or a prime p).

The � LTC protocol proceeds as follows:

1. Using the arithmetic value rrsM of the random edaBit from the input, the parties
mask the input value x, computing ras.

2. ras is opened, without revealing any information about x.
3. The parties then do the following:

(a) Invoke � LTBits to compare the masked valuerasagainst the randomedaBit (in
bitwise sharing), resulting in rw1s2.

(b) Invoke � LTBits to compare b�r a� M � RsM against the random edaBit (in
bitwise sharing), resulting in rw2s2.

(c) Compare in the clearb against the public value B � M � R, resulting in w3.

4. Finally, they conclude the comparison test by computing rws2 � 1�pr w1s2 �
rw2s2 � w3q. This equation follows from the way we exploited the commutative
property of addition, and its correctness is explained in the next paragraph. The
output at this step is the binary value indicating the result of the comparison,
shared in F2. Depending on the follow-up computations in the larger MPC
protocol that uses the comparison, if the next input needs to be arithmetic, a
classicaldaBit [25] can be used to transform the representation of this bit inZM .

Correctness of � LTC : Let us denote by rxs the value of x PZM , i.e., the modular
reduction in t 0;1;:::;M � 1u. We are interested in securely computing the Boolean

8 Makri et al.

value px Rq, for R a public constant. Furthermore, let LTpx;yqbe defined as follows:

LTpx;yq�

#
1 if x y
0 otherwise

(1)

Recall from Section 1.2 that the LTpx;yq function enables writing exact integer
relations for the sum of two numbers as follows:

rx� ys �r xs�r ys� M �LTprx� ys;rxsq

� rxs�r ys� M �LTprx� ys;rysq
(2)

To be consistent with the notation followed in Fig. 1a, we defineB � M � R, and
c�r x � Bs. We then use the commutative nature of addition to represent the sum
b� r x� r � Bs in two different ways, as shown in Fig. 1a. Using Eq. 2 for the two
additions in the top path and noting that a;b;BPZM :

b�r a� Bs � a� B � M �LTpb;Bq

� x� r � M �LTpa;rq� B � M �LTpb;Bq
(3)

Similarly, using Eq. 2 for the two additions on the bottom path , we get:

b�r c� rs � c� r � M �LTpb;rq

� x � B � M �LTpc;Bq� r � M �LTpb;rq
(4)

Equating the RHS of Eq. 3, and Eq. 4, we get:

LTpa;rq� LTpb;Bq� LTpc;Bq� LTpb;rq (5)

Recall that the result we are after is LTpx;Rq, which is equivalent to p1� LTpc;Bqq,
sinceB � M � R, and c� rx � Bs. Thus, from Eq. 5 we haveLTpc;Bq� 1�p LTpa;rq�
LTpb;Bq� LTpb;rqq, which is exactly what we compute in Step 4 of �LTC . Finally, to
complete the proof, we reiterate thatLTpc;Bq� 0 iff px Rqand that LTp�;�qcorrectly
computes the function defined by Eq. 1. �

2.3 � ReLU { Special Case of � LTC for R � 2k � 1 ; M � 2k

� LTC is a general comparison protocol for comparing againstany public value. However,
a special case of interest is when the modulus is a power of 2 and the public constant
to be compared against is half the modulus. When considering privacy-preserving
alternatives to machine learning, the use of fixed-point arithmetic converts the widely
usedReLUpxq� maxpx;0q function to the above comparison, when considering such a
special modulus (power of 2). In this case, whereR � 2k� 1 and M � 2k , the protocol
can be optimized further to improve performance. We present this optimized protocol
in Fig. 5. This comparison setting is useful in a number of privacy-preserving machine
learning frameworks [22,32], where fixed point encoding transforms theReLUfunction
into a comparison with R � 2k� 1 and M � 2k . In this case, we can simplify our
protocol to open the masked valuea�r x� rs (Step 1 of the protocol), subtract the

Rabbit: Efficient Comparison for Secure Multi-Party Computation 9

mask r from it using a binary circuit in the secret shared domain (Steps 2, 3, 4 of the
protocol), and extract the MSB of this result (Step 6). This way we are essentially
extracting the MSB of x. This replaces the overhead of two invocations of �LTBits

with a single invocation of a binary addition protocol (� BitAdder). The computation
in Step 4 can also be used to perform comparisons whenR� 2` is another power of
two, however that would require additional computation over the bits sk� 1;:::;s` .

ReLU � ReLUprxs2k ;2k � 1q

Inputs: Value x secret shared, such that parties hold rxs2k , a shared edaBit�
rr s2k ;rr0s2;:::;rr k � 1s2

�
and the public value 2k � 1.

Outputs: Compute sharesrys2k where y � x if px ¤ 2k � 1q and 0 otherwise.
Protocol:

1. Parties compute the value ras2k � r x � r s2k and open a.
2. Parties locally compute rt0s2;:::rtk � 1s2 � r 1� r0s2;:::;r1� r k � 1s2
3. Parties set a0;:::ak � 1 to be the bits of pa� 1q.
4. rs0s2;:::;rsk � 1s2;rsk s2 � � BitAdder pa0;:::;ak � 1;rt0s2;:::;rtk � 1s2qa.
5. Output rsk � 1s2 or use one classicaldaBit to output rsk � 1s2k if only the derivative

of ReLU is required in the computation.
6. Use one multiplication triple and output y �r xs2k �rsk � 1s2k .

a � BitAdder is a circuit performing addition over bitwise shared values.

Fig. 5: Protocol for comparison between an input shared in Z2k and 2k � 1.

Correctness of � ReLU: Observe that in this special case comparison with the con-
stant 2k� 1 where the modulus is 2k , the MSB of the secret input defines the result
of the comparison. Our protocol essentially performs a bit decomposition of the
input rxs2k by masking it (using the arithmetic version of the edaBit) and then again
subtracting this mask in a binary circuit (using the binary version of the edaBit).
This results in the bit decomposition of x, and by extracting its MSB we conclude
the comparison, and hence the computation of thisReLUfunction.

Remark { Optimizing � ReLU: Note that Step 4 in Figure 5 can be optimized as we
only require a single bit rsk� 1s2. In particular, this requires log2k rounds and klog2k
invocations of bit-triples. This can be reduced tolog2k rounds and 2k� 2 bit-triples
by simply modifying the MSB values and using a prefix computation protocol � PreOpL

(cf [6]). We modify the most significant bit of the input tuple to be p1;0q before
passing to the � PreOpL. Consequently, the second element of the output tuple of the
� PreOpL protocol is the carry bit rsk� 2s2 and thus rsk� 1s2 can be computed locally
as theXOR of the MSB's of the two bits and the bit rsk� 2s2.

2.4 Comparison with Secret { LTS Protocol

While the protocol described in Sec. 2.2 provides an efficient way to compare with a
public constant, the protocol described in this section, � LTS, listed in Fig. 6, enables

10 Makri et al.

the comparison of two secret valuesx and y. In most prior works, due to the use of a
slack or bounds on inputs, the corresponding protocols for these two settings are nearly
identical. In our case, the elimination of slack requires slightly different protocols. We
provide a brief discussion on applications of either of these protocols in Sec. 4.2.

Less Than Secret � LTSprxsM ;rysM q

Inputs: Values x and y secret shared, such that parties hold rxsM and rysM , two
shared edaBits

�
rr sM ;rr0s2;:::;rrm � 1s2

�
and

��
r 1

�
M

;
�
r 1

0

�
2
;:::;

�
r 1

m � 1

�
2

�
.

Outputs: Compute the Boolean value rpx yqs2.
Protocol:

1. Parties compute the values rbsM � r y� r sM , rasM �
�
r 1� x

�
M

2. Parties open the valuesa and b, and compute T � a� b pmod M q locally.
3. Parties compute the following quantities:

 r w1s2 � � LTBits pb;rr0s2;:::;rrm � 1s2q.

 r w2s2 � � LTBits pa;

�
r 1

0

�
2
;:::;

�
r 1

m � 1

�
2
q.

 w3 �p T bq.

 r s0s2;:::;rsm � 1s2;rsm s2 � � BitAdder prr0s2;:::;rrm � 1s2;

�
r 1

0

�
2
;:::;

�
r 1

m � 1

�
2
q.

 r w4s2 � r sm s2

 r w5s2 � � LTBits pT;rs0s2;:::;rsm � 1s2q.

4. Output rws2 � r w1s2 �r w2s2 � w3 �r w4s2 �r w5s2, or use one classicaldaBit and
output rwsM .

Fig. 6: Protocol for comparison between two arithmetic inputs shared in ZM , for any modulus
M (in particular, M can be 2k or a prime p).

Each step of the protocol � LTS computes the following:
1. Parties mask the input values rys and rxs using the arithmetic shares of two

random edaBitsrrs and rr 1s, resulting in shared valuesrbs and ras PZM .
2. These masked values are opened (without revealing any information aboutx or

y) and the value T � a� b pmod M q is computed locally.
3. The parties then perform the following computations:

(a) Using � LTBits , a secret comparison between the open valueb and the bitwise
sharing of the edaBit r , and store the result rw1s2.

(b) A similar comparison betweena and the bitwise sharing of r 1, and store the
output in rw2s2.

(c) Check in the clear whetherpT bq, and store this value in w3.
(d) Compute a circuit for bitwise addition of two binary (secret) vectors, where

the result is a bitwise secret shared vector of the bits ofpr � r 1q.
(e) Extract the last carry bit from the binary adder (Step 3d) as rw4s2.
(f) Finally, using � LTBits , compare the valueT against the bitwise secret sharing

of r � r 1 (computed in Step 3d), and store the output in rw5s2.
4. In the end, the parties conclude the comparison protocol by computing the output

rws2 � r w1s2 � r w2s2 � w3 � r w4s2 � r w5s2. This final step, similarly to the LTC
protocol follows from the way we exploit the commutative nature of addition,

Rabbit: Efficient Comparison for Secure Multi-Party Computation 11

rxs;rys b�r y� r s and a�
�
r 1� x

�

ry� xs T �
�
y� x � r � r 1

�

� r 1; � r

� B

�p r � r 1q

Fig. 7: Intuition behind the comparison protocol for two secret values, once again based on
the commutative nature of addition over rings and fields.

and we show correctness subsequently. The final output is the binary sharing of
the comparison result, which can be transformed to a shared bit inZM if needed.

Correctness of � LTS: Following the same notation set-up as in Sec. 2.2 for �LTC ,
we denote byrxs the value of x PZM , and the function LTpx;yqas defined in Eq. 1.
We are interested in securely computing the Boolean valuepx yq, for x and y two
secret shared values inZM . The intuition for our protocol is presented in Fig. 7 and
follows the same idea as in �LTC , viz., computing a sum in two different ways and
using Eq. 2 to find a constraint between the various wrappings around the modulus.

First note that rxs r ys iff LTpry� xs;rysq � 1. We then mask the inputs y and
� x using the two edaBits: rbs �r y� rs, ras �r r 1� xs. Finally, we look at computing
the value rTs � r y� x � r � r 1s in two different ways, as the sum ofa and b, and as
the sum of y� x and r � r 1. Looking at the addition using the first way, we first open
the valuesa and b, and write the exact integer relation (using Eq. 2):

T � b� a� M �LTpT;bq (6)

We can also write similar expressions forb and a,

b�r ys�r rs� M �LTpb;rrsq

a�r� xs�
�
r 1

�
� M �LTpa;

�
r 1

�
q

(7)

Thus the first expression for the sumT is given by (combining Eqs. 6, 7):

T �r ys�r rs� M �LTpb;rrsq�r� xs�
�
r 1

�
� M �LTpa;

�
r 1

�
q� M �LTpT;bq (8)

Grouping the terms differently and computing the sum using the latter expression:

T �r y� xs�
�
r � r 1

�
� M �LTpT;

�
r � r 1

�
q (9)

Once again,ry� xs and rr � r 1s can be expanded using Eq. 2 as:

ry� xs �r ys�r� xs� M �LTpry� xs;rysq
�
r � r 1

�
�r rs�

�
r 1

�
� M �LTp

�
r � r 1

�
;rrsq:

(10)

Plugging Eq. 10 into Eq. 9, and equating that with the expression in Eq. 8, we get
the following expression forLTpry� xs;rysq, the quantity of interest:

LTpry� xs;rysq� LTpb;rrsq� LTpa;
�
r 1

�
q� LTpT;bq� LTp

�
r � r 1

�
;rrsq� LTpT;

�
r � r 1

�
q

12 Makri et al.

This completes the correctness proof. To generate an efficient protocol for this
expression, the final observation is thatLTprr � r 1s;rrsqis generated as a by-product
of the computation required to generate the bit decomposition ofr � r 1 from the bit
decompositions ofr;r 1 (to enable a call to � LTBits). �

3 Evaluation

We implement our protocol in the MP-SPDZ Framework [13]. The entire protocol is a
handful of lines of python code, as shown in Fig. 1b, and reads directly from the pseu-
docode; this makes it highly amenable to implementation. We evaluate our protocol
over various MPC settings and a brief summary of our experiments is provided below:
(i) Throughput of Comparisons: In this experiment, we measure the throughput

of comparison operations and compare this with prior art. These results are
presented in Sec. 3.1.

(ii) Private Evaluation of ResNet-50: We provide benchmarks for evaluating
ResNet-50 [17] using dishonest majority privacy-preserving computation. We use
the state-of-the-art matrix triple generation algorithm [7] and combine that with
our comparison protocol and compare that against the prior art [7,14]. These
results are presented in Sec. 3.2.

Set-up Details: We use an MPC set-up similar to prior works [14,25,24]. Each
party is run on an Intel(R) Core(TM) i9-9900 CPU @ 3.10GHz with 128GB of RAM
over a 10Gb/s network switch with an average round-trip ping time of 1ms. For
the WAN setting we use two or three machines depending on the protocol wich are
equipped with Intel(R) Xeon(R) CPU E5-2690 v3 @ 2.60GHz and 54GB of RAM
while the network capability was slowed down using the Linux tc command limiting
the bandwidth to 100Mb/s and 100ms round-trip ping time.

3.1 Throughput of Rabbit comparisons

We conduct experiments in all combinations of the possible adversarial models (active,
passive), adversarial settings (honest majority, dishonest majority), and domains
(OT-based in Z2k , OT-based in Fp, HE-based inFp), and in both the LAN and WAN
network settings. Table 1 provides a summary of the primitives used as preprocessing
(i.e., offline cost) for a Rabbit comparison, vs. anedaBit comparison [14], their online
round complexity, security, and the need for slack, inZ2k and in Fp. As in Escuderoet.
al. [14], we benchmark the time required for a million comparisons between two (DM)
or three (HM) servers described in the setup above. Table 2, 3 show the number
of comparisons per second (throughput) and communication per party (kbits) for
a single operation in the LAN and WAN settings respectively. Our protocol improves
prior art in runtime and communication by upto 2 � , and in all cases, achieves these
without any slack.

Communication for � LTC over Fp. Note that our protocol incurs higher commu-
nication cost, when performing comparisons over fields. This is due to the use of

Rabbit: Efficient Comparison for Secure Multi-Party Computation 13

Sub-protocols
Rabbit edaBits Comp. [14]

Z2k Fp Z2k Fp

edaBits 1:t ku 1:t ku 1:t lu 2:t l � m� s;mu
daBits 1 1 1 1
ANDs 3pk� 1q klog2k* 3pl � 1q 2pk� 1q

Rounds 2 � log2k log2k 2log2 l 2log2k

Security, slack Perfect, No Statistical, No Statistical, Yes Statistical, Yes

Table 1: Theoretical complexity comparison of exact comparison functionality over Z2k and
Fp where k is the bit-size of the datatypes, l is the log2 bound on the inputs/data, and m
refers to the number of bits to be truncated.

a more expensive Prefix OR computation. Prior works encode the data in a larger
dataspace and simply extract the MSB for the comparison. In a manner similar to the
optimization from � LTC to � ReLU, we can extract the MSB to compute a comparison.
This operation requires using a prefix computation protocol � PreOpL (cf [6]), which has
a linear overhead of 2pk� 1qbit-triples in log2k rounds { matching that of edaBits[14].
If a different encoding is used, where positive and negative numbers are determined
by comparison with tp{2u, the same protocol can be used with statistical correctness,
determined by the specific choice of prime (with a small gap betweenp and 2k). A
suitable choice of primep would also further lower the prepossessing time, when
performed using HE.

3.2 Neural Network Evaluation

In this section, we provide benchmarks for using our approach for comparison on evalu-
ating the ResNet-50 architecture [17]. In our experiments, we consider neural network
inference over 64-bit datatypes and compare the offline and online performance of our
protocol with the state-of-the-art protocols with active security in the dishonest ma-
jority setting. For prior art, we use the recent protocol for matrix triple generation [7]
in conjunction with our � LTC comparison protocol. The results are summarized below.

The work of Chen et. al. [7] requires the plaintext modulus to be 128-bits, due
to the slack required in the comparison. In this work, we eliminate that slack and
hence only require generation of matrix triples using homomorphic encryption (HE)
with a plaintext space of 64-bits. While Chen et. al. [7] require a 128-bit modulus
and N � 215 (degree of the cyclotomic polynomial), we can generate 64-bit triples.
This enables us to run the algorithm with lower HE parameters (and consequently
better performance). We useN � 214, a plaintext modulus of 64-bits and a ciphertext
modulus of 480. With a conservative analysis this leaves enough room for 40-bits
of statistical security. We set the block size to 64 instead of 128 and thus pack 4
matrices in a single ciphertext (compared to 2 in Chenet. al. [7]). We list the sizes
of matrices required for the computations in ResNet-50 and then measure the time
required (and communication overhead) for matrix triple generations using these
different set-ups. We run the protocols on a similar set-up as Chenet. al. [7], using
a 5Gb/s LAN bandwidth and about 300 Mbps WAN bandwidth. Hence, just for

	Rabbit: Efficient Comparison for Secure Multi-Party Computation

